WO2018047098A1 - Trémie avec microréacteur et cartouche pour pulvérisation à froid à basse pression - Google Patents

Trémie avec microréacteur et cartouche pour pulvérisation à froid à basse pression Download PDF

Info

Publication number
WO2018047098A1
WO2018047098A1 PCT/IB2017/055402 IB2017055402W WO2018047098A1 WO 2018047098 A1 WO2018047098 A1 WO 2018047098A1 IB 2017055402 W IB2017055402 W IB 2017055402W WO 2018047098 A1 WO2018047098 A1 WO 2018047098A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
reaction chamber
powder feed
set forth
cartridge
Prior art date
Application number
PCT/IB2017/055402
Other languages
English (en)
Inventor
Roman Gr. Maev
Volf Leshchynsky
Emil Strumban
Dmitry DZHURINSKIY
Zygmunt Baran
Original Assignee
Tessonics, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tessonics, Inc filed Critical Tessonics, Inc
Priority to CN201780054814.5A priority Critical patent/CN109843422A/zh
Priority to CA3032793A priority patent/CA3032793C/fr
Priority to DE112017004485.5T priority patent/DE112017004485T5/de
Priority to GB1901527.0A priority patent/GB2566906B/en
Publication of WO2018047098A1 publication Critical patent/WO2018047098A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/144Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/002Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/144Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means
    • B05B7/1445Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means involving vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1463Arrangements for supplying particulate material the means for supplying particulate material comprising a gas inlet for pressurising or avoiding depressurisation of a powder container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/166Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material to be sprayed being heated in a container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/36Arrangements of containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/40Feeding or discharging devices
    • B65G53/46Gates or sluices, e.g. rotary wheels
    • B65G53/4608Turnable elements, e.g. rotary wheels with pockets or passages for material
    • B65G53/4616Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning parallel to flow

