WO2018038488A1 - 이동 로봇 및 그 제어방법 - Google Patents

이동 로봇 및 그 제어방법 Download PDF

Info

Publication number
WO2018038488A1
WO2018038488A1 PCT/KR2017/009100 KR2017009100W WO2018038488A1 WO 2018038488 A1 WO2018038488 A1 WO 2018038488A1 KR 2017009100 W KR2017009100 W KR 2017009100W WO 2018038488 A1 WO2018038488 A1 WO 2018038488A1
Authority
WO
WIPO (PCT)
Prior art keywords
search
area
mobile robot
charging station
search position
Prior art date
Application number
PCT/KR2017/009100
Other languages
English (en)
French (fr)
Inventor
최수욱
김민욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP17843908.9A priority Critical patent/EP3501762B1/en
Priority to AU2017314640A priority patent/AU2017314640B2/en
Priority to CN201780065224.2A priority patent/CN109863003B/zh
Publication of WO2018038488A1 publication Critical patent/WO2018038488A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/005Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0003Home robots, i.e. small robots for domestic use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means

Definitions

  • the present invention relates to a mobile robot and a control method thereof, and more particularly, to a mobile robot and a method for controlling the same, in which the mobile robot moves and searches and returns to a charging station.
  • the mobile robot is a device that automatically cleans by inhaling foreign substances such as dust from the floor while driving the area to be cleaned by itself.
  • the mobile robot is equipped with a rechargeable battery, which is free to move, and can move by itself using an operating power source of the battery.
  • the mobile robot detects the distance to obstacles such as furniture, office supplies, and walls installed in the driving zone, and controls the driving of the left and right wheels to perform obstacle avoidance.
  • the mobile robot is configured to return to the charging station if necessary to charge the battery.
  • the mobile robot of the present invention and a control method thereof provide a mobile robot and a control method for searching a charging station in a short time while moving by selecting an area based on a pre-stored map in a situation where charging is required due to battery exhaustion.
  • a mobile robot the movable body; A driving unit which moves the main body; A storage unit for storing a map MAP for the driving zone; And a controller for recognizing a current position and performing cleaning by driving the main body to drive the driving area based on the map, wherein the control part is provided to an area corresponding to the shape of each area of the driving area when charging is required.
  • Set at least one search position control the driving unit to move the main body along a movement path connecting the search position, and detects the return signal of the charging station during the movement to search for the charging station.
  • control method of the mobile robot if charging is required, starting the search for charging station; Determining a current position from a previously stored map and selecting an area to start searching; Setting a search position corresponding to the shape of the area; Setting a movement route connecting the search position; Searching for a charging station moving along the movement path; If the charging station does not exist, designating a new area and moving to the new area to search for the charging station; And when the return signal transmitted from the charging station is detected, charging by moving to the charging station.
  • the mobile robot and its control method according to the present invention select a region based on a stored map and search for a charging station, so that even if the position of the mobile robot is arbitrarily changed, the mobile robot can easily recognize its position and move between regions. It is less influenced, and as you search the charging station by setting a specific point within the area to search the charging station, you can search the charging station in the area with less movement. This has the effect of navigating.
  • FIG. 1 is a perspective view showing a mobile robot and a charging table for charging the mobile robot according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an upper surface portion of the mobile robot shown in FIG. 1.
  • FIG. 3 is a diagram illustrating a front portion of the mobile robot shown in FIG. 1.
  • FIG. 4 is a diagram illustrating a bottom portion of the mobile robot shown in FIG. 1.
  • FIG. 5 is a block diagram showing a control relationship between the main components of the mobile robot according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of region division and map generation according to the mobile robot of the present invention.
  • FIG. 7 is a diagram illustrating an embodiment of searching for a charging stand in the area of the mobile robot of the present invention.
  • FIG. 8 is a diagram referred to describe a region-specific charging zone search mode according to the embodiment of FIG. 7.
  • FIG. 9 is a view referred to for explaining a method for setting a search position in the area of the mobile robot of the present invention.
  • FIG. 10 is a view referred to for explaining a path setting method according to a search position of the mobile robot of the present invention.
  • FIG. 11 is a diagram illustrating an embodiment of a region according to a search position setting method of FIG. 9.
  • FIG. 12 is a diagram illustrating an embodiment of a region according to the path setting method of FIG. 10.
  • FIG. 13 is a diagram illustrating an embodiment of a movement between a plurality of regions and a charging station search of the mobile robot of the present invention.
  • FIG. 14 is a flowchart illustrating a charging zone search method of a mobile robot according to the present invention.
  • FIG. 15 is a flowchart referred to for describing a method for setting a search position when searching for a charging stand of FIG. 14.
  • 16 is a flowchart illustrating a charging zone search method of a mobile robot through area boundary movement of the present invention.
  • the mobile robot may be implemented by a controller and each unit by one or more processors, or by a hardware device.
  • FIG. 1 is a perspective view showing a mobile robot and a charging table for charging a mobile robot according to an embodiment of the present invention
  • FIG. 2 is a view showing an upper surface of the mobile robot shown in FIG. 1
  • FIG. 3 is shown in FIG. 1.
  • 4 is a diagram illustrating a front portion of the mobile robot shown in FIG. 4, and FIG. 4 is a diagram illustrating a bottom portion of the mobile robot illustrated in FIG. 1.
  • the mobile robot 100 includes a main body 110 and an image acquisition unit 120 that acquires an image around the main body 110.
  • the portion facing the ceiling in the driving zone is defined as the upper surface portion (see FIG. 2)
  • the portion facing the bottom in the driving zone is defined as the bottom portion (see FIG. 4).
  • the front part is defined as a part facing the driving direction among the parts forming the circumference of the main body 110 between the upper and lower parts.
  • the mobile robot 100 includes a driving unit 160 for moving the main body 110.
  • the driving unit 160 includes at least one driving wheel 136 for moving the main body 110.
  • the driving unit 160 includes a driving motor (not shown) connected to the driving wheel 136 to rotate the driving wheel.
  • the driving wheels 136 may be provided at the left and right sides of the main body 110, respectively, hereinafter referred to as left wheels 136 (L) and right wheels 136 (R).
  • the left wheel 136 (L) and the right wheel 136 (R) may be driven by one drive motor, but the left wheel drive motor and the right wheel 136 (R) which drive the left wheel 136 (L) as necessary.
  • Each right wheel drive motor for driving may be provided.
  • the driving direction of the main body 110 can be switched to the left or the right, with a difference in the rotational speed of the left wheel 136 (L) and the right wheel 136 (R).
  • An inlet 110h through which air is sucked may be formed in a bottom portion of the main body 110, and an inhalation device (not shown) that provides suction power so that air may be sucked through the inlet 110h in the main body 110. And a dust container (not shown) for collecting dust sucked with air through the suction port 110h.
  • the main body 110 may include a case 111 forming a space in which various components of the mobile robot 100 are accommodated.
  • An opening for inserting and removing the dust container may be formed in the case 111, and a dust container cover 112 that opens and closes the opening may be rotatably provided with respect to the case 111.
  • the battery 138 supplies not only a driving motor but also power necessary for the overall operation of the mobile robot 100.
  • the mobile robot 100 may perform driving to return to the charging station 200 for charging, and during such a return driving, the mobile robot 100 may make a position of the charging station 200 by itself. Can be detected.
  • Charging station 200 may include a signal transmitter (not shown) for transmitting a predetermined return signal.
  • the return signal may be an ultrasonic signal or an infrared signal, but is not necessarily limited thereto.
  • the mobile robot 100 may include a signal detector (not shown) that receives a return signal.
  • the charging unit 200 may transmit an infrared signal through the signal transmitter, and the signal detector may include an infrared sensor that detects the infrared signal.
  • the mobile robot 100 moves to the position of the charging stand 200 according to the infrared signal transmitted from the charging stand 200 and docks with the charging stand 200. By the docking, charging is performed between the charging terminal 133 of the mobile robot 100 and the charging terminal 210 of the charging table 200.
  • the image acquisition unit 120 photographs the driving zone, and may include a digital camera.
  • a digital camera comprises an image sensor (e.g. CMOS image sensor) comprising at least one optical lens and a plurality of photodiodes (e.g. pixels) formed by light passing through the optical lens. It may include a digital signal processor (DSP) that forms an image based on the signals output from the photodiodes.
  • DSP digital signal processor
  • the digital signal processor may generate not only a still image but also a moving image composed of frames composed of the still image.
  • the image acquisition unit 120 is provided on the upper surface of the main body 110 to obtain an image of the ceiling in the driving zone, but the position and the shooting range of the image acquisition unit 120 should be limited thereto. no.
  • the image acquisition unit 120 may be provided to acquire an image in front of the main body 110.
  • the mobile robot 100 may further include an obstacle detecting sensor 131 for detecting an obstacle in front of the moving robot 100.
  • the mobile robot 100 may further include a cliff detection sensor 132 for detecting the presence of a cliff on the floor in the driving zone, and a lower camera sensor 139 for acquiring an image of the floor.
  • the mobile robot 100 includes an operation unit 137 that can input On / Off or various commands.
  • the control unit 137 may receive various control commands necessary for the overall operation of the mobile robot 100.
  • the mobile robot 100 may include an output unit (not shown) to display reservation information, a battery state, an operation mode, an operation state, an error state, and the like.
  • FIG. 5 is a block diagram showing a control relationship between the main components of the mobile robot according to an embodiment of the present invention.
  • the mobile robot 100 includes a control unit 140 for processing and determining various information such as recognizing a current position, a storage unit 150 for storing various data, a traveling unit 160, and a cleaning unit ( 170).
  • a control unit 140 for processing and determining various information such as recognizing a current position
  • a storage unit 150 for storing various data
  • a traveling unit 160 for storing various data
  • a cleaning unit 170
  • the mobile robot 100 may further include a communication unit 190 for transmitting and receiving data.
  • the mobile robot 100 may receive a command for an operation through a remote controller (not shown) or a terminal (not shown).
  • the terminal may include an application for controlling the mobile robot 100, display a map of the driving area to be cleaned by the mobile robot 100 through execution of the application, and designate an area to clean a specific area on the map.
  • the terminal may be, for example, a remote controller, a PDA, a laptop, a tablet PC, a smart phone, and the like equipped with an application for setting a map.
  • the terminal may communicate with the mobile robot 100 to receive and display a map, and display the current location of the mobile robot on the map. In addition, the terminal updates and displays its position as the mobile robot travels.
  • the controller 140 controls the overall operation of the mobile robot 100 by controlling the image acquisition unit 120, the operation unit 137, the driving unit 160, and the cleaning unit 170 constituting the mobile robot 100.
  • the controller 140 may be implemented by one or more processors, or may be implemented by a hardware device.
  • the storage unit 150 records various types of information necessary for the control of the mobile robot 100 and may include a volatile or nonvolatile recording medium.
  • the recording medium stores data that can be read by a microprocessor, and includes a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, a RAM, a CD-ROM, a magnetic Tapes, floppy disks, optical data storage devices, and the like.
  • the storage unit 150 may store a map for the driving zone. In addition, the storage unit 150 stores information on obstacles detected while driving, and stores data set for charging station location or charging station search.
  • the map stored in the storage unit, the mobile robot 100 can be generated by learning by itself, optionally input by the terminal that can exchange information with the mobile robot 100 via wired or wireless communication. It may have been done.
  • the locations of the rooms in the driving zone may be displayed for each area.
  • the current position of the mobile robot 100 may be displayed on the map, and the current position of the mobile robot 100 on the map may be updated during the driving process.
  • the terminal stores the same map as the map stored in the storage 150.
  • the controller 140 controls the cleaning unit 170 while driving to absorb dust or foreign matter around the mobile robot and perform cleaning.
  • the cleaning unit 170 operates the brush to make it easy to suck the dust or foreign matter around the mobile robot, and operates the suction device to suck the dust or foreign matter.
  • the controller 140 may instruct cleaning of at least one of the plurality of areas, and move to the area designated by the driving unit to perform cleaning. At this time, the cleaning unit may be controlled to perform cleaning while moving by the driving unit.
  • the controller 140 checks the charge capacity of the battery to determine the return time to the charging table 200. When the charging capacity reaches a predetermined value, the controller 140 stops the operation that is being performed and starts searching for the charging station to return to the charging station. The controller 140 may output a notification about the charge capacity of the battery and a notification about the return of the charging stand.
  • the controller 140 starts a search for the charging station by designating any one region based on the stored map. At this time, the controller 140 sets the search position for the charging station search based on the position of the obstacle and the shape of the region according to the stored map.
  • the controller 140 may set the center of the region as the search position, or a plurality of points may be set as the search position, or may search the charging station while moving by setting the search position as the movement path.
  • the controller 140 sets search positions differently for regions divided into a plurality of small regions by obstacles.
  • the controller 140 may set the charging station search mode differently according to whether the map exists or whether the current location can be checked based on the map.
  • the controller 140 controls the driving unit 160 by setting a movement route connecting the search position.
  • the controller 140 controls the driving unit 160 to move to a designated area and start searching for a charging station.
  • the controller 140 may be configured to perform the charging station search from the region where the mobile robot is currently located or an adjacent region. If the charging station is not found in one region, the driving unit is controlled to move to another adjacent region to perform the charging station search.
  • controller 140 may be configured to perform a charging station search by moving to a separately designated area. In some cases, when the location of the charging station is stored in the map, the charging area is searched by giving priority to the corresponding area.
  • the controller 140 determines the position of the charging stand and controls the driving unit 160 to approach and dock the charging stand.
  • the controller 140 may store the charging stand position on the map based on the current position of the mobile robot 100.
  • the controller 140 includes a driving control module 141, a zone classification module 142, a learning module 143, and a recognition module 144.
  • the driving control module 141 controls the driving of the mobile robot 100 and controls the driving of the driving unit 160 according to the driving setting.
  • the driving control module 141 may determine the movement path of the mobile robot 100 based on the operation of the driving unit 160.
  • the driving control module 141 may grasp the current or past moving speed of the mobile robot 100, the distance traveled, and the like based on the rotational speed of the driving wheel 136, and each driving wheel 136 ( L) and 136 (R) may also determine the current or past direction change process. Based on the driving information of the mobile robot 100 thus identified, the position of the mobile robot 100 on the map may be updated.
  • the zone classification module 142 may divide the driving zone into a plurality of zones according to a predetermined criterion.
  • the driving zone may be defined as the sum of all the plane zones in which the mobile robot 100 has a driving experience and the zone on the plane that is currently traveling.
  • the zone classification module 142 divides the driving zone into a plurality of small zones, and the small zones may be divided based on each room (room) in the driving zone.
  • the zone classification module 142 may divide the driving zone into a plurality of large zones separated from each other in terms of driving ability. For example, two indoor spaces completely separated from each other on the same line may be divided into two large areas. As another example, even in the same indoor space, the large zone may be divided based on each floor in the driving zone.
  • the learning module 143 may generate a map of the driving zone. In addition, the learning module 143 processes the image acquired through the image acquisition unit 120 at each position and recognizes the global position in association with the map.
  • the recognition module 144 estimates and recognizes the current position.
  • the recognition module 144 detects the position in connection with the learning module 143 using the image information of the image acquisition unit 120, and estimates the current position even when the position of the mobile robot 100 is suddenly changed. can do.
  • the mobile robot 100 may recognize the position during continuous driving through the zone classification module 142, and learn the map through the learning module 143 and the recognition module 144 without the zone classification module 142. You can estimate your current location.
  • the image acquisition unit 120 acquires images around the mobile robot 100.
  • an image acquired by the image acquisition unit 120 is defined as an 'acquisition image'.
  • the acquired image includes various features such as lightings on the ceiling, edges, corners, blobs, and ridges.
  • the learning module 143 detects a feature from each of the acquired images.
  • Various methods of detecting a feature from an image are well known in the field of computer vision technology.
  • Several feature detectors are known that are suitable for the detection of these features. Examples include Canny, Sobel, Harris & Stephens / Plessey, SUSAN, Shi & Tomasi, Level curve curvature, FAST, Laplacian of Gaussian, Difference of Gaussians, Determinant of Hessian, MSER, PCBR, and Gray-level blobs detectors.
  • the learning module 143 calculates a descriptor based on each feature point.
  • the learning module 143 may convert feature points into descriptors using a scale invariant feature transform (SIFT) technique for feature detection.
  • SIFT scale invariant feature transform
  • the descriptor may be expressed as an n-dimensional vector.
  • the SIFT can detect an invariant feature with respect to the scale, rotation, and brightness change of the photographing target, and thus the same area is not changed even when the mobile robot 100 is photographed with different postures.
  • -invariant)) feature can be detected.
  • HOG Histogram of Oriented Gradient
  • Haar feature Haar feature
  • Fems Fems
  • LBP Local Binary Pattern
  • MCT Modified Census Transform
  • the learning module 143 classifies at least one descriptor into a plurality of groups according to a predetermined sub-classification rule for each acquired image based on descriptor information obtained through the acquired image of each position, and assigns the same group to the same group according to the predetermined sub-representation rule.
  • Each included descriptor may be converted into a lower representative descriptor.
  • all descriptors gathered from the acquired images in a predetermined zone are classified into a plurality of groups according to a predetermined sub-classification rule, and the descriptors included in the same group according to the predetermined sub-representation rule are each lower representative descriptors. You can also convert to.
  • Each positional feature distribution can be represented by a histogram or an n-dimensional vector.
  • the learning module 143 may estimate an unknown current position based on a descriptor calculated from each feature point without passing through a predetermined sub classification rule and a predetermined sub representative rule.
  • the current position of the mobile robot 100 becomes unknown due to a position leap or the like, the current position may be estimated based on data such as a previously stored descriptor or a lower representative descriptor.
  • the mobile robot 100 obtains an acquired image through the image acquisition unit 120 at an unknown current position. Through the image, various features such as lightings on the ceiling, edges, corners, blobs, and ridges are identified.
  • the recognition module 144 detects features from the acquired image. Description of the various methods of detecting features from an image in the field of computer vision technology and the various feature detectors suitable for the detection of these features are described above.
  • the recognition module 144 calculates the recognition descriptor through the recognition descriptor calculating step S31 based on each recognition feature point.
  • the recognition feature point and the recognition descriptor are for explaining the process performed by the recognition module 144 and are distinguished from terms describing the process performed by the learning module 143.
  • the features of the external world of the mobile robot 100 are merely defined in different terms.
  • the recognition module 144 may convert the recognition feature point into a recognition descriptor by using a scale invariant feature transform (SIFT) technique for detecting the feature.
  • SIFT scale invariant feature transform
  • the recognition descriptor may be expressed as an n-dimensional vector.
  • SIFT selects a feature point that can be easily identified, such as a corner point, in an acquired image, and then distributes the gradient of brightness gradients of pixels belonging to a predetermined area around each feature point (the direction of the change of brightness and the degree of change of brightness). ) Is an image recognition technique that obtains an n-dimensional vector whose value is a numerical value for each dimension.
  • Recognition module 144 is based on the at least one recognition descriptor information obtained through the acquired image of the unknown current position, and the position information (for example, feature distribution of each position) to be compared according to a predetermined lower conversion rule; Convert to comparable information (sub-recognition feature distribution).
  • each position feature distribution may be compared with each recognition feature distribution to calculate each similarity. Similarity (probability) may be calculated for each location corresponding to each location, and a location where the greatest probability is calculated may be determined as the current location.
  • the controller 140 may distinguish a driving zone and generate a map composed of a plurality of regions, or recognize a current position of the main body 110 based on a pre-stored map.
  • the controller 140 transmits the generated map to the external terminal through the communication unit 190.
  • the controller 140 may store the map in the storage unit.
  • the controller 140 transmits the updated information to the external terminal so that the map stored in the external terminal and the mobile robot 100 is the same.
  • the area designated by the mobile robot 100 may be cleaned for the cleaning command from the mobile terminal, and the current position of the mobile robot may be stored in the external terminal. To be displayed.
  • the map is divided into a plurality of areas
  • the cleaning path includes a connection passage connecting the plurality of areas, and includes information on the obstacles in the area.
  • the cleaning area is divided into a small area and a large area by the zone division module 142.
  • the controller 140 determines whether the current position of the mobile robot matches the position on the map.
  • the cleaning command may be input from a remote controller, an operation unit or an external terminal.
  • the controller 140 recognizes the current position and recovers the current position of the mobile robot 100 based on the current position. Control the driving unit to move to the designated area.
  • the recognition module 144 may estimate the current position based on the map by analyzing the acquired image input from the image acquisition unit 120. have.
  • the zone classification module 142 or the learning module 143 may also recognize the current position as described above.
  • the driving control module 141 calculates a movement route from the current position to the designated region and controls the driving unit 160 to move to the designated region.
  • the driving control module 141 sets the selected area as the designated area and calculates a movement route.
  • the driving control module 141 performs cleaning after moving the designated area.
  • the driving control module 141 determines whether the priority area is set among the plurality of areas or whether the cleaning order for the selected plurality of designated areas is set and then moves to the designated area. Go to perform cleaning.
  • the driving control module 141 moves to the priority area among the plurality of designated areas, cleans the priority area first, and then moves to the remaining designated area. In addition, when the cleaning order for the designated area is set, the driving control module 141 performs the cleaning while sequentially moving the designated area according to the designated cleaning order.
  • the driving control module 141 moves to the set designated memory to perform cleaning when a predetermined area is newly set regardless of the division of the plurality of areas on the map.
  • the controller 140 stores the cleaning record in the storage 150 when the cleaning of the set designated area is completed.
  • control unit 140 transmits the operation state or cleaning state of the mobile robot 100 to the external terminal 50 at a predetermined cycle through the communication unit 190. Accordingly, the terminal displays the position of the mobile robot along with the map on the screen of the running application based on the received data, and outputs information on the cleaning state.
  • the controller 140 recognizes the current position of the mobile robot through the learning unit and the recognition unit, and based on the current position of the moving robot, the position of the charging stand 200. Calculate and store In addition, the controller 140 may set the location of the charging station to be displayed on the map.
  • FIG. 6 is a diagram illustrating an example of region division and map generation according to the mobile robot of the present invention.
  • the mobile robot 100 may generate a map while driving the driving zone X1 through the wall followers.
  • the zone classification module 142 divides the driving zone X1 into a plurality of regions A1 ′ through A9 ′ to generate a map as shown in FIG. 6C. .
  • the generated map is stored in the storage unit 150 and transmitted to the external terminal 50 through the communication unit 190.
  • the zone classification module 142 distinguishes a small region from a large region with respect to the driving region X1 and generates a map according to the region.
  • the terminal executes the application and displays the received map on the screen.
  • the plurality of divided areas A1 to A9 are displayed differently.
  • the plurality of areas A1 to A9 are each displayed in different colors or different names are displayed.
  • the mobile robot and the terminal are based on storing the same map, but the terminal is displayed with a simplified map of the region as shown in FIG. 6 (c) so that the user can easily recognize the region.
  • the driving and cleaning are performed based on the map as shown in FIG. Obstacles may also be displayed in FIG. 6C.
  • the mobile robot 100 determines the current location based on the stored map, performs a designated cleaning when the current location matches the location on the map, and when the current location does not match, Recognize and restore the location before cleaning. Therefore, even if the mobile robot 100 is located at any position among the plurality of areas A1 to A9, the mobile robot 100 may move to the designated area and perform cleaning by determining the current location.
  • the remote controller or the terminal may select at least one of the plurality of areas A1 to A9 and input a cleaning command to the mobile robot 100.
