WO2018038252A1 - 三酸化二チタン質セラミックスバルク体およびその製造方法 - Google Patents

三酸化二チタン質セラミックスバルク体およびその製造方法 Download PDF

Info

Publication number
WO2018038252A1
WO2018038252A1 PCT/JP2017/030517 JP2017030517W WO2018038252A1 WO 2018038252 A1 WO2018038252 A1 WO 2018038252A1 JP 2017030517 W JP2017030517 W JP 2017030517W WO 2018038252 A1 WO2018038252 A1 WO 2018038252A1
Authority
WO
WIPO (PCT)
Prior art keywords
bulk body
ceramic bulk
powder
ceramic
additive element
Prior art date
Application number
PCT/JP2017/030517
Other languages
English (en)
French (fr)
Inventor
戸村 信雄
泰夫 篠崎
倫卓 大瀧
啓 渡部
Original Assignee
旭硝子株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, 国立大学法人九州大学 filed Critical 旭硝子株式会社
Publication of WO2018038252A1 publication Critical patent/WO2018038252A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust

Definitions

  • the present invention relates to a bulk titanium dioxide ceramic body and a method for producing the same.
  • Non-Patent Document 1 describes a method for producing a bulk body composed of a single phase of dititanium trioxide crystal by a discharge plasma sintering method.
  • the bulk body of dititanium trioxide crystals produced by the method described in Non-Patent Document 2 has poor mechanical strength and lacks practicality, and also has oxidation resistance. It may not be enough.
  • the present invention aims to improve the mechanical strength of a bulk body of dititanium trioxide, and has good mechanical strength and good mechanical strength, and also has good oxidation resistance.
  • An object of the present invention is to provide a ceramic bulk body and a method for producing the same.
  • Element group B, Si, Zr, Al, Mg, Na, K, Cs, Y, V, Nb, Ta, Cr, Mo, Ta, Fe, Co, Ni, Cu, Zn, Ge, Sn, P, La , And Ce.
  • the ceramic bulk body according to [1] containing 70% by mass or more of a dititanium trioxide crystal phase.
  • the additive element includes one or more selected from the group consisting of B, Si, Zr, Al, and Mg.
  • the ceramic bulk body of the present invention has a dititanium trioxide crystal phase as a main phase, has good mechanical strength, and also has good oxidation resistance as well as good mechanical strength. According to the method for producing a ceramic bulk body of the present invention, a ceramic bulk body having a dititanium trioxide crystal phase as a main phase and having good mechanical strength can be obtained. In addition, a ceramic bulk body having good mechanical strength and good oxidation resistance can be obtained.
  • the ceramic bulk body of the present invention is a crystalline phase whose main phase is mainly composed of dititanium trioxide (Ti 2 O 3 ), and one or more additional elements selected from the following element group for the main phase or other phases: including.
  • content of the additive element in a ceramic bulk body is represented by the mass% of the atom of the added element with respect to the ceramic bulk body also including the said main component and an additive element.
  • the “main phase” refers to a phase in which the proportion of the phase in the ceramic bulk body is 70% by mass or more.
  • the crystal phase mainly containing dititanium trioxide does not have to be completely stoichiometric (Ti 2 O 3 ), and impurities or added It may contain elements other than titanium and oxygen, or the atomic ratio of titanium to oxygen may not be completely 2: 3 as long as it has a structure of dititanium trioxide crystal.
  • a sample obtained by pulverizing a ceramic bulk body into a powder form is analyzed by a powder X-ray diffraction method, and the ceramic bulk body may contain 70% by mass or more of a dititanium trioxide crystal phase.
  • the content of the dititanium trioxide crystal phase in the ceramic bulk body can be determined by a total powder pattern fitting method using powder X-ray diffraction measurement.
  • the ceramic bulk body of the present invention contains one or more additive elements selected from the following element group in the dititanium trioxide crystal phase or other phases. By containing the following additive elements, mechanical strength and oxidation resistance can be improved. Element group: B, Si, Zr, Al, Mg, Na, K, Cs, Y, V, Nb, Ta, Cr, Mo, Ta, Fe, Co, Ni, Cu, Zn, Ge, Sn, P, La , And Ce.
  • the ceramic bulk body is a three-dimensional shape having a desired thickness such as a plate shape (flaky shape) or a lump shape, and the specific shape is not particularly limited. For example, a sheet shape having a thickness of 0.1 mm or more is included.
  • the ceramic bulk body may be a sintered body, a melt-solidified body, or a mixture thereof. Sintered bodies are preferred from the standpoint of uniformity because they do not easily generate large pores or large segregation.
  • FIG. 1 is a photograph by an electron beam microanalyzer (EPMA) of an example of a ceramic bulk body of the present invention.
  • the sample is obtained by adding 0.23% by mass of Si to the ceramic bulk body in Example 3.
  • Reference numeral 1 is a main phase (dititanium trioxide crystal phase), reference numeral 2 is a hole, and reference numeral 3 is another phase (including Ti, O, and Si).
  • the content of the dititanium trioxide crystal phase as the main phase in the ceramic bulk body is 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 85% by mass or more.
  • the additive element may exist in the ceramic bulk body in the form of an oxide or a metal, or may exist in the form of a solid solution in the dititanium trioxide crystal phase.
  • the content of the additive element (the total amount when two or more elements are contained) is 0.01 to 8% by mass, preferably 0.05 to 4% by mass, based on the ceramic bulk body including the additive element. 0.1 to 3% by mass is more preferable, 0.3 to 3% by mass is further preferable, and 0.5 to 2% by mass is particularly preferable.
  • the content of the additive element is not less than the above lower limit value, a sufficient effect of addition can be easily obtained, and if it is not more than the above upper limit value, the characteristics of the dititanium trioxide crystal useful as a heat control material can be maintained.
  • an additional element is added exceeding the above upper limit, a large amount of a phase other than the dititanium trioxide crystal phase is generated, and as a result, the characteristics of the dititanium trioxide crystal as a bulk body cannot be obtained.
  • the ceramic bulk body may contain impurities inevitable in production in addition to titanium, oxygen, and the above-described additive elements. 1 mass% or less is preferable with respect to a ceramic bulk body, and, as for the total content of the element contained as an impurity, 0.5 mass% or less is more preferable.
  • the density of the ceramic bulk body is preferably 90% or more, more preferably 91% or more, and still more preferably 92% or more, relative to the theoretical density of Ti 2 O 3 crystals (4.59 g / cm 3 , literature value).
  • the upper limit of the relative density is not particularly limited and may be 100%.
  • the relative density in this specification measures the density of the ceramic bulk body by Archimedes method, the value of the percentage with respect to the theoretical density of the Ti 2 O 3 crystal, relative density (unit:%) with respect to Ti 2 O 3 crystals and.
