WO2018037908A1 - ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法 - Google Patents

ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法 Download PDF

Info

Publication number
WO2018037908A1
WO2018037908A1 PCT/JP2017/028740 JP2017028740W WO2018037908A1 WO 2018037908 A1 WO2018037908 A1 WO 2018037908A1 JP 2017028740 W JP2017028740 W JP 2017028740W WO 2018037908 A1 WO2018037908 A1 WO 2018037908A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleating agent
crystal nucleating
polyolefin resin
fluidity
particle size
Prior art date
Application number
PCT/JP2017/028740
Other languages
English (en)
French (fr)
Inventor
祥平 岩崎
陽平 内山
松本 和也
崇之 前田
Original Assignee
新日本理化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017024523A external-priority patent/JP6849912B2/ja
Priority claimed from JP2017041665A external-priority patent/JP6849913B2/ja
Priority claimed from JP2017099452A external-priority patent/JP6912708B2/ja
Application filed by 新日本理化株式会社 filed Critical 新日本理化株式会社
Priority to EP17843393.4A priority Critical patent/EP3505564B1/en
Priority to US16/328,002 priority patent/US10894874B2/en
Priority to CN201780052053.XA priority patent/CN109661424B/zh
Publication of WO2018037908A1 publication Critical patent/WO2018037908A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids

Definitions

  • the present invention relates to an improvement in fluidity of a crystal nucleating agent for polyolefin resins, and more specifically, a method for improving the fluidity, and production of a crystal nucleating agent for polyolefin resins having improved fluidity including the method.
  • the present invention relates to a method, a crystal nucleating agent for polyolefin resins having improved fluidity obtained by the method, a polyolefin resin composition having excellent transparency comprising the crystal nucleating agent, and a molded article thereof.
  • Polyolefin resins such as polyethylene and polypropylene have inexpensive and well-balanced performance, and are used in various applications as general-purpose plastics.
  • polyolefin resins are crystalline resins, and are often used with the addition of a crystal nucleating agent for the purpose of improving production efficiency and for the purpose of improving mechanical properties, thermal properties, and optical properties.
  • a crystal nucleating agent is indispensable for improving transparency, which is an optical property.
  • the above-mentioned crystal nucleating agents include inorganic crystal nucleating agents such as talc and organic crystal nucleating agents such as diacetal compounds, metal salts of carboxylic acids and phosphoric acid esters, and organic crystal nucleating agents.
  • crystal nucleating agents of dissolution type and non-dissolution type are crystal nucleating agents of dissolution type and non-dissolution type.
  • a dissolution type organic crystal nucleating agent typified by the diacetal compound is particularly effective and widely used.
  • Patent Documents 1 to 4 a method of improving fluidity by granulating
  • Patent Documents 5 to 8 a method of improving fluidity by adding a fluidity improver without granulating
  • the fluidity is improved, but the dispersibility and solubility in the polyolefin-based resin tend to be deteriorated.
  • an additive such as a binder is added, the above problem is not completely solved, and there is a case where the effect on the performance of the additive such as a blended agent becomes a problem.
  • the second method of adding a fluidity improver without granulating is also effective for improving the fluidity, and there are few concerns about problems such as dispersibility as in the granulating method. Has been used for various purposes. However, in applications where higher fluidity is required, the current situation is that sufficient fluidity has not yet been obtained with the fluidity improver alone.
  • the higher the bulk density the better the fluidity.
  • One of the factors that improve the fluidity by granulating is said to be that the bulk density is greatly increased by granulating.
  • an additive such as a binder is required.
  • a sufficient amount of binder cannot be added, it is necessary to suppress the degree of granulation in consideration of dispersibility and solubility, and there is a possibility that sufficient fluidity improvement effect may not be obtained. was there. Therefore, if the bulk density can be increased by a method different from the granulating method, the development of a method that can improve the fluidity without impairing the dispersibility and solubility has been awaited.
  • the present invention relates to a method for improving the fluidity of a crystal nucleating agent for polyolefin resins while maintaining excellent dispersibility, a method for producing a crystal nucleating agent for polyolefin resins having improved fluidity, and the method.
  • a polyolefin resin crystal nucleating agent excellent in fluidity and dispersibility obtained by the method, and a polyolefin resin composition excellent in transparency comprising the crystal nucleating agent and a molded product thereof. The purpose is to do.
  • the inventors of the present invention can simultaneously improve the fluidity and dispersibility by adjusting the crystal nucleating agent particles to a specific property, in other words, a particulate crystal nucleating agent having a specific particle shape.
  • the inventors have found that a mixture of crystal nucleating agents can simultaneously satisfy fluidity and dispersibility, and have completed the present invention.
  • the present invention is a method for improving the fluidity of the crystal nucleating agent for polyolefin resins shown below and at the same time improving the dispersibility, the crystal nucleating agent excellent in the fluidity obtained by the method and excellent in dispersibility. Furthermore, the present invention provides a polyolefin resin composition comprising the crystal nucleating agent and a molded product thereof.
  • the present invention is a polyolefin resin crystal nucleating agent containing at least a crystal nucleating agent (A), the average value of the particle size determined by laser diffraction particle size distribution measurement is 0.5 to 4.0 ⁇ m,
  • the crystal nucleating agent for polyolefin resin is characterized by having a uniformity of 3 to 10.
  • the crystal nucleating agent (A) preferably has a 50% aspect ratio obtained by particle image analysis of 0.40 to 0.70 and a lower value of 0.2 to 0.4. .
  • the crystal nucleating agent for polyolefin resin of the present invention is preferably a finely pulverized product by an airflow type fine pulverizer.
  • the crystal nucleating agent (A) was determined from the crystal nucleating agent (B) having an average particle size of 0.5 to 2.0 ⁇ m determined by laser diffraction particle size distribution measurement and the laser diffraction particle size distribution measurement. A mixture with the crystal nucleating agent (C) having an average particle size of 4.0 to 15.0 ⁇ m is preferable.
  • the crystal nucleating agent (B) is preferably a finely pulverized product by an airflow type fine pulverizer.
  • the crystal nucleating agent (A) is a diacetal compound represented by the following general formula (1), or the crystal nucleating agent (A) is composed of the crystal nucleating agent (B) and the crystal nucleating agent (C).
  • At least one of the crystal nucleating agent (B) and the crystal nucleating agent (C) is preferably a diacetal compound represented by the following general formula (1).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched carbon, An alkoxy group having 1 to 4 carbon atoms, a linear or branched alkoxycarbonyl group having 1 to 4 carbon atoms, or a halogen atom;
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a linear or branched carbon atom.
  • a hydroxyalkyl group of formula 1 to 4 is shown.
  • m and n each represents an integer of 1 to 5.
  • p represents 0 or 1;
  • Two R 1 may be bonded to each other to form a tetralin ring together with a benzene ring to which they are bonded.
  • Two R 2 groups may be bonded to each other to form a tetralin ring together with the benzene ring to which they are bonded.
  • R 1 and R 2 are the same or different and are a methyl group or an ethyl group, R 3 is a hydrogen atom, m and n are integers of 1 or 2, It is preferable that p is 1.
  • R 1 and R 2 are the same or different and are a propyl group or a propoxy group
  • R 3 is a propyl group or a propenyl group
  • m and n are 1, and p Is preferably 1.
  • the polyolefin resin crystal nucleating agent of the present invention preferably has a loose bulk density of 0.20 g / cm 3 or more and a bulk density of 0.30 g / cm 3 or more.
  • the crystal nucleating agent for polyolefin resin of the present invention is preferably a volume-reduced product of a finely pulverized product by an airflow type pulverizer.
  • the crystal nucleating agent for polyolefin resin of the present invention further contains a fluidity improver, which is a metal salt of a saturated or unsaturated fatty acid having 8 to 32 carbon atoms, a saturated salt having 14 to 32 carbon atoms. Or selected from the group consisting of unsaturated fatty acids, saturated or unsaturated fatty alcohols having 14 to 28 carbon atoms, bisamides of saturated or unsaturated fatty acids having 12 to 32 carbon atoms, silica, talc, calcium carbonate and hydrotalcite. It is preferable that it is 1 type or 2 types or more.
  • the fluidity improver preferably contains a metal salt of a saturated or unsaturated fatty acid having 8 to 32 carbon atoms and / or silica.
  • the present invention also relates to a method for producing a polyolefin-based resin crystal nucleating agent, comprising: (i) using an airflow fine pulverizer, the average value of the particle diameter is 0.5 to 4.0 ⁇ m, and the uniformity is 3 to It is also a method for producing a crystal nucleating agent for polyolefin resins, comprising a step of finely pulverizing to 10.
  • the method for producing a crystal nucleating agent for polyolefin resin according to the present invention comprises: (ii) a finely pulverized product obtained in the step (i) having a loose bulk density of 0.20 g / cm 3 or more and a bulk density of 0.
  • the aspect ratio of the crystal nucleating agent (A) in the finely pulverized product obtained was 0.40 to 0.70 in 50% value obtained by the particle image analysis method, and the Lower value was 0.00. It is preferably 2 to 0.4.
  • the method for producing a crystal nucleating agent for polyolefin resins according to the present invention comprises mixing an unground nucleating agent (A) and an unground pulverizing agent before the step (i), and further, if necessary. And adding a polyolefin resin additive (excluding the crystal nucleating agent and fluidity improver) and mixing.
  • the method for producing a crystal nucleating agent for polyolefin resin of the present invention comprises the following steps (i-1) and (i-2) between the step (i) and the step (ii). Is preferred.
  • (I-1) A step of finely pulverizing the fluidity improver so that the average particle size is 5 ⁇ m or less and the uniformity is 3 or less.
  • (I-2) A polyolefin resin additive as necessary to the finely pulverized product obtained in the step (i) and the finely pulverized product of the fluidity improver obtained in the step (i-1).
  • a step of adding and mixing (excluding the above crystal nucleating agent and fluidity improving agent).
  • the present invention also relates to a polyolefin resin comprising the polyolefin resin and the polyolefin resin crystal nucleating agent, or the polyolefin resin crystal nucleating agent produced by the method for producing the polyolefin resin crystal nucleating agent. It is also a composition. Moreover, this invention is also a polyolefin resin molding which uses the said polyolefin resin composition as a raw material.
  • the present invention also relates to a method for improving the fluidity of a crystal nucleating agent for polyolefin-based resin, wherein a finely pulverized product obtained by finely pulverizing the whole or part of the crystal nucleating agent (A) with an airflow fine pulverizer is described below. It is also a method for improving the fluidity of the crystal nucleating agent for polyolefin resin, characterized by satisfying the conditions (a) and (b) at the same time. (A) The average value of particle diameters determined by laser diffraction particle size distribution measurement is 0.5 to 4.0 ⁇ m, and the uniformity is 3 to 10.
  • the crystal nucleating agent (A) has an average particle size of 0.5-2.
  • the method for improving the fluidity of the crystal nucleating agent for polyolefin resins of the present invention is as follows: (c) the loose bulk density of the crystal nucleating agent (A) is 0.20 g / cm 3 or more, and the crystal nucleating agent (A ) Is preferably adjusted to 0.30 g / cm 3 or more.
  • the crystal nucleating agent (A) preferably has a 50% aspect ratio obtained by particle image analysis of 0.40 to 0.70 and a lower value of 0.2 to 0.4. .
  • the method for improving the fluidity of the polyolefin resin crystal nucleating agent of the present invention is preferably pulverized using an airflow pulverizer, and the resulting pulverized product is preferably subjected to volume reduction treatment.
  • the present invention also relates to a method for improving the fluidity of a crystal nucleating agent for a polyolefin-based resin, the crystal nucleating agent for a polyolefin-based resin comprising the crystal nucleating agent (A) and the fluidity improving agent.
  • the average particle diameter of the resin crystal nucleating agent is adjusted to 0.5 to 4 ⁇ m, and the uniformity is adjusted to 3 to 10. Further, the loose bulk density of the polyolefin resin crystal nucleating agent is 0.20 g / cm 3.
  • this is also a method for improving the fluidity of a crystal nucleating agent for polyolefin resin, wherein the bulk density of the crystal nucleating agent for polyolefin resin is adjusted to 0.30 g / cm 3 or more.
  • the method for improving the fluidity of the crystal nucleating agent for polyolefin resin of the present invention is obtained by using an airflow fine pulverizer to remove the crystal nucleating agent for polyolefin resin comprising the crystal nucleating agent (A) and the fluidity improving agent. It is preferable to finely pulverize and further reduce the volume of the obtained finely pulverized product.
  • the crystal nucleating agent for polyolefin resins of the present invention is very excellent in fluidity, and can greatly contribute to improvement of productivity.
  • the crystal nucleating agent for polyolefin resins of the present invention is very excellent in dispersibility and solubility in polyolefin resins, and is very useful in terms of performance of molded products.
  • the crystal nucleating agent for polyolefin resins of the present invention is excellent in productivity and can be widely used in various applications, and the obtained molded product has excellent performance and has many applications. Is very useful. In particular, in medical applications where the use of additives is limited, future use is greatly expected as a technique that can improve fluidity and dispersibility at the same time without using additives.
  • the crystal nucleating agent for polyolefin resin of the present invention contains at least a crystal nucleating agent (A).
  • the said crystal nucleating agent (A) will not be specifically limited if it can be used as a crystal nucleating agent for polyolefin resin, The thing obtained by the magnitude
  • the crystal nucleating agent for polyolefin resins of the present invention has an average particle size determined by laser diffraction particle size distribution measurement of 0.5 ⁇ m to 4.0 ⁇ m and a uniformity of 3 to 10.
  • the average value of the particle size obtained from the laser diffraction particle size distribution measurement is preferably 0.5 ⁇ m to 3.0 ⁇ m, more preferably 0.5 ⁇ m to 2.5 ⁇ m, and 1.0 ⁇ m to 2. More preferably, it is 5 ⁇ m.
  • the degree of uniformity is preferably 3-7, and more preferably 4-7.
  • the crystal nucleating agent for polyolefin resin is more excellent in dispersibility and solubility in polyolefin resin as the average value of the particle size is smaller and the uniformity value is closer to 1.
  • the polyolefin resin crystal nucleating agent containing only the crystal nucleating agent (A) has a tendency to decrease the fluidity as the particle size decreases.
  • the larger the average value of the particle diameters the better the fluidity.
  • the polyolefin resin crystal nucleating agent containing only the crystal nucleating agent (A) has a tendency to decrease in dispersibility and solubility as the particle size increases.
  • the average value of the particle diameters is not too large and not too small than the above-described range in which the balance of fluidity, dispersibility, and solubility can be achieved. Further, since the uniformity range is also adjusted, it is possible to further improve the fluidity while being excellent in dispersibility and solubility.
  • the “average value of particle size” means the particle size (d50) at a volume-based cumulative 50% in the particle size distribution obtained by laser diffraction particle size distribution measurement.
  • “average value of particle diameter” may be referred to as “average particle diameter”.
  • “uniformity of particle size” in the present specification and claims means the particle size (d60) at a volume-based cumulative of 60% and the particle size (d10) at a volume-based cumulative of 10% in the above particle size distribution. The ratio (d60 / d10) was obtained and used as the uniformity. The closer the d60 / d10 value is to 1, the narrower the particle size distribution.
  • the laser diffraction particle size distribution measurement can be performed by a general-purpose method and method using a general-purpose apparatus.
  • the following method is specifically exemplified; laser diffraction type Using a particle size distribution analyzer (Malvern Instruments, “Mastersizer 3000”), the sample is dispersed in an aqueous solution to which a surfactant is added as a dispersant by thoroughly stirring and mixing in a wet measurement cell.
  • a surfactant is added as a dispersant by thoroughly stirring and mixing in a wet measurement cell.
  • ultrasonic waves are applied and the mixture is sufficiently uniformly dispersed in the apparatus, and then the particle size distribution of the sample can be measured while applying ultrasonic waves. .
  • the crystal nucleating agent (A) has a 50% aspect ratio of 0.40 to 0.70 determined by a particle image analysis method, and a lower value of It is preferably 0.2 to 0.4. More preferably, the crystal nucleating agent (A) has a 50% aspect ratio of 0.45 to 0.65 determined by particle image analysis.
  • the aspect ratio of the crystal nucleating agent (A) is one of the factors affecting the fluidity.
  • the improvement of fluidity varies depending on the type of target compound and the state of the flow field, and there is no guideline on what factors should be considered, and there are actually multiple factors including aspect ratio factors. It is examined while imagining the combined action of factors.
  • the crystal nucleating agent (A) has few particles having a large aspect ratio, and the aspect ratio is within a specific range. It was confirmed that the shape with the center affects the improvement of fluidity.
  • the aspect ratio of the crystal nucleating agent (A) is less likely to have a large aspect ratio, and by using a shape having the center of the aspect ratio in the preferred range, it becomes easier to reduce the volume, which will be described later. Furthermore, it affects the improvement of performance such as fluidity of the obtained volume-reduced product.
  • the numerical value of the measurement result of the lower value of the aspect ratio was used as an index, and the center of the aspect ratio was used as the index of the measurement result of the cumulative 50% value of the aspect ratio.
  • the “50% value” is a cumulative 50% value in the distribution of the aspect ratio obtained by measurement by the particle image analysis method, and means the center of the aspect ratio as described above.
  • the “Lower value” in the present specification and claims is a cumulative 10% value in the distribution of the aspect ratio obtained by measurement by the particle image analysis method, and the aspect ratio increases as the value increases as described above. This means that the proportion of large particles is small.
  • the aspect ratio measurement by the particle image analysis method can employ a general-purpose method / condition using a general-purpose apparatus.
  • the following method is specifically exemplified. After adding a surfactant as a dispersant to ion-exchanged water in a measurement container, a measurement sample is added, and a dispersion treatment is performed to uniformly disperse the measurement sample. Thereafter, measurement is performed using a flow particle image analyzer (“FPIA-3000” manufactured by Malvern Instruments Co., Ltd.), and the distribution of the aspect ratio of the sample can be measured from the obtained data.
  • FPIA-3000 manufactured by Malvern Instruments Co., Ltd.
  • the crystal nucleating agent (A) was determined from the crystal nucleating agent (B) having an average particle size of 0.5 to 2.0 ⁇ m determined by laser diffraction particle size distribution measurement and the laser diffraction particle size distribution measurement. A mixture with the crystal nucleating agent (C) having an average particle size of 4.0 to 15.0 ⁇ m is preferable.
  • the crystal nucleating agent (B) preferably has an average particle size of 0.5 to 1.5 ⁇ m.
  • the method for adjusting the properties of the polyolefin resin crystal nucleating agent of the present invention is not particularly limited as long as it satisfies the properties such as the average value of the particle diameter, the uniformity, and the aspect ratio. It may be a method of adjusting the particle shape or the like in the production process such as a reaction step or a post-treatment step, or a method of adjusting the particle shape or the like after the production of the crystal nucleating agent for polyolefin resin. Further, regarding the adjustment method after production, any method from recrystallization to wet or dry pulverization may be used. Furthermore, regarding the pulverization method, any method from a dry airflow pulverization method to a wet pulverization method may be used. Especially, the method of adjusting particle shape etc. after manufacture of the said crystal nucleating agent for polyolefin resin is preferable from viewpoints of the ease of adjustment.
  • a method of adjusting the properties after the production of the polyolefin resin crystal nucleating agent for example, a method of finely pulverizing using a jet mill type airflow pulverizer or the like can easily improve the properties such as the average value of the particle diameters. It is preferable from the viewpoint of being able to adjust.
  • a method of controlling the fine pulverization conditions so as to achieve the desired properties can be used.
  • the crystal nucleating agent (A) is a mixture of the crystal nucleating agent (B) and the crystal nucleating agent (C)
  • the crystal nucleating agent (B) is obtained by an airflow type pulverizer.
  • the ratio differs depending on the particle diameter, and it is not necessarily within a fixed range.
  • the desired performance may not be obtained with a single type of nucleating agent, in which case the crystal nucleating agent of the present invention is obtained by finely pulverizing only one crystal nucleating agent. Is possible and advantageous.
  • the polyolefin resin crystal nucleating agent of the present invention preferably has a loose bulk density of 0.20 g / cm 3 or more and a bulk density of 0.30 g / cm 3 or more.
  • the loose bulk density is more preferably 0.24 g / cm 3 or more, and the bulk density is more preferably 0.34 g / cm 3 or more.
  • the higher the bulk density the better the fluidity, and even in the polyolefin resin crystal nucleating agent of the present invention, the solid density does not occur and the bulk density increases as the shape of the fine particles is maintained.
  • the fluidity tends to be excellent, and if it is equal to or higher than the above bulk density, it is possible to exhibit excellent fluidity regardless of the kind of the crystal nucleating agent.
  • the upper limit of the bulk density is preferably in a range in which the dispersibility and solubility in the resin due to solidification are not reduced as much as possible.
  • the solidification is not necessarily constant depending on the type of the crystal nucleating agent (A) and the volume reduction method described later.
  • a diacetal crystal nucleating agent is used as the crystal nucleating agent (A).
  • the upper limit of the bulk density in which the dispersibility may be lowered due to solidification is as follows: loose bulk density is 0.5 g / cm 3 , and bulk density is 1.0 g. / Cm 3 or so.
  • solidification may not occur even when the value exceeds the above value.
  • the above-mentioned bulk density is a density calculated by using the inner volume as a volume when a container of a certain volume is filled, and the bulk density slowly (without applying pressure) filled in the container.
  • the value measured in a state is called loose bulk density, and the value measured after tapping it under a certain condition to make it dense is called bulk density.
  • the bulk density is a value that can be easily obtained by measuring the capacity of the container and the weight of the filled contents as described above, and can be measured by the following method, for example. Hold the funnel vertically over the opening of the graduated cylinder, slowly put a specified amount of sample through the funnel into the graduated cylinder (without applying pressure), and measure the weight of the sample in the graduated cylinder using a scale. To do. The loose bulk density is determined from the obtained weight using the following formula (1). Subsequently, after repeating the operation (tapping) of dropping the measuring cylinder vertically from a certain height on a rubber sheet or the like a predetermined number of times, the volume of the sample in the measuring cylinder is read and the following equation (2) is used. Find the bulk density.
  • the bulk density is, for example, within the range of the loose bulk density and the bulk density by compression or degassing using a general-purpose apparatus after pulverization using the above-described airflow pulverizer. It can be suitably obtained by reducing the volume. That is, the crystal nucleating agent for polyolefin resin of the present invention is preferably a volume-reduced product of a finely pulverized product by an airflow pulverizer.
  • the volume reduction is not a general method of solidification by dissolution or melting, but basically removes the air present between the particles without essentially changing the shape of the fine particles obtained by pulverization.
  • Means a method of reducing the volume for example, a method of reducing the volume by applying pressure with a roller or a screw and pushing the air outside, a method of forcibly extracting the air with a vacuum pump or the like, and a volume reduction.
  • a method of reducing the volume by mixing using a container rotating type mixer such as a mixer, a V-type mixer, a W-type mixer, or a drum mixer.
  • the volume may be reduced by any method as long as the bulk density range is obtained without essentially changing the shape of the fine particles.
  • the angle of repose is effective as a measure showing the fluidity which is the object of the present invention.
  • the polyolefin-based resin crystal nucleating agent of the present invention In order for the polyolefin-based resin crystal nucleating agent of the present invention to satisfy the object of the present invention, that is, in a normal method, for example, when being charged into a polyolefin resin from a hopper or the like, it is difficult to charge by bridging or the like.
  • the angle of repose is preferably 48 degrees or less, and more preferably 45 degrees or less.
  • the type of the crystal nucleating agent (A) is not particularly limited as long as the effects of the present invention are exhibited.
  • diacetal compounds and carboxylate salts are used. Examples thereof include a compound, a phosphate ester salt compound, an amide compound, and a rosin compound. Among these, the effect of the present invention is most remarkable in the diacetal compound.
  • the crystal nucleating agent (A) is a mixture of the crystal nucleating agent (B) and the crystal nucleating agent (C)
  • the crystal nucleating agent (B) and the crystal nucleating agent (C ) Is preferably the diacetal compound.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched carbon, An alkoxy group having 1 to 4 carbon atoms, a linear or branched alkoxycarbonyl group having 1 to 4 carbon atoms, or a halogen atom;
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a linear or branched carbon atom.
  • a hydroxyalkyl group of formula 1 to 4 is shown.
  • m and n each represents an integer of 1 to 5.
