WO2018038058A1 - スカンジウムの精製方法、スカンジウム抽出剤 - Google Patents

スカンジウムの精製方法、スカンジウム抽出剤 Download PDF

Info

Publication number
WO2018038058A1
WO2018038058A1 PCT/JP2017/029807 JP2017029807W WO2018038058A1 WO 2018038058 A1 WO2018038058 A1 WO 2018038058A1 JP 2017029807 W JP2017029807 W JP 2017029807W WO 2018038058 A1 WO2018038058 A1 WO 2018038058A1
Authority
WO
WIPO (PCT)
Prior art keywords
scandium
extractant
acidic solution
mixed
solution
Prior art date
Application number
PCT/JP2017/029807
Other languages
English (en)
French (fr)
Inventor
後藤 雅宏
富生子 久保田
いつみ 松岡
浅野 聡
小林 宙
Original Assignee
国立大学法人九州大学
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 住友金属鉱山株式会社 filed Critical 国立大学法人九州大学
Priority to US16/327,359 priority Critical patent/US20190185964A1/en
Priority to AU2017317418A priority patent/AU2017317418B2/en
Priority to EP17843538.4A priority patent/EP3505645A4/en
Priority to CN201780051708.1A priority patent/CN109642270A/zh
Publication of WO2018038058A1 publication Critical patent/WO2018038058A1/ja
Priority to PH12019500379A priority patent/PH12019500379B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/381Phosphines, e.g. compounds with the formula PRnH3-n, with n = 0-3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/408Mixtures using a mixture of phosphorus-based acid derivatives of different types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering scandium, for example, a method for purifying scandium by separating impurities including iron from an acidic solution containing scandium produced in a hydrometallurgical process of nickel oxide ore. .
  • rare earth elements is scandium.
  • nickel oxide ores such as laterite ores are known to contain trace amounts of scandium, and scandium contained in nickel oxide ores is leached under pressure by adding sulfuric acid to nickel oxide ores. Can be recovered from the leachate obtained by
  • Patent Document 1 discloses (a) a leaching step of leaching an oxide ore with an acid under high temperature and high pressure to obtain a leachate containing nickel and scandium; and (a) adding a neutralizing agent to the leachate to adjust the pH to 2 By adjusting to the range of ⁇ 4, the first neutralization step of removing iron and aluminum in the leachate as precipitates, and (c) neutralizing the solution after removing the precipitates in the first neutralization step A second neutralization step of recovering scandium in the solution as a precipitate by adjusting the pH to a range of more than 4 to 7.5 by adding an agent, and (d) adding a neutralizing agent to adjust the pH to 7. It has been shown that nickel and scandium can be recovered from oxide ore by performing a third neutralization step of recovering nickel in the solution as a precipitate by adjusting to more than 5.
  • Patent Document 2 there is a method described in Patent Document 2 as a method for selectively separating only scandium by means such as solvent extraction.
  • an organic solvent is added to a scandium-containing solution in an aqueous phase containing at least one of iron, aluminum, calcium, yttrium, manganese, chromium, and magnesium in addition to scandium, and the scandium component is added to the organic solvent.
  • To extract in order to separate the trace component extracted together with scandium in the organic solvent, scrubbing by adding an aqueous hydrochloric acid solution, removing the trace component, adding an aqueous sodium hydroxide solution in the organic solvent, The remaining scandium is made into a slurry containing Sc (OH) 3.
  • Sc (OH) 3 obtained by filtering this slurry is dissolved with hydrochloric acid to obtain an aqueous scandium chloride solution, and oxalic acid is added thereto to form a scandium oxalate precipitate.
  • impurities are separated into the filtrate, and then calcined to obtain high-purity scandium oxide.
  • Patent Document 3 by utilizing a cooperative effect, a mixture of two or more kinds of extractants can be used in a higher yield than the case where one kind of extractant is used alone, from an electroless nickel waste liquid.
  • a method for recovering nickel has been proposed. According to this Patent Document 3, when one kind of extractant is used alone, nickel can hardly be extracted, but by using two or more kinds of extractants in combination, without adjusting the pH, It is said that 98% to 99% of nickel can be recovered by one batch extraction.
  • Patent Document 4 proposes a method of extracting cobalt and manganese from a mixed solution of cobalt, manganese, calcium and magnesium by mixing a carboxylic acid-based extractant and an oxime-based extractant.
  • Patent Document 3 nor Patent Document 4 has a report on the extraction behavior of scandium, and only scandium is selectively extracted and separated from a solution (leaching solution) obtained by acid leaching of nickel oxide ore. No possible solvent has been found.
  • the present invention has been proposed in view of such circumstances, and a method for efficiently purifying scandium by separating scandium and impurities from an acidic solution containing scandium and containing iron.
  • the purpose is to provide.
  • the present inventors have intensively studied to solve the above-mentioned problems. As a result, it has been found that scandium can be selectively extracted by performing solvent extraction using a mixed extractant containing a phosphate extractant and a neutral extractant, and the present invention has been completed.
  • an acidic solution containing scandium and at least an elemental component containing iron is used as a solvent by a mixed extractant containing a phosphate extractant and a neutral extractant.
  • This is a method for purifying scandium, which is subjected to extraction to extract scandium from the acidic solution.
  • the second invention of the present invention is the method for purifying scandium according to the first invention, wherein the phosphate extractant is 2-ethylhexylphosphonic acid-1-ethylhexyl.
  • the third invention of the present invention is a method for purifying scandium according to the first or second invention, wherein the neutral extractant is tri-n-octylphosphine oxide.
  • the phosphoric acid extractant in any one of the first to third aspects, is mixed in a molar ratio of 5% to 50%. Is a method for purifying scandium.
  • the pH of the acidic solution is adjusted to a range of 0.0 or more and 2.0 or less, and the acid after pH adjustment is adjusted.
  • This is a method for purifying scandium, wherein the solution is subjected to the solvent extraction.
  • the acidic solution is a solution obtained by leaching scandium by adding an acid to nickel oxide ore, or a scandium oxide or A solution obtained by dissolving scandium hydroxide with an acid, adjusting the pH of the acidic solution to a range of 0.0 to 2.0, and subjecting the acidic solution after pH adjustment to the solvent extraction
  • This is a method for purifying scandium.
  • the seventh invention of the present invention is a scandium purification method according to any one of the first to sixth inventions, wherein the acidic solution further contains at least one of zirconium and thorium.
  • the eighth invention of the present invention is an extractant for extracting scandium from an acidic solution containing elemental components containing at least iron and containing scandium, and a phosphate extractant; A scandium extractant containing a neutral extractant.
  • a ninth invention of the present invention is the scandium extractant according to the eighth invention, wherein the phosphoric acid extractant is contained in a molar ratio of 5% to 50%.
  • scandium can be efficiently purified from an acidic solution containing scandium and impurities containing iron.
  • FIG. It is a figure which shows the relationship between pH and an extraction rate when mixed extractant (PC88A + TOPO) is used in Example 1.
  • FIG. It is a figure which shows the relationship between pH and an extraction rate when the extractant which consists only of a neutral extractant (TOPO) in the comparative example 1 is used.
  • TOPO neutral extractant
  • PC88A phosphate type extractant
  • FIG. It is a figure which shows the relationship between pH and a separation factor when the scandium extractant which is a mixed extractant in Example 1 is used.
  • the scandium purification method is a method of extracting (recovering) scandium by extracting the scandium from an acidic solution containing scandium (Sc) by solvent extraction.
  • scandium is extracted from an acidic solution containing scandium and containing an impurity element containing at least iron (Fe) while separating it from those impurities.
  • a mixed extract containing a phosphate extractant and a neutral extractant was used for an acidic solution containing scandium and an impurity element containing at least iron. It is characterized by extracting scandium from the acidic solution by subjecting it to solvent extraction.
  • At least iron-containing impurities, scandium, and impurity elements can be efficiently separated, and only scandium can be selectively extracted.
  • scandium can be extracted with excellent selectivity even in acidic solutions with a low pH range. Can do.
  • scandium can be extracted selectively by separating efficiently from impurities, the amount of neutralizing agent used in the neutralization treatment for the acidic solution can be effectively reduced. It is possible to prevent the product from being generated.
  • An acidic solution containing scandium (hereinafter simply referred to as “acidic solution”) is a solution to be subjected to solvent extraction treatment, and contains scandium and an impurity element containing at least iron.
  • the acidic solution a solution obtained by leaching a valuable metal containing scandium by adding an acid such as sulfuric acid to nickel oxide ore in a hydrometallurgical process of nickel oxide ore can be given.
  • the acidic solution include a solution obtained by dissolving scandium oxide or scandium hydroxide with an acid such as sulfuric acid.
  • Examples of the acid solution obtained by acid leaching of nickel oxide ore include, for example, a leachate obtained by acid leaching of nickel oxide ore, or a sulfiding agent added to the leachate to separate and remove nickel, cobalt, etc.
  • a post-sulfurized solution after the treatment Specifically, the sulfidized solution is leached by adding an acid such as sulfuric acid to nickel oxide ore, and the obtained leached solution is neutralized using a neutralizing agent, and then hydrogen sulfide gas. This is a solution after adding a sulfurizing agent such as to cause a sulfurization reaction and separating and removing nickel and cobalt sulfides.
  • the acidic solution obtained by acid leaching of such nickel oxide ore contains one or more elements of zirconium (Zr) and thorium (Th) in addition to iron.
  • the mixed extractant contains a phosphate extractant and a neutral extractant.
  • a mixed extractant is used to perform the solvent extraction process on the acidic solution described above.
  • the phosphate extractant is not particularly limited, and examples thereof include 2-ethylhexylphosphonic acid-1-ethylhexyl.
  • this phosphoric acid type extractant the brand name PC88A by Daihachi Chemical Industry Co., Ltd. is marketed.
  • the neutral extractant is not particularly limited, and examples thereof include tri-n-octylphosphine oxide.
  • the brand name TOPO etc. by Dojin Chemical Co., Ltd. is marketed.
  • the ratio of the phosphoric acid extractant in the mixed extractant is preferably in the range of 5% to 50% in terms of molar ratio. Taking into account the ease of handling, it is more preferable that the molar ratio is in the range of 15% to 30%.
  • the mixing ratio of the phosphoric acid extractant is in the range of 5% or more and 50% or less in terms of molar ratio, it is possible to more efficiently separate scandium and impurity elements including iron. Selectivity can be increased.