  • the Archimedes method is a method for measuring the weight in the air and the weight in water and dividing the air weight by the volume (weight in water / water specific gravity at the measurement temperature) to obtain the density (unit: g / cm 3 ).
  • the ceramic bulk body of the present invention is manufactured by a method in which a mixed powder of the additive powder containing the additive element, titanium (metal titanium) powder, and titanium oxide (TiO 2 ) powder is molded and fired. Firing is preferably performed in a vacuum atmosphere or an inert gas (argon gas, helium gas, neon gas, etc.) atmosphere.
  • the pressure in the furnace in the case of a vacuum atmosphere is preferably low. Specifically, it is preferably less than 300 Pa, and more preferably less than 30 Pa.
  • the additive powder is preferably a powder of the additive element alone or a compound powder containing the additive element.
  • the compound containing an additive element includes a compound such as a composite oxide containing two or more of the additive elements.
  • the additive powder is not particularly limited as long as it is a raw material capable of forming a synthetic powder containing an additive element, but powders such as oxides, nitrates, and carbonates are suitable. Examples include boron powder, aluminum oxide (Al 2 O 3 ) powder, magnesium oxide (MgO) powder, silicon powder, silicon dioxide (SiO 2 ) powder, zirconium dioxide (ZrO 2 ) powder, zircon (ZrSiO 4 ) powder. Etc. Among these, boron powder, aluminum oxide (Al 2 O 3 ) powder, silicon powder, or zirconium dioxide (ZrO 2 ) powder is preferable.
  • the average particle diameter of the titanium powder used in the method for producing a ceramic bulk body of the present invention is preferably 10 to 500 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the average particle size of the titanium oxide powder is preferably 0.5 to 10 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the average particle size of the additive powder is preferably from 0.1 to 50 ⁇ m, more preferably from 0.5 to 3 ⁇ m.
  • the average particle diameter of these powders in this specification is 50% of the volume particle diameter D50 in the cumulative volume distribution curve where the total volume distribution determined on the basis of volume is 100% (that is, the volume-based cumulative 50% diameter). And the average particle size of the secondary particles.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus (laser diffraction method).
  • the particle size is measured for particle size distribution by sufficiently dispersing the powder in a medium such as water or ethanol by ultrasonic treatment or the like.
  • a particle diameter measuring method by the laser diffraction method a method described in JIS Z8825-2 (2001) is used.
  • the content ratio of the titanium powder and the titanium oxide powder in the mixed powder is a stoichiometric ratio that becomes Ti 2 O 3 after firing.
  • the ratio of titanium powder to titanium oxide powder in the mixed powder is such that the molar ratio of Ti in the titanium powder to Ti in the titanium oxide powder is 1: 3 (Ti 2 O Stoichiometric ratio of 3 ).
  • Titanium powder, titanium oxide powder and additive powder are mixed to obtain a mixed powder.
  • the mixing method is not particularly limited, and a known method such as mixing with a ball mill or the like can be used.
  • the mixed powder is formed and fired.
  • Known methods can be used as the molding method and the firing method.
  • the molding method sheet molding, press molding, cast molding, injection molding, cold isostatic pressing, or the like is used.
  • the sintering method a batch type vacuum sintering furnace, a sintering furnace capable of controlling the atmosphere, a hot isostatic press, a continuous sintering furnace, or the like is used.
  • spark plasma sintering (SPS) is preferable because it is easy to be densified in a relatively short time.
  • the mixed powder is filled in a sintering mold for a discharge plasma sintering apparatus and heated while being pressed to perform sintering.
  • the sintered mold is made of, for example, graphite (graphite).
  • the size and shape of the sintering mold correspond to the shape and size to be molded.
  • the pressure during firing in spark plasma sintering is preferably 20 to 80 MPa, and more preferably 30 to 70 MPa.
  • the firing temperature in the spark plasma sintering is preferably 900 to 1500 ° C., more preferably 1000 to 1300 ° C.
  • the rate of temperature rise is preferably 5 to 200 ° C./min in the range from 600 ° C.
  • the holding time at the sintering temperature is preferably 1 to 480 minutes, more preferably 30 to 180 minutes.
  • the ceramic bulk body of the present invention is improved in mechanical strength by containing the specific additive element. Specifically, the three-point bending strength is improved by 3% or more, 50% or more, particularly 100% or more than the ceramic bulk body containing only the dititanium trioxide crystal phase containing no additive element. For example, a ceramic bulk body having a three-point bending strength of 3.5 MPa or more can be obtained. Among these, the three-point bending strength of the ceramic bulk body is preferably 4 MPa or more, more preferably 6 MPa or more, and more preferably 10 MPa or more. The upper limit of the three-point bending strength is not particularly limited, but is preferably 200 MPa or less, more preferably 100 MPa or less from the viewpoint of processing.
  • the ceramic bulk body of the present invention is improved in oxidation resistance by containing the specific additive element. Specifically, the thickness of the oxide layer formed when heated under the following oxidation resistance test conditions is smaller than that of a ceramic bulk body containing no additive element. A thinner oxide layer means less oxidation and excellent oxidation resistance.
  • the thickness of the oxide layer formed in the ceramic bulk body of the present invention is thinner than the thickness of the oxide layer formed in the ceramic bulk body containing no additive elements, and the thickness is preferably 300 ⁇ m or less, and 200 ⁇ m or less. Is more preferable.
  • the oxidized layer is a deteriorated layer generated near the surface of the ceramic bulk body after the test in the following oxidation resistance test, and is generated by the progress of oxidation as compared with the ceramic bulk body before the oxidation resistance test.
  • the oxide layer has a chemical composition close to that of titanium dioxide (TiO 2 ), and the surface of the ceramic bulk body before the oxidation resistance test is brown, black-purple, or black, but often exhibits white. Therefore, the thickness of the oxide layer can be measured by observing the cross section of the ceramic bulk body after the oxidation resistance test with an optical microscope. Similarly, the thickness of the oxide layer can be measured by a method of analyzing the composition of the ceramic bulk body after the oxidation resistance test using an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • Oxidation resistance test conditions The bulk ceramic body was heated from room temperature to 850 ° C. at a rate of 5 ° C./min, held at 850 ° C. for 4 hours, and cooled from 850 ° C. to room temperature at 5 ° C./min. Cool at speed.
