WO2018045881A1 - 用于车辆的陡坡缓降系统及其控制方法 - Google Patents

用于车辆的陡坡缓降系统及其控制方法 Download PDF

Info

Publication number
WO2018045881A1
WO2018045881A1 PCT/CN2017/099033 CN2017099033W WO2018045881A1 WO 2018045881 A1 WO2018045881 A1 WO 2018045881A1 CN 2017099033 W CN2017099033 W CN 2017099033W WO 2018045881 A1 WO2018045881 A1 WO 2018045881A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
motors
wheels
steep slope
speed
Prior art date
Application number
PCT/CN2017/099033
Other languages
English (en)
French (fr)
Inventor
凌和平
孟繁亮
石明川
熊焱飞
陈伟强
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP17848054.7A priority Critical patent/EP3511190A4/en
Priority to US16/331,333 priority patent/US10967870B2/en
Publication of WO2018045881A1 publication Critical patent/WO2018045881A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/34Control or regulation of multiple-unit electrically-propelled vehicles with human control of a setting device
    • B60L15/36Control or regulation of multiple-unit electrically-propelled vehicles with human control of a setting device with automatic control superimposed, e.g. to prevent excessive motor current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/72Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to a difference between a speed condition, e.g. deceleration, and a fixed reference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/04Hill descent control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to a steep slope descent system for a vehicle and a control method of the steep descent system.
  • ABS anti-lock braking system
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • embodiments of the present disclosure propose a steep slope descent system for a vehicle that can cause the vehicle to go downhill at a constant speed, and the motor can brake the wheel quickly and accurately.
  • Embodiments of the present disclosure further propose a control method for a steep slope descent system.
  • a steep slope descent system includes: a plurality of wheels; a plurality of wheel speed sensors corresponding to the plurality of wheels and for detecting a speed of the plurality of wheels; a plurality of motors corresponding to the plurality of wheels and for selectively driving and braking the plurality of wheels; a plurality of motor controllers, the plurality of motor controllers respectively a plurality of motors connected to each other for controlling an operating state of the plurality of motors; a plurality of resolvers, the plurality of resolvers corresponding to the plurality of motors and configured to detect a rotational speed of the plurality of motors; And a vehicle controller, the vehicle controllers being respectively coupled to the plurality of wheel speed sensors, the plurality of motor controllers, and the plurality of resolvers for utilizing speeds of the plurality of wheels and The rotational speeds of the plurality of motors determine an actual downhill speed of the vehicle, and the plurality of motor controllers are controlled according to an actual downhill speed of the vehicle to
  • the vehicle controller can determine the actual downhill speed of the vehicle according to the speed of the wheel detected by the wheel speed sensor and the rotational speed of the motor detected by the resolver sensor, so that the motor can be made according to the vehicle
  • the actual downhill condition controls the speed of the wheel, which in turn makes the vehicle's downhill speed slow and uniform, which can improve the ride comfort of the vehicle during the downhill process.
  • the motor brakes are fast and precise.
  • the steep slope descent system is the above implementation according to the present disclosure
  • the vehicle controller can determine the actual downhill speed of the vehicle according to the speed of the wheel detected by the wheel speed sensor and the rotational speed of the motor detected by the resolver sensor, thereby The motor is controlled according to the actual downhill condition of the vehicle, thereby making the vehicle downhill speed slow and uniform, and improving the ride comfort of the vehicle during the downhill process.
  • the motor brakes are fast and precise.
  • FIG. 1 is a schematic structural view of a steep slope descent system for a vehicle according to an embodiment of the present disclosure
  • Figure 2 is a flow chart of a control method for the steep slope descent system shown in Figure 1;
  • Figure 3 is a schematic illustration of a dynamics model of a vehicle.
  • a steep slope descent system 100 may be described in detail below with reference to the accompanying drawings, which may be applied to a vehicle such that the vehicle travels at a constant speed during a downhill course, thereby improving the smooth running of the vehicle during the downhill process. Sex.
  • the steep slope descent system 100 may include: a plurality of wheels 2, a plurality of wheel speed sensors 10, a plurality of motors 3, a plurality of motor controllers 4, a plurality of resolvers 11 and a vehicle controller 1 .
  • the plurality of wheel speed sensors 10 correspond to a plurality of wheels 2
  • the plurality of motors 3 correspond to the plurality of wheels 2
  • the plurality of motors 3 selectively drive and brake the plurality of wheels 2. It can be understood that the plurality of motors 3 can selectively drive the rotation of the wheel 2 according to actual conditions, or the plurality of motors 3 can selectively brake the wheel 2 according to actual conditions.
  • the plurality of motor controllers 4 are respectively connected to a plurality of motors 3, and the motor controller 4 can control the operating state of the motor 3, such as the forward or reverse rotation of the motor 3, and the rotational speed of the motor 3.
  • the plurality of resolver sensors 11 correspond to a plurality of motors 3, and the vehicle controller 1 is connected to a plurality of wheel speed sensors 10, a plurality of motor controllers 4, and a plurality of resolvers 11 respectively.
  • the wheel speed sensor 10 may be four.
  • the four wheel speed sensors 10 respectively correspond to four wheels 2, and each wheel speed sensor 10 can be used to detect the speed of the corresponding wheel 2, so that the speed of the vehicle during the downhill process can be obtained.
  • the motor 3 can be four, and the four motors 3 correspond to the four wheels 2.
  • the motor controller 4 can be four, and the four motor controllers 4 can be in one-to-one correspondence with the four motors 3.
  • the four resolver sensors 11 can be in one-to-one correspondence with the four motors 3, and the four resolver sensors 11 can be used to detect the rotational speeds of the four motors 3, respectively, thereby obtaining the speed of the vehicle during the downhill process.
  • a transmission 6 can be connected to the motor shaft of the plurality of motors 3, and the transmission 6 can adjust the output rotation speed of the motor 3, so that the output speed of the motor 3 can be made appropriate, so that the motor 3 can be driven reasonably and reliably. Or brake the wheel 2.