  • the mobile robot 100 may set a part of any one area as a cleaning area through the remote controller or the terminal, or set the cleaning area by touching or dragging the plurality of areas without distinguishing the area.
  • one of the areas may be set as a priority area, or after starting the priority area, the area may be moved to a near area to be cleaned, or the cleaning order may be set.
  • the cleaning order is set for a plurality of designated areas, the mobile robot 100 moves in the designated order and performs cleaning. If a separate order is not specified, the mobile robot 100 moves to a region close to the current position and performs cleaning for a plurality of cleaning regions.
  • FIG. 7 is a diagram illustrating an embodiment of searching for a charging stand in the area of the mobile robot of the present invention.
  • the mobile robot 100 starts to search the charging station when the charging is necessary while cleaning or driving.
  • the mobile robot 100 sets a search mode according to the shape of an area, sets a search position for each search mode, and performs a charging station search.
  • the mobile robot 100 may search the charging station by using a center point of the area or set a plurality of search positions, and also set a driving route in the outline shape of the area, and extract according to the shape of the area. You can navigate the charging station as you travel the line.
  • the mobile robot 100 moves to the center of the area, rotates 360 degrees from the center of the area, and detects a return signal of the charging stand 200.
  • the mobile robot 100 detects the charging stand by setting the center of the area to the search position.
  • the mobile robot 100 detects the charging station by performing a rotation operation in the center of the area in the open space. Even if an obstacle exists in the area, when the blind spot is not generated by the obstacle, the charging zone is detected by rotating at the center of the area.
  • the open space is an area of a predetermined size or more that is not obstructed by an obstacle, and is a space where blind spots with respect to the return signal of the charging station are not generated by the obstacle. For example, if an area is divided by partitions or furniture, it is not judged as an open space.
  • the area is more than a predetermined size and it is difficult to immediately search for an area that is too large, it may be limited to an area less than a certain size.
  • the size of the region which is the basis of the determination, may be changed according to the return distance of the charging station or the sensing distance of the mobile robot.
  • the mobile robot 100 may detect a return signal of the charging station while moving in correspondence with the shape of the outline at a predetermined distance from the outline of the region.
  • the mobile robot 100 detects a charging station by setting a path moving along an outline of an area as a search position.
  • the movement of the mobile robot 100 along the outline of the area is distinguished from the wall followers, and does not move along the wall in close proximity to the wall, but according to the shape of the outline of the area, the mobile robot 100 does not approach the wall and is fixed from the wall. Move away and explore the charging station. The mobile robot moves at a distance sufficient to detect the return signal of the charging station. You can move along the outline of the area, but ignore the change in outline due to small obstacles on the wall.
  • the mobile robot 100 may set the plurality of search positions in the area to search the charging station 200.
  • the mobile robot 100 may set the position input from the terminal or the remote controller as the search position, and also set the search position based on the shape of the space. In addition, the mobile robot 100 may set a plurality of search positions according to the detection range.
  • a plurality of positions are set as search positions.
  • the mobile robot 100 moves to a search position and detects a return signal of the charging station while rotating 360 degrees at the search position.
  • search positions When a plurality of search positions are set, after detecting the charging station in one search position, and moves to the next search position to detect the charging station.
  • the charging station by detecting the return signal of the charging station by setting the first point P1 and the second point P2 as the search position, it is determined whether or not the charging station is located in the area.
  • the mobile robot 100 may analyze the shape of the area, line it up, and set the search position from the generated line.
  • the mobile robot 100 may set the line generated according to the shape of the region as the movement path, and search for the charging station while moving in the designated movement path.
  • the mobile robot 100 may set a search position by extracting a plurality of points on the line generated according to the shape of the region.
  • the mobile robot 100 may set some or all of the edges, the plurality of branching points, and the nodes formed on the line as the search position.
  • the mobile robot 100 For example, for a rectangular area, the mobile robot 100 generates a rectangular line and sets the corner third to sixth points P3 to P6 on the line as the search position.
  • the mobile robot 100 may search the charging station by setting the line as the movement path or setting the shortest distance connecting each navigation position as the movement path with respect to the search position set through the line. The mobile robot 100 rotates from the search position, moves to the next search position, and searches the charging station 200.
  • FIG. 8 is a diagram referred to describe a region-specific charging zone search mode according to the embodiment of FIG. 7.
  • the mobile robot 100 searches for a charging station based on the search position setting method described above with respect to a plurality of areas.
  • the mobile robot 100 sets a center of each region as a search position for a plurality of regions, moves to the center of each region, and rotates one rotation to search a charging stand. If the charging station is not detected, go to the next area and detect the charging station.
  • the mobile robot 100 may determine the charging zone by determining the area corresponding to the corridor or the passage as a separate small area among the plurality of areas.
  • the mobile robot 100 searches for the charging station in the center of the area, as shown in the open space.
  • a blind spot outside the return signal detection range of the mobile robot 100 is formed due to an obstacle in the area, or when the size of the area is larger than the detection range of the mobile robot.
  • another charging zone searching method of FIG. 7 is described. Can be used or in parallel.
  • the mobile robot 100 searches for a charging station while driving by setting a moving path inside the area based on the outline of each area.
  • the mobile station moves to another adjacent area and searches for a charging station while driving by setting a moving path inside the area based on the outline of the corresponding area.
  • the mobile robot 100 does not approach the wall, but moves away from the wall based on the detection range.
  • the mobile robot 100 may increase the moving distance by comparing the search for the charging station in the center of the region as illustrated in FIG. 8A, but may search the charging station up to every corner for each region. have.
  • the mobile robot 100 sets a plurality of search positions in each area to move the search positions for each area and search the charging station.
  • the search position may be a position input through a remote controller or a terminal, and may also be set based on the shape of an area. For example, when the shape of the region is lined in FIG. 7 (d) described above, a plurality of points on the line, for example, an edge, a branch point, and a node on the line may be extracted and set as the search position.
  • the mobile robot 100 sets the plurality of search positions in consideration of the detection range to perform the charging zone search for the plurality of regions. Perform.
  • the mobile robot 100 searches the charging station while driving the moving path by setting the shape of the area into a line, setting the line as the searching position and the moving path.
  • the mobile robot 100 Since the mobile robot 100 generates a line based on the shape of the area, the mobile robot 100 can solve the problem of the blind spot according to the detection range described above, and also reduce the mileage compared to moving in the form of an outline. .
  • the mobile robot 100 searches for the charging station in a plurality of ways as described above, and may combine different methods to search for different charging stations for each area based on the shape of the area.
  • the charging station When searching the charging station for a plurality of areas When searching the charging station in the center for an open space of a certain size or less based on the size or shape of each area, if there is an obstacle in the area or areas exceeding a certain size
  • the charging station may be searched by setting a plurality of search points with respect to each other, or by setting a search position by forming a line according to the shape of the space.
  • FIG. 9 is a view referred to for explaining a method for setting a search position in the area of the mobile robot of the present invention.
  • a search position is set according to the type of area to be searched.
  • the mobile robot 100 analyzes the shape of the area based on the pre-stored map L11 for the first area.
  • the mobile robot 100 analyzes the shape of the first area L01 based on the map and performs a thinning operation, thereby extracting a line for the shape of the area.
  • the thinning operation extracts information of a line from a figure having a thickness, and extracts line information according to the shape of the figure by manipulating the thickness of the figure to be thinner or less than a certain thickness.
  • the mobile robot 100 repeats changing the thickness thinly as shown in FIG. 9B based on the map L11 for the region.
  • the mobile robot 100 decreases the thickness of the map with respect to the region (L12), and when the thickness decreases to a predetermined value or less and changes from a graphic form to a line form, the first line L13 as shown in FIG. ).
  • the mobile robot 100 sets a search position from the extracted line L13.
  • the mobile robot 100 extracts a plurality of nodes P11 to P15 including nodes at corners, branch points, and middle lines of the first line L13, and the plurality of nodes.
  • some of the plurality of nodes may be set as search positions for the first area.
  • the mobile robot 100 moves between designated search positions irrespective of a line, and searches for a charging stand through rotation at the search position.
  • the mobile robot 100 may search the charging station through rotation at the search position while moving along the line by setting the first path PL01 called movement along the first line L13.
  • the mobile robot 10 may designate the extracted line L13 as a search position and set the movement path. That is, the mobile robot 100 may search the charging station while moving along the line.
  • Whether the setting of the search position of the mobile robot 100 and the setting of the line as the movement path may be changed according to the input setting, and may also be changed according to the shape of the area for searching the charging station as described above.
  • the plurality of methods may be combined to search for the charging station through different methods for the plurality of regions.
  • the mobile robot 100 stores the charging stand position along with the map. In addition, since the position of the charging stand may be changed, the mobile robot 100 stores the extracted line L13 and information about the search position together with the map.
  • FIG. 10 is a view referred to for explaining a path setting method according to a search position of the mobile robot of the present invention.
  • the mobile robot 100 extracts the first line L13 and the plurality of nodes P11 to P15 with respect to the first area L01, and then selects a part of the plurality of nodes. Can be set as the search position.
  • the mobile robot 100 may search the charging station while moving by setting a moving path of the first path PL01 moving along the first line L13.
  • the mobile robot 100 moves some of the nodes P11 to P15 to the search position based on the size of the area and the sensing range S for searching the charging station. Set it.
  • the mobile robot 100 sets a search position with respect to the first area L01 to search all of the first area L01 based on the size of the detection range S.
  • the mobile robot 100 may set the second point and the third point or the end node first point and the fourth point in the area of the plurality of nodes P11 to P15 as the search positions, respectively.
  • the mobile robot 100 may set a search position by setting a new node between the node according to the size of the area.
  • the mobile robot 100 sets the second point P12 as the first search position, and searches the fourth point P14 for the second time to search for an area not included in the detection range at the second point. Can be set to position.
  • the mobile robot 100 may set the first path PL01 moving along the first line L13 as the moving path, and, as illustrated, the shortest path connecting the first and second search positions ( PL02) can be set as the movement path.
  • the mobile robot 100 may set a moving path based on the first path PL01, but may travel only a part of the first path according to the search position.
  • FIG. 11 is a diagram illustrating an embodiment of a region according to a search position setting method of FIG. 9.
  • the mobile robot 100 when the mobile robot 100 performs the charging zone search for the first area L01, the mobile robot 100 extracts the first line L13 through a thinning operation, and extracts a plurality of lines. After extracting the nodes P11 to P15, some of the plurality of nodes P11 to P15 are set as search positions according to the size or shape of the region and the detection range S.
  • FIG. 11A when the mobile robot 100 performs the charging zone search for the first area L01, the mobile robot 100 extracts the first line L13 through a thinning operation, and extracts a plurality of lines. After extracting the nodes P11 to P15, some of the plurality of nodes P11 to P15 are set as search positions according to the size or shape of the region and the detection range S.
  • the shortest path connecting the search position may be set as the movement path
  • the movement in the first area will be described by moving along the first path PL01.
  • the mobile robot specifies that only a part of the first path may be driven as the moving path according to the search position, and that the moving robot can also move using the shortest path.
  • the mobile robot 100 searches for the charging station while moving the designated movement path, and immediately detects the charging station and attempts to dock by moving to the charging station. If the mobile robot 100 does not sense the charging stand by moving along the movement path in one area, the mobile robot 100 moves to another area to search for the charging stand.
  • the mobile robot 100 includes a second point P12 and a second point that can search for all of the first area according to the shape of the area and the size of the detection range S.
  • FIG. The charging point search for the first area may be performed by setting three points P13 as the search position.
  • the mobile robot 100 moves along the movement route and searches for the charging station by one rotation after stopping at the second point P12 and the third point P13.
  • the first path PL01 is connected to the fourth point P14, but the mobile robot 100 can search from the third point P13 to the fourth point, so that the first path PL01 is not moved to the fourth point.
  • the path PL12 is set as the movement path to move.
  • the mobile robot 100 has a distance between the second point P12 and the third point P13 according to the shape of the area and the size of the detection range S.
  • FIG. The search position may be further set for the second region L02 farther than the detection range.
  • the mobile robot 100 Since the mobile robot 100 cannot detect all the regions only by searching for the charging station at the second point and the third point, the mobile robot 100 connects the fifth point P15, which is an intermediate point, with the second point P12 and the third point P13. Set the search position together. In addition, the mobile robot 100 sets the thirteenth path PL13 from the second point to the third point as the movement path.
  • the mobile robot 100 After moving between the second point P12, the fifth point P15, and the third point P13, the mobile robot 100 searches for the charging station by one rotation at each point, and then searches to the third point. If no charging station is detected, go to another area and search for charging station.
  • the mobile robot 100 may set four points as search positions according to the detection range S.
  • the charging station is searched by setting the fourteenth path PL14 to the fourth point as the movement path.
  • the mobile robot 100 rotates from the first point P11 to the fourth point P14 while moving from the first point P11 to the fourth point P14 according to the fourteenth path PL14. Search.
  • the sensing range S of the mobile robot can detect the horizontal length of the fifth region L05, the second point P12 and the third point ( When it is impossible to detect each of the partial regions in P13), the sixth point P16 between the first point P11 and the second point P12, and the seventh point P17 between the third point and the fourth point P17. You can set each as the search position.
  • the mobile robot 100 searches the charging station by setting the fifteenth path PL15 connecting the search position as the movement path, and if the charging station is not detected, moves to the next area to perform the charging station detection.
  • FIG. 12 is a diagram illustrating an embodiment of a region according to the path setting method of FIG. 10.
  • the mobile robot 100 may not recognize the plurality of points as described above because the area is not an open area. Search the charging station by setting the search position.
  • the mobile robot 100 extracts a line for an area through thinning, and searches a charging station by setting some of the plurality of nodes to a search position.
  • the mobile robot 100 sets the twenty-first point P21, the twenty-second point P22, the twenty-third point P23, and the twenty-fourth point P24 according to the detection range S as the search position.
  • the mobile robot 100 searches the charging station by setting the twenty-second path PL22 connecting the search position as the movement path based on the extracted line PL21.
  • the mobile robot 100 searches for the charging stand when rotating at each search position, and if the charging stand is not detected, moves to the next search position and rotates to detect the charging stand.
  • the mobile robot searches for the charging station by setting the twenty-third path PL23, which is the shortest path connecting the search positions, as the movement path.
  • the mobile robot 100 sets the 26th point between the 21st and 22nd points according to the size of the area and the detection range, and between the 23rd and 24th points.
  • the charging point may be searched by setting the twenty-seventh point P27 as the search position and setting the twenty-fourth path PL24 connecting the search position as the movement path.
  • FIG. 13 is a diagram illustrating an embodiment of a movement between a plurality of regions and a charging station search of the mobile robot of the present invention.
  • the mobile robot 100 moves each area and sets a search position.
  • the charging station is searched by setting a movement route connecting the search position.
  • the mobile robot 100 rotates in the thirty-second area A32 and searches for the charging station, and then moves to the center of the thirty-first area A31 to detect the charging station while rotating, and passes through the thirty-second area when the charging station is not detected. After moving to the center of the thirty-third area A33, the charging station may be searched for.
  • the mobile robot 100 moves to the charging station, docks it, and starts charging.
  • the mobile robot 100 stores the position of the charging stand on the map with respect to the detected charging stand based on the current position of the mobile robot.
  • the mobile robot when the charging stand is located in an area connecting the thirty-second and thirty-third areas, the mobile robot cannot detect the charging stand. Accordingly, the mobile robot may search for the charging station by additionally setting a search position in an area connecting the thirty-second and thirty-third areas.
  • the mobile robot 100 may search the charging station by setting a plurality of points as search positions for each region.
  • the mobile robot 100 extracts the 33rd to 39th points with respect to the 31st area A31 and detects the node. Set the search position according to the range and type of area.
  • the mobile robot 100 may set a thirty-third point P33, a thirty-fifth point P35, and a thirty-ninth point P39 as a search position and set a movement path connecting the search position along a line.
  • the mobile robot 100 sets the thirty-first point P31, which is a center point, as the search position because the obstacle O34 exists in the thirty-second area A32, but is an open area.
  • the forty-second point P42 connecting the thirty-second and thirty-third areas, which cannot be detected, and the forty-third point P43 are added as a search position to set the movement path to the forty-third point P43.
  • the search position may be additionally set.
  • the mobile robot 100 sets a center point or a plurality of nodes as a search position according to the shape of the region, moves along a movement path formed from a line extracted by thinning, and senses a charging stand.
  • the mobile robot 100 after setting the search position as described above, as shown in Fig. 13 (c), can set the movement path connecting the search position to the shortest path.
  • the mobile robot 100 may search the charging station by setting the movement path by connecting the search position and the search position with the shortest path regardless of the extracted line.
  • FIG. 14 is a flowchart illustrating a charging zone search method of a mobile robot according to the present invention.
  • the mobile robot 100 determines that charging is necessary and starts searching for a charging stand (S310).
  • the controller 140 checks the location of the charging station from the map stored in the storage 150. If the charging station position is set, the controller 140 moves to the charging station position and attempts to dock the charging station.
  • the controller 140 stops cleaning and performs a charging station search.
  • the controller 140 determines the current location based on the pre-stored map (S320).
  • the learning module 143 of the controller 140 processes the image acquired through the image acquisition unit 120 at each position, recognizes the global position in association with the map, and determines the current position.
  • the controller 140 If the controller 140 cannot determine the current position, the controller 140 travels through the wall following (wall follow) (S390) and detects the charging stand (S400). When the controller 140 detects the charging station return signal while driving, the controller 140 moves to the charging station and attempts docking (S410 and S420).
  • the controller 140 selects an area to be searched after matching the current location on the map (S330).
  • an area to be searched After matching the current location on the map (S330).
  • one of the areas is selected to start the charging station search.
  • the charging station search may be started from the region where the mobile robot is currently located, or the charging station search may be started by moving to the adjacent region.
  • the mobile station may move to the selected area and perform the charging station search.
  • the controller 140 sets a search position with respect to the selected area (S340).
  • the controller 140 determines the shape of the area based on the pre-stored map, and sets the center of the area as the search position in the case of the open area, and sets the plurality of points according to the size of the area or the detection range. Can be set to In addition, the controller 140 may set a plurality of nodes by extracting lines according to the shape of the region through thinning, and set at least one of the plurality of nodes as a search position.
  • the controller 140 sets a movement route connecting the search position, controls the driving unit, and moves to the search position according to the movement route (S350).
  • the mobile robot 100 moves to the search position according to the set movement path, rotates at the search position, and detects a return signal of the charging station (S360).
  • the controller 140 determines the position of the charging station and controls the driving unit to move to the charging station. After moving the charging stand, the docking and charging based on the signal of the charging stand (S420).
  • the controller 140 controls the driving unit to move to the next search position.
  • the charging station search is performed by moving along the path to the next search position (S350 to S370).
  • the search is reset to the region to move to the selected region to continue the charging station search (S330 to S370),
  • the controller 140 After searching the charging station by moving to the last search position set in the area, if the charging station is not detected, the controller 140 resets the area to be searched and moves to the selected area to perform the charging station search (S330 to S370).
  • the controller 140 determines the position of the charging station and controls the driving unit to move to the charging station. After moving the charging stand, the docking and charging based on the signal of the charging stand (S420).
  • FIG. 15 is a flowchart referred to for describing a method for setting a search position when searching for a charging stand of FIG. 14.
  • the controller 140 of the mobile robot 100 selects a region to be searched from among a plurality of regions (S330).
  • the controller 140 may set the search position according to data input from the remote control or the terminal, and set the search position at random in the region (S440). Also, the center point of the area may be set as the search position.
  • controller 140 analyzes the shape of the selected region and simplifies it, and performs a thinning operation to extract a line (S450).
  • the controller 140 may set a search position based on the shape of the simplified region (S460).
  • the controller 140 sets a node such as a branch point or a corner on the line as a search position or sets at least one of the plurality of extracted nodes as a search position based on the extracted line according to the shape of the region.
  • the controller 140 sets at least one node as a search position in response to the size of the area, the detection range of the mobile robot, and the like.
  • controller 140 may set the extracted line as a search position to search the charging station on the line (S480).
  • the controller 140 sets a movement path connecting the search position when the search position is set.
  • the movement path may be set along a line or may be set as the movement path by connecting the shortest paths between the search positions (S490).
  • the movement path is set to the extracted line (S500).
  • the controller 140 controls the driving unit to move to the search position (S520), rotates at the designated search position, and detects a return signal of the charging station (S530) (S540). Even when the search position is set, the charging station return signal may be detected while driving.
  • the charging station return signal is detected while driving (S550).
  • 16 is a flowchart illustrating a charging zone search method of a mobile robot through area boundary movement of the present invention.
  • the mobile robot 100 may search the charging station by setting a driving path according to the outline form of the region, not the search position, in the region as illustrated in FIG. 8 (b).
  • the mobile robot starts searching for a charging station (S730).
  • the controller 140 checks the location of the charging station from the map stored in the storage 150. If the charging station position is set, the controller 140 moves to the charging station position and attempts to dock the charging station.
  • the controller 140 stops cleaning and performs a charging station search.
  • the controller 140 determines the current location based on the pre-stored map (S740).
  • the controller 140 When the controller 140 cannot determine the current location, the controller 140 travels through the wall following (Walking) (S790) and detects the charging stand (S800). When the controller 140 detects the charging station return signal while driving, the controller 140 moves to the charging station and attempts docking (S810 and S820).
  • the controller 140 matches the current location on the map and then selects an area to be searched (S750). When there are a plurality of areas to be searched, one of the areas is selected to start the charging station search.
  • the controller 140 sets an outline driving route in a boundary of the region, that is, a predetermined distance from the wall surface (S760), and detects a return signal of the charging station while moving the driving route (S770). ).
  • the controller 140 moves until the return signal of the charging station is received. When the area search is completed, the controller 140 moves to the next area and searches for the charging station.
  • control unit 140 moves to the charging station according to the return signal (S810), attempts to dock the charging stand, and receives charging current from the charging stand when the docking is completed (S820).
  • the mobile robot 100 may return to the charging station in a short time by setting the search position for each region according to the setting and performing the charging station search for the plurality of regions with a small amount of movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명은 이동 로봇 및 그 제어방법에 관한 것으로, 배터리 소진으로 충전이 필요한 상황에서, 기 저장된 맵을 바탕으로 영역을 선택하여 이동하면서 충전대를 탐색하는 것으로, 이동 로봇의 위치가 임의로 변경되더라도 자신의 위치를 다시 인식하도록 함으로써 영역 간의 이동이 쉽고, 장애물의 복잡도에 따른 영향이 적으며, 영역 내에서 특정 지점을 탐색위치로 설정하여 충전대를 탐색함에 따라 적은 이동으로 영역내의 충전대를 탐색할 수 있으므로, 충전대 탐색 중 동작이 정지하는 문제를 해소하고, 단시간 내에 정확하게 충전대를 탐색할 수 있는 효과가 있다.

