WO2018037880A1 - 透明電極及び電子デバイス - Google Patents

透明電極及び電子デバイス Download PDF

Info

Publication number
WO2018037880A1
WO2018037880A1 PCT/JP2017/028376 JP2017028376W WO2018037880A1 WO 2018037880 A1 WO2018037880 A1 WO 2018037880A1 JP 2017028376 W JP2017028376 W JP 2017028376W WO 2018037880 A1 WO2018037880 A1 WO 2018037880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
transparent electrode
organic
compound
Prior art date
Application number
PCT/JP2017/028376
Other languages
English (en)
French (fr)
Inventor
昇 関根
拓己 倉田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201780051069.9A priority Critical patent/CN109644537A/zh
Priority to US16/328,096 priority patent/US11107998B2/en
Priority to KR1020197003939A priority patent/KR20190026881A/ko
Priority to JP2018535569A priority patent/JP6939795B2/ja
Publication of WO2018037880A1 publication Critical patent/WO2018037880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to a transparent electrode and an electronic device. More specifically, the present invention relates to a transparent electrode that has both conductivity and light transmittance and excellent durability, and an electronic device using the transparent electrode.
  • An organic EL element using organic electroluminescence (hereinafter abbreviated as “EL”) is a thin, completely solid element capable of emitting light at a low voltage of several V to several tens V. It has many excellent features such as brightness, high luminous efficiency, thinness, and light weight. For this reason, in recent years, it has attracted attention as a surface light emitter used in the fields of backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
  • This organic EL element has a structure in which a light emitting layer made of at least an organic material is disposed between two opposing electrodes, and emitted light generated in the light emitting layer is transmitted through the electrode and taken out to the outside. For this reason, at least one of the two electrodes is configured as a transparent electrode.
  • an oxide semiconductor material such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide, hereinafter abbreviated as “ITO”). Furthermore, studies have been made to reduce the resistance by laminating ITO and silver. However, since ITO uses indium which is a rare metal, the material cost is high, and a sputtering method is mainly used as a film forming method. However, in an electronic device such as an organic electroluminescence element, when a transparent electrode is formed by sputtering on an organic layer mainly composed of an organic material, the organic layer is damaged, and the original performance of the organic layer is reduced. There is a problem that will be damaged.
  • the present invention has been made in view of the above-described problems and situations, and a solution to the problem is to provide a transparent electrode having sufficient conductivity and light transmission and excellent in durability, and the transparent electrode. To provide an electronic device.
  • a substrate a metal affinity layer containing a specific organic material and a lanthanoid (hereinafter also referred to as “La metal”), silver
  • a transparent electrode having a conductive layer adjacent to the metal affinity layer in this order realizes a transparent electrode with both excellent conductivity and light transmission and excellent durability. I found that I can do it.
  • a device characteristic can be improved by applying the said transparent electrode to an electronic device, especially an organic electroluminescent element, and resulted in this invention.
  • a transparent electrode having a conductive layer and at least one metal affinity layer adjacent to the conductive layer,
  • the conductive layer is composed mainly of silver
  • the metal affinity layer contains an organic compound and a lanthanoid
  • the organic compound is a compound containing a hetero atom having an unshared electron pair in the molecule.
  • the organic compound contained in the metal affinity layer is an aromatic heterocyclic compound containing a nitrogen atom having an unshared electron pair not involved in aromaticity, and effective with silver represented by the following formula (1) 2.
  • ⁇ Eef n ⁇ ⁇ E / s
  • n represents the sum of nitrogen atoms (N) in a compound that stably binds to silver (Ag)
  • ⁇ E represents the interaction energy between the nitrogen atoms (N) and silver (Ag)
  • s Represents the surface area of the compound.
  • Formula (2) ⁇ 0.50 ⁇ ⁇ Eef ⁇ ⁇ 0.10 [kcal / mol ⁇ ⁇ 2 ] 3.
  • the organic compound contained in the metal affinity layer is an organic compound having an energy level of the lowest unoccupied molecular orbital (LUMO) in the range of -2.2 to -1.6 eV. Or the transparent electrode of 2nd term
  • LUMO lowest unoccupied molecular orbital
  • the organic compound contained in the metal affinity layer is a compound having a structure represented by the following general formula (I): Transparent as described in any one of Items 1 to 3 electrode.
  • X represents NR 1, an oxygen atom or a sulfur atom.
  • E 1 to E 8 each independently represent CR 2 or a nitrogen atom.
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • the transparent electrode according to any one of Items 1 to 4, wherein the lanthanoid is samarium (Sm), europium (Eu), or ytterbium (Yb).
  • An electronic device comprising the transparent electrode according to any one of items 1 to 5.
  • the said electronic device is an organic electroluminescent element,
  • the electronic device of Claim 6 characterized by the above-mentioned.
  • the transparent electrode having sufficient conductivity and light transmittance and excellent in durability (heat resistance) and the transparent electrode are provided, and both the light transmittance and the driving voltage are made compatible and durable. It is possible to provide an electronic device having excellent properties (element lifetime).
  • the transparent electrode of the present invention includes a metal affinity layer, a conductive layer adjacent to the metal affinity layer, the conductive layer mainly composed of silver, and the metal affinity layer. It is characterized by comprising a compound having a silver atom-compatible atom (a silver-affinity compound) and a lanthanoid.
  • the metal affinity layer and the conductive layer only need to be adjacent to each other. Even when the conductive layer is on the metal affinity layer, the metal affinity layer is on the conductive layer. But you can. Furthermore, a conductive layer is formed on the first metal affinity layer, a second metal affinity layer is further formed on the conductive layer, and the conductive layer is composed of two metal affinity layers. The structure which pinches
  • the silver atoms constituting the conductive layer interact with the silver affinity compound and lanthanoid contained in the metal affinity layer.
  • the diffusion distance of silver atoms on the surface of the metal affinity layer is reduced, and aggregation of silver atoms due to migration (migration) of silver at specific locations can be suppressed.
  • the silver atoms first form a two-dimensional nucleus on the surface of the metal affinity layer having atoms having an affinity for silver atoms, and a two-dimensional single crystal layer is formed around the two-dimensional nucleus.
  • the film is formed by (Frank-van der Merwe: FM type) film growth.
  • VW type volume-Weber
  • VM type island growth
  • FM type layer growth
  • the silver atoms constituting the conductive layer interact with the atoms that have an affinity for the silver atoms contained in the metal affinity layer and move. It is thought that sex is suppressed. Thereby, irregular reflection can be suppressed by improving the surface smoothness of the conductive layer, and the transmittance can be improved. Further, it is presumed that due to the interaction, changes in the conductive layer with respect to physical stimuli such as heat and temperature were suppressed, and durability could be improved.
  • Schematic sectional view showing an example of the configuration of the transparent electrode of the present invention Schematic sectional view showing a first example of the configuration of an organic EL element using the transparent electrode of the present invention
  • the transparent electrode of the present invention has a conductive layer and at least one metal affinity layer adjacent to the conductive layer, and the conductive layer is composed mainly of silver, and the metal affinity layer Contains an organic compound and a lanthanoid, and the organic compound is a compound containing a hetero atom having an unshared electron pair in the molecule.
  • This feature is a technical feature common to or corresponding to each claim.
  • the organic compound contained in the metal affinity layer contains an aromatic complex containing a nitrogen atom having an unshared electron pair that does not participate in aromaticity, from the viewpoint of further manifesting the intended effect of the present invention. It is a ring compound and the effective action energy ⁇ Eef with the silver represented by the formula (1) satisfies the condition defined by the formula (2), so that the silver in the conductive layer containing silver as a main component Aggregation of silver atoms due to migration (migration) can be more effectively suppressed, and a transparent electrode having more excellent conductivity and light transmittance can be obtained.
  • the organic compound contained in the metal affinity layer is an organic compound having an energy level of the lowest unoccupied molecular orbital (hereinafter abbreviated as “LUMO”) in the range of ⁇ 2.2 to ⁇ 1.6 eV.
  • LUMO lowest unoccupied molecular orbital
  • the energy level with the metal material constituting the conductive layer, particularly the silver atom is close, and interaction between electron orbits becomes possible. This is preferable because the affinity with the conductive layer is improved and aggregation of silver can be suppressed.
  • the organic compound contained in the metal affinity layer uses a compound having a structure represented by the general formula (I), whereby the stability of the compound itself is improved, and the formed metal affinity layer It is preferable in terms of improving stability.
  • the compound represented by the general formula (I) is preferable in that the ⁇ plane is large and the intermolecular stack is strong, so that Tg (glass transition point) is improved and thermal stability is improved.
  • the lanthanoid is samarium (Sm), europium (Eu), or ytterbium (Yb) in that the object effect of the present invention can be further expressed.
  • the electronic device of the present invention is characterized by including the transparent electrode of the present invention. Moreover, as an electronic device, it is preferable that it is an organic electroluminescent element. That is, the transparent electrode of the present invention can be suitably used as a transparent electrode for electronic devices, particularly a transparent electrode for organic electroluminescence elements.
  • the transparent electrode of the present invention is applied as a transparent electrode for an electronic device, particularly as a transparent electrode for an organic electroluminescence element, is presumed as follows.
  • the silver atom first contains a silver affinity compound having an atom having an affinity for the silver atom and a lanthanoid.
  • a conductive layer is formed by a layer-growth type (Frank-van der Merwe: FM type) film in which a two-dimensional nucleus is formed on the surface of the metal affinity layer, and a two-dimensional single crystal layer is formed around the nucleus. Is deposited. This makes it possible to provide a transparent electrode that has both light transmittance and conductivity.
  • the transparent electrode of the present invention when applied to an electronic device, particularly an organic electroluminescence element, it is important to inject electrons from the conductive layer into the organic electroluminescence layer including the metal affinity layer.
  • LiQ mono (8-quinolinolato) lithium complex
  • alkali metal salts such as LiF and KF
  • alkaline earth metal salts etc.
  • the electron injection characteristics have been improved by adjoining the conductive layer or by using a known electron injection material in the electron injection layer.
  • these metal salts are known to dissociate and move part of the metal and the ligand, or the metal and the halogen atom during film formation or driving.
  • the dissociation product generated by the dissociation phenomenon of the metal salt is a very small amount, it diffuses into the electronic device, inhibits carrier transport, deactivates excitons, reacts with another material, It has been suggested to adversely affect device performance.
  • alkali metal salts and alkaline earth metal salts are used alone as an electron injection layer, it is necessary to use them as an ultrathin layer within a range of 0.1 to 3 nm, and the film thickness is further increased.
  • the electron injection characteristic does not appear, but rather functions as an insulating layer, so that the electron injection characteristic deteriorates.
  • Such a thin film layer has a great influence on the device characteristics, but it is difficult to stably manufacture the thin film layer, which causes a manufacturing variation.
  • an alkali metal salt or an alkaline earth metal salt can be obtained.
  • lanthanoid La metal
  • lanthanoid has an affinity with a ligand or a halogen atom of the metal salt. The diffusion of partially dissociated ligands or halogen atoms can be suppressed, and as a result, an electronic device with higher durability can be provided.
  • the metal affinity layer when used as a constituent layer of organic electroluminescence, both the carrier transport property and the electron injection property are compatible, and thus the above function is exhibited even in a thin film of 5 nm or more. It becomes possible.
  • the metal affinity layer according to the present invention contains a silver affinity compound and La metal, thereby adjusting the growth of silver atoms, which are constituent materials of the adjacent conductive layer, so that light transmission is achieved. It is considered that it has become possible to provide a transparent electrode that has both good electrical conductivity and high conductivity and has carrier injectability. Furthermore, since the silver affinity compound and La metal contained in the metal affinity layer interact with silver atoms constituting the conductive layer, the physical change of the conductive layer is suppressed, and a highly durable transparent electrode is formed. It is possible to provide. In addition, the metal affinity layer in the present invention can exhibit an electron injection function not only in a very thin film state but also in a film thickness that can be stably produced.
  • the silver affinity compound and La metal contained in the metal affinity layer interact with the silver atoms contained in the conductive layer, and the conductive layer
  • the transmittance and conductivity can be improved, and physical changes in the conductive layer can be suppressed. Thereby, it is possible to obtain a transparent electrode having good transmittance, conductivity and durability.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the number described in parentheses at the end of the constituent element represents the code in each figure.
  • the transparent electrode of the present invention is a transparent electrode having a conductive layer and at least one metal affinity layer adjacent to the conductive layer, wherein the conductive layer is composed mainly of silver,
  • the metal affinity layer contains an organic compound and a lanthanoid, and the organic compound is a compound containing a hetero atom having an unshared electron pair in the molecule, and has sufficient conductivity and light transmittance (A transparent electrode having both (transparency) and excellent durability (heat resistance) can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of the basic configuration of the transparent electrode of the present invention.
  • the transparent electrode (1) has a two-layer structure in which a metal affinity layer (1a) and a conductive layer (1b) are laminated on the metal affinity layer (1a).
  • the metal affinity layer (1a) and the conductive layer (1b) are provided in this order on the substrate (11).
  • the metal affinity layer (1a) is a layer composed of a silver affinity compound, which is an organic compound that is a compound containing at least a heteroatom having an unshared electron pair in the molecule, and a lanthanoid.
  • the conductive layer (1b) is a layer composed mainly of silver.
  • “having silver as a main component” means that the ratio of silver to the material component constituting the conductive layer is 60% by mass or more, preferably 70% by mass, more preferably Is 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 99% by mass or more.
  • the term “transparent” as used in the transparent electrode (1) of the present invention means that the light transmittance at a wavelength of 500 nm is 50% or more, more preferably the light transmittance is 60% or more. More preferably, the rate is 65% or more.
  • the transparent electrode (1) of the present invention is preferably formed on a substrate (11) as shown in FIG.
  • Examples of the substrate (11) applicable to the present invention include, but are not limited to, glass and plastic.
  • the substrate (11) may be transparent or opaque, but when the transparent electrode (1) of the present invention is used in an electronic device that extracts light from the substrate (11) side,
  • the substrate (11) is required to be transparent.
  • Examples of the transparent base material (11) preferably used include glass, quartz, and a transparent resin film.
  • the glass examples include glass materials such as silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoint of adhesion to the metal affinity layer (1a), durability, and smoothness, the surface of these glass materials may be subjected to physical processing such as polishing as necessary. And the film which consists of an inorganic substance or an organic substance, and the hybrid film which combined these films may be formed.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), cellophane, cellulose diacetate (abbreviation: DAC).
  • a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed on the surface of the resin film described above.
  • Such a coating or hybrid coating has a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) of 0.01 g / (m 2 ) measured by a method in accordance with JIS K 7129-1992. 24h)
  • the following barrier film also referred to as a barrier film or the like is preferable.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less, and the water vapor permeability is 1 ⁇ 10 ⁇ 5 g / (m
  • the film is preferably a high barrier film of 2 ⁇ 24 h) or less.
  • the material for forming the barrier film as described above may be any material that has a function of suppressing intrusion of factors that cause deterioration of electronic devices such as moisture and oxygen and organic EL elements. Silicon, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the barrier film, it is more preferable to have a laminated structure of these inorganic layers and layers composed of organic materials (organic layers). Although there is no restriction
  • the method for forming the barrier film constituting the barrier film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma weighting method, and the like examples thereof include an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like.
  • an atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is exemplified. be able to.
  • the base material (11) is made of a light-impermeable material, for example, a metal substrate such as aluminum or stainless steel, an opaque resin substrate, a ceramic substrate, or the like can be used.
  • the metal affinity layer according to the present invention is a layer composed of an organic compound containing a heteroatom having an unshared electron pair, which is a silver affinity compound, and a lanthanoid.
  • the film formation method is not particularly limited.
  • a wet method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like.
  • Examples include a dry method using a dry process such as a method. Of these, the vapor deposition method is preferably applied.
  • An unshared electron pair also called a lone electron pair, is an electron pair formed by pairing two electrons belonging to an atom into one of the outer electron orbits of an atom, and does not participate in covalent bonding. Refers to an electron pair.
  • the non-shared electron pair as used in the present invention specifically refers to an unshared electron that does not participate in aromaticity and is not coordinated to a metal among the non-shared electron pairs of the hetero atoms constituting the compound. Suppose that it is a pair.
  • the aromaticity here means an unsaturated cyclic structure in which atoms having ⁇ electrons are arranged in a ring, and is aromatic according to the so-called “Hückel rule”, and is included in the ⁇ electron system on the ring. Is 4n + 2 (n is an integer of 0 or more).
  • the metal affinity layer (1a) preferably has a layer thickness in the range of 1 to 100 nm, more preferably in the range of 3 to 50 nm. The effect can be obtained even with a layer thickness. Specifically, it is preferable that the layer thickness is 100 nm or less because the absorption component of the layer is reduced and the transmittance of the transparent electrode is improved. A layer thickness of 3 nm or more is preferable because a uniform and continuous metal affinity layer is formed.
  • the silver affinity compound which is an organic compound containing a hetero atom having an unshared electron pair in the molecule, specifically, contains a sulfur atom having an unshared electron pair not involved in aromaticity.
  • Silicon affinity compound Organic compound containing a sulfur atom
  • a sulfide bond also referred to as a thioether bond
  • a disulfide bond a mercapto group in the molecule
  • an organic compound having a sulfide bond or a mercapto group is preferable.
  • Specific examples include sulfur-containing compounds represented by the following general formulas (1) to (4).
  • R 1 and R 2 each independently represent a substituent.
  • Examples of the substituent represented by R 1 and R 2 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group.
  • Aromatic hydrocarbon group also called aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group Phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic Heterocyclic groups (for example, furyl, thienyl, pyridyl, pyrid
  • R 3 and R 4 each represent a substituent.
  • Examples of the substituent represented by R 3 and R 4 include the same substituents as R 1 and R 2 .
  • R 5 represents a substituent
  • Examples of the substituent represented by R 5 include the same substituents as R 1 and R 2 .
  • R 6 represents a substituent
  • Examples of the substituent represented by R 6 include the same substituents as R 1 and R 2 .
  • organic compounds having a sulfur atom exemplified above, compounds represented by any one of the general formulas (1) to (3) are preferable.
  • the substituent represented by R 1 to R 6 is preferably an aromatic ring group, and a substituent having a partial structure of an aromatic heterocyclic compound containing a nitrogen atom having an unshared electron pair not involved in aromaticity Particularly preferred is a group.
  • the organic compound represented by the general formula (3) is preferable from the viewpoint of light transmittance and conductivity, and the organic compound represented by the general formula (1) Is preferable from the viewpoints of light transmittance, conductivity, and durability.
  • the organic compound containing a hetero atom having an unshared electron pair applied to the metal affinity layer (1a) in the molecule is aromatic. It is preferable to use an organic compound containing a halogen atom having an unshared electron pair that does not participate in.
  • the organic compound having a halogen atom applicable to the present invention is a compound containing at least a halogen atom and a carbon atom, and the structure thereof is not particularly limited.
  • the halogenation represented by the following general formula (5) Aryl compounds are preferred.
  • examples of the aromatic hydrocarbon ring group represented by Ar include a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, A xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, a fluorenyl group, a phenanthryl group, an indenyl group, a pyrenyl group, a biphenylyl group, and the like can be given.
  • Examples of the aromatic heterocyclic group represented by Ar include a pyridyl group, a pyrimidinyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a benzimidazolyl group, a pyrazolyl group, a pyrazinyl group, and a triazolyl group (for example, 1,2, Examples include 4-triazol-1-yl group and 1,2,3-triazol-1-yl group.
  • Ar is preferably an aromatic hydrocarbon ring group, more preferably a phenyl group.
  • halogen atom represented by X examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a chlorine atom, a bromine atom or an iodine atom is preferable, and a more preferable example is , Bromine atom or iodine atom.
  • M represents an integer of 1 to 5, preferably 1 or 2.
  • L represents a direct bond or a divalent linking group.
  • the divalent linking group include an alkylene group (eg, methylene group, ethylene group, trimethylene group, propylene group), a cycloalkylene group (eg, 1,2-cyclobutanediyl group, 1,2-cyclopentanediyl group, 1,3-cyclopentanediyl group, 1,2-cyclohexanediyl group, 1,3-cyclohexanediyl group, 1,4-cyclohexanediyl group, 1,2-cycloheptanediyl group, 1,3-cycloheptanediyl group 1,4-cycloheptanediyl group, etc.), arylene groups (for example, o-phenylene group, m-phenylene group, p-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 1,3 -Nap
  • the divalent linking group represented by L is preferably an alkylene group, and more preferably a methylene group.
  • N represents 0 or 1, but is preferably 0.
  • R represents a hydrogen atom or a substituent.
  • substituents include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group).
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group eg, vinyl group, allyl group, etc.
  • alkynyl group eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group Also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, Indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic complex A group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imi
  • K represents an integer of 1 to 5.
  • organic compound having a halogen atom examples include compounds (1) to (61) described in paragraphs (0070) to (0079) of JP-A-2015-122184.
  • Aromatic heterocyclic compound containing a nitrogen atom having an unshared electron pair not involved in aromaticity As a compound containing in the molecule a heteroatom having an unshared electron pair according to the present invention, involved in aromaticity It is preferable to use an aromatic heterocyclic compound containing a nitrogen atom having an unshared electron pair, and a low molecular organic compound containing a nitrogen atom is preferred instead of a polymer compound.
  • the molecular weight of the low molecular weight organic compound is preferably in the range of 150 to 1200, more preferably in the range of 650 to 1000. By setting the molecular weight within this range, it is possible to improve the amorphous property while maintaining the film density, and it is possible to form a film having excellent film stability and low surface roughness. It becomes.
  • the low molecular weight organic compound containing a nitrogen atom a compound having a melting point of 80 ° C. or higher and a molecular weight M in the range of 150 to 1200 is preferable.
  • the low molecular organic compound containing a nitrogen atom preferably has a larger interaction with silver or the like, and examples thereof include a nitrogen-containing heterocyclic compound and a phenyl group-substituted amine compound.
  • the value of the ratio of the number n of [effective unshared electron pairs] to the molecular weight M of the organic compound containing nitrogen atoms is defined as the effective unshared electron pair content [n / M]
  • the low molecular organic containing nitrogen atoms The compound is a compound selected such that [n / M] is 2.0 ⁇ 10 ⁇ 3 ⁇ [n / M], and 3.9 ⁇ 10 ⁇ 3 ⁇ [n / M] More preferably, it is more preferably 7.0 ⁇ 10 ⁇ 3 ⁇ [n / M].
  • Effective unshared electron pair refers to a non-shared electron pair possessed by a nitrogen atom contained in a compound that does not participate in aromaticity and is not coordinated to a metal. Suppose that it is a shared electron pair.
  • the aromaticity means an unsaturated cyclic structure in which atoms having ⁇ electrons are arranged in a ring, and is aromatic according to the so-called “Hückel rule”.
  • [Effective unshared electron pair] as described above refers to an unshared electron pair possessed by a nitrogen atom regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a hetero atom constituting an aromatic ring. Is selected depending on whether or not is involved in aromaticity. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, if the nitrogen atom has an unshared electron pair that does not participate in aromaticity, the unshared electron pair is [effective unshared electron. It is counted as one of the pair.
  • the organic compound having a nitrogen atom is composed of a plurality of compounds, for example, based on the mixing ratio of the compounds, the molecular weight M of the mixed compound obtained by mixing these compounds is obtained, and the molecular weight M with respect to the molecular weight M is determined.
  • the total number n of [effective unshared electron pairs] is determined as an average value of the effective unshared electron pair content [n / M], and this value is preferably within the predetermined range described above.
  • organic compound contained in the metal affinity layer (1a) is particularly preferably a compound having a partial structure represented by the following general formulas (I) to (IV).
  • the compound contained in the metal affinity layer (1a) is preferably a compound having a partial structure represented by the following general formula (I).
  • X represents NR 1 , an oxygen atom or a sulfur atom.
  • E 1 to E 8 each independently represent CR 2 or a nitrogen atom.
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • at least one of E 1 to E 8 is particularly preferably a nitrogen atom.
  • the substituent represented by R 1 includes an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group).
  • alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group.
  • aromatic hydrocarbon groups also referred to as aromatic carbocyclic groups, aryl groups, etc.
  • aromatic carbocyclic groups for example, phenyl, p-chlorophenyl, mesityl, tolyl, xylyl, naphthyl, anthryl, azulenyl, acenaphthenyl Group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl Group), aromatic heterocyclic group (for example, furyl group, thienyl group,
  • halogen atom eg fluorine atom, chlorine atom, bromine atom etc.
  • fluorinated hydrocarbon group eg fluoromethyl group, trifluoromethyl
  • pentafluoroethyl group pentafluorophenyl group, etc.
  • cyano group nitro group, hydroxy group, mercapto group
  • silyl group for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.
  • Phosphoric ester groups for example, dihexyl phosphoryl group
  • phosphite groups for example, diphenylphosphinyl group
  • phosphono groups and the like.
  • examples of the substituent represented by R 2 include the same substituents represented by R 1 .
  • the compound having a partial structure represented by the general formula (II) is preferably a compound having a partial structure represented by the following general formula (II).
  • E 9 to E 15 each independently represent CR 4 .
  • R 3 and R 4 each independently represents a hydrogen atom or a substituent.
  • examples of the substituent represented by R 3 and R 4 include the same substituents as those represented by R 1 in the general formula (I).
  • E 16 to E 22 each independently represent CR 5 .
  • R 5 represents a hydrogen atom or a substituent.
  • examples of the substituent represented by R 5 include the same substituents as those represented by R 1 in the above general formula (I).
  • E 23 to E 28 each independently represent CR 7 .
  • R 6 and R 7 each independently represents a hydrogen atom or a substituent.
  • examples of the substituent represented by R 6 and R 7 include the same substituents as those represented by R 1 in the general formula (I).
  • the organic compound contained in the metal affinity layer is preferably an organic compound having an LUMO energy level in the range of ⁇ 2.2 to ⁇ 1.6 eV, more preferably ⁇ It is within the range of 2.05 to -1.75 eV.