Definitions

  • the invention relates generally to a compact hopper combined with a microreactor for in- situ treatment of powder for use in a low pressure cold spraying process with an increased deposition rate.
  • the oxide layer has to be maximally altered, diminished or removed from the particle surfaces.
  • a mechanical breakdown, reaction/plasma processing or heat treatment of the particles including a mechanical breakdown, reaction/plasma processing or heat treatment of the particles.
  • the removal of the oxide layer requires: (a) the presence of a small amount of Mg (over 0.01 mass%) in the reaction area and (b) an activation temperature above 773 °K.
  • Mg aluminum alloy powders
  • an activation temperature above 773 °K.
  • the oxide layer from Aluminum-based alloy powders may not be enough, since a natural aluminum oxide coating will be formed again over the metallic A16022 powders exposed to the environment.
  • direct in situ nitriding of the Al alloy powders can be used to destroy Al oxide film and form a very thin A1N island on the particle surfaces [T.B. Sercombe and G.B. Schaffer, On the role of tin in the nitridation of aluminium powder, Scr. Mater. 55, (2006) 323-328].
  • a reactive hopper assembly for feeding a low pressure cold spray applicator for applying powder coatings.
  • a powder feed cartridge provides powder feed to a reaction chamber.
  • An impeller housing is interconnected with the reaction chamber for receiving powder feed from the reaction chamber for metering powder feed received from the reaction chamber.
  • a hopper vessel receives metered powder feed from the impeller housing for providing powder to the low pressure cold spray applicator.
  • the reaction chamber is fluidly connected to a source of a reactive gas for chemically modifying the powder feed for in situ reducing surface oxidation of the powder feed.
  • the compact hopper-microreactor or reactive hopper assembly for powder feeding of low pressure cold spraying processes includes a powder cartridge and a reaction chamber with mixing device and valve.
  • a powder-metering disc device and powder flow stabilization vibration device achieve a stable powder feeding rate.
  • the reaction chamber is loaded with powder preliminarily mixed with reactive issues and placed into a cartridge in a nitrogen atmosphere.
  • the processed powder particles are covered with modified oxide or nitride layers.
  • the coverage results in reduction, and even elimination, of surface film damage during particle impingement and leads to creation of fresh surfaces and metallurgical bonding between particles.
  • Figure 1 shows a cross-sectional view of the assembly of the present invention
  • Figure 2 shows a cross-sectional view of a powder flow stabilization vibration device through section A- A of Figure 1;
  • Figure 3 shows a cross-sectional of the powder flow stabilization vibration device through section BB of Figure 2;
  • Figure 4 shows a cross-sectional view of a cartridge of the present invention.
  • a first problem addressed is that of providing a hopper-microreactor assembly for processing a powder in situ before deposition.
  • a second problem addressed by the invention is that of providing a powder with a reduced surface oxide layer for a low pressure cold spraying process, which makes it possible to obtain coatings with high adhesion strength and deposition efficiency.
  • the design of the present invention allows for the compact hopper-microreactor to be integrated with cold spray gun.
  • Fig.1 depicts a cross-sectional view of a powder feed assembly in accordance with the present invention generally at 100.
  • the powder feed assembly 100 includes an upper hopper assembly 111 mounted on the top 114 of a powder metering device, which is joined with a main chassis 117 of the powder metering device installed on a basis housing 119.
  • a powder flow stabilization device 122 with vibrating screen 123 is installed in the basic housing 119.
  • the upper hopper assembly 111 includes a hollow, generally cylindrical, vertically disposed powder cartridge 101 for containing a quantity of powder to be fed to micro-reactor 104.
  • the cartridge 101 is mounted on the upper cartridge window 103 of the micro-reactor 104 by way of threaded engagement.
  • a knife 124 mounted on the upper cartridge window 103 with screw 125 cuts the paper cover 102 during a cartridge 101 turn.
  • the micro-reactor 104 assembly includes agitator 105 located inside micro-reactor 104 for mixing, agitating and thermal processing powder within micro-reactor 104 in the heated nitrogen atmosphere provided by nitrogen source 106, and heating coil 107.
  • the processed powder selectively exits the micro-reactor 104 via the valve 108 through a powder hose 126 through a frame 109 with vibrator 110 that opens and closes the valve 108.
  • the processed powder is directed into the impeller chamber 127 to a stir spindle assembly 128, which includes a spindle 112 and stirring element 113.
  • the stirring element 113 is mounted at the spindle 112 upper end. A pivot of the stirring element 113 serves to agitate and break up the powder upon receipt into the impeller chamber 127.
  • a powder feed impeller 116 includes an outer periphery including a plurality of teeth 129 defining a plurality of notches 130.
  • the lower end of a powder metering device housing 114 has an inside insert 115, which contacts the top surface of the impeller 116.
  • each of the impeller teeth moves under the inside insert 115 and into the region of cavity located in the main chassis 117.
  • a cavity 125 in the main chassis 117 extends from the upper surface of the main chassis 117 through the bottom of the chassis 117 and into the basic housing 119.
  • a cavity 125 in the chassis 117 tapers in its cross-sectional area with the impeller notch 130 for receiving powder material. Therefore, the powder as so agitated and de-agglomerated falls onto the powder feed impeller 116 where it falls into the notches 130 between the teeth 129.
  • An insert 115 controls the amount of powder capable of passing through a notch 130 into the cavity 125 by scraping excess powder from the powder feed impeller 116. As the powder feed impeller 116 rotates, its teeth 129 and notches 130 beneath the inside insert 115 scrapes excess powder from the notches 130. Therefore, a controlled amount of the powder is allowed to remain within each notch 130 to a height approximately equal to the thickness of the powder feed impeller 116.
  • This controlled amount of powder falls through the cavity 125 defined by the chassis 117. Therefore, the action of the powder feed impeller 116 dispenses controlled amount of powder through the cavity 125 in the chassis 117 with the rate of supply of such a controlled amount being determined by the speed of rotation of primary drive shaft 121 and electric motor 120 that rotates the powder feed impeller 116.
  • Feeding controlled amounts of powder with powder metering device through the chassis may result in the powder aggregating due to its small particle size (between aboutl5- 50 ⁇ ). Aggregation may inhibit the uniform powder flow through the powder supply passage 212 (Fig. 2) toward the low pressure cold spray gun (not shown).
  • a powder flow stabilization vibration device 122 is installed in the basic housing 119 and includes wire mesh 123.
  • the more detailed view of the powder flow stabilization vibration device 122 is shown on Fig. 2, which depicts the cross-section A- A of Fig.l and in Fig. 3, which depicts the cross-section B-B of Fig. 2.
  • the vibration device 122 includes a hopper vessel 202 that is mounted within the basic housing 201.
  • a main mesh screen 203 is mounted on a vibration plate 204, which passes through the hopper vessel 202 and receives vibrational movement from vibrating unit 205.
  • the vibrating unit 205 is driven by a pneumatic vibrator 206 installed on a table 208 that is joined with the basic housing 201.
  • a second mesh screen 209 is connected to an opposing side of the hopper 202 vessel as is the main mesh screen 203. Therefore, the main mesh screen 203 and the second mesh screen
  • the hopper vessel 202 defines holes 211 through which air is drawn due to negative pressure in the powder passage 212 when the low pressure cold spraying gun is activated.
  • the holes 211 prevent negative pressure from being translated into the reaction chamber 104 via the impeller chamber 127.
  • the powder is drawn by air flow toward the spraying gun with through powder passage 212 in a known manner.
  • a controlled amount of powder falls on the main mesh screen 203 and powder agglomerates are being broken due to the screen vibration. Some of the small agglomerates that pass through the main screen 203 are subsequently de-agglomerated by the second screen 209. A powder race 213 and bowl 214 are installed for evacuation of the particle aggregates, which do not pass through the main screen 203. The particle aggregates which do not pass through the main screen 203 are fed through the powder race 213 towards the bowl 214.
  • Fig. 4 depicts a cross-sectional view of the powder cartridge 300.
  • the powder cartridge 300 includes the cartridge canister 301 in which a quantity of powder material is hermetically sealed by paper or equivalent cover 301. As set forth above, the cartridge 300 is sealed in a nitrogen or equivalent gaseous environment for reducing oxidation on the surface of the particles disposed within the cartridge 300.
  • a cartridge cup 303 receives an end of the cartridge canister 301 that is hermetically sealed by way of threaded or equivalent engagement.
  • An o-ring seal 304 circumscribes the cartridge cup 303 for sealing cartridge cup 303, and, therefore, the cartridge canister 301 when threadably engaged to the cartridge-hopper window interface.
  • the cartridge cup 303 is mounted on the upper cartridge window 103 by way of threaded engagement.
  • the knife 124 cuts the paper cover 301 breaking the hermetic seal and allowing powder to be released into the micro-reactor chamber 104 for mixing, agitating and thermal processing.
  • heated nitrogen, or an equivalent gas is introduced to the chamber 104 through the nitrogen source 106. Because the chamber 104 is sealed, little opportunity is presented for oxidation of the powder material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nozzles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