Description

이동 로봇 및 그 제어방법
본 발명은 이동 로봇 및 그 제어방법에 관한 것으로서, 특히 이동 로봇이 이동하며 충전대를 탐색하여 복귀하는 이동 로봇 및 그 제어방법에 관한 것이다.
이동 로봇은 청소하고자 하는 영역을 스스로 주행하면서 바닥면으로부터 먼지 등의 이물질을 흡입하여 자동으로 청소하는 기기이다.
이동 로봇은 충전 가능한 배터리가 구비되어, 이동이 자유롭고 배터리의 동작전원을 이용한 스스로 이동이 가능하며, 이동 중 바닥면의 이물질을 흡입하여 청소를 실시한다.
이동 로봇은 주행구역 내에 설치된 가구나 사무용품, 벽 등의 장애물까지의 거리를 감지하고, 좌륜과 우륜의 구동을 제어하여 장애물 회피 동작을 수행한다.
이동 로봇은 필요 시 충전대로 복귀하여 배터리를 충전하도록 구성된다.
종래의 이동 로봇은 영역을 구분하지 않고 벽을 따라 이동하는 월팔로 윙을 통해 이동하면서 충전대를 탐색한다.
그러나, 월팔로윙을 통해 충전대를 탐색하는 경우 공간 전체에 대해 이동하게 되므로 많은 시간이 소요되는 문제점이 있다.
영역 내에 가구 등의 배치로 인하여 장애물이 많고, 신호를 탐색할 수 있는 범위가 한정적이므로, 충전대 탐색에 많은 시간이 소요되는 문제점이 있다.
특히 실내공간이 복수의 영역으로 구분되는 경우, 각 영역을 이동하면서 충전대를 탐색해야 하므로, 탐색 시간의 증가로 인하여 충전대를 찾기 전 배터리가 방전되어 그 자리에 멈춰버리는 상황이 발생하기도 한다.
그에 따라, 빠르게 영역을 이동하면서 단시간에 충전대를 탐색할 수 있는 방안이 모색되어야 한다.
본 발명의 이동 로봇 및 그 제어방법은, 배터리 소진으로 충전이 필요한 상황에서, 기 저장된 맵을 바탕으로 영역을 선택하여 이동하면서 단시간에 충전대를 탐색하는 이동 로봇 및 제어방법을 제공하는데 있다.
본 발명의 일 실시예에 따른 이동 로봇은, 이동 가능한 본체; 상기 본체를 이동시키는 주행부; 주행구역에 대한 맵(MAP)이 저장되는 저장부; 현재 위치를 인식하여 상기 맵을 바탕으로, 상기 본체가 상기 주행구역을 주행하며 청소를 수행하도록 하는 제어부를 포함하고, 상기 제어부는, 충전 필요 시 상기 주행구역의 각 영역의 형태에 대응하여 영역에 적어도 하나의 탐색위치를 설정하고, 탐색위치를 연결하는 이동경로를 따라 상기 본체가 이동하도록 상기 주행부를 제어하며, 이동 중 충전대의 복귀신호를 감지하여 상기 충전대를 탐색하는 것을 특징으로 한다.
또한, 본 발명에 따른 이동 로봇의 제어방법은, 충전이 필요한 경우, 충전대 탐색을 시작하는 단계; 기 저장된 맵으로부터 현재위치를 판단하여, 탐색을 시작할 영역을 선택하는 단계; 상기 영역의 형태에 대응하여 탐색위치를 설정하는 단계; 상기 탐색위치를 연결하는 이동경로를 설정하는 단계; 상기 이동경로를 따라 이동하며 충전대를 탐색하는 단계; 상기 충전대가 존재하지 않는 경우, 새로운 영역을 지정하고, 상기 새로운 영역으로 이동하여 상기 충전대를 탐색하는 단계; 및 상기 충전대로부터 송출된 복귀신호가 감지되면, 상기 충전대로 이동하여 충전하는 단계;를 포함한다.
본 발명의 이동 로봇 및 그 제어방법은 저장된 맵을 바탕으로 영역을 선택하면서 충전대를 탐색함으로써, 이동 로봇의 위치가 임의로 변경되더라도 자신의 위치를 다시 인식하도록 함으로써 영역 간의 이동이 쉽고, 장애물의 복잡도에 따른 영향이 적으며, 영역 내에서 특정 지점을 탐색위치로 설정하여 충전대를 탐색함에 따라 적은 이동으로 영역내의 충전대를 탐색할 수 있으므로, 충전대 탐색 중 동작이 정지하는 문제를 해소하고, 단시간 내에 정확하게 충전대를 탐색할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 이동 로봇 및 이동 로봇을 충전시키는 충전대를 도시한 사시도이다.
도 2는 도 1에 도시된 이동 로봇의 상면부를 도시한 도이다.
도 3은 도 1에 도시된 이동 로봇의 정면부를 도시한 도이다.
도 4는 도 1에 도시된 이동 로봇의 저면부를 도시한 도이다.
도 5는 본 발명의 일 실시예에 따른 이동 로봇의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 6 은 본 발명의 이동 로봇의 영역 구분 및 그에 따른 맵 생성의 예가 도시된 도이다.
도 7 은 본 발명의 이동 로봇의 영역 내에서 충전대를 탐색하는 실시예가 도시된 도이다.
도 8 은 도 7의 실시예에 따른 영역별 충전대 탐색모드를 설명하는데 참조되는 도이다.
도 9 는 본 발명의 이동 로봇의 영역 내, 탐색위치 설정방법을 설명하는데 참조되는 도이다.
도 10 은 본 발명의 이동 로봇의, 탐색위치에 따른 경로 설정방법을 설명하는데 참조되는 도이다.
도 11 은 도 9의 탐색위치 설정방법을 바탕으로 영역의 형태에 따른 실시예가 도시된 도이다.
도 12 는 도 10의 경로 설정방법을 바탕으로 영역의 형태에 따른 실시예가 도시된 도이다.
도 13 은 본 발명의 이동 로봇의, 복수의 영역 간 이동 및 충전대 탐색의 실시예가 도시된 도이다.
도 14 는 본 발명의 이동 로봇의 충전대 탐색방법이 도시된 순서도이다.
도 15 는 도 14의 충전대 탐색 시, 탐색위치 설정방법을 설명하는데 참조되는 순서도이다.
도 16 은 본 발명의 영역 바운더리 이동을 통한 이동 로봇의 충전대 탐색방법이 도시된 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 이동 로봇은 제어부 및 각 부가 하나 또는 그 이상의 프로세서로 구현될 수 있고, 하드웨어 장치로 구현될 수 있다.
이하에서는 도면을 참조하여 본 발명의 실시 예에 대해서 구체적으로 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 이동 로봇 및 이동 로봇을 충전시키는 충전대를 도시한 사시도이고, 도 2는 도 1에 도시된 이동 로봇의 상면부를 도시한 도이며, 도 3은 도 1에 도시된 이동 로봇의 정면부를 도시한 도이고, 도 4는 도 1에 도시된 이동 로봇의 저면부를 도시한 도이다.
도 1 내지 도 4에 도시된 바와 같이, 이동 로봇(100)은 본체(110)와, 본체(110) 주변의 영상을 획득하는 영상획득부(120)를 포함한다. 이하, 본체(110)의 각부분을 정의함에 있어서, 주행구역 내의 천장을 향하는 부분을 상면부(도 2 참조)로 정의하고, 주행구역 내의 바닥을 향하는 부분을 저면부(도 4 참조)로 정의하며, 상면부와 저면부 사이에서 본체(110)의 둘레를 이루는 부분 중 주행방향을 향하는 부분을 정면부(도 3 참조)라고 정의한다.
이동 로봇(100)은 본체(110)를 이동시키는 주행부(160)를 포함한다. 주행부(160)는 본체(110)를 이동시키는 적어도 하나의 구동 바퀴(136)를 포함한다. 주행부(160)는 구동 바퀴(136)에 연결되어 구동 바퀴를 회전시키는 구동 모터(미도시)를 포함한다. 구동 바퀴(136)는 본체(110)의 좌, 우 측에 각각 구비될 수 있으며, 이하, 각각 좌륜(136(L))과 우륜(136(R))이라고 한다.
좌륜(136(L))과 우륜(136(R))은 하나의 구동 모터에 의해 구동될 수도 있으나, 필요에 따라 좌륜(136(L))을 구동시키는 좌륜 구동 모터와 우륜(136(R))을 구동시키는 우륜 구동 모터가 각각 구비될 수도 있다. 좌륜(136(L))과 우륜(136(R))의 회전 속도에 차이를 두어 좌측 또는 우측으로 본체(110)의 주행방향을 전환할 수 있다.
본체(110)의 저면부에는 공기의 흡입이 이루어지는 흡입구(110h)가 형성될 수 있으며, 본체(110) 내에는 흡입구(110h)를 통해 공기가 흡입될 수 있도록 흡입력을 제공하는 흡입장치(미도시)와, 흡입구(110h)를 통해 공기와 함께 흡입된 먼지를 집진하는 먼지통(미도시)이 구비될 수 있다.
본체(110)는 이동 로봇(100)을 구성하는 각종 부품들이 수용되는 공간을 형성하는 케이스(111)를 포함할 수 있다. 케이스(111)에는 먼지통의 삽입과 탈거를 위한 개구부가 형성될 수 있고, 개구부를 여닫는 먼지통 커버(112)가 케이스(111)에 대해 회전 가능하게 구비될 수 있다.
흡입구(110h)를 통해 노출되는 솔들을 갖는 롤형의 메인 브러시(134)와, 본체(110)의 저면부 전방측에 위치하며, 방사상으로 연장된 다수개의 날개로 이루어진 솔을 갖는 보조 브러시(135)가 구비될 수 있다. 이들 브러시(134, 135)들의 회전에 의해 주행구역 내 바닥으로부터 먼지들이 분리되며, 이렇게 바닥으로부터 분리된 먼지들은 흡입구(110h)를 통해 흡입되어 먼지통에 모인다.
배터리(138)는 구동 모터뿐만 아니라, 이동 로봇(100)의 작동 전반에 필요한 전원을 공급한다. 배터리(138)가 방전될 시, 이동 로봇(100)은 충전을 위해 충전대(200)로 복귀하는 주행을 실시할 수 있으며, 이러한 복귀 주행 중, 이동 로봇(100)은 스스로 충전대(200)의 위치를 탐지할 수 있다.
충전대(200)는 소정의 복귀 신호를 송출하는 신호 송출부(미도시)를 포함할 수 있다. 복귀 신호는 초음파 신호 또는 적외선 신호일 수 있으나, 반드시 이에 한정되어야하는 것은 아니다.
이동 로봇(100)은 복귀 신호를 수신하는 신호 감지부(미도시)를 포함할 수 있다. 충전대(200)는 신호 송출부를 통해 적외선 신호를 송출하고, 신호 감지부는 적외선 신호를 감지하는 적외선 센서를 포함할 수 있다. 이동 로봇(100)은 충전대(200)로부터 송출된 적외선 신호에 따라 충전대(200)의 위치로 이동하여 충전대(200)와 도킹(docking)한다. 이러한 도킹에 의해 이동 로봇(100)의 충전 단자(133)와 충전대(200)의 충전 단자(210) 간에 충전이 이루어진다.
영상획득부(120)는 주행구역을 촬영하는 것으로, 디지털 카메라를 포함할 수 있다. 디지털 카메라는 적어도 하나의 광학렌즈와, 광학렌즈를 통과한 광에 의해 상이 맺히는 다수개의 광다이오드(photodiode, 예를들어, pixel)를 포함하여 구성된 이미지센서(예를들어, CMOS image sensor)와, 광다이오드들로부터 출력된 신호를 바탕으로 영상을 구성하는 디지털 신호 처리기(DSP: Digital Signal Processor)를 포함할 수 있다. 디지털 신호 처리기는 정지영상은 물론이고, 정지영상으로 구성된 프레임들로 이루어진 동영상을 생성하는 것도 가능하다.
바람직하게, 영상획득부(120)는 본체(110)의 상면부에 구비되어, 주행구역 내의 천장에 대한 영상을 획득하나, 영상획득부(120)의 위치와 촬영범위가 반드시 이에 한정되어야 하는 것은 아니다. 예를들어, 영상획득부(120)는 본체(110) 전방의 영상을 획득하도록 구비될 수도 있다.
또한, 이동 로봇(100)은 전방의 장애물을 감지하는 장애물 감지센서(131)를 더 포함할 수 있다. 이동 로봇(100)은 주행구역 내 바닥에 낭떠러지의 존재 여부를 감지하는 낭떠러지 감지센서(132)와, 바닥의 영상을 획득하는 하부 카메라 센서(139)를 더 포함할 수 있다.
또한, 이동 로봇(100)은 On/Off 또는 각종 명령을 입력할 수 있는 조작부(137)를 포함한다. 조작부(137)를 통해 이동 로봇(100)의 작동 전반에 필요한 각종 제어명령을 입력받을 수 있다. 또한, 이동 로봇(100)은 출력부(미도시)를 포함하여, 예약 정보, 배터리 상태, 동작모드, 동작상태, 에러상태 등을 표시할 수 있다.
도 5는 본 발명의 일 실시예에 따른 이동 로봇의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 5를 참조하면, 이동 로봇(100)은 현재 위치를 인식하는 등 각종 정보를 처리하고 판단하는 제어부(140), 각종 데이터를 저장하는 저장부(150), 주행부(160), 및 청소부(170)를 포함한다.
또한, 이동 로봇(100)은 데이터를 송수신하는 통신부(190)를 더 포함할 수 있다.
이동 로봇(100)은 리모컨(미도시) 또는 단말(미도시)을 통해 동작에 대한 명령을 수신할 수 있다. 단말은 이동 로봇(100)을 제어하기위한 어플리케이션을 구비하고, 어플리케이션의 실행을 통해 이동 로봇(100)이 청소할 주행구역에 대한 맵을 표시하고, 맵 상에 특정 영역을 청소하도록 영역을 지정할 수 있다. 단말은 맵 설정을 위한 어플리케이션(application)이 탑재된 리모콘, PDA, 랩탑(laptop), 태블릿PC, 스마트 폰 등을 예로 들 수 있다.
단말은 이동 로봇(100)과 통신하여, 맵을 수신하여 표시하고, 맵 상에 이동 로봇의 현재 위치를 표시할 수 있다. 또한, 단말은 이동 로봇의 주행에 따라 그 위치를 갱신하여 표시한다.
제어부(140)는 이동 로봇(100)을 구성하는 영상획득부(120), 조작부(137), 주행부(160), 청소부(170)를 제어하여, 이동 로봇(100)의 동작 전반을 제어한다. 제어부(140)는 하나 또는 그 이상의 프로세서로 구현될 수 있고, 하드웨어 장치로 구현될 수 있다.
저장부(150)는 이동 로봇(100)의 제어에 필요한 각종 정보들을 기록하는 것으로, 휘발성 또는 비휘발성 기록 매체를 포함할 수 있다. 기록 매체는 마이크로 프로세서(micro processor)에 의해 읽힐 수 있는 데이터를 저장한 것으로, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등을 포함할 수 있다.
저장부(150)에는 주행구역에 대한 맵(Map)이 저장될 수 있다. 또한, 저장부(150)에는 주행 중 감지되는 장애물에 대한 정보를 저장하고, 충전대 위치, 또는 충전대 탐색을 위해 설정되는 데이터가 저장된다.
이때, 저장부에 저장되는 맵은, 이동 로봇(100)이 스스로 학습을 하여 생성할 수 있고, 경우에 따라 이동 로봇(100)과 유선 또는 무선 통신을 통해 정보를 교환할 수 있는 단말에 의해 입력된 것일 수도 있다.
맵에는 주행구역 내의 방들의 위치가 영역별로 표시될 수 있다. 또한, 이동 로봇(100)의 현재 위치가 맵 상에 표시될 수 있으며, 맵 상에서의 이동 로봇(100)의 현재의 위치는 주행 과정에서 갱신될 수 있다. 단말은 저장부(150)에 저장된 맵과 동일한 맵을 저장한다.
제어부(140)는 주행 중, 청소부(170)를 제어하여, 이동 로봇 주변의 먼지 또는 이물질을 흡수하여 청소를 수행한다. 청소부(170)는 브러쉬를 동작시켜 이동 로봇 주변의 먼지 또는 이물질을 흡입하기 쉬운 상태로 만들고, 흡입장치를 동작시켜 먼지 또는 이물질을 흡입한다.
제어부(140)는 복수의 영역 중 적어도 하나의 영역에 대한 청소를 지시할 수 있고, 주행부에 의해 지정된 영역으로 이동하여 청소를 수행하도록 한다. 이때 주행부에 의해 이동하는 중에도 청소부를 제어하여 청소를 수행할 수 있다.
제어부(140)는 배터리의 충전용량을 체크하여 충전대(200)로의 복귀 시기를 결정한다. 제어부(140)는 충전용량이 일정값에 도달하면, 수행중이던 동작을 중지하고, 충전대 복귀를 위해 충전대 탐색을 시작한다. 제어부(140)는 배터리의 충전용량에 대한 알림 및 충전대 복귀에 대한 알림을 출력할 수 있다.
제어부(140)는, 저장된 맵을 바탕으로, 어느 하나의 영역을 지정하여 충전대 탐색을 시작한다. 이때, 제어부(140)는 저장된 맵을 바탕으로, 장애물의 위치 및 그에 따른 영역의 형태를 바탕으로 충전대 탐색을 위한 탐색위치를 설정한다. 제어부(140)는 영역의 중심을 탐색위치로 설정하거나, 또는 복수의 지점이 탐색위치로 설정될 수 있고, 탐색위치를 이동경로로 설정하여 이동하면서 충전대를 탐색할 수 있다.
