WO2018037802A1 - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
WO2018037802A1
WO2018037802A1 PCT/JP2017/026620 JP2017026620W WO2018037802A1 WO 2018037802 A1 WO2018037802 A1 WO 2018037802A1 JP 2017026620 W JP2017026620 W JP 2017026620W WO 2018037802 A1 WO2018037802 A1 WO 2018037802A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface wave
microwave
frequency heating
unit
heating device
Prior art date
Application number
PCT/JP2017/026620
Other languages
English (en)
French (fr)
Inventor
岡島 利幸
大森 義治
吉野 浩二
貴紀 廣部
上島 博幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018535538A priority Critical patent/JP6967707B2/ja
Priority to CN201780029140.3A priority patent/CN109076656B/zh
Priority to EP17843288.6A priority patent/EP3503681B1/en
Publication of WO2018037802A1 publication Critical patent/WO2018037802A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides

Definitions

  • This disclosure relates to a high-frequency heating device such as a microwave oven.
  • Patent Document 1 discloses a high-frequency heating device that thaws frozen sushi placed on a surface wave transmission line by supplying microwaves directly to the surface wave transmission line.
  • An object of this indication is to provide the high frequency heating apparatus which contributes to the solution of the said subject.
  • High-frequency heating device includes a generator and the surface wave excitation member and the reusable portion first coupling portion.
  • the generation unit generates microwaves.
  • the surface wave exciter has a periodic structure and heats the object to be heated by propagating microwaves in the surface wave mode.
  • the first coupling portion is provided at one end of the surface wave exciter. Via a first coupling part, the microwave generated by the generator is supplied to the surface wave excitation body.
  • the reusable part uses surface wave mode microwaves that reach the other end of the surface wave exciter located in the direction of microwave propagation from one end of the surface wave exciter to heat the object to be heated. To reuse.
  • the microwave that has not been absorbed by the heating object can be reused for heating the heating object.
  • utilization efficiency of microwave energy can be improved.
  • FIG. 1 is a longitudinal sectional view schematically showing the configuration of the high-frequency heating device according to Embodiment 1.
  • FIG. Figure 2 is a cross-sectional view schematically showing a configuration of a high-frequency heating apparatus according to the first embodiment.
  • Figure 3 is a cross-sectional view schematically showing a configuration of a high-frequency heating apparatus according to the second embodiment.
  • Figure 4 is a cross-sectional view schematically showing a configuration of a high-frequency heating apparatus according to the third embodiment.
  • FIG. 5 is a perspective view showing a configuration of a surface acoustic wave excitation body according to the third embodiment.
  • FIG. 6 is a perspective view showing a configuration of a surface acoustic wave excitation body according to the third embodiment.
  • Figure 7 is a cross-sectional view schematically showing a configuration of a high-frequency heating apparatus according to the fourth embodiment.
  • the high-frequency heating device includes the generation unit, the surface wave exciter, the first coupling unit, and the reuse unit.
  • the generator is configured to generate microwaves.
  • the surface wave exciter has a periodic structure, and is configured to heat the object to be heated by propagating microwaves in a surface wave mode.
  • the first coupling portion is provided at one end of the surface wave exciter. Via a first coupling part, the microwave generated by the generator is supplied to the surface wave excitation body.
  • the reusable part uses surface wave mode microwaves that reach the other end of the surface wave exciter located in the direction of microwave propagation from one end of the surface wave exciter to heat the object to be heated. Configured to be reused.
  • the reuse unit is provided at another end of the surface wave exciter and reaches another end of the surface wave exciter. And a reflection part configured to reflect the microwave.
  • the reflection portion is a waveguide that covers another end of the surface wave excitation body.
  • the reuse unit is provided at another end of the surface wave exciter, and the surface wave mode reaches the other end.
  • a matching unit configured to mode-convert the microwave by impedance matching is included.
  • the high-frequency heating device further includes a power storage unit that stores DC power in addition to the fourth aspect.
  • the reuse unit further includes a conversion unit configured to convert the microwave mode-converted by the matching unit into DC power and supply the DC power to the power storage unit.
  • the reuse part includes a second coupling part, a matching part, and a second part provided at any end part of the surface wave exciter. And a microwave transmission line connecting the two coupling portions.
  • the surface wave exciter is configured to propagate the surface wave obtained from the microwave supplied through the first coupling unit.
  • a second portion connected to the first portion and configured to change a propagation direction of the surface wave; and a third portion connected to the second portion and configured to propagate the surface wave in the changed propagation direction.
  • the reuse unit is the second part and the third part.
  • the periodic structure has a plurality of columnar pins periodically arranged in the horizontal direction.
  • the high-frequency heating device of the present disclosure is specifically a microwave oven.
  • the high-frequency heating device of the present disclosure is not limited to this, and includes a heating device using dielectric heating, a garbage disposal machine, a semiconductor manufacturing device, and the like.
  • the high-frequency heating device 1 a includes a heating chamber 2, a generation unit 8, a surface wave exciter 10, a coupling unit 12, a reflection unit 14, and a control unit 16.
  • the high-frequency heating device 1a is configured to heat the heating object 6 placed on the placing table 4 by microwaves that propagate the surface of the surface wave exciter 10 in the surface wave mode.
  • FIG. 2 schematically shows a state in which the microwave in the surface wave mode propagates through the surface wave exciter 10 and the placement position of the heating object 6 on the placement table 4 (not shown in FIG. 2). ing.
  • the generation unit 8 includes a magnetron and an inverter, and is configured to generate a microwave under the control of the control unit 16.
  • the solid state oscillator and the power amplifier may constitute the generation unit 8.
  • the surface wave exciter 10 is provided below the mounting table 4.
  • the surface wave exciter 10 propagates microwaves in the surface wave mode, and heats the heating object 6 placed on the placing table 4.
  • the surface wave exciter 10 is a stub type surface wave exciter that is a metal periodic structure.
  • the surface wave exciter 10 includes a plurality of metal plates 11 arranged on the metal plate 13 at predetermined intervals.
  • the surface wave exciter 10 is not a stub type surface wave exciter, but may be an interdigital type surface wave exciter obtained by punching a metal plate into a crossed finger shape.
  • the surface wave exciter 10 may be formed of a dielectric plate such as an alumina plate or a bakelite plate instead of the metal periodic structure.
  • the excitation frequency of the surface wave exciter 10 depends on the material and dimensions. In the case of a stub type surface wave exciter, the excitation frequency can be set to a desired value by appropriately selecting the height, interval, etc. of the metal plate 11. Generally, the excitation frequency of the surface wave exciter 10 is higher as the height of the metal plate 11 is lower and is higher as the interval between the metal plates 11 is narrower.