  • the ceramic bulk body of the present invention can obtain, for example, a ceramic bulk body in which the thickness of the oxide layer formed when heated under the above-described oxidation resistance test conditions is 300 ⁇ m or less.
  • the thickness of the oxide layer is preferably 250 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the lower limit of the oxide layer is a measurement limit value, for example, 0.5 ⁇ m.
  • the density of the ceramic bulk body was measured by the Archimedes method, and the relative density with respect to the theoretical density (4.59 g / cm 3 ) of the Ti 2 O 3 crystal was determined. Specifically, the density of the ceramic bulk body was measured by a method according to JIS R1634 (1998).
  • the test piece was a cylinder having a diameter of 15 mm and a thickness of 6 mm.
  • Example A The ceramic bulk body was pulverized using an agate mortar and an agate pestle to prepare a powder (sample A). Next, a necessary amount was taken out from this sample A, a standard sample was further added, and mixing and pulverization were performed using an agate mortar and an agate pestle to prepare a powder (sample B). The standard sample was added so as to be contained in Sample B in a range of 30% by mass to less than 60% by mass.
  • alumina powder manufactured by National Institute of Standards and Technology, product name: SRM 676 which is a standard sample for X-ray diffraction, or lanthanum hexaboride powder (US National Standard Technology) which is a standard sample for X-ray diffraction. Research Institute, product name: SRM 660 was used.
  • Sample B was measured by powder X-ray diffraction.
  • the mass ratio of the dititanium trioxide crystal phase with respect to the standard sample was determined from the obtained diffraction pattern by the whole powder pattern fitting method, and the content of the dititanium trioxide crystal phase in the ceramic bulk body was determined arithmetically.
  • An X-ray diffractometer manufactured by Rigaku Corporation, product name: SmartLab
  • calculation of the mass ratio of the dititanium trioxide crystal phase was performed using powder X-ray analysis software (product name: PDXL, manufactured by Rigaku Corporation).
  • Tube Cu tube Tube voltage: 45 kV Tube current: 200 mA Filter: CuK ⁇ Scanning axis: 2 ⁇ / ⁇ Scanning speed: 10 degrees per minute Scanning range: 42 degrees to 70 degrees Incident slit: 1/3 degree Longitudinal slit: 10 millimeters Receiving slit 1: 8 millimeters Receiving slit 2: 13 millimeters
  • the ceramic bulk body was cut into a plate shape having a width of 7 mm, a thickness of 4.5 mm, and a length of 10 mm or more to obtain a test piece.
  • a universal testing machine product name: AC-100KN-C, manufactured by TS E Co., Ltd.
  • the fulcrum is 9.2 mm between the fulcrums
  • the crosshead speed is 0.1 mm / min
  • the room temperature about 25 ° C
  • a load was applied to one central point in between, and the maximum load (unit: N) when the test piece was broken was measured. Based on the following formula, bending strength (unit: Pa) was determined.
  • P is the maximum load (unit: N)
  • L is the distance between support points (mm)
  • W is the width of the test piece (mm)
  • h is the thickness of the test piece (mm).
  • the oxide layer is a layer obtained by oxidizing dititanium trioxide to titanium dioxide. Observation of the oxide layer and measurement of the thickness can be performed with an optical microscope, an electron microscope, or an electron beam microanalyzer (EPMA).
  • the thickness of the oxide layer is an average value obtained by polishing a cross section of the sample after the oxidation resistance test, and randomly measuring three or more thicknesses of the oxide layer from the polished surface.
  • a ceramic bulk body (sintered body) having only a dititanium trioxide crystal phase was produced without containing an additive element.
  • a metal Ti powder having an average particle size of 30 ⁇ m and a TiO 2 powder having an average particle size of 2 ⁇ m are obtained.
  • the molar ratio of Ti in the Ti: TiO 2 powder of the metal Ti powder is 1: 3 (stoichiometric ratio to be Ti 2 O 3 ).
  • a mixed powder was prepared by mixing with a ball mill for 4 hours. The obtained mixed powder was filled in a graphite sintered mold and heated and fired under pressure under the following conditions to obtain a cylindrical ceramic bulk body having a diameter of 15 mm and a thickness of 6 mm.
  • FIG. 2 is an optical micrograph of a cross section of a test piece that has been heated in an oxidation resistance test for the ceramic bulk body obtained in Comparative Example 1.
  • reference numeral 4 denotes an oxide layer.
  • SPS discharge plasma sintering
  • Apparatus Spark plasma sintering apparatus (SPS Syntex, product name: SPS-515S)
  • Sintering atmosphere vacuum (about 10 Pa).
  • Sintering temperature 1100 ° C.
  • Sintering holding time 45 minutes.
  • Pressure during sintering 44 MPa.
  • Temperature program heating at 600 ° C. for 5 minutes ⁇ temperature rising from 600 ° C. to 100 ° C./100° C./min ⁇ temperature rising from 1000 ° C. to 1100 ° C. at 25 ° C./min, holding at 1100 ° C. for 45 minutes ⁇ 1100 The temperature is lowered from 5 ° C. to 600 ° C. at a rate of 5 ° C./min.
  • Example 1 In Comparative Example 1, when preparing the mixed powder, the boron powder content of the average particle size of 0.5 ⁇ m was calculated according to the “content of additive element (mass by mass)” in Table 1 with respect to the ceramic bulk body after firing. %)) was carried out in the same manner except that the mixed powder was obtained. Using the obtained mixed powder, it carried out similarly to the comparative example 1, manufactured the ceramic bulk body, and evaluated the physical property shown in Table 1 about this ceramic bulk body.
  • FIG. 3 is an optical micrograph of a cross section of a test piece that has been heated in an oxidation resistance test for a ceramic bulk body obtained when the content of the additive element (B) is 0.5 mass% in this example. It is.
  • reference numeral 4 denotes an oxide layer.
  • Examples 2 to 7 Ceramic bulk bodies of Examples 2 to 7 were manufactured in the same manner as in Example 1 except that the kind of additive powder, the average particle diameter, and the content of additive element shown in Table 1 were used.
  • the “content (mass%) of additive element” in Table 1 is the same as in Example 1.
  • 0.5 g of ZrSiO 4 having an average particle diameter of 45 ⁇ m is added to 99.5 g of a mixture of Ti metal powder and TiO 2 powder (Ti molar ratio: 1: 3).
  • Ti molar ratio: 1: 3 Ti molar ratio
  • This is a ceramic bulk body obtained by using the added mixed powder, and the content of the additive element in this ceramic bulk body is 0.33 mass%.
  • the physical properties of each of the bulk mixes obtained in Examples 2 to 7 were evaluated, and the results are shown in Table 1.
  • the bulk density of the ceramics obtained in Examples 1 to 7 is almost the same as that of Comparative Example 1 containing no additive element, but the three-point bending strength is high. It is high and excellent in mechanical strength, and its oxidation layer is thin and excellent in oxidation resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