제어부(140)는 장애물에 의해 복수의 소구역으로 구분되는 영역에 대하여 각각 상이하게 탐색위치를 설정한다. 또한, 제어부(140)는 맵의 존재 여부, 또는 맵을 바탕으로 현재위치 확인이 가능하지 여부에 따라 충전대 탐색모드를 상이하게 설정할 수 있다.
제어부(140)는 탐색위치 설정 후, 탐색위치를 연결하는 이동경로를 설정하여 주행부(160)를 제어한다.
제어부(140)는 지정된 영역으로 이동하여 충전대 탐색을 시작하도록 주행부(160)를 제어한다. 제어부(140)는 현재 이동 로봇이 위치한 영역 또는 근접한 영역부터 충전대 탐색을 수행하도록 설정할 수 있다. 하나의 영역에서 충전대를 발견하지 못한 경우 인접한 다른 영역으로 이동하여 충전대 탐색을 이어서 수행하도록 주행부를 제어한다.
또한, 제어부(140)는 별도로 지정된 영역으로 이동하도록 하여 충전대 탐색을 수행하도록 설정할 수 있다. 경우에 따라 맵에 충전대 위치가 저장된 경우 해당 영역을 우선하여 충전대를 탐색하도록 한다.
제어부(140)는 충전대(200)로부터 송출되는 복귀 신호를 수신하면, 충전대의 위치를 판단하고, 충전대로 접근하여 도킹하도록 주행부(160)를 제어한다.
제어부(140)는 충전대(200)의 복귀신호를 통해 충전대가 감지되면, 이동 로봇(100)의 현재 위치를 바탕으로 맵 상에 충전대 위치를 저장할 수 있다.
제어부(140)는 주행제어모듈(141), 구역구분모듈(142), 학습모듈(143) 및 인식모듈(144)을 포함한다.
주행제어모듈(141)은 이동 로봇(100)의 주행을 제어하는 것으로, 주행 설정에 따라 주행부(160)의 구동을 제어한다. 또한, 주행제어모듈(141)은 주행부(160)의 동작을 바탕으로 이동 로봇(100)의 이동 경로를 파악할 수 있다. 예를 들어, 주행제어모듈(141)은 구동 바퀴(136)의 회전속도를 바탕으로 이동 로봇(100)의 현재 또는 과거의 이동속도, 주행한 거리 등을 파악할 수 있으며, 각 구동 바퀴(136(L), 136(R))의 회전 방향에 따라 현재 또는 과거의 방향 전환 과정 또한 파악할 수 있다. 이렇게 파악된 이동 로봇(100)의 주행 정보를 바탕으로, 맵 상에서 이동 로봇(100)의 위치가 갱신될 수 있다.
구역구분모듈(142)은 소정 기준에 따라 주행구역을 복수의 구역으로 구분할 수 있다. 주행구역은 이동 로봇(100)이 주행 경험이 있는 모든 평면상의 구역 및 현재 주행하고 있는 평면상의 구역을 모두 합한 범위로 정의될 수 있다.
구역구분모듈(142)은 주행구역을 복수의 소구역으로 구분하며, 소구역은 주행구역 내의 각 실(방)을 근거로 구분될 수 있다. 또한, 구역구분모듈(142)은 주행구역을 주행능력상 서로 분리된 복수의 대구역으로 구분할 수 있다. 예를 들면, 서로 동선상 완전히 분리된 두개의 실내공간은 각각 두개의 대구역으로 구분될 수 있다. 다른 예로, 같은 실내 공간이라 하더라도, 상기 대구역은 주행구역 내의 각 층을 근거로 구분될 수 있다.
학습모듈(143)은 주행구역의 맵을 생성할 수 있다. 또한, 학습모듈(143)은 각 위치에서 영상획득부(120)를 통해 획득한 영상을 처리하여 맵과 연계시켜 전역위치를 인식한다.
인식모듈(144)은 현재 위치를 추정하여 인식한다. 인식모듈(144)은 영상획득부(120)의 영상 정보를 이용하여 학습모듈(143)과 연계하여 위치를 파악함으로써, 이동 로봇(100)의 위치가 갑자기 변경되는 경우에도 현재 위치를 추정하여 인식할 수 있다.
이동 로봇(100)은 구역구분모듈(142)을 통해 연속적인 주행 중에 위치 인식이 가능하고 또한, 구역구분모듈(142) 없이 학습모듈(143) 및 인식모듈(144)을 통해, 맵을 학습하고 현재 위치를 추정할 수 있다.
이동 로봇(100)이 주행하는 중에, 영상획득부(120)는 이동 로봇(100) 주변의 영상들을 획득한다. 이하, 영상획득부(120)에 의해 획득된 영상을 '획득영상'이라고 정의한다. 획득영상에는 천장에 위치하는 조명들, 경계(edge), 코너(corner), 얼룩(blob), 굴곡(ridge) 등의 여러가지 특징(feature)들이 포함된다.
학습모듈(143)은 획득영상들 각각으로부터 특징을 검출한다. 컴퓨터 비전(Computer Vision) 기술 분야에서 영상으로부터 특징을 검출하는 다양한 방법(Feature Detection)이 잘 알려져 있다. 이들 특징의 검출에 적합한 여러 특징검출기(feature detector)들이 알려져 있다. 예를들어, Canny, Sobel, Harris&Stephens/Plessey, SUSAN, Shi&Tomasi, Level curve curvature, FAST, Laplacian of Gaussian, Difference of Gaussians, Determinant of Hessian, MSER, PCBR, Grey-level blobs 검출기 등이 있다.
학습모듈(143)은 각 특징점을 근거로 디스크립터를 산출한다. 학습모듈(143)은 특징 검출을 위해 SIFT(Scale Invariant Feature Transform) 기법을 이용하여 특징점을 디스크립터(descriptor)로 변환할 수 있다. 디스크립터는 n차원 벡터(vector)로 표기될 수 있다.
SIFT는 촬영 대상의 스케일(scale), 회전, 밝기변화에 대해서 불변하는 특징을 검출할 수 있어, 같은 영역을 이동 로봇(100)의 자세를 달리하며 촬영하더라도 불변하는(즉, 회전 불변한(Rotation-invariant)) 특징을 검출할 수 있다. 물론, 이에 한정되지 않고 다른 다양한 기법(예를들어, HOG: Histogram of Oriented Gradient, Haar feature, Fems, LBP:Local Binary Pattern, MCT:Modified Census Transform)들이 적용될 수도 있다.
학습모듈(143)은 각 위치의 획득영상을 통해 얻은 디스크립터 정보를 바탕으로, 획득영상마다 적어도 하나의 디스크립터를 소정 하위 분류규칙에 따라 복수의 군으로 분류하고, 소정 하위 대표규칙에 따라 같은 군에 포함된 디스크립터들을 각각 하위 대표 디스크립터로 변환할 수 있다.
다른 예로, 실(room)과 같이 소정 구역내의 획득영상 들로부터 모인 모든 디스크립터를 소정 하위 분류규칙에 따라 복수의 군으로 분류하여 상기 소정 하위 대표규칙에 따라 같은 군에 포함된 디스크립터들을 각각 하위 대표 디스크립터로 변환할 수도 있다.
학습모듈(143)은 이 같은 과정을 거쳐, 각 위치의 특징분포를 구할 수 있다. 각 위치 특징분포는 히스토그램 또는 n차원 벡터로 표현될 수 있다. 또 다른 예로, 학습모듈(143)은 소정 하위 분류규칙 및 소정 하위 대표규칙을 거치지 않고, 각 특징점으로부터 산출된 디스크립터를 바탕으로 미지의 현재위치를 추정할 수 있다.
또한, 위치 도약 등의 이유로 이동 로봇(100)의 현재 위치가 미지의 상태가 된 경우에, 기 저장된 디스크립터 또는 하위 대표 디스크립터 등의 데이터를 근거로 현재 위치를 추정할 수 있다.
이동 로봇(100)은, 미지의 현재 위치에서 영상획득부(120)를 통해 획득영상을 획득한다. 영상을 통해 천장에 위치하는 조명들, 경계(edge), 코너(corner), 얼룩(blob), 굴곡(ridge) 등의 여러가지 특징(feature)들이 확인된다.
인식모듈(144)은 획득영상으로부터 특징들을 검출한다. 컴퓨터 비전 기술 분야에서 영상으로부터 특징을 검출하는 다양한 방법 및 이들 특징의 검출에 적합한 여러 특징검출기들에 대한 설명은 상기한 바와 같다.
인식모듈(144)은 각 인식 특징점을 근거로 인식 디스크립터 산출단계(S31)를 거쳐 인식 디스크립터를 산출한다. 이때 인식 특징점 및 인식 디스크립터는 인식모듈(144)에서 수행하는 과정을 설명하기 위한 것으로 학습모듈(143)에서 수행하는 과정을 설명하는 용어와 구분하기 위한 것이다. 다만, 이동 로봇(100)의 외부 세계의 특징이 각각 다른 용어로 정의되는 것에 불과하다.
인식모듈(144)은 본 특징 검출을 위해 SIFT(Scale Invariant Feature Transform) 기법을 이용하여 인식 특징점을 인식 디스크립터로 변환할 수 있다. 인식 디스크립터는 n차원 벡터(vector)로 표기될 수 있다.
SIFT는 앞서 설명한 바와 같이, 획득영상에서 코너점 등 식별이 용이한 특징점을 선택한 후, 각 특징점 주변의 일정한 구역에 속한 픽셀들의 밝기 구배(gradient)의 분포 특성(밝기 변화의 방향 및 변화의 급격한 정도)에 대해, 각 방향에 대한 변화의 급격한 정도를 각 차원에 대한 수치로 하는 n차원 벡터(vector)를 구하는 영상인식기법이다.
인식모듈(144)은 미지의 현재 위치의 획득영상을 통해 얻은 적어도 하나의 인식 디스크립터 정보를 근거로, 소정 하위 변환규칙에 따라 비교대상이 되는 위치 정보(예를 들면, 각 위치의 특징분포)와 비교 가능한 정보(하위 인식 특징분포)로 변환한다.
소정 하위 비교규칙에 따라, 각각의 위치 특징분포를 각각의 인식 특징분포와 비교하여 각각의 유사도를 산출할 수 있다. 각각의 위치에 해당하는 상기 위치 별로 유사도(확률)를 산출하고, 그 중 가장 큰 확률이 산출되는 위치를 현재위치로 결정할 수 있다.
이와 같이, 제어부(140)는 주행구역을 구분하고 복수의 영역으로 구성된 맵을 생성하거나, 기 저장된 맵을 바탕으로 본체(110)의 현재 위치를 인식할 수 있다.
제어부(140)는 맵이 생성되면, 생성된 맵을 통신부(190)를 통해 외부 단말기로 전송한다. 또한, 제어부(140)는 앞서 설명한 바와 같이, 외부 단말기로부터 맵이 수신되면, 저장부에 저장할 수 있다.
또한 제어부(140)는 주행 중 맵이 갱신되는 경우 갱신된 정보를 외부 단말기로 전송하여 외부 단말기와 이동 로봇(100)에 저장되는 맵이 동일하도록 한다. 외부 단말기와 이동 로봇(100)에 저장된 맵이 동일하게 유지됨에 따라 이동 단말기로부터의 청소명령에 대하여, 이동 로봇(100)이 지정된 영역을 청소할 수 있으며, 또한, 외부 단말기에 이동 로봇의 현재 위치가 표시될 수 있도록 하기 위함이다.
이때, 맵은 청소 영역을 복수의 영역으로 구분되고, 복수의 영역을 연결하는 연결통로가 포함하며, 영역 내의 장애물에 대한 정보를 포함한다. 청소 영역에 대한 구분은, 앞서 설명한 바와 같이 구역구분모듈(142)에 의해 소영역 및 대영역으로 구분된다.
제어부(140)는 청소명령이 입력되면, 맵 상의 위치와 이동 로봇의 현재위치가 일치하는지 여부를 판단한다. 청소명령은 리모컨, 조작부 또는 외부 단말기로부터 입력될 수 있다.
제어부(140)는 현재 위치가 맵 상의 위치와 일치하지 않는 경우, 또는 현재 위치를 확인할 수 없는 경우, 현재 위치를 인식하여 이동 로봇(100)의 현재 위치를 복구한 한 후, 현재 위치를 바탕으로 지정영역으로 이동하도록 주행부를 제어한다.
현재 위치가 맵 상의 위치와 일치하지 않는 경우 또는 현재 위치를 확인할 수 없는 경우, 인식모듈(144)은 영상획득부(120)로부터 입력되는 획득영상을 분석하여 맵을 바탕으로 현재 위치를 추정할 수 있다. 또한, 구역구분모듈(142) 또는 학습모듈(143) 또한, 앞서 설명한 바와 같이 현재 위치를 인식할 수 있다.
위치를 인식하여 이동 로봇(100)의 현재 위치를 복구한 후, 주행제어모듈(141)은 현재 위치로부터 지정영역으로 이동 경로를 산출하고 주행부(160)를 제어하여 지정영역으로 이동한다.
외부 단말기로부터 복수의 영역 중, 적어도 하나의 영역이 선택되는 경우, 주행제어모듈(141)은 선택된 영역을 지정영역으로 설정하고, 이동 경로를 산출한다. 주행제어모듈(141)은 지정영역 이동 후, 청소를 수행한다.
한편, 복수의 영역이 지정영역으로 선택된 경우, 주행제어모듈(141)은 복수의 영역 중 우선영역이 설정되었는지 여부 또는 선택된 복수의 지정영역에 대한 청소순서가 설정되었는지 여부를 판단한 후, 지정영역으로 이동하여 청소를 수행한다.
주행제어모듈(141)은 복수의 지정영역 중 어느 하나가 우선영역으로 설정된 경우, 복수의 지정영역 중 우선영역으로 이동하여, 우선영역을 제일 먼저 청소한 후 나머지 지정영역으로 이동하여 청소하도록 한다. 또한, 지정영역에 대한 청소순서가 설정된 경우 주행제어모듈(141)은 지정된 청소순서에 따라 지정영역을 순차적으로 이동하면서 청소를 수행한다.
또한, 주행제어모듈(141)은 맵 상의 복수의 영역에 대한 구분에 관계없이 새롭게 임의의 영역이 설정되는 경우, 설정된 지정영억으로 이동하여 청소를 수행하도록 한다.
제어부(140)는 설정된 지정영역에 대한 청소가 완료되면, 청소기록을 저장부(150)에 저장한다.
또한, 제어부(140)는 통신부(190)를 통해 이동 로봇(100)의 동작상태 또는 청소상태를 소정 주기로 외부 단말기(50)로 전송한다. 그에 따라 단말은 수신되는 데이터를 바탕으로, 실행중인 어플리케이션의 화면상에 맵과 함게 이동 로봇의 위치를 표시하고, 또한 청소상태에 대한 정보를 출력한다.
또한, 제어부(140)는 충전대(200)의 복귀신호를 통해 충전대가 감지되면, 학습부 및 인식부를 통해 이동 로봇의 현재 위치를 인식하고, 이동 로봇의 현재위치를 바탕으로 충전대(200)의 위치를 산출하여 저장한다. 또한, 제어부(140)는 충전대의 위치가 맵 상에 표시되도록 설정할 수 있다.
도 6 은 본 발명의 이동 로봇의 영역 구분 및 그에 따른 맵 생성의 예가 도시된 도이다.
도 6의 (a)에 도시된 바와 같이, 이동 로봇(100)은 저장된 맵이 존재하지 않는 경우, 월팔로윙을 통해 주행구역(X1)을 주행하면서 맵을 생성할 수 있다.
구역구분모듈(142)은 도 6의(b)에 도시된 바와 같이, 주행구역(X1)을 복수의 영역(A1' 내지 A9')으로 구분하여 도 6의 (c)와 같이 맵을 생성한다. 생성된 맵은 저장부(150)에 저장되고, 통신부(190)를 통해 외부 단말기(50)로 전송된다. 구역구분모듈(142)은 전술한 바와 같이 주행구역(X1)에 대하여 소영역과 대영역을 구분하고 그에 따른 맵을 생성한다.
단말은 어플리케이션을 실행하고, 수신된 맵을 화면에 표시한다. 이때 구분된 복수의 영역(A1 내지 A9)을 각각 상이하게 표시한다. 맵은 복수의 영역(A1 내지 A9)이 각각 상이한 색상으로 표시되거나 또는 상이한 이름이 표시된다.
이동 로봇과 단말은 동일한 맵을 저장하는 것을 기본으로 하나, 단말에는 사용자가 영역을 쉽게 인식할 수 있도록 도 6의 (c)와 같이 영역을 단순화한 맵이 표시되도록 하고, 이동 로봇은, 장애물에 대한 정보가 포함된 도 6의 (b)와 같은 맵을 바탕으로 주행 및 청소를 수행한다. 도 6의 (c)에도 장애물이 표시될 수 있다.
이동 로봇(100)은 청소명령이 입력되면, 저장된 맵을 바탕으로, 현재 위치를 판단하고, 현재 위치와 맵 상의 위치가 일치하는 경우에는 지정된 청소를 수행하고, 현재 위치가 일치하지 않는 경우, 현재 위치를 인식하여 복구한 후 청소를 수행한다. 따라서 이동 로봇(100)은 복수의 영역(A1 내지 A9) 중 어느 위치에 있더라도 현재 위치를 판단 한 후 지정영역으로 이동하여 청소를 수행할 수 있다.
리모컨 또는 단말은 도시된 바와 같이, 복수의 영역(A1 내지 A9) 중 적어도 하나의 영역을 선택하여 이동 로봇(100)으로 청소명령을 입력할 수 있다. 또한, 이동 로봇(100)은 리모컨 또는 단말을 통해 어느 하나의 영역의 일부를 청소영역으로 설정하거나, 복수의 영역에 대하여 영역 구분없이 터치 또는 드래그를 통해 청소영역을 설정할 수 있다.