  • the vehicle controller 1 can be connected to four wheel speed sensors 10, four motor controllers 4 and four resolver sensors 11, respectively.
  • the vehicle controller 1 can determine the actual downhill speed of the vehicle based on the speed of the wheel detected by the wheel speed sensor 10 and the rotational speed of the motor detected by the resolver sensor 11, so that the motor 3 can be made according to the actual condition of the vehicle.
  • the slope condition controls the speed of the wheel 2, which in turn makes the vehicle downhill speed slow and uniform, and can improve the ride comfort of the vehicle during the downhill process.
  • the motor 3 brakes quickly and accurately.
  • the predetermined speed of the vehicle is V0
  • the steep slope descent system 100 may further include a power battery 5 connected to the motor controller 4, and the plurality of motors 3 are respectively motor generators.
  • the power battery 5 can supply electric power to the motor 3 through the motor controller 4 to cause the motor 3 to drive or brake the wheel 2.
  • the motor 3 is used as the generator 3, the wheel can reverse the motor 3, the motor 3 can collect the reverse drag energy and generate electricity, and the electric energy generated by the motor 3 is stored in the power battery 5, thereby improving the energy recovery efficiency of the vehicle, and It can extend the mileage of the vehicle.
  • the plurality of motors 3 may each be a wheel motor.
  • the wheel motor is simple to set up, and the wheel motor is close to the wheel 2, so that the steep slope descent system 100 can be arranged reasonably.
  • the steep slope descent system 100 may further include a hydraulic brake system that is coupled to the vehicle controller 1 .
  • the braking torque provided by the motor 3 to the wheel 2 may be sufficient to cause the vehicle to descend at a constant speed at a predetermined speed V0;
  • the hydraulic brake system brakes the plurality of wheels under the control of the vehicle controller 1 2 to maintain the vehicle at the predetermined speed V0, that is, the hydraulic brake system brakes the wheel 2 together with the motor 3, so that the vehicle can be driven at a constant speed during the downhill process.
  • the steep slope descent system 100 may further include: a steering wheel angle sensor 9 and a yaw rate sensor 7.
  • the steering wheel angle sensor 9 and the yaw rate sensor 7 are respectively connected to the vehicle controller 1, and the vehicle controller 1 selectively controls a plurality of motor controllers 4 based on the detection results of the steering wheel angle sensor 9 and the yaw rate sensor 7.
  • the torque distribution of the motors 3 is used to correct the yaw moment control.
  • four motors 3 can drive or brake the four wheels 2 to rotate at different speeds. Specifically, two of the four electric machines 3 drive the wheels 2 on the one side and the other two drive the wheels 2 on the other side.
  • the present disclosure is not limited thereto, and the steering wheel angle sensor 9 can be used to detect the rotation angle of the steering wheel 8, so that the vehicle controller 1 can determine whether the driver is hitting the steering wheel 8 based on the rotation angle of the steering wheel 8.
  • the vehicle controller 1 determines that the driver does not hit the steering wheel 8
  • the vehicle controller 1 can also determine the lateral swing condition of the vehicle according to the yaw rate sensor 7, so that the motor controller 4 can appropriately allocate a certain torque to the motor 3.
  • the yaw moment can be corrected so that the vehicle goes downhill at a constant speed.
  • the difference between the yaw rate calculated by the vehicle controller 1 and the yaw rate measured by the yaw rate sensor 7 is ⁇
  • the centroid side angle of the vehicle estimated by the vehicle model is ⁇ .
  • the steep slope descent system 100 is set with a predetermined yaw rate difference threshold value ⁇ and a centroid side declination threshold value ⁇ .
  • the motor controller 4 distributes the torque of the motor 3 to perform the corrected yaw moment control.
  • the yaw rate sensor 7 may have the function of detecting the yaw rate, the longitudinal acceleration, and the lateral acceleration of the vehicle.
  • the whole vehicle is simplified into a linear two-degree-of-freedom vehicle model (as shown in Figure 3).
  • the influence of the steering system is neglected, and the previous wheel angle is taken as the input; ignoring the effect of the suspension, it is considered that the car compartment only moves in a plane parallel to the ground, that is, the displacement of the car along the z-axis, the pitch angle around the y-axis and the wrap around x
  • the roll angle of the shaft is zero; the side deflection characteristics of the tire and the effect of aerodynamics are not considered; and the longitudinal speed of the car along the x-axis is considered constant.
  • the goal of stability control is to keep ⁇ as small as possible (near zero) while allowing ⁇ to track the expected value to achieve the driver's intention.
  • the expected yaw rate can be expressed as:
  • ⁇ e is the desired yaw rate
  • K is the stability factor
  • the sliding mode control is taken as an example to illustrate the calculation method of the yaw moment.
  • the sliding surface is defined as:
  • the calculation method of the yaw moment in the embodiment of the present disclosure is not limited to the use of sliding mode control, and may also adopt PID (proportion - Other control methods such as integral-differential control, as long as the yaw moment can be generated to stabilize the body.
  • the vehicle controller 1 is adapted to control the hydraulic brake system to brake the plurality of wheels 2.
  • the hydraulic control system and the plurality of motors 3 together provide a corrected yaw moment that maintains the vehicle traveling in a straight line at a constant speed.
  • a steep slope descent control button may be provided in the cockpit of the vehicle, and the steep slope descent control button is connected to the vehicle controller 1.
  • the driver can touch the steep slope descent control button, where the steep slope descent control button can be placed on the dashboard or on the sub-dash.
  • the steep slope descent system 100 further includes a power battery 5 connected to a plurality of motor controllers 4, the state of charge of the power battery 5 is SOC, and the motor 3 may be a motor generator.