  • the metal plates 11 are arranged in parallel to each other.
  • the surface wave exciter 10 propagates a surface wave in a direction perpendicular to the metal plate 11, that is, in the arrangement direction of the metal plates 11.
  • the propagation direction of the microwave propagating in the surface wave mode on the surface wave exciter 10 coincides with the arrangement direction of the metal plates 11.
  • the coupling portion 12 is provided on the feeding side 15 which is one end portion of the surface wave excitation body 10 (the left end of the surface wave excitation body 10 in FIGS. 1 and 2).
  • the microwave generated by the generation unit 8 is supplied from the power supply side 15 to the surface wave exciter 10 via the coupling unit 12.
  • the coupling portion 12 is a rectangular waveguide.
  • the coupling part 12 corresponds to a first coupling part.
  • a reflective portion 14 is provided so as to cover the end side 17.
  • the terminal side 17 is another end of the surface wave excitation body 10 located in the propagation direction D1 from the power supply side 15 (the right end of the surface wave excitation body 10 in FIGS. 1 and 2).
  • the reflection portion 14 totally reflects the surface wave mode microwave propagated through the surface of the surface wave exciter 10 at the end edge 17.
  • the reflecting portion 14 is a rectangular waveguide.
  • the microwave generated by the generation unit 8 is supplied from the feeding side 15 to the surface wave exciter 10 via the coupling unit 12.
  • the surface wave S1 propagating on the surface of the surface wave exciter 10 is generated by the supply of the microwave.
  • the surface wave S1 propagates in the propagation direction D1 (the direction from left to right in the figure), and heats the heating target 6 from below.
  • the surface wave S2 which is a part of the surface wave S1 is not absorbed by the heating object 6, but further propagates in the propagation direction D1 on the surface of the surface wave exciter 10, and the end edge 17 of the surface wave exciter 10 is obtained.
  • a surface wave S2 is reflected at the end edges 17, to reverse the propagation direction of the surface wave S2.
  • the propagation direction of the surface wave S2 is changed from the propagation direction D1 to the propagation direction D2 (the direction from right to left in the figure).
  • the surface wave S2 reflected by the reflector 14 propagates on the surface of the surface wave exciter 10 from the terminal side 17 toward the power supply side 15 and heats the heating object 6 from below.
  • the conventional high-frequency heating apparatus radiates surface wave mode microwaves that reach the end of the surface wave exciter without being absorbed by the heating object 6 into the space. Since the microwave radiated into the space does not contribute to the heating of the heating object 6, the utilization efficiency of the microwave energy decreases.
  • the heating object 6 is heated not only by the surface wave S1 but also by the surface wave S2 reflected by the reflecting portion 14.
  • the high-frequency heating device 1a can reuse the microwave that has not been absorbed by the object to be heated for heating the object to be heated. As a result, utilization efficiency of microwave energy can be improved.
  • the reflection unit 14 corresponds to a reuse unit configured to reuse microwaves that have not been absorbed by the heating object 6 and have reached the terminal side of the surface wave exciter.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the high-frequency heating device 1b.
  • FIG. 3 schematically shows a state in which the microwave in the surface wave mode propagates through the surface wave exciter 10 and the placement position of the heating object 6 on the placement table 4 (not shown in FIG. 3). .
  • the microwave is reused by reflecting the surface wave S2 that has reached the terminal side 17 of the surface wave exciter 10.
  • the microwave is reused by converting the microwave of the surface wave mode into the microwave of another mode by impedance matching.
  • the high-frequency heating apparatus 1b instead of the reflection portion 14, and a consistent portion 22 and the converter 24.
  • the matching unit 22 and the conversion unit 24 correspond to a reuse unit.
  • the high-frequency heating device 1 b further includes a power storage unit 26.
  • the matching unit 22 is connected to the end side 17 of the surface wave exciter 10.
  • the conversion unit 24 is connected to the matching unit 22 through the microwave transmission line 23 and is connected to the power storage unit 26 through the DC power transmission line 25.
  • the power storage unit 26 is connected to the generation unit 8 and supplies power to the generation unit 8.
  • the matching unit 22 is an impedance matching unit configured to perform impedance matching on the microwave.
  • the impedance matching can convert the microwave surface wave mode to a microwave coaxial mode microwave or waveguide modes. Hereinafter, this is referred to as mode conversion by impedance matching.
  • the matching unit 22 When converting the microwave of the surface wave mode into the waveguide mode, the matching unit 22 may have a stepped stub structure. When the surface wave mode microwave is converted into the coaxial mode microwave, the matching unit 22 converts the surface wave mode microwave into the waveguide mode microwave, and then into the coaxial mode microwave. You may have the structure of 2 steps
  • the matching unit 22 is not limited to these, and can have various configurations.
  • the microwave transmission line 23 can be configured by a coaxial line or a waveguide, for example.
  • the matching unit 22 converts the microwave of the surface wave mode into the coaxial mode or the waveguide mode. Therefore, it is possible to transmit through the microwave transmission line 23, the microwaves to the converter 24 is a separate component.
  • the conversion unit 24 is a member that converts microwaves that are AC power into DC power.
  • a rectenna Rectifying antenna
  • the heating object 6 is heated by the surface wave S ⁇ b> 1 obtained from the microwave supplied through the coupling portion 12.
  • the surface wave S ⁇ b> 2 propagated through the surface wave exciter 10 without being absorbed by the heating object 6 reaches the end side 17.
  • the matching unit 22 mode-converts the surface wave mode microwave (surface wave S2) that has reached the end edge 17 by impedance matching, and generates a coaxial mode or waveguide mode microwave.
  • Matching unit 22 a mode conversion microwave, and transmits to the converter 24 through the microwave transmission line 23.
  • the conversion unit 24 converts the microwave into DC power, and transmits the DC power to the power storage unit 26 via the DC power transmission line 25.
  • the power storage unit 26 stores DC power as power supplied to the generation unit 8.
  • the high-frequency heating device 1 b converts the microwave that has not been absorbed by the heating object 6 into DC power using the matching unit 22 and the conversion unit 24.
  • the DC power is stored in the power storage unit 26 and supplied to the generation unit 8 when necessary.
  • the high-frequency heating device 1b can reuse the microwave that has not been absorbed by the heating object for heating the heating object. As a result, utilization efficiency of microwave energy can be improved.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of the high-frequency heating device 1c.
  • FIG. 4 schematically shows a state in which the microwave in the surface wave mode propagates through the surface wave exciter 20 and the placement position of the heating object 6 on the placement table 4 (not shown in FIG. 4). .
  • the high-frequency heating device 1 c does not include the conversion unit 24 and the power storage unit 26 but includes a coupling unit 32 instead.
  • the high-frequency heating device 1 c includes a surface wave exciter 20 instead of the surface wave exciter 10.
  • Surface wave excitation body 20 has a structure different from the structure of the surface wave excitation body 10 according to the second embodiment.
  • the coupling part 32 corresponds to a second coupling part.
  • the high-frequency heating device 1 c has a coupling portion 32 in addition to the coupling portion 12.
  • the coupling portion 32 is provided on a power feeding side 33 that is an end of the surface wave exciter 20 other than the power feeding side 15 and the terminal side 17.
  • the surface wave exciter 20 has a substantially square shape in plan view, and the coupling portion 32 is provided on the power supply side 33 orthogonal to the power supply side 15.
  • the coupling unit 32 is connected to the matching unit 22 via the microwave transmission line 31.
  • the heating object 6 is heated by the surface wave S1 obtained from the microwave supplied through the coupling portion 12.
  • the surface wave S2 which is a part of the surface wave S1 propagates through the surface wave exciter 10 without being absorbed by the heating object 6 and reaches the terminal side 17.
  • the matching unit 22 mode-converts the surface wave mode microwave (surface wave S2) that has reached the end edge 17 by impedance matching, and generates a coaxial mode or waveguide mode microwave.
  • Matching unit 22 a mode conversion microwave, and transmits to the coupling portion 32 through the microwave transmission line 31.
  • the microwave via a coupling portion 32 is supplied to the surface wave excitation body 20 from the feeding side 33. From this microwave, a surface wave S3 propagating in a propagation direction D3 perpendicular to the propagation direction D1 of the surface waves S1 and S2 is generated.
  • the heating object 6 is also heated by the surface wave S3. That is, in the present embodiment, the matching unit 22 and the coupling unit 32 correspond to a reuse unit.
  • the surface wave exciter 20 has a pin type stub structure.
  • the pin-type stub structure is a periodic structure having a plurality of columnar pins arranged periodically in the horizontal direction.
  • the surface wave exciter 20 shown in FIG. 5 has a quadrangular prism pin 20a.
  • the surface wave exciter 20 shown in FIG. 6 has a cylindrical pin 20b.
  • the surface wave can propagate along the arrangement direction of the pins, that is, in any direction parallel to the horizontal plane where the pins are arranged.
  • the high-frequency heating device 1 c supplies the microwave that has not been absorbed by the heating object 6 to the surface wave exciter 20 via the coupling portion 32. In this way, the high-frequency heating device 1c can reuse the microwave that has not been absorbed by the object to be heated for heating the object to be heated. As a result, utilization efficiency of microwave energy can be improved.
  • FIG. 7 is a cross-sectional view schematically showing the configuration of the high-frequency heating device 1d.
  • FIG. 7 schematically shows how the microwaves in the surface wave mode propagate through the surface wave exciter 30 and the placement position of the heating object 6 on the placement table 4 (not shown in FIG. 7). .
  • the high-frequency heating device 1d includes the surface wave exciter 30 that does not include the reflection unit 14 that is a reuse unit and that can reuse the microwaves that are not absorbed by the heating target 6 due to its shape.
  • the surface wave excitation body 30 has a shape curved in U-shape in plan view.
  • the surface wave exciter 30 includes a straight portion 30a, a curved portion 30b, and a straight portion 30c. Heating the object 6 is straight portion 30a, so as to extend over the 30c, is mounted on the mounting table 4 (not shown).
  • the straight portion 30a, the curved portion 30b, and the straight portion 30c correspond to a first portion, a second portion, and a third portion, respectively.
  • the straight part 30a extends linearly in plan view, and propagates the surface wave S1 obtained from the microwave supplied via the coupling part 12 in the propagation direction D1.
  • the surface wave S2 which is a part of the surface wave S1 further propagates through the straight part 30a without being absorbed by the heating object 6, and reaches the end of the straight part 30a.
  • the curved portion 30b has a fan shape with a central angle of 180 degrees in plan view, and connects the straight portion 30a and the straight portion 30c.
  • the surface wave S2 propagated from the straight portion 30a to the curved portion 30b in the propagation direction D1 propagates from the curved portion 30b to the straight portion 30c in the propagation direction D2. That is, the bending portion 30b changes the propagation direction of the surface wave S2. In the present embodiment, the propagation direction of the surface wave S2 is reversed.
  • the straight portion 30c is connected to the curved portion 30b and extends linearly in plan view.
  • the straight line portion 30c propagates the surface wave S2 whose propagation direction is reversed by the bending portion 30b in the propagation direction D2.
  • the heating object 6 is heated by the surface wave S1 obtained by the microwave supplied through the coupling portion 12 propagating through the straight portion 30a.
  • the heating object 6 is also heated by the surface wave S2 propagating through the straight portion 30c in the propagation direction reversed by the curved portion 30b.
  • the reuse unit is not configured by separate members such as the reflection unit 14 and the matching unit 22 as in the first and second embodiments.
  • Curved portion 30b and the straight portion 30c contained in the surface wave excitation body 30 functions as a reusable part.
  • the high-frequency heating device 1 d uses the microwave that has not been absorbed by the heating object 6 again for heating the heating object 6. In this way, the high-frequency heating device 1d can reuse the microwave that has not been absorbed by the heating object for heating the heating object. As a result, utilization efficiency of microwave energy can be improved.
  • the reflecting portion 14 is provided so as to cover the terminal side 17 of the surface wave exciter 10.
  • the reflection unit 14 may cover the entire surface wave exciter 10.
  • the metal plates 11 included in the surface wave exciter 10 all have the same height.
  • the metal plate 11 covered with the reflecting portion 14 may have a height that gradually decreases as the end plate 17 approaches. With this configuration, the surface wave can be reflected with higher accuracy.
  • Embodiment 2 a rectenna is given as an example of the conversion unit 24. However, if it is possible to convert the microwave into DC power, but is not limited thereto.
  • the coupling portion 32 is provided on the feeding side 33 which is the end of the surface wave excitation body 20 other than the feeding side 15 and the termination side 17.
  • the feeding side 33 may be provided on the feeding side 15 or the terminal side 17.
  • the surface-wave exciter 20 according to the third embodiment has a pin-type stub structure.
  • the surface acoustic wave excitation body 10 according to the first and second embodiments and the surface acoustic wave excitation body 30 according to the fourth embodiment may have a pin-type stub structure.
  • the surface wave exciter 30 has a U-shape.
  • the shape of the surface wave excitation body 30 is not limited to this as long as the propagation direction of the surface wave S2 propagated through the surface wave excitation body 30 is changed.
  • the present disclosure can be applied to a microwave oven, a drying apparatus, a ceramic heating apparatus, a garbage disposal machine, a semiconductor manufacturing apparatus, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

高周波加熱装置(1a)は、生成部(8)と表面波励振体(10)と第1結合部(12)と再利用部(14)とを備える。生成部(8)はマイクロ波を生成する。表面波励振体(10)は、周期構造体を有し、マイクロ波を表面波モードで伝播させて加熱対象物(6)を加熱する。第1結合部(12)は、表面波励振体(10)の一つの端部(15)に設けられる。第1結合部(12)を介して、生成部(8)により生成されたマイクロ波が表面波励振体(10)に供給される。再利用部(14)は、表面波励振体(10)の一つの端部(15)からマイクロ波の伝播方向に位置する表面波励振体(10)の別の端部(17)に到達したマイクロ波を、加熱対象物(6)の加熱のために再利用する。本態様によれば、加熱対象物に吸収されなかったマイクロ波を、加熱対象物の加熱のために再利用することができる。

Description

高周波加熱装置
 本開示は、電子レンジなどの高周波加熱装置に関する。
 従来、表面波伝送線路にマイクロ波を供給して、食品などの加熱対象物を加熱する高周波加熱装置が開発されている。
 例えば、特許文献1は、表面波伝送線路に直接的にマイクロ波を供給することで、表面波伝送線路に載置された冷凍寿司を解凍する高周波加熱装置を開示する。
特開平8-166133号公報
 高周波加熱装置の分野では、加熱対象物を効率的に加熱することが長年の課題である。本開示は、上記課題の解決に寄与する高周波加熱装置を提供することを目的とする。
 本開示の一態様の高周波加熱装置は、生成部と表面波励振体と第1結合部と再利用部とを備える。
 生成部はマイクロ波を生成する。表面波励振体は、周期構造体を有し、マイクロ波を表面波モードで伝播させて加熱対象物を加熱する。第1結合部は、表面波励振体の一つの端部に設けられる。第1結合部を介して、生成部により生成されたマイクロ波が表面波励振体に供給される。
 再利用部は、表面波励振体の一つの端部からマイクロ波の伝播方向に位置する表面波励振体の別の端部に到達した表面波モードのマイクロ波を、加熱対象物の加熱のために再利用する。
 本態様によれば、加熱対象物に吸収されなかったマイクロ波を、加熱対象物の加熱のために再利用することができる。その結果、マイクロ波のエネルギーの利用効率を向上させることができる。
図1は、実施の形態1に係る高周波加熱装置の構成を模式的に示す縦断面図である。 図2は、実施の形態1に係る高周波加熱装置の構成を模式的に示す横断面図である。 図3は、実施の形態2に係る高周波加熱装置の構成を模式的に示す横断面図である。 図4は、実施の形態3に係る高周波加熱装置の構成を模式的に示す横断面図である。 図5は、実施の形態3に係る表面波励振体の構成を示す斜視図である。 図6は、実施の形態3に係る表面波励振体の構成を示す斜視図である。 図7は、実施の形態4に係る高周波加熱装置の構成を模式的に示す横断面図である。
 本開示の第1の態様の高周波加熱装置は、態様の高周波加熱装置は、生成部と表面波励振体と第1結合部と再利用部とを備える。
 生成部はマイクロ波を生成するように構成される。表面波励振体は、周期構造体を有し、マイクロ波を表面波モードで伝播させて加熱対象物を加熱するように構成される。第1結合部は、表面波励振体の一つの端部に設けられる。第1結合部を介して、生成部により生成されたマイクロ波が表面波励振体に供給される。
 再利用部は、表面波励振体の一つの端部からマイクロ波の伝播方向に位置する表面波励振体の別の端部に到達した表面波モードのマイクロ波を、加熱対象物の加熱のために再利用するように構成される。
 本開示の第2の態様の高周波加熱装置によれば、第1の態様において、再利用部は、表面波励振体の別の端部に設けられ、表面波励振体の別の端部に到達したマイクロ波を反射するように構成された反射部を含む。
 本開示の第3の態様の高周波加熱装置によれば、第2の態様において、反射部は、表面波励振体の別の端部を覆う導波管である。
 本開示の第4の態様の高周波加熱装置によれば、第1の態様において、再利用部は、表面波励振体の別の端部に設けられ、別の端部に到達した表面波モードのマイクロ波を、インピーダンス整合によりモード変換するように構成された整合部を含む。
 本開示の第5の態様の高周波加熱装置は、第4の態様に加えて、直流電力を蓄える蓄電部をさらに備える。再利用部は、整合部によりモード変換されたマイクロ波を直流電力に変換し、直流電力を蓄電部に供給するように構成された変換部をさらに含む。
 本開示の第6の態様の高周波加熱装置によれば、第4の態様において、再利用部は、表面波励振体のいずれかの端部に設けられた第2結合部と、整合部と第2結合部とを接続するマイクロ波伝送線とをさらに含む。
 本開示の第7の態様の高周波加熱装置によれば、第1の態様において、表面波励振体は、第1結合部を介して供給されたマイクロ波から得られた表面波を伝播させる第1部分と、第1部分に接続され、表面波の伝播方向を変更するように構成された第2部分と、第2部分に接続され、変更された伝播方向に表面波を伝播させる第3部分と、を含む。本態様において、再利用部は第2部分および第3部分である。
 本開示の第8の態様の高周波加熱装置によれば、第1から第7の態様のいずれかにおいて、周期構造体が、水平方向に周期的に配置された複数の柱状のピンを有する。
 以下、本開示に係る高周波加熱装置の好適な実施の形態について、添付の図面を参照しながら説明する。本開示の高周波加熱装置は、具体的には電子レンジである。しかし、本開示の高周波加熱装置はこれに限定されるものではなく、誘電加熱を利用した加熱装置、生ゴミ処理機、半導体製造装置などを含む。
 以下の説明において、同一または同等の構成要素には同じ参照符号を付し、重複する説明を省略する。
 (実施の形態1)
 <全体構成>
 図1、図2はそれぞれ、本開示の実施の形態1に係る高周波加熱装置1aの構成を模式的に示す縦断面図、横断面図である。
 図1、図2に示すように、高周波加熱装置1aは、加熱室2と生成部8と表面波励振体10と結合部12と反射部14と制御部16とを備える。高周波加熱装置1aは、載置台4の上に載置された加熱対象物6を、表面波励振体10の表面を表面波モードで伝播するマイクロ波によって加熱するように構成される。
 なお、図2は、表面波モードのマイクロ波が表面波励振体10を伝播する様子、および、載置台4(図2では不図示)上の加熱対象物6の載置位置を模式的に示している。
 以下、各構成要素について説明する。
 <生成部>
 生成部8は、マグネトロンとインバータとを有し、制御部16の制御の下、マイクロ波を生成するように構成される。固体発振器と電力増幅器とが生成部8を構成してもよい。
 <表面波励振体>
 表面波励振体10は、載置台4の下方に設けられる。表面波励振体10は、マイクロ波を表面波モードで伝播させて、載置台4に載置された加熱対象物6を加熱する。
 表面波励振体10は、金属周期構造体であるスタブ型表面波励振体である。表面波励振体10は、金属板13上に所定間隔で配置された複数の金属板11を有する。
 表面波励振体10は、スタブ型表面波励振体ではなく、金属板を交差指状に打ち抜いたインターデジタル型表面波励振体でもよい。表面波励振体10は、金属周期構造体ではなく、アルミナ板、ベークライト板などの誘電体板で構成されてもよい。
 表面波励振体10の励振周波数は、材料、寸法などに依存する。スタブ型表面波励振体の場合、金属板11の高さ、間隔などを適切に選択することで、励振周波数を所望の値に設定することができる。一般的に、表面波励振体10の励振周波数は、金属板11の高さが低いほど高く、金属板11の間隔が狭いほど高い。
 金属板11の各々は、互いに平行に配置される。表面波励振体10は、金属板11に垂直な方向、すなわち金属板11の配列方向に表面波を伝播させる。表面波励振体10上を、表面波モードで伝播するマイクロ波の伝播方向は、金属板11の配列方向と一致する。
 <結合部>
 表面波励振体10の一つの端部(図1、図2では表面波励振体10の左端)である給電辺15に、結合部12が設けられる。生成部8で生成されたマイクロ波は、結合部12を介して給電辺15から表面波励振体10に供給される。本実施の形態では、結合部12は方形導波管である。結合部12は第1結合部に相当する。
 <反射部>
 終端辺17を覆うように、反射部14が設けられる。終端辺17は、給電辺15から伝播方向D1に位置する表面波励振体10の別の端部(図1、図2では表面波励振体10の右端)である。反射部14は、表面波励振体10の表面を伝播した表面波モードのマイクロ波を終端辺17で全反射する。本実施の形態では、反射部14は方形導波管である。
 <表面波励振体の作用>
 表面波励振体10の作用について、図2を用いて説明する。
 図2に示すように、生成部8により生成されたマイクロ波は、結合部12を介して給電辺15から表面波励振体10に供給される。
 マイクロ波の供給により、表面波励振体10の表面を伝播する表面波S1が発生する。表面波S1は、伝播方向D1(図では左から右への方向)に伝播し、加熱対象物6を下方から加熱する。
 表面波S1のうちの一部である表面波S2は、加熱対象物6に吸収されずに、表面波励振体10の表面を伝播方向D1にさらに伝播し、表面波励振体10の終端辺17に到達する。反射部14は、表面波S2を終端辺17で反射し、表面波S2の伝播方向を反転させる。表面波S2の伝播方向は、伝播方向D1から伝播方向D2(図では右から左への方向)に変更される。
 反射部14により反射された表面波S2は、表面波励振体10の表面を終端辺17から給電辺15に向かって伝播し、加熱対象物6を下方から加熱する。
 従来の高周波加熱装置は、加熱対象物6に吸収されずに表面波励振体の終端辺に到達した表面波モードのマイクロ波を空間に放射していた。空間に放射されたマイクロ波は加熱対象物6の加熱に寄与しないため、マイクロ波のエネルギーの利用効率は低下する。
 本実施の形態では、表面波S1だけでなく、反射部14により反射された表面波S2によっても、加熱対象物6が加熱される。このようにして、高周波加熱装置1aは、加熱対象物に吸収されなかったマイクロ波を、加熱対象物の加熱のために再利用することができる。その結果、マイクロ波のエネルギーの利用効率を向上させることができる。
 すなわち、本実施の形態では、反射部14が、加熱対象物6に吸収されずに表面波励振体の終端辺に到達したマイクロ波を再利用するように構成された再利用部に相当する。
 (実施の形態2)
 本開示の実施の形態2に係る高周波加熱装置1bについて、実施の形態1との相違点を中心に説明する。図3は、高周波加熱装置1bの構成を模式的に示す横断面図である。図3は、表面波モードのマイクロ波が表面波励振体10を伝播する様子、および、載置台4(図3では不図示)上の加熱対象物6の載置位置を模式的に示している。
 実施の形態1では、表面波励振体10の終端辺17に到達した表面波S2を反射することで、マイクロ波の再利用が行われる。一方、実施の形態2では、インピーダンス整合により、表面波モードのマイクロ波を別のモードのマイクロ波に変換することで、マイクロ波の再利用が行われる。
 図3に示すように、高周波加熱装置1bは、反射部14の代わりに、整合部22と変換部24とを備える。本実施の形態では、整合部22と変換部24とが再利用部に相当する。高周波加熱装置1bはさらに蓄電部26を備える。
 整合部22は、表面波励振体10の終端辺17に接続される。変換部24は、マイクロ波伝送線23を介して整合部22に接続され、直流電力伝送線25を介して蓄電部26に接続される。蓄電部26は生成部8に接続され、生成部8に電力を供給する。
 整合部22は、マイクロ波に対してインピーダンス整合を行うように構成されたインピーダンス整合器である。インピーダンス整合により、表面波モードのマイクロ波を同軸モードのマイクロ波または導波管モードのマイクロ波に変換することができる。以下、これをインピーダンス整合によるモード変換という。
 表面波モードのマイクロ波を導波管モードへ変換する場合には、整合部22が、階段状のスタブ構造を有してもよい。表面波モードのマイクロ波を同軸モードのマイクロ波に変換する場合には、整合部22が、表面波モードのマイクロ波を導波管モードのマイクロ波に変換し、その後、同軸モードのマイクロ波に変換する2段階の構成を有してもよい。整合部22はこれらに限らず、種々の構成を採り得る。
 マイクロ波伝送線23は、例えば、同軸線路または導波管路により構成することができる。本実施の形態によれば、整合部22により、表面波モードのマイクロ波が同軸モードまたは導波管モードに変換される。このため、マイクロ波伝送線23を介して、別の構成要素である変換部24にマイクロ波を伝送することができる。
 変換部24は、交流電力であるマイクロ波を直流電力に変換する部材である。変換部24には、例えばレクテナ(Rectifying antenna)を用いてもよい。
 上記構成において、結合部12を介して供給されたマイクロ波から得られた表面波S1によって加熱対象物6が加熱される。加熱対象物6に吸収されずに表面波励振体10を伝播した表面波S2が終端辺17に到達する。
 整合部22は、終端辺17に到達した表面波モードのマイクロ波(表面波S2)を、インピーダンス整合によりモード変換し、同軸モードまたは導波管モードのマイクロ波を生成する。整合部22は、モード変換されたマイクロ波を、マイクロ波伝送線23を介して変換部24に伝送する。
 変換部24は、そのマイクロ波を直流電力に変換し、直流電力伝送線25を介して直流電力を蓄電部26に伝送する。蓄電部26は、直流電力を生成部8に供給する電力として蓄える。
 以上のように、高周波加熱装置1bは、加熱対象物6に吸収されなかったマイクロ波を、整合部22および変換部24を用いて直流電力に変換する。その直流電力は蓄電部26に蓄えられ、必要な場合に生成部8に供給される。
 このようにして、高周波加熱装置1bは、加熱対象物に吸収されなかったマイクロ波を、加熱対象物の加熱のために再利用することができる。その結果、マイクロ波のエネルギーの利用効率を向上させることができる。
 (実施の形態3)
 本開示の実施の形態3に係る高周波加熱装置1cについて、実施の形態2との相違点を中心に説明する。図4は、高周波加熱装置1cの構成を模式的に示す横断面図である。図4は、表面波モードのマイクロ波が表面波励振体20を伝播する様子、および、載置台4(図4では不図示)上の加熱対象物6の載置位置を模式的に示している。
 図4に示すように、高周波加熱装置1cは、変換部24と蓄電部26とを備えず、その代わりに結合部32を備える。高周波加熱装置1cは、表面波励振体10の代わりに表面波励振体20を備える。表面波励振体20は、実施の形態2に係る表面波励振体10の構成と異なる構成を有する。結合部32は第2結合部に相当する。
 高周波加熱装置1cは、結合部12に加えて結合部32を有する。結合部32は、給電辺15および終端辺17以外の表面波励振体20の端部である給電辺33に設けられる。本実施の形態では、表面波励振体20は、平面視で略正方形の形状を有し、結合部32は、給電辺15に直交する給電辺33に設けられる。結合部32は、マイクロ波伝送線31を介して整合部22に接続される。
 このように構成において、結合部12を介して供給されるマイクロ波から得られた表面波S1によって、加熱対象物6が加熱される。表面波S1のうちの一部である表面波S2は、加熱対象物6に吸収されずに表面波励振体10を伝播し、終端辺17に到達する。
 整合部22は、終端辺17に到達した表面波モードのマイクロ波(表面波S2)をインピーダンス整合によりモード変換し、同軸モードまたは導波管モードのマイクロ波を生成する。整合部22は、モード変換されたマイクロ波を、マイクロ波伝送線31を介して結合部32に伝送する。
 このマイクロ波は、結合部32を介して、給電辺33から表面波励振体20に供給される。このマイクロ波から、表面波S1、S2の伝播方向D1と直交する伝播方向D3に伝播する表面波S3が生じる。表面波S3によっても加熱対象物6が加熱される。すなわち、本実施の形態では、整合部22と結合部32とが再利用部に相当する。
 本実施の形態に係る表面波励振体20は、ピン型スタブ構造を有する。ピン型スタブ構造とは、水平方向に周期的に配置された複数の柱状のピンを有する周期構造体である。
 図5、図6は、ピン型スタブ構造の例を示している。図5に示す表面波励振体20は、四角柱形状のピン20aを有する。図6に示す表面波励振体20は、円柱形状のピン20bを有する。表面波励振体20では、ピンの配列方向に沿って、すなわち、ピンが配置された水平面に平行な任意の方向に表面波が伝播することができる。
 以上のように、高周波加熱装置1cは、加熱対象物6に吸収されなかったマイクロ波を、結合部32を介して表面波励振体20に供給し直す。このようにして、高周波加熱装置1cは、加熱対象物に吸収されなかったマイクロ波を、加熱対象物の加熱のために再利用することができる。その結果、マイクロ波のエネルギーの利用効率を向上させることができる。
 (実施の形態4)
 本開示の実施の形態4に係る高周波加熱装置1dについて、実施の形態1との相違点を中心に説明する。図7は、高周波加熱装置1dの構成を模式的に示す横断面図である。図7は、表面波モードのマイクロ波が表面波励振体30を伝播する様子、および、載置台4(図7では不図示)上の加熱対象物6の載置位置を模式的に示している。
 高周波加熱装置1dは、再利用部である反射部14を備えず、その形状により加熱対象物6に吸収されなかったマイクロ波を再利用することが可能な表面波励振体30を備える。
 図7に示すように、表面波励振体30は、平面視においてU字状に湾曲した形状を有する。具体的には、表面波励振体30は、直線部30aと、湾曲部30bと、直線部30cとを有する。加熱対象物6は直線部30a、30cにまたがるように、載置台4(不図示)に載置される。直線部30a、湾曲部30b、直線部30cは、第1部分、第2部分、第3部分にそれぞれ相当する。
 直線部30aは、平面視において直線状に延在し、結合部12を介して供給されたマイクロ波から得られた表面波S1を伝播方向D1に伝播させる。表面波S1の一部である表面波S2は、加熱対象物6に吸収されずに直線部30aをさらに伝播し、直線部30aの終端に到達する。
 湾曲部30bは、平面視において中心角が180度の扇形形状を有し、直線部30aと直線部30cを接続する。直線部30aから湾曲部30bに伝播方向D1に伝播した表面波S2は、湾曲部30bから直線部30cに伝播方向D2に伝播する。すなわち、湾曲部30bは、表面波S2の伝播方向を変更する。本実施の形態では、表面波S2の伝播方向は反転する。
 直線部30cは、湾曲部30bに接続されて平面視において直線状に延在する。直線部30cは、湾曲部30bにより伝播方向が反転された表面波S2を伝播方向D2に伝播させる。
 上記構成によれば、結合部12を介して供給されたマイクロ波が直線部30aを伝播することで得られた表面波S1によって、加熱対象物6が加熱される。それに加えて、湾曲部30bにより反転された伝播方向に直線部30cを伝播する表面波S2によっても、加熱対象物6が加熱される。
 本実施の形態では、再利用部は、実施の形態1、2のように反射部14、整合部22などの別部材により構成されない。表面波励振体30に含まれた湾曲部30bおよび直線部30cが再利用部として機能する。
 以上のように、高周波加熱装置1dは、加熱対象物6に吸収されなかったマイクロ波を、再度、加熱対象物6の加熱のために用いる。このようにして、高周波加熱装置1dは、加熱対象物に吸収されなかったマイクロ波を、加熱対象物の加熱のために再利用することができる。その結果、マイクロ波のエネルギーの利用効率を向上させることができる。
 以上、実施の形態1~4について説明したが、本開示はこれらの実施の形態に限定されるものではない。
 例えば、実施の形態1では、反射部14が、表面波励振体10の終端辺17を覆うように設けられる。しかし、表面波を反射させることができれば、他の構成も適用可能である。例えば、反射部14が表面波励振体10の全体を覆うようにしもよい。
 実施の形態1では、表面波励振体10に含まれた金属板11が全て同じ高さを有する。しかし、例えば、反射部14に覆われた金属板11が、終端辺17に近づくにつれて段階的に低くなる高さを有してもよい。この構成により、表面波をより精度良く反射することができる。
 実施の形態2では、変換部24の例としてレクテナが挙げられる。しかし、マイクロ波を直流電力に変換することができれば、これに限定されるものではない。
 実施の形態3では、結合部32は、給電辺15および終端辺17以外の表面波励振体20の端部である給電辺33に設けられる。しかし、給電辺15または終端辺17に給電辺33が設けられてもよい。
 本開示では、実施の形態3に係る表面波励振体20だけがピン型スタブ構造を有する。しかし、実施の形態1,2に係る表面波励振体10、実施の形態4に係る表面波励振体30がピン型スタブ構造を有してもよい。
 実施の形態4では、表面波励振体30はU字形状を有する。しかし、表面波励振体30を伝播した表面波S2の伝播方向を変更するものであれば、表面波励振体30の形状は、これに限るものではない。
 本開示は、電子レンジ、乾燥装置、陶芸用加熱装置、生ゴミ処理機、半導体製造装置などに適用可能である。
 1a,1b,1c,1d 高周波加熱装置
 4 載置台
 6 加熱対象物
 8 生成部
 10,20,30 表面波励振体
 12 結合部(第1結合部)
 14 反射部(再利用部)
 15 給電辺(表面波励振体の一つの端部)
 16 制御部
 17 終端辺(表面波励振体の別の端部)
 20a,20b ピン
 22 整合部(再利用部)
 23,31 マイクロ波伝送線
 24 変換部(再利用部)
 25 直流電力伝送線
 26 蓄電部
 30a 直線部(第1部分)
 30b 湾曲部(第2部分)
 30c 直線部(第3部分)
 32 結合部(第2結合部、再利用部)
 33 給電辺

Claims (8)

  1.  マイクロ波を生成するように構成された生成部と、
     周期構造体を有し、前記マイクロ波を表面波モードで伝播させて加熱対象物を加熱するように構成された表面波励振体と、
     前記表面波励振体の一つの端部に設けられ、前記生成部により生成された前記マイクロ波が前記表面波励振体に供給される第1結合部と、
     前記表面波励振体の前記一つの端部から前記マイクロ波の伝播方向に位置する前記表面波励振体の別の端部に到達した表面波モードの前記マイクロ波を、前記加熱対象物の加熱のために再利用するように構成された再利用部と、を備えた高周波加熱装置。
  2.  前記再利用部が、前記表面波励振体の前記別の端部に設けられ、前記表面波励振体の前記別の端部に到達した前記マイクロ波を反射するように構成された反射部を含む請求項1に記載の高周波加熱装置。
  3.  前記反射部が、前記表面波励振体の前記別の端部を覆う導波管である請求項2に記載の高周波加熱装置。
  4.  前記再利用部が、前記表面波励振体の前記別の端部に設けられ、前記別の端部に到達した表面波モードの前記マイクロ波を、インピーダンス整合によりモード変換するように構成された整合部を含む請求項1に記載の高周波加熱装置。
  5.  直流電力を蓄える蓄電部をさらに備えた高周波加熱装置であって、
     前記再利用部が、前記整合部によりモード変換された前記マイクロ波を直流電力に変換し、前記直流電力を前記蓄電部に供給するように構成された変換部をさらに含む請求項4に記載の高周波加熱装置。
  6.  前記再利用部が、前記表面波励振体のいずれかの端部に設けられた第2結合部と、前記整合部と前記第2結合部とを接続するマイクロ波伝送線と、をさらに含む請求項4に記載の高周波加熱装置。
  7.  前記表面波励振体が、前記第1結合部を介して供給された前記マイクロ波から得られた表面波を伝播させる第1部分と、前記第1部分に接続され、前記表面波の伝播方向を変更するように構成された第2部分と、前記第2部分に接続され、変更された伝播方向に前記表面波を伝播させる第3部分と、を含み、
     前記再利用部が前記第2部分および前記第3部分である請求項1に記載の高周波加熱装置。
  8.  前記周期構造体が、水平方向に周期的に配置された複数の柱状のピンを有する請求項1に記載の高周波加熱装置。
PCT/JP2017/026620 2016-08-22 2017-07-24 高周波加熱装置 WO2018037802A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018535538A JP6967707B2 (ja) 2016-08-22 2017-07-24 高周波加熱装置
CN201780029140.3A CN109076656B (zh) 2016-08-22 2017-07-24 高频加热装置
EP17843288.6A EP3503681B1 (en) 2016-08-22 2017-07-24 High-frequency heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-162145 2016-08-22
JP2016162145 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018037802A1 true WO2018037802A1 (ja) 2018-03-01

Family

ID=61245609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026620 WO2018037802A1 (ja) 2016-08-22 2017-07-24 高周波加熱装置

Country Status (4)

Country Link
EP (1) EP3503681B1 (ja)
JP (1) JP6967707B2 (ja)
CN (1) CN109076656B (ja)
WO (1) WO2018037802A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780909A4 (en) * 2018-04-06 2021-05-05 Panasonic Intellectual Property Management Co., Ltd. HIGH FREQUENCY HEATING DEVICE
WO2023189941A1 (ja) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 高周波加熱装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040533B (zh) * 2021-11-19 2022-11-22 北京航空航天大学 一种喇叭激励介质表面波均匀加热装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778597U (ja) * 1981-09-22 1982-05-14
JPS57124875A (en) * 1981-01-27 1982-08-03 Sanyo Electric Co Microwave heater

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1063681A (en) * 1975-04-30 1979-10-02 Shigeru Kusunoki Microwave heating apparatus with movable waveguide and support
WO2004098241A1 (ja) * 2003-04-25 2004-11-11 Matsushita Electric Industrial Co., Ltd. 高周波加熱装置及びその制御方法
JP2007192518A (ja) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd 高周波加熱装置
WO2009050893A1 (ja) * 2007-10-18 2009-04-23 Panasonic Corporation マイクロ波加熱装置
WO2013018358A1 (ja) * 2011-08-04 2013-02-07 パナソニック株式会社 マイクロ波加熱装置
CN104604331B (zh) * 2012-12-07 2017-04-05 松下知识产权经营株式会社 微波处理装置
US10426001B2 (en) * 2013-03-15 2019-09-24 Tokyo Electron Limited Processing system for electromagnetic wave treatment of a substrate at microwave frequencies
JP2015162272A (ja) * 2014-02-26 2015-09-07 パナソニック株式会社 マイクロ波処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124875A (en) * 1981-01-27 1982-08-03 Sanyo Electric Co Microwave heater
JPS5778597U (ja) * 1981-09-22 1982-05-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780909A4 (en) * 2018-04-06 2021-05-05 Panasonic Intellectual Property Management Co., Ltd. HIGH FREQUENCY HEATING DEVICE
WO2023189941A1 (ja) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 高周波加熱装置

Also Published As

Publication number Publication date
CN109076656B (zh) 2020-12-08
EP3503681B1 (en) 2020-05-13
JP6967707B2 (ja) 2021-11-17
JPWO2018037802A1 (ja) 2019-06-20
CN109076656A (zh) 2018-12-21
EP3503681A1 (en) 2019-06-26
EP3503681A4 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
CN103718644B (zh) 微波加热装置
WO2018037802A1 (ja) 高周波加熱装置
JP2007317458A (ja) マイクロ波利用装置
WO2014087666A1 (ja) マイクロ波処理装置
Leung et al. Wireless electric power transfer based on Acoustic Energy through conductive media
JPWO2016006249A1 (ja) マイクロ波加熱装置
CN109156054B (zh) 高频加热装置
JP2013098106A (ja) マイクロ波加熱装置
CN109315029B (zh) 高频加热装置
WO2018037696A1 (ja) 高周波加熱装置
JP6671005B2 (ja) マイクロ波加熱装置
JPWO2018037801A1 (ja) 高周波加熱装置
JP7178556B2 (ja) 高周波加熱装置
JP7285413B2 (ja) 高周波加熱装置
JP5708270B2 (ja) 送電装置、受電装置、及び電力伝送システム
JP2020013759A (ja) 電磁波加熱装置、及び、アンテナ
JP6861332B2 (ja) 高周波加熱装置
JP2008226510A (ja) マイクロ波加熱装置
JP2007141538A (ja) マイクロ波加熱装置
JP2005071724A (ja) マイクロ波加熱装置
KR101031107B1 (ko) 진동체를 이용한 가변 길이 마이크로파 반응기 및 그 방법
JP5445155B2 (ja) マイクロ波加熱装置
JP2020013760A (ja) 電磁波加熱装置
JP2020013761A (ja) 電磁波加熱装置
JP4759870B2 (ja) 高周波加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018535538

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017843288

Country of ref document: EP