WO2018040483A1 - 光照处理方法及装置 - Google Patents

光照处理方法及装置 Download PDF

Info

Publication number
WO2018040483A1
WO2018040483A1 PCT/CN2017/071388 CN2017071388W WO2018040483A1 WO 2018040483 A1 WO2018040483 A1 WO 2018040483A1 CN 2017071388 W CN2017071388 W CN 2017071388W WO 2018040483 A1 WO2018040483 A1 WO 2018040483A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
liquid crystal
crystal panel
transmittance
pixel
Prior art date
Application number
PCT/CN2017/071388
Other languages
English (en)
French (fr)
Inventor
陈晓亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17844794.2A priority Critical patent/EP3399737B1/en
Publication of WO2018040483A1 publication Critical patent/WO2018040483A1/zh
Priority to US16/185,791 priority patent/US10931885B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation

Definitions

  • the present invention relates to the field of imaging technology, and in particular, to a light processing method and apparatus.
  • the basic structure of a camera applied in various video surveillance systems includes: a lens composed of a lens, a photosensitive sensor located behind the lens, and a processor for acquiring an image signal from the photosensitive sensor, and the processor pairs the photoreceptor from the photoreceptor.
  • the image signal is subjected to image processing.
  • FIG. 1 is a schematic structural view of a photosensitive sensor.
  • the photosensitive sensor can be regarded as the electronic film of the camera.
  • the photosensitive surface of the photosensitive sensor is composed of an infinite number of small photosensitive cells, and each photosensitive unit includes a microlens 1, a color filter 2, and a photodiode which are sequentially disposed. 3 and transmission circuit 4.
  • the microlens 1 is used for collecting light
  • the color filter 2 is for allowing transmission of a light signal of a certain color
  • the photodiode 3 is for converting the optical signal transmitted through the color filter 2 into electricity.
  • the signal, transmission circuit 4 transmits the electrical signal output from the photodiode 3 to the processor.
  • the photodiode 3 relies on light to excite electrons in the PN junction, thereby converting the optical signal into an electrical signal. If the incident light incident on the photodiode 3 is too strong, a large amount of electrons in one photosensitive unit are excited, and the large amount of electrons excited by the photosensitive unit may "overflow" into other photosensitive cells in the periphery, causing the periphery Other photosensitive cells are overexposed, that is, strong luminosity occurs in the peripheral photosensitive cells.
  • the glare phenomenon When the glare phenomenon occurs in the image captured by the camera, it may cause some important information to be lost. For example, when shooting a vehicle at night, the license plate number may not be visible in the captured image due to the glare of the glare of the headlight. . In view of the fact that the glare scatter dissipates the information of the target object, how to obtain more image effective information when the glare phenomenon occurs is a problem that needs to be solved in the camera technology.
  • the processing method used to obtain the effective information in the image as much as possible includes: when the processor determines that there is strong light emission in the image collected from the photosensitive sensor, the processor will acquire the image.
  • the parameters of the area where the upper brightness is higher than the set threshold, such as the gray value, are set to a lower value by themselves.
  • the image acquired by the processor has fading, some or all of the information in the region where the glare is generated has been lost, so even if the parameter of the relevant region of the acquired image is set to a lower value, It is difficult to obtain effective information on the glare area.
  • An object of the present invention is to provide an illumination processing method and apparatus, by which the occurrence of a strong light emission phenomenon can be avoided as much as possible, thereby avoiding loss of effective image information.
  • an embodiment of the present invention provides a light processing method, including: providing a liquid crystal panel with adjustable light transmittance between a photosensitive sensor and a lens, and the light incident from the lens passes through the liquid crystal panel. Reaching the photosensitive sensor, the method includes:
  • the liquid crystal panel with adjustable light transmittance is disposed between the photosensitive sensor and the lens, when there is a highlight region on the first image collected from the photosensitive sensor, the liquid crystal panel and the highlight region are lowered.
  • the transmittance of each pixel in the corresponding area reduces the incident light of the original high-light area, suppresses the occurrence of strong light emission from the light source, and avoids the loss of the original glare area information.
  • the method before determining the highlight region of the first image acquired from the photosensitive sensor, the method further includes:
  • the first value belongs to [A, B], wherein A is a preset high threshold, and B is a highest transmittance of the liquid crystal panel;
  • the first image is acquired from the photosensitive sensor.
  • the light transmittance of each pixel on the liquid crystal panel is set to a first value, on the one hand, ensuring normal exposure of the image capturing device when no blooming phenomenon occurs, and facilitating timely occurrence of the phenomenon of blooming. Determine the highlight area.
  • determining a highlight region of the first image acquired from the photosensitive sensor comprises:
  • the highlight region on the first image is determined according to the gray value of each pixel in the first image, and the amount of calculation is relatively small, so that the processing efficiency of the method can be improved.
  • the value of the first value is the highest transmittance of the liquid crystal panel.
  • the transmittance of each pixel on the liquid crystal panel is adjusted to the highest transmittance of the liquid crystal panel, on the one hand, ensuring the normal exposure of the image pickup device, and on the other hand, facilitating the occurrence of the glow phenomenon.
  • the highlight area is determined in time.
  • the light transmittance of each pixel in the adjustment area corresponding to the highlight area on the liquid crystal panel is lowered, including:
  • the second value is the lowest transmittance of the liquid crystal panel.
  • determining, according to the gray value of each pixel in the region corresponding to the highlight region on the second image, each pixel point in the adjustment region of the liquid crystal panel is to be adjusted to Target transmittance including:
  • the liquid crystal panel Determining, according to the correspondence between the light transmittance and the image gray value, that when each pixel in the region corresponding to the highlight region on the image collected from the photosensitive sensor reaches a preset desired gray value, the liquid crystal panel The target light transmittance of each pixel in the region corresponding to the highlight region.
  • the correspondence between the transmittance and the gray value of the image is determined according to the gray value of each pixel in the region corresponding to the highlight region on the second image, including:
  • Determining the parameter d to be determined in a function relationship between the transmittance and the image gradation is determined according to the gradation value of each pixel in the region corresponding to the highlight region on the second image.
  • the method further includes:
  • the tracking of the highlight moving target can be realized, and the early occlusion of the position transmittance of the moving highlight region can be realized.
  • the embodiment of the invention provides an illumination processing device, which has the function of implementing the illumination processing method described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device includes a plurality of functional units for implementing the illumination processing method of any one of the above first aspects.
  • the illumination processing device of the embodiment of the present invention is disposed between the photosensitive sensor and the lens.
  • the liquid crystal panel with adjustable light transmittance reduces the light transmittance of each pixel in the region corresponding to the highlight region of the liquid crystal panel and reduces the incident light of the original highlight region when it is determined that there is a highlight region on the first image collected. Suppress the occurrence of strong light scatter from the source of light, and try to avoid the loss of information in the original glare area.
  • the device is connected as a processor to a liquid crystal panel with adjustable light transmittance, the liquid crystal panel is disposed between the lens and the photosensitive sensor, and light incident from the lens passes through the liquid crystal Receiving the photosensitive sensor after the panel; the device comprising: a highlight area determining unit for determining a highlight region of the first image acquired from the photosensitive sensor; and a transmittance adjusting unit for lowering the liquid crystal panel Light transmittance of each pixel in the adjustment area corresponding to the highlight area.
  • an embodiment of the present invention provides a camera device, including: a lens, a photosensitive sensor, a liquid crystal panel with adjustable light transmittance, and a processor for executing the above illumination processing method;
  • the liquid crystal panel is disposed between the lens and the photosensitive sensor, and is connected to the processor, and light incident from the lens passes through the liquid crystal panel to reach the photosensitive sensor.
  • the liquid crystal panel covers a photosensitive surface of the photosensitive sensor, and the liquid crystal panel is in contact with a photosensitive surface of the photosensitive sensor.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the foregoing illumination processing apparatus, including a program designed to perform the above aspects.
  • the illumination processing method and device of the embodiment of the invention can avoid the occurrence of strong light emission as much as possible, thereby avoiding the loss of effective image information.
  • FIG. 1 is a schematic structural view of a photosensitive sensor
  • FIG. 2 is a schematic structural diagram of an image pickup apparatus according to an embodiment of the present invention.
  • FIG. 3 is a simplified schematic diagram of an image pickup apparatus provided with a liquid crystal panel according to an embodiment of the present invention
  • FIG. 4 is a flow chart of an illumination processing method according to an embodiment of the present invention.
  • Figure 5 is a graph showing the relationship between the light energy and the gray value of the image pickup device
  • FIG. 6 is a schematic diagram of a method for predicting a position of a highlight region by using a frame difference method
  • FIG. 7 is a schematic diagram of predicting a position of a center of gravity of a frame difference image of a next frame according to the barycentric coordinates of FIG. 6;
  • FIG. 8 is a schematic structural diagram of an illumination processing apparatus according to an embodiment of the present invention.
  • the imaging device described in the embodiment of the present invention is for the purpose of more clearly explaining the technical solutions of the embodiments of the present invention, and does not constitute a limitation of the technical solutions provided by the embodiments of the present invention. Those skilled in the art may know that with the evolution of the imaging technology and new The technical solution provided by the embodiment of the present invention is applicable to similar technical problems.
  • FIG. 2 is a schematic structural diagram of an image pickup apparatus according to an embodiment of the present invention.
  • the image pickup apparatus includes a lens unit 5 and a processing unit 6, wherein a lens group 51 and a diaphragm 52 are included in the lens unit 5, and a photosensitive sensor 61 and a processor 62 are included in the processing unit 6;
  • the processing unit 6 further includes a liquid crystal panel with adjustable light transmittance (not shown in FIG. 2, and other portions in the text are also directly referred to as liquid crystals).
  • the setting position of the liquid crystal panel with adjustable light transmittance can be set as needed, and the setting position of the liquid crystal panel is satisfied: the light incident from the lens group 51 of the lens needs to pass through the liquid crystal panel to reach the photosensitive sensor 61, and the liquid crystal panel
  • the control circuit is coupled to processor 62.
  • the liquid crystal panel with adjustable light transmittance covers the photosensitive surface of the photosensitive sensor 61, and the liquid crystal panel is in contact with the photosensitive surface of the photosensitive sensor 61.
  • FIG. 3 is a simplified schematic diagram of an image pickup apparatus provided with a liquid crystal panel according to an embodiment of the present invention.