  • an extractant other than the above-described phosphate extractant and neutral extractant may be included as long as the effect is not impaired.
  • the extractant used for solvent extraction has a high viscosity, and if used as it is in the extraction process, there is an adverse effect on the operation such as poor phase separation from the aqueous phase. Therefore, in order to reduce the viscosity of the extractant, it is generally performed to dilute the extractant with a diluent.
  • the diluent is not particularly limited as long as it can dissolve the mixed extractant to be used and the complex of scandium which is a rare earth element.
  • examples thereof include chlorinated solvents such as chloroform and dichloromethane, aromatic hydrocarbons such as benzene, toluene and xylene, and aliphatic hydrocarbons such as hexane.
  • chlorinated solvents such as chloroform and dichloromethane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane.
  • Such a diluent may be used individually by 1 type, and may mix and use 2 or more types.
  • alcohols such as 1-octanol may be mixed and used.
  • the acidic solution to be treated and the mixed extractant are mixed and stirred. Then, scandium ions are selectively extracted into the organic phase by separating the mixed solution of the acidic solution and the mixed extractant into an aqueous phase and an organic phase using a separatory funnel.
  • the mixed extractant with the mixing ratio of the phosphate extractant in the range of 5% or more and 50% or less, the selectivity of scandium can be improved and the extraction can be performed more efficiently can do.
  • the stirring operation in the solvent extraction treatment may be performed at a sufficient number of rotations such that the organic phase and the aqueous phase are not separated when the mixed extractant and the acidic solution are mixed.
  • the stirring time is not particularly limited, but is preferably 20 minutes or more from the viewpoint of allowing scandium to be extracted from the acidic solution with a higher yield.
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution is appropriately added to suppress the decrease in pH. It is preferable.
  • the pH of the acidic solution to be treated it is preferable to adjust to a range of 0.0 or more and 2.0 or less, and 1.3 or more and 2.0 or less. It is more preferable to adjust, and it is particularly preferable to adjust to 1.7 to 2.0.
  • an acidic solution containing a large amount of iron ions for example, a solution obtained by acid leaching of nickel oxide ore
  • an acidic solution containing iron for example, a solution obtained by acid leaching of nickel oxide ore
  • the pH exceeds 2.5 to 3.0
  • rare earth elements such as scandium coprecipitate, and inclusions called clads are produced during the extraction process, making operation difficult.
  • an acidic solution containing iron for example, when the pH is 2.5 or more, iron hydroxide is generated and phase separation is significantly deteriorated.
  • the pH is adjusted to a range of 0.0 to 2.0, and after pH adjustment Solvent extraction is preferably performed on the acidic solution.
  • scandium can be extracted at a sufficiently high extraction rate. It can be extracted and can be operated stably. In this way, after pH adjustment within a predetermined range, by subjecting the acidic solution after pH adjustment to solvent extraction, only scandium is purified from an acidic solution containing an impurity element including iron. And can be extracted in high yield.
  • the mixed extractant used in Example 1 has a phosphate extractant (PC88A) molar concentration of 0.1 mol / L and a neutral extractant (TOPO) molar concentration of 0.5 mol / L.
  • PC88A phosphate extractant
  • TOPO neutral extractant
  • the extractant used in Comparative Example 1 was obtained by dissolving in swazole so that the molar concentration of the neutral extractant (TOPO) was 0.5 mol / L.
  • the extractant used in Comparative Example 2 was obtained by dissolving in swazole so that the molar concentration of the phosphate extractant (PC88A) was 0.6 mol / L.
  • the extractant used in Comparative Examples 1 and 2 is a single extractant based on a phosphate extractant or a neutral extractant.
  • Example 1 and Comparative Examples 1 and 2 a sulfuric acid solution (acidic solution) containing scandium (Sc), iron (Fe), and zirconium (Zr) or thorium (Th) at concentrations shown in Table 2 below, respectively. Prepared.
  • Example 1 In Example 1, the sulfuric acid solution was divided into five 2.5 ml portions, and the pH of the sulfuric acid solution was adjusted to a constant value within the range of 0.0 to 2.0. Each sulfuric acid solution was mixed with 2.5 ml of a mixed extractant for extracting scandium (PC88A + TOPO), and the mixed solution was stirred at a rotational speed of 650 rpm for 20 minutes. At this time, in order to maintain the pH in the sulfuric acid solution at the same value as that before mixing with the mixed extractant, a 1 mol / L aqueous sodium hydroxide solution was appropriately added.
  • PC88A + TOPO a mixed extractant for extracting scandium
  • the aqueous phase and the organic phase of the mixed solution are separated with a separatory funnel, and the extraction residual liquid (aqueous phase) is subjected to elemental analysis using an induction plasma emission spectrometer (ICP-AES).
  • ICP-AES induction plasma emission spectrometer
  • Comparative Example 1 In Comparative Example 1, the sulfuric acid solution was divided into five 2.5 ml portions, and the pH of the sulfuric acid solution was adjusted to a constant value within the range of 0.0 to 2.5, and for scandium extraction. Except that a neutral extractant (TOPO) was used as the extractant, the extraction rate of various metals from the aqueous phase to the organic phase was determined in the same manner as in Example 1. Table 4 below and FIG. 1 show the relationship between pH and the extraction rate of various metals.
  • TOPO neutral extractant
  • Comparative Example 2 In Comparative Example 2, the sulfuric acid solution was divided into three 2.5 ml portions, and the pH of the sulfuric acid solution was adjusted to a constant value within the range of 0.0 to 1.0, and for scandium extraction. Except that a phosphoric acid-based extractant (PC88A) was used as the extractant, the extraction rate of various metals from the aqueous phase to the organic phase was determined in the same manner as in Example 1. Table 5 below and FIG. 1 show the relationship between the pH and the extraction rate of various metals.
  • PC88A phosphoric acid-based extractant
  • the pH of the acidic solution to be treated is 0.0 or more and 2.
  • Scandium alone can be extracted at a high yield by subjecting it to solvent extraction in a state of being adjusted to 0 or less, preferably 1.7 or more and 2.0 or less.
  • FIG. 4 shows the separation coefficient between scandium and impurity elements Fe 3+ and Zr 4+ when the mixed extractant is used in Example 1.
  • FIG. 5 shows the separation coefficient between scandium and the impurity elements Fe 3+ and Zr 4+ when an extractant composed only of the neutral extractant is used in Comparative Example 1.
  • the sulfuric acid solution that was the subject of solvent extraction treatment was pressure sulfuric acid leaching of the actual nickel oxide ore by a known method, and a sulfurizing agent was added to the obtained leachate to separate nickel and cobalt by a sulfurization reaction. Then, a sulfuric acid solution (post-sulfurized solution) was prepared. As shown in Table 7, this sulfuric acid solution contains scandium (Sc), and impurities such as aluminum (Al), chromium (Cr), thorium (Th), and trivalent iron (Fe); Contains trace amounts of residual nickel (Ni).
  • the sulfuric acid solution was divided into six 30 ml portions, and the pH of the sulfuric acid solution was adjusted to a constant value within the range of 1.0 to 2.0.
  • Each sulfuric acid solution was mixed with 30 ml of a mixed extractant for extracting scandium (PC88A + TOPO), and the mixed solution was stirred at a rotational speed of 650 rpm for 20 minutes.
  • a 1 mol / L aqueous sodium hydroxide solution was appropriately added.
  • the aqueous phase and the organic phase of the mixed solution are separated with a separatory funnel, and the extraction residual liquid (aqueous phase) is subjected to elemental analysis using an induction plasma emission spectrometer (ICP-AES).
  • ICP-AES induction plasma emission spectrometer
  • the extraction rate of various metals from the aqueous phase to the organic phase was determined.
  • the relationship between pH and the extraction rate of various metals contained in nickel oxide ore is shown in Table 8 and FIG. 6 below for Example 2, and Table 9 and FIG.
  • the solvent extraction operation was carried out using the same sulfuric acid solution (Table 7) as in Example 2 as the treatment target, and adjusting the pH of the sulfuric acid solution to three patterns of 1.0, 1.6, and 1.8, respectively. Performed in the same manner as 2. Then, the aqueous phase and the organic phase of the mixed solution are separated with a separatory funnel, and the elemental analysis using an induction plasma emission spectroscopic analyzer (ICP-AES) is performed on the extraction residual liquid (aqueous phase) to obtain various metals. The extraction rate from the aqueous phase to the organic phase was determined. Table 11 below and FIGS. 8 and 9 show the relationship between pH and the extraction rate of various metals.
  • ICP-AES induction plasma emission spectroscopic analyzer
  • Example 4 Solvent extraction with mixed extractants using other phosphate extractants >> [Example 4] As Example 4, the following mixed extractant was prepared and subjected to solvent extraction. That is, as shown in Table 12 below, di (2,4,4-trimethylpentyl) phosphinic acid (trade name: Cyanex 272) was used as the phosphate extractant, and the molar concentration of the phosphate extractant was 0. A mixed extractant was prepared by dissolving each extractant in swazole so that the molar concentration of 0.1 mol / L and neutral extractant (TOPO) was 0.5 mol / L.
  • Table 12 di (2,4,4-trimethylpentyl) phosphinic acid (trade name: Cyanex 272) was used as the phosphate extractant, and the molar concentration of the phosphate extractant was 0.
  • a mixed extractant was prepared by dissolving each extractant in swazole so that the molar concentration of 0.1 mol / L and neutral extractant (TO
  • a sulfuric acid solution containing scandium (Sc), iron (Fe), and zirconium (Zr) at the concentrations shown in Table 13 below is prepared, and the sulfuric acid solution is divided into six 30 ml portions.
  • the pH was adjusted to a constant value within the range of 1.0 to 2.0.
  • Solvent extraction was performed in the same manner as in Example 1. Then, the aqueous phase and the organic phase of the mixed solution are separated with a separatory funnel, and the elemental analysis using an induction plasma emission spectroscopic analyzer (ICP-AES) is performed on the extraction residual liquid (aqueous phase) to obtain various metals. The extraction rate from the aqueous phase to the organic phase was determined. Table 14 below and FIG. 10 show the relationship between the pH and the extraction rate of various metals.
  • ICP-AES induction plasma emission spectroscopic analyzer
  • Example 4 From the results of Example 4, even with a mixed extractant using a phosphate-based extractant different from that used in Example 1, scandium and impurity elements can be efficiently separated, and scandium is highly purified. could be purified.
  • FIG. 11 shows the separation coefficient between scandium and impurity elements Fe 3+ and Zr 4+ .