機械的強度、また、それとともに、耐酸化性を向上させた三酸化二チタン質セラミックスバルク体およびその製造方法を提供する。 主相が三酸化二チタン結晶相であるセラミックスバルク体であって、下記元素群から選ばれる1種以上の添加元素を0.01~8質量%含むセラミックスバルク体。 元素群:B、Si、Zr、Al、Mg、Na、K、Cs、Y、V、Nb、Ta、Cr、Mo、Ta、Fe、Co、Ni、Cu、Zn、Ge、Sn、P、La、およびCe。

Description

三酸化二チタン質セラミックスバルク体およびその製造方法
 本発明は、三酸化二チタン質セラミックスバルク体およびその製造方法に関する。
 低温側では断熱し、高温側では放熱する特性の材料が実現できれば、例えば自動車の排気ガス触媒などの装置や、ヒートパイプ、熱貯蔵装置などの温度が適切な範囲に自律的に保持されることが可能になる。そのような熱制御可能な材料の候補として三酸化二チタン結晶が提案されている(非特許文献1)。
 非特許文献2には、三酸化二チタン結晶の単相からなるバルク体を放電プラズマ焼結法で製造する方法が記載されている。
Kei Watanabe et al.「Switching the thermal conductivity by phase transitions in metal oxides」The 17th Cross Straits Symposium on Energyand Environmental Science and Technology,December 2nd-3rd,2015,p.105-106 I.Veremchuk et al.Diffusion-Controlled Formation of Ti2O3 duringSpark-Plasma Synthesis」INORGANIC CHMISTRY,2013,vol.52,p.4458-4463
 しかし、本発明者らの知見によれば、非特許文献2に記載の方法で製造した三酸化二チタン結晶のバルク体は機械的強度に乏しく実用性に欠ける場合があり、また耐酸化性も充分ではない場合がある。
 本発明は、三酸化二チタンのバルク体の機械的強度を向上させることを目的とし、良好な機械的強度、また、良好な機械的強とともに、良好な耐酸化性を有する三酸化二チタン質セラミックスバルク体およびその製造方法を提供することを目的とする。
 本発明は下記の態様を有する。
[1]主相が三酸化二チタン結晶相であるセラミックスバルク体であって、下記元素群から選ばれる1種以上の添加元素を0.01~8質量%含む、セラミックスバルク体。
 元素群:B、Si、Zr、Al、Mg、Na、K、Cs、Y、V、Nb、Ta、Cr、Mo、Ta、Fe、Co、Ni、Cu、Zn、Ge、Sn、P、La、およびCe。
[2]三酸化二チタン結晶相を70質量%以上含有する[1]のセラミックスバルク体。
[3]前記添加元素がホウ素(B)を含む[1]または[2]のセラミックスバルク体。
[4]前記添加元素がケイ素(Si)を含む、[1]または[2]のセラミックスバルク体。
[5]前記添加元素がB、Si、Zr、Al、およびMgからなる群から選ばれる1種以上を含む、[1]または[2]のセラミックスバルク体。
[6]Ti結晶に対する相対密度が90%以上である、[1]~[5]のいずれかのセラミックスバルク体。
[7]3点曲げ強度が3.5MPa以上である、[1]~[6]のいずれかのセラミックスバルク体。
[8]3点曲げ強度が、前記添加元素を含有していない三酸化二チタン結晶相のみのセラミックスバルク体よりも高い、[1]~[6]のいずれかのセラミックスバルク体。
[9]下記の耐酸化試験条件で加熱したときに形成される酸化層の厚さが300μm以下である、[1]~[8]のいずれかのセラミックスバルク体。
 耐酸化試験条件:大気中で、室温から850℃まで5℃/分の昇温速度で昇温し、850℃で4時間保持し、850℃から室温まで5℃/分の冷却速度で冷却する。
[10]下記の耐酸化試験条件で加熱したときに形成される酸化層の厚さが、前記添加元素を含有していないセラミックスバルク体よりも薄い、[1]~[8]のいずれかのセラミックスバルク体。
 耐酸化試験条件:大気中で、室温から850℃まで5℃/分の昇温速度で昇温し、850℃で4時間保持し、850℃から室温まで5℃/分の冷却速度で冷却する。
[11]焼結体である、[1]~[10]のいずれかのセラミックスバルク体。
[12]チタン粉末と、酸化チタン粉末と、添加元素またはその化合物の粉末からなる添加粉末との混合粉末を成形して焼成する工程を有し、前記添加元素は下記元素群から選ばれる1種以上であり、かつ、焼成後のバルク体に対する前記添加元素の含有量が0.01~8質量%である、セラミックスバルク体の製造方法。
 元素群:B、Si、Zr、Al、Mg、Na、K、Cs、Y、V、Nb、Ta、Cr、Mo、Ta、Fe、Co、Ni、Cu、Zn、Ge、Sn、P、La、およびCe。
[13]前記添加粉末がAl、MgO、SiO、ZrO、およびZrSiOからなる群から選ばれる1種以上である、[12]のセラミックスバルク体の製造方法。
[14]前記焼成を放電プラズマ焼結法で行う、[12]または[13]のセラミックスバルク体の製造方法。
 本発明のセラミックスバルク体は、三酸化二チタン結晶相を主相とし、良好な機械的強度を有し、また、良好な機械的強度とともに良好な耐酸化性を有する。
 本発明のセラミックスバルク体の製造方法によれば、三酸化二チタン結晶相を主相とし、良好な機械的強度を有するセラミックスバルク体が得られる。また、それとともに、良好な機械的強度と良好な耐酸化性を有するセラミックスバルク体が得られる。
本発明のセラミックスバルク体の例(実施例3)の電子線マイクロアナライザー(EPMA)による写真である。 比較例1のセラミックスバルク体の耐酸化試験後の光学顕微鏡写真である。 実施例1のセラミックスバルク体の耐酸化試験後の光学顕微鏡写真である。
<セラミックスバルク体>