  • the energy level of LUMO When the energy level of LUMO is larger than ⁇ 1.6 eV, the energy level with silver (work function: ⁇ 4.3 eV) is far, which reduces the interaction between electron orbits and causes the aggregation of silver. It cannot be suppressed and the film quality is deteriorated.
  • the LUMO energy level is smaller than ⁇ 2.2 eV, electrons and excitons flow from the light emitting layer, resulting in a decrease in light emission efficiency.
  • organic compounds contained in the metal affinity layer (1a) according to the present invention (Exemplary compounds No. 45 to No. 100 and their LUMO energy levels (eV) are shown below, but are not limited thereto. Is not to be done.
  • the organic compound according to the present invention can be easily synthesized according to a conventionally known synthesis method.
  • the organic compound contained in the metal affinity layer has a hetero ring having a nitrogen atom as a hetero atom, and the value of effective action energy ⁇ Eef with silver represented by the following formula (1)
  • n the sum of nitrogen atoms (N) in the compound that stably binds to silver (Ag)
  • ⁇ E represents the interaction energy between the nitrogen atoms (N) and silver (Ag).
  • s represents the surface area of the compound.
  • Formula (2) ⁇ 0.50 ⁇ ⁇ Eef ⁇ ⁇ 0.10 [kcal / mol ⁇ ⁇ 2 ]
  • the number of nitrogen atoms in the compound that stably binds to silver [n] means that only nitrogen atoms that stably bind to silver are selected as specific nitrogen atoms from among the nitrogen atoms contained in the organic compound. The number selected and counted.
  • the nitrogen atoms to be selected are all nitrogen atoms contained in the compound, and are not limited to the nitrogen atoms constituting the heterocyclic ring.
  • the selection of a specific nitrogen atom out of all the nitrogen atoms contained in such a compound is, for example, the bond distance [r (Ag) between silver calculated by molecular orbital calculation and the nitrogen atom in the compound. N)], or the angle formed between the nitrogen atom and silver with respect to the ring containing the nitrogen atom in the compound, that is, the dihedral angle [D], as an index.
  • the molecular orbital calculation is performed using, for example, Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003).
  • the bond distance [r (Ag ⁇ N)] is used as an index, the distance at which a nitrogen atom and silver are stably bonded in the compound is considered as “stable bond distance” in consideration of the three-dimensional structure of each compound. ”Is set. Then, for each nitrogen atom contained in the compound, a bond distance [r (Ag ⁇ N)] is calculated using a molecular orbital calculation method. A nitrogen atom having a calculated bond distance [r (Ag ⁇ N)] close to the “stable bond distance” is selected as a specific nitrogen atom. Such selection of a nitrogen atom is applied to a compound containing many nitrogen atoms constituting a heterocyclic ring and a compound containing many nitrogen atoms not constituting a heterocyclic ring.
  • the above-mentioned dihedral angle [D] is calculated using a molecular orbital calculation method. Then, a nitrogen atom whose calculated dihedral angle [D] satisfies D ⁇ 10 degrees is selected as a specific nitrogen atom. Such selection of a nitrogen atom is applied to a compound containing a large number of nitrogen atoms constituting a heterocyclic ring.
  • the interaction energy [ ⁇ E] between silver (Ag) and nitrogen (N) in the compound can be calculated by a molecular orbital calculation method, and the mutual energy between nitrogen and silver selected as described above. The energy of action.
  • the surface area [s] is calculated for the optimized structure using Tencube / WM (manufactured by Tencube Co., Ltd.).
  • the sheet resistance value ( ⁇ / sq.) As the metal layer is preferably decreased.
  • a preferable range of the effective action energy ⁇ Eef is preferably ⁇ 0.15 or less, and more preferably ⁇ 0.20 or less.
  • La metal also referred to as lanthanoid or lanthanide
  • the La metal refers to a transition metal included in Group 6 and Group 3 of the Periodic Table of Elements. Specifically, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho Holmium
  • Er erbium
  • Tm thulium
  • Promethium (Pm) is also included in the lanthanoid, but since only a radioisotope is present, there is a problem in safety, so it is not suitable in the present invention.
  • La metal is known to exhibit interesting properties such as lanthanoid contraction, although the properties of each element are similar because they are filled with electrons in the outermost shell as is well known. In this application, if it is a lanthanoid, it will not specifically limit, However, Sm, Eu, and Yb are preferable from a viewpoint of vapor deposition aptitude, and it is more preferable that it is Sm or Yb.
  • the conductive layer (1b) constituting the transparent electrode of the present invention is a layer composed mainly of silver and formed on the metal affinity layer (1a).
  • the term “consisting mainly of silver” as used in the present invention means that the proportion of silver in the material components constituting the conductive layer is 60% by mass or more, preferably 70% by mass, as described above. More preferably, it is 80 mass% or more, More preferably, it is 90 mass% or more, Especially preferably, it is 99 mass% or more.
  • a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method
  • a method using a dry process such as a CVD method.
  • the vapor deposition method is preferably applied.
  • the conductive layer (1b) is formed on the metal affinity layer (1a), so that a high-temperature annealing treatment (for example, a heating process at 150 ° C. or higher) after the formation of the conductive layer is performed.
  • a high-temperature annealing treatment for example, a heating process at 150 ° C. or higher
  • it is characterized by having sufficient conductivity even if not, it may be subjected to high-temperature annealing after film formation, if necessary.
  • the conductive layer (1b) may be composed of an alloy containing silver (Ag).
  • an alloy containing silver examples include silver magnesium (Ag—Mg), silver copper (Ag—Cu), and silver palladium. (Ag—Pd), silver palladium copper (Ag—Pd—Cu), silver indium (Ag—In), and the like.
  • the conductive layer (1b) as described above may have a structure in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
  • the conductive layer (1b) preferably has a layer thickness in the range of 5 to 20 nm, and more preferably in the range of 5 to 12 nm.
  • the layer thickness of the conductive layer (1b) is 20 nm or less, it is preferable in that the absorption component or the reflection component is reduced and the transmittance of the transparent electrode is improved.
  • a layer thickness of 5 nm or more is preferable from the viewpoint of sufficient conductivity.
  • the sheet resistance value of the transparent electrode is several hundred ⁇ / sq. Or less, preferably 100 ⁇ / sq. The following is more preferable. In addition, 50 ⁇ / sq. Or more preferably 20 ⁇ / sq. It is particularly preferred that
  • the upper portion of the conductive layer (1b) is further increased. It may be covered with a protective film, or another conductive layer may be laminated. In this case, it is preferable that the protective film and the other conductive layer have desired light transmittance so as not to impair the light transmittance of the transparent electrode (1). Moreover, it is good also as a structure which provided the structure layer as needed also under the metal affinity layer (1a), ie, between the metal affinity layer (1a) and the base material (11).
  • the transparent electrode (1) having the above-described structure is mainly composed of silver on the metal affinity layer (1a) composed of an organic compound containing a hetero atom having an unshared electron pair in the molecule and a lanthanoid. It is the structure which provided the electroconductive layer (1b) comprised as a component. Thus, when the conductive layer (1b) is formed on the metal affinity layer (1a), the silver atoms constituting the conductive layer (1b) form the non-shared electrons constituting the metal affinity layer (1a).
  • VW type island-shaped growth type
  • the layer thickness in order to ensure conductivity.
  • the layer thickness is increased, the light transmittance is lowered, so that it is not suitable as a transparent electrode.
  • the transparent electrode (1) of the configuration of the present invention since aggregation of silver is suppressed on the metal affinity layer (1a) as described above, the conductive layer (1b) composed mainly of silver. ) Is grown in a layer growth type (FM type).
  • the term “transparent” in the transparent electrode (1) of the present invention means that the light transmittance at a wavelength of 500 nm is 50% or more as described above.
  • the conductive layer (1a) forms a layer having good light transmittance as compared with the conductive layer (1b) mainly composed of silver.
  • the conductivity of the transparent electrode (1) is ensured mainly by the conductive layer (1b). Therefore, as described above, the conductivity of the transparent electrode (1) is improved by ensuring that the conductive layer (1b) composed mainly of silver has a thinner layer thickness and conductivity is ensured. It is possible to achieve both the improvement of the light transmission and the light transmission.
  • the transparent electrode (1) of the present invention is used for various electronic devices.
  • Examples of electronic devices include organic EL elements, LEDs (light emitting diodes), liquid crystal elements, solar cells, touch panels, etc.
  • the present invention is an electrode member that requires light transmission.
  • the transparent electrode (1) can be used. Among these, it is particularly preferable that the transparent electrode of the present invention is applied to an organic EL element.
  • FIG. 2 is a schematic cross-sectional view showing an application example 1 of the transparent electrode (1) of the present invention to an organic EL element as a configuration example of the electronic device of the present invention.
  • the organic EL element (100) is provided on a transparent substrate (base material, 13), and in order from the transparent substrate (13) side, using a transparent electrode (1), an organic material, and the like.
  • the configured light emitting functional layer unit (3) and the counter electrode (5a) are stacked in this order.
  • the transparent electrode (1) of the present invention described above is used as the transparent electrode (1). Therefore, the organic EL element (100) is configured to extract light generated from the light emission point (h) (hereinafter referred to as light emission light (L)) from at least the transparent substrate (13) surface side. .
  • the layer structure of the organic EL element (100) is not limited to the example described below, and may be a general layer structure.
  • the transparent electrode (1) functions as an anode (that is, an anode)
  • the counter electrode (5a) functions as a cathode (that is, a cathode).
  • the light emitting functional layer unit (3) includes the hole injection layer (3a) / hole transport layer (3b) / light emitting layer (3c) / electron transport layer in order from the transparent electrode (1) which is the anode.
  • a configuration in which (3d) / electron injection layer (3e) is laminated is exemplified, but it is essential to have at least a light emitting layer (3c) composed of an organic material.
  • the hole injection layer (3a) and the hole transport layer (3b) may be provided as a hole transport injection layer.
  • the electron transport layer (3d) and the electron injection layer (3e) may be provided as an electron transport injection layer.
  • the electron injection layer (3e) may be made of an inorganic material.
  • the light emitting functional layer unit (3) may have a structure in which a hole blocking layer, an electron blocking layer, and the like are stacked at a necessary place as necessary.
  • the light emitting layer (3c) may have a light emitting layer that emits light of each wavelength region, and the light emitting layer (3c) may have a stacked structure in which the light emitting layers of each color are stacked via a non-light emitting auxiliary layer.
  • the auxiliary layer may function as a hole blocking layer or an electron blocking layer.
  • the counter electrode (5a) which is a cathode, may have a laminated structure as necessary. In such a configuration, only a portion where the light emitting functional layer unit (3) is sandwiched between the transparent electrode (1) and the counter electrode (5a) is a light emitting region in the organic EL element (100).
  • the auxiliary electrode (15) is provided in contact with the conductive layer (1b) of the transparent electrode (1) for the purpose of reducing the resistance of the transparent electrode (1). It may be.
  • the organic EL element (100) having the above-described configuration is formed with a transparent substrate (3) for the purpose of preventing deterioration of the light emitting functional layer unit (3) formed using an organic material or the like. 13) Above, it is sealed with a sealing material (17) described later. This sealing material (17) is being fixed to the transparent substrate (13) side via the adhesive agent (19). However, the terminal portions of the transparent electrode (1) and the counter electrode (5a) are exposed from the sealing material (17) in a state in which they are insulated from each other by the light emitting functional layer unit (3) on the transparent substrate (13). It is assumed that it is provided.
  • the transparent substrate (13) is a base material (11) on which the transparent electrode (1) of the present invention described with reference to FIG. 1 is provided.
  • the transparent substrate has a light transmitting property. Base material is used.
  • the transparent electrode (1) is the transparent electrode (1) of the present invention described above, and the metal affinity layer (1a) and the conductive layer (1b) are formed in this order from the transparent substrate (13) side. This is the configuration.
  • the transparent electrode (1) functions as an anode (anode), and the conductive layer (1b) is a substantial anode.
  • the counter electrode (5a) is an electrode film that functions as a cathode for supplying electrons to the light emitting functional layer unit (3), and is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof. . Specifically, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
  • the counter electrode (5a) can be produced by forming these conductive materials into a thin film by a method such as vapor deposition or sputtering.
  • the sheet resistance value as the counter electrode (5a) is several hundred ⁇ / sq.
  • the film thickness is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • this organic EL element (100) is a system which takes out emitted light (L) also from a counter electrode (5a) side, it is the electroconductivity with favorable light transmittance from the electrically-conductive material mentioned above. What is necessary is just to comprise a counter electrode (5a) by selecting a material.
  • the light emitting layer (3c) used in the present invention contains a light emitting material.
  • a phosphorescent compound phosphorescent material, phosphorescent compound, phosphorescent compound
  • the light emitting layer (3c) is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer (3d) and holes injected from the hole transport layer (3b). (H) may be in the layer of the light emitting layer (3c) or an interface region between the light emitting layer (3c) and the adjacent layer.
  • the structure of the light emitting layer (3c) is not particularly limited as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting auxiliary layer (intermediate layer) between the light emitting layers (3c).
  • the total thickness of the light emitting layer (3c) is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm from the viewpoint of obtaining a lower driving voltage.
  • the sum total of the layer thickness of a light emitting layer (3c) is a total layer thickness also including the said auxiliary layer, when a nonluminous auxiliary layer exists between the light emitting layers (3c).
  • the thickness of each light emitting layer is preferably adjusted within the range of 1 to 50 nm, and more preferably adjusted within the range of 1 to 20 nm. preferable.
  • the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the layer thicknesses of the blue, green, and red light emitting layers.
  • a light emitting material and a host compound to be described later are formed by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. It can be applied to form a film.
  • the light emitting layer (3c) may be configured by mixing a plurality of light emitting materials, and is configured by mixing a phosphorescent compound and a fluorescent compound (fluorescent material, fluorescent dopant). May be.
  • the structure of the light emitting layer (3c) contains a host compound (light emitting host) and a light emitting material (light emitting dopant compound), and emits light from the light emitting material.
  • the compound whose phosphorescence quantum yield of phosphorescence emission in room temperature (25 degreeC) is less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3c.
  • known host compounds may be used alone or in combination of two or more.
  • By using a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic EL element can be improved.
  • by using a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the applicable host compound may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). Good.
  • a compound having a hole transporting ability and an electron transporting ability, which prevents emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the glass transition temperature is a value obtained by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
  • Phosphorescent compound As a typical example of a luminescent material that can be used in the present invention, a phosphorescent compound can be given.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when using a phosphorescent compound in the present invention, the phosphorescence quantum yield (0.01 or more) in any solvent. ) Should be achieved.
  • the following two types can be given as the light emission principle of the phosphorescent compound.
  • the other is a carrier trap type in which a phosphorescent compound becomes a carrier trap, and recombination of carriers occurs on the phosphorescent compound to emit light from the phosphorescent compound.
  • the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from known phosphorescent compounds used in the light-emitting layer of a general organic EL device, and preferably 8 to 10 in the periodic table of elements.
  • a complex compound containing a group metal more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • one light emitting layer (3c) may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer (3c) is the light emitting layer (3c). It is good also as an inclined structure which changes in the thickness direction.
  • the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer (3c).
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the above phosphorescent compound (also referred to as a phosphorescent metal complex or the like) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and the methods described in these references as appropriate. It can be synthesized by selecting and applying.
  • Fluorescent compound examples include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • injection layer hole injection layer, electron injection layer
  • the injection layer is a layer provided between the electrode and the light-emitting layer (3c) for lowering the driving voltage and improving the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, N. The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of Volume 2 of TS Co., Ltd., and there are a hole injection layer (3a) and an electron injection layer (3e). .
  • the injection layer can be provided as necessary. If it is a hole injection layer (3a), the electron injection layer (3e) is provided between the anode and the light emitting layer (3c) or the hole transport layer (3b). If so, it may be present between the cathode and the light emitting layer (3c) or the electron transport layer (3d).
  • hole injection layer (3a) The details of the hole injection layer (3a) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
  • copper phthalocyanine is representative.
  • the electron injection layer (3e) is also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, representative examples thereof include strontium and aluminum. Metal layers, alkali metal halide layers typified by potassium fluoride, alkaline earth metal compound layers typified by magnesium fluoride, metal oxide layers typified by molybdenum oxide, and the like.
  • the electron injection layer (3e) is desirably a very thin layer, and the layer thickness is preferably in the range of 1 nm to 10 ⁇ m, although depending on the constituent materials.
  • the hole transport layer (3b) is composed of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer (3a) and the electron blocking layer are also included in the hole transport layer (3b). .
  • the hole transport layer (3b) can be provided as a single layer or a plurality of layers.
  • the hole transport material constituting the hole transport layer (3b) has a function of either hole injection or transport or electron barrier property, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers (for example, thiophene oligomers).
  • the above-mentioned compounds can be used, and further, porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds are preferably used. .
  • aromatic tertiary amine compounds and styrylamine compounds include, for example: N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane, Bis (4-dimethylamino-2-methylphenyl) phenylmethane, Bis (4-di-di
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer (3b) is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed.
  • the layer thickness of the hole transport layer (3b) is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • This hole transport layer (3b) may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer (3d) is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer (3e) and the hole blocking layer are also included in the electron transport layer (3d).
  • the electron transport layer (3d) can be provided as a single layer structure or a multilayer structure of a plurality of layers.
  • the electron transport layer (3d) having a single layer structure and the electron transport layer (3d) having a multilayer structure as an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer (3c), What is necessary is just to have the function to transmit the electron inject
  • a material having such a function any one of conventionally known compounds can be selected and used.
  • Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer (3d).
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes
  • a metal complex in which In, Mg, Cu, Ca, Sn, Ga, or Pb is substituted can also be used as a constituent material of the electron transport layer (3d).
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as a constituent material of the electron transport layer (3d).
  • a distyrylpyrazine derivative that is also used as a constituent material of the light emitting layer (3c) can be used as a constituent material of the electron transport layer (3d), a hole injection layer (3a), a hole transport layer (3b).
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the constituent material of the electron transport layer (3d).
  • the electron transport layer (3d) can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the layer thickness of the electron transport layer (3d) is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the electron transport layer (3d) may have a single layer structure composed of one or more of the above materials.
  • the constituent material of the electron transport layer (3d) can be doped with impurities to increase the n property.
  • impurities include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the potassium compound for example, potassium fluoride can be used.
  • a constituent material (electron transporting compound) of the electron transport layer (3d) a compound containing in the molecule a hetero atom having an unshared electron pair constituting the metal affinity layer (1a) according to the present invention is used. Also good.
  • the electron transport layer (3d) that also serves as the electron injection layer (3e) and the heteroatoms having the unshared electron pair constituting the metal affinity layer (1a) according to the present invention are molecules.
  • a compound contained therein may be used.
  • the blocking layer is a layer provided as necessary in addition to the basic constituent layers of the light emitting functional layer unit (3). For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole blocking) layers and electron blocking layers.
  • the hole blocking layer has a function of an electron transport layer (3d) in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons and has a very small ability to transport holes. By blocking holes while transporting electrons, the hole blocking layer recycles electrons and holes. The coupling probability can be improved.
  • the structure of said electron carrying layer (3d) can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer (3c).
  • the electron blocking layer has a function of a hole transport layer (3b) in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons. By blocking electrons while transporting holes, the electron recombination probability is reduced. Can be improved.
  • the structure of said positive hole transport layer (3b) can be used as an electron blocking layer as needed.
  • the thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the auxiliary electrode (15) is provided for the purpose of reducing the resistance of the transparent electrode (1), and is provided in contact with the conductive layer (1b) of the transparent electrode (1).
  • a metal having a low electric resistance such as gold, platinum, silver, copper, and aluminum is preferable. Since these metals have low light transmittance, a pattern is formed in a size range that does not affect the extraction of the emitted light (L) from the light extraction surface (13a).
  • Examples of a method for producing such an auxiliary electrode (15) include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method.
  • the line width of the auxiliary electrode (15) is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio in the light extraction region, and the thickness of the auxiliary electrode (15) is 1 ⁇ m or more from the viewpoint of conductivity. preferable.
  • the sealing material (17) covers the entire organic EL element (100), is a plate-shaped (film-shaped) sealing member, and is transparent with an adhesive (19). (13) It may be fixed to the side or a sealing film.
  • a sealing material (17) covers at least the light emitting functional layer unit (3) in a state where the terminal portions of the transparent electrode (1) and the counter electrode (5a) in the organic EL element (100) are exposed. Is provided.
  • an electrode may be provided in the sealing material (17) so that the transparent electrode (1) and the terminal portion of the counter electrode (5a) of the organic EL element (100) are electrically connected to the electrode. .
  • the plate-like (film-like) sealing material (17) include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrate materials may be used in the form of a thin film.
  • the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal substrate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the organic EL element can be thinned, a polymer substrate or a metal substrate formed into a thin film can be preferably used as the sealing material.
  • the polymer substrate in the form of a film has an oxygen permeability of 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less measured by a method according to JIS K 7126-1987, and JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method in accordance with the above is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. It is preferable.
  • the above substrate material may be processed into a concave plate shape and used as a sealing material (17).
  • the above-described substrate material is subjected to processing such as sandblasting and chemical etching to form a concave shape.
  • the adhesive (19) for fixing such a plate-shaped sealing material (17) to the transparent substrate (13) side is sandwiched between the sealing material (17) and the transparent substrate (13).
  • Specific examples of the adhesive (19) include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing types such as 2-cyanoacrylates. Can be mentioned.
  • epoxy-based heat and chemical curing type two-component mixing
  • the organic material which comprises an organic EL element (100) may deteriorate with heat processing.
  • an adhesive (19) to apply what can be adhesive-hardened within the temperature range from room temperature to 80 degreeC is preferable. Further, a desiccant may be dispersed in the adhesive (19).
  • coating of the adhesive agent (19) to the adhesion part of a sealing material (17) and a transparent substrate (13) may use commercially available dispenser, and may print it like screen printing.
  • the gap when a gap (space) is formed between the plate-shaped sealing material (17), the transparent substrate (13), and the adhesive (19), the gap includes nitrogen in the gas phase and the liquid phase. It is also possible to inject an inert gas such as argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, etc.
  • sulfates, metal halides and perchloric acids are preferably anhydrous salts.
  • the sealing material (17) when a sealing film is used as the sealing material (17), the light emitting functional layer unit (3) in the organic EL element (100) is completely covered, and the transparent electrode (1) and the counter electrode in the organic EL element (100) are opposed to each other.
  • a sealing film is provided on the transparent substrate (13) with the terminal portion of the electrode (5a) exposed.
  • Such a sealing film is composed of an inorganic material or an organic material.
  • it is preferably composed of a material having a function of suppressing (barriering) entry of a substance that causes deterioration of the light emitting functional layer unit (3) in the organic EL element (100) such as moisture and oxygen.
  • a material for example, an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride is used.
  • a hybrid structure in which a plurality of layers are alternately laminated using a film made of an organic material together with a film made of these inorganic materials may be used.
  • sealing films There are no particular limitations on the method for producing these sealing films.
  • An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective film or a protective plate may be provided so as to sandwich the organic EL element (100) and the sealing material (17) together with the transparent substrate (13).
  • This protective film or protective plate is for mechanically protecting the organic EL element (100).
  • the sealing material (17) is a sealing film
  • the protective film or the protective plate is used for the organic EL element (100). Since mechanical protection is not sufficient, it is preferable to provide such a protective film or protective plate.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied.
  • a polymer film because it is light and thin.
  • a metal affinity layer (1a) containing an organic compound containing a heteroatom having a lone pair in the molecule and a lanthanoid according to the present invention is 1 ⁇ m or less, preferably 10 to 10 ⁇ m. It forms by well-known thin film formation methods, such as a vapor deposition method, so that it may become a layer thickness of 100 nm. Next, a known thin film formation method such as a vapor deposition method is applied so that the conductive layer (1b) containing silver (or an alloy containing silver) as a main component has a layer thickness range of 5 to 20 nm, preferably 5 to 12 nm. A transparent electrode (1) which is formed on the metal affinity layer (1a) by the method and serves as an anode is produced.
  • the hole injection layer (3a), the hole transport layer (3b), the light emitting layer (3c), the electron transport layer (3d), and the electron injection layer (3e) are arranged in this order on the transparent electrode (1).
  • Film formation is performed to form the light emitting functional layer unit (3).
  • a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, and the like can be applied to the film formation of each of these layers, but vacuum is used because a homogeneous film is easily obtained and pinholes are not easily generated. Vapor deposition or spin coating is particularly preferred. Further, different film formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 It is desirable to appropriately select each condition within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 50 to 300 ° C., and layer thickness of 0.1 to 5 ⁇ m.