  • the control method according to an embodiment of the present disclosure further includes a step of braking the wheel 2 by the motor 3 when the actual downhill speed V1 of the vehicle is greater than the predetermined speed V0 and the state of charge (SOC) of the power battery 5 is less than 95%. It can be understood that when the SOC of the power battery 5 is less than 95%, the motor 3 brakes the wheel 2, and the wheel 2 reverses the motor 3, whereby the motor 3 can be used as a generator to convert the reverse drag energy into electrical energy, and the electric energy It is stored in the power battery 5.
  • the steep slope descent system 100 can also include a hydraulic brake system.
  • the control method according to an embodiment of the present disclosure further includes the step of braking a plurality of wheels 2 by a hydraulic brake system when V1>V0 and SOC ⁇ 95%.
  • the hydraulic brake system can be used to brake the plurality of wheels 2 so that the actual downhill speed of the vehicle is maintained at The predetermined speed V0.
  • the total braking torque required for the vehicle to maintain the predetermined speed V0 while the steep slope is descending is ⁇ Mb
  • the maximum braking torque provided by the plurality of motors 3 is ⁇ Mm_max. Therefore, during the braking of the wheel 2 by the motor 3, when the actual downhill speed V1 of the vehicle is greater than the predetermined speed V0 and the total braking torque ⁇ Mb is greater than the maximum braking torque ⁇ Mm_max, that is, when the plurality of motors 3 are the largest
  • the braking torque is smaller than the total braking torque required for the vehicle to maintain the predetermined speed V0, the plurality of motors 3 and the hydraulic brake system can brake the wheel 2 together. This makes it possible for the vehicle to continue to descend at a constant speed at a predetermined speed V0, so that the downhill running smoothness of the vehicle can be improved.
  • the steep slope descent system 100 may further include: a steering wheel angle sensor 9 and a yaw rate sensor 7.
  • the steering wheel angle sensor 9 and the yaw rate sensor 7 are respectively connected to the vehicle controller 1, and the yaw calculated by the vehicle controller 1 is calculated.
  • the difference between the angular velocity and the yaw rate measured by the yaw rate sensor 7 is ⁇
  • the centroid side angle of the vehicle estimated by the vehicle model is ⁇
  • the steep slope descent system 100 is set with a predetermined yaw rate.
  • the difference threshold ⁇ and the centroid side declination threshold ⁇ is set with a predetermined yaw rate.
  • the motor controller 4 distributes the torque of the motor 3 to perform the corrected yaw moment control. It can be understood that when the driver does not operate the steering wheel 8, the vehicle can enter the active yaw moment control mode, which can better control the vehicle to go downhill in a straight line, thereby improving the ride comfort of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种用于车辆的陡坡缓降系统(100)及其控制方法。陡坡缓降系统(100)包括:多个车轮(2);多个轮速传感器(10),与所述多个车轮(2)相对应且用于检测所述多个车轮(2)的速度;多个电机(3),与所述多个车轮(2)相对应且用于选择性地驱动和制动所述多个车轮(2);多个电机控制器(4),分别与所述多个电机(3)相连且用于控制所述多个电机(3)的工作状态;多个旋变传感器(11),与所述多个电机(3)相对应且用于检测所述多个电机(3)的转速;以及整车控制器(1),分别与所述多个轮速传感器(10)、所述多个电机控制器(4)和所述多个旋变传感器(11)相连,用于根据所述多个车轮(2)的速度以及所述多个电机(3)的转速确定所述车辆的实际下坡速度,并根据所述车辆的实际下坡速度控制所述多个电机控制器(4),以调节所述多个电机(3)的工作状态。