Abstract

スカンジウムを含有するとともに鉄を含む不純物を含有する酸性溶液から、スカンジウムと不純物とを分離してスカンジウムを効率的に精製する方法を提供する。 本発明に係るスカンジウムの精製方法は、スカンジウムを含有するとともに、少なくとも鉄を含む元素成分を含有する酸性溶液を、リン酸系抽出剤と中性抽出剤とを含有する混合抽出剤による溶媒抽出に付し、その酸性溶液からスカンジウムを抽出する。ここで、混合抽出剤においては、リン酸性抽出剤がモル比で5%以上50%以下の範囲の混合割合で含まれていることが好ましい。また、溶媒抽出に先立ち、酸性溶液のpHを0.0以上2.0以下の範囲に調整することが好ましい。

Description

スカンジウムの精製方法、スカンジウム抽出剤
 本発明は、スカンジウムの回収方法に関するものであり、例えば、ニッケル酸化鉱石の湿式製錬プロセスにて生成されるスカンジウムを含有する酸性溶液等から鉄を含む不純物を分離してスカンジウムを精製する方法に関する。
 希土類元素は、高価なもので、その産出量も限られており、また、分離精製が困難な元素であることもあって、利用範囲は限られていた。
 希土類元素の一例として、スカンジウムがある。例えば、ラテライト鉱等のニッケル酸化鉱石には、微量のスカンジウムが含有されることが知られており、そのニッケル酸化鉱石に含まれるスカンジウムは、ニッケル酸化鉱石に硫酸を添加して加圧浸出することによって得られる浸出液から回収することができる。
 例えば、特許文献1には、(ア)酸化鉱石を高温高圧下で酸により浸出してニッケル及びスカンジウムを含む浸出液を得る浸出工程と、(イ)その浸出液に中和剤を加えてpHを2~4の範囲に調整することにより、浸出液中の鉄及びアルミニウムを沈殿物として除去する第一中和工程と、(ウ)第一中和工程で沈殿物を除去した後の溶液に、中和剤を加えてpHを4超~7.5の範囲に調整することにより溶液中のスカンジウムを沈殿物として回収する第二中和工程と、(エ)さらに中和剤を加えてpHを7.5超に調整することにより、溶液中のニッケルを沈殿物として回収する第三中和工程と、を行うことによって、酸化鉱石からニッケル及びスカンジウムを回収できることが示されている。
 しかしながら、この特許文献1に記載の方法で工業的に操業しようとすると、種々の問題が生じる。例えば、第一中和工程でのpH調整範囲と、第二中和工程でのpH調整範囲とが近接するため、第一中和工程では、鉄及びアルミニウムと共にスカンジウムも沈澱し、スカンジウムの抽出率低下を招く可能性がある。また、第二中和工程では、スカンジウムと共に鉄及びアルミニウムも沈殿し、スカンジウムの純度低下を招く可能性がある。したがって、いずれの状況も好ましくない。また、中和剤を加えることで大量の沈殿物が発生するが、一般に、酸にアルカリを添加して得られる沈殿物の性状は不安定で濾過性に劣り、設備規模の拡大等のコスト増加を伴う可能性がある。
 そのため、中和工程の回数をできるだけ少なくすることが好ましく、スカンジウムを含有する溶液から、溶媒抽出等の手段を用いてスカンジウムだけを選択的に分離する方法が提案されている。
 具体的に、溶媒抽出等の手段でスカンジウムだけを選択的に分離する手法として、例えば特許文献2の記載されている方法がある。この方法は、先ず、スカンジウムの他に少なくとも鉄、アルミ、カルシウム、イットリウム、マンガン、クロム、マグネシウムの1種以上を含有する水相の含スカンジウム溶液に有機溶媒を加えて、スカンジウム成分を有機溶媒中に抽出する。次いで、有機溶媒中にスカンジウムと共に抽出された微量成分を分離するために塩酸水溶液を加えてスクラビングを行い、微量成分を除去した後、有機溶媒中に水酸化ナトリウム水溶液を加えて、有機溶媒中に残存するスカンジウムをSc(OH)3を含むスラリーとする。そして、このスラリーを濾過して得られたSc(OH)3を塩酸で溶解することによって塩化スカンジウム水溶液を得て、これにシュウ酸を加えてシュウ酸スカンジウム沈殿とし、沈殿を濾過することで微量不純物を濾液中に分離した後に、仮焼することにより高純度な酸化スカンジウムを得る、という方法である。
 しかしながら、このような特許文献2に記載の方法を用いた場合、有機溶媒中には、スカンジウムだけでなく、不純物成分も無視できない程度に抽出されてしまう。特に、ニッケル酸化鉱石を酸浸出し中和して得られた浸出液には、カルシウム、マグネシウム、及びアルミニウム等の不純物成分が多く存在する。このため、有機溶媒中に抽出された不純物成分を分離するためのスクラビングの手間やコストがかかるという問題が生じるほか、スクラビングに伴って発生した排液の処理が必要になるといった問題もある。
 さらに、スカンジウムはpHの影響を大きく受けるため、スカンジウムを抽出するに際しては、pHを一定以上に維持しなければ実用的な抽出率が得られない。しかも、スカンジウムの抽出に適したpH領域では、スカンジウムだけでなく、上述したような不純物成分の抽出率も高まるため、スカンジウムだけを選択的に分離することは困難となる。
 このように、スカンジウムのほかに、上述したような不純物成分を含有する系から、スカンジウムのみを選択的にかつ効果的に抽出することは難しい。
 ところで、2種類以上の抽出剤を混合して用いる場合、1種類の抽出剤を単独で用いる場合とでは、その抽出挙動が変わることがある。このことを、協同効果(「共同効果」ともいう)と呼んでいる。
 例えば、特許文献3では、協同効果を利用して、2種類以上の抽出剤を混合して用いることで、1種類の抽出剤を単独で用いる場合に比べて高収率で無電解ニッケル廃液からニッケルを回収する方法が提案されている。この特許文献3によれば、1種類の抽出剤を単独で用いる場合ではニッケルをほとんど抽出できないにもかかわらず、2種類以上の抽出剤を混合して用いることで、pH調整を行うことなく、1回のバッチ抽出で98%~99%のニッケルを回収できるとしている。
 また、特許文献4では、カルボン酸系の抽出剤とオキシム系の抽出剤とを混合し、コバルト、マンガン、カルシウム、及びマグネシウムの混合溶液から、コバルト及びマンガンを抽出する方法が提案されている。
 しかしながら、特許文献3、特許文献4のいずれにおいても、スカンジウムの抽出挙動に関する報告はなく、ニッケル酸化鉱石を酸浸出して得られた溶液(浸出液)から、スカンジウムのみを選択的に抽出して分離できる溶媒は見出されていない。
 さらに、上述したような従来の溶媒抽出法では、スカンジウムを、マンガン、カルシウム、アルミニウム、及びマグネシウムを含む混合溶液からスカンジウムを抽出するにあたり、pHを4~5程度の比較的高い領域の維持しなければ、実用上十分にスカンジウムを抽出することができない。そのため、浸出処理直後のように酸濃度が高い、つまりpHが低い溶液から、直接スカンジウムを選択的に抽出することは困難となる。
 また、ニッケル酸化鉱石を酸浸出して得られた溶液等のように、不純物として鉄イオンを含有する溶液から、スカンジウムを選択的に抽出しようとする場合、スカンジウムの抽出のために溶液のpHを4~5程度のまで上げると、中和剤量がかさむだけでなく、鉄水酸化物の生成が促進されてスカンジウムや他の有価な元素が共沈し、ロスが生じる。また、このような鉄イオンを含有する溶液を、イオン交換や溶媒抽出に付してスカンジウムを分離しようとしても、その抽出処理中にクラッドと呼ばれる介在物が生成し易くなり、操業を困難にするという問題から、実操業への適用が難しくなる原因となっている。
特開2000-234130号公報 特開平9-291320号公報 特開2011-52250号公報 米国特許出願公開第2008/0038168号公報