  • the liquid crystal panel 63 covers the photosensitive surface of the sensor, and the liquid crystal panel 63 is bonded to the photosensitive surface of the photosensitive sensor 61.
  • the liquid crystal panel 63 is drawn a distance from the photosensitive sensor 61 in FIG.
  • incident light rays are transmitted through the liquid crystal panel 63 through the lens in the lens and then irradiated onto the photosensitive sensor 61.
  • the image pickup apparatus shown in Figs. 2 and 3 is for executing the illumination processing method of the embodiment of the present invention.
  • the processor 62 can be incident on the photosensitive sensor by controlling the transmittance control of the liquid crystal panel 63. Based on this, when the processor 62 determines that there is a highlight region on the captured image, the processor 62 lowers the transmittance of each pixel in the region corresponding to the highlight region on the liquid crystal panel 63, and reduces the original highlight region.
  • the incident light suppresses the occurrence of strong light emission from the source of the light, and tries to avoid the loss of information in the original glare area.
  • FIG. 4 is a flow chart of an illumination processing method according to an embodiment of the present invention. The method shown in FIG. 4 is based on the imaging device shown in FIG. 2 and FIG. 3, and the steps of the method shown in FIG. 4 include:
  • the processor controls the transmittance of each pixel of the liquid crystal panel to be a first value.
  • the processor controls the light transmittance of each pixel of the liquid crystal panel to be the first value.
  • the first value is a higher value within a range in which the transmittance of the liquid crystal panel is adjustable.
  • the first value belongs to [A, B], wherein A is a preset high threshold, and B is a highest transmittance of the liquid crystal panel.
  • the adjustable range of the transmittance of the liquid crystal panel is [0.2, 0.9], and the first value may belong to [0.7, 0.9], and 0.7 is the above-mentioned preset high threshold.
  • the processor adjusts the transmittance of the liquid crystal panel relatively high, on the one hand, ensuring the sharpness of the captured image; on the other hand, when there is a strong light emission When it appears, it is possible to determine the area where the glare is generated as soon as possible.
  • the value of the first value is the highest transmittance of the liquid crystal panel.
  • the value of the first value is 0.9.
  • the processor acquires the first image from the photosensitive sensor.
  • the processor collects images from the photosensitive sensor according to a certain rule, for example, the processor collects images from the photosensitive sensor at a certain time interval, or the processor triggers the shutter every time. Acquire an image from the sensor.
  • the processor determines a highlight region in the first image.
  • the manner of the processor determining whether there is a highlight region on the first image comprises: the processor determining whether there is a highlight region on the first image according to the gray value of each pixel in the first image.
  • the processor uses an 8-bit binary unsigned integer to represent the gray value of each pixel on the first image, that is, the gray value ranges from 0 to 255, 0 represents all black, and 255 represents all white.
  • the intermediate numerical value indicates different degrees of gray. The higher the gray value, the brighter the pixel, and vice versa.
  • the processor may determine a pixel point having a gray value greater than or equal to the first threshold as a high-light pixel, and a plurality of high-light pixels to form a highlight region.
  • the foregoing first threshold may be set according to actual needs, for example, set to 240, that is, the processor determines a pixel point whose gray value is greater than or equal to 240 as a highlight pixel.
  • the processor processes the image according to the prior art, and if the processor has a highlight region on the first image collected by the sensor, The following steps of the method of this embodiment are processed.
  • the processor controls a transmittance of each pixel in the region corresponding to the highlight region on the liquid crystal panel to a second value.
  • the region corresponding to the highlight region is further determined on the liquid crystal panel.
  • the region corresponding to the highlight region on the liquid crystal panel is hereinafter referred to as an adjustment region.
  • the adjustment area can be regarded as an area after the perspective transformation of the highlight area.
  • the perspective transformation relationship between the adjustment area and the highlight area is usually constant. Therefore, after the processor determines the highlight area, the adjustment area on the liquid crystal panel is obtained by performing perspective transformation on the highlight area, optionally.
  • the perspective transformation relationship between the adjustment area and the highlight area may be stored in advance in the image pickup apparatus.
  • the perspective transformation relationship between the light transmissive area and the adjustment area may be determined by a perspective transformation matrix.
  • the perspective transformation matrix is a 3x3 matrix, and the specific steps of determining the perspective transformation matrix include: aligning the camera device shown in FIG. 2 or FIG.
  • the processor pair The liquid crystal panel issues an instruction for controlling the transmittance of the four pixel points on the liquid crystal panel to be the minimum transmittance of the liquid crystal panel, wherein any three of the four pixel points are not collinear; the processor collects The image formed by the photosensitive sensor, wherein there are four black dots on the captured image, and the processor performs relationship conversion according to the coordinates of the four pixel points on the liquid crystal panel and the coordinates of the four black dots on the acquired image, thereby obtaining A perspective transformation matrix for converting the light-transmitting region and the adjustment region.
  • the transmittance of each pixel in the adjustment area is adjusted to a second value.
  • the second value is a lower value within a range in which the transmittance of the liquid crystal panel is adjustable.
  • the second value belongs to [C, D], where C is the lowest transmittance of the liquid crystal panel, and D is a preset.
  • Low threshold In a specific example, the liquid crystal panel transmittance can be adjusted to [0.2, 0.9], the second value can be [0.2, 0.3], and 0.3 is the preset low threshold. Let the low threshold be lower than the preset high threshold in S201.
  • the processor adjusts the transmittance of each pixel in the adjustable area to the lowest transmittance of the liquid crystal panel, such as 0.2 in the above example.
  • the processor determines the adjustment area on the liquid crystal panel, the processor adjusts the pixel points in the entire liquid crystal panel to a second value.
  • the processor acquires a second image from the photosensitive sensor.
  • the processor determines, according to a gray value of each pixel in the region corresponding to the highlight region on the second image, a target transmittance of each pixel point in the adjustment region of the liquid crystal panel to be adjusted.
  • the processor adjusts a transmittance of each pixel in the adjustment area of the liquid crystal panel to a corresponding target transmittance.
  • the processor adjusts the light transmittance of each pixel in the adjustment area of the liquid crystal panel to the second value after determining the adjustment area on the liquid crystal panel, and the other area pixel points remain at the first value, The processor only lowers the light transmittance of each pixel in the adjustment area of the liquid crystal panel according to S107.
  • the processor determines the adjustment area of the liquid crystal panel, the processor adjusts the pixel points in the entire liquid crystal panel to the second value, and after the step S107, the processor also on the liquid crystal panel.
  • the pixel points in other areas than the adjustment area are adjusted to a first value, for example, adjusted to the highest transmittance of the liquid crystal panel.
  • each pixel point of the highlight region on the first image is divided into a direct light receiving point and a strong light emitting point, wherein the direct light receiving point is a high light pixel point caused by the incident light reaching the photosensitive unit being too strong, and the strong light is bright.
  • the scatter point refers to a high-light pixel point caused by electron overflow in the photosensitive unit directly receiving the light spot, and the pixel may not belong to the highlight area when there is no other photosensitive unit electron overflow.
  • the target light transmittance of each pixel in the adjustment region determined by the processor is generally lower than the first value, but does not exclude the corresponding to the strong light emission point when the first value is lower than the highest transmittance of the liquid crystal panel.
  • a special case where the transmittance of the pixel is higher than the first value occurs.
  • the target light transmittance adjusted to each pixel point in the adjustment area is generally lower than the first value described above.
  • the processor After adjusting the pixel points in the adjustable area of the liquid crystal panel to the second value, the processor continues to acquire an image (second image) from the photosensitive sensor, and the processor according to the highlight corresponding to the highlight area on the second image.
  • the gray value of each pixel in the area is used to determine the target transmittance that each pixel point in the adjustment area of the liquid crystal panel needs to be adjusted.
  • the processor There are various ways for the processor to determine the target transmittance of each pixel in the adjustable area of the liquid crystal panel.
  • S106 One of the possible ways to implement S106 includes:
  • the processor determines a gray value change amount of each pixel point of the gray value of each pixel in the area corresponding to the highlight area on the second image compared with the corresponding pixel point in the first image.
  • the processor determines a direct light receiving point and a strong light emitting point in the highlight region according to the gray value change amount of each pixel point in the region corresponding to the highlight region on the second image.
  • the processor determines a pixel point whose gradation value change exceeds a certain fixed value as a strong light scatter point, and determines a pixel point whose gradation value change amount does not exceed the fixed value as a direct light receiving point.
  • the processor increases the light transmittance of the pixel corresponding to the strong light emitting point on the liquid crystal panel, and the light transmittance of the pixel corresponding to the direct light receiving point on the liquid crystal panel can be maintained at the second value.
  • Another possible way to implement S206 includes:
  • the processor determines a correspondence between the light transmittance and the image gray value according to the gray value of each pixel in the region corresponding to the highlight region on the second image.
  • the processor sets a desired gray value that each pixel point in the region corresponding to the highlight region on the image acquired by the photosensitive sensor needs to reach.
  • the processor determines, according to the correspondence between the light transmittance and the image gray value, the adjustment on the liquid crystal panel when each pixel in the region corresponding to the highlight region on the image collected from the photosensitive sensor reaches the desired gray value The target transmittance of each pixel in the area.
  • the manner in which the processor determines the relationship between the transmittance of the liquid crystal panel and the gray value of the acquired image includes:
  • the light energy is determined by the light energy density, the aperture value, the light transmittance, and the shutter speed
  • the parameter d to be determined is a parameter determined by the light energy density, the aperture value, and the shutter speed.
  • the processor determines the undetermined parameter d in the functional relationship between the light transmittance and the image gradation according to the gradation value of each pixel in the region corresponding to the highlight region on the second image.
  • the coordinates of the pixel on the image acquired by the processor are represented as (x, y), and the gray value at (x, y) is denoted as Y (x, y).
  • the pixel on the liquid crystal panel is represented as (p, q), and the transmittance at (p, q) is denoted as T(p, q), wherein the pixel points (p, q) on the liquid crystal panel pass through the perspective matrix.
  • the transformation can be mapped to the image acquired by the sensor.
  • the focal length of the camera device is a fixed value.