Description

用于车辆的陡坡缓降系统及其控制方法 技术领域
本公开涉及车辆技术领域,尤其涉及一种用于车辆的陡坡缓降系统以及该陡坡缓降系统的控制方法。
背景技术
相关技术中,一些陡坡缓降系统是在制动防抱死系统(ABS)的基础上发展起来的,但是液压制动系统具有效率低、响应慢、成本高等缺点,而且陡坡缓降系统要求液压泵反复的施压制动,这样势必会造成能量的损失。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开实施例提出一种用于车辆的陡坡缓降系统,该陡坡缓降系统可以使得车辆直线匀速下坡,而且电机可以快速精确地制动车轮。
本公开实施例进一步地提出了一种用于陡坡缓降系统的控制方法。
根据本公开实施例的陡坡缓降系统,包括:多个车轮;多个轮速传感器,所述多个轮速传感器与所述多个车轮相对应且用于检测所述多个车轮的速度;多个电机,所述多个电机与所述多个车轮相对应且用于选择性地驱动和制动所述多个车轮;多个电机控制器,所述多个电机控制器分别与所述多个电机相连且用于控制所述多个电机的工作状态;多个旋变传感器,所述多个旋变传感器与所述多个电机相对应且用于检测所述多个电机的转速;以及整车控制器,所述整车控制器分别与所述多个轮速传感器、所述多个电机控制器和所述多个旋变传感器相连,用于根据所述多个车轮的速度以及所述多个电机的转速确定所述车辆的实际下坡速度,并根据所述车辆的实际下坡速度控制所述多个电机控制器,以调节所述多个电机的工作状态。
根据本公开的陡坡缓降系统,整车控制器可以根据轮速传感器所检测的车轮的速度和旋变传感器所检测的电机的转速来判断车辆的实际下坡速度,从而可以使得电机根据车辆的实际下坡状况来控制车轮的速度,进而可以使得车辆下坡速度缓慢且均匀,可以提高车辆在下坡过程中的行驶平顺性。此外,电机制动快速且精准。
根据本公开的用于陡坡缓降系统的控制方法,所述陡坡缓降系统为根据本公开上述实施 例的陡坡缓降系统,所述控制方法包括:通过多个轮速传感器检测多个车轮的速度,并通过多个旋变传感器检测多个电机的转速;根据所述多个车轮的速度以及所述多个电机的转速,通过整车控制器得到所述车辆的实际下坡速度;比较所述车辆的实际下坡速度与预定速度,所述车辆的实际下坡速度为V1,所述车辆的预定速度为V0;当V1<V0时,通过多个电机驱动所述多个车轮转动直至V1=V0;以及当V1>V0时,通过所述多个电机制动所述多个车轮直至V1=V0。
根据本公开实施例的陡坡缓降系统的控制方法,整车控制器可以根据轮速传感器所检测的车轮的速度和旋变传感器所检测的电机的转速来判断车辆的实际下坡速度,从而可以使得电机根据车辆的实际下坡状况来控制车轮的速度,进而可以使得车辆下坡速度缓慢且均匀,可以提高车辆在下坡过程中的行驶平顺性。此外,电机制动快速且精准。
附图说明
图1是根据本公开实施例的用于车辆的陡坡缓降系统的结构示意图;
图2是用于图1中所示的陡坡缓降系统的控制方法的流程图;以及
图3是车辆的动力学模型的示意图。
附图标记:
陡坡缓降系统100;
整车控制器1;车轮2;电机3;电机控制器4;动力电池5;变速器6;偏航率传感器7;方向盘8;方向盘转角传感器9;轮速传感器10;旋变传感器11。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图详细描述根据本公开实施例的陡坡缓降系统100,该陡坡缓降系统100可以应用在车辆上以使得车辆在下坡过程中匀速行驶,从而可以提高车辆在下坡过程中的行驶平稳性。
根据本公开实施例的陡坡缓降系统100可以包括:多个车轮2、多个轮速传感器10、多个电机3、多个电机控制器4、多个旋变传感器11和整车控制器1。多个轮速传感器10与多个车轮2相对应,多个电机3与多个车轮2相对应,而且多个电机3选择性地驱动和制动多个车轮2。可以理解的是,多个电机3可以根据实际情况选择性地驱动车轮2转动,或者多个电机3可以根据实际情况选择性地制动车轮2。
多个电机控制器4分别与多个电机3相连,电机控制器4可以控制电机3的工作状态,例如电机3的正转或反转,以及电机3的转速等。多个旋变传感器11与多个电机3相对应,整车控制器1分别与多个轮速传感器10、多个电机控制器4和多个旋变传感器11相连。
例如,如图1所示,车轮2可以为四个,相应地,轮速传感器10可以为四个。四个轮速传感器10分别对应四个车轮2,每个轮速传感器10可以用于检测对应的车轮2的速度,从而可以得到车辆在下坡过程中的速度。电机3可以为四个,四个电机3与四个车轮2相对应。电机控制器4可以为四个,四个电机控制器4可以与四个电机3一一对应。四个旋变传感器11可以与四个电机3一一对应,四个旋变传感器11可以分别用于检测四个电机3的转速,从而得到车辆在下坡过程中的速度。根据车轮2的速度得到的车辆的速度与根据电机3的转速得到的车辆的速度互相验证,进而得到最终的车辆的速度。进一步如图1所示,多个电机3的电机轴上可以连接有变速器6,变速器6可以调节电机3的输出转速,从而可以使得电机3的输出转速适宜,进而可以使得电机3合理可靠地驱动或者制动车轮2。整车控制器1可以分别与四个轮速传感器10、四个电机控制器4和四个旋变传感器11相连。
由此,整车控制器1可以根据轮速传感器10所检测的车轮的速度和旋变传感器11所检测的电机的转速来判断车辆的实际下坡速度,从而可以使得电机3根据车辆的实际下坡状况来控制车轮2的速度,进而可以使得车辆下坡速度缓慢且均匀,以及可以提高车辆在下坡过程中的行驶平顺性。在上述过程中,电机3制动快速且精准。
例如,车辆的预定速度为V0,当车辆的实际下坡速度V1小于预定速度V0时,电机3可以驱动车轮2转动直至V1=V0;当车辆的实际下坡速度V1大于预定速度V0时,电机3可以制动车轮2直至V1=V0。由此,在车辆的下坡过程中,车辆可以匀速行驶,从而可以使得车辆下坡平稳且缓慢,可以提高车辆的行驶平顺性。
根据本公开的一个具体实施例,如图1所示,陡坡缓降系统100还可以包括:动力电池5,动力电池5与电机控制器4相连,多个电机3分别为电动发电机。当电机3用作电动机时,动力电池5可以通过电机控制器4向电机3提供电量以使电机3驱动或者制动车轮2。当电机3用作发电机3时,车轮可以反拖电机3,电机3可以收集反拖能量并且进行发电,电机3产生的电能储存在动力电池5内,从而可以提高车辆的能量回收效率,以及可以延长车辆的行驶里程。
在本公开的一些实施例中,多个电机3可以分别为轮边电机。轮边电机设置简单,而且轮边电机靠近车轮2,从而可以使得陡坡缓降系统100布置合理。