  • p represents 0 or 1;
  • Two R 1 may be bonded to each other to form a tetralin ring together with a benzene ring to which they are bonded.
  • Two R 2 groups may be bonded to each other to form a tetralin ring together with the benzene ring to which they are bonded.
  • more preferable compounds include, for example, R 1 and R 2 in the general formula (1), which are the same or different, and are a methyl group or an ethyl group, and R 3 is a hydrogen atom.
  • R 1 and R 2 in the general formula (1) which are the same or different, and are a methyl group or an ethyl group
  • R 3 is a hydrogen atom.
  • R 1 and R 2 are propyl groups or propoxy groups
  • R 3 is a propyl group or propenyl group.
  • m and n are 1 and p is 1.
  • diacetal compound examples include the following compounds. 1,3: 2,4-di-O-benzylidene-D-sorbitol, 1,3: 2,4-bis-O- (methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O -(O-methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (m-methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (p- Methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (ethylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (o-ethylbenzylidene) -D- Sorbitol, 1,3: 2,4-bis-O- (m-ethylbenzylidene) -D-sorbitol, 1,3: 2,4-bis
  • Particularly preferred embodiments include 1,3: 2,4-bis-O- (p-methylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (p-ethylbenzylidene) -D. -Sorbitol, 1,3: 2,4-bis-O- (3 ', 4'-dimethylbenzylidene) -D-sorbitol, 1,3: 2,4-bis-O- (pn-propylbenzylidene) Examples thereof include 1-propyl sorbitol and the like.
  • the diacetal compound of the said specific aspect may be used independently, from a viewpoint of other performance, for example, low temperature workability, it uses it in the aspect which used 2 or more types of diacetal compounds together, or mixed beforehand. Also good.
  • the above-mentioned diacetal compounds are produced by, for example, the production methods described in Japanese Patent Publication No. 48-43748, JP-A 53-5165, JP-A 57-185287, JP-A-2-231488, and the like. Etc., and can be easily manufactured.
  • commercially available nucleating agents for polyolefins such as Milad 3988 and Milad NX8000 manufactured by Milliken (USA), Gelall D, Gelall MD, and Gelall DXR manufactured by Shin Nippon Chemical Co., Ltd.
  • a crystal nucleating agent having a diameter (for example, a crystal nucleating agent (C)) may be used as it is, or a finely pulverized crystal nucleating agent (for example, a crystal nucleating agent for polyolefin resins having improved fluidity or a crystal nucleating agent (B). )) May be used as a raw material crystal nucleating agent.
  • a crystal nucleating agent (C) for example, a crystal nucleating agent (C)
  • a finely pulverized crystal nucleating agent for example, a crystal nucleating agent for polyolefin resins having improved fluidity or a crystal nucleating agent (B).
  • crystal nucleating agent other than the diacetal compound according to the present invention examples include, for example, sodium benzoate, aluminum p-tert-butylbenzoate, metal cyclohexanedicarboxylate represented by the following general formula (2), Carboxylate compounds such as norbornane dicarboxylic acid metal salts represented by the general formula (3), phosphate ester salt compounds represented by the following general formula (4), amide compounds represented by the following general formula (5) Examples thereof include rosin compounds such as rosin acid represented by the following general formula (6) or metal salt compounds thereof (for example, alkali metal salts such as lithium, sodium, potassium and magnesium).
  • M 1 and M 2 each represent a lithium ion, or a divalent metal cation formed by combining two metal ions of M 1 and M 2 into a single metal ion: calcium, strontium Zinc, magnesium or monobasic aluminum.
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 9 carbon atoms (here , Any two vicinal (bonded to adjacent carbon) or geminal (bonded to the same carbon) alkyl groups may combine to form a hydrocarbon ring having up to 6 carbon atoms), a hydroxy group, It represents an alkoxy group having 1 to 9 carbon atoms, an alkyleneoxy group having 1 to 9 carbon atoms, an amino group, an alkylamino group having 1 to 9 carbon atoms, a halogen atom (fluorine, chlorine, bromine and iodine) or a phenyl group.
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are the same or different and each represents a hydrogen atom
  • M 3 and M 4 are the same or different and each represents a metal cation or an organic cation, or a single metal ion formed by combining the two metal ions (a divalent metal cation such as calcium Ion).
  • R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 9 carbon atoms.
  • the metal cation is selected from the group consisting of calcium, strontium, barium, magnesium, aluminum, silver, sodium, lithium, rubidium, potassium and the like.
  • R 27 to R 30 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 9 carbon atoms;
  • R 31 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms;
  • M 5 represents an alkali metal, and when d is 2, M 5 represents an alkaline earth metal, zinc or hydroxyaluminum.
  • R 32 represents a saturated or unsaturated aliphatic polycarboxylic acid residue having 2 to 18 carbon atoms, an alicyclic polycarboxylic acid residue having 3 to 18 carbon atoms, or an aromatic polycarboxylic acid residue having 6 to 18 carbon atoms.
  • R 33 s are the same or different and are each a saturated or unsaturated aliphatic amine residue having 5 to 30 carbon atoms, an alicyclic amine residue having 5 to 30 carbon atoms, or 6 to 6 carbon atoms. Represents 30 aromatic amine residues.
  • R 34 , R 35 and R 36 represent a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and may be the same or different.
  • the crystal nucleating agent (A) is contained in the crystal nucleating agent for polyolefin resin of the present invention.
  • the amount is preferably 60 to 99.5% by weight, more preferably 70 to 99% by weight, and still more preferably 80 to 95% by weight.
  • the crystal nucleating agent for polyolefin resin of the present invention contains only the crystal nucleating agent (A)
  • the content of the crystal nucleating agent (A) in the crystal nucleating agent for polyolefin resin of the present invention Is 100% by weight.
  • the crystal nucleating agent for polyolefin resins of the present invention preferably further contains a fluidity improver.
  • the kind of the fluidity improver may be any kind as long as the effect of the present invention is exhibited.
  • the constituent fatty acid is preferably a saturated or unsaturated fatty acid having 12 to 22 carbon atoms, and is a saturated fatty acid having 16 to 22 carbon atoms. Is more preferable.
  • the kind of the metal salt is preferably at least one selected from the group consisting of a lithium salt, a zinc salt, a magnesium salt, and a calcium salt, and more preferably a calcium salt.
  • the metal salt of a saturated or unsaturated fatty acid having 8 to 30 carbon atoms include, for example, zinc laurate, calcium laurate, lithium myristate, zinc myristate, magnesium myristate, calcium myristate, lithium stearate, Zinc stearate, magnesium stearate, calcium stearate, calcium oleate, lithium behenate, zinc behenate, magnesium behenate, calcium behenate, zinc erucate, zinc montanate, magnesium montanate, calcium montanate, etc. Of these, calcium stearate and calcium behenate are more preferable, and calcium stearate is still more preferable.
  • silica as long as the effect of the present invention is exhibited, any of natural and synthetic silica, and hydrophilic and hydrophobic silica may be used. Specifically, fumed silica, precipitated silica, silica gel and the like may be used. Illustrated.
  • the content of the fluidity improver can be adjusted as appropriate within the range where the effects of the present invention are exerted, but is 0.5 to 30 parts by weight with respect to 100 parts by weight of the crystal nucleating agent (A). Preferably, it is in the range of 1.0 to 20 parts by weight. If the content of the fluidity improver is 0.5 parts by weight or more with respect to 100 parts by weight of the crystal nucleating agent (A), even if any kind of fluidity improver is used, sufficient It is possible to show a fluidity improving effect.
  • the improvement in fluidity improvement effect commensurate with the content is small, Depending on the type of the fluidity improver, the transparency tends to decrease, which may cause bleeding and the like.
  • the method for producing the polyolefin resin crystal nucleating agent is as follows: (i) using an airflow fine pulverizer, the average particle diameter of the polyolefin resin crystal nucleating agent is 0.5 to 4.0 ⁇ m; It is preferable to include a step of pulverizing so that the uniformity of the crystal nucleating agent for the resin is 3 to 10.
  • the average particle diameter of the polyolefin resin crystal nucleating agent is more preferably 0.5 to 3.0 ⁇ m, and more preferably 1.0 to 2.5 ⁇ m. More preferably. More preferably, the uniformity of the crystal nucleating agent for polyolefin resin is 4-7.
  • the finely pulverized product obtained in the step (i) has a loose bulk density of 0.20 g / cm 3 or more, and a bulk density of 0.1. It is preferable to include a step of reducing the volume so as to be 30 g / cm 3 or more. More preferably, the loose bulk density is 0.24 g / cm 3 or more, and the bulk density is 0.34 g / cm 3 or more.
  • the aspect ratio of the crystal nucleating agent (A) in the finely pulverized product obtained was 0.40 to 0.70 in 50% value obtained by the particle image analysis method, and the Lower value was 0. It is preferable to be in the range of 2 to 0.4. In the step (i), it is more preferable that the 50% value obtained by the particle image analysis method is 0.45 to 0.65.
  • a method for obtaining a crystal nucleating agent for polyolefin resin having an average particle size in the above range is obtained by adjusting the conditions of the reaction step and the post-treatment step to adjust the particulate crystals in the production process. It is also possible to obtain a nucleating agent. In that case, a process such as fine pulverization is not required, and a normal production process consisting of a normal reaction and a post-treatment process corresponds to the above step (i).
  • the pulverized crystal nucleating agent for example, the crystal nucleating agent (B)
  • the crystal nucleating agent may be mixed by adjusting the mixing ratio so as to be in the range of the average value of the particle diameters.
  • the process including the mixing process is referred to as the process (i).
  • the kind of crystal nucleating agent to mix does not necessarily need to be the same as long as there exists an effect of this invention.
  • an airflow fine pulverizer is most preferable, and a method using a jet mill type airflow fine pulverizer is particularly advantageous in terms of ease of adjusting the particle size.
  • a fine pulverization method other than the air flow method such as a wet method.
  • the ratio differs depending on the particle size of each, and it is not always necessary to be in a fixed range.
  • a method of adjusting the ratio of (for example, the above-described crystal nucleating agent (B)) / unground product (for example, the above-described crystal nucleating agent (C)) in the range of about 1/1 to 3/1 is also effective in terms of productivity. It is also preferable in terms of performance. In particular, depending on the application, the desired performance may not be obtained with a single type of nucleating agent. In that case, only one crystal nucleating agent is finely pulverized, so that the polyolefin resin crystal of the present invention can be obtained. It is possible and advantageous to obtain a nucleating agent.
  • the volume reduction in the step (ii) means a method of reducing the bulk density while essentially maintaining the fine particle state obtained in the step (i).
  • a large amount of air is present between the fine particles as obtained in the above step (i), and as a result, the bulk density becomes very low. Therefore, by discharging the air out of the system, it is possible to greatly reduce the volume while maintaining the state of the fine particles, and the bulk density is also greatly increased.
  • Examples of the method of discharging the air between the particles include a method of applying pressure to the powder using a roller and a screw, a method of sucking air out of the system using a vacuum pump, and the like. The method in which a plurality of methods are combined is most effective. Moreover, the method of volume reduction by mixing using container rotation type mixers, such as a tumbler mixer, a V-type mixer, a W-type mixer, and a drum mixer, can also be used.
  • a compression method using a dry compression device such as a compactor manufactured by Hosokawa Micron Corporation or a roller compactor manufactured by Freund Sangyo Co., Ltd.
  • a dry compression device such as a compactor manufactured by Hosokawa Micron Corporation or a roller compactor manufactured by Freund Sangyo Co., Ltd.
  • a compression filling machine such as an auger filling machine manufactured by Awaji Co., Ltd., or manufactured by Tokyo Automatic Machinery Works, etc.
  • the most effective method is to reduce the system using a vacuum pump or the like at the same time as applying pressure, and to discharge the air between the particles out of the system.
  • the polyolefin resin crystal of the present invention contains the fluidity improver
  • an unmilled crystal nucleating agent ( A) and an unmilled fluidity improver are mixed, and a polyolefin resin additive (excluding the above crystal nucleating agent and fluidity improver) is added and mixed as necessary. It is preferable.
  • a general-purpose method using a general-purpose device can be employed.
  • a general-purpose mixing apparatus such as a Nauter mixer, a conical mixer, a tumbler mixer, a V-type mixer, a W-type mixer, or a drum mixer may be used and mixed at room temperature for several tens of minutes to several hours.
  • the ratio of the crystal nucleating agent (A) to the flow improver can be appropriately adjusted within the range where the effects of the present invention are exhibited, as described above, but in the range of 100: 0.5 to 100: 30 from the viewpoint of the fluidity improvement effect and the like. And is more preferably in the range of 100: 1 to 100: 20.
  • the fine particle crystal nucleating agent (A) obtained in the production process by adjusting the conditions of the reaction step and the post-treatment step and the commercially available fine particle fluidity It is also possible to use an improver, in which case the mixture of the fine particle crystal nucleating agent (A) and the fine particle fluidity improver is used as it is without going through the step (i). Thus, it is possible to carry out the volume reduction process in the step (ii).
  • the method which has the following processes as follows can also be used.
  • an additive for polyolefin resin (however, excluding the crystal nucleating agent and the fluidity improver) is added as necessary. Mixing. That is, it is preferable to include the step (i-1) and the step (i-2) between the step
  • the step of finely pulverizing the crystal nucleating agent (A) and the step of finely pulverizing the fluidity improver in the case where it is difficult to adjust to the above particle size range only by fine pulverization, for example, A) or a fluidity improver and an unmilled crystal nucleating agent (A) or a fluidity improver are mixed in the step (i-2) by adjusting the mixing ratio so as to be in the above particle size range. It doesn't matter. In that case, the types of the crystal nucleating agent (A) and the fluidity improving agent to be mixed are not necessarily the same as long as the effects of the present invention are exhibited.
  • the volume reduction in the step (ii) is a step of mixing the unground nucleating agent (A) and an unground flowability improver, or the steps (i-1) and (i-2).
  • a large amount of air exists between fine particles such as those obtained by mixing the unground crystal nucleating agent (A) and the unground fluidity improver.
  • the density is very low. Therefore, by discharging the air out of the system, it is possible to greatly reduce the volume while maintaining the state of the fine particles, and the bulk density is also greatly increased.
  • the above-mentioned thing can be used suitably.
  • the method for improving the fluidity of the crystal nucleating agent for polyolefin resin is the following (a) and (b): a finely pulverized product obtained by pulverizing all or part of the crystal nucleating agent (A) with a partial airflow pulverizer. It is preferable to make it the property which satisfy
  • the 50% aspect ratio obtained by the particle image analysis method is 0.40 to 0.70, and the Lower value is 0.2 to 0.4.
  • crystal nucleating agent for polyolefin resin and “method for producing crystal nucleating agent for polyolefin resin”.
  • the method for improving fluidity is not necessarily limited to that method as long as the desired performance can be obtained.
  • the present invention relates to a polyolefin resin composition comprising a polyolefin resin and a crystal nucleating agent for polyolefin resin, or a crystal nucleating agent for polyolefin resin produced by the method for producing a crystal nucleating agent for polyolefin resin.
  • the polyolefin-based resin composition of the present invention comprises the crystal nucleating agent composition of the present invention and a polyolefin-based resin, optionally added with other additives for polyolefin-based resins, and after dry blending at room temperature, It can be easily obtained by melt mixing under conditions.
  • the content of the crystal nucleating agent for polyolefin resin of the present invention in the polyolefin resin is not particularly limited as long as the nucleating agent effect as a crystal nucleating agent for polyolefin resin is obtained, and the composition of the composition Since it differs depending on the formulation, it cannot be said unambiguously.
  • the polyolefin resin crystal nucleating agent of the present invention contains only the crystal nucleating agent (A), 0.1% by weight relative to 100 parts by weight of the polyolefin resin.
  • the amount is preferably 001 to 10 parts by weight, and more preferably 0.01 to 5 parts by weight.
  • the content of the crystal nucleating agent (A) is 100 parts by weight of the polyolefin resin.
  • the content is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and the content of the fluidity improver is 0 with respect to 100 parts by weight of the polyolefin resin.
  • 0.0000 to 3 parts by weight is preferable, and 0.0001 to 1 part by weight is more preferable.
  • the polyolefin resin is not particularly limited as long as the effects of the present invention are exhibited, and conventionally known polyolefin resins can be used.
  • polyethylene resins, polypropylene resins, polybutene resins, polymethylpentenes can be used. Examples thereof include polyresin and polybutadiene resin.
  • high density polyethylene medium density polyethylene, linear polyethylene, ethylene content of 50% by weight or more, preferably 70% by weight or more of ethylene copolymer, propylene homopolymer, propylene of 50% by weight or more, preferably 70% by weight % Propylene copolymer, butene homopolymer, butene content 50% by weight or more, preferably 70% by weight or more butene copolymer, methylpentene homopolymer, methylpentene content 50% by weight or more, preferably 70% by weight methylpentene copolymer And polybutadiene.
  • the copolymer may be a random copolymer or a block copolymer.
  • these resins may be isotactic or syndiotactic.
  • the comonomer constituting the copolymer include ⁇ -olefins having 2 to 12 carbon atoms such as ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, 1,4- Examples include bicyclo type monomers such as endomethylenecyclohexene, (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate, and vinyl acetate.
  • a catalyst applied for producing such a polymer not only a Ziegler-Natta type catalyst generally used but also a transition metal compound (for example, a titanium halide such as titanium trichloride and titanium tetrachloride) is chlorinated.
  • a catalyst system, a metallocene catalyst, or the like which is a combination of a catalyst formed on a carrier mainly composed of magnesium halide such as magnesium and an alkylaluminum compound (triethylaluminum, diethylaluminum chloride, etc.) can also be used.
  • melt flow rate (hereinafter abbreviated as “MFR”, JIS K 7210-1999) of the polyolefin resin according to the present invention is appropriately selected depending on the molding method to be applied, but is usually about 0.01 to 200 g / 10 minutes. Preferably, about 0.05 to 100 g / 10 min is recommended.
  • the polyolefin resin composition of the present invention may contain other polyolefin resin additives within a range that does not impair the effects of the present invention, depending on the purpose of use and use thereof. Good.
  • polyolefin resin additive examples include, for example, various additives described in “Polylist Additives Manual” (January 2002) edited by the Sanitation Council for Polyolefins, etc. Agents.
  • fluorescent whitening agents (2,5-thiophenediyl (5-tert-butyl-1,3-benzoxazole), 4,4′-bis (benzoxazol-2-yl) stilbene, etc.
  • Antioxidants stabilizers (metal compounds, epoxy compounds, nitrogen compounds, phosphorus compounds, sulfur compounds, etc.), UV absorbers (benzophenone compounds, benzotriazole compounds, etc.), surfactants, lubricants (paraffin, wax, etc.)
  • Aliphatic hydrocarbons higher fatty acids having 8 to 22 carbon atoms, higher fatty acid metal (Al, Ca) salts having 8 to 22 carbon atoms, higher aliphatic alcohols having 8 to 22 carbon atoms, polyglycols, 4 to 22 carbon atoms
  • fillers talc
  • the amount used may be used in a range that is usually used as long as the effects of the present invention are not impaired, but for example, preferably 100 parts by weight of polyolefin resin. It is generally used in an amount of about 0.0001 to 100 parts by weight, more preferably about 0.001 to 50 parts by weight.
  • a method of mixing with a polyolefin resin together with the polyolefin resin crystal nucleating agent of the present invention to form a polyolefin resin composition is common, but some additions
  • the agent may be mixed during the production of the crystal nucleating agent for polyolefin resin of the present invention.
  • antioxidants examples include phenol-based antioxidants, phosphite-based antioxidants, sulfur-based antioxidants, and the like, and specific antioxidants include 2,6-di-tert-butylphenol. , Tetrakis [methylene-3- (3,5-tert-butyl-4-hydroxyphenol) propionate] methane, phenolic antioxidants such as 2-hydroxy-4-methoxybenzophenone, alkyl disulfides, thiodipropionic acid esters, Sulfur-based antioxidants such as benzothiazole, trisnonylphenyl phosphite, diphenylisodecyl phosphite, triphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, 3,9-bis (2 , 6-tert-butyl-4-methylphenoxy) -2,4, , 10-tetraoxa-3,9-diphosphaspiro [5,
  • tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane which is a phenolic antioxidant
  • tris (2, which is a phosphite-based antioxidant, 4-di-tert-butylphenyl) phosphite, 3,9-bis (2,6-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5 5]
  • Undecane and the like are particularly recommended.
  • the present invention is also a polyolefin resin molded body using the polyolefin resin composition as a raw material.
  • the polyolefin resin molded product of the present invention can be obtained by molding the polyolefin resin composition of the present invention according to a conventional molding method.
  • the molding method is not particularly limited as long as the effects of the present invention are exhibited, and any conventionally known molding method such as injection molding, extrusion molding, blow molding, pressure molding, rotational molding, or film molding can be employed.
  • the polyolefin-based resin molded body thus obtained is excellent in optical properties such as transparency and mechanical properties such as impact resistance.
  • optical properties such as transparency and mechanical properties such as impact resistance.
  • a volume-based cumulative 50% particle size (d50) was determined and used as the average particle size.
  • the volume-based cumulative 60% particle size (d60) and the volume-based cumulative 10% particle size (d10) were obtained from the particle size distribution, and the ratio (d60 / d10) was calculated to obtain the uniformity of the particle size. It can be said that the closer the d60 / d10 value is to 1, the more uniform the particle size, that is, the particle size distribution close to monodispersion.
  • the volume of the polyolefin resin crystal nucleating agent in the graduated cylinder was read to the order of 0.1 cm 3 , and the bulk density was determined using the following formula (2).
  • Formula (1); Loose bulk density (g / cm 3 ) weight of crystal nucleating agent for polyolefin resin in graduated cylinder (g) / 100 cm 3
  • Bulk bulk density (g / cm 3 ) weight of crystal nucleating agent for polyolefin resin in graduated cylinder (g) / capacity of crystal nucleating agent for polyolefin resin after tapping (cm 3 )
  • Powder flowability test (funnel test) Pour the polyolefin resin crystal nucleating agent from a height of 5 cm to the upper edge of the funnel onto a funnel with an opening diameter of 15 cm and a hole diameter of 1.5 cm, and drop from the lower funnel without vibration Let From the state of discharge from the polyolefin resin crystal nucleating agent funnel, the fluidity of the polyolefin resin crystal nucleating agent was determined by a four-step evaluation or a five-step evaluation according to the following criteria. (4-level evaluation criteria) A: All of the crystal nucleating agent for polyolefin resin is quickly discharged from the funnel, and there is almost no deposit on the inner wall of the funnel.
  • Crystalline nucleating agent for polyolefin resin is discharged from the funnel very quickly, and almost no deposit on the inner wall of the funnel is observed. 4: All the crystal nucleating agent for polyolefin resin is discharged from the funnel, and there is also a deposit on the inner wall of the funnel. Almost never confirmed 3: Crystalline nucleating agent for polyolefin resin remains slightly unexhausted from the funnel, but all crystal nucleating agent for polyolefin resin remaining due to slight impact is also discharged 2: Crystal nuclei for polyolefin resin It is difficult to completely discharge the crystal nucleating agent for polyolefin resin remaining on the funnel with a slight impact. 1: Crystal nucleating agent for polyolefin resin is discharged from the funnel. It is difficult to discharge the crystal nucleating agent for polyolefin resin remaining on the funnel even if a large amount remains without being shocked.
  • MDBS 1,3: 2,4-bis-O- (p-methylbenzylidene) -D-sorbitol
  • EDBS 1,3: 2,4-bis-O- (p-ethylbenzylidene) ) -D-sorbitol
  • DMDBS 1,3: 2,4-bis-O- (3 ′, 4′-dimethylbenzylidene) -D-sorbitol
  • PDBN 1,3: 2,4-bis-O- (pn-propylbenzylidene) -1-n-propylsorbitol
  • CDBS 1,3: 2,4-bis-O- (p-chlorobenzylidene)- D-sorbitol StCa: calcium stearate
  • StZn zinc stearate
  • Example 1 Using a single crusher “SINGLE TRACK JET MILL STJ-400” manufactured by Seishin Co., Ltd. under the conditions of room temperature, pressure 0.7 MPa, throughput 30 kg / hour, DMDBS (new Nippon Rika Co., Ltd. product, Gelol DXR) was finely pulverized to prepare a fine particle crystal nucleating agent for polyolefin resin. The particle size distribution of the obtained fine particle crystal nucleating agent for polyolefin resin was measured, and the average value and the uniformity obtained from the particle size distribution are shown in Table 1.