 本発明のセラミックスバルク体は、主相が三酸化二チタン(Ti)を主成分とする結晶相であり、主相あるいはその他の相に下記元素群から選ばれる1種以上の添加元素を含む。なお、本明細書において、セラミックスバルク体における添加元素の含有量は、上記主成分と添加元素も含めたセラミックスバルク体に対する添加された元素の原子の質量%で表わされる。
 本発明において「主相」とは、セラミックスバルク体中においてその相の占める割合が70質量%以上ある相を言う。このとき、三酸化二チタンを主成分とする結晶相(本明細書では三酸化二チタン結晶相とも言う)は完全に化学量論組成(Ti)である必要はなく、不純物や添加物のチタン、酸素以外の元素を含有していても、あるいはチタンと酸素の原子比が完全に2:3でなくともよく、三酸化二チタン結晶の構造を有していれば良い。具体的には、セラミックスバルク体を粉砕して粉末状にした試料を粉末X線回折法により解析し、セラミックスバルク体が三酸化二チタン結晶相を70質量%以上含有していれば良い。セラミックスバルク体中の三酸化二チタン結晶相の含有量は、粉末X線回折測定を用いた全粉末パターンフィッティング法により求めることができる。
 本発明のセラミックスバルク体は三酸化二チタン結晶相あるいはその他の相に下記元素群から選ばれる1種以上の添加元素を含む。下記添加元素を含有させることによって機械的強度および耐酸化性を向上させることができる。
 元素群:B、Si、Zr、Al、Mg、Na、K、Cs、Y、V、Nb、Ta、Cr、Mo、Ta、Fe、Co、Ni、Cu、Zn、Ge、Sn、P、La、およびCe。
 セラミックスバルク体は、板状(薄片状)や塊状など、所望の厚みを有する立体形状であり、具体的な形状は特に制限されない。例えば、厚さ0.1mm以上のシート形状を含む。また、セラミックスバルク体は、焼結体であってもよく、溶融固化体でもよく、これらが混在していてもよい。大きな気孔や大きな偏析を生じにくい、すなわち均一性の点で、焼結体が好ましい。
 図1は本発明のセラミックスバルク体の一例の電子線マイクロアナライザー(EPMA)による写真である。試料は実施例3において、セラミックスバルク体中に0.23質量%のSi添加を行ったものである。符号1は主相(三酸化二チタン結晶相)であり、符号2は孔であり、符号3はその他の相(TiとOとSiを含む)である。
 セラミックスバルク体における、主相である三酸化二チタン結晶相の含有量は70質量%以上であり、80質量%以上がより好ましく、85質量%以上が特に好ましい。
 添加元素は、酸化物や金属などの形態でセラミックスバルク体中に存在していてもよいし、三酸化二チタン結晶相に固溶した形態で存在していてもよい。
 添加元素が少なくともホウ素(B)を含む態様、添加元素が少なくともケイ素(Si)を含む態様、または添加元素がB、Si、Zr、Al、およびMgからなる群から選ばれる1種以上を含む態様が好ましい。
 添加元素の含有量(2種以上含有させる場合は合計量)は、添加元素を含めたセラミックスバルク体に対して、0.01~8質量%であり、0.05~4質量%が好ましく、0.1~3質量%がより好ましく、0.3~3質量%がさらに好ましく、0.5~2質量%が特に好ましい。
 添加元素の含有量が上記の下限値以上であると充分な添加効果が得られやすく、上記の上限値以下であると熱制御材料として有用な三酸化二チタン結晶の特性が損なわれずに済む。上記の上限を超えて添加元素を添加すると三酸化二チタン結晶相以外の相が多量に生成してしまう結果、バルク体として三酸化二チタン結晶の特性が得られなくなる。
 セラミックスバルク体は、チタン、酸素、および上記添加元素のほかに、製造上不可避の不純物を含有してもよい。不純物として含有される元素の合計含有量は、セラミックスバルク体に対して、1質量%以下が好ましく、0.5質量%以下がより好ましい。
 セラミックスバルク体の密度は、Ti結晶の理論密度(4.59g/cm、文献値)に対する相対密度が90%以上が好ましく、91%以上がより好ましく、92%以上がさらに好ましい。セラミックスバルク体の相対密度が90%以上であると熱制御材料として有用な三酸化二チタン結晶の特性が十分に保たれる。相対密度の上限は特に限定されず100%でもよい。
 本明細書における相対密度は、アルキメデス法によってセラミックスバルク体の密度を測定し、Ti結晶の理論密度に対する百分率の値を、Ti結晶に対する相対密度(単位:%)とする。アルキメデス法は、空中重量および水中重量を測定し、空中重量を体積(水中重量/計測温度における水比重)で除して密度(単位:g/cm)を求める方法である。
<セラミックスバルク体の製造方法>
 本発明のセラミックスバルク体は、前記添加元素を含む添加粉末と、チタン(金属チタン)粉末と、酸化チタン(TiO)粉末との混合粉末を成形して焼成する方法で製造される。焼成は真空雰囲気中または不活性ガス(アルゴンガス、ヘリウムガス、ネオンガス等)雰囲気中で行うことが好ましい。真空雰囲気の場合の炉内の圧力は、低い方が好ましい、具体的には、300Pa未満が好ましく、30Pa未満がより好ましい。
 添加粉末は、添加元素単体の粉末または添加元素を含有する化合物粉末が好ましい。添加元素を含有する化合物には前記添加元素の2種以上を含有する複合酸化物などの化合物も含まれる。
 添加粉末としては、添加元素を含有する合成粉末を形成できる原料であれば特に限定されないが、酸化物、硝酸塩、炭酸塩など粉末が好適である。その例としては、ホウ素粉末、酸化アルミニウム(Al)粉末、酸化マグネシウム(MgO)粉末、ケイ素粉末、二酸化ケイ素(SiO)粉末、二酸化ジルコニウム(ZrO)粉末、ジルコン(ZrSiO)粉末等が挙げられる。なかでも、ホウ素粉末、酸化アルミニウム(Al)粉末、ケイ素粉末、または二酸化ジルコニウム(ZrO)粉末が好ましい。
 本発明のセラミックスバルク体の製造方法で使用される上記チタン粉末の平均粒径は10~500μmが好ましく、20~50μmがより好ましい。酸化チタン粉末の平均粒径は0.5~10μmが好ましく、1~3μmがより好ましい。
 また、添加粉末の平均粒径は0.1~50μmが好ましく、0.5~3μmがより好ましい。