需要说明的是,在本公开的进一步实施例中,陡坡缓降系统100还可以包括液压制动系统,液压制动系统与整车控制器1相连。在电机3制动车轮2的过程中,当坡道的坡度较小时,电机3提供给车轮2的制动力矩可以足够使得车辆以预定速度V0匀速下降;当坡道的 坡度较大时,电机3提供给车轮2的最大制动力矩小于车辆达到或维持预定速度V0所需的总制动力矩,液压制动系统在整车控制器1的控制下制动多个车轮2以使得车辆维持在预定速度V0,即液压制动系统与电机3共同制动车轮2,从而可以使得车辆在下坡过程中匀速行驶。
根据本公开的一个实施例,如图1所示,陡坡缓降系统100还可以包括:方向盘转角传感器9和偏航率传感器7。方向盘转角传感器9和偏航率传感器7分别与整车控制器1相连,整车控制器1根据方向盘转角传感器9和偏航率传感器7的检测结果选择性地控制多个电机控制器4对多个电机3的扭矩分配,从而进行校正横摆力矩控制。例如,四个电机3可以驱动或者制动四个车轮2以不同转速转动。具体地,四个电机3中的两个制动一侧的车轮2且另两个驱动另一侧的车轮2。
在陡坡缓降进行中,可能会出现路面不平导致汽车不能沿着直线匀速下坡的情况,其中驾驶员可以打方向盘8控制车辆直线匀速下坡。当然,本公开并不限于此,方向盘转角传感器9可以用于检测方向盘8的转动角度,这样整车控制器1可以根据方向盘8的转动角度判断驾驶员是否打方向盘8。当整车控制器1判断驾驶员未打方向盘8时,整车控制器1还可以根据偏航率传感器7判断车辆的横向摆动状况,从而通过电机控制器4合理分配给电机3一定的扭矩,进而可以校正横摆力矩,使得车辆直线匀速下坡。
具体地,整车控制器1计算出的横摆角速度与由偏航率传感器7测得的横摆角速度之间的差速为Δψ,通过整车模型估算得到的车辆的质心侧偏角为Δβ,陡坡缓降系统100设定有预定横摆角速度差值门限值ψ和质心侧偏角门限值β。在方向盘转角传感器9检测驾驶员未操纵方向盘8,且Δψ>ψ或Δβ>β时,电机控制器4对电机3的扭矩进行分配,从而进行校正横摆力矩控制。偏航率传感器7可以具有检测车辆的横摆角速度、纵向加速度和侧向加速度的作用。
下面结合图3描述横摆力矩的计算过程。
根据研究需要,将整车简化为线性二自由度的汽车模型(如图3所示)。分析中忽略转向系统的影响,直接以前轮转角作为输入;忽略悬架的作用,认为汽车车厢只作平行于地面的平面运动,即汽车沿z轴的位移、绕y轴的俯仰角与绕x轴的侧倾角均为零;不考虑轮胎的侧偏特性及空气动力的作用;并且汽车沿x轴的纵向速度视为不变。
图3中,O为汽车质心点;β为质心侧偏角;γ为横摆角速度;δi为前轮转角;FXi为轮胎纵向力;FYi为轮胎侧向力;d为轮距;la和lb分别为质心到前后轴的距离;VX、VY为车体在固定坐标系下的纵向、侧向车速。
其动力学方程表示如下:
Figure PCTCN2017099033-appb-000001
Figure PCTCN2017099033-appb-000002
Figure PCTCN2017099033-appb-000003
式中,m为整车质量;Iz汽车绕z轴的转动惯量;Mz为由各车轮2的纵向驱动力所产生的绕经过汽车质心点的z轴的横摆力矩,即:
Figure PCTCN2017099033-appb-000004
稳定性控制的目标是尽量保持β最小(趋近于零),同时使γ跟踪期望值,以实现驾驶员的意图。
根据二自由度车辆稳态转向理论,期望横摆角速度可表示为:
Figure PCTCN2017099033-appb-000005
式中,γe为期望的横摆角速度;K为稳定性因数。
以滑模控制为例说明横摆力矩的计算方法。采用质心侧偏角和横摆角速度联合控制,定义滑模面为:
Figure PCTCN2017099033-appb-000006
式中,c为联合控制参数。由式(2)知,
Figure PCTCN2017099033-appb-000007
为γ的函数,故称式(6)为β和γ的联合控制。根据到达条件
Figure PCTCN2017099033-appb-000008
得:
Figure PCTCN2017099033-appb-000009
将式(1)、(7)代入式(2),得
Figure PCTCN2017099033-appb-000010
故,得出以β和γ为控制变量的附加横摆力矩表达式为:
Figure PCTCN2017099033-appb-000011
本公开实施例中的横摆力矩的计算方法不限于采用滑模控制,也可以采用PID(比例- 积分-微分)控制等其他控制方法,只要能够产生横摆力矩使车身稳定即可。
需要说明的是,在多个电机3产生的横摆力矩小于车辆所需的校正横摆力矩时,整车控制器1适于控制液压制动系统制动多个车轮2。换言之,液压控制系统和多个电机3共同提供维持车辆直线匀速行驶的校正横摆力矩。
另外,车辆的驾驶舱内可以设置有陡坡缓降控制按钮,陡坡缓降控制按钮与整车控制器1相连。在车辆将要进入下坡路况时,驾驶员可以触动陡坡缓降控制按钮,其中陡坡缓降控制按钮可以设置在仪表板上或副仪表板上。
下面结合图2详细描述根据本公开实施例的用于陡坡缓降系统100的控制方法。
根据本公开实施例的用于陡坡缓降系统100的控制方法可以包括以下步骤:通过多个轮速传感器10检测多个车轮2的速度,并通过多个旋变传感器11检测多个电机3的转速;根据多个车轮2的速度以及多个电机3的转速,通过整车控制器1得到车辆的实际下坡速度V1;比较车辆的实际下坡速度V1与预定速度V0;当V1<V0时,通过所述多个电机3驱动所述多个车轮2转动直至V1=V0;以及当V1>V0时,通过所述多个电机3制动所述多个车轮2直至V1=V0。
如图1所示,陡坡缓降系统100还包括动力电池5,动力电池5与多个电机控制器4相连,动力电池5的荷电状态为SOC,且电机3可以为电动发电机。根据本公开实施例的控制方法还包括步骤:当车辆的实际下坡速度V1大于预定速度V0且动力电池5的荷电状态(SOC)小于95%时,通过电机3制动车轮2。可以理解的是,当动力电池5的SOC小于95%时,电机3制动车轮2,车轮2反拖电机3,由此电机3可以用作发电机以将反拖能量转化成电能,并且电能储存在动力电池5中。
在本公开的进一步实施例中,陡坡缓降系统100还可以包括:液压制动系统。根据本公开实施例的控制方法还包括步骤:当V1>V0且SOC≥95%时,通过液压制动系统制动多个车轮2。此时,由于动力电池5内的电量较足,动力电池5无需电机3发电以对其进行充电,所以液压制动系统可以用于制动多个车轮2以使得车辆的实际下坡速度维持在预定速度V0。
在本公开的上述实施例中,车辆在陡坡缓降时维持预定速度V0所需总制动力矩为ΔMb,多个电机3提供的最大制动力矩为ΔMm_max。因此,在电机3制动车轮2的过程中,当车辆的实际下坡速度V1大于预定速度V0且总制动力矩ΔMb大于最大制动力矩ΔMm_max时,也就是说,当多个电机3的最大制动力矩小于车辆维持预定速度V0所需的总制动力矩时,多个电机3和液压制动系统可以共同制动车轮2。这样可以使得车辆仍以预定速度V0匀速下坡,从而可以提高车辆的下坡行驶平顺性。