 本発明は、このような実情に鑑みて提案されたものであり、スカンジウムを含有するとともに鉄を含む不純物を含有する酸性溶液から、スカンジウムと不純物とを分離してスカンジウムを効率的に精製する方法を提供することを目的とする。
 本発明者らは、上述した課題を解決すべく鋭意研究を重ねた。その結果、リン酸系抽出剤と中性抽出剤とを含有する混合抽出剤を用いて溶媒抽出を行うことにより、スカンジウムを選択的に抽出できることを見出し、本発明を完成するに至った。
 (1)本発明の第1の発明は、スカンジウムを含有するとともに、少なくとも鉄を含む元素成分を含有する酸性溶液を、リン酸系抽出剤と中性抽出剤とを含有する混合抽出剤による溶媒抽出に付し、該酸性溶液からスカンジウムを抽出する、スカンジウムの精製方法である。
 (2)本発明の第2の発明は、第1の発明において、前記リン酸系抽出剤が、2-エチルヘキシルホスホン酸-1-エチルヘキシルである、スカンジウムの精製方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記中性抽出剤が、トリ-n-オクチルホスフィンオキシドである、スカンジウムの精製方法である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記混合抽出剤においては、前記リン酸性抽出剤がモル比で5%~50%の範囲の混合割合で含まれている、スカンジウムの精製方法である。
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記酸性溶液のpHを0.0以上2.0以下の範囲に調整し、pH調整後の該酸性溶液を前記溶媒抽出に付す、スカンジウムの精製方法である。
 (6)本発明の第6の発明は、第1乃至第4のいずれかの発明において、前記酸性溶液は、ニッケル酸化鉱石に酸を添加してスカンジウムを浸出した溶液、又は、スカンジウム酸化物若しくはスカンジウム水酸化物を酸で溶解して得られた溶液であり、前記酸性溶液のpHを0.0以上2.0以下の範囲に調整し、pH調整後の該酸性溶液を前記溶媒抽出に付す、スカンジウムの精製方法である。
 (7)本発明の第7の発明は、第1乃至第6のいずれかの発明において、前記酸性溶液は、さらに、ジルコニウム、トリウムのいずれか1種以上を含む、スカンジウムの精製方法である。
 (8)本発明の第8の発明は、スカンジウムを含有するとともに、少なくとも鉄を含む元素成分を含有する酸性溶液から、該スカンジウムを抽出するための抽出剤であって、リン酸系抽出剤と、中性抽出剤とを含有する、スカンジウム抽出剤である。
 (9)本発明の第9の発明は、第8の発明において、前記リン酸性抽出剤がモル比で5%~50%の範囲の割合で含まれている、スカンジウム抽出剤である。
 本発明によれば、スカンジウムを含有するとともに鉄を含む不純物を含有する酸性溶液から、スカンジウムを効率的に精製することができる。
実施例1において混合抽出剤(PC88A+TOPO)を用いたときのpHと抽出率との関係を示す図である。 比較例1において中性抽出剤(TOPO)のみからなる抽出剤を用いたときのpHと抽出率との関係を示す図である。 比較例2においてリン酸系抽出剤(PC88A)のみからなる抽出剤を用いたときのpHと抽出率との関係を示す図である。 実施例1において混合抽出剤係るスカンジウム抽出剤を用いたときのpHと分離係数との関係を示す図である。 比較例1において中性抽出剤(TOPO)のみからなる抽出剤を用いたときのpHと分離係数との関係を示す図である。 実施例2において混合抽出剤(PC88A+TOPO)を用いたときのpHとニッケル酸化鉱石に含まれる各種元素の抽出率との関係を示す図である。 実施例3において混合抽出剤(PC88A+TOPO)を用いたときのpHとニッケル酸化鉱石に含まれる各種元素の抽出率との関係を示す図である。 参考例1において混合抽出剤(PC88A+TOPO)を用いたときのpHと抽出率との関係を示す図である。 参考例1において混合抽出剤(PC88A+TOPO)を用いたときのpHと分離係数との関係を示す図である。 実施例4において混合抽出剤(Cyanex272+TOPO)を用いたときのpHと抽出率との関係を示す図である。 実施例4において混合抽出剤(Cyanex272+TOPO)を用いたときのpHと分離係数との関係を示す図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
 ≪1.スカンジウム抽出剤≫
 本実施の形態に係るスカンジウムの精製方法は、スカンジウム(Sc)を含有する酸性溶液から溶媒抽出によりスカンジウムを抽出して精製(回収)する方法である。特に、このスカンジウムの精製方法では、スカンジウムを含有するとともに、少なくとも鉄(Fe)を含む不純物元素を含有する酸性溶液から、それら不純物と分離してスカンジウムを抽出する。
 具体的に、このスカンジウムの精製方法は、スカンジウムを含有するとともに、少なくとも鉄を含む不純物元素を含有する酸性溶液を、リン酸系抽出剤と中性抽出剤とを含有する混合抽出剤を用いた溶媒抽出に付すことによって、その酸性溶液からスカンジウムを抽出することを特徴としている。
 この方法によれば、少なくとも鉄を含む不純物とスカンジウムと不純物元素とを効率的に分離して、スカンジウムのみを選択的に抽出することができる。また、リン酸系抽出剤と中性抽出剤とを含有する混合抽出剤を用いることで、酸性溶液のなかでも低いpH領域のものであっても、優れた選択性でもってスカンジウムを抽出することができる。さらに、効率的に不純物と分離して選択的にスカンジウムを抽出できることから、酸性溶液に対する中和処理に使用する中和剤の量を有効に低減することができ、抽出処理中にクラッドと呼ばれる介在物が生成することを防止することができる。
 [スカンジウムを含有する酸性溶液]
 スカンジウムを含有する酸性溶液(以下、単に「酸性溶液」という)は、溶媒抽出処理の対象となる溶液であり、スカンジウムを含有するとともに、少なくとも鉄を含む不純物元素を含有するものである。
 具体的に、この酸性溶液としては、ニッケル酸化鉱石の湿式製錬プロセスにおいて、ニッケル酸化鉱石に硫酸等の酸を添加して、スカンジウムを含む有価金属を浸出した溶液を挙げることができる。また、酸性溶液として、スカンジウム酸化物若しくはスカンジウム水酸化物を硫酸等の酸で溶解して得られる溶液を挙げることができる。
 ニッケル酸化鉱石を酸浸出して得られる酸性溶液としては、例えば、ニッケル酸化鉱石を酸浸出して得られた浸出液、あるいはその浸出液に硫化剤を添加して硫化反応によりニッケルやコバルト等を分離除去した後の硫化後液が挙げられる。具体的に、硫化後液は、ニッケル酸化鉱石に硫酸等の酸を添加して浸出処理を施し、得られた浸出液に対して中和剤を用いて中和処理を行った後、硫化水素ガス等の硫化剤を添加して硫化反応を生じさせ、ニッケルやコバルトの硫化物を分離除去した後の溶液である。
 なお、このようなニッケル酸化鉱石を酸浸出して得られる酸性溶液は、鉄のほかに、ジルコニウム(Zr)、トリウム(Th)のいずれか1種以上の元素を含有する。
 [混合抽出剤]
 混合抽出剤は、リン酸系抽出剤と中性抽出剤とを含有するものである。本実施の形態に係るスカンジウムの精製方法では、このような混合抽出剤を用いて、上述した酸性溶液に対する溶媒抽出処理を行う。
 混合抽出剤において、リン酸系抽出剤としては、特に限定されないが、例えば2-エチルヘキシルホスホン酸-1-エチルヘキシルが挙げられる。なお、このリン酸系抽出剤は、大八化学工業社製の商品名PC88A等が市販されている。
 また、中性抽出剤としては、特に限定されないが、例えばトリ-n-オクチルホスフィンオキシドが挙げられる。なお、この中性抽出剤は、同仁化学工業社製の商品名TOPO等が市販されている。