L'invention concerne également un ensemble trémie réactif pour alimenter un applicateur de pulvérisation à froid à basse pression pour appliquer des revêtements en poudre. Une cartouche d'alimentation en poudre fournit une alimentation en poudre à une chambre de réaction. Un boîtier d'impulseur est interconnecté avec la chambre de réaction pour recevoir l'alimentation en poudre provenant de la chambre de réaction pour mesurer l'alimentation en poudre reçue à partir de la chambre de réaction. Un réservoir de trémie reçoit une alimentation en poudre dosée provenant du boîtier d'impulseur pour fournir de la poudre à l'applicateur de pulvérisation à froid à basse pression. La chambre de réaction est en communication fluidique avec une source d'un gaz réactif pour modifier chimiquement l'alimentation en poudre pour réduire in situ l'oxydation de surface de l'alimentation en poudre.
PCT/IB2017/055402 2016-09-07 2017-09-07 Trémie avec microréacteur et cartouche pour pulvérisation à froid à basse pression WO2018047098A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780054814.5A CN109843422A (zh) 2016-09-07 2017-09-07 用于低压冷喷涂的带有微型反应器和盒的料斗
CA3032793A CA3032793C (fr) 2016-09-07 2017-09-07 Tremie avec microreacteur et cartouche pour pulverisation a froid a basse pression
DE112017004485.5T DE112017004485T5 (de) 2016-09-07 2017-09-07 Trichter mit Mikroreaktor und Kartusche für Niedrigdruck-Kaltgasspritzen
GB1901527.0A GB2566906B (en) 2016-09-07 2017-09-07 Hopper with microreactor and cartridge for low pressure cold spraying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662384353P 2016-09-07 2016-09-07
US62/384,353 2016-09-07