  • a counter electrode (5a) serving as a cathode is formed thereon by a known thin film forming method such as vapor deposition or sputtering.
  • the counter electrode (5a) is insulated from the transparent electrode (1) via the light emitting functional layer unit (3), and from above the light emitting functional layer unit (3) to the periphery of the transparent substrate (13).
  • a pattern is formed in a shape in which the terminal portion is drawn out.
  • an organic EL element (100) is obtained.
  • a sealing material (17) covering at least the light emitting functional layer unit (3) is provided in a state where the terminal portions of the transparent electrode (1) and the counter electrode (5a) in the organic EL element (100) are exposed. .
  • the organic EL element (100) which has a desired structure on a transparent substrate (13) is obtained.
  • the transparent electrode (1) as an anode has a positive polarity and the counter electrode (5a) as a cathode has a negative polarity.
  • Luminescence can be observed when applied within a voltage range of 2 to 40V.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the transparent electrode (1) of the present invention having both conductivity and light transmission is used as an anode, and a light emitting functional layer unit (3) and a counter electrode serving as a cathode are formed on the upper part. (5a) is provided. Therefore, a sufficient voltage is applied between the transparent electrode (1) and the counter electrode (5a) to realize high-luminance light emission as the organic EL element (100) and light emission from the transparent electrode (1) side.
  • the light (L) extraction efficiency it is possible to increase the luminance. Furthermore, the driving voltage for obtaining a predetermined luminance can be lowered, and the light emission life can be improved.
  • FIG. 3 is a schematic cross-sectional view showing an application example 2 of an organic EL element using the transparent electrode (1) of the present invention as an example of the electronic device of the present invention.
  • the transparent electrode (1) is a cathode (cathode).
  • the transparent electrode (1) is a cathode (cathode).
  • the organic EL element (200) is provided on the transparent substrate (13), and the transparent electrode (1) on the transparent substrate (13) is the same as Application Example 1 shown in FIG. As described above, the transparent electrode (1) of the present invention described above is used. For this reason, the organic EL element (200) is configured to extract emitted light (L) from at least the transparent substrate (13) side. However, this transparent electrode (1) is used as a cathode (cathode). For this reason, the counter electrode (5b) is used as an anode (anode).
  • the layer structure of the organic EL element (200) configured as described above is not limited to the example described below, and may be a general layer structure as in Application Example 1. .
  • an electron injection layer (3e) / electron transport layer (3d) / light emitting layer (3c) / hole transport is formed on the transparent electrode (1) functioning as a cathode.
  • stacked layer (3b) / hole injection layer (3a) in this order is illustrated.
  • the light emitting functional layer unit (3) can employ various constituent layers as needed in addition to these layers, as described in Application Example 1. In such a configuration, only the portion where the light emitting functional layer unit (3) is sandwiched between the transparent electrode (1) and the counter electrode (5b) may be a light emitting region in the organic EL element (200). Same as 1.
  • the auxiliary electrode (15) is provided in contact with the conductive layer (1b) of the transparent electrode (1) for the purpose of reducing the resistance of the transparent electrode (1). This may be the same as in Application Example 1 shown in FIG.
  • the counter electrode (5b) used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof.
  • metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
  • the counter electrode (5b) configured as described above can be produced by forming a thin film from these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance value as the counter electrode (5b) is several hundred ⁇ / sq.
  • the film thickness is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • this organic EL element (200) is comprised so that emitted light (L) can be taken out also from a counter electrode (5b) side, as a material which comprises a counter electrode (5b), it is the electroconductivity mentioned above.
  • a conductive material having good light transmittance is selected and used.
  • the organic EL element (200) having the above-described configuration is sealed with a sealing material (17) in the same manner as in Application Example 1 for the purpose of preventing deterioration of the light emitting functional layer unit (3).
  • the transparent electrode (1) of the present invention having both conductivity and light transmittance is used as a cathode (cathode), and a light emitting functional layer unit (3), an anode, The counter electrode (5b) is provided. Therefore, as in Application Example 1, a sufficient voltage is applied between the transparent electrode (1) and the counter electrode (5b) to realize high-luminance light emission in the organic EL element (200), while the transparent electrode (1)
  • the luminance can be increased by improving the extraction efficiency of the emitted light (L) from the side.
  • the driving voltage for obtaining a predetermined luminance can be lowered, and the light emission life can be improved.
  • FIG. 4 is a schematic cross-sectional view showing an application example 3 of an organic EL element using the transparent electrode (1) of the present invention as an example of the electronic device of the present invention.
  • the difference between the organic EL element (300) of application example 3 shown in FIG. 4 and the organic EL element (100) of application example 1 shown in FIG. 2 is that a counter electrode (5c) is provided on the substrate (131) side.
  • the light emitting functional layer unit (3) and the transparent electrode (1) are laminated in this order on the top.
  • the organic EL element (300) shown in FIG. 4 is provided on the substrate (131), and from the substrate (131) side, the counter electrode (5c) serving as the anode, the light emitting functional layer unit (3), and the cathode, Transparent electrodes (1) to be formed are laminated in this order.
  • the transparent electrode (1) of the present invention described above is used as the transparent electrode (1).
  • the organic EL element (300) is configured to extract emitted light (L) from at least the transparent electrode (1) side opposite to the substrate (131).
  • the layer structure of the organic EL element (300) configured as described above is not limited to the example described below, and may be a general layer structure as in Application Example 1. is there.
  • a light emitting layer (3c) composed of at least an organic material.
  • the characteristic structure of the organic EL element (300) of Application Example 3 is that the electron injection layer (3e) having an electron injection property functions as a metal affinity layer in the transparent electrode (1). That is, in Application Example 3, the transparent electrode (1) used as the cathode has a metal affinity layer also serving as an electron injection layer (3e) having an electron injection property, and a conductive layer (1b) provided thereon. It is composed of.
  • Such an electron injection layer (3e) is formed using the material constituting the metal affinity layer (1a) of the transparent electrode (1) of the present invention described above.
  • the light emitting functional layer unit (3) may employ various configurations as necessary as described in Application Example 1, but the metal affinity of the transparent electrode (1)
  • the electron injection layer and the hole blocking layer are not provided between the electron injection layer (3e) serving also as the conductive layer (1a) and the conductive layer (1b) of the transparent electrode (1).
  • the auxiliary electrode (15) is provided in contact with the conductive layer (1b) of the transparent electrode (1) for the purpose of reducing the resistance of the transparent electrode (1). This may be the same as in Application Example 1.
  • the counter electrode (5c) used as the anode is composed of a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof.
  • metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
  • the counter electrode (5c) configured as described above can be produced by forming a thin film from these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance value as the counter electrode (5c) is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • this organic EL element (300) is comprised so that emitted light (L) can be taken out also from a counter electrode (5c) side
  • a material which comprises a counter electrode (5c) it is the above-mentioned electroconductivity.
  • a conductive material having good light transmittance is selected and used.
  • the substrate (131) the same substrate as the transparent substrate (13) described in Application Example 1 is used, and the surface facing the outside of the substrate (131) is the light extraction surface (131a).
  • the electron transporting layer (3d) having the electron injecting property constituting the uppermost part of the light emitting functional layer unit (3) is used as the metal affinity layer (1a), and the conductive layer is formed thereon.
  • the transparent electrode (1) composed of the metal affinity layer (1a) and the upper conductive layer (1b) is provided as a cathode.
  • a sufficient voltage is applied between the transparent electrode (1) and the counter electrode (5c) to realize high luminance light emission in the organic EL element (300).
  • it is possible to increase the luminance by improving the extraction efficiency of the emitted light (L) from the transparent electrode (1) side.
  • the driving voltage for obtaining a predetermined luminance can be lowered, and the light emission life can be improved.
  • the counter electrode (5c) is light transmissive, the emitted light (L) can be extracted from the counter electrode (5c) as indicated by a broken line.
  • the metal affinity layer (1a) of the transparent electrode (1) has been described as serving also as the electron transport layer (3d) having an electron injection property.
  • the present invention is not limited to this, and the metal affinity layer (1a) may also serve as an electron transport layer (3d) that does not have electron injection properties, or the metal affinity layer (1a) It may also serve as an electron injection layer instead of an electron transport layer.
  • the metal affinity layer (1a) may be formed as an extremely thin film that does not affect the light emitting function of the organic EL element. In this case, the metal affinity layer (1a) is an electron transport layer. And electron injectability.
  • the metal affinity layer (1a) of the transparent electrode (1) is formed as an extremely thin film that does not affect the light emitting function of the organic EL element, the counter electrode (5c) on the substrate (131) side is formed.
  • the transparent electrode (1) on the light emitting functional layer unit (3) may be an anode.
  • the light emitting functional layer unit (3) is, for example, in the order of the electron injection layer (3e) / electron transport layer (3d) / light emitting layer (3c) from the counter electrode (cathode, 5c) side on the substrate (131).
  • Hole transport layer (3b) / hole injection layer (3a) are laminated.
  • a transparent electrode (1) having a laminated structure of an extremely thin metal affinity layer (1a) and a conductive layer (1b) is provided as an anode on the top.
  • FIG. 5 is a schematic cross-sectional view showing an application example 4 of an organic EL element using the transparent electrode (1) of the present invention as an example of the electronic device of the present invention.
  • the organic EL element (400) of the application example 4 shown in FIG. 5 is different from the organic EL element (300) of the application example 3 shown in FIG. 4 in that the positive electrode is placed on the upper side of the counter electrode (5c) functioning as an anode.
  • the hole injection layer (3a) / hole transport layer (3b) / light emitting layer (3c) / electron transport layer (3d) are stacked in this order. However, it is essential to have at least the light emitting layer 3c configured using an organic material.
  • the electron transport layer (3d) also serves as the electron injection layer (3e), and is provided as an electron transport layer (3d) having electron injection properties.
  • the electron transport layer (3d) having an electron injection property functions as a metal affinity layer (1a) in the transparent electrode (1). It is in. That is, in Application Example 4, the transparent electrode (1) used as the cathode includes a metal affinity layer (1a) that also serves as an electron transporting layer (3d) having an electron injecting property, and a conductive layer provided thereon. (1b). It will not be lost.
  • each of the organic EL elements having the above-described configurations is a surface light emitter, it can be used as various light emission sources.
  • lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystal display devices, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors And a light source of an optical sensor.
  • it can be effectively used for a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • a lighting device will be described as an example of the application, and then a lighting device having a light emitting surface enlarged by tiling will be described.
  • the lighting device according to the present invention can include the organic EL element of the present invention.
  • the organic EL element used in the lighting device according to the present invention may be designed such that each organic EL element having the above-described configuration has a resonator structure.
  • the purpose of use of the organic EL element configured to have a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, etc. It is not limited to. Moreover, you may use for the said use by making a laser oscillation.
  • the material used for the organic EL element of this invention is applicable to the organic EL element (white organic EL element) which produces substantially white light emission.
  • a plurality of luminescent colors can be simultaneously emitted by a plurality of luminescent materials, and white light emission can be obtained by mixing colors.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a dye material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants is preferable.
  • Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for the film formation of most layers constituting the organic EL element, and the film can be formed on the entire surface by vapor deposition, casting, spin coating, ink jet, printing, etc. Will also improve.
  • any one of the above metal complexes and known light emitting materials may be selected and combined to be whitened.
  • the white organic EL element described above it is possible to produce a lighting device that emits substantially white light.
  • Transparent electrodes 1 to 30 having a conductive region area of 5 cm ⁇ 5 cm were prepared according to the following method.
  • the transparent electrodes 1 to 4 are prepared as transparent electrodes having a single layer structure composed of only the conductive layer (1b), and the transparent electrodes 5 to 30 are laminated layers of the metal affinity layer (1a) and the conductive layer (1b).
  • a transparent electrode having a structure was prepared.
  • a transparent alkali-free glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, and this substrate holder was attached to a vacuum chamber of the vacuum deposition apparatus.
  • a resistance heating boat made of tungsten was filled with silver (Ag) and mounted in the vacuum chamber.
  • the resistance heating boat is energized and heated, and the layer thickness is deposited on the substrate within the range of the deposition rate of 0.1 to 0.2 nm / second.
  • a conductive layer (1b) made of silver having a thickness of 5 nm was formed to produce a transparent electrode 1 having a single layer structure.
  • transparent electrodes 2 to 4 In the production of the transparent electrode 1, transparent electrodes 2 to 4 were produced in the same manner except that the deposition time was appropriately changed and the thickness of the conductive layer (1b) was changed to 8.5 nm, 10 nm, and 15 nm, respectively. .
  • a metal affinity layer (1a) having a layer thickness of 30 nm is formed by sputtering on a transparent non-alkali glass base material using Alq 3 shown below, and the same method as that for the transparent electrode 2 is formed thereon. Then, a conductive layer (1b) made of silver having a layer thickness of 8.5 nm was deposited to form a transparent electrode 5.
  • a transparent non-alkali glass base material is fixed to a base material holder of a commercially available vacuum deposition apparatus, ET-1 shown below is filled in a resistance heating boat made of tantalum, and the substrate holder and the heating boat are connected to the vacuum deposition apparatus.
  • the first vacuum chamber was attached.
  • the resistance heating boat made from tungsten was filled with silver, and it attached in the 2nd vacuum chamber.
  • the heating boat containing ET-1 was heated and heated, and the deposition rate was within a range of 0.1 to 0.2 nm / second.
  • a metal affinity layer (1a) made of ET-1 having a layer thickness of 30 nm was formed on the material.
  • the base material formed up to the metal affinity layer (1a) is transferred to the second vacuum chamber while maintaining a vacuum, and after the pressure of the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, the heated boat containing silver is energized. And heated to form a conductive layer (1b) made of silver having a layer thickness of 8.5 nm within a deposition rate range of 0.1 to 0.2 nm / sec.
  • transparent electrodes 7 to 9 were produced in the same manner except that the constituent material of the metal affinity layer (1a) was changed to ET-2 to ET-4 shown below.
  • a transparent non-alkali glass base material is fixed to a base material holder of a commercially available vacuum deposition apparatus, and as an organic compound containing a hetero atom having an unshared electron pair in the molecule, Exemplified Compound Nos. 14 was filled in a resistance heating boat made of tantalum, and the substrate holder and the heating boat were attached to a first vacuum chamber of a vacuum deposition apparatus. Moreover, the resistance heating boat made from tungsten was filled with silver, and it attached in the 2nd vacuum chamber.
  • the first vacuum chamber was decompressed to 4 ⁇ 10 ⁇ 4 Pa, No. 14 was heated by energizing a heating boat containing No. 14 on the base material within the range of the deposition rate of 0.1 to 0.2 nm / sec.
  • a metal affinity layer (1a) consisting of 14 was formed.
  • the base material formed up to the metal affinity layer (1a) is transferred to the second vacuum chamber while maintaining a vacuum, and after the pressure of the second vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, the heated boat containing silver is energized. And heated to form a conductive layer (1b) made of silver having a layer thickness of 5 nm within a deposition rate range of 0.1 to 0.2 nm / second.
  • a transparent alkali-free glass base material is fixed to a base material holder of a commercially available vacuum deposition apparatus, and LiQ (mono (8-quinolinolato) lithium complex) and Yb as a lanthanoid are filled in a tantalum resistance heating boat, These substrate holder and heating boat were attached to the first vacuum chamber of the vacuum deposition apparatus. Moreover, the resistance heating boat made from tungsten was filled with silver, and it attached in the 2nd vacuum chamber.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then LiQ and Yb were adjusted to have a deposition rate of 1: 1, and a LiQ with a layer thickness of 30 nm was formed on the substrate. And a metal affinity layer (1a) composed of Yb.
  • the base material on which the metal affinity layer (1a) was formed was transferred to the second vacuum chamber while maintaining a vacuum, and after the second vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, a heating boat containing silver was added.
  • a transparent electrode 11 having a laminated structure of an affinity layer (1a) and a conductive layer (1b) made of silver was produced.
  • transparent electrodes 12 to 15 In the production of the transparent electrode 11, transparent electrodes 12 to 15 were produced in the same manner except that the materials shown in Table III were used instead of LiQ and Yb as the constituent material of the metal affinity layer (1a).
  • transparent electrodes 24 to 27 were produced in the same manner except that a capping layer having a layer thickness of 60 nm was laminated on the conductive layer (1b) using the constituent materials shown in Table III. .
  • transparent electrodes 28 to 30 were produced in the same manner except that a capping layer having a layer thickness of 60 nm was laminated on the conductive layer (1b) using the constituent materials shown in Table III. .
  • the transparent electrodes 1 to 30 produced above were measured for light transmittance, sheet resistance value, and heat resistance (amount of change in sheet resistance value) according to the following method.
  • the light transmittance (%) in wavelength 500nm was measured using the base material (transparent non-alkali glass) of each transparent electrode using the spectrophotometer (Hitachi U-3300).
  • the amount of change in the sheet resistance value is shown as a relative value where the amount of change in the sheet resistance value of the transparent electrode 10 is 100.
  • Table III shows the measurement results obtained as described above.
  • the electrodes 14 and 15 have a high light transmittance of 60% or more and 10 ⁇ / sq. It turns out that the favorable electroconductivity of less than is compatible.
  • the comparative transparent electrode 10 also has good transmittance and electrical conductivity, the transparent electrodes 14 and 15 of the present invention are superior to the comparative transparent electrode 10 in terms of sheet resistance change amount (durability).
  • the transparent electrode having the structure defined in the present invention is excellent in durability.
  • the light transmittance is further improved.
  • the structure of the capping layer is a metal affinity layer defined in the present invention, and the conductive layer It can be seen that the light transmittance is further improved by sandwiching (1b) between the pair of metal affinity layers.
  • Example 2 ⁇ Production of light emitting panel> Light emitting panels (double-sided light emitting organic electroluminescence panels) 1-1 to 1-15 using a transparent electrode as a cathode were produced.
  • a glass substrate (131) having a cleaned counter electrode (5c) is fixed to a substrate holder of a commercially available vacuum deposition apparatus, and each of the heating boats constitutes a transparent electrode (1) and a light emitting functional layer unit (3).
  • the material was filled in an optimal amount.
  • a heating boat made of a tungsten resistance heating material was used.
  • the vapor deposition chamber of the vacuum vapor deposition apparatus was depressurized to a vacuum degree of 4 ⁇ 10 ⁇ 4 Pa, and each layer was formed as follows by sequentially energizing and heating a heating boat containing each material.
  • a heating boat containing HAT-CN represented by the following structural formula is energized and heated to form a hole injection layer (3a) made of HAT-CN on the ITO counter electrode (5c). did.
  • the film forming conditions were such that the deposition rate was in the range of 0.1 to 0.2 nm / second and the layer thickness was 10 nm.
  • ⁇ -NPD ⁇ -NPD
  • a heating boat containing ⁇ -NPD (supra) as a hole transport injection material is energized and heated, and a hole transport layer (3b) made of ⁇ -NPD is formed on the hole injection layer (3a).
  • a film was formed.
  • the film formation conditions were an evaporation rate in the range of 0.1 to 0.2 nm / second and a layer thickness of 120 nm.
  • the layer thickness was 30 nm.
  • an electric injection boat (3e) made of LiQ was formed on the electron transport layer (3d) by energizing and heating a heating boat containing LiQ (supra) as an electron injection material.
  • the film forming conditions were such that the deposition rate was in the range of 0.01 to 0.02 nm / second and the layer thickness was 2 nm.
  • tungsten filled with silver (Ag) as a material for forming the transparent electrode (1, conductive layer 1b) is deposited on the transparent substrate (131) formed up to the electron injection layer (3e) from the vapor deposition chamber of the vacuum vapor deposition apparatus. It was transferred into a vacuum chamber equipped with a resistance heating boat made while keeping the vacuum state.
  • the resistance heating boat is energized and heated, and the deposition rate is within the range of 0.1 to 0.2 nm / second, and the electron injection layer (3e)
  • a conductive layer (1b) made of silver having a layer thickness of 10 nm was formed thereon as a cathode.
  • ⁇ Capping layer formation> Thereafter, it is transferred into the original vacuum layer, and although not shown in FIG. 4, ⁇ -NPD (described above) is deposited on the conductive layer (1b) at a deposition rate of 0.1 to 0.2 nm / second. In this range, vapor deposition was performed under the condition of a layer thickness of 40 nm to form a capping layer.
  • the organic EL element (300) was formed on the transparent substrate (131) by the above procedure.
  • the organic EL element (300) is covered with a sealing material (17) made of a glass substrate having a thickness of 300 ⁇ m, and the sealing material (17) and the transparent substrate (131) are surrounded by the organic EL element (300).
  • the adhesive (19, sealing material) was sealed between the two.
  • an epoxy photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) was used.
  • the adhesive (19) filled between the sealing material (17) and the transparent substrate (131) is irradiated with UV light from the glass substrate (sealing material, 17) side, and the adhesive (19) is applied.
  • the organic EL element (300) was sealed by curing.
  • the organic EL element (300) In the formation of the organic EL element (300), a vapor deposition mask is used for forming each layer, and the central 4.5 cm ⁇ 4.5 cm of the 100 mm ⁇ 100 mm transparent substrate (131) is defined as the light emitting region A, and the light emitting region is formed. A non-light-emitting region B having a width of 0.25 cm was provided on the entire circumference of A.
  • the counter electrode (5c) as the anode and the transparent electrode (1) as the cathode are insulated by the light emitting functional layer unit (3) from the hole transport layer (3a) to the electron injection layer (3e).
  • the terminal portion was formed in the shape drawn out on the periphery of the transparent substrate (131).
  • a light emitting panel 1-1 in which the organic EL element (300) was provided on the transparent substrate (131) and sealed with the sealing material (17) and the adhesive (19) was produced.
  • the light emission (L) of each color generated in the light emitting layer (3c) is transmitted to the transparent electrode (1) side, that is, the sealing material (17) side, and the counter electrode side (5c), that is, transparent. It is taken out from both sides of the substrate (131).
  • the light-emitting panels 1-1 to 1-15 produced above were measured for light transmittance, drive voltage, drive voltage variation, and high-temperature device lifetime according to the following methods.
  • the light transmittance (%) in wavelength 500nm was measured using the transparent substrate (131) of each light emission panel using the spectrophotometer (Hitachi U-3300).
  • The difference in all five panels is less than 0.2 V with respect to the average drive voltage.
  • The difference is 0.2 V or more and less than 0.5 V in one or more panels with respect to the average drive voltage.
  • the difference between three or more panels with respect to the average driving voltage is 0.5 V or more, or the difference between one or more panels is 1.0 V or more.
  • the electron injection layer (3e) containing the metal affinity compound having the structure defined in the present invention and the lanthanoid (Yb) is adjacent to the conductive layer (1b), the light transmittance and the driving voltage are obtained. It can be seen that the lifetime of the high-temperature element can be further improved while simultaneously satisfying the above. Furthermore, it can be seen that the layer containing the metal affinity compound and the lanthanoid (Yb) according to the present invention also functions as the electron transport layer (3d).
  • the electron injection layer (3e) adjacent to the conductive layer (1b) contains 1-14 which does not contain a metal salt material, and a metal salt material (LiQ). 1-15 shows almost the same performance although there are some differences, suggesting that the silver affinity layer according to the present invention has an effect of suppressing the adverse effect of the metal salt.
  • Example 3 Production of light-emitting panel 2 >> [Production of light-emitting panel 2-1] A light emitting panel (top emission type organic electroluminescence panel) 2-1 using a transparent electrode as a cathode was produced.
  • a light-emitting panel 2-1 was produced in the same manner as in the production of the light-emitting panel 1-3 described in Example 2, except that the method described below was changed.
  • the cleaned glass substrate is fixed to the substrate holder of a commercially available vacuum deposition apparatus, and each electrode material (5c and 1) and each material constituting the light emitting functional layer unit (3) are filled in an optimum amount in each heating boat. did.
  • a heating boat made of a tungsten resistance heating material was used.
  • the glass substrate (131) was transferred to a resistance heating boat made of tungsten as a material for forming the counter electrode (5c) in a vacuum chamber filled with aluminum (Al) instead of ITO while maintaining the vacuum state.
  • a resistance heating boat was energized and heated, and aluminum was deposited with a layer thickness of 100 nm to obtain a counter electrode (5c) as a reflective electrode.
  • Luminescent panels 2-2 to 2-9 were fabricated in the same manner except that the constituent materials of the electron injection layer (3e) and the capping layer were changed as shown in Table V in the fabrication of the luminous panel 2-1.
  • Drive voltage change rate (%) [drive voltage after storage (V ′) / initial drive voltage (V)] ⁇ 100 ⁇ : Drive voltage change rate is less than 5.0% ⁇ : Drive voltage change rate is 5.0% or more and less than 15.0% ⁇ : Drive voltage change rate is 15.0% or more Yes [Evaluation of device life after storage]
  • Each light-emitting panel stored for 24 hours under the high temperature environment (temperature 120 ° C.) produced by the evaluation of the change rate of the driving voltage is continuously performed under a constant current condition of 2.5 mA / cm 2 at room temperature (25 ° C.). The time (half-life) required for light emission to be half the initial luminance was measured. Note that the element lifetime after high-temperature storage was determined as a relative value with the luminance half-life of the light-emitting panel 2-3 as 100.
  • the metal affinity compound according to the present invention and the lanthanoid (Yb) are contained in either the electron injection layer (3e) or the capping layer adjacent to the conductive layer (1b). It can be seen that the rate of change in drive voltage is suppressed by providing the layer. Further, in panel numbers 2-6 to 2-9 in which the layer containing the metal affinity compound and the lanthanoid (Yb) according to the present invention sandwiches the conductive layer (1b), any one of the conductive layers It can be seen that the device life after storage is improved as compared with panel numbers 2-3 to 2-5 in which a layer containing a metal affinity compound and a lanthanoid (Yb) exists only on the surface side.
  • the transparent electrode of the present invention can be suitably used for an organic EL element.
  • the organic EL is used for lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystal display devices, lighting for billboard advertisements, traffic lights.
  • the present invention can be applied to a light source, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明の課題は、十分な導電性と光透過性とを兼ね備え、かつ耐久性に優れた透明電極と、当該透明電極を備えた電子デバイスを提供することである。 本発明の透明電極は、導電性層と、当該導電性層に隣接して少なくとも1層の金属親和性層を有する透明電極であって、前記導電性層が、銀を主成分として構成され、前記金属親和性層が、有機化合物及びランタノイドを含有し、前記有機化合物が、非共有電子対を有するヘテロ原子を分子内に含む化合物であることを特徴とする。