  • the aspect ratio of the obtained fine particle crystal nucleating agent for polyolefin resin was measured, and the 50% value and the Lower value obtained from the distribution are shown in Table 1. Subsequently, by using the crystal nucleating agent for polyolefin resin obtained as described above, the powder fluidity was evaluated by a powder fluidity test (funnel test), and the results are shown in Table 1.
  • the dry blend is melt-mixed using a single screw extruder (VS-20 manufactured by Tanabe Plastics Machine Co., Ltd.) at a barrel temperature of 250 ° C., and then the extruded strand is cooled, cut with a pelletizer, and polyolefin resin.
  • a composition was prepared.
  • Example 2 Except that EDBS was used instead of DMDBS, the same procedure as in Example 1 was carried out to prepare the polyolefin resin crystal nucleating agent of the present invention. The particle size distribution and aspect ratio of the resulting polyolefin resin crystal nucleating agent The results were measured and the powder flowability was evaluated. The results are shown in Table 1. Then, it implemented similarly to Example 1 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured, and the results are shown in Table 1. Moreover, the dispersibility in the polyolefin resin of the polyolefin resin crystal nucleating agent was very good from the results of white point evaluation.
  • Example 3 Except that PDBN was used instead of DMDBS, the same operation as in Example 1 was carried out to prepare the polyolefin resin crystal nucleating agent of the present invention.
  • the particle size distribution and aspect ratio of the resulting polyolefin resin crystal nucleating agent The results were measured and the powder flowability was evaluated. The results are shown in Table 1.
  • it implemented similarly to Example 1 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured, and the results are shown in Table 1.
  • the dispersibility in the polyolefin resin of the polyolefin resin crystal nucleating agent was very good from the results of white point evaluation.
  • Example 1 The particulate nucleating agent for polyolefin resin obtained in Example 1 was again finely pulverized under the same conditions as in Example 1 to prepare a finer particulate nucleating agent for polyolefin resin. A crystal nucleating agent for polyolefin resin outside the invention was obtained. The particle size distribution, aspect ratio measurement, and powder fluidity of the resulting crystal nucleating agent for polyolefin resin were evaluated, and the results are shown in Table 1. Then, it implemented similarly to Example 1 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured, and the results are shown in Table 1. Moreover, the dispersibility in the polyolefin-type resin of the said crystal nucleating agent was very favorable from the result of white point evaluation.
  • Example 2 The powder fluidity was evaluated using DMDBS having a general particle size before pulverization, and the results are shown in Table 1 together with the particle size distribution and the aspect ratio. Then, it implemented similarly to Example 1 and obtained the polypropylene resin molding, the haze value was measured using the obtained molded object, and the result was shown in Table 1. Moreover, the dispersibility in the polyolefin-type resin of the said crystal nucleating agent was favorable from the result of white point evaluation.
  • Example 3 The powder flowability was evaluated using EDBS having a general particle size before pulverization, and the results are shown in Table 1 together with the particle size distribution and the aspect ratio. Then, it implemented similarly to Example 1 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured, and the results are shown in Table 1. Moreover, the dispersibility in the polyolefin-type resin of the said crystal nucleating agent was favorable from the result of white point evaluation.
  • the mixture (weight ratio) was mixed to prepare the polyolefin resin crystal nucleating agent of the present invention.
  • the particle size distribution, aspect ratio measurement, and powder fluidity of the resulting polyolefin resin crystal nucleating agent were evaluated, and the results are shown in Table 2.
  • the dispersibility in the polyolefin resin of the polyolefin resin crystal nucleating agent was very good from the results of white point evaluation.
  • Example 5 A crystal nucleating agent for polyolefin resin was prepared in the same manner as in Example 4 except that EDBS before pulverization was used as the crystal nucleating agent (C). The particle size distribution, aspect ratio measurement, and powder flowability were evaluated, and the results are shown in Table 2. Then, it implemented similarly to Example 1 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured, and the results are shown in Table 2. Moreover, the dispersibility in the polyolefin resin of the polyolefin resin crystal nucleating agent was very good from the results of white point evaluation.
  • Example 6 A crystal nucleating agent for polyolefin-based resins was carried out in the same manner as in Example 4 except that unground CDBS (average particle size 7.5, uniformity 4.1) was used as the crystal nucleating agent (C). The particle size distribution, aspect ratio measurement, and powder flowability of the resulting polyolefin resin crystal nucleating agent were evaluated, and the results are shown in Table 2. Then, it implemented similarly to Example 1 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured, and the results are shown in Table 2. Moreover, the dispersibility in the polyolefin resin of the polyolefin resin crystal nucleating agent was very good from the results of white point evaluation.
  • unground CDBS average particle size 7.5, uniformity 4.1
  • the polyolefin resin crystal nucleating agents (Examples 1 to 6) having the properties within the scope of the present invention are the polyolefin resin crystal nuclei having properties outside the scope of the present invention. It can be seen that the powder fluidity is very excellent as compared with the agent.
  • the polyolefin resin crystal nucleating agent of the present invention has an original performance as a polyolefin resin crystal nucleating agent in comparison with the conventional polyolefin resin crystal nucleating agent. It can be confirmed that the performance is equal or better.
  • the polyolefin resin crystal nucleating agent of the present invention by using the polyolefin resin crystal nucleating agent of the present invention, the workability at the time of compounding with the polyolefin resin and molding processing after the compounding is greatly improved, and the polyolefin resin crystal of the present invention is further improved. It can be seen that the polyolefin resin composition using the nucleating agent and the molded product thereof have very excellent performance and are very useful in various applications.
  • Example 7 A DMDBS having a general particle size (manufactured by Shin Nippon Rika Co., Ltd., Gelol DXR) is used at a room temperature and a pressure of 0. 0 mm using a jet crusher “Single Track Jet Mill STJ-400” manufactured by Seishin Corporation. Under the conditions of 7 MPa and a throughput of 30 kg / hour, finely pulverized so as to have a particle size distribution within the range of the present invention to prepare a fine particle nucleating agent for polyolefin resin.
  • the particulate nucleating agent for polyolefin-based resin is put into a simple compression-reducing container, and a pressure of 0.25 MPa is applied at room temperature so that the loose bulk density shown in Table 3 is obtained.
  • the volume-reduced fine particle crystal nucleating agent for polyolefin resin according to the present invention was obtained.
  • the particle size distribution of the volume-reduced fine particle crystal nucleating agent for polyolefin resin according to the present invention was measured, and the average value and the uniformity obtained from the particle size distribution are shown in Table 3. Further, the aspect ratio of the obtained fine particle crystal nucleating agent for polyolefin resin was measured, and the 50% value and the lower value obtained from the distribution are shown in Table 3.
  • the dry blend is melt-mixed using a single screw extruder (VS-20 manufactured by Tanabe Plastics Machine Co., Ltd.) at a barrel temperature of 250 ° C., and then the extruded strand is cooled, cut with a pelletizer, and polyolefin resin.
  • a composition was prepared.
  • Example 8 Except having changed the pressure at the time of pulverization into 0.10 MPa, it implemented similarly to Example 7 and obtained the crystal nucleus agent for polyolefin resin of this invention. Using the resulting polyolefin resin crystal nucleating agent, particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated. The results are shown in Table 3. Then, it carried out similarly to Example 7 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 9 The same procedure as in Example 8 was conducted except that the final loose bulk density at the time of volume reduction treatment was changed to the loose bulk density shown in Table 3 to obtain the polyolefin resin crystal nucleating agent of the present invention. It was. Using the resulting polyolefin resin crystal nucleating agent, particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated. The results are shown in Table 3. Then, it carried out similarly to Example 7 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 10 Except having used MDBS instead of DMDBS, it implemented similarly to Example 7 and obtained the crystal nucleus agent for polyolefin resin of the present invention. Using the obtained polyolefin resin crystal nucleating agent, particle size distribution, aspect ratio, bulk density, angle of repose, and powder flowability were evaluated, and the results are shown in Table 3. Then, it carried out similarly to Example 7 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 11 Except having used EDBS instead of DMDBS, it implemented similarly to Example 7 and obtained the crystal nucleus agent for polyolefin resin of this invention. Using the resulting polyolefin resin crystal nucleating agent, particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated. The results are shown in Table 3. Then, it carried out similarly to Example 7 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 12 Except having used PDBN instead of DMDBS, it implemented similarly to Example 7 and obtained the crystal nucleus agent for polyolefin resin of this invention. Using the resulting polyolefin resin crystal nucleating agent, particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated. The results are shown in Table 3. Then, it carried out similarly to Example 7 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 5 After the fine grinding of Example 7, the DMDBS before volume reduction treatment was used to measure the aspect ratio, bulk density and angle of repose, and the powder flowability was evaluated. It was shown in 3. Then, it implemented similarly to Example 7 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 6 Using DMDBS before pulverization in Example 7 as it was, volume reduction treatment was performed in the same manner as in Example 7 to obtain a crystal nucleating agent for polyolefin resin outside the scope of the present invention.
  • the aspect ratio, bulk density and angle of repose of the obtained crystal nucleating agent for polyolefin resin were measured, and powder flowability was evaluated. The results are shown in Table 3 together with the numbers of the particle size distribution.
  • it implemented similarly to Example 7 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 7 The DMDBS before pulverization of Example 7 was used as it was without volume reduction treatment, and the particle size distribution, aspect ratio, bulk density and angle of repose were measured, and the powder flowability was evaluated. The distribution numbers are shown together in Table 3. Then, it implemented similarly to Example 7 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 8 The MDBS before pulverization of Example 10 was used as it was without volume reduction treatment, and the particle size distribution, aspect ratio, bulk density and angle of repose were measured, and the powder fluidity was evaluated. The distribution numbers are shown together in Table 3. Then, it implemented similarly to Example 7 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 9 The EDBS before pulverization in Example 11 was used as it was without volume reduction treatment, and particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated. The distribution numbers are shown together in Table 3. Then, it implemented similarly to Example 7 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 10 The pre-pulverized PDBN of Example 12 was used as it was without volume reduction treatment, and the particle size distribution, aspect ratio, bulk density and angle of repose were measured, and the powder fluidity was evaluated. The distribution numbers are shown together in Table 3. Then, it implemented similarly to Example 7 and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 3.
  • Example 13 The fine particle crystal nucleating agent (DMDBS) obtained in Example 7 is again finely pulverized under the same conditions as in Example 7 to prepare a finer fine particle crystal nucleating agent for polyolefin resin and finely pulverized. After mixing with the previous DMDBS at the ratios shown in Table 4, volume reduction treatment was performed in the same manner as in Example 7 to obtain the polyolefin resin crystal nucleating agent of the present invention. Using the obtained polyolefin resin crystal nucleating agent, particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated. The results are shown in Table 4.
  • Example 7 it carried out similarly to Example 7 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 4.
  • Example 14 After the finer particle nucleating agent (DMDBS) obtained in Example 7 and EDBS before pulverization in Example 8 were mixed at the ratio shown in Table 4, the volume reduction treatment was performed in the same manner as in Example 7.
  • the crystal nucleating agent for polyolefin resin of the present invention was obtained.
  • particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated.
  • the results are shown in Table 4.
  • Example 15 After mixing the finer particle nucleating agent (DMDBS) obtained in Example 7 and uncrushed CDBS (average particle size 7.5, uniformity 4.1) at the ratios listed in Table 4 The volume reduction treatment was performed in the same manner as in Example 7 to obtain a crystal nucleating agent for polyolefin resin of the present invention. Using the obtained polyolefin resin crystal nucleating agent, particle size distribution, aspect ratio, bulk density and angle of repose were measured, and powder flowability was evaluated. The results are shown in Table 4. Then, it carried out similarly to Example 7 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 4.
  • the polyolefin resin crystal nucleating agents (Examples 7 to 15) having the properties within the scope of the present invention were found to have the properties outside the scope of the present invention. Compared with the agent (Comparative Examples 5 to 10), it can be seen that the powder flowability is very excellent. Moreover, from the results of Tables 3 and 4, the polyolefin resin crystal nucleating agent of the present invention is very excellent in dispersibility and solubility in the resin, and is the original crystal nucleating agent for polyolefin resin. Regarding the performance, it can be confirmed that the performance is equal to or higher than the conventional crystal nucleating agent for polyolefin resin.
  • the polyolefin resin crystal nucleating agent of the present invention by using the polyolefin resin crystal nucleating agent of the present invention, the workability at the time of compounding with the polyolefin resin and molding processing after the compounding is greatly improved, and the polyolefin resin crystal of the present invention is further improved. It can be seen that the polyolefin resin composition using the nucleating agent and the molded product thereof have very excellent performance and are very useful in various applications.
  • Example 16 10 kg of general-purpose particle size DMDBS (manufactured by Shin Nippon Rika Co., Ltd., Gelol DXR) as a crystal nucleating agent (A), and StCa (manufactured by Nitto Kasei Kogyo Co., Ltd., Ca— 0.5 kg of St) was put into a Henschel mixer and mixed at room temperature for 30 seconds to prepare a mixture containing the crystal nucleating agent (A) and the fluidity improver. Subsequently, the mixture obtained above was subjected to conditions of room temperature, pressure 0.7 MPa, throughput 30 kg / hour using a jet crusher “Single Track Jet Mill STJ-400” manufactured by Seishin Enterprise Co., Ltd.
  • the mixture was pulverized to obtain a particle size distribution within the range of the present invention to prepare a fine particle mixture.
  • the fine particle mixture is put into a simple compression volume reduction container and subjected to a volume reduction treatment at room temperature until a loose bulk density shown in Table 5 is reached by applying a pressure of 0.25 MPa.
  • a crystal nucleating agent for polyolefin resin with improved fluidity of the present invention was obtained.
  • the particle size distribution of the obtained crystal nucleating agent for polyolefin resin of the present invention was measured, and the average value and uniformity determined from the particle size distribution are shown in Table 5.
  • the bulk density (loose bulk density and bulk bulk density) of the crystal nucleating agent for polyolefin resin was also measured, and the results obtained are shown in Table 5. Subsequently, the angle of repose of the obtained crystal nucleating agent for polyolefin resin was measured, and further, the powder fluidity was evaluated by a powder fluidity test (funnel test). Indicated.
  • the dry blend is melt-mixed using a single screw extruder (VS-20 manufactured by Tanabe Plastics Machine Co., Ltd.) at a barrel temperature of 250 ° C., and then the extruded strand is cooled, cut with a pelletizer, and polyolefin resin.
  • a composition was prepared.
  • Example 17 Except having changed the input amount of the fluidity improving agent to 1 kg, the same operation as in Example 16 was carried out to obtain a crystal nucleating agent for polyolefin resin of the present invention. Using the obtained crystal nucleating agent for polyolefin resin, the particle size distribution, the bulk density, the angle of repose, and the powder fluidity were evaluated. The results are shown in Table 5. Then, it carried out similarly to Example 16 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 5.
  • Example 18 The same procedure as in Example 16 was carried out except that the amount of flowability improver was changed to 1.5 kg. Thus, a crystal nucleating agent for polyolefin resins of the present invention was obtained. Using the obtained crystal nucleating agent for polyolefin resin, the particle size distribution, the bulk density, the angle of repose, and the powder fluidity were evaluated. The results are shown in Table 5. Then, it carried out similarly to Example 16 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 5.
  • Example 19 The polyolefin system of the present invention was carried out in the same manner as in Example 17, except that StZ having a general particle size (Zn-St, manufactured by Nitto Kasei Kogyo Co., Ltd.) was used instead of StCa as the fluidity improver.
  • a crystal nucleating agent for resin was obtained.
  • the particle size distribution, the bulk density, the angle of repose, and the powder fluidity were evaluated. The results are shown in Table 5.
  • Example 20 The polyolefin-based resin of the present invention was carried out in the same manner as in Example 16 except that silica having a general particle size (manufactured by EVONIK, AEROSIL (registered trademark) R972) was used as a fluidity improver instead of StCa.
  • a crystal nucleating agent was obtained.
  • the particle size distribution, the bulk density, the angle of repose, and the powder fluidity were evaluated. The results are shown in Table 5.
  • Example 21 The crystal nucleating agent (A) was used in the same manner as in Example 18 except that PDBN was used in place of DMDBS to obtain a crystal nucleating agent for polyolefin resins of the present invention.
  • PDBN was used in place of DMDBS to obtain a crystal nucleating agent for polyolefin resins of the present invention.
  • measurement of particle size distribution, bulk density, angle of repose, and evaluation of powder fluidity were carried out, and the results are shown in Table 5.
  • the haze value was measured and the white point was evaluated. The results obtained are shown in Table 5.
  • Example 16 the crystal nucleating agent (A) was finely pulverized under the same conditions as in Example 16 without mixing the fluidity improver to obtain a fine particle crystal nucleating agent for polyolefin resin.
  • Using the obtained fine particle crystal nucleating agent for polyolefin resin particle size distribution, bulk density, angle of repose measurement, and powder flowability were evaluated, and the results are shown in Table 5.
  • Example 12 the flowability improver was not mixed, and it was used as it was without being pulverized or reduced in volume, and in the same manner as in Example 16, measurement of particle size distribution, bulk density, angle of repose, powder Body fluidity was evaluated and the results are shown in Table 5. Then, it carried out similarly to Example 16 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 5.
  • Example 13 The mixture of the crystal nucleating agent (A) obtained in Example 17 and the fluidity improver was used as it was without pulverization and volume reduction, and in the same manner as in Example 16, the particle size distribution, bulk density, The angle of repose was measured and the powder fluidity was evaluated. The results are shown in Table 5. Then, it carried out similarly to Example 16 using the obtained crystal nucleating agent for polyolefin resin, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 5.
  • Example 14 In Example 21, the fluidity improver was not mixed, and it was used as it was without fine pulverization or volume reduction. In the same manner as in Example 21, measurement of particle size distribution, bulk density, angle of repose, powder Body fluidity was evaluated and the results are shown in Table 5. Then, it carried out similarly to Example 16 using the obtained crystal nucleating agent, and obtained the polypropylene resin molding. Using the obtained molded body, the haze value was measured and the white point was evaluated. The results obtained are shown in Table 5.
  • Example 22 Using a single crusher “SINGLE TRACK JET MILL STJ-400” manufactured by Seishin Co., Ltd. under the conditions of room temperature, pressure 0.7 MPa, throughput 30 kg / hour, DMDBS (new Nippon Rika Co., Ltd. product, Gelol DXR) was finely pulverized to obtain a fine crystal nucleating agent (A).
  • the average particle diameter of the obtained crystal nucleating agent (A) was 1.6 ⁇ m, the degree of uniformity was 5.2, the 50% value of the aspect ratio was 0.62, and the lower value was 0.31.
  • a general-purpose particle size StCa (Ca-St) manufactured by Nitto Kasei Kogyo Co., Ltd. was finely treated at room temperature under a pressure of 0.7 MPa and a throughput of 30 kg / hour.
  • a fine fluidity improver was obtained by pulverization.
  • the average particle size of the obtained fluidity improver was 2.1 ⁇ m, and the uniformity was 2.7.
  • Example 23 Except that the amount of the particulate fluidity improver during mixing was changed to 7.5 g, the same procedure as in Example 22 was carried out to improve the fluidity crystal nucleating agent for polyolefin resins according to the present invention. Got. Using the obtained crystal nucleating agent for polyolefin resin, particle size distribution, bulk density, angle of repose, and powder flowability were evaluated. The results are shown in Table 6. Subsequently, using the obtained polyolefin resin crystal nucleating agent, the same procedure as in Example 16 was carried out to obtain a polypropylene resin molded article, the haze value was measured, and the white point was evaluated. The results are also shown in Table 6.
  • Example 24 Using the jet pulverizer, a general-purpose particle size of PDBN was finely pulverized at room temperature under a pressure of 0.7 MPa and a throughput of 30 kg / hour to obtain a fine-grained crystal nucleating agent (A). .
  • the average value of the particle diameter of the obtained crystal nucleating agent (A) was 1.4 ⁇ m, and the uniformity was 5.3.
  • 50 g of the fine particle nucleating agent (A) obtained above and 5 g of the fine particle flow improver obtained in Example 22 were put into a commercially available food processor and mixed at room temperature for 30 seconds.
  • a crystal nucleating agent for polyolefin resin which is a fine particle mixture containing the crystal nucleating agent (A) and the fluidity improver, was prepared.
  • the obtained crystal nucleating agent for polyolefin resin particle size distribution, bulk density, angle of repose, and powder flowability were evaluated. The results are shown in Table 6.
  • the same procedure as in Example 16 was carried out to obtain a polypropylene resin molded article, the haze value was measured, and the white point was evaluated. The results are also shown in Table 6.
  • the polyolefin resin crystal nucleating agent (Examples 16 to 24) having properties within the scope of the present invention is the polyolefin resin crystal nuclei having properties outside the scope of the present invention. It can be seen that the powder fluidity is extremely excellent as compared with the agents (Comparative Examples 11 to 14). Moreover, from the results of Tables 5 and 6, the polyolefin resin crystal nucleating agent of the present invention is very excellent in dispersibility and solubility in the resin, and is the original crystal nucleating agent for polyolefin resin. Regarding the performance, it can be confirmed that the performance is equal to or higher than that of the conventional crystal nucleating agent.
  • the polyolefin resin crystal nucleating agent of the present invention by using the polyolefin resin crystal nucleating agent of the present invention, the workability at the time of compounding with the polyolefin resin and molding processing after the compounding is greatly improved, and the polyolefin resin crystal of the present invention is further improved. It can be seen that the polyolefin resin composition using the nucleating agent and the molded product thereof have very excellent performance and are very useful in various applications.
  • the crystal nucleating agent for polyolefin resins according to the present invention is greatly improved in fluidity by adjusting to a specific property, and used for various applications as a crystal nucleating agent for polyolefin resins having excellent fluidity. can do.
  • the crystal nucleating agent for polyolefin resin of the present invention has the same or better performance than the conventional ones with respect to the transparency of the molded product, which is the original performance as the crystal nucleating agent for polyolefin resin. It can be used for various purposes such as automobile parts, electrical parts, machine parts, daily goods, cases for clothes, containers for foods, etc. In particular, it is a technology that is expected to be used in the future as a technology that can improve the fluidity without adding an additive in medical applications where mixing of unnecessary additives is avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、他の特性を阻害することなく、ポリオレフィン系樹脂用結晶核剤の流動性を改良する方法、及びその流動性の改良された結晶核剤を含む、透明性等の性能に優れポリオレフィン系樹脂組成物及びその成形体を提供することを目的とする。 特定の性状に調整することにより、結晶核剤の流動性を改善できることを見出し、その特定の性状を有する結晶核剤を用いることにより、成形加工時における作業性が大きく改善され、更に透明性等の性能に優れたポリオレフィン系樹脂組成物及びその成形体を得ることができた。