  • the camera aperture value is denoted as A, wherein the aperture value, ie, the relative aperture is equal to F/D, F is the focal length, and D is the aperture aperture diameter.
  • the optical power through the aperture is proportional to the area of the aperture aperture.
  • the area of the aperture aperture is proportional to the square of the aperture aperture diameter, and the aperture value is defined as F/D, so the optical power through the aperture is The square of the aperture value is inversely proportional, assuming that the product of the optical power passing through the aperture and the square of the aperture value is a constant c.
  • the light transmittance of the liquid crystal panel can be understood as the ratio of light passage, the value range is [Tmin, Tmax], and 0 ⁇ Tmin ⁇ Tmax ⁇ 1. Therefore, the optical energy density finally reaching the photosensitive sensor is: P(p, q)*c*/A 2 *T(p, q).
  • the area of each pixel is fixed, which is a constant, denoted as a.
  • the light energy received by one pixel is: P(p, q)*c/ A 2 *T(p,q)*a*t.
  • the exposure time can be determined by the processor.
  • the gain is the amplification factor of the image signal
  • G in Equation 1 is the total gain, that is, G is the product of the digital gain and the analog gain, and both the digital gain and the analog gain can be determined by the processor.
  • the gray value of the image formed on the photosensitive sensor is positively correlated with the light energy reaching the photosensitive sensor.
  • This relationship can be expressed by the monotonically increasing function f shown in FIG. 5, since the devices of the imaging device are nonlinear, Therefore, the relationship between the light energy and the gray value shown in FIG. 5 is a nonlinear monotonically increasing curve.
  • the relationship between the light energy and the gray value shown in FIG. 5 is a characteristic curve of the photosensitive sensor, and is only related to a specific photosensitive sensor.
  • the curve shown in FIG. 5 is also constant, so The curve shown in 5 can be obtained by means of actual measurement.
  • one way to measure the f curve by the actual measurement method may be to first open the aperture of the camera to the maximum (assumed to be 1.2), set the shutter speed to 1/50 second, set the gain to 1.0, and open the light to the maximum. (assumed to be 0.9), the light source power is adjusted from small to large.
  • the other conditions are kept unchanged, and only the shutter speed, the aperture value, and the light transmittance are adjusted, and the light energy equivalent to the photosensitive sensor is obtained as a value of a plurality of sampling points in the range of 0 to W 0 .
  • the light energy-gray value relationship curve shown in FIG. 5 is fitted by repeatedly measuring a plurality of measurement points.
  • the image pickup apparatus shown in Figs. 2 and 3 has obtained the light energy-gray value relationship curve shown in Fig. 5 when the method of suppressing the brilliant light emission of the embodiment of the present invention is performed.
  • the processor when the processor has determined the highlight region and adjusts the transmittance of each pixel of the adjustable region of the liquid crystal panel to a second value, such as the adjustable minimum transmittance of the liquid crystal panel, processing
  • the second image is acquired from the photosensitive sensor, and the gray value of the pixel point (p, q) in the region corresponding to the highlight region on the second image is Y(p, q), and the gain is G, and the transmittance is T(p,q), the shutter value is t, the aperture value is A, and the optical energy density reaching the lens is P, that is, f(P(p,q)*c/A 2 *T(p,q) is obtained.
  • *a*t)*G Y(p,q);
  • the processor can obtain the inverse function f -1 of the f-function according to the f-curve.
  • T'(p,q)/T(p,q) f -1 (240/G)/f -1 (Y(p,q)/G)
  • the light transmittance changes from T(p, q) to g*T(p, q)
  • the light energy reaching the photosensitive sensor just forms a gray value of about 240 after passing the gain, thereby achieving The purpose of suppressing the scatter.
  • T'(p,q) ⁇ (0,Tmin) It indicates that the transmittance of the liquid crystal panel needs to be lowered to be smaller than Tmin corresponding to this pixel point, which is beyond the shading ability of the liquid crystal screen, so this scene is The solution can not be solved, but such strong light source is relatively rare in practical applications, such as this situation can be ignored.
  • T'(p,q) ⁇ [Tmin,Tmax]: indicates that the transmittance of the liquid crystal panel needs to be lowered to [Tmin, corresponding to this pixel point.
  • a certain value in Tmax] falls within the range of the liquid crystal adjustment ability of the liquid crystal screen. If the corresponding point of the liquid crystal screen is set to the secondary light transmittance, the gray value should be no more than 255, which is a typical direct light receiving. The characteristics of the point.
  • T'(p,q) ⁇ (Tmax,+ ⁇ ) corresponds to this pixel point, the light transmittance desired to be lowered has exceeded the maximum light transmittance Tmax of the liquid crystal panel, even exceeding 1.
  • a transmittance of more than 1 actually means amplification of the optical power, which means that after the optical power of the point is amplified, it is possible to make the gradation value reach 255, then the original original brightness should not be The gray value reaches 255.
  • the point is initially recognized as a point in the highlight region, it is obvious that this is a typical divergent point, for which the gray value is not caused even if the transmittance of the corresponding region is maximized. saturation.
  • the illumination processing method of the embodiment of the present invention only includes the steps of determining the highlight region, opaque, and recalculating the transmittance of each point in the highlight region and lowering the transmittance of the corresponding pixel of the liquid crystal panel. Moreover, the method starts from the source of the strong light intrusion, optically prevents the occurrence of the glow, and improves the effectiveness of the information collected by the photosensitive sensor.
  • the method of the embodiment of the present invention is applicable not only to a scene in which a subject is still, but also to a scene in which a subject moves, wherein in a scene in which the subject moves, the processor realizes the liquid crystal by tracking and predicting the moving track of the object.
  • the panel controls the synchronous movement of the pixel points to achieve tracking occlusion in the highlight region.
  • the processor predicts a predicted highlight region on the subsequent image of the highlight region after the first image; and the processor reduces the adjustment corresponding to the predicted highlight region on the liquid crystal panel before acquiring the subsequent image of the predicted highlight region from the photosensitive sensor.
  • the transmittance of each pixel in the area is a predicted highlight region on the subsequent image of the highlight region after the first image.
  • the algorithm for determining the predicted highlight region on the subsequent image according to the highlight region on the first image such as the optical flow method, the frame difference method, and the like.
  • FIG. 6 is a schematic diagram of a method for predicting the position of a highlight region by using a frame difference method by a processor.
  • the ABC three-frame image describes a scene in which a subject moves from left to right, and the black area is displayed as a foreground pixel.
  • the frame difference image of AB is shown in the figure D, and the white point is the center of gravity of the pixel, which is recorded as the center of gravity of the first pixel.
  • the frame difference image of BC is as shown in the E diagram, and the white point is the pixel center of gravity, which is recorded as the center of gravity of the second pixel.
  • FIG. 7 is a schematic diagram of predicting the position of the center of gravity of the frame difference image of the next frame according to the barycentric coordinates of FIG. 6.
  • the predicted position of the third pixel center of gravity should be a position where the first pixel center of gravity moves to a distance of the second pixel center of gravity.
  • the distance between the predicted third pixel center of gravity and the second pixel center of gravity should be substantially equal to the distance between the first pixel center of gravity and the second pixel center of gravity.
  • a preferred method is to use Kalman filtering to perform motion estimation, so that the position of the next high-light region can be predicted (without defining a uniform linear motion) and occluded in advance.
  • Kalman filtering is a good predictor.
  • OpenCV there is a standard implementation of Kalman filtering.
  • the core idea of this method is to use the target coordinates of the previous moment to predict the target coordinates of the next moment. Wait until the next moment actually arrives, then use the actual coordinates of the target to correct the prediction model.
  • FIG. 8 is a schematic structural diagram of an illumination processing apparatus according to an embodiment of the present invention.
  • the device is connected as a processor to a liquid crystal panel with adjustable transmittance, the liquid crystal panel is disposed between the lens and the photosensitive sensor, and the light incident from the lens passes through the liquid crystal panel to reach the photosensitive sensor;
  • the apparatus includes: a highlight area determining unit 201 and a light transmittance adjusting unit 202, wherein:
  • a highlight area determining unit 201 configured to determine a highlight region of the first image acquired from the photosensitive sensor
  • the light transmittance adjusting unit 202 is configured to lower the light transmittance of each pixel in the adjustment region corresponding to the highlight region on the liquid crystal panel.
  • the light transmittance adjusting unit 202 is further configured to: before the highlight region determining unit 201 determines the highlight region of the first image collected by the photosensitive sensor, perform the following steps:
  • the first value belongs to [A, B], wherein A is a preset high threshold, and B is a highest transmittance of the liquid crystal panel;
  • the first image is acquired from the photosensitive sensor.
  • the highlight area determining unit 201 determines a highlight area of the first image collected from the photosensitive sensor, specifically, for performing:
  • the value of the first value is the highest transmittance of the liquid crystal panel.
  • the light transmittance adjusting unit 202 reduces the light transmittance of each pixel in the adjustment area corresponding to the highlight area on the liquid crystal panel, and specifically includes:
  • the second value is a minimum transmittance of the liquid crystal panel.
  • the light transmittance adjusting unit 202 determines, according to the gray value of each pixel in the region corresponding to the highlight region on the second image, each pixel in the adjustment region of the liquid crystal panel.
  • the target transmittance to be adjusted specifically, for performing:
  • the liquid crystal panel Adjust each image in the area The target transmittance of the prime point.
  • the light transmittance adjustment unit 202 determines a correspondence between the light transmittance and the image gray value according to the gray value of each pixel in the region corresponding to the highlight region on the second image, specifically, Used to execute:
  • Determining the parameter d to be determined in a function relationship between the transmittance and the image gradation is determined according to the gradation value of each pixel in the region corresponding to the highlight region on the second image.
  • the highlight region determining unit 201 is further configured to predict a predicted highlight region corresponding to the highlight region on a subsequent image after the first image;
  • the light transmittance adjusting unit 202 is further configured to: before the subsequent image corresponding to the predicted highlight region is collected from the light sensor, lower each pixel in the region corresponding to the predicted highlight region on the liquid crystal panel The light transmittance of the point.
  • the highlight region determining unit 201 and the light transmittance adjusting unit 202 may be combined into one functional module embedded in hardware or independently of the processor of the camera device. It may be stored in the form of software in the memory of the camera device, so that the processor calls to perform the operations corresponding to the above respective modules.
  • the occurrence of the glare phenomenon can be avoided as much as possible, and the loss of the effective information of the image can be avoided.
  • the processor used in the camera device in the embodiment of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (FPGA). Or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium can also be present in the camera as discrete components.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical Child, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)
  • Liquid Crystal (AREA)