Description

透明電極及び電子デバイス
 本発明は、透明電極及び電子デバイスに関する。詳しくは、本発明は、導電性と光透過性とを兼ね備え、かつ耐久性に優れた透明電極と、この透明電極を用いた電子デバイスに関する。
 有機材料のエレクトロルミネッセンス(electroluminescence、以下、「EL」と略記する。)を利用した有機EL素子は、数V~数十V程度の低電圧で発光が可能な薄型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、近年では、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の分野で用いられる面発光体として注目されている。
 この有機EL素子は、2枚の対向する電極間に、少なくとも有機材料からなる発光層を配置した構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成される。
 透明電極の形成材料としては、酸化インジウムスズ(SnO-In:Indium Tin Oxide、以下、「ITO」と略記する。)等の酸化物半導体系の材料が一般的に用いられており、更には、ITOと銀とを積層して低抵抗化を図る検討もなされている。しかしながら、ITOはレアメタルであるインジウムを使用しているため、材料コストが高く、成膜方法としては、主にはスパッタ法が用いられている。しかしながら、有機エレクトロルミネッセンス素子等の電子デバイスにおいて、主に有機材料から構成されている有機層上にスパッタ成膜により透明電極の形成を行うと、有機層へダメージを与え、有機層本来の性能が損なわれてしまう問題がある。
 上記問題に対し、スパッタ法を適用しない成膜方法として、蒸着法を用い、金属材料を薄膜形成して透明電極とする試みがなされており、電気伝導性の高い銀、又は銀とマグネシウムとの合金を用いて薄膜構成することにより、光透過性と導電性との両立を図った技術の検討がなされている。銀、又は銀とマグネシウムの合金を薄膜化した際には、銀がマイグレーション(銀原子の移動)を起こしやすいため、導電性を低下させるという問題を抱えていいた。また、マイグレーションを抑制するために厚膜化すると、光透過性が低下してしまうといった問題があり、導電性と光透過性の両立は困難であった。
 このような問題に対し、銀薄膜層を形成する際、下地層である電子注入層に着目した検討が行われている。例えば、下地層に公知の電子注入材料と金属材料を併用することにより、光透過性と導電性を両立させる方法が開示されている(例えば、特許文献1参照。)。特許文献1に記載されている方法は、銀とマグネシウムの合金比率を調整しながら、光透過性と導電性を両立させようとしているものの、いまだその両立は不十分であった。
 また、下地層に銀と相互作用する有機化合物を用いることで、光透過性と導電性を両立させる方法が開示されている(例えば、特許文献2参照。)。この場合、特に、導電性層に銀を用いた場合には良好な性能が示されているが、銀とマグネシウムの合金を導電性層に用いた場合には、耐久性が劣るという問題があった。
 このように透明電極としての光透過性や導電性等の特性に加え、電子デバイス又は有機エレクトロルミネッセンス素子に対して透明電極を適用する際の様々な性能を同時に向上させる必要があり、新たな技術の開発が望まれていた。
特許第5328845号公報 特開2014-103103号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、十分な導電性と光透過性とを兼ね備え、かつ耐久性に優れた透明電極と、当該透明電極を備えた電子デバイスを提供することである。
 本発明者は、上記課題を解決すべく上記問題の原因等について検討した結果、基板と、特定の有機材料とランタノイド(以下、「La金属」とも称す。)を含む金属親和性層と、銀を主成分とし、前記金属親和性層に隣接して設けられる導電性層を、この順に有する透明電極により、優れた導電性と光透過性を両立し、かつ耐久性に優れた透明電極を実現できることを見出した。さらに、当該透明電極を電子デバイス、特に有機エレクトロルミネッセンス素子に適用することで、デバイス特性を向上させることができることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.導電性層と、当該導電性層に隣接して少なくとも1層の金属親和性層を有する透明電極であって、
 前記導電性層が、銀を主成分として構成され、
 前記金属親和性層が、有機化合物及びランタノイドを含有し、
 前記有機化合物が、非共有電子対を有するヘテロ原子を分子内に含む化合物である、
 ことを特徴とする透明電極。
 2.前記金属親和性層が含有する有機化合物が、芳香族性に関与しない非共有電子対を有する窒素原子を含む芳香族複素環化合物であり、かつ下記式(1)で表される銀との有効作用エネルギーΔEefが、下記式(2)で規定する条件を満たすことを特徴とする第1項に記載の透明電極。
 式(1)
   ΔEef=n×ΔE/s
〔式中、nは銀(Ag)と安定的に結合する化合物中の窒素原子(N)の和を表し、ΔEは窒素原子(N)と銀(Ag)との相互作用エネルギーを表し、sは化合物の表面積を表す。〕
 式(2)
   -0.50≦ΔEef≦-0.10[kcal/mol・Å
 3.前記金属親和性層が含有する有機化合物が、最低空分子軌道(LUMO)のエネルギー準位が-2.2~-1.6eVの範囲内にある有機化合物であることを特徴とする第1項又は第2項に記載の透明電極。
 4.前記金属親和性層が含有する有機化合物が、下記一般式(I)で表される構造を有する化合物であることを特徴とする第1項から第3項までのいずれか一項に記載の透明電極。
Figure JPOXMLDOC01-appb-C000002
〔一般式(I)中、Xは、NR、酸素原子又は硫黄原子を表す。E~Eは、それぞれ独立に、CR又は窒素原子を表す。R及びRは、それぞれ独立に、水素原子又は置換基を表す。〕
 5.前記ランタノイドが、サマリウム(Sm)、ユウロピウム(Eu)又はイッテルビウム(Yb)であることを特徴とする第1項から第4項までのいずれか一項に記載の透明電極。
 6.第1項から第5項までのいずれか一項に記載の透明電極を具備することを特徴とする電子デバイス。
 7.前記電子デバイスが、有機エレクトロルミネッセンス素子であることを特徴とする第6項に記載の電子デバイス。
 本発明の上記手段により、十分な導電性と光透過性とを兼ね備え、かつ耐久性(耐熱性)に優れた透明電極と、当該透明電極を備え、光透過性と駆動電圧を両立させ、耐久性(素子寿命)に優れた電子デバイスを提供することができる。
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。
 すなわち、本発明の透明電極は、金属親和性層と、当該金属親和性層に隣接して導電性層を形成し、当該導電性層を、銀を主成分として構成し、かつ金属親和性層に銀原子と親和性のある原子を有する化合物(銀親和性化合物)とランタノイドを含有している構成とすることを特徴とする。
 本発明の透明電極においては、金属親和性層と導電性層は隣接していれば良く、金属親和性層上に導電性層がある構成でも、導電性層上に金属親和性層がある構成でもよい。更には、第1の金属親和性層上に導電性層を形成し、さらに当該導電性層上に第2の金属親和性層を形成し、導電性層を、2層の金属親和性層で挟持する構成であってもよい。
 金属親和性層の上部に、銀を主成分とする導電性層を成膜する際、導電性層を構成する銀原子が金属親和性層に含有されている銀親和性化合物及びランタノイドと相互作用し、金属親和性層表面上での銀原子の拡散距離が減少し、特異箇所での銀の移動(マイグレーション)に伴う銀原子の凝集を抑制することができたものである。
 すなわち、銀原子は、まず銀原子と親和性のある原子を有する金属親和性層表面上で2次元的な核を形成し、それを中心に2次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。
 なお、一般的には、金属親和性層表面において付着した銀原子が表面を拡散しながら結合して3次元的な核を形成し、3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により、島状に成膜しやすいと考えられる。
 しかし、本発明においては、金属親和性層に含有されている銀親和性化合物とランタノイドにより、島状成長(VM型)が抑制され、層状成長(FM型)が促進されると推察される。
 従って、薄い層厚でありながらも均一な層厚の導電性層が得られるようになる。その結果、その薄い層厚により光透過性を保ちつつも、導電性が確保された透明電極とすることができる。
 また、導電性層の上部に金属親和性層を成膜した場合、導電性層を構成する銀原子が金属親和性層に含有されている銀原子と親和性のある原子と相互作用し、運動性が抑制されるものと考えられる。これによって、導電性層の表面平滑性が良化することで乱反射を抑制することができ、透過率を向上することが可能である。また該相互作用によって、熱や温度といった物理刺激に対する導電性層の変化が抑制され、耐久性を向上させることができたものと推測している。
本発明の透明電極の構成の一例を示す概略断面図 本発明の透明電極を用いた有機EL素子の構成の第1例を示す概略断面図 本発明の透明電極を用いた有機EL素子の構成の第2例を示す概略断面図 本発明の透明電極を用いた有機EL素子の構成の第3例を示す概略断面図 本発明の透明電極を用いた有機EL素子の構成の第4例を示す概略断面図
 本発明の透明電極は、導電性層と、当該導電性層に隣接して少なくとも1層の金属親和性層を有し、前記導電性層が銀を主成分として構成され、前記金属親和性層が有機化合物及びランタノイドを含有し、当該有機化合物が、非共有電子対を有するヘテロ原子を分子内に含む化合物であることを特徴とする。この特徴は、各請求項に共通する又は対応する技術的特徴である。
 本発明においては、本発明の目的とする効果をより発現できる観点から、前記金属親和性層が含有する有機化合物が、芳香族性に関与しない非共有電子対を有する窒素原子を含む芳香族複素環化合物であり、かつ前記式(1)で表される銀との有効作用エネルギーΔEefが、前記式(2)で規定する条件を満たすことが、銀を主成分とする導電性層における銀の移動(マイグレーション)に伴う銀原子の凝集をより効果的に抑制することができ、より優れた導電性と光透過性とを備えた透明電極を得ることができる点で好ましい。
 また、前記金属親和性層が含有する有機化合物が、最低空分子軌道(以下、「LUMO」と略記する。)のエネルギー準位が-2.2~-1.6eVの範囲内にある有機化合物であると、導電性層を構成する金属材料、特に銀原子とのエネルギー準位が近く、電子軌道間における相互作用することが可能になる。これによって、導電性層との親和性が向上し、銀の凝集を抑制することができるため、好ましい。また、有機エレクトロルミネッセンス素子においては、該エネルギー準位とすることで、導電性層からのキャリア注入および発光層へのキャリア輸送を起こしやすくなるため好ましい。
 また、前記金属親和性層が含有する有機化合物が、前記一般式(I)で表される構造を有する化合物を用いることで、化合物自体の安定性が向上し、さらに形成した金属親和性層の安定性が向上する点で好ましい。特に前記一般式(I)で表される化合物はπ平面が大きく、分子間スタックが強固となるために、Tg(ガラス転移点)が向上し、熱的な安定性が向上する点で好ましい。
 また、ランタノイドが、サマリウム(Sm)、ユウロピウム(Eu)又はイッテルビウム(Yb)であることが、本発明の目的効果をより発現することができる点で好ましい。
 また、本発明の電子デバイスは、本発明の透明電極を備えることを特徴とする。また、電子デバイスとしては、有機エレクトロルミネッセンス素子であることが好ましい。すなわち、本発明の透明電極は、電子デバイス用透明電極、特に有機エレクトロルミネッセンス素子用透明電極として好適に用いることができる。
 本発明の透明電極を、電子デバイス用透明電極、特に有機エレクトロルミネッセンス素子用透明電極として適用した際の効果は、以下のように推察している。
 前述のように、本発明に係る導電性層を構成する主要成分が銀原子である場合、まず銀原子が、当該銀原子と親和性のある原子を有する銀親和性化合物とランタノイドとを含有する金属親和性層表面上で2次元的な核を形成し、それを中心に2次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって導電性層が成膜されるようになる。これによって光透過性と導電性を両立した透明電極を提供することが可能になる。
 また、本発明の透明電極を、電子デバイス、特に有機エレクトロルミネッセンス素子に適用する際には、導電性層から金属親和性層を含む有機エレクトロルミネッセンス層へ、電子注入させることが重要である。
 これまでにも、公知の電子注入材料として、LiQ(モノ(8-キノリノラト)リチウム錯体)、LiFやKF等のアルカリ金属塩、アルカリ土類金属塩等を、アルミニウムや銀-マグネシウム合金からなる導電性層に隣接させたり、電子注入層中に公知の電子注入材料を併用したりすることによって、電子注入特性の向上を図ってきた。
 しかしながら、これらの金属塩は、成膜時又は駆動時において、一部の金属と配位子、又は金属とハロゲン原子が解離し、移動することが知られている。金属塩の解離現象により生成する解離物は、極少量ではあるものの、電子デバイス内に拡散し、キャリア輸送を阻害したり、励起子を失活させたり、別の材料と反応したりして、デバイス性能に悪影響を与えることが示唆されている。
 また、これらアルカリ金属塩、アルカリ土類金属塩を単体で電子注入層として使用する場合、0.1~3nmの範囲内という極薄層として使用することが必要であり、これ以上厚膜化した場合には電子注入特性が発現せず、むしろ絶縁層として機能するため、電子注入特性が劣化することが知られている。このような薄膜層は、デバイス特性に大きな影響を与えるが、薄膜層を安定的に製造することは困難であり、製造バラつきを引き起こす要因となっている。
 これに対し、本発明においては、銀親和性化合物とランタノイドを含有する金属親和性層を電子注入層又は電子輸送層兼電子注入層として利用することにより、アルカリ金属塩やアルカリ土類金属塩のように解離する金属塩を含有しない系においても、良好な電子注入特性を示すことができる。また、本発明に係る金属親和性層に、さらにアルカリ金属塩やアルカリ土類金属塩を併用した場合、ランタノイド(La金属)は該金属塩の配位子やハロゲン原子との親和性を有するため、一部解離した配位子又はハロゲン原子の拡散を抑制することが可能となり、その結果、より耐久性に優れた電子デバイスを提供することができる。
 さらに、本発明においては、金属親和性層を有機エレクトロルミネッセンスの構成層として用いた場合には、キャリア輸送特性と電子注入特性を両立しているため、5nm以上の薄膜においても上記機能を発現することが可能となる。
 上述したとおり、本発明に係る金属親和性層は、銀親和性化合物とLa金属を含有することで、隣接する導電性層の構成材料である銀原子の成長を調整することにより、光透過性と導電性を両立し、さらにキャリア注入性を有する透明電極を提供することが可能になったものと考えている。さらに、金属親和性層に含まれる銀親和性化合物とLa金属が、導電性層を構成する銀原子と相互作用するために、導電性層の物理変化を抑制し、耐久性の高い透明電極を提供することが可能である。また、本発明における金属親和性層は極薄膜状態のみならず、安定的に生産可能な膜厚で形成した場合にも電子注入機能を発現することが可能である。
 さらに金属親和性層を導電性層の上部に用いた場合には、金属親和性層に含まれる銀親和性化合物とLa金属が、導電性層に含まれる銀原子と相互作用し、導電性層の表面平滑性を良化させることで、透過率と導電性を向上することが可能であり、また導電性層の物理的な変化を抑制することが可能となる。これによって、透過率、導電性及び耐久性の良好な透明電極とすることが可能である。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。なお、各図の説明において、構成要素の末尾に括弧内で記載した数字は、各図における符号を表す。
 《透明電極》
 本発明の透明電極は、導電性層と、当該導電性層に隣接して少なくとも1層の金属親和性層を有する透明電極であって、前記導電性層が銀を主成分として構成され、前記金属親和性層が、有機化合物及びランタノイドを含有し、かつ前記有機化合物が、非共有電子対を有するヘテロ原子を分子内に含む化合物であることを特徴とし、十分な導電性と光透過性(透明性)とを兼ね備え、かつ耐久性(耐熱性)に優れた透明電極を得ることができる。
 以下、本発明の透明電極の詳細について説明する。
 〔透明電極の構成〕
 図1は、本発明の透明電極の基本的な構成の一例を示す概略断面図である。
 図1に示すように、透明電極(1)は、金属親和性層(1a)と、この金属親和性層(1a)の上部に導電性層(1b)とが積層された2層構造であり、例えば、基材(11)上に、金属親和性層(1a)及び導電性層(1b)がこの順に設けられている。このうち金属親和性層(1a)には、少なくとも非共有電子対を有するヘテロ原子を分子内に含む化合物である有機化合物である銀親和性化合物と、ランタノイドを含有して構成されている層であり、導電性層(1b)は銀を主成分として構成されている層である。
 なお、本発明でいう「銀を主成分とする」とは、導電性層を構成する材料成分に占める銀の比率が60質量%以上であることをいい、好ましくは、70質量%、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは99質量%以上である。また、本発明の透明電極(1)でいう「透明」とは、波長500nmにおける光透過率が50%以上であることをいい、光透過率が60%以上であることがより好ましく、光透過率が65%以上であることが更に好ましい。
 次に、このような積層構造の透明電極(1)が設けられる基材(11)、透明電極(1)を構成する金属親和性層(1a)及び導電性層(1b)の順に、それぞれの詳細な構成を説明する。
 [基材]
 本発明の透明電極(1)は、図1で示すように基材(11)上に形成されていることが好ましい形態である。
 本発明に適用可能な基材(11)としては、例えば、ガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基材(11)は透明であっても不透明であってもよいが、本発明の透明電極(1)が、基材(11)側から光を取り出す電子デバイスに用いられる場合には、基材(11)は透明であることが必要な条件となる。好ましく用いられる透明な基材(11)としては、ガラス、石英、透明樹脂フィルムを挙げることができる。
 ガラスとしては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等のガラス材料が挙げられる。これらのガラス材料の表面には、金属親和性層(1a)との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的な加工処理が施されていてもよいし、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン(略称:PE)、ポリプロピレン(略称:PP)、セロファン、セルロースジアセテート(略称:DAC)、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール(略称:PVA)、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド(略称:PI)、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート(略称:PMMA)、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
 上記した樹脂フィルムの表面には、ガラスと同様に、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜やハイブリッド被膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24h)以下のバリアー性フィルム(バリアー膜等ともいう。)であることが好ましい。さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24h・atm)以下、水蒸気透過度が1×10-5g/(m・24h)以下の高バリアー性フィルムであることが好ましい。
 以上のようなバリアー性フィルムを形成する材料としては、水分や酸素等の電子デバイスや有機EL素子の劣化をもたらす要因の浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに、当該バリアー性フィルムの脆弱性を改良するために、これら無機層と有機材料からなる層(有機層)の積層構造を持たせることがより好ましい。無機層と有機層との積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリアー性フィルムを構成するバリアー膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を挙げることができ、一例としては、特開2004-68143号公報に記載の大気圧プラズマ重合法を挙げることができる。
 一方、基材(11)を光不透過性の材料で構成する場合には、例えば、アルミニウム、ステンレス等の金属基板、不透明樹脂基板、セラミック製の基板等を用いることができる。
 [金属親和性層]
 本発明に係る金属親和性層は、銀親和性化合物である非共有電子対を有するヘテロ原子を分子内に含む有機化合物と、ランタノイドを含有して構成された層である。その成膜方法としては、特に制限はなく、例えば、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる湿式法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる乾式法等が挙げられる。中でも蒸着法が好ましく適用される。
 非共有電子対とは、孤立電子対ともいい、原子の外殻電子軌道の1つにその原子に属する2個の電子が対となって入ってつくられた電子対で、共有結合に関与しない電子対を指す。本発明でいう非共有電子対とは、具体的には、化合物を構成するヘテロ原子が有する非共有電子対のうち、芳香族性に関与せず、かつ金属に配位していない非共有電子対であることとする。
 ここでの芳香族性とは、π電子を持つ原子が環状に配列された不飽和環状構造をいい、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(nは0以上の整数)個であることを条件としている。
 さらに、この金属親和性層(1a)としては、その層厚が1~100nmの範囲内にあることが好ましく、3~50nmの範囲内にあることがより好ましく、この範囲内であればいずれの層厚であっても効果を得ることができる。具体的には、層厚が100nm以下であれば、層の吸収成分が少なくなり、透明電極の透過率が向上するため好ましい。また、層厚が3nm以上であれば、均一で連続的な金属親和性層が形成されるため好ましい。
 本発明においては、非共有電子対を有するヘテロ原子を分子内に含む有機化合物である銀親和性化合物としては、具体的には、芳香族性に関与しない非共有電子対を有する硫黄原子を含有する化合物、ハロゲン原子を含有する化合物、窒素原子を含有する芳香族複素環化合物等を挙げることができる。
 〔銀親和性化合物〕
 (1)硫黄原子を含有する有機化合物
 芳香族性に関与しない非共有電子対を有する硫黄原子を含有する有機化合物としては、分子内にスルフィド結合(チオエーテル結合ともいう。)、ジスルフィド結合、メルカプト基、スルホン基、チオカルボニル結合等を有していればよく、特に、スルフィド結合、メルカプト基を有する有機化合物が好ましい。
 具体的には、下記一般式(1)~(4)で表される含硫黄化合物を挙げることができる。
 一般式(1)
   R-S-R
 一般式(2)
   R-S-S-R
 一般式(3)
   R-S-H
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、R及びRは、それぞれ独立に、置換基を表す。
 R及びRで表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えばジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 上記一般式(2)において、R及びRは、それぞれ置換基を表す。
 R及びRで表される置換基としては、R及びRと同様の置換基が挙げられる。
 上記一般式(3)において、Rは、置換基を表す。
 Rで表される置換基としては、R及びRと同様の置換基が挙げられる。
 上記一般式(4)において、Rは、置換基を表す。
 Rで表される置換基としては、R及びRと同様の置換基が挙げられる。
 以下に、本発明に係る金属親和性層に適用可能な硫黄原子を含有する有機化合物の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 更に、上記で例示した硫黄原子を有する有機化合物の中でも、一般式(1)~(3)のいずれかで表される化合物が好ましい。
 R~Rで表される置換基としては、芳香環基であることが好ましく、芳香族性に関与しない非共有電子対を有する窒素原子を含む芳香族複素環化合物を部分構造として有する置換基であることが特に好ましい。
 また、一般式(1)~(3)の中では、一般式(3)で表される有機化合物が、光透過性、導電性の観点から好ましく、一般式(1)で表される有機化合物が、光透過性、導電性及び耐久性の観点から好ましい。
 (2)ハロゲン原子を含有する有機化合物
 本発明の透明電極(1)において、金属親和性層(1a)に適用する非共有電子対を有するヘテロ原子を分子内に含む有機化合物として、芳香族性に関与しない非共有電子対を有するハロゲン原子を含有する有機化合物を用いることが好ましい。
 本発明に適用可能なハロゲン原子を有する有機化合物としては、少なくとも、ハロゲン原子と炭素原子とを含む化合物であり、その構造に特に制限はないが、下記一般式(5)で表されるハロゲン化アリール化合物が好ましい。
 以下、本発明に好適な下記一般式(5)で表されるハロゲン化アリール化合物について説明する。
 一般式(5)
   (R)-Ar-〔(L)-X〕
 上記一般式(5)において、Arは芳香族炭化水素環基又は芳香族複素環基を表す。Xはハロゲン原子を表し、mは1~5の整数である。Lは直接結合又は2価の連結基を表し、nは0又は1を表す。Rは水素原子又は置環基を表す。kは1~5の整数を表す。
 一般式(5)において、Arで表される芳香族炭化水素環基(芳香族炭素環基又はアリール基ともいう。)としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等を挙げることができる。
 また、Arで表される芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等を挙げることができる。
 本発明においては、Arとしては、芳香族炭化水素環基であることが好ましく、更に好ましくはフェニル基である。
 Xで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるが、その中でも、塩素原子、臭素原子又はヨウ素原子であることが好ましく、更に好ましくは、臭素原子又はヨウ素原子である。
 mは1~5の整数を表すが、好ましくは1又は2である。
 Lは直接結合又は2価の連結基を表す。2価の連結基としては、アルキレン基(例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基など)、シクロアルキレン基(例えば、1,2-シクロブタンジイル基、1,2-シクロペンタンジイル基、1,3-シクロペンタンジイル基、1,2-シクロヘキサンジイル基、1,3-シクロヘキサンジイル基、1,4-シクロヘキサンジイル基、1,2-シクロヘプタンジイル基、1,3-シクロヘプタンジイル基、1,4-シクロヘプタンジイル基、など)、アリーレン基(例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基、1,2-ナフチレン基、2,3-ナフトレン基、1,3-ナフチレン基、1,4-ナフチレン基、2,7-ナフチレン基など)、ヘテロアリーレン基(例えば、チオフェン-2,5-ジイル基、2,6-ピリジンジイル基、2,3-ピリジンジイル基、2,4-ピリジンジイル基、2,4-ジベンゾフランジイル基、2,8-ジベンゾフランジイル基、4,6-ジベンゾフランジイル基、3,7-ジベンゾフランジイル基、2,4-ジベンゾチオフェンジイル基、2,8-ジベンゾチオフェンジイル基、4,6-ジベンゾチオフェンジイル基、3,7-ジベンゾチオフェンジイル基、1,3-カルバゾールジイル基、1,8-カルバゾールジイル基、3,6-カルバゾールジイル基、2,7-カルバゾールジイル基、1,9-カルバゾールジイル基、2,9-カルバゾールジイル基、3,9-カルバゾールジイル基、4,9-カルバゾールジイル基、など)、-O-基、-CO-基、-O-CO-基、-CO-O-基、-O-CO-O-基、-S-基、-SO-基、-SO-基等を挙げることができる。
 Lで表される2価の連結基として、好ましくはアルキレン基であり、更に好ましくはメチレン基である。
 nは0又は1を表すが、好ましくは0である。
 Rは、水素原子又は置換基を表す。置換基としては、例えば、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。これらの置換基のうち、好ましいものはアリール基であり、更に複数のアリール基を有し、これらのアリール基が更にハロゲン原子を置換している構造が好ましい。
 kは、1~5の整数を表す。
 ハロゲン原子を有する有機化合物の具体的な化合物に関しては、例えば、特開2015-122184号公報の段落(0070)~同(0079)に記載の化合物(1)~(61)を挙げることができる。
 (3)芳香族性に関与しない非共有電子対を有する窒素原子を含有する芳香族複素環化合物
 本発明に係る非共有電子対を有するヘテロ原子を分子内に含む化合物として、芳香族性に関与しない非共有電子対を有する窒素原子を含有する芳香族複素環化合物を用いることが好ましく、更には、ポリマー化合物ではなく、窒素原子を含有する低分子有機化合物が好ましい。低分子有機化合物の分子量としては、150~1200の範囲内であることが好ましく、650~1000の範囲内であることがより好ましい。このような分子量の範囲内とすることで、膜密度を維持しながら、アモルファス性を向上することが可能となり、膜の安定性に優れ、且つ、表面粗さの少ない膜を形成することが可能となる。
 窒素原子を含有する低分子有機化合物としては、融点が80℃以上であり、かつ、分子量Mが150~1200の範囲内にある化合物が好ましい。また、窒素原子を含有する低分子有機化合物は、銀等との相互作用が大きい方が好ましく、例えば、含窒素複素環化合物、フェニル基置換アミン化合物が挙げられる。
 窒素原子を含有する有機化合物の分子量Mに対する[有効非共有電子対]の数nの比の値を有効非共有電子対含有率[n/M]と定義すると、窒素原子を含有する低分子有機化合物とは、この[n/M]が、2.0×10-3≦[n/M]となるように選択された化合物であり、3.9×10-3≦[n/M]であることがより好ましく、7.0×10-3≦[n/M]であることが更に好ましい。
 ここでいう[有効非共有電子対]とは、前述のとおり、化合物に含有される窒素原子が有する非共有電子対のうち、芳香族性に関与せず、かつ金属に配位していない非共有電子対であることとする。
 ここでの芳香族性とは、前述のとおり、π電子を持つ原子が環状に並んだ不飽和環状構造をいい、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0、又は自然数)個であることを条件としている。
 以上のような[有効非共有電子対]は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子が芳香族性に関与しない非共有電子対を有していれば、その非共有電子対は[有効非共有電子対]の一つとしてカウントされる。
 これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は[有効非共有電子対]としてカウントされることはない。
 なお、各化合物において、上述した[有効非共有電子対]の数nは、[有効非共有電子対]を有する窒素原子の数と一致する。
 窒素原子を有する有機化合物が、複数の化合物を用いて構成されている場合、例えば、化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求め、この分子量Mに対しての[有効非共有電子対]の合計の数nを、有効非共有電子対含有率[n/M]の平均値として求め、この値が上述した所定範囲であることが好ましい。
 以下に、窒素原子を含有する低分子有機化合物として、上述した有効非共有電子対含有率[n/M]が2.0×10-3≦[n/M]を満たす化合物として、以下の例示化合物No.1~No.42を示す。
 なお、下記に示す例示化合物No.31の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち、銅に配位していない非共有電子対が[有効非共有電子対]としてカウントされる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記した化合物No.1~No.42、ついて、[有効非共有電子対]の個数(n)、分子量(M)及び有効非共有電子対含有率(n/M)を表Iに示す。
Figure JPOXMLDOC01-appb-T000015
 窒素原子を含有する低分子有機化合物として、更に上記した化合物No.1~No.42の他に、下記化合物No.43及びNo.44とを挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 また、金属親和性層(1a)に含有される有機化合物が、下記一般式(I)~(IV)で表される部分構造を有する化合物であることが特に好ましい。
 〔一般式(I)で表される部分構造を有する化合物〕
 本発明の透明電極(1)において、金属親和性層(1a)に含有される化合物としては、下記一般式(I)で表される部分構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(I)において、Xは、NR、酸素原子又は硫黄原子を表す。E~Eは、それぞれ独立に、CR又は窒素原子を表す。R及びRは、それぞれ独立に、水素原子又は置換基を表す。一般式(I)において、特に、E~Eの少なくとも一つは窒素原子であることが好ましい。
 一般式(I)において、Rで表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、ピペリジル基(ピペリジニル基ともいう。)、2,2,6,6-テトラメチルピペリジニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、リン酸エステル基(例えば、ジヘキシルホスホリル基等)、亜リン酸エステル基(例えば、ジフェニルホスフィニル基等)、ホスホノ基等が挙げられる。
 一般式(I)において、Rで表される置換基としては、Rで表される置換基と同様のものを挙げることができる。
 〔一般式(II)で表される部分構造を有する化合物]
 上記一般式(I)で表される部分構造を有する化合物は、下記一般式(II)で表される部分構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(II)において、E~E15は、それぞれ独立に、CRを表す。R及びRは、それぞれ独立に、水素原子又は置換基を表す。
 一般式(II)において、R及びRで表される置換基としては、上記一般式(I)におけるRで表される置換基と同様のものを挙げることができる。
 〔一般式(III)で表される構造を有する化合物〕
 上記一般式(I)で表される構造を有する化合物は、下記一般式(III)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(III)において、E16~E22は、それぞれ独立に、CRを表す。Rは、水素原子又は置換基を表す。
 一般式(III)において、Rで表される置換基としては、上記一般式(I)におけるRで表される置換基と同様のものを挙げることができる。
 〔一般式(IV)で表される構造を有する化合物〕
 上記一般式(I)で表される構造を有する化合物は、下記一般式(IV)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 一般式(IV)において、E23~E28は、それぞれ独立に、CRを表す。R及びRは、それぞれ独立に、水素原子又は置換基を表す。
 一般式(IV)において、R及びRで表される置換基としては、上記一般式(I)におけるRで表される置換基と同様のものを挙げることができる。
 [金属親和性層に含有される有機化合物の具体例]
 また、本発明においては、金属親和性層が含有する有機化合物が、LUMOのエネルギー準位が-2.2~-1.6eVの範囲内にある有機化合物であることが好ましく、更に好ましくは-2.05~-1.75eVの範囲内である。
 LUMOのエネルギー準位が-1.6eVより大きい場合には、銀(仕事関数:-4.3eV)とのエネルギー準位が遠く、これにより電子軌道間における相互作用が小さくなり、銀の凝集を抑制できず、膜質を低下させてしまう。LUMOのエネルギー準位が-2.2eVより小さい場合には、発光層から電子や励起子が流れてきてしまい、発光効率が低下してしまう。
 以下に、本発明に係る金属親和性層(1a)に含有される有機化合物の具体例(例示化合物No.45~No.100とそのLUMOのエネルギー準位(eV)を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 本発明に係る有機化合物は、従来公知の合成方法に準じて、容易に合成することができる。
 (有効作用エネルギーΔEef)
 本発明の透明電極においては、金属親和性層が含有する有機化合物が、窒素原子をヘテロ原子とした複素環を有し、下記式(1)で表される銀との有効作用エネルギーΔEefの値が、下記式(2)で規定する条件を満たす化合物であることが好ましい。
 式(1)
   ΔEef=n×ΔE/s
 上記式(1)において、nは銀(Ag)と安定的に結合する化合物中の窒素原子(N)の和を表し、ΔEは窒素原子(N)と銀(Ag)との相互作用エネルギーを表し、sは化合物の表面積を表す。
 式(2)
   -0.50≦ΔEef≦-0.10[kcal/mol・Å
 銀と安定的に結合する化合物中の窒素原子の数[n]とは、有機化合物中に含有される窒素原子のうちから、銀と安定的に結合する窒素原子のみを、特定の窒素原子として選択してカウントした数である。選択対象となる窒素原子は、化合物中に含まれる全ての窒素原子であり、複素環を構成する窒素原子に限定されることはない。
 このような化合物中に含まれる全ての窒素原子の中からの、特定の窒素原子の選択は、例えば、分子軌道計算法によって算出される銀と化合物中の窒素原子との結合距離[r(Ag・N)]、又は化合物中の窒素原子を含む環に対して当該窒素原子と銀とのなす角度、すなわち二面角[D]を指標として次のように行われる。なお、分子軌道計算は、例えばGaussian 03(Gaussian,Inc.,Wallingford,CT,2003)を用いて行われる。
 先ず、結合距離[r(Ag・N)]を指標とした場合、各化合物の立体的な構造を考慮し、当該化合物において窒素原子と銀とが安定的に結合する距離を、「安定結合距離」として設定しておく。そして、当該化合物に含有される各窒素原子について、分子軌道計算法を用いて結合距離[r(Ag・N)]を算出する。そして算出された結合距離[r(Ag・N)]が、「安定結合距離」と近い値を示す窒素原子を、特定の窒素原子として選択する。このような窒素原子の選択は、複素環を構成する窒素原子が多く含まれる化合物、及び複素環を構成しない窒素原子が多く含まれる化合物に対して適用される。
 また、二面角[D]を指標とした場合、分子軌道計算法を用いて上述した二面角[D]を算出する。そして算出された二面角[D]がD<10度をなす窒素原子を、特定の窒素原子として選択する。このような窒素原子の選択は、複素環を構成する窒素原子が多く含まれる化合物に対して適用される。
 また、銀(Ag)と化合物中における窒素(N)との相互作用エネルギー[ΔE]は、分子軌道計算法によって算出することができ、上記のように選択された窒素と銀との間の相互作用エネルギーである。
 さらに表面積[s]は、Tencube/WM(株式会社テンキューブ製)を用いて、上記最適化された構造に対して算出されるものである。
 前記一般式(I)で表される部分構造を有する化合物の銀との有効作用エネルギーΔEefが上記範囲内であると、金属層としてのシート抵抗値(Ω/sq.)が低下し好ましい。有効作用エネルギーΔEefの好ましい範囲として、-0.15以下であることが好ましく、-0.20以下であることがより好ましい。
 代表的な本発明に係る有機化合物として、例示化合物No.3~7、No.14,No.15及びNo.27の有効作用エネルギーΔEefを、下記表IIに示す。
Figure JPOXMLDOC01-appb-T000029
 〔La金属〕
 本発明に係るLa金属(ランタノイド又はランタニドともいう。)とは、元素周期表第6周期、第3族に含まれる遷移金属を示す。具体的には、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)である。なお、プロメチウム(Pm)もランタノイドに含まれるが、放射性同位体しか存在しないため、安全性に課題があるため、本発明では不適である。La金属は、公知のように最外殻の電子が充填されているために、各元素の性質が類似しているが、ランタノイド収縮等興味深い性質を示すことが知られている。本願において、ランタノイドであれば特に限定されないが、蒸着適性の観点から、Sm、Eu及びYbが好ましく、Sm又はYbであることがさらに好ましい。
 〔導電性層〕
 本発明の透明電極を構成する導電性層(1b)は、銀を主成分として構成されている層であって、金属親和性層(1a)上に成膜された層である。本発明でいう銀を主成分として構成されているとは、前述のとおり、導電性層を構成する材料成分に占める銀の比率が60質量%以上であることをいい、好ましくは、70質量%、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは99質量%以上である。
 このような導電性層(1b)の成膜方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも蒸着法が好ましく適用される。
 また、導電性層(1b)は、前述の金属親和性層(1a)上に成膜されることにより、導電性層成膜後の高温アニール処理(例えば、150℃以上の加熱プロセス)等がなくても十分な導電性を有することを特徴とするが、必要に応じて、成膜後に高温アニール処理等を行ったものであってもよい。
 導電性層(1b)は銀(Ag)を含有する合金から構成されていてもよく、そのような合金としては、例えば、銀マグネシウム(Ag-Mg)、銀銅(Ag-Cu)、銀パラジウム(Ag-Pd)、銀パラジウム銅(Ag-Pd-Cu)、銀インジウム(Ag-In)等が挙げられる。
 以上のような導電性層(1b)は、銀を主成分として構成されている層が、必要に応じて複数の層に分けて積層された構成であってもよい。
 さらに、この導電性層(1b)は、層厚が5~20nmの範囲内にあることが好ましく、5~12nmの範囲内にあることがより好ましい。
 導電性層(1b)の層厚が20nm以下であれば、吸収成分又は反射成分が少なくなり、透明電極の透過率が向上する点で好ましい。また、層厚が5nm以上であれば、導電性が十分になる観点から好ましい。
 透明電極のシート抵抗値は、数百Ω/sq.以下であることが好ましく、100Ω/sq.以下であることがより好ましい。また、電極の大面積化のために50Ω/sq.以下であることがさらに好ましく、20Ω/sq.以下であることが特に好ましい。
 なお、以上のような金属親和性層(1a)とこの上部に成膜された導電性層(1b)とからなる積層構造の透明電極(1)では、導電性層(1b)の上部が更に保護膜で覆われていてもよいし、別の導電性層が積層されていてもよい。この場合、透明電極(1)の光透過性を損なうことのないように、保護膜及び別の導電性層が、所望の光透過性を有することが好ましい。また、金属親和性層(1a)の下部、すなわち金属親和性層(1a)と基材(11)との間にも、必要に応じ、構成層を設けた構成としてもよい。
 〔透明電極の効果〕
 以上のような構成の透明電極(1)は、非共有電子対を有するヘテロ原子を分子内に含む有機化合物及びランタノイドを用いて構成されている金属親和性層(1a)上に、銀を主成分として構成されている導電性層(1b)を設けた構成である。これにより、金属親和性層(1a)の上部に導電性層(1b)を成膜する際、導電性層(1b)を構成する銀原子が金属親和性層(1a)を構成する非共有電子対を有するヘテロ原子を分子内に含む化合物と相互作用し、銀原子の金属親和性層(1a)表面においての拡散距離が減少し、銀の凝集が抑えられ、均一組成の層を形成することができる。
 前述のように、一般的に銀を主成分として構成されている導電性層の成膜においては、島状成長型(VW型)で薄膜成長するため、銀粒子が島状に孤立しやすく、層厚が薄いときは導電性を得ることが困難であり、シート抵抗値が高くなる。
 したがって、導電性を確保するには層厚を厚くする必要があるが、層厚を厚くすると光透過率が下がるため、透明電極としては不適であった。
 しかしながら、本発明構成の透明電極(1)によれば、上述したように金属親和性層(1a)上において銀の凝集が抑えられるため、銀を主成分として構成されている導電性層(1b)の成膜においては、層状成長型(FM型)で薄膜成長するようになる。
 また、ここで、本発明の透明電極(1)でいう透明とは、前述のとおり、波長500nmにおける光透過率が50%以上であることをいうが、上述した各材料により構成される金属親和性層(1a)は、銀を主成分とした導電性層(1b)と比較して、光透過性の良好な層を形成する。一方、透明電極(1)の導電性は、主に導電性層(1b)によって確保される。したがって上述のように、銀を主成分として構成されている導電性層(1b)が、より薄い層厚で導電性が確保されたものとなることにより、透明電極(1)の導電性の向上と光透過性の向上との両立を図ることが可能になるのである。
 《透明電極の適用分野》
 本発明の透明電極(1)は、各種電子デバイスに用いることを特徴とする。
 電子デバイスの例としては、有機EL素子、LED(light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて、光透過性を必要とされる電極部材として、本発明の透明電極(1)を用いることができる。その中でも、本発明の透明電極は、有機EL素子に適用することが特に好ましい。
 以下、適用分野の一例として、本発明の透明電極(1)を用いた有機EL素子の実施の形態を説明する。
 [有機EL素子への適用例1]
 〔有機EL素子の構成〕
 図2は、本発明の電子デバイスの構成例として、本発明の透明電極(1)の有機EL素子への適用例1を示す概略断面図である。
 以下、図2に基づいて有機EL素子の構成を説明する。
 図2に示すとおり、有機EL素子(100)は、透明基板(基材、13)上に設けられており、透明基板(13)側から順に、透明電極(1)、有機材料等を用いて構成された発光機能層ユニット(3)、及び対向電極(5a)をこの順に積層して構成されている。
 有機EL素子(100)においては、透明電極(1)として、先に説明した本発明の透明電極(1)を用いている。このため、有機EL素子(100)では、発光点(h)より発生させた光(以下、発光光(L)と記す)を、少なくとも透明基板(13)面側から取り出すように構成されている。
 また、有機EL素子(100)の層構造は、以下に説明する例に限定されることはなく、一般的な層構造であってもよい。ここでは、透明電極(1)がアノード(すなわち陽極)として機能し、対向電極(5a)がカソード(すなわち陰極)として機能する例を示してある。この場合、例えば、発光機能層ユニット(3)は、アノードである透明電極(1)側から順に正孔注入層(3a)/正孔輸送層(3b)/発光層(3c)/電子輸送層(3d)/電子注入層(3e)を積層した構成が例示されるが、このうち少なくとも有機材料を用いて構成された発光層(3c)を有することが必須である。正孔注入層(3a)及び正孔輸送層(3b)は、正孔輸送注入層として設けられていてもよい。また、電子輸送層(3d)及び電子注入層(3e)は、電子輸送注入層として設けられていてもよい。また、これらの発光機能層ユニット(3)のうち、例えば、電子注入層(3e)は無機材料で構成されていてもよい。
 また、発光機能層ユニット(3)は、これらの層の他に正孔阻止層や電子阻止層等を必要に応じて必要箇所に積層した構成としてもよい。さらに、発光層(3c)は、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の補助層を介して積層させた積層構造としてもよい。補助層は、正孔阻止層、電子阻止層として機能してもよい。さらにカソードである対向電極(5a)も、必要に応じて積層構造であってもよい。このような構成においては、透明電極(1)と対向電極(5a)とで発光機能層ユニット(3)が挟持された部分のみが、有機EL素子(100)における発光領域となる。
 また、以上のような層構成においては、透明電極(1)の低抵抗化を図ることを目的とし、透明電極(1)の導電性層(1b)に接して補助電極(15)が設けられていてもよい。
 以上のような構成の有機EL素子(100)は、有機材料等を用いて構成された発光機能層ユニット(3)の劣化を防止することを目的として、図2で示すように、透明基板(13)上において、後述する封止材(17)で封止されている。この封止材(17)は、接着剤(19)を介して透明基板(13)側に固定されている。ただし、透明電極(1)及び対向電極(5a)の端子部分は、透明基板(13)上において発光機能層ユニット(3)によって互いに絶縁性を保った状態で封止材(17)から露出させた状態で設けられていることとする。
 次いで、上述した有機EL素子(100)を構成する主要要素の詳細について、透明基板(13)、透明電極(1)、対向電極(5a)、発光機能層ユニット(3)の発光層(3c)、発光機能層ユニット(3)の他の層、補助電極(15)、及び封止材(17)の順に説明する。
 (透明基板)
 透明基板(13)は、図1で説明した本発明の透明電極(1)が設けられる基材(11)であり、透明電極で説明した基材(11)のうち、光透過性を有する透明な基材が用いられる。
 (透明電極:アノード)
 透明電極(1)は、先に説明した本発明の透明電極(1)であり、透明基板(13)側から順に金属親和性層(1a)及び導電性層(1b)をこの順で成膜した構成である。ここでは、特に、透明電極(1)がアノード(陽極)として機能するものであり、導電性層(1b)が実質的なアノードとなる。
 (対向電極:カソード)
 対向電極(5a)は、発光機能層ユニット(3)に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
 対向電極(5a)は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜形成させることにより作製することができる。また、対向電極(5a)としてのシート抵抗値は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内で選ばれる。
 なお、この有機EL素子(100)が、対向電極(5a)側からも発光光(L)を取り出す方式である場合には、上述した導電性材料の中から、光透過性の良好な導電性材料を選択して対向電極(5a)を構成すればよい。
 (発光層)
 本発明に用いられる発光層(3c)には発光材料が含有されているが、中でも発光材料としてリン光発光性化合物(リン光発光材料、リン光発光化合物、リン光性化合物)が含有されている構成であることが好ましい。
 この発光層(3c)は、電極又は電子輸送層(3d)から注入された電子と、正孔輸送層(3b)から注入された正孔とが再結合して発光する層であり、発光点(h)は発光層(3c)の層内であっても発光層(3c)と隣接する層との界面領域であってもよい。
 発光層(3c)としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層(3c)間には非発光性の補助層(中間層)を有していることが好ましい。
 発光層(3c)の層厚の総和は、好ましくは、1~100nmの範囲内であり、さらに好ましくは、より低い駆動電圧を得ることができることから観点から1~30nmの範囲内である。なお、発光層(3c)の層厚の総和とは、発光層(3c)間に非発光性の補助層が存在する場合には、当該補助層も含む総層厚である。
 複数層を積層した構成の発光層(3c)の場合、個々の発光層の層厚としては、1~50nmの範囲内に調整することが好ましく、1~20nmの範囲内に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の層厚のそれぞれの関係については、特に制限はない。
 以上のように構成されている発光層(3c)は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法を適用して成膜形成することができる。
 また、発光層(3c)は、複数の発光材料が混合されて構成されていてもよく、またリン光発光性化合物と蛍光性化合物(蛍光発光材料、蛍光ドーパント)とが混合されて構成されていてもよい。
 発光層(3c)の構成として、ホスト化合物(発光ホスト)、発光材料(発光ドーパント化合物)を含有し、発光材料より発光させる。
 〈ホスト化合物〉
 発光層(3c)に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層3cに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種併用してもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能となり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 適用可能なホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)の化合物が好ましい。
 ここでいうガラス転移温度とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS K 7121に準拠した方法により求められる値である。
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることができる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等が挙げられる。
 〈発光材料〉
 (1)リン光発光性化合物
 本発明で用いることのできる発光材料の代表例として、リン光発光性化合物が挙げられる。
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合には、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光発光性化合物の発光の原理としては、以下の2種が挙げられる。
 一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることでリン光発光性化合物からの発光を得るというエネルギー移動型である。
 もう一つは、リン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が起こりリン光発光性化合物からの発光が得られるというキャリアトラップ型である。
 いずれの場合においても、リン光発光性化合物の励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のリン光発光性化合物の中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)、又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本発明においては、一つの発光層(3c)に2種以上のリン光発光性化合物が含有されていてもよく、発光層(3c)におけるリン光発光性化合物の濃度比が発光層(3c)の厚さ方向で変化する傾斜構造としてもよい。
 リン光発光性化合物は、好ましくは発光層(3c)の総量に対し0.1体積%以上、30体積%未満である。
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg. Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2011-181303号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等が挙げられる。
 中でも、好ましいリン光ドーパントとしては、Irを中心金属として有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合のうち少なくとも一つの配位様式を含む錯体が好ましい。
 上記のリン光発光性化合物(リン光発光性金属錯体等ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載の参考文献等に記載されている方法を適宜選択して適用することにより合成できる。
 (2)蛍光性化合物
 蛍光性化合物としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、希土類錯体系蛍光体等が挙げられる。
 〔注入層:正孔注入層、電子注入層〕
 注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層(3c)の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層(3a)と電子注入層(3e)とがある。
 注入層は、必要に応じて設けることができ、正孔注入層(3a)であれば、アノードと、発光層(3c)又は正孔輸送層(3b)との間、電子注入層(3e)であればカソードと、発光層(3c)又は電子輸送層(3d)との間に存在させてもよい。
 正孔注入層(3a)としては、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される金属酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
 電子注入層(3e)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される金属酸化物層等が挙げられる。本発明においては、電子注入層(3e)はごく薄い層であることが望ましく、構成材料にもよるがその層厚は1nm~10μmの範囲内が好ましい。
 (正孔輸送層)
 正孔輸送層(3b)は、正孔を輸送する機能を有する正孔輸送材料から構成され、広い意味で正孔注入層(3a)や電子阻止層も正孔輸送層(3b)に含まれる。正孔輸送層(3b)は、単層又は複数層設けることができる。
 正孔輸送層(3b)を構成する正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかの機能を有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー(例えば、チオフェンオリゴマー)等が挙げられる。
 正孔輸送材料としては、上記の化合物を使用することができるが、更には、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に、芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、例えば、
 N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、
 N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、
 2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、
 1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、
 N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、
 1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、
 ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、
 ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、
 N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、
 N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、
 4,4′-ビス(ジフェニルアミノ)クオードリフェニル、
 N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、
 4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、
 3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、
 N-フェニルカルバゾール等、
 さらには、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有する化合物、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(略称:NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つのスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(略称:MTDATA)等が挙げられる。
 さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
 正孔輸送層(3b)は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層(3b)の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。この正孔輸送層(3b)は、上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、正孔輸送層(3b)の構成材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このように、正孔輸送層(3b)のp性を高くすると、より低消費電力の有機EL素子を作製することができるため好ましい。
 (電子輸送層)
 電子輸送層(3d)は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層(3e)や正孔阻止層も電子輸送層(3d)に含まれる。電子輸送層(3d)は単層構造又は複数層の積層構造として設けることができる。
 単層構造の電子輸送層(3d)、及び積層構造の電子輸送層(3d)におい、発光層(3c)に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層(3c)に伝達する機能を有していればよい。このような機能を備えた材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層(3d)の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層(3d)の構成材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層(3d)の構成材料として好ましく用いることができる。また、発光層(3c)の構成材料としても用いられるジスチリルピラジン誘導体も、電子輸送層(3d)の構成材料として用いることができるし、正孔注入層(3a)、正孔輸送層(3b)と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送層(3d)の構成材料として用いることができる。
 電子輸送層(3d)は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層(3d)の層厚については、特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。電子輸送層(3d)は、上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、電子輸送層(3d)の構成材料に不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層(3d)には、カリウムやカリウム化合物等を含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層(3d)のn性を高くすることにより、より低消費電力の有機EL素子を作製することができる。
 また、電子輸送層(3d)の構成材料(電子輸送性化合物)として、本発明に係る金属親和性層(1a)を構成する非共有電子対を有するヘテロ原子を分子内に含む化合物を用いてもよい。これは、電子注入層(3e)を兼ねた電子輸送層(3d)であっても同様であり、本発明に係る金属親和性層(1a)を構成する非共有電子対を有するヘテロ原子を分子内に含む化合物を用いてもよい。
 (阻止層:正孔阻止層、電子阻止層)
 阻止層は、上記の発光機能層ユニット(3)の基本構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層や電子阻止層が挙げられる。
 正孔阻止層とは、広い意味では、電子輸送層(3d)の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料から構成され、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、上記の電子輸送層(3d)の構成を、必要に応じて正孔阻止層として用いることができる。正孔阻止層は、発光層(3c)に隣接して設けられている構成が好ましい。
 一方、電子阻止層とは、広い意味では、正孔輸送層(3b)の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から構成され、正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。また、上記の正孔輸送層(3b)の構成を必要に応じて電子阻止層として用いることができる。正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、さらに好ましくは5~30nmの範囲内である。
 (補助電極)
 補助電極(15)は、透明電極(1)の抵抗を下げる目的で設けられるもので、透明電極(1)の導電性層(1b)に接して設けられる。補助電極(15)を形成する材料としては、金、白金、銀、銅、アルミニウム等の電気抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面(13a)からの発光光(L)の取り出しの影響のない大きさの範囲でパターン形成される。このような補助電極(15)の作製方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法等が挙げられる。補助電極(15)の線幅は、光を取り出す領域における開口率の観点から、50μm以下であることが好ましく、補助電極(15)の厚さは、導電性の観点から1μm以上であることが好ましい。
 (封止材)
 封止材(17)は、図2で示すように、有機EL素子(100)全体を覆うものであって、板状(フィルム状)の封止部材であって接着剤(19)によって透明基板(13)側に固定されるものであってもよく、封止膜であってもよい。このような封止材(17)は、有機EL素子(100)における透明電極(1)及び対向電極(5a)の端子部分を露出させる状態で、少なくとも発光機能層ユニット(3)を覆う状態で設けられている。また、封止材(17)に電極を設け、有機EL素子(100)の透明電極(1)及び対向電極(5a)の端子部分と、この電極とを導通させるように構成されていてもよい。
 板状(フィルム状)の封止材(17)としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板材料をさらに薄層のフィルム状にして用いてもよい。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。
 中でも、有機EL素子を薄膜化できるということから、封止材としてポリマー基板や金属基板を薄型のフィルム状にしたものを好ましく使用することができる。
 さらには、フィルム状としたポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。
 また、以上のような基板材料は、凹板状に加工して封止材(17)として用いてもよい。この場合、上述した基板材料に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
 また、このような板状の封止材(17)を透明基板(13)側に固定するための接着剤(19)は、封止材(17)と透明基板(13)との間に挟持された有機EL素子(100)を封止するためのシール剤として用いられる。接着剤(19)としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
 また、エポキシ系等の熱及び化学硬化型(二液混合)、ホットメルト型のポリアミド、ポリエステル、ポリオレフィン、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることもできる。
 なお、有機EL素子(100)を構成する有機材料は、熱処理により劣化する場合がある。このため、適用する接着剤(19)としては、室温から80℃までの温度範囲内で接着硬化できるものが好ましい。また、接着剤(19)中に乾燥剤を分散させておいてもよい。
 封止材(17)と透明基板(13)との接着部分への接着剤(19)の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、板状の封止材(17)と透明基板(13)と接着剤(19)との間に間隙(空間)が形成される場合、この間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することもできる。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては、無水塩が好適に用いられる。
 一方、封止材(17)として封止膜を用いる場合、有機EL素子(100)における発光機能層ユニット(3)を完全に覆い、かつ有機EL素子(100)における透明電極(1)及び対向電極(5a)の端子部分を露出させる状態で、透明基板(13)上に封止膜が設けられる。
 このような封止膜は、無機材料や有機材料を用いて構成される。特に、水分や酸素等、有機EL素子(100)における発光機能層ユニット(3)の劣化をもたらす物質の浸入を抑制する(バリアーする)機能を有する材料で構成されることが好ましい。このような材料としては、例えば、酸化珪素、二酸化珪素、窒化珪素等の無機材料が用いられる。さらに封止膜の脆弱性を改良するために、これら無機材料からなる膜と共に、有機材料からなる膜を用いて両者を複数層交互積層したハイブリッド構造としてもよい。
 これらの封止膜の作製方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 (保護膜、保護板)
 透明基板(13)とともに、有機EL素子(100)及び封止材(17)を挟むようにして保護膜又は保護板を設けてもよい。この保護膜又は保護板は、有機EL素子(100)を機械的に保護するためのものであり、特に封止材(17)が封止膜である場合には、有機EL素子(100)に対する機械的な保護が十分ではないため、このような保護膜又は保護板を設けることが好ましい形態である。
 以上のような保護膜又は保護板としては、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 〔有機EL素子の製造方法〕
 有機EL素子の製造方法の一例として、図2に示す構成の有機EL素子(100)の製造方法について説明する。
 まず、透明基板(13)上に、本発明に係る非共有電子対を有するヘテロ原子を分子内に含む有機化合物及びランタノイドを含有する金属親和性層(1a)を、1μm以下、好ましくは10~100nmの層厚になるように蒸着法等の公知の薄膜形成方法により形成する。次に、銀(又は銀を含有する合金)を主成分とする導電性層(1b)を、5~20nm、好ましくは5~12nmの層厚範囲になるように蒸着法等の公知の薄膜形成方法により金属親和性層(1a)上に形成し、アノードとなる透明電極(1)を作製する。
 次に、透明電極(1)上に、正孔注入層(3a)、正孔輸送層(3b)、発光層(3c)、電子輸送層(3d)、電子注入層(3e)をこの順で成膜し、発光機能層ユニット(3)を形成する。これらの各層の成膜には、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等が適用できるが、均質な膜が得られやすく、かつピンホールが生じにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。さらに、層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。
 以上のようにして発光機能層ユニット(3)を形成した後、この上部にカソードとなる対向電極(5a)を、蒸着法やスパッタ法等の公知の薄膜形成方法によって形成する。この際、対向電極(5a)は、発光機能層ユニット(3)を介して透明電極(1)と絶縁状態を保ちつつ、発光機能層ユニット(3)の上方から透明基板(13)の周縁に端子部分を引き出した形状にパターン形成する。これにより、有機EL素子(100)が得られる。その後には、有機EL素子(100)における透明電極(1)及び対向電極(5a)の端子部分を露出させた状態で、少なくとも発光機能層ユニット(3)を覆う封止材(17)を設ける。
 以上により、透明基板(13)上に所望の構成を有する有機EL素子(100)が得られる。このような有機EL素子(100)の作製においては、一回の真空引きで一貫して発光機能層ユニット(3)から対向電極(5a)まで作製するのが好ましいが、途中で真空雰囲気から透明基板(13)を取り出して異なる成膜法を施しても構わない。その際、作業は乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
 このようにして得られた有機EL素子(100)に直流電圧を印加する場合には、アノードである透明電極(1)を+の極性とし、カソードである対向電極(5a)を-の極性として、2~40Vの電圧範囲内で印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 〔有機EL素子の効果〕
 以上説明した有機EL素子(100)は、導電性と光透過性とを兼ね備えた本発明の透明電極(1)をアノードとして用い、この上部に発光機能層ユニット(3)とカソードとなる対向電極(5a)とを設けた構成である。このため、透明電極(1)と対向電極(5a)との間に十分な電圧を印加して、有機EL素子(100)として高輝度発光を実現しつつ、透明電極(1)側からの発光光(L)の取り出し効率が向上することにより、高輝度化を図ることが可能となる。さらに、所定輝度を得るための駆動電圧の低電圧化が可能となり、発光寿命の向上を図ることも可能になる。
 [有機EL素子への適用例2]
 〔有機EL素子の構成〕
 図3は、本発明の電子デバイスの一例として、本発明の透明電極(1)を用いた有機EL素子の適用例2を示す概略断面図である。
 図3に示す適用例2の有機EL素子(200)の、先に説明した図2に示した適用例1の有機EL素子(100)との相違点は、透明電極(1)をカソード(陰極)として用いるところにある。以下、図2で示した適用例1と同様の構成要素についての重複する詳細な説明は省略し、適用例2の有機EL素子(200)の特徴的な構成について説明する。
 図3に示すとおり、有機EL素子(200)は、透明基板(13)上に設けられており、図2で示した適用例1と同様に、透明基板(13)上の透明電極(1)として先に説明した本発明の透明電極(1)を用いている。このため有機EL素子(200)は、少なくとも透明基板(13)側から発光光(L)を取り出せるように構成されている。ただし、この透明電極(1)は、カソード(陰極)として用いられる。このため、対向電極(5b)は、アノード(陽極)として用いられることになる。
 このように構成される有機EL素子(200)の層構造は、以下に説明する例に限定されることはなく、一般的な層構造であってもよいことは、適用例1と同様である。
 図3に示す適用例2の場合の一例としては、カソードとして機能する透明電極(1)の上部に、電子注入層(3e)/電子輸送層(3d)/発光層(3c)/正孔輸送層(3b)/正孔注入層(3a)をこの順に積層した構成が例示される。ただし、このうち少なくとも有機材料で構成された発光層(3c)を有することが必須である。
 なお、発光機能層ユニット(3)は、これらの層の他にも、適用例1で説明したのと同様に、必要に応じたさまざまな構成層を採用することができる。このような構成において、透明電極(1)と対向電極(5b)とで発光機能層ユニット(3)が挟持された部分のみが、有機EL素子(200)における発光領域となることも、適用例1と同様である。
 また、以上のような層構成においては、透明電極(1)の低抵抗化を図ることを目的として、透明電極(1)の導電性層(1b)に接して補助電極(15)が設けられていてもよいことも、図2に示した適用例1と同様である。
 ここで、アノードとして用いられる対向電極(5b)は、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
 以上のように構成されている対向電極(5b)は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、対向電極(5b)としてのシート抵抗値は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内で選ばれる。
 なお、この有機EL素子(200)が、対向電極(5b)側からも発光光(L)を取り出せるように構成されている場合、対向電極(5b)を構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料が選択されて用いられる。
 以上のような構成の有機EL素子(200)は、発光機能層ユニット(3)の劣化を防止することを目的として、適用例1と同様に封止材(17)で封止されている。
 以上説明した有機EL素子(200)を構成する主要各層のうち、アノードとして用いられる対向電極(5b)以外の構成要素の詳細な構成、及び有機EL素子(200)の製造方法は、適用例1と同様であり、それらの詳細な説明は省略する。
 〔有機EL素子の効果〕
 以上説明した有機EL素子(200)は、導電性と光透過性とを兼ね備えた本発明の透明電極(1)をカソード(陰極)として用い、この上部に発光機能層ユニット(3)とアノードとなる対向電極(5b)とを設けた構成である。このため、適用例1と同様に、透明電極(1)と対向電極(5b)との間に十分な電圧を印加して有機EL素子(200)での高輝度発光を実現しつつ、透明電極(1)側からの発光光(L)の取り出し効率が向上することにより、高輝度化を図ることが可能となる。さらに、所定輝度を得るための駆動電圧の低電圧化が可能となり、発光寿命の向上を図ることも可能になる。
 [有機EL素子の適用例3]
 〔有機EL素子の構成〕
 図4は、本発明の電子デバイスの一例として、本発明の透明電極(1)を用いた有機EL素子の適用例3を示す概略断面図である。
 図4に示す適用例3の有機EL素子(300)が、図2に示した適用例1の有機EL素子(100)と異なるところは、基板(131)側に対向電極(5c)を設け、この上部に発光機能層ユニット(3)と透明電極(1)とをこの順に積層したところにある。以下、適用例1と同様の構成要素についての重複する詳細な説明は省略し、適用例3の有機EL素子(300)の特徴的な構成についてのみ説明する。
 図4に示す有機EL素子(300)は、基板(131)上に設けられており、基板(131)側から、アノードとなる対向電極(5c)、発光機能層ユニット(3)、及びカソードとなる透明電極(1)がこの順に積層されている。このうち、透明電極(1)として、先に説明した本発明の透明電極(1)を用いている。このため、有機EL素子(300)は、少なくとも基板(131)とは逆の透明電極(1)側から発光光(L)を取り出せるように構成されている。
 このように構成される有機EL素子(300)の層構造としては、以下に説明する例に限定されることはなく、一般的な層構造であってもよいことは、適用例1と同様である。
 図4で示す適用例3の場合は、アノードとして機能する対向電極(5c)の上部に、正孔注入層(3a)/正孔輸送層(3b)/発光層(3c)/電子輸送層(3d)/電子注入層(3e)をこの順に積層した構成が例示される。ただし、このうち少なくとも有機材料を用いて構成された発光層(3c)を有することが必須である。
 特に、適用例3の有機EL素子(300)に特徴的な構成としては、電子注入性を有する電子注入層(3e)が、透明電極(1)における金属親和性層として機能するところにある。すなわち、適用例3においては、カソードとして用いられる透明電極(1)が、電子注入性を有する電子注入層(3e)を兼ねる金属親和性層と、その上部に設けられた導電性層(1b)とで構成されているものである。
 このような電子注入層(3e)は、上記説明した本発明の透明電極(1)の金属親和性層(1a)を構成する材料を用いて構成されている。
 なお、発光機能層ユニット(3)は、これらの層の他にも、適用例1で説明したと同様に、必要に応じたさまざまな構成が採用されるが、透明電極(1)の金属親和性層(1a)を兼ねる電子注入層(3e)と、透明電極(1)の導電性層(1b)との間には、電子注入層や正孔阻止層が設けられることはない。以上のような構成において、透明電極(1)と対向電極(5c)とで発光機能層ユニット(3)が挟持された部分のみが、有機EL素子(300)における発光領域となることは、適用例1と同様である。
 また、以上のような層構成においては、透明電極(1)の低抵抗化を図ることを目的とし、透明電極(1)の導電性層(1b)に接して補助電極(15)が設けられていてもよいことも、適用例1と同様である。
 さらに、アノードとして用いられる対向電極(5c)は、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物等から構成されている。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
 以上のように構成されている対向電極(5c)は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、対向電極(5c)としてのシート抵抗値は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。
 なお、この有機EL素子(300)が、対向電極(5c)側からも発光光(L)を取り出せるように構成されている場合、対向電極(5c)を構成する材料としては、上述した導電性材料のうち光透過性の良好な導電性材料が選択されて用いられる。また、この場合、基板(131)としては、適用例1で説明した透明基板(13)と同様のものが用いられ、基板(131)の外側に向かう面が光取り出し面(131a)となる。
 〔有機EL素子の効果〕
 以上説明した有機EL素子(300)は、発光機能層ユニット(3)の最上部を構成する電子注入性を有する電子輸送層(3d)を金属親和性層(1a)とし、この上部に導電性層(1b)を設けることにより、金属親和性層(1a)とこの上部の導電性層(1b)とからなる透明電極(1)をカソードとして設けた構成である。このため、適用例1及び適用例2と同様に、透明電極(1)と対向電極(5c)との間に十分な電圧を印加して有機EL素子(300)での高輝度発光を実現しつつ、透明電極(1)側からの発光光(L)の取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低電圧化が可能となり、発光寿命の向上を図ることができる。また、対向電極(5c)が光透過性を有する場合には、破線で示すように対向電極(5c)からも発光光(L)を取り出すことができる。
 なお、図4に示す適用例3においては、透明電極(1)の金属親和性層(1a)が電子注入性を有する電子輸送層(3d)を兼ねているものとして説明したが、本例はこれに限られるものではなく、金属親和性層(1a)が電子注入性を有していない電子輸送層(3d)を兼ねているものであってもよいし、金属親和性層(1a)が電子輸送層ではなく電子注入層を兼ねているものであってもよい。また、金属親和性層(1a)が有機EL素子の発光機能に影響を及ぼさない程度の極薄膜として形成されているものとしてもよく、この場合には、金属親和性層(1a)は電子輸送性及び電子注入性を有していない。
 さらに、透明電極(1)の金属親和性層(1a)が有機EL素子の発光機能に影響を及ぼさない程度の極薄膜として形成されている場合には、基板(131)側の対向電極(5c)をカソードとし、発光機能層ユニット(3)上の透明電極(1)をアノードとしてもよい。この場合、発光機能層ユニット(3)は、基板(131)上の対向電極(カソード、5c)側から順に、例えば、電子注入層(3e)/電子輸送層(3d)/発光層(3c)/正孔輸送層(3b)/正孔注入層(3a)が積層される。そしてこの上部に極薄い金属親和性層(1a)と導電性層(1b)との積層構造からなる透明電極(1)が、アノードとして設けられる。
 [有機EL素子の適用例4]
 〔有機EL素子の構成〕
 図5は、本発明の電子デバイスの一例として、本発明の透明電極(1)を用いた有機EL素子の適用例4を示す概略断面図である。
 図5に示す適用例4の有機EL素子(400)が、図4に示した適用例3の有機EL素子(300)と異なるところは、アノードとして機能する対向電極(5c)の上部に、正孔注入層(3a)/正孔輸送層(3b)/発光層(3c)/電子輸送層(3d)をこの順に積層した構成である。ただし、このうち少なくとも有機材料を用いて構成された発光層3cを有することが必須である。ここで、電子輸送層(3d)は、電子注入層(3e)を兼ねたもので、電子注入性を有する電子輸送層(3d)として設けられている。
 特に、適用例4の有機EL素子(400)に特徴的な構成としては、電子注入性を有する電子輸送層(3d)が、透明電極(1)における金属親和性層(1a)として機能するところにある。すなわち、適用例4においては、カソードとして用いられる透明電極(1)が、電子注入性を有する電子輸送層(3d)を兼ねる金属親和性層(1a)と、その上部に設けられた導電性層(1b)とで構成されているものである。
けられることはない。
 《有機EL素子の用途》
 上述した各構成の有機EL素子は、それぞれが面発光体であるため、各種の発光光源として用いることができる。例えば、家庭用照明や車内照明等の照明装置、時計や液晶表示装置のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。特に、カラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化にともない、有機EL素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。
 以下では、用途の一例として照明装置について説明し、次にタイリングによって発光面を大面積化した照明装置について説明する。
 〔照明装置〕
 本発明に係る照明装置には、本発明の有機EL素子を具備することができる。
 本発明に係る照明装置に用いる有機EL素子は、上述した構成の各有機EL素子に共振器構造を持たせた設計としてもよい。共振器構造を有するように構成された有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 なお、本発明の有機EL素子に用いられる材料は、実質的に白色の発光を生じる有機EL素子(白色有機EL素子)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて、混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機EL素子においては、発光ドーパントを複数組み合わせて混合したものが好ましい。
 このような白色有機EL素子は、各色発光の有機EL素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機EL素子自体が白色を発光する。このため、有機EL素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で成膜することができ、生産性も向上する。
 また、このような白色有機EL素子の発光層に用いる発光材料としては、特に制限はなく、例えば、液晶表示素子用のバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、上記した金属錯体や公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
 以上に説明した白色有機EL素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例1
 《透明電極の作製》
 下記の方法に従って、導電性領域の面積が5cm×5cmである透明電極1~30を作製した。透明電極1~4は、導電性層(1b)のみからなる単層構造の透明電極として作製し、透明電極5~30は、金属親和性層(1a)と導電性層(1b)との積層構造の透明電極として作製した。
 〔透明電極1の作製〕
 透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、この基材ホルダーを真空蒸着装置の真空槽に取り付けた。一方、タングステン製の抵抗加熱ボートに銀(Ag)を充填し、当該真空槽内に取り付けた。次に、真空槽内を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基材上に層厚が5nmの銀からなる導電性層(1b)を成膜し、単層構造の透明電極1を作製した。
 〔透明電極2~4の作製〕
 上記透明電極1の作製において、蒸着時間を適宜変更し、導電性層(1b)の層厚をそれぞれ8.5nm、10nm、15nmに変更した以外は同様にして、透明電極2~4を作製した。
 〔透明電極5の作製〕
 透明な無アルカリガラス製の基材に、下記に示すAlqを用い、スパッタ法により層厚が30nmの金属親和性層(1a)を成膜し、この上部に、透明電極2と同様の方法にて、層厚が8.5nmの銀からなる導電性層(1b)を蒸着成膜して、透明電極5を作製した。
Figure JPOXMLDOC01-appb-C000030
 〔透明電極6の作製〕
 透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定し、下記に示すET-1をタンタル製抵抗加熱ボートに充填し、この基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀を充填し、第2真空槽内に取り付けた。
Figure JPOXMLDOC01-appb-C000031
 はじめに、第1真空槽を4×10-4Paまで減圧した後、ET-1の入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基材上に層厚が30nmのET-1からなる金属親和性層(1a)を形成した。
 次いで、金属親和性層(1a)まで成膜した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、層厚が8.5nmの銀からなる導電性層(1b)を形成し、ET-1で構成される金属親和性層(1a)と、銀で構成される導電性層(1b)との積層構造からなる透明電極6を作製した。
 〔透明電極7~9の作製〕
 上記透明電極6の作製において、金属親和性層(1a)の構成材料をそれぞれ下記に示すET-2~ET-4に変更した以外は同様にして、透明電極7~9を作製した。
Figure JPOXMLDOC01-appb-C000032
 〔透明電極10の作製〕
 透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、非共有電子対を有するヘテロ原子を分子内に含む有機化合物として、例示化合物No.14をタンタル製抵抗加熱ボートに充填し、この基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀を充填し、第2真空槽内に取り付けた。
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、例示化合物No.14の入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基材上に、層厚が30nmの例示化合物No.14からなる金属親和性層(1a)を形成した。
 次いで、金属親和性層(1a)まで成膜した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、層厚が5nmの銀からなる導電性層(1b)を形成し、例示化合物No.14のみから構成される金属親和性層(1a)と、銀で構成される導電性層(1b)との積層構造からなる透明電極10を作製した。
 〔透明電極11の作製〕
 透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定し、LiQ(モノ(8-キノリノラト)リチウム錯体)と、ランタノイドとしてYbをそれぞれタンタル製抵抗加熱ボートに充填し、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀を充填し、第2真空槽内に取り付けた。
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、LiQとYbとを1:1の蒸着速度となるように調整し、基材上に層厚が30nmのLiQ及びYbから構成される金属親和性層(1a)を設けた。
 次に、金属親和性層(1a)まで成膜した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、層厚が8.5nmの銀からなる導電性層(1b)を形成し、LiQとYbから構成される金属親和性層(1a)と、銀で構成される導電性層(1b)との積層構造からなる透明電極11を作製した。
 〔透明電極12~15の作製〕
 上記透明電極11の作製において、金属親和性層(1a)の構成材料を、LiQとYbに代えて、表IIIに示す材料を用いた以外は同様にして、透明電極12~15を作製した。
 〔透明電極16の作製〕
 前記透明電極2の作製において、導電性層(1b)の構成材料をAgから、Ag:Mg=9:1(質量比)の合金に変更した以外は同様にして、透明電極16を作製した。
 〔透明電極17の作製〕
 前記透明電極3の作製において、導電性層(1b)の構成材料をAgから、Ag:Mg=9:1(質量比)の合金に変更した以外は同様にして、透明電極17を作製した。
 〔透明電極18の作製〕
 前記透明電極12の作製において、導電性層(1b)の構成材料をAgから、Ag:Mg=9:1(質量比)の合金に変更した以外は同様にして、透明電極18を作製した。
 〔透明電極19の作製〕
 前記透明電極10の作製において、導電性層(1b)の構成材料をAgから、Ag:Mg=9:1(質量比)の合金に変更した以外は同様にして、透明電極19を作製した。
 〔透明電極20の作製〕
 前記透明電極11の作製において、導電性層(1b)の構成材料をAgから、Ag:Mg=9:1(質量比)の合金に変更した以外は同様にして、透明電極20を作製した。
 〔透明電極21~23の作製〕
 前記透明電極13~15の作製において、導電性層(1b)の構成材料をAgから、Ag:Mg=9:1(質量比)の合金に変更した以外は同様にして、透明電極21~23を作製した。
 〔透明電極24~27の作製〕
 上記透明電極14の作製において、導電性層(1b)上に、さらに表IIIに示す構成材料を用い、層厚60nmのキャッピング層を積層した以外は同様にして、透明電極24~27を作製した。
Figure JPOXMLDOC01-appb-C000033
 〔透明電極28~30の作製〕
 上記透明電極23の作製において、導電性層(1b)上に、さらに表IIIに示す構成材料を用い、層厚60nmのキャッピング層を積層した以外は同様にして、透明電極28~30を作製した。
 《透明電極の評価》
 上記作製した透明電極1~30について、下記の方法に従い、光透過率、シート抵抗値及び耐熱性(シート抵抗値の変化量)の測定を行った。
 〔光透過率の測定〕
 作製した各透明電極について、分光光度計(日立製作所製U-3300)を用い、各透明電極の基材(透明無アルカリガラス)をリファレンスとして、波長500nmにおける光透過率(%)を測定した。
 〔シート抵抗値の測定〕
 上記作製した各透明電極について、抵抗率計(三菱化学アナリテック社製 MCP-T610)を用い、4端子4探針法定電流印加方式でシート抵抗値(Ω/sq.)を測定した。
 〔シート抵抗値変化量の測定〕
 上記作製した各透明電極を、高温環境(温度80℃)下で240時間保存した後、シート抵抗値(Ω/sq.)を測定し、上記「シート抵抗値の測定」で求めた高温保存前のシート抵抗値に対する変化量(Ω/sq.)を算出した。
 なお、シート抵抗値の変化量は、透明電極10のシート抵抗値の変化量を100とする相対値で示している。
 以上により得られた各測定結果を表IIIに示す。
Figure JPOXMLDOC01-appb-T000034
 表IIIに記載の結果より明らかなように、下地層として、本発明で規定する非共有電子対を有するヘテロ原子を分子内に含む化合物とランタノイドを含有する金属親和性層(1a)を有する透明電極14及び15は、60%以上という高い光透過率と10Ω/sq.未満の良好な導電性を両立していることが分かる。また、比較の透明電極10においても透過率と導電性が良好ではあるものの、シート抵抗変化量(耐久性)の観点では、本発明の透明電極14及び15が、比較の透明電極10よりも優位であり、本発明で規定する構成からなる透明電極は耐久性に優れていることが分かる。また、導電性層(1b)の構成材料として、Ag単体からAgとMgとの合金に変更した場合にも同様の傾向にあることが分かる。また、導電性層(1b)の材料としてAg単体と、AgとMgとの合金を比較した場合、Ag単体の方が光透過率及び導電性の観点で優位であることが分かる。
 また、導電性層(1b)上にキャッピング層を形成することで、光透過率がさらに向上しており、特に、キャッピング層の構成を、本発明で規定する金属親和性層とし、導電性層(1b)を一対の金属親和性層で挟持する構成とすることにより、さらに光透過率が向上していることが分かる。
 実施例2
 《発光パネルの作製》
 透明電極をカソードとして用いた、発光パネル(両面発光型有機エレクトロルミネッセンスパネル)1-1~1-15を作製した。
 〔発光パネル1-1の作製〕
 以下、図4を参照して発光パネルの作製手順を説明する。
 (ガラス基板及び対向電極(5c)の形成)
 100mm×100mm×1.1mmのガラス基板(131)上に、アノードとしてITO(インジウムチンオキシド)からなる対向電極(5c)を層厚100nmで成膜した基板(AvanStrate株式会社製、NA-45)にパターニングを行った。その後、このITO対向電極(5c)を設けたガラス基板(131)をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 (透明電極(1)及び発光機能層ユニット(3)の形成)
 洗浄済みの対向電極(5c)を有するガラス基板(131)を市販の真空蒸着装置の基板ホルダーに固定し、加熱ボートの各々に透明電極(1)及び発光機能層ユニット(3)を構成する各材料を最適な量で充填した。なお、加熱ボートはタングステン性抵抗加熱用材料で作製されたものを用いた。
 はじめに、真空蒸着装置の蒸着室内を真空度4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下のように各層を成膜した。
 〈正孔注入層(3a)の形成〉
 正孔注入材料として、下記構造式に示すHAT-CNが入った加熱ボートに通電して加熱し、HAT-CNよりなる正孔注入層(3a)を、ITO対向電極(5c)上に成膜した。成膜条件は、蒸着速度が0.1~0.2nm/秒の範囲内で、層厚は10nmとした。
Figure JPOXMLDOC01-appb-C000035
 〈正孔輸送層(3b)の形成〉
 次いで、正孔輸送注入材料としてα-NPD(前出)が入った加熱ボートに通電して加熱し、α-NPDよりなる正孔輸送層(3b)を、正孔注入層(3a)上に成膜した。成膜条件は、蒸着速度が0.1~0.2nm/秒の範囲内で、層厚は120nmとした。
 〈発光層(3c)の形成〉
 次いで、ホスト材料として下記ホスト材料H1の入った加熱ボートと、リン光発光性化合物である下記リン光発光性化合物Ir-1の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H1とリン光発光性化合物Ir-1とよりなる発光層(3c)を、正孔輸送層(3b)上に成膜した。この際、蒸着速度がホスト材料H1:リン光発光性化合物Ir-1=85:15(質量比)となるように、加熱ボートの通電を調節した。また、層厚は30nmとした。
Figure JPOXMLDOC01-appb-C000036
 〈電子輸送層(3d)の形成〉
 次いで、電子輸送材料としてAlq(前出)の入った加熱ボートを通電し、Alqよりなる電子輸送層(3d)を、発光層(3c)上に成膜した。成膜条件は、蒸着速度が0.1~0.2nm/秒の範囲内で、膜厚30nmとした。
 〈電子注入層(3e)の形成〉
 次に、電子注入材料としてLiQ(前出)の入った加熱ボートに通電して加熱し、LiQよりなる電子注入層(3e)を、電子輸送層(3d)上に成膜した。成膜条件は、蒸着速度が0.01~0.02nm/秒の範囲内で、層厚は2nmとした。
 〈透明電極(1)の形成〉
 次いで、電子注入層(3e)まで成膜した透明基板(131)を、真空蒸着装置の蒸着室から、透明電極(1、導電性層1b)形成用材料として銀(Ag)が充填されたタングステン製の抵抗加熱ボートを備えた真空槽内に、真空状態を保持したまま移送した。
 次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度が0.1~0.2nm/秒の範囲内で、電子注入層(3e)上に層厚が10nmの銀からなる導電性層(1b)をカソードとして成膜した。
 〈キャッピング層の形成〉
 その後、元の真空層内に移送し、図4には図示していないが、導電性層(1b)上に、α-NPD(前出)を蒸着速度が0.1~0.2nm/秒の範囲内で、層厚が40nmの条件で蒸着し、キャッピング層を形成した。
 以上の手順により、透明基板(131)上に有機EL素子(300)を形成した。
 (有機EL素子の封止)
 その後、有機EL素子(300)を、厚さ300μmのガラス基板からなる封止材(17)で覆い、有機EL素子(300)を囲む状態で、封止材(17)と透明基板(131)との間に接着剤(19、シール材)をシールした。接着剤(19)としては、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を用いた。封止材(17)と透明基板(131)との間に充填した接着剤(19)に対して、ガラス基板(封止材、17)側からUV光を照射し、接着剤(19)を硬化させて有機EL素子(300)を封止した。
 なお、有機EL素子(300)の形成においては、各層の形成に蒸着マスクを使用し、100mm×100mmの透明基板(131)における中央の4.5cm×4.5cmを発光領域Aとし、発光領域Aの全周に幅0.25cmの非発光領域Bを設けた。また、アノードである対向電極(5c)とカソードである透明電極(1)とは、正孔輸送層(3a)~電子注入層(3e)までの発光機能層ユニット(3)によって絶縁された状態で、透明基板(131)の周縁に端子部分を引き出された形状で形成した。
 以上のようにして、透明基板(131)上に有機EL素子(300)を設け、これを封止材(17)と接着剤(19)とで封止した発光パネル1-1を作製した。
 発光パネル1-1においては、発光層(3c)で発生した各色の発光光(L)が、透明電極(1)側、すなわち封止材(17)側と、対向電極側(5c)すなわち透明基板(131)側の両方から取り出される。
 〔発光パネル1-2~1-15の作製〕
 上記発光パネル1-1の作製において、電子輸送層(3d)、電子注入層(3e)及び導電性層(1b)の構成材料及び層厚を、表IVに記載の条件に変更した以外は同様にして、発光パネル1-2~1-15を作製した。なお、発光パネル1-15の電子注入層(3e)の形成において、電子注入層材料として、例示化合物No.92、Yb及びLiQが蒸着速度2:2:1の比となるように調整し、膜厚10nmの電子注入層(3e)を形成した。
 《発光パネルの評価》
 上記作製した発光パネル1-1~1-15について、下記の方法に従い、光透過率、駆動電圧の測定、駆動電圧のばらつき及び高温素子寿命の測定を行った。
 〔光透過率の測定〕
 上記作製した各発光パネルについて、分光光度計(日立製作所製U-3300)を用い、各発光パネルの透明基板(131)をリファレンスとして、波長500nmにおける光透過率(%)を測定した。
 〔駆動電圧の測定〕
 上記作製した各発光パネルについて、各発光パネルの透明電極(1)側(すなわち、封止剤17側)と、対向電極(5c)側(すなわち、基板(131)側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-2000(コニカミノルタ製)を用いた。評価は、同様の製造方法により別バッチで作製した5パネルについて測定し、その平均値を表す。得られた駆動電圧(V)の数値が小さいほど、好ましい結果であることを表す。
 〔駆動電圧ばらつきの評価〕
 各発光パネルについて、同様の製造方法で5つのサンプルをそれぞれ別バッチにて作製し、上記の方法と同様にして各サンプルの駆動電圧と平均駆動電圧を測定し、そのばらつき度合いを、下記基準によって評価した。
 ○:平均駆動電圧に対し、五つのパネル全てにおける差異が0.2V未満である
 △:平均駆動電圧に対し、一つ以上のパネルで、差異が0.2V以上、0.5V未満である
 ×:平均駆動電圧に対し、三つ以上のパネルの差異が0.5V以上、又は一つ以上のパネルの差異が1.0V以上である
 〔高温素子寿命の測定〕
 上記作製した各発光パネルについて、室温が50℃の環境下において、2.5mA/cmの定電流条件下で連続発光させ、初期輝度の半分の輝度になるのに要する時間(半減期)を測定した。なお、高温素子寿命は、発光パネル1-8の輝度半減寿命(時間)を100とする相対値で求めた。
 以上により得られた結果を、表IVに示す。
Figure JPOXMLDOC01-appb-T000037
 表IVに記載の結果より明らかなように、電子注入層(3e)を2nmという極薄層とした場合には、駆動電圧のばらつきが劣化していることが分かる。また、発光パネル番号1-1と1-2を比較すると、電子注入層(3e)を2nmから10nmに厚層化することで、確かに、駆動電圧ばらつきは抑制できるものの、電子注入層(3e)が電子注入層材料として金属塩又は金属錯体のみから構成されている場合には、駆動電圧が上昇してしまうという問題がある。また、導電性層(1b)に隣接する電子注入層(3e)に金属親和性化合物と金属塩を含有する場合には、光透過率と駆動電圧を両立は可能であるが、高温素子寿命はいまだ不十分なものである。これに対し、本発明で規定する構造の金属親和性化合物とランタノイド(Yb)を含有する電子注入層(3e)を導電性層(1b)に隣接させた場合には、光透過性と駆動電圧を両立しながら、さらに高温素子寿命をも向上させることが可能であることが分かる。また、更には、本発明に係る金属親和性化合物とランタノイド(Yb)を含有する層は、電子輸送層(3d)としても機能を発揮することが分かる。
 さらに、パネル番号1-14と1-15を比較すると、導電性層(1b)に隣接する電子注入層(3e)に金属塩材料を含まない1-14と、金属塩材料(LiQ)を含む1-15では、多少の差異はあるものの、ほぼ同等の性能を示すことが分かり、本発明に係る銀親和性層は金属塩の悪影響を抑制する効果があることが示唆されている。
 実施例3
 《発光パネルの作製2》
 〔発光パネル2-1の作製〕
 透明電極をカソードとして用いた発光パネル(トップエミッション型有機エレクトロルミネッセンスパネル)2-1を作製した。
 実施例2に記載の発光パネル1-3の作製において、下記に記載の方法に変更した以外は同様にして、発光パネル2-1を作製した。
 洗浄済みのガラス基板を市販の真空蒸着装置の基板ホルダーに固定し、加熱ボートの各々に各電極材料(5c及び1)及び発光機能層ユニット(3)を構成する各材料を最適な量で充填した。なお、加熱ボートはタングステン性抵抗加熱用材料で作製されたものを用いた。
 対向電極(5c)の形成材料としてタングステン製の抵抗加熱ボートに、ITOに代えてアルミニウム(Al)が充填された真空槽内に、ガラス基板(131)を、真空状態を保持したまま移送した。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、アルミニウムを層厚100nmで蒸着し、反射電極である対向電極(5c)とした。
 〔発光パネル2-2~2-9の作製〕
 発光パネル2-1の作製において、電子注入層(3e)及びキャッピング層の構成材料を表Vに示すように変更した以外は同様にして、発光パネル2-2~2-9を作製した。
 《発光パネルの評価》
 上記作製した発光パネル2-1~2-9について、有機EL素子の駆動電圧変化率及び保存後の素子寿命を下記の方法によって評価した。
 〔駆動電圧変化率の評価〕
 上記作製した各発光パネルについて、発光パネルの透明電極(1)側(すなわち、封止材(17)側)の正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。さらに各発光パネルを高温環境(温度120℃)下で、24時間保存した際の駆動電圧(V′)を測定し、下式に従って駆動電圧変化率(5)を求め、下記のランクに従って、評価した。
 駆動電圧変化率(%)=〔保存後駆動電圧(V′)/初期駆動電圧(V)〕×100
 ○:駆動電圧変化率が、5.0%未満である
 △:駆動電圧変化率が、5.0%以上、15.0%未満である
 ×:駆動電圧変化率が、15.0%以上である
 〔保存後の素子寿命の評価〕
 上記駆動電圧変化率の評価で作製した高温環境(温度120℃)下で、24時間保存した各発光パネルについて、室温(25℃)下において、2.5mA/cmの定電流条件下で連続発光させ、初期輝度の半分の輝度になるのに要する時間(半減期)を測定した。なお、高温保存後の素子寿命は発光パネル2-3の輝度半減寿命を100とする相対値で求めた。
 以上により得られた結果を、表Vに示す。
Figure JPOXMLDOC01-appb-T000038
 表Vに記載の結果より明らかなように、導電性層(1b)に隣接する電子注入層(3e)又はキャッピング層のいずれかに、本発明に係る金属親和性化合物とランタノイド(Yb)を含有する層を設けることで、駆動電圧変化率が抑制されることが分かる。さらに、本発明に係る金属親和性化合物とランタノイド(Yb)を含有する層が導電性層(1b)を挟む構成としたパネル番号2-6~2-9においては、導電性層のいずれかの面側にのみ金属親和性化合物とランタノイド(Yb)を含有する層が存在するパネル番号2-3~2-5に比較して、保存後素子寿命が向上していることが分かる。
 本発明の透明電極は、有機EL素子に好適に用いることができ、当該有機ELは、家庭用照明や車内照明等の照明装置、時計や液晶表示装置のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等に適用することができる。
 1 透明電極
 1a 金属親和性層
 1b 導電性層
 3 発光機能層ユニット
 3a 正孔注入層
 3b 正孔輸送層
 3c 発光層
 3d 電子輸送層
 3e 電子注入層
 5a、5b、5c 対向電極
 11 基材
 13、131 透明基板(基材)
 13a、131a 光取り出し面
 15 補助電極
 17 封止材
 19 接着剤
 100、200、300、400 有機EL素子
 h 発光点
 L 発光光

Claims (7)

  1.  導電性層と、当該導電性層に隣接して少なくとも1層の金属親和性層を有する透明電極であって、
     前記導電性層が、銀を主成分として構成され、
     前記金属親和性層が、有機化合物及びランタノイドを含有し、
     前記有機化合物が、非共有電子対を有するヘテロ原子を分子内に含む化合物である、
     ことを特徴とする透明電極。
  2.  前記金属親和性層が含有する有機化合物が、芳香族性に関与しない非共有電子対を有する窒素原子を含む芳香族複素環化合物であり、かつ下記式(1)で表される銀との有効作用エネルギーΔEefが、下記式(2)で規定する条件を満たすことを特徴とする請求項1に記載の透明電極。
     式(1)
       ΔEef=n×ΔE/s
    〔式中、nは銀(Ag)と安定的に結合する化合物中の窒素原子(N)の和を表し、ΔEは窒素原子(N)と銀(Ag)との相互作用エネルギーを表し、sは化合物の表面積を表す。〕
     式(2)
       -0.50≦ΔEef≦-0.10[kcal/mol・Å
  3.  前記金属親和性層が含有する有機化合物が、最低空分子軌道(LUMO)のエネルギー準位が-2.2~-1.6eVの範囲内にある有機化合物であることを特徴とする請求項1又は請求項2に記載の透明電極。
  4.  前記金属親和性層が含有する有機化合物が、下記一般式(I)で表される構造を有する化合物であることを特徴とする請求項1から請求項3までのいずれか一項に記載の透明電極。
    Figure JPOXMLDOC01-appb-C000001
    〔一般式(I)中、Xは、NR、酸素原子又は硫黄原子を表す。E~Eは、それぞれ独立に、CR又は窒素原子を表す。R及びRは、それぞれ独立に、水素原子又は置換基を表す。〕
  5.  前記ランタノイドが、サマリウム(Sm)、ユウロピウム(Eu)又はイッテルビウム(Yb)であることを特徴とする請求項1から請求項4までのいずれか一項に記載の透明電極。
  6.  請求項1から請求項5までのいずれか一項に記載の透明電極を具備することを特徴とする電子デバイス。
  7.  前記電子デバイスが、有機エレクトロルミネッセンス素子であることを特徴とする請求項6に記載の電子デバイス。
PCT/JP2017/028376 2016-08-25 2017-08-04 透明電極及び電子デバイス WO2018037880A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780051069.9A CN109644537A (zh) 2016-08-25 2017-08-04 透明电极和电子器件
US16/328,096 US11107998B2 (en) 2016-08-25 2017-08-04 Transparent electrode and electronic device
KR1020197003939A KR20190026881A (ko) 2016-08-25 2017-08-04 투명 전극 및 전자 디바이스
JP2018535569A JP6939795B2 (ja) 2016-08-25 2017-08-04 透明電極及び電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-164841 2016-08-25
JP2016164841 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018037880A1 true WO2018037880A1 (ja) 2018-03-01

Family

ID=61245618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028376 WO2018037880A1 (ja) 2016-08-25 2017-08-04 透明電極及び電子デバイス

Country Status (6)

Country Link
US (1) US11107998B2 (ja)
JP (1) JP6939795B2 (ja)
KR (1) KR20190026881A (ja)
CN (1) CN109644537A (ja)
TW (1) TWI672075B (ja)
WO (1) WO2018037880A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038964A (ja) * 2018-08-31 2020-03-12 エルジー ディスプレイ カンパニー リミテッド 発光素子及びこれを適用した透明表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538905B (zh) * 2018-05-31 2021-03-16 武汉华星光电半导体显示技术有限公司 Oled发光器件及oled显示装置
CN113727838A (zh) * 2019-04-26 2021-11-30 柯尼卡美能达株式会社 透明电极和具备该透明电极的电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052118A1 (en) * 2003-09-05 2005-03-10 Shuit-Tong Lee Organic electroluminescent devices formed with rare-earth metal containing cathode
JP2007157629A (ja) * 2005-12-08 2007-06-21 Fujifilm Corp 有機電界発光素子
JP2011124210A (ja) * 2009-12-09 2011-06-23 Samsung Mobile Display Co Ltd 有機発光装置
JP2012004116A (ja) * 2010-06-16 2012-01-05 Samsung Mobile Display Co Ltd 有機発光素子及びその製造方法
JP2013500559A (ja) * 2009-07-27 2013-01-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子構成素子ならびに電気コンタクト
WO2013162004A1 (ja) * 2012-04-27 2013-10-31 コニカミノルタ株式会社 電子デバイスの製造装置
US20130313527A1 (en) * 2012-05-22 2013-11-28 Eung-Do Kim Organic light-emitting device and method of producing the same
JP2014519161A (ja) * 2011-06-30 2014-08-07 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド トップエミッション型のフレキシブル有機エレクトロルミネッセンスデバイス及びその製造方法
US20160133880A1 (en) * 2014-11-06 2016-05-12 Samsung Display Co., Ltd. Organic light-emitting device and method of fabricating the same
US20160233357A1 (en) * 2013-10-04 2016-08-11 Gwangju Institute Of Science And Technology Electrode having excellent light transmittance, method for manufacturing same, and electronic element including same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328845B2 (ja) 1972-07-20 1978-08-17
JPS5328845A (en) 1976-08-30 1978-03-17 Toshiba Corp Refrigerator
US20090015150A1 (en) * 2005-07-15 2009-01-15 Lg Chem, Ltd. Organic light emitting device and method for manufacturing the same
US9947889B2 (en) * 2012-04-23 2018-04-17 Konica Minolta Inc. Transparent electrode, electronic device, and organic electroluminescent element
EP2844040A4 (en) * 2012-04-24 2015-12-30 Konica Minolta Inc TRANSPARENT ELECTRODE, ELECTRONIC DEVICE AND MANUFACTURING METHOD FOR THE TRANSPARENT ELECTRODE
JP6230868B2 (ja) 2012-10-22 2017-11-15 コニカミノルタ株式会社 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
JP6287854B2 (ja) * 2012-11-28 2018-03-07 コニカミノルタ株式会社 透明電極、電子デバイス、および有機電界発光素子
WO2015064558A1 (ja) * 2013-11-01 2015-05-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052118A1 (en) * 2003-09-05 2005-03-10 Shuit-Tong Lee Organic electroluminescent devices formed with rare-earth metal containing cathode
JP2007157629A (ja) * 2005-12-08 2007-06-21 Fujifilm Corp 有機電界発光素子
JP2013500559A (ja) * 2009-07-27 2013-01-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子構成素子ならびに電気コンタクト
JP2011124210A (ja) * 2009-12-09 2011-06-23 Samsung Mobile Display Co Ltd 有機発光装置
JP2012004116A (ja) * 2010-06-16 2012-01-05 Samsung Mobile Display Co Ltd 有機発光素子及びその製造方法
JP2014519161A (ja) * 2011-06-30 2014-08-07 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド トップエミッション型のフレキシブル有機エレクトロルミネッセンスデバイス及びその製造方法
WO2013162004A1 (ja) * 2012-04-27 2013-10-31 コニカミノルタ株式会社 電子デバイスの製造装置
US20130313527A1 (en) * 2012-05-22 2013-11-28 Eung-Do Kim Organic light-emitting device and method of producing the same
US20160233357A1 (en) * 2013-10-04 2016-08-11 Gwangju Institute Of Science And Technology Electrode having excellent light transmittance, method for manufacturing same, and electronic element including same
US20160133880A1 (en) * 2014-11-06 2016-05-12 Samsung Display Co., Ltd. Organic light-emitting device and method of fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOU, JIANHUA ET AL.: "Efficient top-emitting organic light- emitting diodes with Sm/Ag bilayer cathode", THIN SOLID FILMS, vol. 519, no. 11, 28 January 2011 (2011-01-28), pages 3890 - 3892, XP028165712, DOI: doi:10.1016/j.tsf.2011.01.234 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038964A (ja) * 2018-08-31 2020-03-12 エルジー ディスプレイ カンパニー リミテッド 発光素子及びこれを適用した透明表示装置
US11223022B2 (en) 2018-08-31 2022-01-11 Lg Display Co., Ltd. Light emitting device and transparent display device using the same

Also Published As

Publication number Publication date
US11107998B2 (en) 2021-08-31
JP6939795B2 (ja) 2021-09-22
TWI672075B (zh) 2019-09-11
US20190189932A1 (en) 2019-06-20
JPWO2018037880A1 (ja) 2019-06-20
KR20190026881A (ko) 2019-03-13
TW201818785A (zh) 2018-05-16
CN109644537A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6287834B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6230868B2 (ja) 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
WO2013105569A1 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
WO2013141097A1 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6241193B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6241189B2 (ja) 透明電極、透明電極の製造方法、電子デバイス及び有機エレクトロルミネッセンス素子
JP6485350B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP6112107B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6939795B2 (ja) 透明電極及び電子デバイス
JP6372265B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP5967047B2 (ja) 透明電極、透明電極の製造方法、電子デバイス及び有機エレクトロルミネッセンス素子
JP6295958B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6432124B2 (ja) 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
JP6468186B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6028806B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
JP6187471B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
WO2016136397A1 (ja) 透明電極及び電子デバイス
JP6237638B2 (ja) 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535569

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003939

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843366

Country of ref document: EP

Kind code of ref document: A1