Publications (1)

Publication Number Publication Date
WO2018047098A1 true WO2018047098A1 (fr) 2018-03-15

Family

ID=61281877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/055402 WO2018047098A1 (fr) 2016-09-07 2017-09-07 Trémie avec microréacteur et cartouche pour pulvérisation à froid à basse pression

Country Status (6)

Country Link
US (1) US10300445B2 (fr)
CN (1) CN109843422A (fr)
CA (2) CA3098314C (fr)
DE (1) DE112017004485T5 (fr)
GB (1) GB2566906B (fr)
WO (1) WO2018047098A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
CN108889159B (zh) * 2018-07-24 2021-02-12 苏州水木康桥环境工程技术有限公司 一种具有自我防护功能的水中搅拌机及其工作方法
CN110116070A (zh) * 2019-04-15 2019-08-13 浙江川洋新材料股份有限公司 高耐热车用聚氨酯吸音海绵的全水发泡喷涂机构
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
WO2021055284A1 (fr) 2019-09-19 2021-03-25 Westinghouse Electric Company Llc Appareil pour effectuer un test d'adhérence in situ de dépôts de pulvérisation à froid et procédé d'utilisation
CN111888510B (zh) * 2020-07-22 2023-08-29 青岛巉山环保科技有限公司 一种静电气溶胶喷雾消毒机及其工作方法
NL2029426B1 (en) * 2021-10-14 2023-05-16 Jelmer Brugman Holding B V Powder feed unit and apparatus comprising the same
CN115418612A (zh) * 2022-09-23 2022-12-02 研博智创任丘科技有限公司 一种粉体镀膜储粉漏粉装置
CN115338053B (zh) * 2022-10-18 2022-12-23 季华实验室 冷喷涂设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808042A (en) * 1982-06-11 1989-02-28 Electro-Plasma, Inc. Powder feeder
US20070221746A1 (en) * 2006-03-24 2007-09-27 Linde Aktiengesellschaft Cold gas spray gun
WO2008037761A2 (fr) * 2006-09-28 2008-04-03 Siemens Aktiengesellschaft Procédé d'introduction de particules de matière de revêtement dans un processus d'application de revêtement par thermo-injection
WO2008084025A2 (fr) * 2007-01-09 2008-07-17 Siemens Aktiengesellschaft Procédé et dispositif de projection dynamique par gaz froid de particules de différente dureté et/ou ductilité
CA2860720A1 (fr) * 2012-01-24 2013-08-01 Linde Aktiengesellschaft Procede de pulverisation a gaz froid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019016A1 (fr) * 1990-05-19 1991-12-12 Institut Teoreticheskoi I Prikladnoi Mekhaniki Sibirskogo Otdelenia Akademii Nauk Sssr Procede et dispositif de revetement
RU2213805C2 (ru) * 2001-10-23 2003-10-10 Крыса Валерий Корнеевич Способ нанесения покрытий из порошковых материалов и устройство для его осуществления
US20060121187A1 (en) * 2004-12-03 2006-06-08 Haynes Jeffrey D Vacuum cold spray process
CN100457286C (zh) * 2007-07-20 2009-02-04 北京科技大学 一种冷喷涂高压送粉器
JP5321942B2 (ja) * 2008-02-29 2013-10-23 新東工業株式会社 電子回路基板の製造方法およびその電子回路基板
DE102009018661A1 (de) * 2009-04-23 2010-10-28 Cgt Cold Gas Technology Gmbh Vorrichtung zum Erzeugen eines Gas-Pulvergemisches
US10058918B2 (en) * 2014-05-09 2018-08-28 United Technologies Corporation Surface treatment of powers
WO2016118551A1 (fr) * 2015-01-21 2016-07-28 Sikorsky Aircraft Corporation Procédé de pulvérisation à froid mettant en œuvre une poudre métallique traitée
CN105256306B (zh) * 2015-11-05 2018-06-26 西安交通大学 基于混合粉末的高致密度冷喷涂金属沉积体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808042A (en) * 1982-06-11 1989-02-28 Electro-Plasma, Inc. Powder feeder
US20070221746A1 (en) * 2006-03-24 2007-09-27 Linde Aktiengesellschaft Cold gas spray gun
WO2008037761A2 (fr) * 2006-09-28 2008-04-03 Siemens Aktiengesellschaft Procédé d'introduction de particules de matière de revêtement dans un processus d'application de revêtement par thermo-injection
WO2008084025A2 (fr) * 2007-01-09 2008-07-17 Siemens Aktiengesellschaft Procédé et dispositif de projection dynamique par gaz froid de particules de différente dureté et/ou ductilité
CA2860720A1 (fr) * 2012-01-24 2013-08-01 Linde Aktiengesellschaft Procede de pulverisation a gaz froid