복수의 영역에 대하여 청소명령이 입력되는 경우, 어느 하나의 영역을 우선영역으로 설정하거나, 우선영역을 시작한 후 근거리인 영역으로 이동하여 청소 할 수 있으며, 또는 청소순서를 설정할 수 있다. 이동 로봇(100)은 복수의 지정영역에 대하여 청소순서가 설정된 경우 지정된 순서에 따라 이동하며 청소를 수행한다. 이동 로봇(100)은 복수의 청소영역에 대하여, 별도의 순서가 지정되지 않은 경우에는 현재 위치로부터 가까운 영역으로 이동하여 청소를 수행한다.
도 7 은 본 발명의 이동 로봇의 영역 내에서 충전대를 탐색하는 실시예가 도시된 도이다.
도 7에 도시된 바와 같이, 이동 로봇(100)은 청소 또는 주행 중, 충전이 필요한 경우, 충전대 탐색을 시작한다.
이동 로봇(100)은 영역의 형태에 따라 탐색모드를 설정하여, 탐색모드 별 탐색 위치를 설정하여 충전대 탐색을 수행한다. 이동 로봇(100)은 영역의 중앙 지점을 이용하거나, 복수의 탐색위치를 설정할 수 있고, 또한, 영역의 외곽선 형상의 주행경로를 설정하여 충전대를 탐색할 수 있으며, 또한, 영역의 형상에 따라 추출되는 라인을 주행하며 충전대를 탐색할 수 있다.
도 7의 (a)에 도시된 바와 같이, 이동 로봇(100)은 영역의 중심으로 이동하여 영역의 중심에서 360도 회전하며 충전대(200)의 복귀신호를 감지한다. 이동 로봇(100)은 영역의 중심을 탐색위치로 설정하여 충전대를 감지한다.
이때 이동 로봇(100)은 개방된 공간의 경우 영역의 중심에서, 회전동작을 수행하여 충전대를 감지한다. 영역 내에 장애물이 존재하더라도, 장애물에 의해 사각지대가 발생하지 않는 경우에는 영역의 중심에서 회전하여 충전대를 감지한다. 이때, 개방된 공간이란, 장애물에 의해 방해받지 않는 소정 크기 이상의 영역으로, 장애물에 의해 충전대의 복귀신호에 대한 사각지대가 발생하지 않는 공간이다. 예를 들어 파티션 또는 가구에 의해 영역이 구분되는 경우 개방된 공간으로 판단하지 않는다.
단, 영역이 소정 크기 이상이면서, 너무 넓은 영역에 대하여 즉각적인 탐색이 어려우므로 일정크기 미만인 영역으로 한정할 수 있다. 판단의 기준이 되는 영역의 크기는 충전대의 복귀 신호 도달거리, 또는 이동로봇의 감지거리에 따라 변경될 수 있다. 또한 도 7의 (b)에 도시된 바와 같이 이동 로봇(100)은 영역의 외곽선으로 부터 일정 거리 떨어서 외곽선의 형상에 대응하여 이동하면서 충전대의 복귀신호를 감지할 수 있다. 이동 로봇(100)은 영역의 외곽선을 따라 이동하는 경로를 탐색위치로 설정하여 충전대를 감지한다.
이동 로봇(100)이 영역의 외곽선을 따라 이동하는 것은, 월팔로윙과 구분되는 것으로, 벽면에 근접하여 벽을 따라 이동하는 것은 아니고, 영역의 외곽선 형태에 따라, 벽에 근접하지 않고 벽으로부터 일정 거리 떨어져서 이동하며 충전대를 탐색한다. 이동 로봇은 충전대의 복귀신호를 감지할 수 있는 정도의 거리를 두고 이동하게 된다. 영역의 외곽선을 따라 이동하되, 벽면에 작은 장애물로 인한 외곽선의 변화는 무시하고 이동할 수 있다.
도 7의 (c)에 도시된 바와 같이, 이동 로봇(100)은 영역 내에 복수의 탐색위치를 설정하여 충전대(200)를 탐색할 수 있다.
이동 로봇(100)은, 단말 또는 리모컨으로부터 입력되는 위치를 탐색위치로 설정할 수 있고, 또한, 공간의 형태를 바탕으로 탐색위치를 설정할 수 있다. 또한, 이동 로봇(100)은 감지범위에 따라 복수의 탐색위치를 설정할 수 있다.
예를 들어, 탐색할 영역의 크기가 큰 경우, 또는 영역의 중심에서 복귀 신호를 감지하는 경우, 감지 불가능한 사각시대가 존재하는 경우, 영역내 장애물에 위해 영역이 복수의 소영역으로 구분되는 경우에 대하여, 복수의 위치를 탐색위치로 설정한다.
이동 로봇(100)은 탐색위치로 이동하여, 탐색위치에서 360도 회전동작 하면서 충전대의 복귀신호를 감지한다. 복수의 탐색위치가 설정되는 경우, 하나의 탐색위치에서 충전대를 감지 한 후, 다음 탐색위치로 이동하여 충전대를 감지한다.
예를 들어 제 1 지점(P1)과 제 2 지점(P2)을 탐색위치로 설정하여 충전대의 복귀신호를 감지함으로써, 영역내에 충전대가 위치하는지 여부 및 그 위치를 판단한다.
도 7의 (d)에 도시된 바와 같이, 이동 로봇(100)은, 영역의 형태를 분석하여, 라인화 하고, 생성된 라인으로부터 탐색위치로 설정할 수 있다.
이동 로봇(100)은, 영역의 형태에 따라 생성되는 라인을 이동경로로 설정하여, 지정된 이동경로로 이동하면서 충전대를 탐색할 수 있다.
또한, 이동 로봇(100)은 영역의 형태에 따라 생성되는 라인 상에 복수의 지점을 추출하여 탐색위치를 설정할 수 있다. 이동 로봇(100)은 라인상에 형성되는 모서리, 복수의 분기점, 라인 상의 노드 중 일부 또는 전체를 탐색위치로 설정할 수 있다.
예를 들어 사각형 형태의 영역에 대하여, 이동 로봇(100)은 사각형의 라인을 생성하고 라인 상의 모서리 제 3 내지 제 6 지점(P3 내지 P6)을 각각 탐색위치로 설정한다.
또한, 이동 로봇(100)은 라인을 통해 설정된 탐색위치에 대하여, 라인을 이동경로로 설정하거나, 또는 각 탐색위치를 연결하는 최단거리를 이동경로로 설정하여 충전대를 탐색할 수 있다. 이동 로봇(100)은 탐색위치에서 회전동작 후, 다음 탐색위치로 이동하며 충전대(200)를 탐색한다.
도 8 은 도 7의 실시예에 따른 영역별 충전대 탐색모드를 설명하는데 참조되는 도이다.
도 8에 도시된 바와 같이, 이동 로봇(100)은 복수의 영역에 대하여, 앞서 설명한 탐색위치 설정방법을 바탕으로 충전대를 탐색한다.
도 8의 (a)에 도시된 바와 같이, 이동 로봇(100)은 복수의 영역에 대하여, 각 영역의 중앙을 탐색위치로 설정하고, 각 영역의 중앙으로 이동하여 1회전 하며 충전대를 탐색하고, 충전대가 감지되지 않는 경우, 다음 영역으로 이동하여 충전대를 감지한다.
이동 로봇(100)은 영역의 중앙으로 이동하므로, 이동 로봇(100)은 복수의 영역 중, 복도 또는 통로에 해당하는 영역에 대해 별도의 소영역으로 판단하여 충전대 탐색을 수행할 수 있다.
단, 이동 로봇(100)은 개방된 공간에 대하여, 도시된 바와 같이 영역의 중앙에서 충전대를 탐색한다. 영역 내에 장애물로 인하여, 이동 로봇(100)의 복귀 신호 감지범위를 벗어나는 사각지대가 형성되는 경우 또는 이동 로봇의 감지범위보다 영역의 크기가 큰 경우에는, 앞서 설명한 도 7에서의 다른 충전대 탐색방법을 사용하거나, 병행할 수 있다.
도 8의 (b)에 도시된 바와 같이, 이동 로봇(100)은 각 영역의 외곽선을 바탕으로, 영역 내부에 이동경로를 설정하여 주행하면서 충전대를 탐색한다. 하나의 영역에 대한 탐색이 완료되면, 근접한 다른 영역으로 이동하여, 해당 영역의 외곽선을 바탕으로 영역 내부의 이동경로를 설정하여 주행하면서 충전대를 탐색한다. 이동 로봇(100)은 벽에 근접하지 않고, 감지범위를 바탕으로 벽으로부터 일정 거리 떨어져 주행하게 된다.
이 경우, 이동 로봇(100)은 앞서 설명한 도 8의 (a)와 같이 영역의 중앙에서 충전대를 탐색되는 것이 비교하여 이동거리를 증가할 수 있으나, 각 영역에 대하여 구석구석까지 충전대를 탐색할 수 있다.
도 8의 (c)에 도시된 바와 같이, 이동 로봇(100)은 각 영역 내에 복수의 탐색위치를 설정하여 영역 별 탐색위치를 이동하며 충전대를 탐색한다.
이때 탐색위치는, 리모컨 또는 단말을 통해 입력되는 위치일 수 있고, 또한, 영역의 형태를 바탕으로 설정될 수 있다. 예를 들어 앞서 설명한 도 7의 (d)에서 영역의 형태를 라인화 하는 경우, 라인상의 복수의 점, 예를 들어 모서리, 분기점, 라인상의 노드를 추출하여 이를 탐색위치로 설정할 수 있다.
또한, 이동 로봇(100)은 전술한 도 8의 (a)에서 영역의 중앙에서 탐지 불가능한 사각지대가 발생하는 경우, 감지범위를 고려하여 복수의 탐색위치를 설정함으로써 복수의 영역에 대한 충전대 탐색을 수행한다.
도 8의 (d)에 도시된 바와 같이, 이동 로봇(100)은 영역의 형태를 라인화 하여, 라인을 탐색위치 및 이동경로로 설정하여 이동경로를 주행하는 중에 충전대를 탐색한다.
이동 로봇(100)은 영역의 형태를 바탕으로 라인을 생성하므로, 앞서 설명한 감지범위에 따른 사각지대에 대한 문제를 해소할 수 있고, 또한 외곽선의 형태로 이동하는 것이 비해 주행거리를 감소시킬 수 있다.
이동 로봇(100)은 이와 같이 복수의 방법으로 충전대를 탐색하며, 각 방법을 조합하여 영역의 형태를 바탕으로 각 영역에 대하여 상이한 충전대 탐색을 수행할 수 있다.
복수의 영역에 대하여 충전대를 탐색하는 경우 각 영역의 크기 또는 형태를 바탕으로 일정 크기 이하의 개방된 공간에 대해서는 중앙에서의 충전대 탐색을 수행하고, 일정 크기를 초과하는 영역 또는 영역 내에 장애물이 있는 경우에 대하여 복수의 탐색지점을 설정하거나, 공간의 형태에 따라 라인화 하여 탐색위치를 설정하여 충전대를 탐색할 수 있다.
도 9 는 본 발명의 이동 로봇의 영역 내, 탐색위치 설정방법을 설명하는데 참조되는 도이다.
도 9에 도시된 바와 같이, 탐색하고자 하는 영역의 형태에 대응하여 탐색위치를 설정한다. 도 9의 (a)와 같이, 제 1 영역(L01)에 대하여 충전대를 탐색하는 경우, 이동 로봇(100)은 제 1 영역에 대한 기 저장된 맵(L11)을 바탕으로 영역의 형태를 분석한다.
이동 로봇(100)은 맵을 바탕으로 제 1 영역(L01)의 형태를 분석하여, 세선화 작업을 수행함으로써, 영역의 형태에 대한 라인을 추출한다.
세선화 작업이란, 굵기가 있는 도형으로부터 선의 정보를 추출하는 것으로, 도형의 굵기를 가늘게 조작하여 일정 굵기 이하로 처리함으로써, 도형의 형태에 따른 선 정보를 추출하는 것이다.
이동 로봇(100)은, 영역에 대한 맵(L11)을 바탕으로, 도 9의 (b)와 같이 그 굵기를 가늘게 변경하는 것을 반복한다. 이동 로봇(100)은 영역에 대한 맵의 굵기가 감소하고(L12), 굵기가 일정값 이하로 감소하여 도형 형태에서 선 형태로 변화하게 되면, 도 9의 (c)와 같이 제 1 라인(L13)을 추출한다.
이동 로봇(100)은 추출된 라인(L13)으로부터 탐색위치를 설정한다.
이동 로봇(100)은 전술한 도 7 및 도 8에서와 같이, 제 1 라인(L13)의 모서리, 분기점, 라인 중간의 노드를 포함하는 복수의 노드(P11 내지 P15)를 추출하고, 복수의 노드 또는 복수의 노드 중 일부를 제 1 영역에 대한 탐색위치로 설정할 수 있다.
이동 로봇(100)은 지정된 탐색위치 사이를 라인에 관계없이 이동하여, 탐색위치에서 회전을 통해 충전대를 탐색한다. 또한, 이동 로봇(100)은 제 1 라인(L13)을 따라 이동라는 제 1경로(PL01)를 이동경로 설정하여 라인을 따라 이동하면서 탐색위치에서 회전을 통해 충전대를 탐색할 수 있다.
또한, 이동 로봇(10)은 추출된 라인(L13)을 탐색위치로 지정하고, 이동경로로 설정할 수 있다. 즉 이동 로봇(100)은 라인을 따라 이동하면서 충전대를 탐색할 수 있다.
이동 로봇(100)의 탐색위치의 설정 및 라인을 이동경로로 설정하는지 여부는, 입력되는 설정에 따라 변경될 수 있고, 또한, 앞서 설명한 바와 같이 충전대를 탐색하는 영역의 형태에 따라 변경될 수 있으며, 복수의 방법을 조합하여 복수의 영역에 대하여 각각 상이한 방법을 통해 충전대를 탐색할 수 있다.
이동 로봇(100)은 충전대가 감지되면, 충전대 위치를 맵과 함께 저장한다. 또한, 이동 로봇(100)은 충전대의 위치가 변경될 수 있으므로, 추출된 라인(L13)과 탐색위치에 대한 정보를 맵과 함께 저장한다.
도 10 은 본 발명의 이동 로봇의, 탐색위치에 따른 경로 설정방법을 설명하는데 참조되는 도이다.
도 10의 (a)에 도시된 바와 같이, 이동 로봇(100)은 제 1 영역(L01)에 대하여 제 1 라인(L13)과 복수의 노드(P11 내지 P15)를 추출한 후, 복수의 노드 중 일부를 탐색위치로 설정할 수 있다. 이동 로봇(100)은 제 1 라인(L13)을 따라 이동하는 제 1 경로(PL01)를 이동경로 설정하여 이동하면서 충전대를 탐색할 수 있다.
도 10의 (b)에 도시된 바와 같이, 이동 로봇(100)은 영역의 크기와, 충전대 탐색을 위한 감지범위(S)를 바탕으로, 복수의 노드(P11 내지 P15) 중 일부를 탐색위치로 설정한다.
이동 로봇(100)은 제 1 영역(L01)에 대하여, 감지범위(S)의 크기를 바탕으로, 제 1 영역(L01)을 모두 탐색할 수 있도록 탐색위치를 설정한다.
이동 로봇(100)은 복수의 노드(P11 내지 P15) 중 모서리인 제 2 지점과 제 3 지점 또는 영역 내의 끝노드 제 1 지점과 제 4 지점을 각각 탐색위치로 설정할 수 있다. 또한, 이동 로봇(100)은 영역의 크기에 따라 노드와 노드 사이에 새로운 노드를 설정하여 탐색위치를 설정할 수 있다.
예를 들어, 이동 로봇(100)은 제 2 지점(P12)을 제 1 탐색위치로 설정하고, 제 2 지점에서 감지범위에 포함되지 않는 영역을 탐색하기 위해 제 4 지점(P14)을 제 2 탐색위치로 설정할 수 있다.
이동 로봇(100)은 제 1 라인(L13)을 따라 이동하는 제 1 경로(PL01)를 이동경로로 설정할 수 있고, 또한, 도시된 바와 같이, 제 1 및 제 2 탐색위치를 연결하는 최단경로(PL02)를 이동경로로 설정할 수 있다. 이때, 이동 로봇(100)은 제 1 경로(PL01)를 기본으로 이동경로를 설정하되, 탐색위치에 따라 제 1 경로의 일부만을 주행할 수 있다.
도 11 은 도 9의 탐색위치 설정방법을 바탕으로 영역의 형태에 따른 실시예가 도시된 도이다.
도 11의 (a)에 도시된 바와 같이, 이동 로봇(100)은,제 1 영역(L01)에 대한 충전대 탐색을 수행하는 경우, 세선화 작업을 통해 제 1 라인(L13)을 추출하고, 복수의 노드(P11 내지 P15)를 추출한 후, 영역의 크기 또는 형태, 감지범위(S)에 따라, 복수의 노드(P11 내지 P15) 중 일부를 탐색위치로 설정한다.
이하, 제 1 영역 내에서의 이동은, 탐색위치를 연결하는 최단경로를 이동경로로 설정할 수도 있으나, 제 1경로(PL01)를 따라 이동하는 것을 예로하여 설명한다. 단, 이동 로봇은 탐색위치에 따라 제 1 경로 중 일부만을 이동경로로 설정하여 주행할 수 있고, 또한 최단경로를 이용한 이동 또한 가능함을 명시한다.
이동 로봇(100)은 지정된 이동경로를 이동하면서 충전대를 탐색하고, 충전대가 감지되면 즉시 충전대로 이동하여 도킹을 시도한다. 이동 로봇(100)은, 하나의 영역에서 이동경로를 따라 이동하여 충전대를 감지하지 못하는 경우, 다른 영역으로 이동하여 충전대를 탐색한다.
이하, 영역의 형태 및 크기에 따른 탐색위치 설정의 예를 설명하면 다음과 같다.
도 11의 (b)에 도시된 바와 같이, 이동 로봇(100)은, 영역의 형태와 감지범위(S)의 크기에 따라, 제 1 영역을 모두 탐색할 수 있는 제 2 지점(P12)과 제 3 지점(P13)을 탐색위치로 설정하여 제 1 영역에 대하 충전대 탐색을 수행할 수 있다.
이동 로봇(100)은 이동경로에 따라 이동하면서 제 2 지점(P12)과 제 3 지점(P13)에서 정지후 1회전 하며 충전대를 탐색한다.
이때, 제 1 경로(PL01)는 제 4 지점(P14)까지 연결되나, 이동 로봇(100)은 제 3 지점(P13)에서 제 4 지점까지 탐색할 수 있으므로, 제 4 지점까지는 이동하지 않도록 제 12 경로(PL12)를 이동경로로 설정하여 이동한다.