 リン酸系抽出剤と中性抽出剤との混合割合に関しては、混合抽出剤中におけるリン酸性抽出剤が占める割合として、モル比で5%以上50%以下の範囲であることが好ましく、工業的な取り扱いの容易さの観点も考慮すると、モル比で15%以上30%以下の範囲であることがより好ましい。リン酸性抽出剤の混合割合がモル比で5%以上50%以下の範囲であることにより、スカンジウムと、鉄を含む不純物元素との分離をより効率的に行うことができ、溶媒抽出によるスカンジウムの選択性を高めることができる。
 なお、混合抽出剤においては、その効果を阻害しない範囲において、上述したリン酸系抽出剤と中性抽出剤以外の抽出剤が含まれていてもよい。
 ここで、通常、溶媒抽出に用いる抽出剤は、粘度が高く、そのまま抽出処理に使用すると、水相との相分離性が悪くなる等の操業面への悪影響がある。そのことから、抽出剤の粘度を低下させるために、抽出剤を希釈剤で希釈することが一般的に行われる。
 具体的に、希釈剤としては、使用する混合抽出剤と希土類元素であるスカンジウムの錯体とを溶解できるものであれば、特に限定されない。例えば、クロロホルム、ジクロロメタン等の塩素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素等が挙げられる。このような希釈剤は、1種類単独で用いてもよく、2種類以上を混合して用いてもよい。また、1-オクタノールのようなアルコール類を混合して用いてもよい。
 [混合抽出剤による溶媒抽出]
 本実施の形態に係るスカンジウムの精製方法においては、上述したように、鉄を含む不純物元素とスカンジウムとを含有する酸性溶液を、リン系抽出剤と中性抽出剤とを含有する混合抽出剤による溶媒抽出に付し、スカンジウムを抽出する。
 溶媒抽出処理においては、処理対象の酸性溶液と混合抽出剤とを混合して撹拌する。そしてその後、酸性溶液と混合抽出剤との混合溶液を分液漏斗により水相と有機相とに分離することによって、有機相にスカンジウムイオンを選択的に抽出する。このとき、上述したように、リン酸系抽出剤の混合割合を5%以上50%以下の範囲として混合抽出剤を用いることによって、スカンジウムの選択性を向上させることができ、より効率的に抽出することができる。
 溶媒抽出処理における撹拌操作は、混合抽出剤と酸性溶液とを混合したときに有機相と水相とが分離しない程度に充分な回転数で行えばよい。また、その撹拌時間としては、特に限定されないが、酸性溶液からスカンジウムをより高い収率で抽出できるようにする観点から、20分以上とすることが好ましい。なお、この溶媒抽出の操作においては、混合抽出剤と混合させる酸性溶液のpHが低下していく傾向にあるため、適宜、水酸化ナトリウム水溶液等のアルカリ水溶液を添加してpHの低下を抑制することが好ましい。
 また、溶媒抽出を行うにあたっては、その抽出処理に先立ち、処理対象である酸性溶液のpHを0.0以上2.0以下の範囲に調整することが好ましく、1.3以上2.0以下に調整することがより好ましく、1.7以上2.0以下に調整することが特に好ましい。
 ここで、一般に、鉄イオンを多く含有する酸性溶液(例えば、ニッケル酸化鉱石を酸浸出して得られた溶液等)では、pHが2.5~3.0を超えると鉄の水酸化物の生成が促進されやすくなり、スカンジウム等の希土類元素が共沈し、また抽出処理中にクラッドと呼ばれる介在物が生成して操業を困難する。特に、鉄を含む酸性溶液においては、例えばそのpHが2.5以上になると、鉄の水酸化物が生成して相分離が著しく悪化する。このため、上述したように、スカンジウムを含有するとともに、少なくとも鉄を含む不純物元素を含有する酸性溶液の場合には、そのpHを0.0以上2.0以下の範囲に調整し、pH調整後の酸性溶液に対して溶媒抽出を行うことが好ましい。
 そして、このようなpHが低い酸性領域の溶液であっても、リン酸系抽出剤と中性抽出剤との混合抽出剤を用いて溶媒抽出を行うことにより、スカンジウムを十分に高い抽出率で抽出することができ、安定した操業を行うことができる。このように、所定の範囲にpH調整を行った後、そのpH調整後の酸性溶液に対して溶媒抽出処理を施すことで、鉄を含む不純物元素を含有する酸性溶液から、スカンジウムのみを高純度でかつ高収率で抽出することができる。
 以下、本発明の実施例を示してより具体的に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。
 ≪1.スカンジウム抽出用の混合抽出剤の調製≫
 下記の実施例、比較例にて用いたスカンジウム抽出用の溶媒抽出剤を、下記表1に示すように調製した。なお、リン酸系抽出剤として、2-エチルヘキシルホスホン酸-1-エチルヘキシル(商品名:PC88A)を用い、中性抽出剤として、トリ-n-オクチルホスフィンオキシド(商品名:TOPO)を用いた。
Figure JPOXMLDOC01-appb-T000001
 具体的には、実施例1で用いた混合抽出剤は、リン酸系抽出剤(PC88A)のモル濃度が0.1mol/L、中性抽出剤(TOPO)のモル濃度が0.5mol/Lとなるように、各々の抽出剤をスワゾール(丸善石油化学株式会社製)に溶解させることで得た。
 また、比較例1で用いた抽出剤は、中性抽出剤(TOPO)のモル濃度が0.5mol/Lとなるようにスワゾールに溶解させることで得た。また、比較例2で用いた抽出剤は、リン酸系抽出剤(PC88A)のモル濃度が0.6mol/Lとなるようにスワゾールに溶解させることで得た。なお、このように、比較例1、2で使用した抽出剤は、リン酸系抽出剤又は中性抽出剤による単独抽出剤である。
 ≪2.各抽出剤による抽出効果、酸性溶液のpH条件の検討≫
 実施例1、比較例1及び2において、スカンジウム(Sc)、鉄(Fe)、及び、ジルコニウム(Zr)又はトリウム(Th)をそれぞれ下記表2に示す濃度で含有する硫酸溶液(酸性溶液)を用意した。
Figure JPOXMLDOC01-appb-T000002
 [実施例1]
 実施例1では、硫酸溶液を2.5mlずつ5つに分取し、その硫酸溶液のpHを0.0~2.0の範囲内で一定の値に調整した。そして、各々の硫酸溶液についてスカンジウム抽出用の混合抽出剤(PC88A+TOPO)2.5mlと混合し、その混合溶液を回転数650rpmで20分間撹拌した。このとき、硫酸溶液中のpHを、混合抽出剤との混合前と同じ値に維持するため、1mol/Lの水酸化ナトリウム水溶液を適宜添加した。
 所定時間の撹拌後、混合溶液の水相と有機相とを分液漏斗で分離し、抽出残液(水相)に対して誘導プラズマ発光分光分析装置(ICP-AES)を用いた元素分析を行い、各種金属の水相から有機相への抽出率を求めた。下記表3及び図1に、pHと各種金属の抽出率との関係を示す。
Figure JPOXMLDOC01-appb-T000003
 [比較例1]
 比較例1では、硫酸溶液を2.5mlずつ5つに分取し、その硫酸溶液のpHを0.0~2.5の範囲内で一定の値に調整したこと、及び、スカンジウム抽出用の抽出剤として中性抽出剤(TOPO)を用いたこと以外は、実施例1と同じ手法にて各種金属の水相から有機相への抽出率を求めた。下記表4及び図1に、pHと各種金属の抽出率との関係を示す。
Figure JPOXMLDOC01-appb-T000004
 [比較例2]
 比較例2では、硫酸溶液を2.5mlずつ3つに分取し、その硫酸溶液のpHを0.0~1.0の範囲内で一定の値に調整したこと、及び、スカンジウム抽出用の抽出剤としてリン酸系抽出剤(PC88A)を用いたこと以外は、実施例1と同じ手法にて各種金属の水相から有機相への抽出率を求めた。下記表5及び図1に、pHと各種金属の抽出率との関係を示す。