进一步地,陡坡缓降系统100还可以包括:方向盘转角传感器9和偏航率传感器7。方向盘转角传感器9和偏航率传感器7分别与整车控制器1相连,整车控制器1计算出的横摆 角速度与由偏航率传感器7测得的横摆角速度之间的差速为Δψ,通过整车模型估算得到的车辆的质心侧偏角为Δβ,陡坡缓降系统100设定有预定横摆角速度差值门限值ψ和质心侧偏角门限值β。在方向盘转角传感器9检测驾驶员未操纵方向盘8,且Δψ>ψ或Δβ>β时,电机控制器4对电机3的扭矩进行分配,从而进行校正横摆力矩控制。可以理解的是,在驾驶员未操纵方向盘8时,车辆可以进入主动横摆力矩控制模式,这样可以更好地控制车辆以直线匀速下坡,从而可以提高车辆的行驶平顺性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种陡坡缓降系统,用于车辆,其特征在于,包括:
    多个车轮;
    多个轮速传感器,所述多个轮速传感器与所述多个车轮相对应且用于检测所述多个车轮的速度;
    多个电机,所述多个电机与所述多个车轮相对应且用于选择性地驱动和制动所述多个车轮;
    多个电机控制器,所述多个电机控制器分别与所述多个电机相连且用于控制所述多个电机的工作状态;
    多个旋变传感器,所述多个旋变传感器与所述多个电机相对应且用于检测所述多个电机的转速;以及
    整车控制器,所述整车控制器分别与所述多个轮速传感器、所述多个电机控制器和所述多个旋变传感器相连,用于根据所述多个车轮的速度以及所述多个电机的转速确定所述车辆的实际下坡速度,并根据所述车辆的实际下坡速度控制所述多个电机控制器,以调节所述多个电机的工作状态。
  2. 根据权利要求1所述的陡坡缓降系统,其特征在于,所述车辆的预定速度为V0,所述车辆的实际下坡速度为V1,
    当V1<V0时,所述多个电机用于驱动所述多个车轮转动直至V1=V0;
    当V1>V0时,所述多个电机用于制动所述多个车轮直至V1=V0。
  3. 根据权利要求2所述的陡坡缓降系统,其特征在于,还包括:动力电池,所述动力电池与所述多个电机控制器相连,所述动力电池的荷电状态为SOC,且所述多个电机分别为电动发电机,
    当V1>V0且SOC<95%时,所述多个电机用于制动所述多个车轮。
  4. 根据权利要求3所述的陡坡缓降系统,其特征在于,还包括:液压制动系统,
    当V1>V0且SOC≥95%时,所述液压制动系统用于制动所述多个车轮。
  5. 根据权利要求2或3所述的陡坡缓降系统,其特征在于,还包括:液压制动系统,所述液压制动系统与所述整车控制器相连且适于在所述多个电机制动所述多个车轮的过程中当所述车辆维持其所述预定速度所需的总制动力矩大于所述多个电机的最大制动力矩时制动所述多个车轮。
  6. 根据权利要求1所述的陡坡缓降系统,其特征在于,所述多个电机分别为轮边电机。
  7. 根据权利要求1所述的陡坡缓降系统,其特征在于,所述多个电机的电机轴上连接有变速器。
  8. 根据权利要求1所述的陡坡缓降系统,其特征在于,还包括:方向盘转角传感器和偏航率传感器,所述方向盘转角传感器和所述偏航率传感器分别与所述整车控制器相连,所述整车控制器根据所述方向盘转角传感器和所述偏航率传感器的检测结果选择性地控制所述多个电机控制器对所述多个电机的扭矩分配,从而进行校正横摆力矩控制。
  9. 根据权利要求8所述的陡坡缓降系统,其特征在于,所述整车控制器计算出的横摆角速度与由所述偏航率传感器测得的横摆角速度之间的差速为Δψ,通过整车模型估算得到的所述车辆的质心侧偏角为Δβ,所述陡坡缓降系统设定有预定横摆角速度差值门限值ψ和质心侧偏角门限值β,
    在所述方向盘转角传感器检测驾驶员未操纵方向盘,且Δψ>ψ或Δβ>β时,所述多个电机控制器对所述多个电机的扭矩进行分配,从而进行校正横摆力矩控制。
  10. 根据权利要求9所述的陡坡缓降系统,其特征在于,还包括:液压制动系统,所述液压制动系统与所述整车制动器相连,所述整车控制器适于在所述多个电机产生的横摆力矩小于所述车辆所需的校正横摆力矩时控制所述液压制动系统制动所述多个车轮。
  11. 根据权利要求1所述的陡坡缓降系统,其特征在于,所述车辆的驾驶舱内设置有陡坡缓降控制按钮,所述陡坡缓降控制按钮与所述整车控制器相连。
  12. 一种用于根据权利要求1-11中任一项所述的陡坡缓降系统的控制方法,其特征在于,包括:
    通过多个轮速传感器检测多个车轮的速度,并通过多个旋变传感器检测多个电机的转速;
    根据所述多个车轮的速度以及所述多个电机的转速,通过整车控制器得到所述车辆的实际下坡速度;
    比较所述车辆的实际下坡速度与预定速度,所述车辆的实际下坡速度为V1,所述车辆的预定速度为V0;
    当V1<V0时,通过多个电机驱动所述多个车轮转动直至V1=V0;以及
    当V1>V0时,通过所述多个电机制动所述多个车轮直至V1=V0。
  13. 根据权利要求12所述的控制方法,其特征在于,所述陡坡缓降系统还包括动力电池,所述动力电池与所述多个电机控制器相连,所述动力电池的荷电状态为SOC,且所述多个电机为电动发电机,所述控制方法还包括:当V1>V0且SOC<95%时,通过所述多个电机制动所述多个车轮。
  14. 根据权利要求13所述的控制方法,其特征在于,所述陡坡缓降系统还包括:液压制动系统,所述控制方法还包括:当V1>V0且SOC≥95%时,通过所述液压制动系统制动所 述多个车轮。
  15. 根据权利要求12或13所述的控制方法,其特征在于,所述陡坡缓降系统还包括:液压制动系统,所述车辆在陡坡缓降时维持其预定速度所需的总制动力矩为ΔMb,所述多个电机提供的最大制动力矩为ΔMm_max,
    所述控制方法还包括:在所述多个电机制动所述多个车轮的过程中,当V1>V0且ΔMb>ΔMm_max时,通过所述多个电机和所述液压制动系统共同制动所述多个车轮。
  16. 根据权利要求12所述的控制方法,其特征在于,所述陡坡缓降系统还包括:方向盘转角传感器和偏航率传感器,所述方向盘转角传感器和所述偏航率传感器分别与所述整车控制器相连,
    所述整车控制器计算出的横摆角速度与由所述偏航率传感器测得的横摆角速度之间的差速为Δψ,通过整车模型估算得到的所述车辆的质心侧偏角为Δβ,所述陡坡缓降系统设定有预定横摆角速度差值门限值ψ和质心侧偏角门限值β,
    所述控制方法还包括:在所述方向盘转角传感器检测驾驶员未操纵方向盘,且Δψ>ψ或Δβ>β时,通过所述多个电机控制器对所述多个电机的扭矩进行分配,从而进行校正横摆力矩控制。
PCT/CN2017/099033 2016-09-09 2017-08-25 用于车辆的陡坡缓降系统及其控制方法 WO2018045881A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17848054.7A EP3511190A4 (en) 2016-09-09 2017-08-25 SLOW DEPARTMENT SYSTEM FOR PILOT HANGES FOR A VEHICLE AND CONTROL PROCESS THEREFOR
US16/331,333 US10967870B2 (en) 2016-09-09 2017-08-25 Hill descent system for vehicle and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610812220.3 2016-09-09