Description

ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法
本発明は、ポリオレフィン系樹脂用結晶核剤の流動性の改良に関するものであり、詳しくは、該流動性の改良方法、その方法を含む流動性の改良されたポリオレフィン系樹脂用結晶核剤の製造方法及び該方法により得られた流動性の改良されたポリオレフィン系樹脂用結晶核剤、更にその結晶核剤を含んでなる透明性に優れたポリオレフィン系樹脂組成物及びその成形体に関する。
ポリエチレンやポリプロピレン等のポリオレフィン系樹脂は、安価でバランスの良い性能を有し、汎用のプラスチックとして様々な用途で使用されている。また、一般にポリオレフィン系樹脂は結晶性の樹脂であり、生産効率の向上を目的に、また機械的特性や熱的特性、光学的特性を向上する目的で結晶核剤を加えて用いられることが多い。特に、光学的特性である透明性の改善には結晶核剤の配合が不可欠である。
上記結晶核剤には、タルク等の無機系の結晶核剤とジアセタール系化合物、カルボン酸やリン酸エステルの金属塩等の有機系の結晶核剤があり、更に有機系の結晶核剤には溶解タイプと非溶解タイプの結晶核剤がある。透明性等の光学的特性の改善には上記ジアセタール系化合物に代表される溶解タイプの有機系の結晶核剤が特に有効であり、多く用いられている。
近年、汎用プラスチックにおいては、より一層の生産性の向上が進められており、その一環として原料のフィード性、即ちその原料の流動性の改善も進められている。その様ななかで、上記結晶核剤、なかでもジアセタール系化合物の結晶核剤の流動性が悪いことが生産性向上の大きなネックとなっている。
そのため、これまでにもジアセタール系化合物をはじめとした結晶核剤の流動性の改良に関して様々な検討がなされてきた。例えば、粒状化することにより流動性を改良する方法(特許文献1~4)や、粒状化せず、流動性改良剤を加えることにより流動性を改良する方法(特許文献5~8)等が提案されている。
一つ目の粒状化する方法の場合、流動性は改良されるが、ポリオレフィン系樹脂中での分散性や溶解性が悪くなる傾向があり、その結果、核剤本来の透明性等の性能の低下だけでなく、白点等の外観上の問題も生じる懸念があった。そのためにバインダー等の添加剤を加える方法が一般的であり、広く使われている。しかし、用途によっては、バインダー等の添加剤を加えても上記問題が完全に解決されず、更には配合されたバインダー等の添加剤の性能面への影響が問題となるケースがあった。
二つ目の粒状化せずに流動性改良剤を加える方法も、流動性の改良には有効であり、更に粒状化する方法の様な分散性等の問題が生じる懸念も少なく、これまで様々な用途で用いられてきた。しかし、より高度な流動性を求められる用途では、流動性改良剤だけでは未だ十分な流動性が得られていないのが現状である。
また、結晶核剤の性能は、その結晶核剤の樹脂中での分散性や溶解性に大きく依存することが知られている。その為、これまでにも樹脂中での分散性や溶解性を改善するために様々な検討がなされてきた。例えば、複数の核剤を併用する方法、分散性や溶解性を改良する添加剤を加える方法(特許文献9~11)等が提案され、実用化されている。また、粒径を小さくする、即ち微粒子化する方法(特許文献12)等も有効な方法であり、広く用いられている。
しかし、一つ目の添加剤を加える方法の場合、用途によっては加えた添加剤に起因するブリード等の新たな問題が生じる懸念があった。また、二つ目の微粒子化の場合、分散性には非常に優れているが、移送性等の取り扱い上の問題が生じる懸念があった。
一般に、かさ密度が高いほど流動性が良くなることが知られている。上記粒状化することにより流動性が改善される要因の一つは、粒状化することによりかさ密度が大きく上昇することであると言われている。しかし、粒状化する方法の場合、上述の通り、樹脂中での分散性や溶解性の低下が避けられず、バインダー等の添加剤が必要となる。十分な量のバインダーを添加することができない場合は、分散性や溶解性考慮して粒状化の程度を抑える必要があり、そうすると十分な流動性の改善効果が得られない可能性が生じるという問題があった。従って、粒状化する方法とは異なる方法でかさ密度を上げることができれば、分散性や溶解性を損なうことなく、流動性を改善できる方法として、その開発が待ち望まれていた。
国際公開第98/33851号 特開2001-81236号公報 特開2002-332359号公報 特開2003-096246号公報 特表2009-507982号公報 特開2013-209662号公報 特開2015-30849号公報 特許第5920524号公報 特開昭60-101131号公報 特開平08-245843号公報 特開2001-240698号公報 特開平06-145431号公報
本発明は、優れた分散性を保持しつつ、ポリオレフィン系樹脂用結晶核剤の流動性を改良する方法、その方法を含む流動性の改良されたポリオレフィン系樹脂用結晶核剤の製造方法及び該方法により得られた流動性に優れ、且つ分散性にも優れたポリオレフィン系樹脂用結晶核剤、更にその結晶核剤を含んでなる透明性に優れたポリオレフィン系樹脂組成物及びその成形体を提供することを目的とする。
本発明者らは、鋭意検討した結果、結晶核剤の粒子を特定の性状に調整することにより、流動性と分散性を同時に改良できること、言い換えるなら特定の粒子形状を有する微粒子状の結晶核剤または結晶核剤の混合物が流動性と分散性を同時に満足し得ることを見出し、本発明を完成するに至った。
即ち、本発明は以下に示すポリオレフィン系樹脂用結晶核剤の流動性を改良すると同時に分散性も改良する方法、その方法により得られた流動性に優れ、且つ分散性にも優れた結晶核剤、更にその結晶核剤を含んでなるポリオレフィン系樹脂組成物及びその成形体を提供するものである。
本発明は、少なくとも結晶核剤(A)を含有するポリオレフィン系樹脂用結晶核剤であって、レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~4.0μmであり、且つ、均一度が3~10であることを特徴とするポリオレフィン系樹脂用結晶核剤である。
上記結晶核剤(A)は、粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が0.2~0.4であることが好ましい。
本発明のポリオレフィン系樹脂用結晶核剤は、気流式微粉砕機による微粉砕物であることが好ましい。
上記結晶核剤(A)は、レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~2.0μmである結晶核剤(B)と、レーザー回折式粒度分布測定より求めた粒径の平均値が4.0~15.0μmである結晶核剤(C)との混合物であることが好ましい。
上記結晶核剤(B)は、気流式微粉砕機による微粉砕物であることが好ましい。
上記結晶核剤(A)は、下記一般式(1)で示されるジアセタール化合物である、又は、上記結晶核剤(A)が上記結晶核剤(B)と上記結晶核剤(C)との混合物である場合、上記結晶核剤(B)及び上記結晶核剤(C)のうち少なくとも一つが、下記一般式(1)で示されるジアセタール化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R及びRは、同一又は異なって、それぞれ、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシ基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシカルボニル基又はハロゲン原子を示す。Rは、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数2~4のアルケニル基又は直鎖状若しくは分岐鎖状の炭素数1~4のヒドロキシアルキル基を示す。m及びnは、それぞれ1~5の整数を示す。pは0又は1を示す。2つのRは互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。2つのR基は互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。]
上記一般式(1)において、R及びRが、同一又は異なって、メチル基又はエチル基であり、かつ、Rが水素原子であり、m及びnが1又は2の整数であり、pが1であることが好ましい。
上記一般式(1)において、R及びRが、同一又は異なって、プロピル基又はプロポキシ基であり、かつ、Rがプロピル基又はプロペニル基であり、m及びnが1であり、pが1であることが好ましい。
本発明のポリオレフィン系樹脂用結晶核剤は、ゆるめかさ密度が0.20g/cm以上、かためかさ密度が0.30g/cm以上であることが好ましい。
本発明のポリオレフィン系樹脂用結晶核剤は、気流式粉砕機による微粉砕物の減容化物であることが好ましい。
本発明のポリオレフィン系樹脂用結晶核剤は、流動性改良剤を更に含有し、該流動性改良剤は、炭素数8~32の飽和若しくは不飽和脂肪酸の金属塩、炭素数14~32の飽和又は不飽和脂肪酸、炭素数14~28の飽和又は不飽和脂肪族アルコール、炭素数12~32の飽和又は不飽和脂肪酸のビスアマイド、シリカ、タルク、炭酸カルシウム及びハイドロタルサイトからなる群より選ばれた1種又は2種以上であることが好ましい。
上記流動性改良剤は、炭素数8~32の飽和若しくは不飽和脂肪酸の金属塩及び/又はシリカを含むことが好ましい。
また、本発明は、ポリオレフィン系樹脂用結晶核剤の製造方法であって、(i)気流式微粉砕機を用いて、粒径の平均値が0.5~4.0μm、均一度が3~10になる様に微粉砕する工程を具備することを特徴とするポリオレフィン系樹脂用結晶核剤の製造方法でもある。
本発明のポリオレフィン系樹脂用結晶核剤の製造方法は、(ii)上記工程(i)で得られた微粉砕物を、ゆるめかさ密度が0.20g/cm以上、かためかさ密度が0.30以上g/cmになる様に減容化処理する工程を具備することが好ましい。
上記工程(i)において、得られた微粉砕物における結晶核剤(A)のアスペクト比が、粒子画像解析法により求めた50%値が0.40~0.70、Lower値が、0.2~0.4であることが好ましい。
本発明のポリオレフィン系樹脂用結晶核剤の製造方法は、上記工程(i)の前に、未粉砕の結晶核剤(A)と未粉砕の流動性改良剤とを混合し、更に必要に応じてポリオレフィン系樹脂用添加剤(ただし、上記結晶核剤及び流動性改良剤を除く)を加えて混合する工程を具備することが好ましい。
本発明のポリオレフィン系樹脂用結晶核剤の製造方法は、上記工程(i)と上記工程(ii)の間に、下記工程(i-1)、及び、工程(i-2)を具備することが好ましい。(i-1)流動性改良剤を、粒径の平均値が5μm以下、均一度が3以下になる様に微粉砕する工程。(i-2)上記工程(i)で得られた微粉砕物と、上記工程(i-1)で得られた流動性改良剤の微粉砕物に、必要に応じてポリオレフィン系樹脂用添加剤(ただし、上記結晶核剤及び流動性改良剤を除く)を加えて、混合する工程。
また、本発明は、ポリオレフィン系樹脂と上記ポリオレフィン系樹脂用結晶核剤、又は、上記ポリオレフィン系樹脂用結晶核剤の製造方法で製造されたポリオレフィン系樹脂用結晶核剤を含んでなるポリオレフィン系樹脂組成物でもある。
また、本発明は、上記ポリオレフィン系樹脂組成物を原料とするポリオレフィン系樹脂成形体でもある。
また、本発明は、ポリオレフィン系樹脂用結晶核剤の流動性改良方法であって、結晶核剤(A)を全量又は一部気流式微粉砕機で微粉砕することにより得られる微粉砕物を下記(a)と(b)の条件を同時に満たす性状とすることを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法でもある。(a)レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~4.0μmであり、且つ、均一度が3~10である。(b)粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が、0.2~0.4である。
また、本発明のポリオレフィン系樹脂用結晶核剤の流動性の改良方法は、上記結晶核剤(A)は、レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~2.0μmである結晶核剤(B)と、レーザー回折式粒度分布測定より求めた粒径の平均値が4.0~15.0μmである結晶核剤(C)とを混合することにより得られる混合物であることが好ましい。
また、本発明のポリオレフィン系樹脂用結晶核剤の流動性の改良方法は、(c)上記結晶核剤(A)のゆるめかさ密度を0.20g/cm以上に、上記結晶核剤(A)のかためかさ密度を0.30g/cm以上に調整することが好ましい。
上記結晶核剤(A)は、粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が0.2~0.4であることが好ましい。
また、本発明のポリオレフィン系樹脂用結晶核剤の流動性の改良方法は、気流式微粉砕機を用いて微粉砕し、更に、得られた微粉砕物を、減容化処理することが好ましい。
また、本発明は、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法であって、結晶核剤(A)及び流動性改良剤を含んでなるポリオレフィン系樹脂用結晶核剤を、該ポリオレフィン系樹脂用結晶核剤の粒径の平均値を0.5~4μmに、均一度を3~10に調整し、更に、上記ポリオレフィン系樹脂用結晶核剤のゆるめかさ密度が0.20g/cm以上、上記ポリオレフィン系樹脂用結晶核剤のかためかさ密度が0.30g/cm以上に調整することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法でもある。
本発明のポリオレフィン系樹脂用結晶核剤の流動性の改良方法は、上記結晶核剤(A)及び流動性改良剤を含んでなるポリオレフィン系樹脂用結晶核剤を、気流式微粉砕機を用いて微粉砕し、更に、得られた微粉砕物を、減容化処理することが好ましい。
本発明のポリオレフィン系樹脂用結晶核剤は、非常に流動性に優れており、生産性の向上等に大きく寄与することができる。また、本発明のポリオレフィン系樹脂用結晶核剤は、ポリオレフィン系樹脂中での分散性や溶解性にも非常に優れており、成形品の性能面でも非常に有用である。従って、本発明のポリオレフィン系樹脂用結晶核剤は、生産性に優れ、様々な用途で幅広く使用することが可能であり、得られた成形品は優れた性能を有しており、多くの用途で非常に有用である。特に、添加剤の使用が制限されている医療用途等では、本質的に添加剤を使用することなく、流動性と分散性を同時に改良できる技術として今後の活用が大いに期待される。
<ポリオレフィン系樹脂用結晶核剤>
本発明のポリオレフィン系樹脂用結晶核剤は、少なくとも結晶核剤(A)を含有する。上記結晶核剤(A)は、ポリオレフィン系樹脂用結晶核剤として用いることができるものであれば特に限定されないが、後述する大きさ、形状、組成、製法により得られたもの等を好適に用いることができる。
本発明のポリオレフィン系樹脂用結晶核剤は、レーザー回折式粒度分布測定より求めた粒径の平均値が0.5μm~4.0μmであり、且つ、均一度が3~10である。上記レーザー回折式粒度分布測定より求めた粒径の平均値は、0.5μm~3.0μmであることが好ましく、0.5μm~2.5μmであることがより好ましく、1.0μm~2.5μmであることが更に好ましい。また、上記均一度は、3~7であることが好ましく、4~7であることがより好ましい。
通常、ポリオレフィン系樹脂用結晶核剤は、上記粒径の平均値が小さいほど、また、均一度の数値が1に近い程、ポリオレフィン系樹脂中での分散性や溶解性に優れることが知られている。しかしながら、上記結晶核剤(A)のみを含有するポリオレフィン系樹脂用結晶核剤では、粒径が小さくなると流動性が低下する傾向にあることもまたよく知られている。その一方で、上記粒径の平均値が大きいほど、流動性に優れることが知られている。しかしながら、上記結晶核剤(A)のみを含有するポリオレフィン系樹脂用結晶核剤では、粒径が大きくなると、分散性や溶解性が低下する傾向にあることもよく知られている。
本発明のポリオレフィン系樹脂用結晶核剤では、上記粒径の平均値が、上述した流動性、分散性、及び、溶解性のバランスが取れる範囲よりも、大き過ぎず、且つ、小さ過ぎない範囲に調整されており、更に、上記均一度の範囲も調整されているので、分散性及び溶解性に優れつつ、流動性をより一層改善することが可能である。
本明細書及び請求の範囲において、「粒径の平均値」とは、レーザー回折粒度分布測定により求めた粒度分布における体積基準累積50%での粒径(d50)を意味する。なお、本明細書においては、「粒径の平均値」を「平均粒径」と言うことがある。同様に、本明細書及び請求の範囲における「粒径の均一度」とは、上記粒度分布における体積基準累積60%での粒径(d60)と体積基準累積10%での粒径(d10)の比(d60/d10)を求めて、その均一度とした。d60/d10の値が1に近いほど、粒度分布が狭いことを意味する。
また、上記レーザー回折粒度分布測定は、汎用の装置を用いた、汎用の方法・条件による方法が採用可能であり、例えば、具体的には、次の様な方法が例示される;レーザー回折式粒度分布計(マルバーンインスツルメンツ社製、「マスターサイザー3000」)を用いて、湿式測定セル中で十分に撹拌混合することで、分散剤として界面活性剤を加えた水溶液中に試料を分散させ、続いて、得られた混合物を装置内で更に撹拌、循環させながら、超音波を当てて装置内にて十分に均一に分散させた後、超音波を当てながら試料の粒度分布を測定することができる。
本発明のポリオレフィン系樹脂用結晶核剤において、上記結晶核剤(A)は、粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が0.2~0.4であることが好ましい。上記結晶核剤(A)は、粒子画像解析法により求めたアスペクト比の50%値が0.45~0.65であることがより好ましい。
上記結晶核剤(A)のアスペクト比に関しても、流動性に影響する因子の一つであることが知られている。しかしながら、流動性の改善には、対象化合物の種類や流動場の状態によって異なり、どのような因子を検討すべきかの指針は定まっておらず、実質的にはアスペクト比の因子を含めた複数の因子の複合的な作用を想像しながら検討される。本発明では、様々な条件で調製された微粒子のアスペクト比を粒子画像解析法により測定した結果、上記結晶核剤(A)においては、アスペクト比が大きな粒子が少なく、特定の範囲にアスペクト比の中心を持った形状であることが、流動性の改善に影響することを確認した。また、上記結晶核剤(A)のアスペクト比は、アスペクト比が大きな粒子が少なく、上記好ましい範囲にアスペクト比の中心を持った形状を用いることにより、後述する減容化をよりし易くなり、更に、得られた減容化物の流動性等の性能面の改善にも影響する。
なお、上記アスペクト比の大きな粒子の割合に関しては、アスペクト比のLower値の測定結果の数値を指標とし、アスペクト比の中心は、アスペクト比の累積50%値の測定結果の数値を指標とした。
すなわち、本明細書及び請求の範囲において、「50%値」とは、粒子画像解析法による測定により求められたアスペクト比の分布における累積50%値であり、上記の通りアスペクト比の中心を意味する。同様に、本明細書及び請求の範囲における「Lower値」とは、粒子画像解析法による測定により求められたアスペクト比の分布における累積10%値であり、その値が大きいほど上記の通りアスペクト比の大きな粒子の割合が少ないことを意味する。
また、上記粒子画像解析法によるアスペクト比の測定は、汎用の装置を用いた、汎用の方法・条件による方法が採用可能であり、例えば、具体的には、次の様な方法が例示される;測定容器中でイオン交換水に分散剤として界面活性剤を加えた後に、測定試料を加え、分散処理を行い、測定試料を均一に分散させる。その後、フロー式粒子像分析装置(マルバーンインスツルメンツ社製、「FPIA-3000」)を用いて、測定を行い、得られたデータより試料のアスペクト比の分布を測定することができる。
上記結晶核剤(A)は、レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~2.0μmである結晶核剤(B)と、レーザー回折式粒度分布測定より求めた粒径の平均値が4.0~15.0μmである結晶核剤(C)との混合物であることが好ましい。上記結晶核剤(B)は、粒径の平均値が0.5~1.5μmであることがより好ましい。
本発明のポリオレフィン系樹脂用結晶核剤の性状を調整する方法としては、上述した粒径の平均値、均一度、及び、アスペクト比等の性状を満たす方法であれば特に限定されないが、例えば、反応工程、後処理工程等の製造過程で粒子形状等を調整する方法であっても良く、ポリオレフィン系樹脂用結晶核剤の製造後に粒子形状等を調整する方法であっても良い。また、製造後の調整方法に関しても、再結晶化から、湿式又は乾式粉砕する方法まで、何れの方法を用いても良い。更に、粉砕方法に関しても、乾式の気流粉砕方法から湿式粉砕方法まで何れの方法を用いても良い。なかでも、上記ポリオレフィン系樹脂用結晶核剤の製造後に粒子形状等を調整する方法が、調整の容易さ等の観点から好ましい。
上記ポリオレフィン系樹脂用結晶核剤の製造後に性状を調整する方法としては、例えば、ジェットミルタイプの気流式粉砕機等を用いて微粉砕する方法が、上記粒径の平均値等の性状を容易に調整できる等の観点から好ましい。上記微粉砕を行う際には、微粉砕条件を目的の性状になる様にコントロールする方法等が挙げられる。また、上記結晶核剤(A)が、上記結晶核剤(B)と、上記結晶核剤(C)との混合物である場合には、上記結晶核剤(B)は、気流式微粉砕機による微粉砕物であることが好ましく、予め微粉砕した上記結晶核剤(B)と、未粉砕の上記結晶核剤(C)を目的の性状になる様に比率を調整して混合する方法等も挙げられる。
上述した微粉砕した上記結晶核剤(B)と未粉砕の上記結晶核剤(C)を混合する方法の場合、その比率は各々の粒径により異なり、必ずしも決まった範囲である必要はないが、通常、微粉砕品(例えば、上記結晶核剤(B))/未粉砕品(例えば、上記結晶核剤(C))の比率が1/1~3/1程度の範囲で調整する方法が、生産性の面でも性能的な面でも好ましい。特に、用途によっては、単一の種類の核剤で所望の性能が得られない場合があり、その場合には一方の結晶核剤のみを微粉砕することにより本発明の結晶核剤を得ることが可能であり、優位である。
本発明のポリオレフィン系樹脂用結晶核剤は、ゆるめかさ密度が0.20g/cm以上、かためかさ密度が0.30g/cm以上であることが好ましい。上記ゆるめかさ密度は、0.24g/cm以上であることがより好ましく、上記かためかさ密度は、0.34g/cm以上であることがより好ましい。一般に、上記かさ密度は高いほど流動性に優れる傾向にあり、本発明のポリオレフィン系樹脂用結晶核剤においても、固形化等を生じず、微粒子の形状を保持したままで、かさ密度が高くなるほど、流動性に優れる傾向にあり、上記かさ密度以上であれば、結晶核剤の種類に関係なく、優れた流動性を示すことが可能である。また、上記かさ密度の上限に関しては、可能な限り固形化による樹脂中での分散性や溶解性の低下が生じない範囲であることが好ましい。上記固形化は、上記結晶核剤(A)の種類や、後述する減容化の方法により、必ずしも一定ではないが、例えば、上記結晶核剤(A)として、ジアセタール系の結晶核剤を用いて、スクリュー等による圧縮法で減容化した場合、固形化による分散性の低下が懸念されるかさ密度の上限は、ゆるめかさ密度が0.5g/cm、かためかさ密度が1.0g/cm程度である。ただし、上記結晶核剤(A)の種類や減容化の方法によっては、上記数値以上でも固形化が起こらない場合もある。
ここで、上記かさ密度とは、ある容積の容器に充填された時に、その内容積を体積として計算された密度のことであり、容器中にゆっくりと(圧力を加えずに)充填した粗な状態で測定した値をゆるめかさ密度と言い、それを更に一定の条件でタッピングして密な状態にした後に測定した値をかためかさ密度と言う。
また、上記かさ密度は、上述の通り容器の容量と充填された内容物の重量を測定することにより、容易に求められる値であり、例えば、下記方法などで測定することができる。
漏斗をメスシリンダーの開口部上に、垂直に保持し、漏斗を通してメスシリンダー中に所定量の試料をゆっくりと(圧力を加えずに)入れ、秤を用いてメスシリンダー内の試料の重量を測定する。得られた重量より下記式(1)を用いてゆるめかさ密度を求める。続いて、メスシリンダーをゴムシート等の上で一定の高さから垂直に落下させる操作(タッピング)を所定の回数繰り返した後、メスシリンダー内の試料の容量を読み取り、下記式(2)を用いてかためかさ密度を求める。
式(1)
ゆるめかさ密度(g/cm)=試料の重量(g)/メスシリンダーの容量(cm
式(2)
かためかさ密度(g/cm)=試料の重量(g)/タッピング後の試料の容量(cm
上記かさ密度は、例えば、上述した気流式微粉砕機を用いて微粉砕をした後、汎用の装置を用いて、圧縮や脱気等により、上記ゆるめかさ密度及びかためかさ密度の範囲となる様に減容化させることにより好適に得ることができる。すなわち、本発明のポリオレフィン系樹脂用結晶核剤は、気流式粉砕機による微粉砕物の減容化物であることが好ましい。
上記減容化は、一般的な溶解や融解等により固形化する方法ではなく、基本的に微粉砕により得られた微粒子の形状を本質的に変えることなく、粒子間に存在する空気を除いて容積を小さくする方法を意味し、例えば、ローラーやスクリューにより圧力をかけて空気が外部に押し出して減容する方法や真空ポンプ等により強制的に空気を外部に抜き出して減容する方法やタンブラー混合機、V型混合機、W型混合機、ドラム混合機等の容器回転型混合機を用いて混合することにより減容化する方法などが挙げられる。ただし、微粒子の形状を本質的に変えることなく、上記かさ密度の範囲が得られる方法であれば、どの様な方法で減容化しても構わない。
本発明のポリオレフィン系樹脂用結晶核剤において、安息角は、本発明の目的である流動性を示す目安として有効であることが知られている。本発明のポリオレフィン系樹脂用結晶核剤が、本発明の目的を満たすためには、すなわち、通常の方法において、例えば、ホッパー等よりポリオレフィン樹脂に投入する際に、ブリッジング等により投入が困難になる等の問題を解消するためには、安息角が48度以下であることが好ましく、45度以下であることがより好ましい。
本発明のポリオレフィン系樹脂用結晶核剤において、上記結晶核剤(A)の種類は、本発明の効果を奏する限り、特に限定されるものではないが、例えば、ジアセタール系化合物、カルボン酸塩系化合物、リン酸エステル塩系化合物、アミド系化合物、ロジン系化合物等が例示される。なかでも、上記ジアセタール系化合物において、本発明の効果が最も顕著である。また、上記結晶核剤(A)が、上記結晶核剤(B)と、上記結晶核剤(C)との混合物である場合には、上記結晶核剤(B)及び上記結晶核剤(C)のうち少なくとも一つが、上記ジアセタール系化合物であることが好ましい。
上記ジアセタール系化合物としては、特に限定されないが、下記一般式(1)で示されるジアセタール化合物が好適に例示される。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、R及びRは、同一又は異なって、それぞれ、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシ基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシカルボニル基又はハロゲン原子を示す。Rは、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数2~4のアルケニル基又は直鎖状若しくは分岐鎖状の炭素数1~4のヒドロキシアルキル基を示す。m及びnは、それぞれ1~5の整数を示す。pは0又は1を示す。2つのRは互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。2つのR基は互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。]
上記ジアセタール系化合物の中でも、更に好ましい化合物としては、例えば、上記一般式(1)中のR及びRが、同一又は異なって、メチル基又はエチル基であり、かつ、Rが水素原子であり、m及びnが1又は2の整数であり、pが1である化合物等が挙げられる。
また、次の様な化合物も更に好ましい化合物として例示することができる;上記一般式(1)において、R及びRがプロピル基又はプロポキシ基であり、かつ、Rがプロピル基又はプロペニル基であり、m及びnが1であり、pが1である化合物。
上記ジアセタール化合物の具体的な態様としては、次の様な化合物が例示される。1,3:2,4-ジ-O-ベンジリデン-D-ソルビトール、1,3:2,4-ビス-O-(メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-イソプロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-イソプロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-イソプロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-プロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-プロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-tert-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-tert-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-tert-ブチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’,5’-トリメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’,5’-トリメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(2’,4’,5’-トリエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’,5’-トリエチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-メトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-メトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-メトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-エトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-エトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エトキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-イソプロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-イソプロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-イソプロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-プロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-プロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロポキシベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-メトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-メトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-エトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-エトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-イソプロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-イソプロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-イソプロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-n-プロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-n-プロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロポキシカルボニルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-フルオロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-フルオロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-フルオロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-クロロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-クロロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-クロロベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(o-ブロモベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(m-ブロモベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-ブロモベンジリデン)-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(p-メチルベンジリデン)-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(p-エチルベンジリデン)-D-ソルビトール、1,3-O-(p-エチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(p-クロロベンジリデン)-D-ソルビトール、1,3-O-(p-クロロベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(2’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(2’,4’-ジメチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-ベンジリデン-2,4-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(3’,4’-ジメチルベンジリデン)-2,4-O-ベンジリデン-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-(p-エチルベンジリデン)-D-ソルビトール、1,3-O-(p-エチルベンジリデン)-2,4-O-(p-メチルベンジリデン)-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(3’,4’-ジメチルベンジリデン)-2,4-O-p-メチルベンジリデン-D-ソルビトール、1,3-O-(p-エチルベンジリデン)-2,4-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3-O-(3’,4’-ジメチルベンジリデン)-2,4-O-p-エチルベンジリデン-D-ソルビトール、1,3-O-(p-メチルベンジリデン)-2,4-O-(p-クロロベンジリデン)-D-ソルビトール、1,3-O-(p-クロロベンジリデン)-2,4-O-(p-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-メチルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-メチルソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-エチルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,5’