Also Published As

Publication number Publication date
US10300445B2 (en) 2019-05-28
CN109843422A (zh) 2019-06-04
US20180065100A1 (en) 2018-03-08
CA3098314A1 (fr) 2018-03-15
GB2566906A (en) 2019-03-27
GB201901527D0 (en) 2019-03-27
CA3032793C (fr) 2020-11-24
DE112017004485T5 (de) 2019-06-19
CA3098314C (fr) 2022-04-12
CA3032793A1 (fr) 2018-03-15
GB2566906B (en) 2022-04-27

Similar Documents

Publication Publication Date Title
US10300445B2 (en) Hopper with microreactor and cartridge for low pressure cold spraying
US7214255B2 (en) Aerosol method and apparatus for making particulate products
US7905942B1 (en) Microwave purification process
JP2022176932A (ja) 粉末を合成し、機能化し、表面処理及び/又はカプセル化する製造方法及びその用途
CA2667004A1 (fr) Procedes et appareils pour la realisation de revetements par pulverisation electrostatique
JPH08158033A (ja) 微細組織厚膜材料の製造法および装置
CN114045424B (zh) 一种用于增材制造的混合粉末及其制备方法
US11345994B2 (en) Method for forming coating film on powder, container for use in formation of coating film on powder, and ALP apparatus
JP2002518592A (ja) 粉末エアロゾルの製造方法並びにその設備及び使用方法
EP1123181A1 (fr) Procede de formation d'aerosols et dispositif de fabrication de produits particulaires
JP5846402B1 (ja) 焼結用造粒原料の製造装置
JP6256728B2 (ja) 焼結用造粒原料の製造装置
CN114134483B (zh) 一种包覆粉体物料的原子层沉积方法与装置
CN112469844B (zh) 粉体的成膜方法、粉体成膜用容器和ald装置
JP2005113261A (ja) エアロゾル発生装置、複合構造物作製装置、エアロゾル発生方法及び複合構造物作製方法
JP3328783B2 (ja) 複合粒子の製造方法、並びにその方法により得られた複合粒子
US11707752B2 (en) Powder sieving capsule
JPH10114428A (ja) 粉体分散器
JP2621977B2 (ja) 熱電変換材料用粉末の製造方法
CN115747777A (zh) 一种化学镀膜设备
JPH04173948A (ja) Ti・B複合溶射材の製造方法及びTi・B複合溶射材
JP2006150160A (ja) 粉体膜形成装置
JPH05239501A (ja) 金属粉末からの酸素除去方法
JP2015053119A (ja) リチウムイオン二次電池用水系電極材料の製造方法及びその装置
JPH0461688B2 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3032793

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 201901527

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170907

122 Ep: pct application non-entry in european phase

Ref document number: 17848244

Country of ref document: EP

Kind code of ref document: A1