Figure JPOXMLDOC01-appb-T000005
 実施例1の結果から分かるように、スカンジウム抽出用の抽出剤としてリン酸系抽出剤と中性抽出剤との混合抽出剤を用いる場合、処理対象の酸性溶液のpHを0.0以上2.0以下、好ましくは1.7以上2.0以下の範囲に調整し維持した状態で溶媒抽出に付すことで、スカンジウムのみを高い収率で抽出することができる。
 そして、特徴的であるのは、実施例1のように混合抽出剤を用いると、酸性溶液のpHによらず一律して60%以上の抽出率でスカンジウムが抽出される。一方、酸性溶液中に含まれる鉄は、いずれのpHにおいても抽出されず、ジルコニウムも例えばpH1.7以上ではほとんど抽出されなくなる。ここで、図4に、実施例1において混合抽出剤を用いたときの、スカンジウムと不純物元素であるFe3+及びZr4+との分離係数を示す。
 上述したように、鉄イオンを多く含有する酸性溶液では、pHが2.5~3.0を超えると鉄の水酸化物の生成が促進されやすくなる。実施例1の結果に示されるように、溶媒抽出処理に先立ち、酸性溶液のpHを0.0以上2.0以下に調整することで、鉄の水酸化物の生成を抑制することができ、しかもこのような鉄の水酸化物が生成しない低いpH領域の酸性溶液であっても、リン酸系抽出剤と中性抽出剤との混合抽出剤によれば、スカンジウムを十分に高い抽出率で抽出できる。
 一方、比較例1のように、中性抽出剤のみからなる抽出剤を用いると、酸性溶液のpHがいずれの値であっても、スカンジウムの抽出率が50%を超えることがなく、不純物元素との分離係数が小さい。なお、図5に、比較例1において中性抽出剤のみからなる抽出剤を用いたときの、スカンジウムと不純物元素であるFe3+及びZr4+との分離係数を示す。
 また、図3に示す比較例2の結果から分かるように、リン酸系抽出剤のみからなる抽出剤を用いた場合では、酸性溶液のpHがいずれの値であっても、スカンジウムと不純物元素とを効果的に分離することができない。
 以上の結果から、スカンジウム抽出用の抽出剤としてリン酸系抽出剤と中性抽出剤との混合抽出剤を用いることで、鉄を含む不純物元素とスカンジウムとを効率的に分離して、スカンジウムのみを選択的に抽出することができることが分かった。また、その溶媒抽出に先立ち、酸性溶液のpHを0.0以上2.0以下、より好ましくは1.7以上2.0以下の範囲に調整し、そのpH調整後に溶媒抽出に付すことで、スカンジウムのみをより高純度で抽出することができることが分かった。
 ≪3.ニッケル酸化鉱石を酸浸出して得られた酸性溶液からのスカンジウムの抽出≫
 [実施例2、実施例3]
 実施例2及び3として、下記表6に示すように調製した混合抽出剤(リン酸系抽出剤と中性抽出剤との混合抽出剤)を用いて、ニッケル酸化鉱石に対して酸浸出処理を施してスカンジウムを浸出させた硫酸溶液(下記表7)を溶媒抽出に付した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 具体的に、溶媒抽出処理の対象とした硫酸溶液は、実際のニッケル酸化鉱石を公知の方法で加圧硫酸浸出し、得られた浸出液に硫化剤を添加して硫化反応によってニッケルやコバルトを分離した後の硫酸溶液(硫化後液)を用意した。なお、表7に示すように、この硫酸溶液は、スカンジウム(Sc)を含有するとともに、アルミニウム(Al)、クロム(Cr)、トリウム(Th)、3価の鉄(Fe)等の不純物と、微量残留したニッケル(Ni)を含有する。
 そして、実施例2及び3では、硫酸溶液を30mlずつ6つに分取し、その硫酸溶液のpHを1.0~2.0の範囲内で一定の値に調整した。そして、各々の硫酸溶液についてスカンジウム抽出用の混合抽出剤(PC88A+TOPO)30mlと混合し、その混合溶液を回転数650rpmで20分間撹拌した。このとき、硫酸溶液中のpHを、混合抽出剤との混合前と同じ値に維持するため、1mol/Lの水酸化ナトリウム水溶液を適宜添加した。
 所定時間の撹拌後、混合溶液の水相と有機相とを分液漏斗で分離し、抽出残液(水相)に対して誘導プラズマ発光分光分析装置(ICP-AES)を用いた元素分析を行い、各種金属の水相から有機相への抽出率を求めた。実施例2については下記表8及び図6に、実施例3について下記表9及び図7に、pHとニッケル酸化鉱石に含まれる各種金属の抽出率との関係を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例2及び3の結果に示されるように、ニッケル酸化鉱石に含まれるアルミニウム、鉄、トリウム等の不純物とニッケルを含む酸性溶液から、それら不純物元素と分離して、スカンジウムを高純度で抽出することができた。
 ≪4.混合抽出剤における混合割合≫
 [参考例1]
 参考例1として、リン酸系抽出剤(PC88A)と中性抽出剤(TOPO)とを含有する混合抽出剤において、下記表10のように、PC88A:5mMに対してTOPO:500mMを混合することによって、リン酸系抽出剤の混合割合をモル比で1%とした混合抽出剤を用いて溶媒抽出を行った。
Figure JPOXMLDOC01-appb-T000010
 溶媒抽出の操作は、実施例2と同じ硫酸溶液(表7)を処理対象とし、その硫酸溶液のpHを1.0、1.6、1.8の3パターンにそれぞれ調整して、実施例2と同様にして行った。そして、混合溶液の水相と有機相とを分液漏斗で分離し、抽出残液(水相)に対して誘導プラズマ発光分光分析装置(ICP-AES)を用いた元素分析を行い、各種金属の水相から有機相への抽出率を求めた。下記表11及び図8、9に、pHと各種金属の抽出率との関係を示す。
Figure JPOXMLDOC01-appb-T000011
 参考例1の結果から、混合抽出剤中におけるリン酸系抽出剤の混合割合が1%であると、不純物元素であるトリウムとの関係においてスカンジウムを十分に分離することができなくなり、スカンジウムの抽出の選択性がやや低下してしまうことが分かった。
 ≪5.他のリン酸系抽出剤を用いた混合抽出剤による溶媒抽出≫
 [実施例4]
 実施例4として、以下に示す混合抽出剤を調製し、溶媒抽出を行った。すなわち、下記表12に示すように、リン酸系抽出剤として、ジ(2,4,4-トリメチルペンチル)ホスフィン酸(商品名:Cyanex272)を用い、そのリン酸系抽出剤のモル濃度が0.1mol/L、中性抽出剤(TOPO)のモル濃度が0.5mol/Lとなるように、各々の抽出剤をスワゾールに溶解させることによって、混合抽出剤を調製した。
Figure JPOXMLDOC01-appb-T000012
 溶媒抽出に対象として、下記表13に示す濃度で、スカンジウム(Sc)、鉄(Fe)、ジルコニウム(Zr)を含有する硫酸溶液を用意し、その硫酸溶液を30mlずつ6つに分取して、pHを1.0~2.0の範囲内で一定の値に調整した。
Figure JPOXMLDOC01-appb-T000013
 溶媒抽出の操作は、実施例1と同様にして行った。そして、混合溶液の水相と有機相とを分液漏斗で分離し、抽出残液(水相)に対して誘導プラズマ発光分光分析装置(ICP-AES)を用いた元素分析を行い、各種金属の水相から有機相への抽出率を求めた。下記表14及び図10に、pHと各種金属の抽出率との関係を示す。
Figure JPOXMLDOC01-appb-T000014
 実施例4の結果から、実施例1で使用したものとは異なるリン酸系抽出剤を用いた混合抽出剤でも、スカンジウムと不純物元素とを効率的に分離することができ、スカンジウムを高純度で精製することができた。なお、図11に、スカンジウムと不純物元素であるFe3+及びZr4+との分離係数を示す。