Abstract

涉及摄像技术领域,特别涉及一种光照处理方法及装置。其中,在感光传感器和镜头之间设置透光率可调的液晶面板,从所述镜头射入的光线穿过所述液晶面板后到达所述感光传感器,所述方法包括:确定从所述感光传感器采集的第一图像的高光区域;调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率。实施例提供的光照处理方法及装置,能够尽量避免强光辉散现象的发生,进而可以避免图像有效信息的丢失。

Description

光照处理方法及装置 技术领域
本发明涉及摄像技术领域,特别涉及一种光照处理方法及装置。
背景技术
作为安全防范系统的重要组成部分,视频监控行业近年来取得了突飞猛进的发展。在各类视频监控系统中,广泛通过摄像机拍摄获取目标对象的图像。
目前,应用在各类视频监控系统中的摄像机的基本结构包括:由透镜组成的镜头、位于镜头之后的感光传感器以及用于从感光传感器采集图像信号的处理器,处理器对从感光器采集的图像信号进行图像处理。
图1是一种感光传感器的结构示意图。感光传感器可以看做是摄像机的电子胶片,如图1所示,感光传感器的感光面由无数个小的感光单元组成,每个感光单元包括依次设置的微透镜1、色彩滤镜2、光电二极管3和传输电路4。在每个感光单元中,微透镜1用于聚光,色彩滤镜2用于允许透过某一种颜色的光信号,光电二极管3用于将透过色彩滤镜2的光信号转换为电信号,传输电路4将光电二极管3输出的电信号传输给处理器。
图1所示的感光传感器中,光电二极管3依靠光激发PN节中的电子,从而将光信号转换成电信号。如果入射至光电二极管3的入射光线过强,则一个感光单元中会有大量的电子被激发,并且该感光单元激发的所述大量电子有可能会“溢出”到周边其它感光单元中,致使周边其它感光单元被过度曝光,即周边感光单元发生强光辉散。
当摄像机拍摄的图像中发生强光辉散现象时,有可能会使图像丢失一些重要信息,例如,夜间拍摄车辆时,由于车灯强光的辉散,在拍摄的图像中可能无法看清车牌号码。鉴于强光辉散对获取目标对象的信息产生干扰,因此如何在发生强光辉散现象时尽量获取到更多图像有效信息成为摄像技术中亟待解决的一个问题。
现有技术中在强光辉散现象发生时,为了尽量获取图像中的有效信息所采用的处理方法包括:当处理器确定从感光传感器采集的图像中存在强光辉散时,处理器将采集的图像上亮度高于设定阈值的区域的参数如灰度值自行设置为较低值。在此种方式中,由于处理器采集的图像已经发生了辉散,发生强光辉散的区域中部分或全部信息已经丢失,因此即使将采集的图像的相关区域的参数设置为较低值,也难以再获取到强光辉散区域的有效信息。
发明内容
本发明的发明目的在于提供一种光照处理方法及装置,通过该方法可以尽量避免强光辉散现象的发生,进而可以避免图像有效信息的丢失。
第一方面,本发明实施例提供了一种光照处理方法,包括:在感光传感器和镜头之间设置透光率可调的液晶面板,从所述镜头射入的光线穿过所述液晶面板后到达所述感光传感器,所述方法包括:
确定从所述感光传感器采集的第一图像的高光区域;
调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率。
本发明实施例的光照处理方法,由于在感光传感器与镜头之间设置了透光率可调的液晶面板,当从感光传感器采集的第一图像上存在高光区域时,调低液晶面板与高光区域对应的区域中各个像素点的透光率,减少原高光区域的入射光线,从光线源头上抑制强光辉散现象的出现,尽量避免原强光辉散区域信息的丢失。
在一种可能的设计中,确定从所述感光传感器采集的第一图像的高光区域之前,所述方法还包括:
控制所述液晶面板上各个像素点的透光率为第一值,所述第一值属于[A,B],其中,A为预设高阈值,B为液晶面板的最高透光率;
从所述感光传感器采集所述第一图像。
在本实现方式中,液晶面板上各个像素点的透光率设置为第一值,一方面在没有辉散现象发生时,确保摄像装置的正常曝光,另一方面便于在出现辉散现象时及时确定高光区域。
在一种可能的设计中,确定从所述感光传感器采集的第一图像的高光区域,包括:
根据所述第一图像中各个像素点的灰度值,确定所述第一图像上的高光区域。
在本实现方式中,根据第一图像中各个像素点的灰度值确定第一图像上的高光区域,运算量比较少,能够提高本方法的处理效率。
在一种可能的设计中,所述第一值的取值为所述液晶面板的最高透光率。
在本实现方式中,在正常情况下,将液晶面板上各像素点的透光率调节为液晶面板的最高透光率,一方面确保摄像装置的正常曝光,另一方面便于在出现辉散现象时及时确定高光区域。
在一种可能的设计中,调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率,包括:
控制所述液晶面板上所述调节区域中各个像素点的透光率为第二值,所述第二值属于[C,D],其中,C为所述液晶面板的最低透光率,D为预设低阈值;
从所述感光传感器采集第二图像;
根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶面板的所述调节区域中各个像素点待调节为的目标透光率;
将所述液晶面板的所述调节区域中各个像素点的透光率调节为确定出的相应目标透光率。
在一种可能的设计中,所述第二值为所述液晶面板的最低透光率。
在一种可能的设计中,根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶面板的所述调节区域中各个像素点待调节为的目标透光率,包括:
根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像 灰度值的对应关系;
根据所述透光率与图像灰度值的对应关系,确定当从感光传感器采集的图像上与所述高光区域对应的区域中各个像素点达到预设期望灰度值时,所述液晶面板上与所述高光区域对应的区域中各个像素点的目标透光率。
在一种可能的设计中,根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系,包括:
预先确定到达感光传感器的光能量与图像灰度值的关联关系,所述关联关系满足公式y=f(x),其中,y为所述图像灰度值,x为所述光能量,f(x)为递增函数,x=dz,z为透光率,d为待定参数;
求所述f(x)函数的反函数,得到透光率与图像灰度值的函数关系dz=f-1(y);
根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度的函数关系中的待定参数d。
在一种可能的设计中,所述方法还包括:
预测所述高光区域在所述第一图像之后的后续图像上所对应的预测高光区域;
在从所述光传感器采集所述预测高光区域所对应的后续图像之前,调低所述液晶面板上与所述预测高光区域对应的区域中各个像素点的透光率。
在本实现方式中,可以实现对高光运动目标的追踪,实现对移动高光区域对应位置透光率的提前遮挡。
第二方面,为了实现上述第一方面的光照处理方法,本发明实施例提供了一种光照处理装置,该装置具有实现上述光照处理方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括多个功能单元,用于实现上述第一方面中的任一种光照处理方法,本发明实施例的光照处理装置,由于在感光传感器与镜头之间设置了透光率可调的液晶面板,当确定采集的第一图像上存在高光区域时,调低液晶面板与高光区域对应的区域中各个像素点的透光率,减少原高光区域的入射光线,从光线源头上抑制强光辉散现象的出现,尽量避免原强光辉散区域信息的丢失。
在一种可能的设计中,所述装置作为处理器与透光率可调的液晶面板连接,所述液晶面板设置在镜头和感光传感器之间,从所述镜头入射的光线穿过所述液晶面板后到达所述感光传感器;所述装置包括:高光区域确定单元,用于确定从所述感光传感器采集的第一图像的高光区域;透光率调节单元,用于调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率。
第三方面,本发明实施例提供了一种摄像装置,其特征在于,包括:镜头、感光传感器、透光率可调的液晶面板和用于执行上述光照处理方法的处理器;
所述液晶面板设置在所述镜头和所述感光传感器之间,并且与所述处理器连接,从所述镜头入射的光线穿过所述液晶面板后到达所述感光传感器。
在一种可能的设计中,所述液晶面板覆盖所述感光传感器的感光面,并且所述液晶面板与所述感光传感器的感光面贴合。
第四方面,本发明实施例提供了一种计算机存储介质,用于储存为上述光照处理装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的光照处理方法及装置,可以尽量避免强光辉散现象的发生,进而可以避免图像有效信息的丢失。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是一种感光传感器的结构示意图;
图2是本发明实施例提供的一种摄像装置的结构示意图;
图3是本发明实施例设置有液晶面板的摄像装置的简化结构示意图;
图4是本发明实施例光照处理方法流程图;
图5是摄像装置的光能量-灰度值关系曲线;
图6是处理器采用帧差法预测高光区域位置的方法示意图;
图7是根据图6的重心坐标预测下一帧的帧差图像重心位置的示意图;
图8是本发明实施例光照处理装置的结构示意图。
具体实施方式
本发明实施例描述的摄像装置是为了更加清楚的说明本发明实施例的技术方案,并不构成对本发明实施例提供的技术方案的限定,本领域技术人员可知,随着摄像技术的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图2是本发明实施例提供的一种摄像装置的结构示意图。如图2所示,该摄像装置包括镜头单元5和处理单元6,其中在镜头单元5中包括透镜组51和光圈52,在处理单元6中包括感光传感器61和处理器62;与现有技术中的摄像装置所不同的是,在图2所示的摄像装置中,处理单元6中还包括透光率可调的液晶面板(图2中未示出,在文中其它部分也直接称为液晶面板),该透光率可调的液晶面板的设置位置可以根据需要设定,液晶面板的设置位置满足:从镜头的透镜组51射入的光线需要穿过液晶面板到达感光传感器61,液晶面板的控制电路与处理器62连接。可选的,上述透光率可调的液晶面板覆盖感光传感器61的感光面,并且液晶面板与感光传感器61的感光面贴合。