CN201610812220.3A CN107813805A (zh) 2016-09-09 2016-09-09 陡坡缓降系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2018045881A1 true WO2018045881A1 (zh) 2018-03-15

Family

ID=61562438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099033 WO2018045881A1 (zh) 2016-09-09 2017-08-25 用于车辆的陡坡缓降系统及其控制方法

Country Status (4)

Country Link
US (1) US10967870B2 (zh)
EP (1) EP3511190A4 (zh)
CN (1) CN107813805A (zh)
WO (1) WO2018045881A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353341A (zh) * 2018-09-29 2019-02-19 潍柴动力股份有限公司 降低矿车系统油耗的方法和矿车系统
WO2021078358A1 (en) 2019-10-21 2021-04-29 Volvo Truck Corporation A method for operating a vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102429180B1 (ko) * 2018-01-12 2022-08-03 현대자동차주식회사 차량 자세 제어 장치 및 방법
KR102545107B1 (ko) * 2018-12-03 2023-06-20 현대자동차주식회사 친환경 자동차 및 그를 위한 강판 주행 제어 방법
CN110027379A (zh) * 2019-04-22 2019-07-19 爱驰汽车有限公司 主动悬架自适应调整方法、系统、设备及存储介质
CN110293971B (zh) * 2019-06-24 2021-06-15 浙江吉利控股集团有限公司 坡道缓降控制方法、坡道缓降控制系统及车辆
DE102020203594A1 (de) * 2020-03-20 2021-09-23 Zf Friedrichshafen Ag Verfahren zum Betreiben eines elektrifizierten Antriebsstrangs für eine Arbeitsmaschine, elektrifizierter Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
CN111993903A (zh) * 2020-08-24 2020-11-27 奇瑞商用车(安徽)有限公司 一种汽车陡坡缓降控制方法和系统
US11932117B2 (en) 2021-04-06 2024-03-19 Rivian Ip Holdings, Llc Systems and methods for speed control of wheels of a vehicle
CN113212399B (zh) * 2021-05-31 2022-05-10 东风柳州汽车有限公司 一种基于电子卡钳的陡坡缓降控制系统
CN113264046A (zh) * 2021-07-02 2021-08-17 广东高标电子科技有限公司 一种电动两轮车智能巡航控制方法和系统
CN114572014B (zh) * 2022-02-07 2023-12-22 达闼机器人股份有限公司 设备控制方法、装置、电子设备及存储介质
DE102022203749A1 (de) * 2022-04-13 2023-10-19 Robert Bosch Gesellschaft mit beschränkter Haftung Steuervorrichtung für ein elektrisches Antriebssystem, Bremssystem und Verfahren zur Steuerung eines elektrischen Antriebssystems
CN116853256B (zh) * 2023-08-07 2024-03-22 广州汽车集团股份有限公司 车辆控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3736807A1 (de) * 1987-10-30 1989-05-11 Ulrich Trescher Steuervorrichtung fuer die bremsanlage eines kraftfahrzeugs
DE19954807A1 (de) * 1999-11-13 2001-05-17 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs
EP1212222A1 (de) * 1999-08-24 2002-06-12 Continental Teves AG & Co. oHG Verfahren und vorrichtung zum unterstützen einer hdc-regelung während des anfahrens und/oder fahrens eines fahrzeugs bergabwärts
DE10101012A1 (de) * 2001-01-11 2002-07-18 Volkswagen Ag Verfahren und Einrichtung zum navigierten Führen von Kraftfahrzeugen
CN101253066A (zh) * 2005-08-30 2008-08-27 卢卡斯汽车股份有限公司 用于控制车辆下坡驾驶的系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158363B2 (ja) * 2001-08-01 2008-10-01 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置
DE102008040812A1 (de) * 2008-07-29 2010-02-04 Robert Bosch Gmbh Abbremsverfahren für Hybridfahrzeuge
CN101559772B (zh) * 2009-06-04 2011-07-20 清华大学 一种混合动力汽车的下坡辅助控制方法
CN102781711B (zh) * 2010-03-01 2014-12-10 丰田自动车株式会社 电动车辆及其控制方法
GB2483719B (en) 2010-09-20 2013-06-19 Land Rover Uk Ltd Improvements relating to brake control
US9376108B2 (en) * 2012-06-07 2016-06-28 Jaguar Land Rover Limited Vehicle steering
CN102745183B (zh) * 2012-07-11 2015-05-27 北京理工大学 一种能量回馈主动控制式气压制动系统