도 11의 (c)에 도시된 바와 같이, 이동 로봇(100)은, 영역의 형태와 감지범위(S)의 크기에 따라, 제 2 지점(P12)과 제 3 지점(P13) 사이의 거리가 감지범위보다 먼 제 2 영역(L02)에 대하여, 추가로 탐색위치를 설정할 수 있다.
이동 로봇(100)은, 제 2 지점과 제 3 지점에서의 충전대 탐색만으로는 모든 영역을 감지할 수 없으므로 중간지점인 제 5 지점(P15)을 제 2 지점(P12) 및 제 3 지점(P13)과 함께 탐색위치로 설정한다. 또한, 이동 로봇(100)은 제 2 지점부터 제 3 지점까지의 제 13 경로(PL13)를 이동경로로 설정한다.
이동 로봇(100)은, 제 2 지점(P12), 제 5 지점(P15) 및 제 3 지점(P13) 간을 이동하면서 각 지점에서 1회전하여 충전대를 탐색하고, 제 3 지점까지 탐색 한 후, 충전대가 감지되지 않는 경우 다른 영역으로 이동하여 충전대를 탐색한다.
도 11의 (d)와 같이, 제 1 지점(P11)과 제 2 지점(P12), 그리고 제 3 지점(P13)과 제 4 지점(P14) 간의 거리가 먼 제 3 영역(L03)에 대하여, 이동 로봇(100)은 감지범위(S)에 따라 4개의 지점을 탐색위치로 설정할 수 있다.
제 3 지점에서 제 4 지점을 감지할 수 없으므로 제 4지점까지의 제 14 경로(PL14)를 이동경로로 설정하여 충전대를 탐색한다.
이동 로봇(100)은 제 14경로(PL14)에 따라 제 1 지점(P11)부터 제 4지점(P14)까지 이동하면서, 제 1 지점(P11) 내지 제 4 지점(P14)에서 각각 회전하며 충전대를 탐색한다.
또한, 도 11의 (e)에 도시된 바와 같이, 이동 로봇의 감지범위(S)로 제 5 영역(L05)의 가로길이에 대한 감지가 가능하지만, 제 2 지점(P12)과 제 3 지점(P13)에서 각각 일부 영역에 대한 감지가 불가능한 경우, 제 1 지점(P11)과 제 2지점(P12) 사이의 제 6 지점(P16), 제 3 지점과 제 4 지점 사이의 제 7 지점(P17)을 각각 탐색위치로 설정할 수 있다.
이동 로봇(100)은 탐색위치를 연결하는 제 15 경로(PL15)를 이동경로로 설정하여 충전대를 탐색하고, 충전대가 감지되지 않는 경우 다음 영역으로 이동하여 충전대 감지를 수행한다.
도 12 는 도 10의 경로 설정방법을 바탕으로 영역의 형태에 따른 실시예가 도시된 도이다.
도 12의 (a)에 도시된 바와 같이, 영역 내에 복수의 장애물(O11, O12, O13)이 존재하는 경우, 개방된 영역이 아니므로, 이동 로봇(100)은 앞서 설명한 바와 같이 복수의 지점을 탐색위치로 설정하여 충전대를 탐색한다.
이동 로봇(100)은 세선화 작업을 통해 영역에 대한 라인을 추출하고, 복수의 노드 중 일부를 탐색위치로 설정하여 충전대를 탐색한다. 이동 로봇(100)은 감지범위(S)에 따라, 제 21지점(P21), 제 22지점(P22), 제 23지점(P23), 그리고 제 24지점(P24)을 각각 탐색위치로 설정한다.
이동 로봇(100)은 추출된 라인(PL21)을 바탕으로 탐색위치를 연결하는 제 22 경로(PL22)를 이동경로로 설정하여 충전대를 탐색한다. 이동 로봇(100)은 각 탐색위치에서 회전하면 충전대를 탐색하고, 충전대가 감지되지 않는 경우 다음 탐색위치로 이동하여 회전하며 충전대를 감지한다.
또한, 이동 로봇은, 도 12의 (b)에 도시된 바와 같이, 탐색위치를 연결하는 최단경로인 제 23 경로(PL23)를 이동경로로 설정하여 충전대를 탐색한다.
한편, 도 12의 (c)와 같이, 이동 로봇(100)은 영역의 크기 및 감지범위에 따라, 제 21지점과 제 22지점 사이에 제 26지점을 설정하고, 제 23지점과 제 24지점 사이에 제 27지점(P27)을 각각 탐색위치로 설정하고, 탐색위치를 연결하는 제 24 경로(PL24)를 이동경로로 설정하여 충전대를 탐색할 수 있다.
도 13 은 본 발명의 이동 로봇의, 복수의 영역 간 이동 및 충전대 탐색의 실시예가 도시된 도이다.
복수의 영역, 제 31 영역(A31), 제 32 영역(A32), 제 33영역(A33)에 대하여, 충전대를 탐색하는 경우, 이동 로봇(100)은 각 영역을 이동하며 탐색위치를 설정하고, 탐색위치를 연결하는 이동경로를 설정하여 충전대를 탐색한다.
도 13의 (a)에 도시된 바와 같이, 제 31 영역(A31), 제 32 영역(A32), 제 33영역(A33)이 장애물이 없는 개방된 영역인 경우, 각 영역의 중앙지점을 탐색위치로 설정하고, 영역의 중앙에서 회전하며 충전대를 탐색한다.
이동 로봇(100)은 제 32 영역(A32)에서 회전하며 충전대를 탐색한 후, 제 31 영역(A31)의 중앙으로 이동하여 회전하면서 충전대를 감지하고, 충전대가 감지되지 않은 경우 제 32영역을 거쳐 제 33 영역(A33)의 중앙으로 이동한 후 충전대를 탐색할 수 있다.
이동 로봇(100)은 충전대가 감지되면, 충전대로 이동하여 도킹한 후 충전을 시작한다. 또한, 이동 로봇(100)은 감지된 충전대에 대하여, 이동 로봇의 현재위치를 바탕으로 맵상에 충전대의 위치를 저장한다.
단, 제 32 영역과 제 33 영역을 연결하는 영역에 충전대가 위치하는 경우 이동 로봇은 충전대를 감지할 수 없게 된다. 그에 따라 이동 로봇은 제 32 영역과 제 33 영역을 연결하는 영역에 탐색위치를 추가 설정하여 충전대를 탐색할 수 있다.
또한, 이동 로봇(100)은 도 13의 (b)에 도시된 바와 같이, 각 영역에 대하여 복수의 지점을 탐색위치로 설정하여 충전대를 탐색할 수 있다.
제 31 영역(A31)에 장애물(O31 내지 O33)이 복수로 존재하고 개방된 상태가 아닌 경우 이동 로봇(100)은 제 31 영역(A31)에 대하여 제 33 내지 제 39 지점을 노드로 추출한 후 감지범위와 영역의 형태에 따라 탐색위치를 설정한다.
예를 들어, 이동 로봇(100)은 제 33 지점(P33), 제 35 지점(P35), 제 39지점(P39)을 탐색위치로 설정하고 탐색위치를 연결하는 이동경로를 라인을 따라 설정할 수 있다. 또한, 이동 로봇(100)은 제 32 영역(A32)에 대하여, 장애물(O34)이 존재하기는 하나, 개방된 영역이므로 중앙지점인 제 31 지점(P31)을 탐색위치로 설정하고, 제 31 지점에서 감지가 불가능한한 제 32 영역과 제 33 영역을 연결하는 제 42지점(P42)과, 제 43 지점(P43)을 탐색위치로 추가하여 제 43 지점(P43)까지의 이동경로를 설정한다. 제 33 영역(A33)의 경우, 영역내의 장애물(O36, O35)이 충전대 감지에 방해가 되지 않으므로 개방된 공간으로 판단하여 중앙지점인 제 46지점(P46)을 탐색위치로 설정한다. 경우에 따라 제 33 영역의 크기가 감지범위보다 큰 경우에는 탐색위치를 추가로 설정할 수 있다.
이동 로봇(100)은 이와 같이 영역의 형태에 따라, 중앙지점 또는 복수의 노드를 탐색위치로 설정하고, 세선화에 의해 추출된 라인으로부터 형성된 이동경로를 따라 이동하며 충전대를 감지한다.
한편, 이동 로봇(100)은, 앞서 설명한 바와 같이 탐색위치를 설정한 후, 도 13의 (c)에 도시된 바와 같이, 탐색위치를 연결하는 이동경로를, 최단경로로 설정할 수 있다.
그에 따라 이동 로봇(100)은, 추출된 라인에 관계없이, 탐색위치와 탐색위치를 최단경로로 연결하여 이동경로를 설정하여, 충전대를 탐색할 수 있다.
도 14 는 본 발명의 이동 로봇의 충전대 탐색방법이 도시된 순서도이다.
도 14에 도시된 바와 같이, 이동 로봇(100)은 배터리의 충전용량이 일정값 미만으로 감소하는 경우, 충전이 필요하다고 판단하여 충전대 탐색을 시작한다(S310).
제어부(140)는 저장부(150)에 저장된 맵으로부터 충전대 위치를 확인한다. 제어부(140)는 충전대 위치가 설정되어 있는 경우 충전대 위치로 이동하여 충전대 도킹을 시도한다.
맵 상에 충전대 위치가 설정되어 있지 않은 경우, 제어부(140)는 청소를 중지하고 충전대 탐색을 수행한다.
제어부(140)는 기 저장된 맵을 바탕으로, 현재 위치를 판단한다(S320). 제어부(140)의 학습모듈(143)은 각 위치에서 영상획득부(120)를 통해 획득한 영상을 처리하여 맵과 연계시켜 전역위치를 인식함으로써, 현재 위치를 판단한다.
제어부(140)는 현재 위치를 확인할 수 없는 경우, 벽 추종(월팔로윙)을 통해 주행하며(S390), 충전대를 감지한다(S400). 제어부(140)는 주행 중, 충전대 복귀신호를 감지하면, 충전대로 이동하여 도킹을 시도한다(S410, S420).
한편, 제어부(140)는 현재 위치를 확인할 수 있는 경우, 맵 상에 현재 위치를 매칭한 후, 탐색할 영역을 선택한다(S330). 탐색할 영역이 복수인 경우, 어느 하나의 영역을 선택하여 충전대 탐색을 시작한다. 예를 들어, 현재 이동 로봇의 위치한 영역부터 충전대 탐색을 시작하거나, 근접한 영역으로 이동하여 충전대 탐색을 시작할 수 있다. 경우에 따라 리모컨 또는 단말을 통해 어느 하나의 영역이 선택되면, 선택된 영역으로 이동하여 충전대 탐색을 수행할 수 있다.
제어부(140)는 선택된 영역에 대하여, 탐색위치를 설정한다(S340).
예를 들어, 제어부(140)는 기 저장된 맵을 바탕으로 영역의 형태를 판단하여 개방된 영역의 경우 영역의 중앙을 탐색위치로 설정하고, 영역 또는 감지범위의 크기에 따라 복수의 지점을 탐색위치로 설정할 수 있다. 또한, 제어부(140)는 세선화를 통해 영역의 형태에 따라 라인을 추출하여 복수의 노드를 설정하고, 복수의 노드 중 적어도 하나를 탐색위치로 설정할 수 있다.
제어부(140)는 탐색위치가 설정되면, 탐색위치를 연결하는 이동경로를 설정하고, 주행부를 제어하여 이동경로에 따라 탐색위치로 이동한다(S350).
이동 로봇(100)은 설정된 이동경로에 따라 탐색위치로 이동하여, 탐색위치에서 회전하며 충전대의 복귀신호를 감지한다(S360).
제어부(140)는 통신부를 통해 충전대의 복귀신호가 수신되면(S370), 충전대 위치를 판단하여 주행부를 제어하여 충전대로 이동한다. 충전대 이동 후, 충전대의 신호를 바탕으로 도킹하여 충전한다(S420).
한편, 탐색위치에서 충전대가 감지되지 않는 경우, 제어부(140)는 주행부를 제어하여 다음 탐색위치로 이동한다.
이때, 영역에 탐색위치가 복수로 설정되어, 다음 탐색위치가 존재하는 경우(S380), 다음 탐색위치로의 경로를 따라 이동하여 충전대 탐색을 수행한다(S350 내지S370).
이때, 영역에 탐색위치가 하나인 경우에는 다음 탐색위치가 존재하지 않으므로, 탐색을 영역을 재 설정하여 선택된 영역으로 이동하여 충전대 탐색을 계속 수행한다(S330 내지 S370),
영역에 설정된 마지막 탐색위치까지 이동하여 충전대를 탐색 후, 충전대가 감지되지 않은 경우, 제어부(140)는 탐색할 영역을 다시 설정하고, 선택된 영역으로 이동하여 충전대 탐색을 수행한다(S330 내지 S370).
제어부(140)는 통신부를 통해 충전대의 복귀신호가 수신되면, 충전대 위치를 판단하여 주행부를 제어하여 충전대로 이동한다. 충전대 이동 후, 충전대의 신호를 바탕으로 도킹하여 충전한다(S420).
도 15 는 도 14의 충전대 탐색 시, 탐색위치 설정방법을 설명하는데 참조되는 순서도이다.
도 15에 도시된 바와 같이, 이동 로봇(100)의 제어부(140)는 복수의 영역 중, 탐색할 영역을 선택한다(S330).
탐색위치 설정 시(S340), 제어부(140)는 리모컨 또는 단말로부터 입력되는 데이터에 따라 탐색위치를 설정할 수 있고, 영역에 랜덤으로 탐색위치를 설정할 수 있다(S440). 또한, 영역의 중앙지점을 탐색위치로 설정할 수 있다.
또한, 제어부(140)는 선택된 영역의 형태를 분석하여 단순화하고, 세선화 작업을 수행하여 라인을 추출한다(S450).
제어부(140)는 단순화된 영역의 형태를 바탕으로 탐색위치를 설정할 수 있다(S460). 제어부(140)는 영역의 형태에 따라 추출된 라인을 바탕으로, 라인상의 분기점, 모서리 등의 노드를 탐색위치로 설정하거나, 또는 추출되는 복수의 노드 중 적어도 하나를 탐색위치로 설정한다. 이때, 제어부(140)는 영역의 크기, 이동 로봇의 감지범위 등에 대응하여 적어도 하나의 노드를 탐색위치로 설정한다.
또한, 제어부(140)는 추출된 라인을 탐색위치로 설정하여 라인 상에서 충전대를 탐색하도록 설정할 수 있다(S480).
탐색위치가 설정되면, 경로를 설정하여 이동한다(S350).
경로 설정 시, 제어부(140)는 탐색위치가 설정되면, 탐색위치를 잇는 이동경로를 설정한다. 이동경로를 라인에 따라 설정되거나 또는 탐색위치간의 최단경로를 연결하여 이동경로로 설정할 수 있다(S490).
한편, 추출된 라인을 탐색위치로 설정하는 경우에는 추출된 라인으로 이동경로를 설정한다(S500).
제어부(140)는 주행부를 제어하여 탐색위치로 이동하고(S520), 지정된 탐색위치에서 회전하며 충전대의 복귀신호를 감지한다(S530)(S540). 탐색위치가 설정된 경우에도 주행 중에 충전대 복귀신호를 감지할 수 있다.
라인을 탐색위치로 설정한 경우에는 주행중에 충전대 복귀신호를 감지한다(S550).
도 16 은 본 발명의 영역 바운더리 이동을 통한 이동 로봇의 충전대 탐색방법이 도시된 순서도이다.
도 16에 도시된 바와 같이, 이동 로봇(100)은 앞서 설명한 도 8의 (b)와 같이 영역내에 탐색위치가 아닌 영역의 외곽선 형태에 따라 주행경로를 설정하여 충전대를 탐색할 수 있다.
배터리의 충전용량이 일정값 미만으로 감소하면 이동 로봇은 충전대 탐색을 시작한다(S730).
제어부(140)는 저장부(150)에 저장된 맵으로부터 충전대 위치를 확인한다. 제어부(140)는 충전대 위치가 설정되어 있는 경우 충전대 위치로 이동하여 충전대 도킹을 시도한다.
맵 상에 충전대 위치가 설정되어 있지 않은 경우, 제어부(140)는 청소를 중지하고 충전대 탐색을 수행한다.
제어부(140)는 기 저장된 맵을 바탕으로, 현재 위치를 판단한다(S740).
제어부(140)는 현재 위치를 확인할 수 없는 경우, 벽 추종(월팔로윙)을 통해 주행하며(S790), 충전대를 감지한다(S800). 제어부(140)는 주행 중, 충전대 복귀신호를 감지하면, 충전대로 이동하여 도킹을 시도한다(S810, S820).
한편, 제어부(140)는 현재 위치를 확인할 수 있는 경우, 맵 상에 현재 위치를 매칭한 후, 탐색할 영역을 선택한다(S750). 탐색할 영역이 복수인 경우, 어느 하나의 영역을 선택하여 충전대 탐색을 시작한다.
제어부(140)는 영역의 형태를 바탕으로, 영역의 바운더리, 즉 벽면으로부터 일정 거리 떨어진 위치에 외곽선 형태의 주행경로를 설정하고(S760), 주행경로를 이동하면서 충전대의 복귀신호를 감지한다(S770).
제어부(140)는 충전대의 복귀신호가 수신되기 까지 이동하고, 영역 탐색이 완료되면 다음 영역으로 이동하여 충전대 탐색을 수행한다.
제어부(140)는 충전대의 복귀신호가 수신되면, 복귀신호에 따라 충전대로 이동하여(S810), 충전대 도킹을 시도하고, 도킹 완료시 충전대로부터 충전전류를 공급받아 충전한다(S820).
따라서 이동 로봇(100)은 충전이 필요한 경우, 설정에 따라 영역별로 탐색위치를 설정하여 적은 이동량으로 복수의 영역에 대한 충전대 탐색을 수행하여 단시간에 충전대로 복귀할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.

Claims (20)

  1. 이동 가능한 본체;
    상기 본체를 이동시키는 주행부;
    주행구역에 대한 맵(MAP)이 저장되는 저장부;
    현재 위치를 인식하여 상기 맵을 바탕으로, 상기 본체가 상기 주행구역을 주행하며 청소를 수행하도록 하는 제어부를 포함하고,
    상기 제어부는, 상기 주행구역에 포함되는 복수의 영역에 대하여, 영역의 형태에 따라 영역에 적어도 하나의 탐색위치를 설정하고, 탐색위치를 연결하는 이동경로를 따라 상기 본체가 이동하도록 상기 주행부를 제어하며, 이동 중 충전대의 복귀신호를 감지하여 상기 충전대를 탐색하는 것을 특징으로 하는 이동 로봇.
  2. 제 1 항에 있어서,
    상기 제어부는, 상기 영역의 중앙 지점, 리모컨 또는 단말로부터 수신되는 데이터에 대응하는 지정된 지점, 및 영역의 형태에 따른 지점 중 적어도 하나의 지점을 상기 탐색위치로 설정하는 것을 특징으로 하는 이동 로봇.
  3. 제 1 항에 있어서,
    상기 제어부는, 상기 영역의 형태를 분석하여 세선화 작업을 통해 상기 영역의 형태에 대응하는 라인을 추출하고, 상기 라인으로부터 복수의 노드를 추출하여 상기 복수의 노드 중 적어도 하나를 상기 탐색위치로 설정하는 것을 특징으로 하는 이동 로봇.
  4. 제 3 항에 있어서,
    상기 제어부는, 상기 영역의 형태, 상기 영역의 크기, 및 상기 본체의 감지범위의 크기에 대응하여, 상기 영역을 모두 탐색할 수 있도록 상기 복수의 노드 중 적어도 하나를 탐색위치로 설정하는 것을 특징으로 하는 이동 로봇.
  5. 제 3 항에 있어서,
    상기 제어부는, 상기 라인의 모서리 또는 분기점의 노드를 상기 탐색위치로 설정하는 것을 특징으로 하는 이동 로봇.
  6. 제 3 항에 있어서,
    상기 제어부는, 상기 라인 상에 노드와 노드 사이의 거리가 상기 본체의 감지범위보다 먼 경우, 중간지점에 노드를 설정하여 상기 탐색위치로 설정하는 것을 특징으로 하는 이동 로봇.
  7. 제 1 항에 있어서,
    상기 제어부는, 상기 이동경로를 주행하며, 하나의 탐색위치에서 회전하며 상기 충전대를 탐색 한 후, 다음 탐색위치로 이동하여 상기 충전대를 탐색하는 것을 특징으로 하는 이동 로봇.
  8. 제 3 항에 있어서,
    상기 제어부는, 상기 라인을 상기 탐색위치로 설정하고, 상기 라인을 따라 상기 이동경로를 설정하여 이동 중 상기 충전대의 복귀신호를 감지하는 것을 특징으로 하는 이동 로봇.
  9. 제 3 항에 있어서,
    상기 제어부는, 상기 라인을 따라 상기 탐색위치를 상호 연결하도록 상기 이동경로를 설정하는 것을 특징으로 하는 이동 로봇.
  10. 제 1 항에 있어서,
    상기 제어부는, 상기 탐색위치 간의 최단경로를 연결하여 상기 이동경로를 설정하는 것을 특징으로 하는 이동 로봇.
  11. 제 1 항에 있어서,
    상기 제어부는, 상기 영역의 벽면으로부터 일정 거리 떨어진 위치로부터 상기 영역의 외곽선 형태로 상기 이동경로를 설정하여 이동 중 상기 충전대를 탐색하는 것을 특징으로 하는 이동 로봇.
  12. 제 1 항에 있어서,
    주변의 영상을 획득하는 영상획득부; 를 더 포함하고,
    상기 제어부는 상기 영상획득부를 통해 입력되는 획득영상을 상기 저장부에 저장된 영상과 비교하여 상기 맵 상에서 상기 본체의 현재 위치를 판단하여, 상기 충전대를 탐색하는 것을 특징으로 하는 이동 로봇.
  13. 제 12 항에 있어서,
    상기 제어부는 상기 충전대가 감지되면, 상기 충전대로 이동 한 후, 상기 본체의 위치를 바탕으로 상기 충전대의 위치를 상기 맵에 저장하는 것을 특징으로 하는 이동 로봇.
  14. 충전대 탐색을 시작하는 단계;
    기 저장된 맵으로부터 현재위치를 판단하여, 탐색을 시작할 영역을 선택하는 단계;
    상기 영역에 탐색위치를 설정하는 단계;
    상기 탐색위치를 연결하는 이동경로를 설정하는 단계;
    상기 이동경로를 따라 이동하며 충전대를 탐색하는 단계;
    상기 충전대가 존재하지 않는 경우, 새로운 영역을 지정하고, 상기 새로운 영역으로 이동하여 상기 충전대를 탐색하는 단계; 및
    상기 충전대로부터 송출된 복귀신호가 감지되면, 상기 충전대로 이동하여 충전하는 단계;를 포함하는 이동로봇의 제어방법.
  15. 제 14 항에 있어서,
    상기 탐색위치를 설정하는 단계는, 상기 영역의 중앙 지점, 리모컨 또는 단말로부터 수신되는 데이터에 대응하는 지정된 지점, 및 영역의 형태에 따른 지점 중 적어도 하나의 지점을 상기 탐색위치로 설정하는 것을 특징으로 하는 이동로봇의 제어방법.
  16. 제 14 항에 있어서,
    상기 탐색위치를 설정하는 경우, 영역의 형태를 분석하여 세선화 작업을 통해 상기 영역의 형태에 대응하는 라인을 추출하는 단계; 및
    상기 라인으로부터 복수의 노드를 추출하여 상기 복수의 노드 중 적어도 하나를 상기 탐색위치로 설정하는 단계를 더 포함하는 이동로봇의 제어방법.
  17. 제 16 항에 있어서,
    상기 탐색위치를 설정하는 경우, 영역의 형태, 영역의 크기, 및 본체의 감지범위의 크기에 대응하여, 상기 영역을 모두 탐색할 수 있도록 상기 복수의 노드 중 적어도 하나를 탐색위치로 설정하는 것을 특징으로 하는 이동로봇의 제어방법.
  18. 제 16 항에 있어서,
    상기 탐색위치를 설정하는 경우, 상기 라인의 모서리, 분기점의 노드를 상기 탐색위치로 설정하는 것을 특징으로 하는 이동로봇의 제어방법.
  19. 제 14 항에 있어서,
    상기 충전대를 탐색하는 단계는,
    상기 탐색위치로 이동하여, 상기 탐색위치에서 회전하며 상기 복귀신호를 감지하고, 상기 복귀신호가 감지되지 않으면, 다음 탐색위치로 이동하는 단계를 더 포함하는 이동로봇의 제어방법.
  20. 제 18 항에 있어서,
    상기 이동경로를 설정하는 경우, 상기 라인을 따라 상기 탐색위치를 상호 연결하고 또는, 상기 탐색위치 간의 최단경로를 연결하여 상기 이동경로를 설정하는 단계를 더 포함하는 이동로봇의 제어방법.
PCT/KR2017/009100 2016-08-22 2017-08-21 이동 로봇 및 그 제어방법 WO2018038488A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17843908.9A EP3501762B1 (en) 2016-08-22 2017-08-21 Mobile robot and control method therefor
AU2017314640A AU2017314640B2 (en) 2016-08-22 2017-08-21 Mobile robot and control method therefor
CN201780065224.2A CN109863003B (zh) 2016-08-22 2017-08-21 移动机器人及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160106366A KR20180021595A (ko) 2016-08-22 2016-08-22 이동 로봇 및 그 제어방법
KR10-2016-0106366 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018038488A1 true WO2018038488A1 (ko) 2018-03-01

Family

ID=61191441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009100 WO2018038488A1 (ko) 2016-08-22 2017-08-21 이동 로봇 및 그 제어방법

Country Status (7)

Country Link
US (1) US10466711B2 (ko)
EP (1) EP3501762B1 (ko)
KR (1) KR20180021595A (ko)
CN (1) CN109863003B (ko)
AU (1) AU2017314640B2 (ko)
TW (1) TWI661289B (ko)
WO (1) WO2018038488A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108606740A (zh) * 2018-05-16 2018-10-02 北京小米移动软件有限公司 控制清扫设备运行的方法及装置
WO2020192407A1 (zh) * 2019-03-26 2020-10-01 速感科技(北京)有限公司 可移动装置的回充方法及可移动装置
US12121192B2 (en) 2019-03-26 2024-10-22 Qfeeltech (Beijing) Co., Ltd. Mobile device docking method and mobile device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108852174B (zh) * 2017-09-25 2022-02-25 北京石头创新科技有限公司 自主移动机器人及其寻桩方法、控制装置和智能清洁系统
CN109830998A (zh) * 2017-11-23 2019-05-31 富泰华工业(深圳)有限公司 回充装置
CN108733048B (zh) * 2018-04-08 2019-08-09 深圳乐动机器人有限公司 一种室内移动机器人的回充控制方法、装置及系统
TWI681270B (zh) * 2018-04-09 2020-01-01 大陸商光寶電子(廣州)有限公司 自主行動裝置及其迴避方法
CN110757446B (zh) * 2018-07-25 2021-08-27 深圳市优必选科技有限公司 机器人回充登录的方法、装置及存储装置
CN108960687A (zh) * 2018-08-29 2018-12-07 广州市君望机器人自动化有限公司 任务区调度方法、装置、送餐机器人及存储介质
US10835096B2 (en) * 2018-08-30 2020-11-17 Irobot Corporation Map based training and interface for mobile robots
CN109512340B (zh) * 2018-12-06 2021-05-25 深圳飞科机器人有限公司 一种清洁机器人的控制方法及相关设备
CN109612469B (zh) * 2019-01-14 2020-05-22 深圳乐动机器人有限公司 一种机器人搜索充电基座位置的方法及机器人
CN110174112B (zh) * 2019-07-01 2020-03-06 北京洛必德科技有限公司 一种用于移动机器人自动建图任务的路径优化方法
CN110448230A (zh) * 2019-08-09 2019-11-15 湛江维尔科技服务有限公司 一种智能家用自动清理扫地机器人
CN112445221B (zh) * 2019-09-04 2023-11-03 宝时得科技(中国)有限公司 自动工作系统及回归方法
CN111590575B (zh) * 2020-05-15 2021-12-10 深圳国信泰富科技有限公司 一种机器人的控制系统及其方法
CN111694360B (zh) * 2020-06-22 2021-12-03 珠海格力电器股份有限公司 确定扫地机器人位置的方法、装置及扫地机器人
CN112540613A (zh) * 2020-09-30 2021-03-23 深圳市银星智能科技股份有限公司 一种搜寻回充座位置的方法、装置和移动机器人
DE102020212999A1 (de) * 2020-10-15 2022-04-21 BSH Hausgeräte GmbH Verfahren zum Betrieb eines mobilen, selbstfahrenden Geräts
CN112713628A (zh) * 2020-12-24 2021-04-27 珠海格力电器股份有限公司 用于自主充电机器的充电桩及其充电控制方法、存储介质
CN112674655B (zh) * 2021-01-14 2022-06-10 深圳市云鼠科技开发有限公司 基于沿墙的回充方法、装置、计算机设备和存储器
CN113075934B (zh) * 2021-03-31 2024-05-07 珠海一微半导体股份有限公司 一种机器人寻座控制方法、激光导航机器人及芯片
CN113534795A (zh) * 2021-06-30 2021-10-22 深圳市银星智能科技股份有限公司 一种设备搜索方法及自移动设备
CN113633219B (zh) * 2021-07-23 2022-12-20 美智纵横科技有限责任公司 回充路径确定方法、装置、设备及计算机可读存储介质
CN113721603B (zh) * 2021-07-29 2023-08-08 云鲸智能(深圳)有限公司 基站探索方法、装置、机器人及可读存储介质
CN114601373B (zh) * 2021-10-18 2023-07-04 北京石头世纪科技股份有限公司 清洁机器人的控制方法、装置、清洁机器人和存储介质
CN116009561B (zh) * 2023-03-24 2023-07-25 科大讯飞股份有限公司 机器人及其寻桩方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100632436B1 (ko) * 2005-03-16 2006-10-11 박희재 외부충전장치를 가지는 자율 이동 로봇 시스템 및 그제어방법
KR20080073626A (ko) * 2007-02-06 2008-08-11 성균관대학교산학협력단 이동 로봇용 자동충전 시스템 및 그의 충전 방법
KR20080078327A (ko) * 2007-02-23 2008-08-27 주식회사 유진로봇 이동 로봇의 자동 충전 장치 및 그를 이용한 자동 충전방법
KR20100092807A (ko) * 2009-02-13 2010-08-23 삼성전자주식회사 이동 로봇 및 이동 로봇의 이동 방법
US20150057800A1 (en) * 2004-01-21 2015-02-26 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119900A (en) * 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
JP4207336B2 (ja) * 1999-10-29 2009-01-14 ソニー株式会社 移動ロボットのための充電システム、充電ステーションを探索する方法、移動ロボット、コネクタ、及び、電気的接続構造
JP4491912B2 (ja) * 2000-05-22 2010-06-30 ソニー株式会社 バッテリ駆動の脚式移動ロボット及びその制御方法
JP4087104B2 (ja) * 2001-11-20 2008-05-21 シャープ株式会社 群ロボットシステム
WO2004096502A1 (en) * 2003-04-28 2004-11-11 Stephen James Crampton Cmm arm with exoskeleton
JP4587738B2 (ja) * 2003-08-25 2010-11-24 ソニー株式会社 ロボット装置及びロボットの姿勢制御方法
ATE468062T1 (de) * 2005-02-18 2010-06-15 Irobot Corp Autonomer oberflächenreinigungsroboter für nass- und trockenreinigung
KR100815570B1 (ko) * 2006-12-06 2008-03-20 삼성광주전자 주식회사 로봇청소기시스템 및 그 제어방법
KR101330734B1 (ko) * 2007-08-24 2013-11-20 삼성전자주식회사 로봇청소기와 도킹 스테이션을 구비하는 로봇청소기 시스템
DE102008014912B4 (de) * 2008-03-19 2023-01-19 Vorwerk & Co. Interholding Gmbh Selbsttätig verfahrbares Bodenstaub-Aufsammelgerät
TWI388956B (zh) * 2009-05-20 2013-03-11 Univ Nat Taiwan Science Tech 行動機器人與其目標物處理路徑的規劃方法
CN102460073B (zh) * 2009-05-26 2015-04-01 株式会社日立制作所 车辆驾驶支援系统及车辆驾驶支援方法
KR101672787B1 (ko) * 2009-06-19 2016-11-17 삼성전자주식회사 로봇청소기와 도킹스테이션 및 이를 가지는 로봇청소기 시스템 및 그 제어방법
JP5413042B2 (ja) * 2009-08-07 2014-02-12 株式会社デンソー 蓄電情報出力装置および蓄電情報出力システム
CN101862166A (zh) * 2010-06-02 2010-10-20 刘瑜 自动吸尘器定位充电座的电子控制装置
KR20120036563A (ko) * 2010-10-08 2012-04-18 현대자동차주식회사 전기 자동차용 네비게이션 서비스 장치 및 그 서비스 방법
TWI447548B (zh) * 2011-07-15 2014-08-01 Uni Ring Tech Co Ltd 自走式移動裝置的返回充電方法及其系統
KR101366860B1 (ko) * 2011-09-20 2014-02-21 엘지전자 주식회사 이동 로봇 및 이의 제어 방법
JP2013148246A (ja) * 2012-01-17 2013-08-01 Sharp Corp 自走式電子機器および自走式イオン発生機
TW201334747A (zh) * 2012-02-16 2013-09-01 Micro Star Int Co Ltd 掃地機器人的控制方法
KR101954144B1 (ko) * 2012-06-08 2019-03-05 엘지전자 주식회사 로봇 청소기와, 이의 제어 방법, 및 이를 포함한 로봇 청소 시스템
KR101949277B1 (ko) * 2012-06-18 2019-04-25 엘지전자 주식회사 이동 로봇
CN103512580B (zh) * 2012-06-21 2016-07-13 日电(中国)有限公司 一种电动汽车路径规划方法及装置
TW201405486A (zh) * 2012-07-17 2014-02-01 Univ Nat Taiwan Science Tech 利用電腦視覺進行即時偵測與追蹤物體之裝置及其方法
US20150212500A1 (en) * 2012-10-01 2015-07-30 Sharp Kabushiki Kaisha Device for creation of layout information, system for operation of domestic electrical appliances, and self-propelled electronic device
JP6054136B2 (ja) * 2012-10-23 2016-12-27 シャープ株式会社 機器制御装置、および自走式電子機器
DE102013227129B4 (de) * 2013-12-23 2016-01-14 Continental Automotive Gmbh Verfahren zur Erfassung einer Relativposition, Verfahren zum kabellosen Laden eines Fahrzeugs, Orientierungssignalempfänger und induktive Ladevorrichtung
CN104188598B (zh) * 2014-09-15 2016-09-07 湖南格兰博智能科技有限责任公司 一种自动地面清洁机器人
JP6285979B2 (ja) * 2016-03-31 2018-02-28 本田技研工業株式会社 充電ステーションおよび自律走行作業車の充電ステーション誘導装置
US20180035606A1 (en) * 2016-08-05 2018-02-08 Romello Burdoucci Smart Interactive and Autonomous Robotic Property Maintenance Apparatus, System, and Method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150057800A1 (en) * 2004-01-21 2015-02-26 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
KR100632436B1 (ko) * 2005-03-16 2006-10-11 박희재 외부충전장치를 가지는 자율 이동 로봇 시스템 및 그제어방법
KR20080073626A (ko) * 2007-02-06 2008-08-11 성균관대학교산학협력단 이동 로봇용 자동충전 시스템 및 그의 충전 방법
KR20080078327A (ko) * 2007-02-23 2008-08-27 주식회사 유진로봇 이동 로봇의 자동 충전 장치 및 그를 이용한 자동 충전방법
KR20100092807A (ko) * 2009-02-13 2010-08-23 삼성전자주식회사 이동 로봇 및 이동 로봇의 이동 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3501762A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108606740A (zh) * 2018-05-16 2018-10-02 北京小米移动软件有限公司 控制清扫设备运行的方法及装置
WO2020192407A1 (zh) * 2019-03-26 2020-10-01 速感科技(北京)有限公司 可移动装置的回充方法及可移动装置
US12121192B2 (en) 2019-03-26 2024-10-22 Qfeeltech (Beijing) Co., Ltd. Mobile device docking method and mobile device

Also Published As

Publication number Publication date
EP3501762B1 (en) 2021-10-13
US10466711B2 (en) 2019-11-05
EP3501762A4 (en) 2020-04-08
TW201807524A (zh) 2018-03-01
EP3501762A1 (en) 2019-06-26
CN109863003B (zh) 2022-06-24
AU2017314640A1 (en) 2019-04-11
US20180052468A1 (en) 2018-02-22
AU2017314640B2 (en) 2021-02-04
KR20180021595A (ko) 2018-03-05
TWI661289B (zh) 2019-06-01
CN109863003A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2018038488A1 (ko) 이동 로봇 및 그 제어방법
WO2018139865A1 (ko) 이동 로봇
WO2018135870A1 (en) Mobile robot system and control method thereof
WO2017188800A1 (ko) 이동 로봇 및 그 제어방법
WO2018074903A1 (ko) 이동 로봇의 제어방법
WO2019066444A1 (en) MOBILE ROBOT AND CONTROL METHOD
WO2018160035A1 (ko) 이동 로봇 및 그 제어방법
WO2018139796A1 (ko) 이동 로봇 및 그의 제어 방법
WO2021006556A1 (en) Moving robot and control method thereof
WO2021006677A2 (en) Mobile robot using artificial intelligence and controlling method thereof
WO2017188706A1 (ko) 이동 로봇 및 이동 로봇의 제어방법
WO2018124682A2 (ko) 이동 로봇 및 그 제어방법
WO2015183005A1 (en) Mobile device, robot cleaner, and method for controlling the same
EP3946841A1 (en) Mobile robot and method of controlling the same
WO2018155999A2 (en) Moving robot and control method thereof
WO2015194866A1 (ko) 에지 기반 재조정을 이용하여 이동 로봇의 위치를 인식하기 위한 장치 및 그 방법
AU2020244635B2 (en) Mobile robot control method
WO2017188708A2 (ko) 이동 로봇, 복수의 이동 로봇 시스템 및 이동 로봇의 맵 학습방법
WO2018117616A1 (ko) 이동 로봇
AU2018216517B2 (en) Cleaner
WO2021172936A1 (en) Moving robot and control method thereof
WO2020226187A1 (ko) 다중 센서 및 인공지능에 기반하여 맵을 생성하고 맵을 이용하여 주행하는 로봇
WO2020256370A1 (en) Moving robot and method of controlling the same
AU2020253014B2 (en) Robot cleaner using artificial intelligence and control method thereof
WO2020141900A1 (ko) 이동 로봇 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017843908

Country of ref document: EP

Effective date: 20190322

ENP Entry into the national phase

Ref document number: 2017314640

Country of ref document: AU

Date of ref document: 20170821

Kind code of ref document: A