图3是本发明实施例设置有液晶面板的摄像装置的简化结构示意图。在该摄像装置中,液晶面板63覆盖传感器的感光面,并且液晶面板63与感光传感器61的感光面贴合。为了方便说明,图3中将液晶面板63与感光传感器61画出一段距离。通过图3可以直观看出,入射光线透过镜头中的透镜穿过液晶面板63之后照射在感光传感器61上。
图2和图3所示的摄像装置用于执行本发明实施例的光照处理方法。本发明实施例的光照处理方案,由于在感光传感器61与镜头之间设置了透光率可调的液晶面板63,因此处理器62可以通过控制液晶面板63的透光率控制能够入射到感光传感器61的光线,基于此,当处理器62确定采集的图像上存在高光区域时,处理器62调低液晶面板63上与高光区域对应的区域中各个像素点的透光率,减少原高光区域的入射光线,从光线源头上抑制强光辉散现象的出现,尽量避免原强光辉散区域信息的丢失。
以下将结合附图对本发明实施例的光照处理方法进行详细说明。
图4是本发明实施例光照处理方法流程图。图4所示方法基于图2和图3所示的摄像装置,图4所示方法的步骤包括:
S101,处理器控制液晶面板的各个像素点的透光率为第一值。
在正常状态下,即在没有发生强光辉散现象的情况下,处理器控制液晶面板的各个像素点的透光率为第一值。
该第一值是在液晶面板透光率可调范围内的一个较高数值,如第一值属于[A,B],其中,A为预设高阈值,B为液晶面板的最高透光率,例如液晶面板的透光率的可调范围为[0.2,0.9],则第一值可以属于[0.7,0.9],0.7为上述预设高阈值。
在采集的图像没有发生强光辉散现象的情况下,处理器将液晶面板的透光率调节的相对较高,一方面可以确保采集的图像的清晰度;另一方面,当有强光辉散情况出现时,可以尽快确定发生强光辉散的区域。
可选的,第一值的取值为液晶面板的最高透光率,如基于上述示例,第一值的取值为0.9。
S102,处理器从感光传感器采集第一图像。
图2和图3所示的摄像装置在正常运行时,处理器按照一定的规则从感光传感器采集图像,如处理器按照一定的时间间隔从感光传感器采集图像,或者,处理器每触发一次快门,从感光传感器采集一次图像。
S103,处理器确定第一图像中的高光区域。
处理器从感光传感器采集第一图像后,确定第一图像上是否有高光区域。处理器确定第一图像上是否有高光区域的方式包括:处理器根据第一图像中各个像素点的灰度值确定第一图像上是否有高光区域。
可选的,处理器采用8位二进制的无符号整数表示第一图像上每个像素点的灰度值,即灰度值的取值范围为0~255,0表示全黑,255表示全白,中间数值值表示不同程度的灰色,灰度值越高,像素点越亮,反之则越暗。
高光区域顾名思义为亮度比较高的区域,本发明实施例中处理器可以将灰度值大于或等于第一阈值的像素点确定为高光像素点,数量较多的高光像素点组成高光区域。
可选的,上述第一阈值可以根据实际需要设置,如设置为240,即处理器将灰度值大于或等于240的像素点确定为高光像素点。
需要说明的是,如果处理器从感光传感器采集的第一图像上没有高光区域,则处理器按照现有技术对图像处理,如果处理器从感光传感器采集的第一图像上有高光区域,则按照本实施例方法的下述步骤处理。
S104,处理器控制液晶面板上与高光区域对应的区域中各个像素点的透光率为第二值。
处理器确定第一图像的高光区域后,进一步在液晶面板上确定与该高光区域对应的区域,为描述方便,以下将液晶面板上与高光区域对应的区域称为调节区域。
在图2和图3所示的摄像装置中,虽然液晶面板与感光传感器贴合,但液晶面板和感光传感器之间仍然会有一些距离,而且由于安装误差和光线投射方式等因素的影响,不能简单地将上述高光区域确定为液晶面板上需要进行透光率调节的调节区域。
可选的,上述调节区域可以看做是高光区域透视变换后的的一个区域。在一个固定的摄像装置中,调节区域和高光区域的透视变换关系通常是一定的,因此,当处理器确定高光区域后,通过对高光区域做透视变换得到液晶面板上的调节区域,可选的,调节区域和高光区域的透视变换关系可以预先存储在摄像装置中。
可选的,透光区域与调节区域的透视变换关系可以通过透视变换矩阵确定。在确定透视矩阵的一种可能的方式中,透视变换矩阵为3x3的矩阵,确定该透视变换矩阵的具体步骤包括:将图2或图3所示的摄像装置对准一面白墙,处理器对液晶面板发出指令,该指令控制液晶面板上的四个像素点的透光率为液晶面板透光率的最小值,其中该四个像素点中的任意三个像素点不共线;处理器采集感光传感器所成的图像,其中在采集的图像上会有四个黑点,处理器根据液晶面板上四个像素点的坐标和采集的图像上的四个黑点的坐标进行关系转换,进而得到透光区域与调节区域进行转换的透视变换矩阵。
处理器确定液晶面板上的调节区域后,将调节区域中的各个像素点的透光率调节为第二值。
该第二值是在液晶面板透光率可调范围内的一个较低数值,如第二值属于[C,D],其中,C为所述液晶面板的最低透光率,D为预设低阈值。在一个具体例子中,液晶面板透光率的可调范围为[0.2,0.9],第二值的取值范围可以为[0.2,0.3],0.3为上述预设低阈值,此处设置的预设低阈值要低于S201中的预设高阈值。
可选的,处理器将可调区域中各个像素点的透光率调节为液晶面板的最低透光率,如上述例子中的0.2。
在另一种可能的实现方式中,处理器确定液晶面板上的调节区域后,处理器将整个液晶面板中的像素点均调节为第二值。
S105,处理器从感光传感器采集第二图像。
S106,处理器根据第二图像上与高光区域对应的区域中各个像素点的灰度值,确定液晶面板调节区域中各个像素点待调节为的目标透光率。
S107,处理器将液晶面板的调节区域中的各个像素点的透光率调节至相应的目标透光率。
此步骤中,如果处理器在确定液晶面板上的调节区域后,仅将液晶面板的调节区域中的各个像素点的透光率调节为了第二值,其它区域像素点保持为第一值,则处理器仅按照S107调低液晶面板的调节区域中各像素点的透光率。
在另一种可能的实现方式中,处理器确定液晶面板的调节区域后,处理器将整个液晶面板中的像素点均调节为第二值,则在S107步骤之后,处理器还将液晶面板上除调节区域之外的其它区域中的像素点调节为第一值,例如调节为液晶面板的最高透光率。
需要说明的是,第一图像上的高光区域的各像素点分为直接受光点和强光辉散点,其中,直接受光点是由于到达感光单元的入射光过强造成的高光像素点,强光辉散点是指由于直接受光点的感光单元中的电子溢出造成的高光像素点,在没有其它感光单元电子溢出时,该像素点可能不属于高光区域。
基于此,处理器确定的调节区域中各像素点的目标透光率通常低于第一值,但不排除在第一值低于液晶面板的最高透光率时,与强光辉散点对应的像素点的透光率高于第一值的特殊情况发生。
需要说明的是调节区域中各像素点调节至的目标透光率通常低于上述的第一值,
本发明实施例方案在将液晶面板可调区域中的各个像素点调节至第二值之后,处理器继续从感光传感器采集图像(第二图像),处理器根据第二图像上与高光区域对应的区域中各个像素点的灰度值,来确定液晶面板调节区域中各个像素点需要调节为的目标透光率。其中,处理器确定液晶面板可调区域中各个像素点需要调节为的目标透光率的方式有多种。
其中一种实现S106的可行方法包括:
S111:处理器确定第二图像上与高光区域对应的区域中各个像素点的灰度值与第一图像中的对应像素点相比,各个像素点的灰度值变化量。
S112:处理器根据第二图像上与高光区域对应的区域中各个像素点的灰度值变化量,确定高光区域中的直接受光点和强光辉散点。
如,处理器将灰度值变化量超过某一固定值的像素点确定为强光辉散点,将灰度值变化量未超过所述固定值的像素点确定为直接受光点。
S113:处理器调高液晶面板上与强光辉散点对应的像素点的透光率,液晶面板上与直接受光点对应的像素点的透光率可以保持为第二值。
另一种实现S206的可行方法包括:
S121:处理器根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系。
S122:处理器设定从感光传感器采集的图像上与高光区域对应的区域中各个像素点需要达到的期望灰度值。处理器根据上述透光率与图像灰度值的对应关系,确定当从感光传感器采集的图像上与高光区域对应的区域中的各个像素点达到所述期望灰度值时,液晶面板上的调节区域中各个像素点的目标透光率。
上述S121中,处理器确定液晶面板的透光率与所采集的图像灰度值的关系的方式包括:
(1)处理器预先确定到达感光传感器的光能量与图像灰度值的关联关系,所述关联关系满足公式y=f(x),其中,y为所述图像灰度值,x为所述光能量,f(x)为递增函数,x=dz,z为透光率,d为待定参数。可选的,光能量由光能量密度、光圈值、透光率和快门速度确定,待定参数d是光能量密度、光圈值和快门速度确定的参数。
(2)处理器求所述f(x)函数的反函数,得到透光率与图像灰度值的函数关系dz=f-1(y)。
(3)处理器根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度的函数关系中的待定参数d。
以下将对处理器预先确定到达光传感器的光功率与图像灰度值的关联关系的方式进行详细说明,为便于说明首先对各参数做出如下约定:
A、处理器所采集的图像上的像素点的坐标表示为(x,y),(x,y)处的灰度值记为Y(x,y)。
B、液晶面板上的像素点表示为(p,q),(p,q)处的透光率记为T(p,q),其中液晶面板上的像素点(p,q)通过透视矩阵的转换可以映射到传感器所采集的图像上。
C、摄像装置的焦距为一固定值。
在确定到达感光传感器的光功率与图像灰度值的关联关系的一种方式中,摄像机光圈值记为A,其中光圈值即相对孔径等于F/D,F为焦距,D为光圈孔直径。
设定一个点光源发射的光线到达镜头时的光能量密度记为P(p,q),其中,光能量密度仅和点光源亮度以及镜头和点光源之间的距离有关,本方案中忽略镜头内的空气介质光传输损耗。在恒定光能量密度下,通过光圈的光功率和光圈孔径的面积成正比,光圈孔径的面积与光圈孔直径的平方成正比,而光圈值的定义为F/D,因此通过光圈的光功率和光圈值的平方成反比,假设通过光圈的光功率和光圈值的平方的积为常数c。另外,液晶面板的透光率可以理解为光通过的比率,取值范围为[Tmin,Tmax],且0≤Tmin≤Tmax≤1。因此,最终到达感光传感器的光能量密度为:P(p,q)*c*/A2*T(p,q)。
进一步,在感光传感器中,每个像素点的面积是固定的,是一个常量,记为a,在曝光时间t里,一个像素点接收到的光能量为:P(p,q)*c/A2*T(p,q)*a*t。
设到达感光传感器的光能量和最终在感光传感器上所成图像的灰度之间的关联关系用函数f表示,并用G表示总增益,则有,