 本明細書におけるこれら粉末の平均粒径は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線における50%となる体積の粒子径D50(すなわち体積基準累積50%径)であり、二次粒子における平均粒径である。粒度分布は、レーザー散乱粒度分布測定装置(レーザー回折法)で測定した頻度分布および累積体積分布曲線で求められる。粒子径は、粉末を水やエタノールなどの媒体中に超音波処理等で充分に分散させて粒度分布を測定される。レーザー回折法による粒子径測定方法としては、JIS Z8825-1(2001)に記載の方法を用いられる。
 混合粉末中のチタン粉末と酸化チタン粉末の含有比率は、焼成後にTiとなる化学量論比とする。焼成を真空雰囲気中または不活性ガス中で行う場合、混合粉末中のチタン粉末と酸化チタン粉末の比率は、チタン粉末のTi:酸化チタン粉末中のTiのモル比が1:3(Tiとなる化学量論比)となるようにされる。
 チタン粉末と酸化チタン粉末と添加粉末を混合して混合粉末を得る。混合方法は特に制限はなく、例えばボールミル等による混合など公知の方法を用いることができる。
 混合粉末を成形し、焼成する。成形方法および焼成方法は公知の方法を用いることができる。例えば、成形方法は、シート成形、プレス成形、鋳込み成形、射出成形、冷間等方圧プレスなどが使用される。また、焼結方法は、バッチ式の真空焼結炉、雰囲気制御が可能な焼結炉、熱間等方圧プレス、または、連続式の焼結炉などが使用される。なかでも、比較的短時間で緻密化しやすい点で放電プラズマ焼結(SPS)が好ましい
 放電プラズマ焼結では、混合粉末を放電プラズマ焼結装置用の焼結型に充填し、加圧しながら加熱して焼結を行う。焼結型は、たとえばグラファイト(黒鉛)製である。焼結型の大きさおよび形状は、成形しようとする形状および大きさに対応する。
 放電プラズマ焼結における焼成時の圧力は20~80MPaが好ましく、30~70MPaがより好ましい。放電プラズマ焼結における焼成温度は、900~1500℃℃が好ましく、1000~1300℃がより好ましい。昇温速度は、600℃から1000℃に達する範囲では5~200℃/分が好ましく、10~100℃/分がより好ましい。1000℃を超え焼結温度に達する範囲では1~50℃/分が好ましく、2~30℃/分がより好ましい。焼結温度での保持時間は1~480分間が好ましく、30~180分間がより好ましい。
<物性>
 本発明のセラミックスバルク体は、上記特定の添加元素を含有させたことにより、機械的強度が向上する。具体的には、添加元素を含有していない三酸化二チタン結晶相のみのセラミックスバルク体よりも3点曲げ強度が3%以上、あるいは50%以上、特には100%以上向上する。
 例えば、3点曲げ強度が3.5MPa以上であるセラミックスバルク体を得ることができる。なかでも、セラミックスバルク体の3点曲げ強度は、好ましくは4MPa以上であり、6MPa以上がより好ましく、10MPa以上がより好ましい。該3点曲げ強度の上限は特に限定されないが、加工の点から好ましくは、200MPa以下、さらに好ましくは100MPa以下である。
 本発明のセラミックスバルク体は、上記特定の添加元素を含有させたことにより、耐酸化性が向上する。具体的には、添加元素を含有していないセラミックスバルク体よりも、下記の耐酸化試験条件で加熱したときに形成される酸化層の厚さが薄くなる。該酸化層が薄い方が酸化され難く、耐酸化性に優れることを意味する。本発明のセラミックスバルク体において形成される酸化層の厚さは、添加元素を含有していないセラミックスバルク体において形成される酸化層の厚さよりも薄く、その厚さは300μm以下が好ましく、200μm以下がさらに好ましい。
 ここで、酸化層とは下記の耐酸化試験で試験後のセラミックスバルク体の表面付近に生成する変質層であり、耐酸化試験前のセラミックスバルク体よりも酸化が進行することによって生じる。酸化層は化学組成としては二酸化チタン(TiO)に近いものであり、耐酸化試験前のセラミックスバルク体の表面が茶色や黒紫色や黒色であるのに対して、多くの場合白色を呈する。そのため、耐酸化試験後のセラミックスバルク体の断面を光学顕微鏡で観察することで酸化層の厚みを計測できる。また、同様に耐酸化試験後のセラミックスバルク体の断面を電子線マイクロアナライザー(EPMA)で組成分析を行う、などの方法で酸化層の厚みを計測できる。
 耐酸化試験条件:セラミックスバルク体を大気中で、室温から850℃まで5℃/分の昇温速度で昇温し、850℃で4時間保持し、850℃から室温まで5℃/分の冷却速度で冷却する。
 本発明のセラミックスバルク体は、例えば、前記した耐酸化試験条件で加熱したときに形成される酸化層の厚さが300μm以下であるセラミックスバルク体を得ることができる。該酸化層の厚さは、好ましくは250μm以下であり、200μm以下がより好ましい。該酸化層の下限は測定限界値であり、例えば0.5μmである。
 以下に実施例を用いて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
<測定方法>
 [相対密度]
 セラミックスバルク体の密度をアルキメデス法により測定し、Ti結晶の理論密度(4.59g/cm)に対する相対密度を求めた。
 具体的には、JIS R1634(1998)に準処する方法で、セラミックスバルク体の密度を測定した。試験片は直径15mm、厚さ6mmの円柱状とした。
 [三酸化二チタン結晶相の含有量]
 セラミックスバルク体を、めのう製の乳鉢と、めのう製の乳棒とを使用して粉砕し、粉末を調製した(試料A)。次いで、この試料Aから必要量を取り出し、さらに標準試料を添加し、めのう製の乳鉢と、めのう製の乳棒とを使用して混合、粉砕をし、粉末を調製した(試料B)。標準試料は試料B中に30質量%以上から60質量%未満の範囲で含まれるように添加した。標準試料としては、X線回折用標準試料であるアルミナ粉末(アメリカ国立標準技術研究所製、製品名:SRM 676)、あるいはX線回折用標準試料である六ほう化ランタン粉末(アメリカ国立標準技術研究所製、製品名:SRM 660)を用いた。