US10417149B2 (en) * 2014-06-06 2019-09-17 Intel Corporation Self-aligning a processor duty cycle with interrupts
CN104442763B (zh) 2014-11-20 2017-02-22 北京新能源汽车股份有限公司 一种纯电动汽车的陡坡缓降系统及其控制方法
CN104843009B (zh) * 2014-12-04 2017-12-08 北汽福田汽车股份有限公司 车辆下坡辅助系统、方法以及包含该系统的车辆
KR20170072935A (ko) * 2014-12-16 2017-06-27 비와이디 컴퍼니 리미티드 전기 자동차, 전기 자동차의 능동적 안전 제어 시스템, 전기 자동차의 능동적 안전 제어 시스템을 위한 제어 방법 및 모터 제어기
JP6642574B2 (ja) * 2015-07-29 2020-02-05 日産自動車株式会社 電動車両の制御装置、および、電動車両の制御方法
US10220848B2 (en) * 2015-11-09 2019-03-05 Nissan Motor Co., Ltd. Braking/driving force control method and braking/driving force control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3736807A1 (de) * 1987-10-30 1989-05-11 Ulrich Trescher Steuervorrichtung fuer die bremsanlage eines kraftfahrzeugs
EP1212222A1 (de) * 1999-08-24 2002-06-12 Continental Teves AG & Co. oHG Verfahren und vorrichtung zum unterstützen einer hdc-regelung während des anfahrens und/oder fahrens eines fahrzeugs bergabwärts
DE19954807A1 (de) * 1999-11-13 2001-05-17 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs
DE10101012A1 (de) * 2001-01-11 2002-07-18 Volkswagen Ag Verfahren und Einrichtung zum navigierten Führen von Kraftfahrzeugen
CN101253066A (zh) * 2005-08-30 2008-08-27 卢卡斯汽车股份有限公司 用于控制车辆下坡驾驶的系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511190A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353341A (zh) * 2018-09-29 2019-02-19 潍柴动力股份有限公司 降低矿车系统油耗的方法和矿车系统
WO2021078358A1 (en) 2019-10-21 2021-04-29 Volvo Truck Corporation A method for operating a vehicle

Also Published As

Publication number Publication date
EP3511190A1 (en) 2019-07-17
US10967870B2 (en) 2021-04-06
US20200031357A1 (en) 2020-01-30
EP3511190A4 (en) 2019-10-02
CN107813805A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2018045881A1 (zh) 用于车辆的陡坡缓降系统及其控制方法
US10543818B2 (en) Stability control system and method for four-wheel drive electric vehicle, and electric vehicle
US10988142B1 (en) Determining friction coefficient of a tire/surface interface
JP4568302B2 (ja) 加加速度情報を用いた車両の前後加速度制御装置
CN108437978B (zh) 四轮毂电驱车辆行驶路面自动识别与稳定性集成控制方法
US9573473B2 (en) Vehicle control device
CN104773170B (zh) 一种车辆稳定性集成控制方法
CN104097701B (zh) 主动空气动力辅助控制的车辆稳定性控制方法及系统
CN105691381A (zh) 一种四轮独立驱动电动汽车稳定性控制方法及系统
CN106608201A (zh) 电动车辆及其主动安全控制系统和方法
CN109291932B (zh) 基于反馈的电动汽车横摆稳定性实时控制装置及方法
KR101305124B1 (ko) 차량 동적 성능 향상 장치 및 방법
CN108001293B (zh) 电动车辆的原地转向控制系统和方法
Jang et al. Lateral handling improvement with dynamic curvature control for an independent rear wheel drive EV
JP4936552B2 (ja) スリップ率推定装置及びスリップ率制御装置
JP5007542B2 (ja) 車両の旋回挙動制御装置
JP4990384B2 (ja) 加加速度情報を用いた車両の運動制御方法
JP2012210935A (ja) 加加速度情報を用いた車両の運動制御装置および方法
CN112572605A (zh) 一种分布式驱动车辆及其转向控制方法与装置
KR20210010729A (ko) 인휠 시스템 차량의 토크벡터링 제어 방법 및 장치
Li et al. Dynamic control for four-wheel independent drive electric vehicle
JP2006335218A (ja) スポイラ制御装置
Wang et al. Modeling and simulation of automobile anti-lock braking system based on Simulink
JP2016094139A (ja) 四輪駆動車両の車両速度推定装置および制御装置
JP2014208530A (ja) 加加速度情報を用いて運動制御される車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017848054

Country of ref document: EP

Effective date: 20190409