公式一:f(P(p,q)*c/A2*T(p,q)*a*t)*G=Y(p,q)。
上述公式一中,曝光时间可以由处理器确定。增益即为图像信号的放大系数,公式一中的G为总增益,即G为数字增益和模拟增益的积,数字增益和模拟增益均可以由处理器确定。
上述公式一中,感光传感器上所成图像的灰度值和到达感光传感器的光能量正相关,这个关系可以用图5所示的单调递增函数f表示,由于摄像装置的各器件是非线性的,因此图5所示的光能量-灰度值关系曲线为非线性单调递增曲线。
图5所示的光能量-灰度值关系曲线为感光传感器的特性曲线,仅与特定的感光传感器有关,当摄像装置中的感光传感器一定时,图5所示的曲线也是一定的,因此图5所示的曲线可以通过实测的方式获得。
其中,通过实测方法测定f曲线的一种方式可以是:先将摄像装置的光圈开到最大(假定为1.2),快门速度设置为1/50秒,增益设置为1.0,透光率开到最大(假定为0.9),从小到大调节光源功率,当感光传感器上所采集的与点光源对应的像素点的灰度值刚好达到255时,记此时到达感光传感器的光能量为W0,即f(W0)=255。之后,保持其它条件均不变,仅调节快门速度、光圈值和透光率,得到等效到达感光传感器的光能量为0~W0中多个采样点的值。本实现方式中,通过反复测量多个测量点,拟合出图5所示的光能量-灰度值关系曲线。
图2和图3所示的摄像装置在执行本发明实施例的抑制强光辉散方法时,已经得到图5所示的光能量-灰度值关系曲线。
在本发明实施例方法中,当处理器已经确定高光区域并且将液晶面板的可调区域的各像素点的透光率调节为第二值时,如液晶面板可调的最低透光率,处理器从感光传感器采集第二图像,并且第二图像上与高光区域对应的区域中像素点(p,q)的灰度值为Y(p,q),此时增益为G,透光率为T(p,q),快门值为t,光圈值为A,再记到达镜头的光能量密度为P,即得到f(P(p,q)*c/A2*T(p,q)*a*t)*G=Y(p,q);
即得到公式二:P(p,q)*c/A2*T(p,q)*a*t=f-1(Y(p,q)/G);
因为,f是单调递增函数,因此有反函数,又因为处理器已经预先得到如图5所示的f曲线,因此处理器可以根据f曲线得到f函数的反函数f-1
在防止辉散过程中,可以将高光区域各像素点期望达到的灰度设置为一设定值,如240,因此有:f(P(p,q)*c/A2*T’(p,q)*a*t)*G=240;
即得到公式三:P(p,q)*c/A2*T’(p,q)*a*t=f-1(240/G)。
其中公式三除以公式二有:
T’(p,q)/T(p,q)=f-1(240/G)/f-1(Y(p,q)/G)
故有:T’(p,q)=g*T(p,q),其中g=f-1(240/G)/f-1(Y(p,q)/G)。
也就是说,当透光率由T(p,q)变化为g*T(p,q)的时候,到达感光传感器的光能量在经过增益后,刚好形成约240的灰度值,从而达到了抑制辉散的目的。
因为液晶屏的透光率在[Tmin,Tmax]范围内,最终计算出来的T’(p,q)值有如下三种可能:
T’(p,q)∈(0,Tmin)
T’(p,q)∈[Tmin,Tmax]
T’(p,q)∈(Tmax,+∞)
这三种情况的物理意义是:
T’(p,q)∈(0,Tmin):说明对应此像素点,液晶面板的透光率需要调低至比Tmin还小,这已经超出了液晶屏的遮光能力,所以这种场景本方案则无法解决,但是此类强光源在实际应用中比较少见,如遇到此情况可以忽略。
T’(p,q)∈[Tmin,Tmax]:说明对应此像素点,液晶面板的透光率需要调低至[Tmin, Tmax]内的某个值,正好落在液晶屏透光调节能力的范围内,如果将液晶屏对应点设置为次透光率,则灰度值应该刚好不超过255,这是典型的直接受光点的特征。
T’(p,q)∈(Tmax,+∞):对应此像素点,期望调低至的透光率已经超出了液晶屏的最大透光率Tmax,甚至超过了1。超过1的透光率实际上意味着对光功率的放大,也就意味着,对该点的光功率进行放大后,才有可能使灰度值达到255,那么其本来的原始亮度应该不能使灰度值达到255。考虑到最初该点被识别为高光区域中的点,很明显,这是一个典型的被辉散点,对于这样的点,即使对应区域的透光率开到最大,也不会导致灰度值饱和。
综上可以看出,本发明实施例光照处理方法仅包括确定高光区域、不透光化以及重新计算高光区域各点的透光率并调低液晶面板相应像素点透光率的步骤,处理高效,而且本方法从产生强光侵染的源头出发,在光学上阻止辉散的发生,提高感光传感器所采集信息的有效性。
本发明实施例方法不仅适用于拍摄对象静止的场景中,同样适用于拍摄对象移动的场景中,其中在拍摄对象移动的场景中,处理器通过对拍摄对象移动轨迹的追踪和预测,实现对液晶面板对应像素点的同步移动控制,实现高光区域的追踪遮挡。
具体的,处理器预测高光区域在第一图像之后的后续图像上的预测高光区域;处理器在从感光传感器采集预测高光区域所在的后续图像之前,调低液晶面板上与预测高光区域对应的调节区域中各个像素点的透光率。
处理器根据第一图像上的高光区域确定后续图像上的预测高光区域的算法有多种,如光流法、帧差法等。
图6是处理器采用帧差法预测高光区域位置的方法示意图。如图6所示,假设ABC三帧图像描述了一个拍摄对象从左到右运动的场景,黑色区域显示为前景像素。AB的帧差图像如D图所示,白色点为像素的重心,记为第一像素重心。BC的帧差图像如E图所示,白色点为像素重心,记为第二像素重心。
在一个简单的匀速直线运动模型中,使用D、E两图像素的重心坐标,可以预测下一帧的帧差图像重心位置。图7是根据图6的重心坐标预测下一帧的帧差图像重心位置的示意图。如图7所示,在已知第一像素重心坐标和第二像素坐标的前提下,第三像素重心的预测位置应该是第一像素重心到第二像素重心前进方向上移动一段距离的一个位置,其中预测的第三像素重心与第二像素重心的距离应大致等于第一像素重心和第二像素重心之间的距离。
在拍摄对象运动跟踪的过程中,优选的一种方式是使用卡尔曼滤波法进行运动估计,从而可以预测下一帧高光区域出现的位置(不需要限定匀速直线运动),提前遮挡。对于非急停急开的场景,卡尔曼滤波能很好地给出预测。在OpenCV中,有Kalman滤波的标准实现,可选的,可以使用cvCreateKalman和cvKalmanPredict两个函数来对运动进行估计,该方法的核心思想是利用前一时刻的目标坐标,预测下一时刻的目标坐标,等到下一时刻实际到来时,再使用目标的实际坐标修正预测模型,因为这一过程是公开的、标准的算法,因此此处仅给予简述滤波过程:(1)得到第一个坐标作为初始条件,第二个实际坐标作为预测坐标;(2)第二个实际坐标作为真实值用于修正模型,然后预测第三个坐标;(3)第三个实际坐标作为真实值用于修正模型,然后预测第四个坐标;(4)如此继续,在不断得到预测坐标的 同时,使用真实坐标修正预测模型。
图8是本发明实施例光照处理装置的结构示意图。该装置作为处理器与透光率可调的液晶面板连接,所述液晶面板设置在镜头和感光传感器之间,从所述镜头入射的光线穿过所述液晶面板后到达所述感光传感器;如图8所示,所述装置包括:高光区域确定单元201和透光率调节单元202,其中:
高光区域确定单元201,用于确定从所述感光传感器采集的第一图像的高光区域;
透光率调节单元202,用于调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率。
可选的,所述透光率调节单元202,还用于在所述高光区域确定单元201确定从所述感光传感器采集的第一图像的高光区域之前,执行如下步骤:
控制所述液晶面板上各个像素点的透光率为第一值,所述第一值属于[A,B],其中,A为预设高阈值,B为液晶面板的最高透光率;
从所述感光传感器采集所述第一图像。
可选的,所述高光区域确定单元201确定从所述感光传感器采集的第一图像的高光区域,具体包括,用于执行:
根据所述第一图像中各个像素点的灰度值,确定所述第一图像上的高光区域。
可选的,所述第一值的取值为所述液晶面板的最高透光率。
可选的,所述透光率调节单元202调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率,具体包括,用于执行:
控制所述液晶面板上所述调节区域中各个像素点的透光率为第二值,所述第二值属于[C,D],其中,C为所述液晶面板的最低透光率,D为预设低阈值;
从所述感光传感器采集第二图像;
根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶面板的所述调节区域中各个像素点待调节为的目标透光率;
将所述液晶面板的所述调节区域中各个像素点的透光率调节为确定出的相应目标透光率。
可选的,所述第二值为所述液晶面板的最低透光率。
可选的,所述透光率调节单元202根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶面板的所述调节区域中各个像素点待调节为的目标透光率,具体包括,用于执行:
根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系;
根据所述透光率与图像灰度值的对应关系,确定当从感光传感器采集的图像上与所述高光区域对应的区域中各个像素点达到预设期望灰度值时,所述液晶面板上调节区域中各个像 素点的目标透光率。
可选的,所述透光率调节单元202根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系,具体包括,用于执行:
预先确定到达感光传感器的光能量与图像灰度值的关联关系,所述关联关系满足公式y=f(x),其中,y为所述图像灰度值,x为所述光能量,f(x)为递增函数,x=dz,z为透光率,d为待定参数;
求所述f(x)函数的反函数,得到透光率与图像灰度值的函数关系dz=f-1(y);
根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度的函数关系中的待定参数d。
可选的,所述高光区域确定单元201,还用于预测所述高光区域在所述第一图像之后的后续图像上所对应的预测高光区域;
所述透光率调节单元202,还用于在从所述光传感器采集所述预测高光区域所对应的后续图像之前,调低所述液晶面板上与所述预测高光区域对应的区域中各个像素点的透光率。
在本发明的另一个实施例中,在硬件实现上,高光区域确定单元201和透光率调节单元202可以合并为一个功能模块以硬件形式内嵌于或独立于摄像装置的处理器中,也可以以软件形式存储于摄像装置的存储器中,以便于处理器调用执行以上各个模块对应的操作。