Claims (9)

  1.  スカンジウムを含有するとともに、少なくとも鉄を含む元素成分を含有する酸性溶液を、リン酸系抽出剤と中性抽出剤とを含有する混合抽出剤による溶媒抽出に付し、該酸性溶液からスカンジウムを抽出する
     スカンジウムの精製方法。
  2.  前記リン酸系抽出剤が、2-エチルヘキシルホスホン酸-1-エチルヘキシルである
     請求項1に記載のスカンジウムの精製方法。
  3.  前記中性抽出剤が、トリ-n-オクチルホスフィンオキシドである
     請求項1又は2に記載のスカンジウムの精製方法。
  4.  前記混合抽出剤においては、前記リン酸性抽出剤がモル比で5%以上50%以下の範囲の混合割合で含まれている
     請求項1乃至3のいずれか1項に記載のスカンジウムの精製方法。
  5.  前記酸性溶液のpHを0.0以上2.0以下の範囲に調整し、pH調整後の該酸性溶液を前記溶媒抽出に付す
     請求項1乃至4のいずれか1項に記載のスカンジウムの精製方法。
  6.  前記酸性溶液は、
     ニッケル酸化鉱石に酸を添加してスカンジウムを浸出した溶液、又は、スカンジウム酸化物若しくはスカンジウム水酸化物を酸で溶解して得られた溶液であり、
     前記酸性溶液のpHを0.0以上2.0以下の範囲に調整し、pH調整後の該酸性溶液を前記溶媒抽出に付す
     請求項1乃至4のいずれか1項に記載のスカンジウムの精製方法。
  7.  前記酸性溶液は、さらに、ジルコニウム、トリウムのいずれか1種以上を含む
     請求項1乃至6のいずれか1項に記載のスカンジウムの精製方法。
  8.  スカンジウムを含有するとともに、少なくとも鉄を含む元素成分を含有する酸性溶液から、該スカンジウムを抽出するための抽出剤であって、
     リン酸系抽出剤と、中性抽出剤とを含有する
     スカンジウム抽出剤。
  9.  前記リン酸性抽出剤がモル比で5%以上50%以下の範囲の割合で含まれている
     請求項8に記載のスカンジウム抽出剤。
     
PCT/JP2017/029807 2016-08-24 2017-08-21 スカンジウムの精製方法、スカンジウム抽出剤 WO2018038058A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/327,359 US20190185964A1 (en) 2016-08-24 2017-08-21 Method for purifying scandium and scandium extractant
AU2017317418A AU2017317418B2 (en) 2016-08-24 2017-08-21 Method for purifying scandium and scandium extractant
EP17843538.4A EP3505645A4 (en) 2016-08-24 2017-08-21 SCANDIUM PURIFICATION METHOD AND SCANDIUM EXTRACTING AGENT
CN201780051708.1A CN109642270A (zh) 2016-08-24 2017-08-21 钪的纯化方法、钪提取剂
PH12019500379A PH12019500379B1 (en) 2016-08-24 2019-02-22 Method for purifying scandium and scandium extractant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-163604 2016-08-24
JP2016163604A JP6373913B2 (ja) 2016-08-24 2016-08-24 スカンジウムの精製方法、スカンジウム抽出剤

Publications (1)

Publication Number Publication Date
WO2018038058A1 true WO2018038058A1 (ja) 2018-03-01

Family

ID=61246068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029807 WO2018038058A1 (ja) 2016-08-24 2017-08-21 スカンジウムの精製方法、スカンジウム抽出剤

Country Status (7)

Country Link
US (1) US20190185964A1 (ja)
EP (1) EP3505645A4 (ja)
JP (1) JP6373913B2 (ja)
CN (1) CN109642270A (ja)
AU (1) AU2017317418B2 (ja)
PH (1) PH12019500379B1 (ja)
WO (1) WO2018038058A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3086302B1 (fr) 2018-09-26 2020-12-25 Commissariat Energie Atomique Utilisation d'un melange synergique d'extractants pour extraire des terres rares d'un milieu aqueux comprenant de l'acide phosphorique
WO2021006144A1 (ja) * 2019-07-11 2021-01-14 住友金属鉱山株式会社 スカンジウムの回収方法
JP7293976B2 (ja) * 2019-07-11 2023-06-20 住友金属鉱山株式会社 スカンジウムの回収方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
JP2000234130A (ja) 1999-02-12 2000-08-29 Taiheiyo Kinzoku Kk 酸化鉱石から有価金属を回収する方法
US20080038168A1 (en) 2004-01-28 2008-02-14 Commonwealth Scientific And Industrial Research Organisation Solvent Extraction Process For Separating Cobalt And/Or Manganese From Impurities In Leach Solutions
JP2011052250A (ja) 2009-08-31 2011-03-17 Kansai Univ 無電解ニッケルめっき廃液からニッケルを回収する方法及びそれに用いるニッケルイオン抽出剤
WO2015009254A2 (en) * 2013-07-18 2015-01-22 Meta Ni̇kel Kobalt Madenci̇li̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ High pressure acid leaching of refractory lateritic ores comprising nickel, cobalt and scandium and recovery of scandium from pregnant leach solution and purification precipitates
WO2015022843A1 (ja) * 2013-08-12 2015-02-19 国立大学法人九州大学 希土類抽出剤及び希土類抽出方法
WO2015115269A1 (ja) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 スカンジウム回収方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718996A (en) * 1986-01-24 1988-01-12 Gte Products Corporation Recovery of tungsten, scandium, iron, and manganese values from tungsten bearing material
CN1005565B (zh) * 1987-12-12 1989-10-25 广西冶金研究所 从人造金红石中提取氧化钪的方法
US5015447A (en) * 1989-07-18 1991-05-14 Alcan International Limited Recovery of rare earth elements from sulphurous acid solution by solvent extraction
CA2277417A1 (en) * 1999-07-09 2001-01-09 Cytec Technology Corp. Stripping lanthanide-loaded solutions
US8968698B2 (en) * 2009-07-07 2015-03-03 Cytec Technology Corp. Processes for recovering metals from aqueous solutions
CN102676830A (zh) * 2011-03-08 2012-09-19 龙颖 从钨钢钢渣中提取氧化钪的方法
JP5403115B2 (ja) * 2012-06-19 2014-01-29 住友金属鉱山株式会社 スカンジウムの分離精製方法
CN103468980B (zh) * 2013-08-15 2016-04-13 中国恩菲工程技术有限公司 一种红土镍矿提取钪的方法
JP2015166303A (ja) * 2014-02-17 2015-09-24 学校法人 関西大学 スカンジウムの分離方法
KR101643049B1 (ko) * 2014-10-28 2016-07-27 목포대학교산학협력단 혼합 추출제를 이용한 희토류 금속의 회수방법
US9982326B2 (en) * 2014-12-22 2018-05-29 Scandium International Mining Corp. Solvent extraction of scandium from leach solutions
FR3055906B1 (fr) * 2016-09-15 2018-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nouvel extractant, utile pour extraire des terres rares d'une solution aqueuse d'acide phosphorique, et ses applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291320A (ja) 1996-04-26 1997-11-11 Taiheiyo Kinzoku Kk レアアース金属の回収方法
JP2000234130A (ja) 1999-02-12 2000-08-29 Taiheiyo Kinzoku Kk 酸化鉱石から有価金属を回収する方法
US20080038168A1 (en) 2004-01-28 2008-02-14 Commonwealth Scientific And Industrial Research Organisation Solvent Extraction Process For Separating Cobalt And/Or Manganese From Impurities In Leach Solutions
JP2011052250A (ja) 2009-08-31 2011-03-17 Kansai Univ 無電解ニッケルめっき廃液からニッケルを回収する方法及びそれに用いるニッケルイオン抽出剤
WO2015009254A2 (en) * 2013-07-18 2015-01-22 Meta Ni̇kel Kobalt Madenci̇li̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ High pressure acid leaching of refractory lateritic ores comprising nickel, cobalt and scandium and recovery of scandium from pregnant leach solution and purification precipitates
WO2015022843A1 (ja) * 2013-08-12 2015-02-19 国立大学法人九州大学 希土類抽出剤及び希土類抽出方法
WO2015115269A1 (ja) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 スカンジウム回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3505645A4 *

Also Published As

Publication number Publication date
EP3505645A4 (en) 2020-04-29
EP3505645A1 (en) 2019-07-03
US20190185964A1 (en) 2019-06-20
PH12019500379A1 (en) 2019-10-21
AU2017317418A1 (en) 2019-04-04
PH12019500379B1 (en) 2019-10-21
CN109642270A (zh) 2019-04-16
JP6373913B2 (ja) 2018-08-15
JP2018031051A (ja) 2018-03-01
AU2017317418B2 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
EP3208352B1 (en) Method for recovering high-purity scandium
CN105899691B (zh) 钪回收方法
JP2014029006A (ja) 高純度硫酸コバルト水溶液の製造方法
CN113474069B (zh) 从含镍和钴的氢氧化物制造含镍和钴的溶液的制造方法
WO2018038058A1 (ja) スカンジウムの精製方法、スカンジウム抽出剤
AU2017222881B2 (en) Method for recovering scandium
WO2015022843A1 (ja) 希土類抽出剤及び希土類抽出方法
CA3007373C (en) Method for recovering scandium
AU2017213212B2 (en) Method for recovering scandium
WO2016209178A1 (en) Recovering scandium and derivatives thereof from a leach solution loaded with metals obtained as a result of leaching lateritic ores comprising nickel, cobalt and scandium, and secondary sources comprising scandium
EP4163257A1 (en) Method for producing cobalt sulfate
JP7347083B2 (ja) 高純度酸化スカンジウムの製造方法
JP7380030B2 (ja) 高純度酸化スカンジウムの製造方法
JP7347085B2 (ja) 高純度酸化スカンジウムの製造方法
JP6206358B2 (ja) スカンジウムの回収方法
JPH10183266A (ja) コバルト水溶液からの銅およびカルシウムの分離方法
JP2020147809A (ja) 高純度酸化スカンジウムの製造方法
KR20180032282A (ko) 철의 추출량을 감소시키는 용매추출법 및 이를 이용한 유가 금속의 추출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017843538

Country of ref document: EP

Effective date: 20190325

ENP Entry into the national phase

Ref document number: 2017317418

Country of ref document: AU

Date of ref document: 20170821

Kind code of ref document: A