 試料Bを粉末X線回折測定した。次いで、得られた回折パターンから全粉末パターンフィッティング法により標準試料に対する三酸化二チタン結晶相の質量比を求め、算術的にセラミックスバルク体中の三酸化二チタン結晶相の含有量を決定した。粉末X線回折測定にはX線回折装置(リガク社製、製品名:SmartLab)を使用し、測定条件は以下の条件を用いた。また、三酸化二チタン結晶相の質量比の算出は、粉末X線解析ソフトウェア(リガク社製、製品名:PDXL)を用いた。
  管球:Cu管球
  管電圧:45キロボルト
  管電流:200ミリアンペア
  フィルター:CuKβ
  走査軸:2θ/θ
  走査速度:毎分10度
  走査範囲:42度から70度
  入射スリット:1/3度
  長手制限スリット:10ミリメートル
  受光スリット1:8ミリメートル
  受光スリット2:13ミリメートル
 [3点曲げ強度]
 セラミックスバルク体を、幅7mm、厚さ4.5mm、長さ10mm以上の板状に切り出して試験片とした。万能試験機(ティー・エス・イー社製、製品名:AC-100KN-C)を用い、支点間距離9.2mm、クロスヘッドスピード0.1mm/min、室温(約25℃)の条件で支点間の中央の1点に荷重を加えて、試験片が折れたときの最大荷重(単位:N)を測定した。
 下式に基づいて曲げ強度(単位:Pa)を求めた。下式においてPは最大荷重(単位:N)、Lは支点間距離(mm)、Wは試験片の幅(mm)、hは試験片の厚さ(mm)である。
    曲げ強度σ=3PL/(2Wh
 [耐酸化試験による酸化層の厚さ]
 電気炉(アズワン社製、製品名:HPM-1N)を用い、セラミックスバルク体の試験片を、大気中で加熱した。加熱は、室温から850℃まで5℃/分の昇温速度で昇温し、850℃で4時間保持し、850℃から室温まで5℃/分の冷却速度で冷却する条件で行った。試験片は1辺が3mmの立方体よりも大きく、1辺が15mmの立方体よりも小さい大きさとした。加熱を終えた試験片を切断し、断面を研磨し、断面の画像観察により酸化層の厚さを測定した。
 酸化層は三酸化二チタンが酸化されて二酸化チタンとなった層である。酸化層の観察および厚さの測定は光学顕微鏡、電子顕微鏡、または電子線マイクロアナライザー(EPMA)で行うことができる。
 酸化層の厚さは耐酸化試験後の試料の断面を研磨し、その研磨面から酸化層の厚みを無作為に3か所以計測して得られる平均値とする。
 [比較例1]
 本例では、添加元素を含有させずに、三酸化二チタン結晶相のみのセラミックスバルク体(焼結体)を製造した。
 平均粒径30μmの金属Ti粉末と平均粒径2μmのTiO粉末を、金属Ti粉末のTi:TiO粉末中のTiのモル比が1:3(Tiとなる化学量論比)となるようにボールミルで4時間混合して、混合粉末を調製した。
 得られた混合粉末をグラファイト製焼結型に充填し、下記の条件で加圧しながら加熱焼成して、直径15mm、厚み6mmの円柱状のセラミックスバルク体を得た。
 得られたセラミックスバルク体の相対密度、3点曲げ強度、および耐酸化試験による酸化層の厚さを上記の方法で測定した。また、セラミックスバルク体中の三酸化二チタン結晶相の含有量を上記の方法で求めた。結果を表1に示す。
 図2は、本比較例1で得られたセラミックスバルク体について、耐酸化試験で加熱を終えた試験片の断面の光学顕微鏡写真である。図2において、符号4は酸化層を示す。
 <放電プラズマ焼結(SPS)条件>
  装置:放電プラズマ焼結装置(SPSシンテックス社、製品名:SPS-515S)  焼結雰囲気:真空(約10Pa)。
  焼結温度:1100℃。
  焼結保持時間:45分間。
  焼結時の圧力:44MPa。
  温度プログラム:600℃で5分間加熱→600℃から1000℃に達するまで100℃/分で昇温→1000℃から1100℃に達するまで25℃/分で昇温、1100℃に45分間保持→1100℃から600℃まで5℃/分で降温→炉内で60分間放冷→100℃以下に降温→焼結型から取り出す。
 [実施例1]
 比較例1において、混合粉末を調製する際に、平均粒径0.5μmのホウ素粉末を、焼成後のセラミックスバルク体に対するホウ素元素の含有量が、表1中の「添加元素の含有量(質量%)」に示す量となるように添加したほかは同様に実施することにより混合粉末を得た。得られた混合粉末を用い、比較例1と同様に実施してセラミックスバルク体を製造し、このセラミックスバルク体について表1に示す物性評価を行った。
 図3は、本実施例において添加元素(B)の含有量を0.5質量%とした場合に得られたセラミックスバルク体について、耐酸化試験で加熱を終えた試験片の断面の光学顕微鏡写真である。図3において、符号4は酸化層を示す。
 [実施例2~7]
 表1に示す、添加粉末の種類、平均粒径、および添加元素の含有量を使用したほかは、実施例1と同様に実施して実施例2~7のセラミックスバルク体を製造した。
 なお、表1中の「添加元素の含有量(質量%)」は、実施例1の場合と同様である。例えば、実施例7の上段の例では、金属Ti粉末とTiO粉末との混合物(Tiモル比:1:3)の99.5gに対して、平均粒径45μmのZrSiOの0.5gを加えた混合粉末を使用して得られたセラミックスバルク体であり、このセラミックスバルク体における添加元素の含有量は、0.33質量%である。
 実施例2~7で得られた各ラミックスバルク体について物性評価を行い、それらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果に示すように、実施例1~7で得られたセラミックスバルク体は、添加元素を含有しない比較例1に比べて、相対密度はほぼ同等であるのに、3点曲げ強度が高くて機械的強度に優れ、耐酸化試験による酸化層が薄くて耐酸化性に優れる。
 なお、2016年8月26日に出願された日本特許出願2016-165798号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1:主相(三酸化二チタン結晶相)、2:孔、3:その他の相(添加元素を含む)、4:酸化層