采用本发明实施例的光照处理方法,可以尽量避免强光辉散现象的发生,进而可以避免图像有效信息的丢失。
可以理解,本发明实施例中摄像装置中使用的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
本所属领域的技术人员可以清楚地了解到,本发明提供的各实施例的描述可以相互参照,为描述的方便和简洁,例如关于本发明实施例提供的各装置、设备的功能以及执行的步骤可以参照本发明方法实施例的相关描述。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于摄像装置中。
另外,所描述系统、设备和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电 子、机械或其它的形式。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种光照处理方法,其特征在于,包括:在感光传感器和镜头之间设置透光率可调的液晶面板,从所述镜头射入的光线穿过所述液晶面板后到达所述感光传感器,所述方法包括:
    确定从所述感光传感器采集的第一图像的高光区域;
    调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率。
  2. 根据权利要求1所述的方法,其特征在于,确定从所述感光传感器采集的第一图像的高光区域之前,所述方法还包括:
    控制所述液晶面板上各个像素点的透光率为第一值,所述第一值属于[A,B],其中,A为预设高阈值,B为液晶面板的最高透光率;
    从所述感光传感器采集所述第一图像。
  3. 根据权利要求1或2所述的方法,其特征在于,确定从所述感光传感器采集的第一图像的高光区域,包括:
    根据所述第一图像中各个像素点的灰度值,确定所述第一图像上的高光区域。
  4. 根据权利要求3所述的方法,其特征在于,所述第一值的取值为所述液晶面板的最高透光率。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率,包括:
    控制所述液晶面板上所述调节区域中各个像素点的透光率为第二值,所述第二值属于[C,D],其中,C为所述液晶面板的最低透光率,D为预设低阈值;
    从所述感光传感器采集第二图像;
    根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶面板的所述调节区域中各个像素点待调节为的目标透光率;
    将所述液晶面板的所述调节区域中各个像素点的透光率调节为确定出的相应目标透光率。
  6. 根据权利要求5所述的方法,其特征在于,所述第二值为所述液晶面板的最低透光率。
  7. 根据权利要求5或6所述的方法,其特征在于,根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶面板的所述调节区域中各个像素点待调节为的目标透光率,包括:
    根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系;
    根据所述透光率与图像灰度值的对应关系,确定当从感光传感器采集的图像上与所述高光区域对应的区域中各个像素点达到预设期望灰度值时,所述液晶面板上的调节区域中各个像素点的目标透光率。
  8. 根据权利要求7所述的方法,其特征在于,根据第二图像上与所述高光区域对应的区 域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系,包括:
    预先确定到达感光传感器的光能量与图像灰度值的关联关系,所述关联关系满足公式y=f(x),其中,y为所述图像灰度值,x为所述光能量,f(x)为递增函数,x=dz,z为透光率,d为待定参数;
    求所述f(x)函数的反函数,得到透光率与图像灰度值的函数关系dz=f-1(y);
    根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度的函数关系中的待定参数d。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    预测所述高光区域在所述第一图像之后的后续图像上所对应的预测高光区域;
    在从所述光传感器采集所述预测高光区域所对应的后续图像之前,调低所述液晶面板上与所述预测高光区域对应的区域中各个像素点的透光率。
  10. 一种光照处理装置,其特征在于,所述装置与透光率可调的液晶面板连接,所述液晶面板设置在镜头和感光传感器之间,从所述镜头入射的光线穿过所述液晶面板后到达所述感光传感器;所述装置包括:
    高光区域确定单元,用于确定从所述感光传感器采集的第一图像的高光区域;
    透光率调节单元,用于调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率。
  11. 根据权利要求10所述的装置,其特征在于,所述透光率调节单元,还用于在所述高光区域确定单元确定从所述感光传感器采集的第一图像的高光区域之前,执行如下步骤:
    控制所述液晶面板上各个像素点的透光率为第一值,所述第一值属于[A,B],其中,A为预设高阈值,B为液晶面板的最高透光率;
    从所述感光传感器采集所述第一图像。
  12. 根据权利要求10或11所述的装置,其特征在于,所述高光区域确定单元确定从所述感光传感器采集的第一图像的高光区域,具体包括,用于执行:
    根据所述第一图像中各个像素点的灰度值,确定所述第一图像上的高光区域。
  13. 根据权利要求12所述的装置,其特征在于,所述第一值的取值为所述液晶面板的最高透光率。
  14. 根据权利要求10至13中任一项所述的装置,其特征在于,所述透光率调节单元调低所述液晶面板上与所述高光区域对应的调节区域中各个像素点的透光率,具体包括,用于执行:
    控制所述液晶面板上所述调节区域中各个像素点的透光率为第二值,所述第二值属于[C,D],其中,C为所述液晶面板的最低透光率,D为预设低阈值;
    从所述感光传感器采集第二图像;
    根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶 面板的所述调节区域中各个像素点待调节为的目标透光率;
    将所述液晶面板的所述调节区域中各个像素点的透光率调节为确定出的相应目标透光率。
  15. 根据权利要求14所述的装置,其特征在于,所述第二值为所述液晶面板的最低透光率。
  16. 根据权利要求14或15所述的装置,其特征在于,所述透光率调节单元根据所述第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定所述液晶面板的所述调节区域中各个像素点待调节为的目标透光率,具体包括,用于执行:
    根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系;
    根据所述透光率与图像灰度值的对应关系,确定当从感光传感器采集的图像上与所述高光区域对应的区域中各个像素点达到预设期望灰度值时,所述液晶面板上的调节区域中各个像素点的目标透光率。
  17. 根据权利要求16所述的装置,其特征在于,所述透光率调节单元根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度值的对应关系,具体包括,用于执行:
    预先确定到达感光传感器的光能量与图像灰度值的关联关系,所述关联关系满足公式y=f(x),其中,y为所述图像灰度值,x为所述光能量,f(x)为递增函数,x=dz,z为透光率,d为待定参数;
    求所述f(x)函数的反函数,得到透光率与图像灰度值的函数关系dz=f-1(y);
    根据第二图像上与所述高光区域对应的区域中各个像素点的灰度值,确定透光率与图像灰度的函数关系中的待定参数d。
  18. 根据权利要求10至17任一项所述的装置,其特征在于,
    所述高光区域确定单元,还用于预测所述高光区域在所述第一图像之后的后续图像上所对应的预测高光区域;
    所述透光率调节单元,还用于在从所述光传感器采集所述预测高光区域所对应的后续图像之前,调低所述液晶面板上与所述预测高光区域对应的区域中各个像素点的透光率。
  19. 一种摄像装置,其特征在于,包括:镜头、感光传感器、透光率可调的液晶面板和用于执行权1至权9中任一项所述光照处理方法的处理器;
    所述液晶面板设置在所述镜头和所述感光传感器之间,并且与所述处理器连接,从所述镜头入射的光线穿过所述液晶面板后到达所述感光传感器。
  20. 根据权利要求19所述的装置,其特征在于,所述液晶面板覆盖所述感光传感器的感光面,并且所述液晶面板与所述感光传感器的感光面贴合。
PCT/CN2017/071388 2016-08-29 2017-01-17 光照处理方法及装置 WO2018040483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17844794.2A EP3399737B1 (en) 2016-08-29 2017-01-17 Illumination processing method and apparatus
US16/185,791 US10931885B2 (en) 2016-08-29 2018-11-09 Illumination processing method and apparatus for adjusting light transmittance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610752836.6 2016-08-29
CN201610752836.6A CN107786785B (zh) 2016-08-29 2016-08-29 光照处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/185,791 Continuation US10931885B2 (en) 2016-08-29 2018-11-09 Illumination processing method and apparatus for adjusting light transmittance

Publications (1)

Publication Number Publication Date
WO2018040483A1 true WO2018040483A1 (zh) 2018-03-08

Family

ID=61299897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071388 WO2018040483A1 (zh) 2016-08-29 2017-01-17 光照处理方法及装置

Country Status (4)

Country Link
US (1) US10931885B2 (zh)
EP (1) EP3399737B1 (zh)
CN (2) CN107786785B (zh)
WO (1) WO2018040483A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114520884A (zh) * 2020-11-18 2022-05-20 格科微电子(上海)有限公司 一种图像传感器获取单帧高动态范围图像的方法和一种图像传感器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109509441B (zh) * 2018-11-20 2021-02-19 深圳市恩兴实业有限公司 调光成像方法、装置及系统
CN109738967A (zh) * 2019-01-17 2019-05-10 武汉大学 一种天空成像抑制强光亮斑的实现方法
CN110225228A (zh) * 2019-05-13 2019-09-10 北京百度网讯科技有限公司 一种摄像头局部透光率调节方法、系统及摄像头
CN112700377A (zh) * 2019-10-23 2021-04-23 华为技术有限公司 图像泛光处理方法及装置、存储介质
CN111263039B (zh) * 2020-01-19 2022-08-30 刘元哲 一种智能光学滤波器
CN111294523B (zh) * 2020-03-10 2021-07-06 捷开通讯(深圳)有限公司 拍摄方法、装置、存储介质及电子设备
CN111812065A (zh) * 2020-06-28 2020-10-23 上海识湛智能科技有限公司 一种塑料激光焊接中材料透光率的检测方法
CN113281341A (zh) * 2021-04-19 2021-08-20 唐山学院 热镀锌带钢的双传感器表面质量检测系统的检测优化方法
JP2022175162A (ja) * 2021-05-13 2022-11-25 凸版印刷株式会社 監視カメラ
CN113364982A (zh) * 2021-06-04 2021-09-07 巽腾(广东)科技有限公司 基于lcd液晶装置的图像生成方法、装置、设备和存储介质
CN113364996A (zh) * 2021-06-04 2021-09-07 巽腾(广东)科技有限公司 基于lcd多晶元板的图像生成方法、装置、设备和存储介质
CN113364991A (zh) * 2021-06-04 2021-09-07 巽腾(广东)科技有限公司 基于lcd液晶装置的图像生成控制装置和方法
CN113259612A (zh) * 2021-07-14 2021-08-13 深圳市海清视讯科技有限公司 一种强光抑制方法、装置、设备和计算机可读存储介质
CN114760421A (zh) * 2021-12-13 2022-07-15 中国人民解放军国防科技大学 一种图像亮度曝光补偿装置及其偿装方法
CN115629505B (zh) * 2022-12-06 2023-03-28 开拓导航控制技术股份有限公司 基于液晶调控的成像过程过曝光实时抑制方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152649A1 (en) * 2002-12-16 2006-07-13 Toshiharu Yanagida Dimming device and driving method therefor, and imaging device
CN202854468U (zh) * 2012-10-30 2013-04-03 浙江宇视科技有限公司 一种组合式滤片及监控相机
CN103149721A (zh) * 2011-11-29 2013-06-12 索尼公司 液晶调光装置、图像拾取单元和驱动液晶调光器件的方法
CN103314326A (zh) * 2010-10-29 2013-09-18 索尼公司 摄像设备
CN103780845A (zh) * 2014-02-28 2014-05-07 金三立视频科技(深圳)有限公司 基于非宽动态的强光抑制方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214827A (ja) * 1996-02-02 1997-08-15 Mitsubishi Electric Corp 車載カメラ装置
US6864916B1 (en) * 1999-06-04 2005-03-08 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
US7245325B2 (en) * 2000-03-17 2007-07-17 Fujifilm Corporation Photographing device with light quantity adjustment
US6674474B2 (en) * 2000-10-23 2004-01-06 Hitachi Kokusai Electric Inc. Method of controlling transmission light amount and television camera apparatus using the method
EP1742486A4 (en) * 2004-04-16 2009-11-11 Iwane Lab Ltd SUPPRESSED SURPLUS IMAGE DETECTION APPARATUS
JP2006245918A (ja) * 2005-03-02 2006-09-14 Nec Electronics Corp 撮影装置および撮影装置における減光フィルタの制御方法
US7973838B2 (en) * 2006-07-07 2011-07-05 Immersive Media Company Active mask for electronic imaging system
JP5080414B2 (ja) * 2008-09-30 2012-11-21 富士通フロンテック株式会社 情報読取用撮像装置
JP5182247B2 (ja) * 2009-07-27 2013-04-17 株式会社デンソー 情報機器操作装置
JP5948788B2 (ja) * 2011-10-18 2016-07-06 ソニー株式会社 動作制御装置および動作制御方法、撮像装置、並びにプログラム
JP6223013B2 (ja) * 2013-06-24 2017-11-01 キヤノン株式会社 撮像装置及びその制御方法、並びにプログラム
CN106134181B (zh) * 2014-03-24 2019-03-01 富士胶片株式会社 摄影装置
JP2015198292A (ja) * 2014-03-31 2015-11-09 ソニー株式会社 撮像装置、フリッカの補正方法及びプログラム
US10469771B2 (en) * 2014-10-29 2019-11-05 Palo Alto Research Center Incorporated Liquid crystal fourier transform imaging spectrometer
JP6428391B2 (ja) * 2015-03-10 2018-11-28 株式会社デンソー 撮像装置
US20170237885A1 (en) * 2015-09-28 2017-08-17 Omnitek Partners Llc Method and Apparatus for High Contrast Imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152649A1 (en) * 2002-12-16 2006-07-13 Toshiharu Yanagida Dimming device and driving method therefor, and imaging device
CN103314326A (zh) * 2010-10-29 2013-09-18 索尼公司 摄像设备
CN103149721A (zh) * 2011-11-29 2013-06-12 索尼公司 液晶调光装置、图像拾取单元和驱动液晶调光器件的方法
CN202854468U (zh) * 2012-10-30 2013-04-03 浙江宇视科技有限公司 一种组合式滤片及监控相机
CN103780845A (zh) * 2014-02-28 2014-05-07 金三立视频科技(深圳)有限公司 基于非宽动态的强光抑制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399737A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114520884A (zh) * 2020-11-18 2022-05-20 格科微电子(上海)有限公司 一种图像传感器获取单帧高动态范围图像的方法和一种图像传感器
CN114520884B (zh) * 2020-11-18 2024-04-16 格科微电子(上海)有限公司 一种图像传感器获取单帧高动态范围图像的方法和一种图像传感器

Also Published As

Publication number Publication date
CN111510592A (zh) 2020-08-07
EP3399737A1 (en) 2018-11-07
EP3399737A4 (en) 2018-12-26
CN107786785B (zh) 2020-05-08
EP3399737B1 (en) 2021-03-10
CN107786785A (zh) 2018-03-09
US10931885B2 (en) 2021-02-23
US20190082090A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2018040483A1 (zh) 光照处理方法及装置
WO2021109620A1 (zh) 一种曝光参数的调节方法及装置
JP2020060599A (ja) 撮像装置組立体、3次元形状測定装置及び動き検出装置、並びに、3次元形状の測定方法
US11089228B2 (en) Information processing apparatus, control method of information processing apparatus, storage medium, and imaging system
JP2007074163A (ja) 撮像装置および撮像方法
EP3162048B1 (en) Exposure metering based on background pixels
JP2003066321A (ja) Af制御装置およびaf制御方法
JP2006074164A (ja) 撮像装置
TW202021340A (zh) 用於相機之紅外光預閃光
US7702232B2 (en) Dynamic focus zones for cameras
TWI703868B (zh) 投影亮度和對比的自動調整系統及方法
TW201743285A (zh) 增強影像
JP6336337B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2003262783A (ja) オートフォーカス装置および撮像装置
US9288400B2 (en) Method of controlling exposure time by using infrared light, computer-readable storage medium having recorded thereon computer program codes for performing the method, and electronic apparatus having photographing function
CN104394327A (zh) 基于像素点控制的智能补光系统
KR20120027882A (ko) 디지털 촬영 장치 및 이의 제어 방법
JP6335497B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2014176061A (ja) 電子機器
JP2020010168A (ja) 画像処理装置
JP2013044996A (ja) 撮像装置
JP2023026185A (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2007166142A (ja) 撮像装置
JP6247724B2 (ja) 計測装置
JP6904560B2 (ja) 信号処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017844794

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017844794

Country of ref document: EP

Effective date: 20180803

NENP Non-entry into the national phase

Ref country code: DE