-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-エチルソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-プロポキシカルボニルベンジリデン)-1-n-プロピルソルビトール、1,3-O-(p-n-プロピルベンジリデン)-2,4-O-(p-プロポキシベンジリデン)-1-n-プロピルソルビトール、1,3-O-(p-プロポキシベンジリデン)-2,4-O-(p-n-プロピルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-プロペニルソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-1-プロペニルソルビトール、1,3:2,4-ビス-O-(p-プロポキシカルボニルベンジリデン)-1-プロペニルソルビトール、1,3-O-(p-n-プロピルベンジリデン)-2,4-O-(p-プロポキシベンジリデン)-1-プロペニルソルビトール、1,3-O-(p-プロポキシベンジリデン)-2,4-O-(p-n-プロピルベンジリデン)-1-プロペニルソルビトール、1,3:2,4-ビス-O-ベンジリデン-1-アリルソルビトール、1,3:2,4-ビス-O-(p-メチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジメチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,3’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,4’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,5’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(2’,6’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジエチルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-エトキシカルボニルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-プロポキシカルボニルベンジリデン)-1-アリルソルビトール、1,3-O-(p-n-プロピルベンジリデン)-2,4-O-(p-プロポキシベンジリデン)-1-アリルソルビトール、1,3-O-(p-プロポキシベンジリデン)-2,4-O-(p-n-プロピルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,5’-ジエチルベンジリデン)-1-n-プロピルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-メトキシベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’,4’-ジクロロベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(p-メトキシカルボニルベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’-メチル-4’-フルオロベンジリデン)-1-アリルソルビトール、1,3:2,4-ビス-O-(3’-ブロモ-4’-エチルベンジリデン)-1-アリルソルビトール等。
特に、好ましい態様としては、1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール、1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-プロピルソルビトール等が例示される。
また、上記具体的な態様のジアセタール化合物は、単独で用いてもよいが、他の性能、例えば低温加工性等の観点から、2種以上のジアセタール化合物を併用、または予め混合した態様で用いてもよい。
上記併用または混合系で用いる場合、例えば、1,3:2,4-ジ-O-ベンジリデン-D-ソルビトールと1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトールの組合せや1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ、1,3:2,4-ジ-O-ベンジリデン-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ、1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ、1,3:2,4-ビス-O-(p-クロロベンジリデン)-D-ソルビトールと1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトールの組合せ等が例示され、どちらか一方のみを微粉砕して用いても構わない。
上記ジアセタール化合物は、例えば、日本国特公昭48-43748号公報、特開昭53-5165号公報、特開昭57-185287号公報、特開平2-231488号公報等に記載されている製造方法等を用いて容易に製造することができる。また、現在ポリオレフィン用結晶核剤として市販されているもの、例えば、ミリケン社(米国)のミラッド3988、ミラッドNX8000、新日本理化(株)のゲルオールD、ゲルオールMD、ゲルオールDXR等を、汎用の粒径の結晶核剤(例えば結晶核剤(C))としてそのまま使用してもよく、また微粉砕の結晶核剤(例えば流動性の改良されたポリオレフィン系樹脂用結晶核剤や結晶核剤(B))のための原料の結晶核剤として使用してもよい。
また、本発明に係るジアセタール系化合物以外の結晶核剤としては、例えば、安息香酸ナトリウム塩、p-tert-ブチル安息香酸アルミニウム塩、下記一般式(2)で示されるシクロヘキサンジカルボン酸金属塩、下記一般式(3)で表されるノルボルナンジカルボン酸金属塩等のカルボン酸塩系化合物、下記一般式(4)で示されるリン酸エステル塩系化合物、下記一般式(5)で示されるアミド系化合物、下記一般式(6)で示されるロジン酸又はその金属塩化合物(例えば、リチウム、ナトリウム、カリウム、マグネシウム等のアルカリ金属塩)等のロジン系化合物等が例示される。
Figure JPOXMLDOC01-appb-C000004
[式中、M及びMは、いずれもリチウムイオンを示すか、またはMとMの2つの金属イオンが単一の金属イオンにまとめられてなる二価の金属カチオン:カルシウム、ストロンチウム、亜鉛、マグネシウム若しくは一塩基性アルミニウムを示す。R、R、R、R10、R11、R12、R13、R14、R15およびR16は、同一又は異なって、水素原子、炭素数1~9のアルキル基(ここで、いずれか2つのビシナル(隣接炭素に結合)またはジェミナル(同一炭素に結合)アルキル基は、一緒になって6個までの炭素原子を有する炭化水素環を形成してもよい)、ヒドロキシ基、炭素数1~9のアルコキシ基、炭素数1~9のアルキレンオキシ基、アミノ基、炭素数1~9のアルキルアミノ基、ハロゲン原子(フッ素、塩素、臭素および沃素)又はフェニル基を示す。]
Figure JPOXMLDOC01-appb-C000005
[式中、M及びMは、同一又は異なって、金属カチオン若しくは有機カチオンを示すか、または該2つの金属イオンがまとめられてなる単一の金属イオン(二価の金属カチオン、例えばカルシウムイオン等)を示す。R17、R18、R19、R20、R21、R22、R23、R24、R25、及びR26は、同一又は異なって、それぞれ、水素原子、炭素数1~9のアルキル基、ヒドロキシ基、炭素数1~9のアルコキシ基、炭素数1~9のアルキレンオキシ基、アミノ基、及び炭素数1~9のアルキルアミノ基、ハロゲン原子、フェニル基、アルキルフェニル基又は最大9個の炭素原子を有するジェミナル若しくはまたはビシナルの炭素環を示す。好ましくは、金属カチオンはカルシウム、ストロンチウム、バリウム、マグネシウム、アルミニウム、銀、ナトリウム、リチウム、ルビジウム、カリウム等から成る群から選択される。]
Figure JPOXMLDOC01-appb-C000006
[式中、R27~R30は、同一又は異なって、水素原子又は炭素数1~9のアルキル基を表し、R31は水素原子又は炭素数1~3のアルキル基を表し、dは1又は2の整数であり、dが1のとき、Mはアルカリ金属を表し、dが2のとき、Mはアルカリ土類金属、亜鉛又はヒドロキシアルミニウムを表す。]
Figure JPOXMLDOC01-appb-C000007
[式中、fは、2~6の整数を表す。R32は、炭素数2~18の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~18の脂環族ポリカルボン酸残基又は炭素数6~18の芳香族ポリカルボン酸残基を表す。2~6個のR33は、同一又は異なって、それぞれ、炭素数5~30の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~30の脂環族アミン残基又は炭素数6~30の芳香族アミン残基を表す。]
Figure JPOXMLDOC01-appb-C000008
[式中、R34、R35およびR36は、水素原子、アルキル基、シクロアルキル基またはアリール基を示し、それぞれ同一であっても異なっていてもよい。]
本発明のポリオレフィン系樹脂用結晶核剤が、後述する流動性改良剤等の添加剤を含有する場合には、本発明のポリオレフィン系樹脂用結晶核剤中、上記結晶核剤(A)の含有量は、60~99.5重量%であることが好ましく、70~99重量%であることがより好ましく、80~95重量%であることが更に好ましい。一方、本発明のポリオレフィン系樹脂用結晶核剤が上記結晶核剤(A)のみを含有する場合には、本発明のポリオレフィン系樹脂用結晶核剤中、上記結晶核剤(A)の含有量は100重量%である。
本発明のポリオレフィン系樹脂用結晶核剤は、流動性改良剤を更に含有することが好ましい。
上記流動性改良剤の種類は、本発明の効果を奏するものであれば、どの様な種類のものであっても構わないが、その効果及び他の特性への影響等を考慮した場合、炭素数8~32の飽和若しくは不飽和脂肪酸の金属塩、炭素数14~32の飽和又は不飽和脂肪酸、炭素数14~28の飽和又は不飽和脂肪族アルコール、炭素数12~32の飽和又は不飽和脂肪酸のビスアマイド、シリカ、タルク、炭酸カルシウム及びハイドロタルサイトからなる群より選ばれた1種又は2種以上であることが好ましく、有機系の炭素数8~30の飽和若しくは不飽和脂肪酸の金属塩及び/又は無機系のシリカを含むことがより好ましく、有機系の炭素数8~30の飽和若しくは不飽和脂肪酸の金属塩を含むことが更に好ましい。
上記炭素数8~30の飽和若しくは不飽和脂肪酸の金属塩としては、構成する脂肪酸が炭素数12~22の飽和若しくは不飽和脂肪酸であることが好ましく、炭素数16~22の飽和脂肪酸であることがより好ましい。上記金属塩の種類としては、リチウム塩、亜鉛塩、マグネシウム塩及びカルシウム塩からなる群より選ばれる少なくとも1種であることが好ましく、カルシウム塩であることがより好ましい。
上記炭素数8~30の飽和若しくは不飽和脂肪酸の金属塩の具体例としては、例えば、ラウリン酸亜鉛、ラウリン酸カルシウム、ミリスチン酸リチウム、ミリスチン酸亜鉛、ミリスチン酸マグネシウム、ミリスチン酸カルシウム、ステアリン酸リチウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム、オレイン酸カルシウム、ベヘン酸リチウム、ベヘン酸亜鉛、ベヘン酸マグネシウム、ベヘン酸カルシウム、エルカ酸亜鉛、モンタン酸亜鉛、モンタン酸マグネシウム、モンタン酸カルシウムなどが挙げられ、これらの中でもステアリン酸カルシウム、ベヘン酸カルシウムであることがより好ましく、ステアリン酸カルシウムであることが更に好ましい。
上記シリカとしては、本発明の効果を奏する限り、天然系及び合成系のシリカ、また、親水性及び疎水性のシリカの何れでも良く、具体的には、ヒュームドシリカ、沈降シリカ、シリカゲルなどが例示される。
上記流動性改良剤の含有量は、本発明の効果を奏する範囲で適宜調整可能であるが、上記結晶核剤(A)100重量部に対して、0.5~30重量部であることが好ましく、1.0~20重量部の範囲であることより好ましい。上記流動性改良剤の含有量が、上記結晶核剤(A)100重量部に対して、0.5重量部以上であれば、いずれの種類の流動性改良剤を用いた場合でも、充分な流動性改良効果を示すことが可能である。また、上記流動性改良剤の含有量が、上記結晶核剤(A)100重量部に対して、30重量部を超えて用いてもその含有量に見合った流動性改良効果の向上は小さく、流動性改良剤の種類によっては、透明性の低下する傾向にあり、更にブリード等の原因にもなる可能性がある。
<ポリオレフィン系樹脂用結晶核剤の製造方法>
本発明のポリオレフィン系樹脂用結晶核剤の製造方法に関して、以下に更に具体的な例を示して、詳しく記載する。ただし、目的の性能が得られる限り、必ずしも以下の方法に限定されるものではない。
上記ポリオレフィン系樹脂用結晶核剤の製造方法としては、(i)気流式微粉砕機を用いて、上記ポリオレフィン系樹脂用結晶核剤の粒径の平均値が0.5~4.0μm、上記ポリオレフィン系樹脂用結晶核剤の均一度が3~10になる様に微粉砕する工程を具備することが好ましい。上記工程(i)においては、上記ポリオレフィン系樹脂用結晶核剤の粒径の平均値が、0.5~3.0μmとなる様にすることがより好ましく、1.0~2.5μmとなる様にすることが更に好ましい。また、上記ポリオレフィン系樹脂用結晶核剤の均一度を4~7となる様にすることがより好ましい。
上記ポリオレフィン系樹脂用結晶核剤の製造方法においては、(ii)上記工程(i)で得られた微粉砕物を、ゆるめかさ密度が0.20g/cm以上、かためかさ密度が0.30g/cm以上になる様に減容化処理する工程を具備することが好ましい。上記ゆるめかさ密度は、0.24g/cm以上、上記かためかさ密度は、0.34g/cm以上とすることがより好ましい。
上記工程(i)においては、得られた微粉砕物における結晶核剤(A)のアスペクト比が、粒子画像解析法により求めた50%値が0.40~0.70、Lower値が、0.2~0.4となる様にすることが好ましい。また、上記工程(i)においては、粒子画像解析法により求めた50%値が0.45~0.65となる様にすることがより好ましい。
上記工程(i)において、上記粒径の平均値の範囲のポリオレフィン系樹脂用結晶核剤を得る方法としては、反応工程や後処理工程の条件を調整することにより製造過程で上記微粒子状の結晶核剤を得ることも可能であり、その場合は、微粉砕等の工程を必要とせず、通常の反応や後処理工程からなる通常の製造工程が上記工程(i)に相当する。
また、上記工程(i)において、通常の微粉砕だけでは、上記粒径の範囲に調整しにくい場合は、例えば、微粉砕した結晶核剤(例えば、上記結晶核剤(B))と未粉砕の結晶核剤(例えば、上記結晶核剤(C))を上記粒径の平均値の範囲になる様に混合比率を調整して、混合しても構わない。その場合、混合工程まで含めて上記工程(i)と称する。なお、混合工程を含む場合、混合する結晶核剤の種類は、本発明の効果を奏する限り、必ずしも同一である必要はない。
上記微粉砕に用いる微粉砕機としては、気流式微粉砕機が最も好ましく、特にその中でもジェットミルタイプの気流式微粉砕機を用いる方法が、粒径の調整のし易さ等の面で優位である。ただし、結晶核剤の種類によっては、例えば、本発明の効果を奏する限り、湿式法等の気流式以外の微粉砕方法を用いることも可能である。
上記微粉砕した結晶核剤(A)と未粉砕の結晶核剤を混合する方法の場合、その比率は各々の粒径により異なり、必ずしも決まった範囲である必要はないが、通常、微粉砕品(例えば、上記結晶核剤(B))/未粉砕品(例えば、上記結晶核剤(C))の比率が1/1~3/1程度の範囲で調整する方法が、生産性の面でも性能的な面でも好ましい。特に、用途によっては、単一の種類の核剤で所望の性能が得られない場合があり、その場合には一方の結晶核剤のみを微粉砕することにより、本発明のポリオレフィン系樹脂用結晶核剤を得ることが可能であり、優位である。
上記工程(ii)における減容化とは、上記工程(i)で得られた微粒子状態を本質的に保持したままで、かさ密度を減少させる方法を意味する。一般的に上記工程(i)で得られる様な微粒子には多量の空気がその粒子間に存在し、その結果、かさ密度が非常に低くなる。従って、その空気を系外に排出することにより、微粒子の状態を保持したままで大きく減容化することが可能であり、かさ密度も大きく上昇する。
上記粒子間の空気を排出する方法としては、例えば、ローラーやスクリューを用いて粉体に圧力をかける方法や、真空ポンプ等を用いて空気を系外に吸引する方法などが挙げられ、上記方法を複数組み合わせて行う方法が最も効果的である。また、タンブラー混合機、V型混合機、W型混合機、ドラム混合機等の容器回転型混合機を用いて混合することにより減容化する方法を使うこともできる。
より具体的には、圧力をかける方法の場合、例えばホソカワミクロン(株)製のコンパクタやフロイント産業(株)製のローラーコンパクターなどの乾式圧縮装置を用いて圧縮する方法や(株)中島製作所製のAMOスクリュー式パッカーや、(株)アワジ製や(株)東京自働機械製作所製などのオーガ充填機等の圧縮充填機等を用いてスクリューで流動させながら圧縮する方法など挙げられる。なお、この方法の場合、可能な限り減容化の程度を大きくし、且つ微粒子状態を保持する様に条件を調整する必要がある。即ち、圧力をかけ過ぎると微粒子同士が固着してしまい、微粒子状態を保持することができなくなり、その結果、樹脂中での分散性や溶解性が低下する懸念が生じる。特に、ジアセタール系化合物の様に固着しやすい結晶核剤では、その傾向が顕著である。従って、その場合には、圧力をかけると同時に真空ポンプ等を用いて系を減圧にして、粒子間の空気を系外に排出する方法が最も有効である。
上記ポリオレフィン系樹脂用結晶核剤の製造方法において、本発明のポリオレフィン系樹脂用結晶が上記流動性改良剤を含有する場合には、上記工程(i)の前に、未粉砕の結晶核剤(A)と、未粉砕の流動性改良剤を混合し、更に必要に応じてポリオレフィン系樹脂用添加剤(ただし、上記結晶核剤及び流動性改良剤を除く)を加えて混合する工程を具備することが好ましい。
上記未粉砕の結晶核剤(A)と未粉砕の流動性改良剤とを混合する工程では、極端なムラがない程度に均一に混合されていれば良く、その方法、使用する装置に制約はなく、汎用の装置を用いた汎用の方法を採用することができる。例えば、ナウターミキサー、コニカルミキサー、タンブラー混合機、V型混合機、W型混合機、ドラム混合機などの汎用の混合装置を用いて、数十分から数時間室温で混合すれば良い。
上記未粉砕の結晶核剤(A)と未粉砕の流動性改良剤とを混合する工程において、上記結晶核剤(A)と上記流動性改良剤の比率(重量比、結晶核剤(A):流動性改良剤)は、前述の通り、本発明の効果を奏する範囲で適宜調整することが可能であるが、流動性改良効果等の観点より、100:0.5~100:30の範囲であることが好ましく、100:1~100:20の範囲であることより好ましい。
上記ポリオレフィン系樹脂用結晶核剤の製造方法としては、反応工程や後処理工程の条件を調整することにより製造過程で得られた微粒子状の結晶核剤(A)と市販の微粒子状の流動性改良剤を用いることも可能であり、その場合は、上記工程(i)を経由することなく、上記微粒子状の結晶核剤(A)と上記微粒子状の流動性改良剤との混合物をそのまま用いて、上記工程(ii)の減容化処理を行うことも可能である。
また、上記方法では、上記結晶核剤(A)及び上記流動性改良剤の粒径の範囲を調整しにくい場合は、次の様な下記工程を有する方法も用いることも可能である。
上記結晶核剤(A)を、粒径の平均値が4μm以下、好ましくは0.5~4μmの範囲に、均一度が3~10の範囲になる様に微粉砕する工程、(i-1)上記流動性改良剤を、粒径の平均値が5μm以下に、均一度が3以下になる様に微粉砕する工程、(i-2)上記結晶核剤(A)の微粉砕物と、上記工程(i-1)で得られた流動性改良剤の微粉砕物に、必要に応じてポリオレフィン系樹脂用添加剤(ただし、上記結晶核剤及び流動性改良剤を除く)を加えて、混合する工程。すなわち、上記工程(i)と上記工程(ii)の間に、上記工程(i-1)、及び、上記工程(i-2)を具備することが好ましい。
上記結晶核剤(A)を微粉砕する工程、上記流動性改良剤を微粉砕する工程において、微粉砕だけでは上記粒径の範囲に調整しにくい場合は、例えば、微粉砕した結晶核剤(A)又は流動性改良剤と未粉砕の結晶核剤(A)又は流動性改良剤を、上記工程(i―2)で、上記粒径の範囲になる様に混合比率を調整して、混合しても構わない。その場合、混合する上記結晶核剤(A)及び上記流動性改良剤の種類は、本発明の効果を奏する限り、必ずしも同一である必要はない。
上記工程(ii)における減容化とは、上記未粉砕の結晶核剤(A)と未粉砕の流動性改良剤とを混合する工程、又は、工程(i-1)及び工程(i-2)で得られた各成分の微粒子の状態を保持したままで、かさ密度を減少させる方法を意味する。一般的に上記未粉砕の結晶核剤(A)と未粉砕の流動性改良剤とを混合する工程等で得られる様な微粒子には多量の空気がその粒子間に存在し、その結果、かさ密度が非常に低くなる。従って、その空気を系外に排出することにより、微粒子の状態を保持したままで大きく減容化することが可能であり、かさ密度も大きく上昇する。なお、減容化する方法としては、上述したものを好適に用いることができる。
<ポリオレフィン系樹脂用結晶核剤の流動性改良方法>
ポリオレフィン系樹脂用結晶核剤の流動性改良方法は、上記結晶核剤(A)を全量又は一部気流式微粉砕機で微粉砕することにより得られる微粉砕物を下記(a)と(b)の条件を同時に満たす性状とすることが好ましい。(a)レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~4.0μmであり、且つ、均一度が3~10である。(b)粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が、0.2~0.4である。
具体的な方法については、上述した「ポリオレフィン系樹脂用結晶核剤」及び「ポリオレフィン系樹脂用結晶核剤の製造方法」に記載の説明と同義である。ただし、流動性の改良方法に関しても、目的の性能が得られる限り、必ずしもその方法に限定されるものではない。
<ポリオレフィン系樹脂組成物>
本発明は、ポリオレフィン系樹脂と上記ポリオレフィン系樹脂用結晶核剤、又は、上記ポリオレフィン系樹脂用結晶核剤の製造方法で製造されたポリオレフィン系樹脂用結晶核剤を含んでなるポリオレフィン系樹脂組成物でもある。本発明のポリオレフィン系樹脂組成物は、本発明の結晶核剤組成物とポリオレフィン系樹脂とを、必要に応じてその他のポリオレフィン系樹脂用添加剤を加えて、室温にてドライブレンド後、所定の条件にて溶融混合することにより、容易に得ることができる。
上記ポリオレフィン系樹脂中における本発明のポリオレフィン系樹脂用結晶核剤の含有量は、ポリオレフィン系樹脂用の結晶核剤としての核剤効果を奏する限り、特に制約はなく、また、該組成物の配合処方により異なるため一義的には言えないが、本発明のポリオレフィン系樹脂用結晶核剤が上記結晶核剤(A)のみを含有する場合には、ポリオレフィン系樹脂100重量部に対して、0.001~10重量部であることが好ましく、0.01~5重量部であることがより好ましい。また、本発明のポリオレフィン系樹脂用結晶核剤が、上記流動性改良剤等の添加剤を含有する場合には、上記結晶核剤(A)の含有量が、ポリオレフィン系樹脂100重量部に対して、0.001~10重量部であることが好ましく、0.01~5重量部であることがより好ましく、上記流動性改良剤の含有量が、ポリオレフィン系樹脂100重量部に対して、0.000005~3重量部であることが好ましく、0.0001~1重量部であることがより好ましい。
<ポリオレフィン系樹脂>
上記ポリオレフィン系樹脂としては、本発明の効果を奏する限り特に限定されることなく、従来公知のポリオレフィン系樹脂が使用可能であり、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリメチルペンテン系樹脂、ポリブタジエン系樹脂等が例示される。より具体的には、高密度ポリエチレン、中密度ポリエチレン、直鎖状ポリエチレン、エチレン含量50重量%以上、好ましくは70重量%以上のエチレンコポリマー、プロピレンホモポリマー、プロピレン50重量%以上、好ましくは70重量%以上のプロピレンコポリマー、ブテンホモポリマー、ブテン含量50重量%以上、好ましくは70重量%以上のブテンコポリマー、メチルペンテンホモポリマー、メチルペンテン含量50重量%以上、好ましくは70重量%以上のメチルペンテンコポリマー、ポリブタジエン等が例示される。また、上記コポリマーはランダムコポリマーであってもよく、ブロックコポリマーであってもよい。更に、これらの樹脂の立体規則性がある場合は、アイソタクチックでもシンジオタクチックでもよい。上記コポリマーを構成し得るコモノマーとして、具体的にはエチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ウンデセン、ドデセン等の炭素数2~12のα-オレフィン、1,4-エンドメチレンシクロヘキセン等のビシクロ型モノマー、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル、酢酸ビニル等が例示される。
かかる重合体を製造するために適用される触媒としては、一般に使用されているチーグラー・ナッタ型触媒はもちろん、遷移金属化合物(例えば、三塩化チタン、四塩化チタン等のチタンのハロゲン化物)を塩化マグネシウム等のハロゲン化マグネシウムを主成分とする担体に担持してなる触媒と、アルキルアルミニウム化合物(トリエチルアルミニウム、ジエチルアルミニウムクロリド等)とを組み合わせてなる触媒系、メタロセン触媒等も使用できる。
本発明に係るポリオレフィン系樹脂のメルトフローレート(以下「MFR」と略記する。JIS K 7210-1999)は、その適用する成形方法により適宜選択されるが、通常0.01~200g/10分程度、好ましくは0.05~100g/10分程度が推奨される。
<その他の添加剤>
また、上述の通り、本発明のポリオレフィン系樹脂組成物には、その使用目的やその用途に応じて、本発明の効果を損なわない範囲でその他のポリオレフィン系樹脂用添加剤が含まれていてもよい。
上記ポリオレフィン系樹脂組成物に含有してもよいポリオレフィン系樹脂用添加剤としては、例えば、ポリオレフィン等衛生協議会編「ポジティブリストの添加剤要覧」(2002年1月)に記載されている各種添加剤が挙げられる。具体的には、蛍光増白剤(2,5-チオフェンジイル(5-tert-ブチル-1,3-ベンゾキサゾール)、4,4’-ビス(ベンゾオキサゾール-2-イル)スチルベン等)、酸化防止剤、安定剤(金属化合物、エポキシ化合物、窒素化合物、燐化合物、硫黄化合物等)、紫外線吸収剤(ベンゾフェノン系化合物、ベンゾトリアゾール系化合物等)、界面活性剤、滑剤(パラフィン、ワックス等の脂肪族炭化水素、炭素数8~22の高級脂肪酸、炭素数8~22の高級脂肪酸金属(Al、Ca)塩、炭素数8~22の高級脂肪族アルコール、ポリグリコール、炭素数4~22の高級脂肪酸と炭素数4~18の脂肪族1価アルコールとのエステル、炭素数8~22の高級脂肪酸アマイド、シリコーン油、ロジン誘導体等)、充填剤(タルク、ハイドロタルサイト、マイカ、ゼオライト、パーライト、珪藻土、炭酸カルシウム、ガラス繊維等)、発泡剤、発泡助剤、ポリマー添加剤、可塑剤(ジアルキルフタレート、ジアルキルヘキサヒドロフタレート等)、架橋剤、架橋促進剤、帯電防止剤、難燃剤、分散剤、有機無機の顔料(インディゴ化合物、フタロシアニン系化合物、アントラキノン系化合物、ウルトラマリン化合物、アルミン酸コバルト化合物等)、加工助剤、他の核剤等の各種添加剤が例示される。
これらの添加剤を使用する場合、その使用量は、本発明の効果を阻害しない限り、通常使用されている範囲で使用すればよいが、例えば、ポリオレフィン系樹脂100重量部に対して、好ましくは0.0001~100重量部程度、より好ましくは0.001~50重量部程度で使用されるのが一般的である。
また、これらの添加剤を添加する場合、本発明のポリオレフィン系樹脂用結晶核剤と一緒にポリオレフィン系樹脂と混合してポリオレフィン系樹脂組成物とする方法が一般的であるが、一部の添加剤を本発明のポリオレフィン系樹脂用結晶核剤の製造時に混合することもできる。
上記酸化防止剤としては、フェノール系酸化防止剤、亜リン酸エステル系酸化防止剤、イオウ系酸化防止剤等が例示され、具体的な酸化防止剤としては、2,6-ジ-tert-ブチルフェノール、テトラキス[メチレン-3-(3,5-tert-ブチル-4-ヒドロキシフェノール)プロピオネート]メタン、2-ヒドロキシ-4-メトキシベンゾフェノン等のフェノール系酸化防止剤、アルキルジスルフィド、チオジプロピオン酸エステル、ベンゾチアゾール等の硫黄系酸化防止剤、トリスノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、トリフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(2,6-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン等の亜リン酸エステル系酸化防止剤等が例示される。中でも、フェノール系酸化防止剤であるテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、亜リン酸エステル系の酸化防止剤であるトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(2,6-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン等が特に推奨される。
<ポリオレフィン系樹脂成形体>
本発明は、上記ポリオレフィン系樹脂組成物を原料とするポリオレフィン系樹脂成形体でもある。本発明のポリオレフィン系樹脂成形体は、上記本発明のポリオレフィン系樹脂組成物を用いて、慣用されている成形方法に従って成形することにより得られる。上記成形方法としては、本発明の効果を奏する限り、特に制約はなく、射出成形、押出成形、ブロー成形、圧空成形、回転成形、フィルム成形等の従来公知の成形方法のいずれも採用できる。
かくして得られたポリオレフィン系樹脂成形体は、透明性等の光学的特性や耐衝撃性等の機械的特性に優れており、成形品やシート、フィルムとして、自動車部材、電気部材、機械部品、日常雑貨等様々な用途で、非常に有用である。
以下に実施例を示し、本発明を更に詳しく説明するが、本発明はこれらの実施例によって制限されるものではない。尚、実施例や応用例中の化合物の略号、及び各特性の測定は以下の通りである。
[結晶核剤(A)の性状]
(1)粒度分布の測定
レーザー回折式粒度分布計(マルバーンインスツルメンツ社製、「マスターサイザー3000」)を用いて、以下の方法により測定した。まず、湿式測定セルを用い、十分に撹拌混合することで、分散剤としてノニオン系界面活性剤を加えた水溶液中に、試料を分散させ、続いて、得られた混合物を装置内で更に撹拌、循環させながら、超音波を当てて装置内にて十分に均一に分散させた。その後、超音波を当てながら試料の粒度分布を測定した。得られた粒度分布より、体積基準累積50%粒径(d50)を求め、平均粒径とした。同様に、粒度分布より、体積基準累積60%粒径(d60)と体積基準累積10%粒径(d10)を求め、その比(d60/d10)を計算し、粒径の均一度とした。d60/d10の値が1に近いほど、粒径が均一、即ち単分散に近い粒度分布を有すると言える。
(2)アスペクト比の測定
フロー式粒子像分析装置(マルバーンインスツルメンツ社製、「FPIA-3000」)を用いて、以下の方法により測定した。測定容器中でイオン交換水30mlに分散剤として界面活性剤を加えた後に、測定試料を20mg加え、5分間分散処理を行い、試料を均一に分散させて、測定試料を調製した。得られた測定試料を用いて、測定を行い、上記装置付属の解析ソフトにより、アスペクト比の分布を求め、さらにその分布より、累積50%値と累積10%値を求め、各々アスペクト比の中心を意味する50%値、アスペクト比の大きな粒子の割合の目安となるLower値とした。上述の通り、Lower値は、その値が大きいほどアスペクト比の大きな粒子の割合が少ないと言える。
[流動性改良剤の性状]
(3)粒度分布の測定
上記の「(1)結晶核剤(A)の粒度分布の測定方法」と同じ方法を用いて粒度分布を測定し、同じく平均粒径及び粒径の均一度を求めた。
[ポリオレフィン系樹脂用結晶核剤の性状]
(4)粒度分布の測定
上記の「(1)結晶核剤(A)の粒度分布の測定方法」と同じ方法を用いて粒度分布を測定し、同じく平均粒径及び粒径の均一度を求めた。
(5)かさ密度の測定
漏斗をメスシリンダーの開口部上2cmとなるように、かつそれと軸が一致するように垂直に保持し、漏斗を通して100cmのメスシリンダーにポリオレフィン系樹脂用結晶核剤を100cmゆっくりと(圧力を加えずに)入れた。秤を用いてメスシリンダー内のポリオレフィン系樹脂用結晶核剤の重量を0.1gの桁まで測定した。得られた重量より下記式(1)を用いてゆるめかさ密度を求めた。続いて、メスシリンダーをゴムシートの上5cmの高さから垂直に落下させる操作(タッピング)を50回繰り返した。メスシリンダー内のポリオレフィン系樹脂用結晶核剤の容量を0.1cmの桁まで読み取り、下記式(2)を用いてかためかさ密度を求めた。
式(1);
ゆるめかさ密度(g/cm)=メスシリンダー内のポリオレフィン系樹脂用結晶核剤の重量(g)/100cm
式(2)
かためかさ密度(g/cm)=メスシリンダー内のポリオレフィン系樹脂用結晶核剤の重量(g)/タッピング後のポリオレフィン系樹脂用結晶核剤の容量(cm
[流動性の評価]
(6)安息角の測定
25℃、湿度60%の条件下で、ポリオレフィン系樹脂用結晶核剤30gを、漏斗上縁までの距離が1cmの高さから、開口部の直径9cm、穴の直径1cmの漏斗上へ注ぎ込み、振動させずに漏斗下口から10cmの位置にある直径9cmの円形台上に落下させる。落下した円錐状の堆積物の高さを測定し、水平面と母線のなす角を計算から求め、安息角(単位:度)とした。この安息角が小さいほど粉末流動性が良いことを示す。
(7)粉体流動性試験(漏斗試験)
ポリオレフィン系樹脂用結晶核剤を、漏斗の上縁までの距離が5cmの高さから、開口部の直径15cm、穴の直径1.5cmの漏斗上へ注ぎ込み、振動させずに漏斗下口より落下させる。ポリオレフィン系樹脂用結晶核剤の漏斗から排出状態より、以下の基準に従って、ポリオレフィン系樹脂用結晶核剤の流動性を4段階評価又は5段階評価にて判定した。
(4段階評価基準)
◎:ポリオレフィン系樹脂用結晶核剤が全て速やかに漏斗から排出され、漏斗内壁の付着物もほとんど確認されない
○:ポリオレフィン系樹脂用結晶核剤がわずかに漏斗から排出されずに残るが、わずかな衝撃により残ったポリオレフィン系樹脂用結晶核剤も全て排出される
△:ポリオレフィン系樹脂用結晶核剤が漏斗から排出されずに残り、わずかな衝撃だけでは漏斗上に残ったポリオレフィン系樹脂用結晶核剤を完全に排出することは困難である
×:ポリオレフィン系樹脂用結晶核剤が漏斗から排出されずに多量に残り、衝撃を与えても漏斗上に残ったポリオレフィン系樹脂用結晶核剤を排出することは困難である
(5段階評価基準)
5:ポリオレフィン系樹脂用結晶核剤が非常に速やかに漏斗から排出され、漏斗内壁の付着物もほとんど確認されない
4:ポリオレフィン系樹脂用結晶核剤が全て漏斗から排出され、漏斗内壁の付着物もほとんど確認されない
3:ポリオレフィン系樹脂用結晶核剤がわずかに漏斗から排出されずに残るが、わずかな衝撃により残ったポリオレフィン系樹脂用結晶核剤も全て排出される
2:ポリオレフィン系樹脂用結晶核剤が漏斗から排出されずに残り、わずかな衝撃だけでは漏斗上に残ったポリオレフィン系樹脂用結晶核剤を完全に排出することは困難である
1:ポリオレフィン系樹脂用結晶核剤が漏斗から排出されずに多量に残り、衝撃を与えても漏斗上に残ったポリオレフィン系樹脂用結晶核剤を排出することは困難である
[ポリオレフィン系樹脂成形体の性状]
(8)ヘイズ値の測定
東洋精機製作所社製のヘイズメータを用いて、JIS K7136(2000)に準じた方法でヘイズ値を測定した。評価試料には、1mm厚み射出成形品のポリプロピレン系樹脂成形体を使用した。得られたヘイズ値の数値が小さい程、透明性に優れていることを示す。
(9)白点評価 
射出成形した50mm×50mm×1mm形状のポリオレフィン系樹脂成形体を評価試料として使用し、目視観察で成形体中の白点の数をカウントした。得られた結果は、試料5枚の平均値をとり、その試料の白点数とし、得られた評価結果より、以下の3段階で分類評価した。
◎:白点数が3個未満である。成形体の性能上、全く問題のないレベルである。
○:白点数が3~15個の範囲である。核剤としての性能上、問題はないが、他の物性面で未分散物の影響が出る可能性がある。
×:白点数が15個を超えて存在が確認される。明らかに、核剤の性能面でも十分に効果が発現されておらず、更に未分散物が様々な物性面で問題を生ずる可能性が高い。
実施例中の化合物の略号
MDBS:1,3:2,4-ビス-O-(p-メチルベンジリデン)-D-ソルビトール
EDBS:1,3:2,4-ビス-O-(p-エチルベンジリデン)-D-ソルビトール
DMDBS:1,3:2,4-ビス-O-(3’,4’-ジメチルベンジリデン)-D-ソルビトール 
PDBN:1,3:2,4-ビス-O-(p-n-プロピルベンジリデン)-1-n-プロピルソルビトール
CDBS:1,3:2,4-ビス-O-(p-クロロベンジリデン)-D-ソルビトール
StCa:ステアリン酸カルシウム
StZn:ステアリン酸亜鉛
[実施例1]
(株)セイシン企業製のジェット粉砕機「シングルトラック・ジェットミルSTJ-400」を用いて、室温下、圧力0.7MPa、処理量30kg/時の条件下で、汎用の粒径のDMDBS(新日本理化(株)製、ゲルオールDXR)を微粉砕して、微粒子状のポリオレフィン系樹脂用結晶核剤を調製した。得られた微粒子状のポリオレフィン系樹脂用結晶核剤の粒度分布を測定し、その粒度分布より求められる平均値及び均一度を表1に示した。また、得られた微粒子状のポリオレフィン系樹脂用結晶核剤のアスペクト比を測定し、その分布より求められる50%値及びLower値を表1に示した。続いて、上記により得られたポリオレフィン系樹脂用結晶核剤を用いて、粉体流動性試験(漏斗試験)にて、粉体流動性の評価を行い、結果を合わせて表1に示した。
次に、ポリオレフィン系樹脂としてポリプロピレンランダムコポリマー(MFR=7g/10分(荷重2160g、温度230℃)、(株)プライムポリマー製、R-720)100重量部、ポリオレフィン系樹脂用結晶核剤として、上記により得られたポリオレフィン系樹脂用結晶核剤0.2重量部、及びその他添加剤としてステアリン酸カルシウム(日東化成工業(株)製、商品名「Ca-St」)0.05重量部、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン(株)製、商品名「IRGANOX1010」)0.05重量部、テトラキス(2,4-ジ-tert-ブチルフェニル)ホスファイト(BASFジャパン(株)製、商品名「IRGAFOS168」)0.05重量部をドライブレンドした。そのドライブレンド物を一軸押出機(田辺プラスチックス機械株式会社製VS―20)を用いてバレル温度250℃にて溶融混合後、押し出されたストランドを冷却し、ペレタイザーでカッティングして、ポリオレフィン系樹脂組成物を調製した。
続いて、得られたポリオレフィン系樹脂組成物を用いて、射出成形機(日精樹脂工業株式会社製NS40-5A)にて射出成形温度(加熱温度)240℃、金型温度(冷却温度)40℃の条件下で成形して、厚みが1mmのポリオレフィン系樹脂成形体を得た。得られた成形体を評価試料として用いて、ヘイズ値を測定し、得られた結果を合わせて表1に示した。また、同じ評価試料を用いて白点評価を行った結果、上記ポリオレフィン系樹脂用結晶核剤がポリオレフィン系樹脂中で非常に良好な分散性を示すことが確認された。
[実施例2]
DMDBSの代わりにEDBSを用いた以外は実施例1と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を調製し、得られたポリオレフィン系樹脂用結晶核剤の粒度分布、アスペクト比の測定、粉体流動性の評価を行い、その結果を表1に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表1に示した。また、白点評価の結果より、上記ポリオレフィン系樹脂用結晶核剤のポリオレフィン系樹脂中での分散性は非常に良好であった。
[実施例3]
DMDBSの代わりにPDBNを用いた以外は実施例1と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を調製し、得られたポリオレフィン系樹脂用結晶核剤の粒度分布、アスペクト比の測定、粉体流動性の評価を行い、その結果を表1に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表1に示した。また、白点評価の結果より、上記ポリオレフィン系樹脂用結晶核剤のポリオレフィン系樹脂中での分散性は非常に良好であった。
[比較例1]
実施例1で得られた微粒子状のポリオレフィン系樹脂用結晶核剤を再度実施例1と同条件にて微粉砕して、より微細な微粒子状のポリオレフィン系樹脂用結晶核剤を調製し、本発明外のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤の粒度分布、アスペクト比の測定、粉体流動性の評価を行い、その結果を表1に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表1に示した。また、白点評価の結果より、上記結晶核剤のポリオレフィン系樹脂中での分散性は非常に良好であった。
[比較例2]
微粉砕前の汎用の粒径のDMDBSを用いて、粉体流動性の評価を行い、その結果を粒度分布、アスペクト比の数字と合わせて表1に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た、得られた成形体を用いてヘイズ値を測定し、結果を表1に示した。また、白点評価の結果より、上記結晶核剤のポリオレフィン系樹脂中での分散性は良好であった。
[比較例3]
微粉砕前の汎用の粒径のEDBSを用いて、粉体流動性の評価を行い、その結果を粒度分布、アスペクト比の数字と合わせて表1に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表1に示した。また、白点評価の結果より、上記結晶核剤のポリオレフィン系樹脂中での分散性は良好であった。
[比較例4]
微粉砕前の汎用の粒径のPDBNを用いて、粉体流動性の評価を行い、その結果を粒度分布、アスペクト比の数字と合わせて表1に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表1に示した。また、白点評価の結果より、上記結晶核剤のポリオレフィン系樹脂中での分散性は非常に良好であった。
Figure JPOXMLDOC01-appb-T000009
[実施例4]
結晶核剤(B)として比較例1で得られた微粒子状のポリオレフィン系樹脂用結晶核剤を用い、結晶核剤(C)として微粉砕前のDMDBSを用いて、室温下で(B)/(C)=2/1の比率(重量比)で混合して、本発明のポリオレフィン系樹脂用結晶核剤を調製した。得られたポリオレフィン系樹脂用結晶核剤の粒度分布、アスペクト比の測定、粉体流動性の評価を行い、その結果を表2に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表2に示した。また、白点評価の結果より、上記ポリオレフィン系樹脂用結晶核剤のポリオレフィン系樹脂中での分散性は非常に良好であった。
[実施例5]
結晶核剤(C)として、微粉砕前のEDBSを用いた以外は、実施例4と同様に実施してポリオレフィン系樹脂用結晶核剤を調製し、得られたポリオレフィン系樹脂用結晶核剤の粒度分布、アスペクト比の測定、粉体流動性の評価を行い、その結果を表2に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表2に示した。また、白点評価の結果より、上記ポリオレフィン系樹脂用結晶核剤のポリオレフィン系樹脂中での分散性は非常に良好であった。
[実施例6]
結晶核剤(C)として、未粉砕のCDBS(粒径の平均値7.5、均一度4.1)を用いた以外は、実施例4と同様に実施してポリオレフィン系樹脂用結晶核剤を調製し、得られたポリオレフィン系樹脂用結晶核剤の粒度分布、アスペクト比の測定、粉体流動性の評価を行い、その結果を表2に示した。続いて、実施例1と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いてヘイズ値を測定し、結果を表2に示した。また、白点評価の結果より、上記ポリオレフィン系樹脂用結晶核剤のポリオレフィン系樹脂中での分散性は非常に良好であった。
Figure JPOXMLDOC01-appb-T000010
上記表1及び表2の結果より、本発明の範囲内の性状を有するポリオレフィン系樹脂用結晶核剤(実施例1~6)は、本発明の範囲外の性状を有するポリオレフィン系樹脂用結晶核剤と比較して、粉体流動性に非常に優れていることがわかる。また表1及び表2の結果より、本発明のポリオレフィン系樹脂用結晶核剤は、ポリオレフィン系樹脂用結晶核剤としての本来の性能に関しても、従来のポリオレフィン系樹脂用結晶核剤と比較して、同等かそれ以上の性能を示すことが確認できる。この結果より、本発明のポリオレフィン系樹脂用結晶核剤を用いることにより、ポリオレフィン系樹脂との配合時や配合後の成形加工時における作業性が大きく改善され、更に本発明のポリオレフィン系樹脂用結晶核剤を用いたポリオレフィン系樹脂組成物及びその成形体が非常に優れた性能を有し、様々な用途で非常に有用であることがわかる。
[実施例7]
汎用の粒径のDMDBS(新日本理化(株)製、ゲルオールDXR)を、(株)セイシン企業製のジェット粉砕機「シングルトラック・ジェットミルSTJ-400」を用いて、室温下、圧力0.7MPa、処理量30kg/時の条件下で、本発明の範囲内の粒度分布になるように微粉砕して、微粒子状のポリオレフィン系樹脂用結晶核剤を調製した。続いて、上記微粒子状のポリオレフィン系樹脂用結晶核剤を簡易型の圧縮減容化容器に入れて、室温下、0.25MPaの圧力をかけて、表3に記載のゆるめかさ密度になるように減容化処理して、本発明に係る減容化された微粒子状のポリオレフィン系樹脂用結晶核剤を得た。得られた本発明に係る減容化された微粒子状のポリオレフィン系樹脂用結晶核剤の粒度分布を測定し、その粒度分布より求められる平均値及び均一度を表3に示した。また、得られた微粒子状のポリオレフィン系樹脂用結晶核剤のアスペクト比を測定し、その分布より求められる50%値及びLower値を表3に示した。続いて、得られた上記ポリオレフィン系樹脂用結晶核剤を用いて、かさ密度(ゆるめかさ密度/かためかさ密度)及び安息角を測定し、更に粉体流動性試験(漏斗試験)にて、粉体流動性の評価を行い、結果を合わせて表3に示した。
次に、ポリオレフィン系樹脂としてポリプロピレンランダムコポリマー(MFR=7g/10分(荷重2160g、温度230℃)、(株)プライムポリマー製、R-720)100重量部、ポリオレフィン系樹脂用結晶核剤として上記で得られたポリオレフィン系樹脂用結晶核剤0.2重量部、及びその他添加剤としてステアリン酸カルシウム(日東化成工業(株)製、商品名「Ca-St」)0.05重量部、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン(株)製、商品名「IRGANOX1010」)0.05重量部、テトラキス(2,4-ジ-tert-ブチルフェニル)ホスファイト(BASFジャパン(株)製、商品名「IRGAFOS168」)0.05重量部をドライブレンドした。そのドライブレンド物を一軸押出機(田辺プラスチックス機械株式会社製VS-20)を用いてバレル温度250℃にて溶融混合後、押し出されたストランドを冷却し、ペレタイザーでカッティングして、ポリオレフィン系樹脂組成物を調製した。
続いて、得られたポリオレフィン系樹脂組成物を用いて、射出成形機(日精樹脂工業株式会社製NS40-5A)にて射出成形温度(加熱温度)240℃、金型温度(冷却温度)40℃の条件下で成形して、厚みが1mmのポリオレフィン系樹脂成形体を得た。得られた成形体を評価試料として用いて、ヘイズ値を測定し、更に、同じ評価試料を用いて白点評価を行い、得られた結果を合わせて表3に示した。
[実施例8]
微粉砕時の、圧力を0.10MPaに変えた以外は、実施例7と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を表3に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[実施例9]
減容化処理時の、最終到達のゆるめかさ密度を表3に記載のゆるめかさ密度に変えた以外は、実施例8と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を表3に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[実施例10]
DMDBSの代わりにMDBSを用いた以外は、実施例7と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果を表3に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[実施例11]
DMDBSの代わりにEDBSを用いた以外は、実施例7と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を表3に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[実施例12]
DMDBSの代わりにPDBNを用いた以外は、実施例7と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を表3に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[比較例5]
実施例7の微粉砕後、減容化処理前のDMDBSを用いて、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を粒度分布の数字を合わせて表3に示した。続いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[比較例6]
実施例7の微粉砕前のDMDBSをそのまま用いて、実施例7と同様に減容化処理して、本発明の範囲外のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤のアスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を粒度分布の数字を合わせて表3に示した。続いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[比較例7]
実施例7の微粉砕前のDMDBSを、減容化処理も行わず、そのまま用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を粒度分布の数字を合わせて表3に示した。続いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[比較例8]
実施例10の微粉砕前のMDBSを、減容化処理も行わず、そのまま用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を粒度分布の数字を合わせて表3に示した。続いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[比較例9]
実施例11の微粉砕前のEDBSを、減容化処理も行わず、そのまま用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を粒度分布の数字を合わせて表3に示した。続いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
[比較例10]
実施例12の微粉砕前のPDBNを、減容化処理も行わず、そのまま用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を粒度分布の数字を合わせて表3に示した。続いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表3に示した。
Figure JPOXMLDOC01-appb-T000011
[実施例13]
 実施例7で得られた微粒子状の結晶核剤(DMDBS)を再度実施例7と同条件にて微粉砕して、より微細な微粒子状のポリオレフィン系樹脂用結晶核剤を調製し、微粉砕前のDMDBSと表4に記載の比率で混合後、実施例7と同様に減容化処理を行い、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を表4に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表4に示した。
[実施例14]
 実施例7で得られたより微細な微粒子状の結晶核剤(DMDBS)と実施例8の微粉砕前のEDBSを、表4に記載の比率で混合後、実施例7と同様に減容化処理を行い、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を表4に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表4に示した。
[実施例15]
 実施例7で得られたより微細な微粒子状の結晶核剤(DMDBS)と未粉砕のCDBS(粒径の平均値7.5、均一度4.1)を、表4に記載の比率で混合後、実施例7と同様に減容化処理を行い、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、アスペクト比、かさ密度及び安息角の測定、粉体流動性の評価を行い、その結果を表4に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例7と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表4に示した。
Figure JPOXMLDOC01-appb-T000012
上記表3及び表4の結果より、本発明の範囲内の性状を有するポリオレフィン系樹脂用結晶核剤(実施例7~15)は、本発明の範囲外の性状を有するポリオレフィン系樹脂用結晶核剤(比較例5~10)と比較して、粉体流動性に非常に優れていることがわかる。また、表3及び表4の結果より、本発明のポリオレフィン系樹脂用結晶核剤は、樹脂中での分散性や溶解性に非常に優れており、ポリオレフィン系樹脂用結晶核剤としての本来の性能に関しても、従来のポリオレフィン系樹脂用結晶核剤と比較して、同等かそれ以上の性能を示すことが確認できる。この結果より、本発明のポリオレフィン系樹脂用結晶核剤を用いることにより、ポリオレフィン系樹脂との配合時や配合後の成形加工時における作業性が大きく改善され、更に本発明のポリオレフィン系樹脂用結晶核剤を用いたポリオレフィン系樹脂組成物及びその成形体が非常に優れた性能を有し、様々な用途で非常に有用であることがわかる。
[実施例16]
結晶核剤(A)として汎用の粒径のDMDBS(新日本理化(株)製、ゲルオールDXR)10kgを、流動性改良剤として汎用の粒径のStCa(日東化成工業(株)製、Ca-St)0.5kgを、ヘンシェルミキサー中に投入し、室温下、30秒間混合して、結晶核剤(A)と流動性改良剤を含有する混合物を調製した。続いて、上記で得られた混合物を、(株)セイシン企業製のジェット粉砕機「シングルトラック・ジェットミルSTJ-400」を用いて、室温下、圧力0.7MPa、処理量30kg/時の条件下で、本発明の範囲内の粒度分布になるように微粉砕して、微粒子状の混合物を調製した。次に、上記微粒子状の混合物を簡易型の圧縮減容化容器に入れて、室温下、0.25MPaの圧力をかけて、表5に記載のゆるめかさ密度になるまで減容化処理することにより、本発明の流動性の改良されたポリオレフィン系樹脂用結晶核剤を得た。得られた本発明のポリオレフィン系樹脂用結晶核剤の粒度分布を測定し、その粒度分布より求められる平均値及び均一度を表5に示した。また、ポリオレフィン系樹脂用結晶核剤のかさ密度(ゆるめかさ密度及びかためかさ密度)も測定し、得られた結果を表5に示した。続いて、得られた上記ポリオレフィン系樹脂用結晶核剤の安息角を測定し、更に粉体流動性試験(漏斗試験)にて、粉体流動性の評価を行い、結果を合わせて表5に示した。
次に、ポリオレフィン系樹脂としてポリプロピレンランダムコポリマー(MFR=7g/10分(荷重2160g、温度230℃)、(株)プライムポリマー製、R-720)100重量部、上記で得られたポリオレフィン系樹脂用結晶核剤0.2重量部、及びその他添加剤としてStCa(日東化成工業(株)製、商品名「Ca-St」)0.04重量部、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン(株)製、商品名「IRGANOX1010」)0.05重量部、テトラキス(2,4-ジ-tert-ブチルフェニル)ホスファイト(BASFジャパン(株)製、商品名「IRGAFOS168」)0.05重量部をドライブレンドした。そのドライブレンド物を一軸押出機(田辺プラスチックス機械株式会社製VS―20)を用いてバレル温度250℃にて溶融混合後、押し出されたストランドを冷却し、ペレタイザーでカッティングして、ポリオレフィン系樹脂組成物を調製した。
続いて、得られたポリオレフィン系樹脂組成物を用いて、射出成形機(日精樹脂工業株式会社製NS40-5A)にて射出成形温度(加熱温度)240℃、金型温度(冷却温度)40℃の条件下で成形して、厚みが1mmのポリオレフィン系樹脂成形体を得た。得られた成形体を評価試料として用いて、ヘイズ値を測定し、更に、同じ評価試料を用いて白点評価を行い、得られた結果を合わせて表5に示した。
[実施例17]
流動性改良剤の投入量を1kgに変えた以外は、実施例16と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果をまとめて表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[実施例18]
流動性改良剤の投入量を1.5kgに変えた以外は、実施例16と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果をまとめて表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[実施例19]
流動性改良剤として、StCaの代わりに汎用の粒径のStZn(日東化成工業(株)製、Zn-St)を用いた以外は、実施例17と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果をまとめて表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[実施例20]
流動性改良剤として、StCaの代わりに汎用の粒径のシリカ(EVONIK社製、AEROSIL(商標登録)R972)を用いた以外は、実施例16と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果をまとめて表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[実施例21]
結晶核剤(A)として、DMDBSの代わりにPDBNを用いた以外は、実施例18と同様に実施して、本発明のポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果を表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[比較例11]
実施例16において、流動性改良剤を混合せずに、結晶核剤(A)を、実施例16と同条件にて微粉砕して、微粒子状のポリオレフィン系樹脂用結晶核剤を得た。得られた微粒子状のポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果を表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[比較例12]
実施例16において、流動性改良剤を混合せず、また、微粉砕も減容化も行わずにそのまま用いて、実施例16と同様にして、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果を表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[比較例13]
実施例17で得られた結晶核剤(A)と流動性改良剤の混合物を、微粉砕、減容化を行わず、そのまま用いて、実施例16と同様にして、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果を表5に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
[比較例14]
実施例21において、流動性改良剤を混合せず、また、微粉砕も減容化も行わずにそのまま用いて、実施例21と同様にして、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果を表5に示した。続いて、得られた結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得た。得られた成形体を用いて、ヘイズ値の測定、白点評価を行い、得られた結果を合わせて表5に示した。
Figure JPOXMLDOC01-appb-T000013
[実施例22]
(株)セイシン企業製のジェット粉砕機「シングルトラック・ジェットミルSTJ-400」を用いて、室温下、圧力0.7MPa、処理量30kg/時の条件下で、汎用の粒径のDMDBS(新日本理化(株)製、ゲルオールDXR)を微粉砕して、微粒子状の結晶核剤(A)を得た。得られた結晶核剤(A)の粒径の平均値は1.6μm、均一度は5.2、アスペクト比の50%値は0.62、Lower値は0.31であった。
同様に、上記ジェット粉砕機を用いて、室温下、圧力0.7MPa、処理量30kg/時の条件下で、汎用の粒径のStCa(日東化成工業(株)製、Ca-St)を微粉砕して、微粒子状の流動性改良剤を得た。得られた流動性改良剤の粒径の平均値は2.1μm、均一度は2.7であった。
続いて、上記で得られた微粒子状の結晶核剤(A)50gと微粒子状の流動性改良剤5gを市販のフードプロセッサー中に投入し、室温下、30秒間混合して、結晶核剤(A)と流動性改良剤を含有する微粒子状の混合物を調製した。
次に、上記微粒子状の混合物を簡易型の圧縮減容化容器に入れて、室温下、0.25MPaの圧力をかけて、表6に記載のゆるめかさ密度になるまで減容化処理することにより、本発明に係る流動性の改良されたポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果をまとめて表6に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得て、そのヘイズ値の測定、白点評価を行い、結果を合わせて表6に示した。
[実施例23]
混合時の微粒子状の流動性改良剤の投入量を7.5gに変えた以外は、実施例22と同様に実施して、本発明に係る流動性の改良されたポリオレフィン系樹脂用結晶核剤を得た。得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果をまとめて表6に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得て、そのヘイズ値の測定、白点評価を行い、結果を合わせて表6に示した。
[実施例24]
上記ジェット粉砕機を用いて、室温下、圧力0.7MPa、処理量30kg/時の条件下で、汎用の粒径のPDBNを微粉砕して、微粒子状の結晶核剤(A)を得た。得られた結晶核剤(A)の粒径の平均値は1.4μm、均一度は5.3であった。
続いて、上記で得られた微粒子状の結晶核剤(A)50gと実施例22で得られた微粒子状の流動性改良剤5gを市販のフードプロセッサー中に投入し、室温下、30秒間混合して、結晶核剤(A)と流動性改良剤を含有する微粒子状の混合物であるポリオレフィン系樹脂用結晶核剤を調製した。
得られたポリオレフィン系樹脂用結晶核剤を用いて、粒度分布、かさ密度、安息角の測定、粉体流動性の評価を行い、その結果をまとめて表6に示した。続いて、得られたポリオレフィン系樹脂用結晶核剤を用いて、実施例16と同様に実施して、ポリプロピレン系樹脂成形体を得て、そのヘイズ値の測定、白点評価を行い、結果を合わせて表6に示した。
Figure JPOXMLDOC01-appb-T000014
上記表5及び表6の結果より、本発明の範囲内の性状を有するポリオレフィン系樹脂用結晶核剤(実施例16~24)は、本発明の範囲外の性状を有するポリオレフィン系樹脂用結晶核剤(比較例11~14)と比較して、粉体流動性に非常に優れていることがわかる。また、表5及び表6の結果より、本発明のポリオレフィン系樹脂用結晶核剤は、樹脂中での分散性や溶解性に非常に優れており、ポリオレフィン系樹脂用結晶核剤としての本来の性能に関しても、従来の結晶核剤と比較して、同等かそれ以上の性能を示すことが確認できる。この結果より、本発明のポリオレフィン系樹脂用結晶核剤を用いることにより、ポリオレフィン系樹脂との配合時や配合後の成形加工時における作業性が大きく改善され、更に本発明のポリオレフィン系樹脂用結晶核剤を用いたポリオレフィン系樹脂組成物及びその成形体が非常に優れた性能を有し、様々な用途で非常に有用であることがわかる。
本発明のポリオレフィン系樹脂用結晶核剤は、特定の性状に調整することにより流動性が大きく改良されており、非常に流動性に優れたポリオレフィン系樹脂用結晶核剤として、様々な用途で使用することができる。また、本発明のポリオレフィン系樹脂用結晶核剤は、ポリオレフィン系樹脂用結晶核剤としての本来の性能である成形品の透明性等に関しては、これまでと同等かそれ以上の性能を有しており、自動車部材、電気部材、機械部品、日用雑貨、衣装等のケース、食品等の容器等、様々な用途で使うことができる。特に、不要な添加剤等の混入が敬遠される医療用途等では、添加剤を加えることなく、流動性を改良できる技術として今後の活用が大いに期待される技術である。

Claims (26)

  1. 少なくとも結晶核剤(A)を含有するポリオレフィン系樹脂用結晶核剤であって、
    レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~4.0μmであり、且つ、均一度が3~10である
    ことを特徴とするポリオレフィン系樹脂用結晶核剤。
  2. 前記結晶核剤(A)は、粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が0.2~0.4である請求項1に記載のポリオレフィン系樹脂用結晶核剤。
  3. 気流式微粉砕機による微粉砕物である請求項1又は2に記載のポリオレフィン系樹脂用結晶核剤。
  4. 前記結晶核剤(A)は、レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~2.0μmである結晶核剤(B)と、レーザー回折式粒度分布測定より求めた粒径の平均値が4.0~15.0μmである結晶核剤(C)との混合物である請求項1又は2に記載のポリオレフィン系樹脂用結晶核剤。
  5. 前記結晶核剤(B)は、気流式微粉砕機による微粉砕物である請求項4に記載のポリオレフィン系樹脂用結晶核剤。
  6. 前記結晶核剤(A)は、下記一般式(1)で示されるジアセタール化合物である、又は、前記結晶核剤(A)が前記結晶核剤(B)と前記結晶核剤(C)との混合物である場合、前記結晶核剤(B)及び前記結晶核剤(C)のうち少なくとも一つが、下記一般式(1)で示されるジアセタール化合物である請求項1~5の何れかに記載のポリオレフィン系樹脂用結晶核剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R及びRは、同一又は異なって、それぞれ、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシ基、直鎖状若しくは分岐鎖状の炭素数1~4のアルコキシカルボニル基又はハロゲン原子を示す。Rは、水素原子、直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基、直鎖状若しくは分岐鎖状の炭素数2~4のアルケニル基又は直鎖状若しくは分岐鎖状の炭素数1~4のヒドロキシアルキル基を示す。m及びnは、それぞれ1~5の整数を示す。pは0又は1を示す。2つのRは互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。2つのR基は互いに結合してそれらが結合するベンゼン環と共にテトラリン環を形成していてもよい。]
  7. 前記一般式(1)において、R及びRが、同一又は異なって、メチル基又はエチル基であり、かつ、Rが水素原子であり、m及びnが1又は2の整数であり、pが1である請求項6に記載のポリオレフィン系樹脂用結晶核剤。
  8. 前記一般式(1)において、R及びRが、同一又は異なって、プロピル基又はプロポキシ基であり、かつ、Rがプロピル基又はプロペニル基であり、m及びnが1であり、pが1である請求項6に記載のポリオレフィン系樹脂用結晶核剤。
  9. ゆるめかさ密度が0.20g/cm以上、かためかさ密度が0.30g/cm以上である請求項1~8の何れかに記載のポリオレフィン系樹脂用結晶核剤。
  10. 気流式粉砕機による微粉砕物の減容化物である請求項9に記載のポリオレフィン系樹脂用結晶核剤。
  11. 流動性改良剤を更に含有し、該流動性改良剤は、炭素数8~32の飽和若しくは不飽和脂肪酸の金属塩、炭素数14~32の飽和又は不飽和脂肪酸、炭素数14~28の飽和又は不飽和脂肪族アルコール、炭素数12~32の飽和又は不飽和脂肪酸のビスアマイド、シリカ、タルク、炭酸カルシウム及びハイドロタルサイトからなる群より選ばれた1種又は2種以上である請求項1~10の何れかに記載のポリオレフィン系樹脂用結晶核剤。
  12. 前記流動性改良剤は、炭素数8~32の飽和若しくは不飽和脂肪酸の金属塩及び/又はシリカを含む請求項11に記載のポリオレフィン系樹脂用結晶核剤。
  13. ポリオレフィン系樹脂用結晶核剤の製造方法であって、
    (i)気流式微粉砕機を用いて、粒径の平均値が0.5~4.0μm、均一度が3~10になる様に微粉砕する工程を具備する
    ことを特徴とするポリオレフィン系樹脂用結晶核剤の製造方法。
  14. (ii)前記工程(i)で得られた微粉砕物を、ゆるめかさ密度が0.20g/cm以上、かためかさ密度が0.30以上g/cmになる様に減容化処理する工程を具備する請求項13に記載のポリオレフィン系樹脂用結晶核剤の製造方法。
  15. 前記工程(i)において、得られた微粉砕物における結晶核剤(A)のアスペクト比が、粒子画像解析法により求めた50%値が0.40~0.70、Lower値が、0.2~0.4である請求項13又は14に記載のポリオレフィン系樹脂用結晶核剤の製造方法。
  16. 前記工程(i)の前に、未粉砕の結晶核剤(A)と未粉砕の流動性改良剤とを混合し、更に必要に応じてポリオレフィン系樹脂用添加剤(ただし、前記結晶核剤及び流動性改良剤を除く)を加えて混合する工程を具備する請求項13~15の何れかに記載のポリオレフィン系樹脂用結晶核剤の製造方法。
  17. 前記工程(i)と前記工程(ii)の間に、下記工程(i-1)、及び、工程(i-2)を具備する請求項13~15の何れかに記載のポリオレフィン系樹脂用結晶核剤の製造方法。
    (i-1)流動性改良剤を、粒径の平均値が5μm以下、均一度が3以下になる様に微粉砕する工程
    (i-2)前記工程(i)で得られた微粉砕物と、前記工程(i-1)で得られた流動性改良剤の微粉砕物に、必要に応じてポリオレフィン系樹脂用添加剤(ただし、前記結晶核剤及び流動性改良剤を除く)を加えて、混合する工程
  18. ポリオレフィン系樹脂と請求項1~12の何れかに記載のポリオレフィン系樹脂用結晶核剤、又は、請求項13~17の何れかに記載のポリオレフィン系樹脂用結晶核剤の製造方法で製造されたポリオレフィン系樹脂用結晶核剤を含んでなるポリオレフィン系樹脂組成物。
  19. 請求項18に記載のポリオレフィン系樹脂組成物を原料とするポリオレフィン系樹脂成形体。
  20. ポリオレフィン系樹脂用結晶核剤の流動性改良方法であって、
    結晶核剤(A)を全量又は一部気流式微粉砕機で微粉砕することにより得られる微粉砕物を下記(a)と(b)の条件を同時に満たす性状とすることを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
    (a)レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~4.0μmであり、且つ、均一度が3~10である。
    (b)粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が、0.2~0.4である。
  21. 前記結晶核剤(A)は、レーザー回折式粒度分布測定より求めた粒径の平均値が0.5~2.0μmである結晶核剤(B)と、レーザー回折式粒度分布測定より求めた粒径の平均値が4.0~15.0μmである結晶核剤(C)とを混合することにより得られる混合物である請求項20に記載のポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
  22. (c)前記結晶核剤(A)のゆるめかさ密度を0.20g/cm以上に、前記結晶核剤(A)のかためかさ密度を0.30g/cm以上に調整する請求項20又は21に記載のポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
  23. 前記結晶核剤(A)は、粒子画像解析法により求めたアスペクト比の50%値が0.40~0.70であり、且つ、Lower値が0.2~0.4である請求項20~22の何れかに記載のポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
  24. 気流式微粉砕機を用いて微粉砕し、更に、得られた微粉砕物を、減容化処理する請求項20~23の何れかに記載のポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
  25. ポリオレフィン系樹脂用結晶核剤の流動性の改良方法であって、
    結晶核剤(A)及び流動性改良剤を含んでなるポリオレフィン系樹脂用結晶核剤を、該ポリオレフィン系樹脂用結晶核剤の粒径の平均値を0.5~4μmに、均一度を3~10に調整し、更に、前記ポリオレフィン系樹脂用結晶核剤のゆるめかさ密度が0.20g/cm以上、前記ポリオレフィン系樹脂用結晶核剤のかためかさ密度が0.30g/cm以上に調整することを特徴とするポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
  26. 結晶核剤(A)及び流動性改良剤を含んでなるポリオレフィン系樹脂用結晶核剤を、気流式微粉砕機を用いて微粉砕し、更に、得られた微粉砕物を、減容化処理する請求項25に記載のポリオレフィン系樹脂用結晶核剤の流動性の改良方法。
PCT/JP2017/028740 2016-08-25 2017-08-08 ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法 WO2018037908A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17843393.4A EP3505564B1 (en) 2016-08-25 2017-08-08 Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
US16/328,002 US10894874B2 (en) 2016-08-25 2017-08-08 Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
CN201780052053.XA CN109661424B (zh) 2016-08-25 2017-08-08 聚烯烃系树脂用结晶成核剂、聚烯烃系树脂用结晶成核剂的制造方法以及聚烯烃系树脂用结晶成核剂的流动性的改良方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-164310 2016-08-25
JP2016164310 2016-08-25
JP2017-024523 2017-02-14
JP2017024523A JP6849912B2 (ja) 2016-08-25 2017-02-14 ポリオレフィン系樹脂用結晶核剤の流動性の改良方法
JP2017041665A JP6849913B2 (ja) 2017-03-06 2017-03-06 流動性の改良された微粒子状ポリオレフィン系樹脂用結晶核剤
JP2017-041665 2017-03-06
JP2017099452A JP6912708B2 (ja) 2017-05-19 2017-05-19 流動性の改良されたポリオレフィン系樹脂用結晶核剤組成物
JP2017-099452 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018037908A1 true WO2018037908A1 (ja) 2018-03-01

Family

ID=61246587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028740 WO2018037908A1 (ja) 2016-08-25 2017-08-08 ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法

Country Status (2)

Country Link
CN (1) CN109661424B (ja)
WO (1) WO2018037908A1 (ja)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843748B1 (ja) 1969-10-06 1973-12-20 New Japan Chem Co Ltd
JPS535165A (en) 1976-07-01 1978-01-18 Ec Chem Ind Co Purification of dibenzylidenesorbitol
JPS57185287A (en) 1981-05-08 1982-11-15 Mitsui Toatsu Chem Inc Purification of bis(alkylbenzylidene)sorbitol
JPS5920524B2 (ja) 1981-06-16 1984-05-14 日本たばこ産業株式会社 棒状部材集積装置
JPS60101131A (ja) 1983-11-07 1985-06-05 Iic Kagaku Kogyo Kk ポリオレフイン樹脂用添加剤
JPH02231488A (ja) 1989-03-03 1990-09-13 New Japan Chem Co Ltd アセタール類の製造方法
JPH06145431A (ja) 1992-05-01 1994-05-24 Milliken Res Corp 超微粒ソルビトールアセタール及びキシリトールアセタールを含有するポリオレフィン組成物
JPH08245843A (ja) 1995-03-08 1996-09-24 Ii C Kagaku Kk ポリオレフイン系樹脂に対する透明化剤、その製造法及び透明性が改良されたポリオレフイン系樹脂組成物
WO1998033851A1 (fr) 1997-02-04 1998-08-06 New Japan Chemical Co., Ltd. Composition particulaire a base de diacetal, procede de production associe, composition de resine polyolefinique et moulage
JP2001081236A (ja) 1999-09-14 2001-03-27 Sakai Chem Ind Co Ltd 顆粒状造核剤組成物とこれを配合してなるポリオレフィン樹脂組成物
JP2001240698A (ja) 2000-02-29 2001-09-04 Mitsui Chemicals Inc 添加剤、ポリオレフィン樹脂組成物および成形体
JP2002332359A (ja) 2001-05-10 2002-11-22 New Japan Chem Co Ltd 粒状ポリオレフィン用添加剤組成物及びその製造方法、並びに該組成物を含むポリオレフィン樹脂組成物及びその成型体
JP2003096246A (ja) 2001-09-27 2003-04-03 New Japan Chem Co Ltd 粒状ポリオレフィン樹脂用添加剤組成物の製造方法
JP2007297465A (ja) * 2006-04-28 2007-11-15 Hiroshima Univ 高性能造核剤及び該造核剤の製造方法
JP2009507982A (ja) 2005-09-12 2009-02-26 ミリケン・アンド・カンパニー シリカ含有成核剤組成物及びそのような組成物のポリオレフィンでの使用のための方法
JP2013209662A (ja) 2013-05-31 2013-10-10 Adeka Corp 透明化剤組成物及びそれを含有してなるポリオレフィン系樹脂組成物
JP2015030849A (ja) 2013-08-06 2015-02-16 ドボン インコーポレイテッド 中和剤を含む添加剤組成物
JP2016121303A (ja) * 2014-12-25 2016-07-07 新日本理化株式会社 ジアセタール含有組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118512A (ja) * 1993-10-22 1995-05-09 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
KR100607559B1 (ko) * 1999-06-15 2006-07-31 가부시키가이샤 아데카 조핵제
EP1375583B1 (en) * 2001-03-27 2007-01-10 New Japan Chemical Co.,Ltd. Diacetal composition, nucleating agent containing the composition for polyolefin, polyolefin resin composition containing the diacetal composition, process for producing the resin composition, and molded object
AU2007295404B2 (en) * 2006-09-12 2010-10-28 Mitsui Chemicals, Inc. Polypropylene resin and blow molded container
CN103497484B (zh) * 2013-09-06 2016-03-09 开滦能源化工股份有限公司 高模、高强、高耐热聚甲醛复合材料及其制备方法
CN104910616B (zh) * 2015-06-30 2017-07-21 广东银禧科技股份有限公司 一种用于选择性激光烧结的低温尼龙粉末材料及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843748B1 (ja) 1969-10-06 1973-12-20 New Japan Chem Co Ltd
JPS535165A (en) 1976-07-01 1978-01-18 Ec Chem Ind Co Purification of dibenzylidenesorbitol
JPS57185287A (en) 1981-05-08 1982-11-15 Mitsui Toatsu Chem Inc Purification of bis(alkylbenzylidene)sorbitol
JPS5920524B2 (ja) 1981-06-16 1984-05-14 日本たばこ産業株式会社 棒状部材集積装置
JPS60101131A (ja) 1983-11-07 1985-06-05 Iic Kagaku Kogyo Kk ポリオレフイン樹脂用添加剤
JPH02231488A (ja) 1989-03-03 1990-09-13 New Japan Chem Co Ltd アセタール類の製造方法
JPH06145431A (ja) 1992-05-01 1994-05-24 Milliken Res Corp 超微粒ソルビトールアセタール及びキシリトールアセタールを含有するポリオレフィン組成物
JPH08245843A (ja) 1995-03-08 1996-09-24 Ii C Kagaku Kk ポリオレフイン系樹脂に対する透明化剤、その製造法及び透明性が改良されたポリオレフイン系樹脂組成物
WO1998033851A1 (fr) 1997-02-04 1998-08-06 New Japan Chemical Co., Ltd. Composition particulaire a base de diacetal, procede de production associe, composition de resine polyolefinique et moulage
JP2001081236A (ja) 1999-09-14 2001-03-27 Sakai Chem Ind Co Ltd 顆粒状造核剤組成物とこれを配合してなるポリオレフィン樹脂組成物
JP2001240698A (ja) 2000-02-29 2001-09-04 Mitsui Chemicals Inc 添加剤、ポリオレフィン樹脂組成物および成形体
JP2002332359A (ja) 2001-05-10 2002-11-22 New Japan Chem Co Ltd 粒状ポリオレフィン用添加剤組成物及びその製造方法、並びに該組成物を含むポリオレフィン樹脂組成物及びその成型体
JP2003096246A (ja) 2001-09-27 2003-04-03 New Japan Chem Co Ltd 粒状ポリオレフィン樹脂用添加剤組成物の製造方法
JP2009507982A (ja) 2005-09-12 2009-02-26 ミリケン・アンド・カンパニー シリカ含有成核剤組成物及びそのような組成物のポリオレフィンでの使用のための方法
JP2007297465A (ja) * 2006-04-28 2007-11-15 Hiroshima Univ 高性能造核剤及び該造核剤の製造方法
JP2013209662A (ja) 2013-05-31 2013-10-10 Adeka Corp 透明化剤組成物及びそれを含有してなるポリオレフィン系樹脂組成物
JP2015030849A (ja) 2013-08-06 2015-02-16 ドボン インコーポレイテッド 中和剤を含む添加剤組成物
JP2016121303A (ja) * 2014-12-25 2016-07-07 新日本理化株式会社 ジアセタール含有組成物

Also Published As

Publication number Publication date
CN109661424A (zh) 2019-04-19
CN109661424B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
JP5920524B2 (ja) ジアセタール含有組成物、ポリオレフィン樹脂組成物、及び樹脂成形体
JP6394376B2 (ja) ジアセタール含有組成物
KR100842164B1 (ko) 디아세탈 조성물, 상기 조성물을 포함하는 폴리올레핀용핵제, 상기 디아세탈 조성물을 포함하는 폴리올레핀 수지조성물, 상기 수지 조성물의 제조법 및 성형체
US6417254B1 (en) Particulate diacetal composition, process for producing the same, and polyolefin resin composition and molding
US10894874B2 (en) Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
JP2003096246A (ja) 粒状ポリオレフィン樹脂用添加剤組成物の製造方法
US20230219972A1 (en) Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin
JP6694142B2 (ja) ポリオレフィン系樹脂用結晶核剤の流動性改良方法
WO2018037908A1 (ja) ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法
JP6912708B2 (ja) 流動性の改良されたポリオレフィン系樹脂用結晶核剤組成物
JP6679450B2 (ja) 流動性の改良された顆粒状ポリオレフィン系樹脂用結晶核剤
JP6849913B2 (ja) 流動性の改良された微粒子状ポリオレフィン系樹脂用結晶核剤
US11746211B2 (en) Crystal nucleator for polyolefin resins, method for producing crystal nucleator for polyolefin resins, and method for improving fluidity of crystal nucleator for polyolefin resins
JP6694139B2 (ja) ポリオレフィン系樹脂用結晶核剤
JP6849912B2 (ja) ポリオレフィン系樹脂用結晶核剤の流動性の改良方法
JP2017218471A (ja) ポリオレフィン系樹脂マスターバッチ及びその製造方法、並びに該マスターバッチを用いたポリオレフィン系樹脂成形体
JP6867593B2 (ja) 流動性の改良された粒状のポリオレフィン系樹脂用結晶核剤
JP7417082B2 (ja) ポリオレフィン系樹脂用の結晶核剤組成物、及び該結晶核剤組成物を含むポリオレフィン系樹脂組成物
JP2019011277A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017843393

Country of ref document: EP

Effective date: 20190325