Claims (14)

  1.  主相が三酸化二チタン結晶相であるセラミックスバルク体であって、下記元素群から選ばれる1種以上の添加元素を0.01~8質量%含む、セラミックスバルク体。
     元素群:B、Si、Zr、Al、Mg、Na、K、Cs、Y、V、Nb、Ta、Cr、Mo、Ta、Fe、Co、Ni、Cu、Zn、Ge、Sn、P、La、およびCe。
  2.  三酸化二チタン結晶相を70質量%以上含有する、請求項1に記載のセラミックスバルク体。
  3.  前記添加元素がホウ素(B)を含む、請求項1または2に記載のセラミックスバルク体。
  4.  前記添加元素がケイ素(Si)を含む、請求項1または2に記載のセラミックスバルク体。
  5.  前記添加元素がB、Si、Zr、Al、およびMgからなる群から選ばれる1種以上を含む、請求項1または2に記載のセラミックスバルク体。
  6.  Ti結晶に対する相対密度が90%以上である、請求項1~5のいずれか一項に記載のセラミックスバルク体。
  7.  3点曲げ強度が3.5MPa以上である、請求項1~6のいずれか一項に記載のセラミックスバルク体。
  8.  3点曲げ強度が、前記添加元素を含有していない三酸化二チタン結晶相のみのセラミックスバルク体よりも高い、請求項1~6のいずれか一項に記載のセラミックスバルク体。
  9.  下記の耐酸化試験条件で加熱したときに形成される酸化層の厚さが300μm以下である、請求項1~8のいずれか一項に記載のセラミックスバルク体。
     耐酸化試験条件:大気中で、室温から850℃まで5℃/分の昇温速度で昇温し、850℃で4時間保持し、850℃から室温まで5℃/分の冷却速度で冷却する。
  10.  下記の耐酸化試験条件で加熱したときに形成される酸化層の厚さが、前記添加元素を含有していないセラミックスバルク体よりも薄い、請求項1~8のいずれか一項に記載のセラミックスバルク体。
     耐酸化試験条件:大気中で、室温から850℃まで5℃/分の昇温速度で昇温し、850℃で4時間保持し、850℃から室温まで5℃/分の冷却速度で冷却する。
  11.  焼結体である、請求項1~10のいずれか一項に記載のセラミックスバルク体。
  12.  チタン粉末と、酸化チタン粉末と、添加元素またはその化合物の粉末との混合粉末を成形して焼成する工程を有し、前記添加元素は下記元素群から選ばれる1種以上であり、かつ、焼成後のバルク体に対する前記添加元素の含有量が0.01~8質量%である、セラミックスバルク体の製造方法。
     元素群:B、Si、Zr、Al、Mg、Na、K、Cs、Y、V、Nb、Ta、Cr、Mo、Ta、Fe、Co、Ni、Cu、Zn、Ge、Sn、P、La、およびCe。
  13.  前記添加粉末がAl、MgO、SiO、ZrO、およびZrSiOからなる群から選ばれる1種以上である、請求項12に記載のセラミックスバルク体の製造方法。
  14.  前記焼成を放電プラズマ焼結法で行う、請求項12または13に記載のセラミックスバルク体の製造方法。
PCT/JP2017/030517 2016-08-26 2017-08-25 三酸化二チタン質セラミックスバルク体およびその製造方法 WO2018038252A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-165798 2016-08-26
JP2016165798A JP2019189464A (ja) 2016-08-26 2016-08-26 三酸化二チタン質セラミックスバルク体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2018038252A1 true WO2018038252A1 (ja) 2018-03-01

Family

ID=61246183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030517 WO2018038252A1 (ja) 2016-08-26 2017-08-25 三酸化二チタン質セラミックスバルク体およびその製造方法

Country Status (2)

Country Link
JP (1) JP2019189464A (ja)
WO (1) WO2018038252A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107276A (ja) * 2010-11-16 2012-06-07 Nichia Corp チタン酸化物系蒸着材料及びその製造方法
JP2014070234A (ja) * 2012-09-28 2014-04-21 Nichia Chem Ind Ltd チタン酸化物系蒸着材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107276A (ja) * 2010-11-16 2012-06-07 Nichia Corp チタン酸化物系蒸着材料及びその製造方法
JP2014070234A (ja) * 2012-09-28 2014-04-21 Nichia Chem Ind Ltd チタン酸化物系蒸着材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VEREMCHUK, I. ET AL.: "Diffusion-Controlled Formation of Ti2O3 during Spark-Plasma Synthesis", INORGANIC CHEMISTRY, vol. 52, no. 8, 15 April 2013 (2013-04-15), pages 4458 - 4463, XP055468180 *

Also Published As

Publication number Publication date
JP2019189464A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5881174B2 (ja) 配向性max相セラミック及びその製造方法
JP5836522B2 (ja) 窒化ケイ素基板の製造方法
JP6052735B2 (ja) 高強度強靱性ZrO2−Al2O3系固溶体セラミックスの作製法
WO2005113466A1 (ja) 高熱伝導性窒化ケイ素焼結体及び窒化ケイ素構造部材
JP6649959B2 (ja) 透明アルミナ焼結体の製法
JP5930317B2 (ja) 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法
JP6908248B2 (ja) 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法
JPWO2019167657A1 (ja) ニオブ酸カリウムナトリウムスパッタリングターゲット及びその製造方法
Li et al. Improved ferroelectric and piezoelectric properties of (Na 0. 5 K 0. 5) NbO3 ceramics via sintering in low oxygen partial pressure atmosphere and adding LiF
JP6982000B2 (ja) 配向AlN焼結体及びその製法
Ni et al. Textured HfB2-based ultrahigh-temperature ceramics with anisotropic oxidation behavior
WO2005049525A1 (ja) 高熱伝導性窒化アルミニウム焼結体
JP5292130B2 (ja) スパッタリングターゲット
Anas et al. Nanofillers in ZnO based materials: a ‘smart’technique for developing miniaturized high energy field varistors
JP3775335B2 (ja) 窒化ケイ素質焼結体および窒化ケイ素質焼結体の製造方法、並びにそれを用いた回路基板
JP4518020B2 (ja) 窒化ケイ素質焼結体およびそれを用いた回路基板。
Wei et al. Fabrication of Yb 3+-doped YAG transparent ceramics by aqueous gelcasting
JP2007261881A (ja) TiB2基Ti−Si−C系複合セラミックス及びその焼結体製造方法
WO2018038252A1 (ja) 三酸化二チタン質セラミックスバルク体およびその製造方法
WO2018117162A1 (ja) 透明AlN焼結体及びその製法
JP5403851B2 (ja) 珪酸ジルコニウム焼結体の製造方法
Bregiroux et al. Effect of the sintering method on microstructure and thermal and mechanical properties of zirconium oxophosphate ceramics Zr2O (PO4) 2
Mansourirad et al. Synthesis and characterization of Ag-8% wt Cr2O3 composites prepared by different densification processes
JP5673945B2 (ja) 窒化ケイ素系セラミックスの製造方法
JP5728684B2 (ja) 快削性セラミックス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP