WO2023189941A1 - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
WO2023189941A1
WO2023189941A1 PCT/JP2023/011229 JP2023011229W WO2023189941A1 WO 2023189941 A1 WO2023189941 A1 WO 2023189941A1 JP 2023011229 W JP2023011229 W JP 2023011229W WO 2023189941 A1 WO2023189941 A1 WO 2023189941A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface wave
wave line
matching
heating device
high frequency
Prior art date
Application number
PCT/JP2023/011229
Other languages
English (en)
French (fr)
Inventor
義治 大森
昌之 久保
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023189941A1 publication Critical patent/WO2023189941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines

Definitions

  • the present disclosure relates to a high-frequency heating device that propagates surface waves.
  • Patent Document 1 discloses a high-frequency heating device that heats an object to be heated such as food, which is equipped with an adjustment means in a waveguide for guiding high-frequency power to a surface wave exciter that propagates surface waves. According to Patent Document 1, by performing impedance matching according to the amount of the object to be heated, the maximum power of the oscillation source can be input to the object to be heated.
  • Patent Document 2 includes a surface wave propagation line, a transmission section, and a matching section that is arranged between the surface wave transmission line and the transmission section and matches impedance between the surface wave propagation line and the transmission section.
  • a microwave processing device is disclosed. According to Patent Document 2, high frequency power can be efficiently transmitted by canceling reflected waves from the surface wave transmission line.
  • Patent Document 3 discloses a surface wave generator for a high-frequency heating device, which includes a plurality of band-shaped upright pieces that generate surface waves. Specifically, Patent Document 3 discloses preparing a plurality of surface wave generators each having a band-shaped upright piece having different heights in a predetermined region and other regions. According to Patent Document 3, optimum heating can be performed by varying the generation intensity of surface waves depending on the type of food.
  • Patent Document 3 When preparing a plurality of surface wave lines corresponding to various foods as described in Patent Document 3, it is necessary to prepare a large number of surface wave lines corresponding to the types of foods. It is also assumed that they will not be used properly. Therefore, the surface wave generator described in Patent Document 3 is not suitable for practical use.
  • the present disclosure aims to provide a high-frequency heating device that ensures impedance matching according to various foods and maximizes the heating of foods by a surface wave line.
  • a high-frequency heating device includes a power feeding section, a surface wave line, a coupling section, and a matching section.
  • the power supply unit supplies high frequency power.
  • the surface wave line propagates high frequency power as a surface wave.
  • the coupling section couples the surface wave line and the power feeding section.
  • the matching section is installed between the coupling section and the end of the surface wave line.
  • radiation of high-frequency power into space and reflected waves in the surface wave line can be minimized. Further, impedance matching can be ensured at a position suitable for maximizing the heating of the object to be heated by the surface wave line. As a result, desired heat treatments can be performed on various objects to be heated.
  • FIG. 1 is a schematic front view of a high-frequency heating device according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram for explaining mismatch points in the surface wave line.
  • FIG. 3 is a schematic perspective view of the matching section in the high-frequency heating device according to the first embodiment.
  • FIG. 4 is a diagram for explaining a high frequency current flow path in a surface wave line.
  • FIG. 5 is a schematic perspective view of the matching section in the high-frequency heating device according to a modification of the first embodiment.
  • FIG. 6 is a schematic plan view of a surface wave line in a high frequency heating device according to Embodiment 2 of the present disclosure.
  • FIG. 7 is a schematic perspective view of a surface wave line in a high-frequency heating device according to Embodiment 3 of the present disclosure.
  • the inventors discovered the following problem. That is, a large amount of radiated and reflected power occurs at a plurality of mismatch points that exist in the propagation path of high-frequency power on the surface wave line. Matching at one location maximizes propagation power by minimizing reflected waves at that location, but makes little contribution to matching at other locations.
  • Embodiment 1 a high-frequency heating device according to Embodiment 1 of the present disclosure will be described with reference to FIGS. 1 to 4.
  • FIG. 1 is a schematic front view of a high-frequency heating device according to the present embodiment.
  • FIG. 2 is a diagram for explaining mismatch points in the surface wave line 7.
  • FIG. 3 is a schematic perspective view of the matching section in the high-frequency heating device according to the present embodiment.
  • the high-frequency heating device according to the present embodiment includes a heating chamber 1, a high-frequency power generation section 4, a waveguide 5, a power feeding section 6, a surface wave line 7, A coupling portion 10 is provided.
  • the heating chamber 1 is a cavity for accommodating the object to be heated 2, and includes six metal walls and a mounting table 3 disposed inside.
  • the high frequency power generation section 4 is configured with a magnetron or a semiconductor oscillator, and generates high frequency power.
  • the waveguide 5 supplies the high frequency power generated by the high frequency power generating section 4 to the power feeding section 6 .
  • the coupling section 10 couples the power feeding section 6 and the surface wave line 7.
  • the power feeding section 6 is a rod-shaped member connected to the coupling section 10.
  • the power supply section 6 supplies the high frequency power supplied by the waveguide 5 to the surface wave line 7 via the coupling section 10 .
  • the surface wave line 7 is a stub type surface wave exciter having a periodic structure.
  • the surface wave line 7 includes a basic conductor 11, a plurality of stub-shaped conductors 12, and a radiation section 14.
  • the surface wave line 7 propagates the high frequency power received via the coupling part 10 to the terminal end 8 as a surface wave.
  • the basic conductor 11 is a horizontal metal plate.
  • the plurality of stub-shaped conductors 12 are a plurality of vertical metal plates arranged periodically on the basic conductor 11 at predetermined intervals in the propagation direction of high-frequency power.
  • the basic conductor 11 has a termination 8 .
  • the terminal end 8 is the terminal end of the surface wave line 7 in the direction orthogonal to the plurality of stub-shaped conductors 12.
  • a radiating part 14 is arranged at the terminal end 8.
  • each of the plurality of stub-shaped conductors 12 are optimized so that the surface wave line 7 can fully exhibit its function.
  • the surface wave line 7 can propagate high frequency power as a surface wave without radiating it into the heating chamber 1.
  • the high frequency power as a surface wave propagating through the surface wave line 7 strongly heats the object 2 placed near the surface wave line 7 and browns the object 2 .
  • the radiation section 14 is a flat antenna arranged tilting toward the upper space.
  • the radiation section 14 has a length that is one-fourth of the wavelength ⁇ of the high-frequency power so that it resonates in the frequency band used and the radiation efficiency is high.
  • the radiation section 14 is coupled near the portion of the basic conductor 11 where the high frequency current is maximum. Thereby, the high-frequency power that has reached the terminal end 8 is radiated from the radiator 14 into the heating chamber 1 and dielectrically heats the object 2 to be heated.
  • the radiation section 14 is connected to the terminal end 8 of the surface wave line 7 and extends toward the upper space.
  • the surface wave line 7 may be installed rotatably about the central axis of the power feeding section 6.
  • the high-frequency power 20 supplied from the power feeding section 6 propagates through the plurality of stub-shaped conductors 12 and reaches the terminal end 8 of the surface wave line 7 via the path indicated by the broken line arrow in FIG. do. Mismatch mainly occurs at locations where impedance changes rapidly in the propagation path of high-frequency power.
  • the mismatch point indicated by the broken line A is the coupling portion 10, that is, the boundary between the power feeding portion 6 and the surface wave line 7.
  • the mismatch point indicated by the broken line C is a location on the surface wave line 7 located at the boundary between the termination end 8 and the radiation section 14.
  • the mismatch point indicated by the broken line B is located on the surface wave line 7 near the boundary between the part of the mounting table 3 on which nothing is placed and the part of the mounting table 3 on which the object to be heated 2 is placed. be. Therefore, the mismatch point indicated by the broken line B varies depending on the location where the object to be heated 2 is placed.
  • the object to be heated 2 is usually placed at the center of the mounting table 3. In this case, the two mismatch points indicated by broken line A and broken line B often coincide. Therefore, at least one matching section is installed between the coupling section 10 and the terminal end 8 of the surface wave line 7.
  • the matching section 9a is installed at the position indicated by the broken line A (see FIG. 2).
  • the matching section 9b is installed at a position indicated by a broken line B (see FIG. 2).
  • the matching section 9b may be configured to be movable as necessary.
  • the matching parts 9a, 9b are installed on the side of the surface wave line 7 facing the object to be heated 2, the matching parts 9a, 9b may hinder the propagation of the surface waves. Therefore, it is preferable that the matching parts 9 a and 9 b be installed on the basic conductor 11 of the surface wave line 7 rather than on the side of the surface wave line 7 facing the object to be heated 2 .
  • the matching parts 9a and 9b are in the shape of elongated tabs.
  • the matching portion 9a has an open end 91a and a connecting end 92a.
  • the open end 91a and the connecting end 92a are both ends of the matching portion 9a in the longitudinal direction.
  • the connection end 92a is connected to a portion of the basic conductor 11 in the middle of the flow path of the high frequency power 20 (see FIG. 2).
  • the longitudinal direction of the matching portion 9a is perpendicular (including substantially perpendicular) to the longitudinal direction of the surface wave line 7, that is, the flow path of the high frequency power 20 in the surface wave line 7.
  • the length from the connecting end 92a to the open end 91a of the matching portion 9a is one wavelength or less of the high frequency power, and the width of the matching portion 9a is less than a half wavelength of the high frequency power.
  • the matching portion 9b is also connected to the basic conductor 11 similarly to the matching portion 9a.
  • the matching section 9b is connected to a portion of the basic conductor 11 downstream of the flow path of the high frequency power 20 from the matching section 9a.
  • the material of the matching parts 9a and 9b is mainly metal such as aluminum.
  • the material of the matching parts 9a, 9b is not limited to this, as long as it can provide the intended impedance to the intended location of the high frequency transmission path.
  • FIG. 4 is a diagram for explaining the flow path of the high frequency current 21 in the stub-shaped conductor 12.
  • FIG. 4 shows an instantaneous high-frequency current 21 flowing through the basic conductor 11 and the stub-shaped conductor 12 that constitute the surface wave line 7.
  • the surface wave line 7 flows in a flow path (indicated by a broken line arrow in FIG. 4) from the tip of one stub-shaped conductor 12 to the tip of another stub-shaped conductor 12 via the basic conductor 11.
  • a high frequency current 21 is repeatedly generated.
  • each of the matching parts 9a and 9b is connected to a portion of the basic conductor 11 in the middle of the flow path of the high-frequency current 21.
  • the surface wave line 7 propagates high frequency power as a surface wave through the interaction between the high frequency current 21 and the electric field 22 generated at the tip of the stub-shaped conductor 12.
  • the matching part 9b When the heated object 2 is placed near the tip of the stub-shaped conductor 12, a change occurs in the electric field 22 near the heated object 2, and this change affects the high frequency current 21. Therefore, even if the matching part 9b is installed in a part of the basic conductor 11 that is away from the stub-shaped conductor 12 and the mounting table 3, if the matching part 9b is on the flow path of the high-frequency current 21, the matching part 9b will not function. Demonstrate.
  • the change in impedance is different between the position shown by broken line A and the position shown by broken line B.
  • the flow path of the high frequency current 21 changes from the power feeding section 6 to the surface wave line 7 along the flow of the high frequency current 21.
  • the flow path of the high frequency current 21 remains the surface wave line 7 along the flow of the high frequency current 21.
  • the impedance of the object to be heated 2 is added to the flow path of the surface wave line 7 from the place where the object to be heated 2 is placed to the terminal end 8 of the surface wave line 7 .
  • the matching portions 9a and 9b have widths, lengths, and shapes depending on their installation positions in order to achieve the performance required of them.
  • the value of the L component (inductance component) of the impedance of the matching section increases, and when the length of the matching section is shortened, the value of the L component decreases.
  • the value of the C component (capacitance component) of the impedance of the matching section increases when the area of the matching section is widened, and decreases when the area of the matching section is narrowed.
  • the length and width of the matching section 9a are set so as to ensure matching between the power feeding section 6 and the surface wave line 7.
  • the length and width of the matching portion 9b are such that a portion of the surface wave line 7 faces a portion of the mounting table 3 on which the object to be heated 2 is not placed, and a portion of the mounting table 3 on which the object to be heated 2 is placed. It is set so as to ensure matching with the portion of the surface wave line 7 that is connected to the surface wave line 7.
  • the shape of the matching part differs depending on the impedance value of each of the plurality of objects in contact with the matching part.
  • the present disclosure is not limited to this example, and it is only necessary to minimize the reflected waves in the surface wave line 7 due to the mismatch by providing an intended impedance near the mismatch point.
  • the thickness and shape may be changed.
  • a plurality of components such as a dielectric material may be combined with the surface wave line 7.
  • the high frequency power 20 propagates on the surface wave line 7 in left and right directions.
  • the display of the high frequency power 20 toward the left is omitted.
  • a matching section is similarly installed in the flow path of the high frequency power 20 toward the left side of the surface wave line 7.
  • the coupling portion 10 is located at a place where the left and right high-frequency power channels touch each other, and is a common point of mismatch between the left and right high-frequency power channels. Therefore, the matching section 9a can be involved in matching in both the left and right high frequency power flow paths.
  • One end of the matching section 9a is fixed to the basic conductor 11 so that the longitudinal direction of the matching section 9a forms a predetermined angle (perpendicular in this embodiment) to the longitudinal direction of the surface wave line 7.
  • One end of the matching section 9b is also fixed to the basic conductor 11 so that the longitudinal direction of the matching section 9b forms a predetermined angle (perpendicular in this embodiment) to the longitudinal direction of the surface wave line 7. That is, matching portions 9a and 9b are arranged at a predetermined angle (perpendicular in this embodiment) to the flow path of high frequency power 20 in surface wave line 7.
  • the other ends of each of the matching parts 9a, 9b are open ends.
  • the surface wave line 7 rotates about the central axis of the coupling part 10
  • the surface wave line 7 can rotate together with the matching parts 9a and 9b.
  • the surface wave line 7 and the matching sections 9a, 9b can be oriented in an appropriate direction for matching.
  • the object to be heated 2 is placed on the surface wave line 7 between the coupling part 10 and the terminal end 8.
  • the object to be heated 2 is usually placed at the center of the mounting table 3.
  • FIG. 5 is a schematic perspective view showing an example of the configuration of the matching section 9a to deal with this case.
  • the two mismatch points shown by broken lines A and B in FIG. 2 coincide. Therefore, it is sufficient to arrange only the matching portion 9a at the location indicated by the broken line A.
  • the high-frequency heating device has at least one matching section (matching sections 9a and 9b in FIG. 3, matching sections 9a and 9b in FIG. 7 includes only a matching portion 9a). According to the present embodiment, matching can be ensured at the mismatch points, and the heat treatment of the object to be heated 2 by the surface wave line 7 can be maximized.
  • FIG. 6 is a schematic plan view of the surface wave line 7a in the high frequency heating device according to the present embodiment.
  • the surface wave line 7a includes a basic conductor 11, a plurality of stub-shaped conductors 12, and a radiation section 14.
  • the basic conductor 11 includes basic conductors 11a, 11b, and 11c.
  • the plurality of stub-shaped conductors 12 include a plurality of stub-shaped conductors 12a, a plurality of stub-shaped conductors 12b, and a plurality of stub-shaped conductors 12c.
  • the radiation section 14 includes a radiation section 14a and a radiation section 14b.
  • the high frequency power 20 includes high frequency powers 20a, 20b, and 20c.
  • the high frequency power 20a propagates through the plurality of stub-shaped conductors 12a.
  • the high frequency power 20b propagates through the plurality of stub-shaped conductors 12b.
  • the high frequency power 20c propagates through the plurality of stub-shaped conductors 12c.
  • each of the basic conductors 11a and 11b is connected to the basic conductor 11c.
  • the basic conductor 11 has a V-shape as a whole when viewed from vertically above. That is, the surface wave line 7a also has a V-shape when viewed from vertically above.
  • the basic conductor 11c is a part of the basic conductor 11 that is connected to the coupling part 10.
  • the basic conductors 11a and 11b are two parts of the basic conductor 11 branching from the basic conductor 11c.
  • the base conductors 11a, 11b each have a termination 8a, 8b at the end opposite to the base conductor 11c.
  • the radiating portions 14a, 14b are arranged at the terminal ends 8a, 8b, respectively.
  • the plurality of stub-shaped conductors 12c are a plurality of vertical metal plates arranged periodically at predetermined intervals in the propagation direction of the high-frequency power 20c on the basic conductor 11c.
  • High frequency power 20c is branched into high frequency power 20a and high frequency power 20b.
  • High frequency power 20a, 20b propagates through stub-shaped conductors 12a, 12b, respectively.
  • the plurality of stub-shaped conductors 12a are a plurality of vertical metal plates arranged periodically at predetermined intervals in the propagation direction of the high-frequency power 20a on the basic conductor 11a.
  • the plurality of stub-shaped conductors 12b are a plurality of vertical metal plates arranged periodically at predetermined intervals in the propagation direction of the high-frequency power 20b on the basic conductor 11b.
  • the high frequency power 20a reaches the radiation section 14a via the stub-shaped conductor 12a and the terminal end 8a.
  • the high frequency power 20b reaches the radiation section 14b via the stub-shaped conductor 12b and the terminal end 8b.
  • the radiation parts 14a and 14b respectively radiate high frequency power 20a and 20b into the heating chamber 1.
  • the surface wave line 7a has a matching section 9c and two matching sections 9d.
  • the matching portion 9c is located at the location closest to the coupling portion 10 where the object to be heated 2 is placed.
  • One of the two matching parts 9d is connected to one of the branch points of the surface wave line 7a, that is, the boundary between the basic conductor 11c and the basic conductor 11a, and extends in the opposite direction to the basic conductor 11b.
  • the other of the two matching parts 9d is connected to the other branch point of the surface wave line 7a, that is, the boundary between the basic conductor 11c and the basic conductor 11b, and extends in the opposite direction to the basic conductor 11a.
  • the weight balance of the surface wave line 7a with respect to the central axis of the power feeding section 6 is poor, and it is difficult to keep the surface wave line 7a horizontal.
  • the configuration of the surface wave line 7a that is asymmetrical with respect to the power supply unit 6 means that the surface wave line 7a is not point symmetrical with respect to the central axis of the power supply unit 6 when viewed from vertically above, as shown in FIG. .
  • the matching section 9c is arranged in a direction that improves the weight balance with respect to the power supply section 6, preferably in a direction that can maintain the weight balance.
  • the matching portion 9c extends in the opposite direction to the direction in which the basic conductors 11a to 11c extend.
  • the matching portion 9c has a tapered end portion provided on the side of the matching portion 9c connected to the flow path of the high-frequency power 20, that is, on the side of the matching portion 9c closer to the basic conductor 11c.
  • FIG. 7 is a schematic perspective view of the surface wave line 7b in the high frequency heating device according to the present embodiment.
  • the surface wave line 7b has a matching section 9e installed on the basic conductor 11 between the coupling section 10 and the terminal end 8.
  • the matching portion 9e is mechanically non-contact and electrically capacitively coupled to the back surface of the basic conductor 11 via the insulator 13.
  • the matching portion 9e is mechanically fixed to the insulator 13.
  • the insulator 13 is movably connected to the base conductor 11 along the back surface of the base conductor 11. That is, the matching section 9e is connected to the surface wave line 7b so that it can move on the surface wave line 7b. As a result, alignment can be ensured at a position corresponding to the arrangement position of the object to be heated 2, etc.
  • the position of the object to be heated 2 may be detected by an imaging unit or a sensor.
  • the matching section 9e may automatically move to an optimal position according to the result of position detection.
  • Teflon registered trademark
  • the insulator 13 is used for the insulator 13.
  • the high-frequency heating device includes a power feeding section (6), a surface wave line (7; 7a; 7b), a coupling section (10), a matching section (9a, 9b; 9c, 9d; 9e).
  • the power supply unit (6) supplies high frequency power (20; 20a, 20b, 20c; 20).
  • the surface wave line (7; 7a; 7b) propagates high frequency power as a surface wave.
  • the coupling part (10) couples the power feeding part (6) and the surface wave line (7; 7a; 7b).
  • the matching section (9a, 9b; 9c, 9d; 9e) is installed between the coupling section (10) and the terminal end (8; 8a, 8b) of the surface wave line (7; 7a; 7b).
  • alignment can be ensured at an optimal position near the location where misalignment occurs, and heating of the object to be heated by surface waves can be maximized.
  • desired heat treatments can be performed on various objects to be heated.
  • the surface wave line (7; 7a; 7b) is connected from the power feeding section (6) to the terminal end of the surface wave line (7; 7a; 7b). It may have a flow path for high frequency power (20; 20a, 20b, 20c; 20) up to (8; 8a, 8b).
  • the matching portions (9a, 9b; 9c, 9d; 9e) may extend in a direction different from the direction in which the flow path of the high frequency power (20; 20a, 20b, 20c; 20) extends.
  • optimal matching can be ensured without extending the power feeding distance more than necessary or inserting transmission components with different performance in the middle of the surface wave line.
  • desired heat treatments can be performed on various objects to be heated.
  • the high frequency heating device is connected to the terminal end (8; 8a, 8b) of the surface wave line (7; 7a; 7b), and is connected to the upper space. It may further include a radiation portion (14; 14a, 14b; 14) arranged to extend toward the radiation source.
  • the matching portions (9a, 9b; 9c, 9d; 9e) include surface wave lines (7; 7a; 7b) may be connected to the high frequency current (21) flow path. According to this aspect, matching can be ensured for high frequency power propagating as a surface wave. As a result, heating by surface waves can be maximized.
  • the surface wave line (7; 7a; 7b) includes a basic conductor (11; 11a, 11b, 11c; 11) and a basic conductor ( 11; 11a, 11b, 11c;
  • the matching parts (9a, 9b; 9c, 9d; 9e) may be connected to the basic conductor (11; 11a, 11b, 11c; 11).
  • matching can be ensured with respect to high frequency power propagating as a surface wave, and heating by the surface wave can be maximized.
  • the matching portions (9a, 9b; 9c, 9d; 9e) are connected to the bonding portion (10) and the surface wavy line. It may be arranged at one or both of the place where the object to be heated (2) is placed in the path (7; 7a; 7b). According to this aspect, matching can be ensured near the location where mismatch occurs in the surface wave line, and heating by the surface wave can be maximized.
  • the high-frequency heating device has a plurality of flow paths for high-frequency power (20a, 20b) in addition to any of the second to fourth aspects.
  • Each of the plurality of flow paths for the high frequency power (20a, 20b) is a flow path for the high frequency power (20a, 20b) described above.
  • the matching part (9d) may be arranged in each of the plurality of flow paths of the high frequency power (20a, 20b).
  • matching can be ensured near the location where mismatch occurs in the surface wave line, and heating by the surface wave can be maximized.
  • the high-frequency heating device has a plurality of flow paths for high-frequency power (20a, 20b) in addition to any of the second to fourth aspects.
  • Each of the plurality of flow paths for the high frequency power (20a, 20b) is a flow path for the high frequency power (20) described above.
  • the matching part (9d) may be installed at a location where a plurality of channels of high frequency power (20a, 20b) are in contact.
  • matching can be ensured for a plurality of channels of high-frequency power by one matching section. Thereby, the number of parts can be reduced and the weight and cost of the antenna can be reduced.
  • the coupling portion (10) may be installed at a location where a plurality of flow paths of high-frequency power (20a, 20b) are in contact. According to this aspect, matching can be ensured for a plurality of channels of high-frequency power by one matching section. Thereby, the number of parts can be reduced and the weight and cost of the antenna can be reduced.
  • the matching portions (9a, 9b; 9c, 9d; 9e) have a tab shape.
  • One end of the matching part (9a, 9b; 9c, 9d; 9e) may be connected to a flow path of high frequency power (20; 20a, 20b, 20c; 20).
  • the other ends of the matching parts (9a, 9b; 9c, 9d; 9e) may be open ends.
  • optimal matching can be ensured without extending the power feeding distance more than necessary or inserting transmission components with different performance in the middle of the surface wave line.
  • the matching portions (9a, 9b; 9c, 9d; 9e) include the high-frequency power (20 ;20a, 20b, 20c;20) may be arranged at a predetermined angle with respect to the flow path. According to this aspect, optimal matching can be ensured without extending the power feeding distance more than necessary or inserting transmission components with different performance in the middle of the surface wave line.
  • the matching portions (9a, 9b; 9c, 9d; 9e) are installed in the matching portions (9a, 9b; 9c, 9d; 9e) It may have a plate shape with a width and length depending on the position. According to this aspect, appropriate alignment can be ensured.
  • the matching part (9c) is provided on the side of the matching part (9c) connected to the flow path of the high-frequency power (20c). It may have a tapered end. According to this aspect, by limiting the matching locations, the matching locations can be made clear.
  • the matching part (9e) is mechanically non-contact with the surface wave line (7b) and electrically conducts high-frequency heating. It may be coupled to a flow path for electric power (20).
  • the matching part (9e) may be connected to the surface wave line (7b) so as to be movable on the surface wave line (7b). According to this aspect, alignment can be ensured at a position corresponding to the place where the object to be heated is placed.
  • the matching portion (9e) may be fixed to the surface wave line (7b) via an insulator (13). According to this aspect, alignment can be ensured at a position corresponding to the place where the object to be heated is placed.
  • the surface wave line (7; 7a; 7b) is rotatable about the central axis of the power feeding section (6).
  • the matching parts (9a, 9b; 9c, 9d; 9e) may be rotatable together with the surface wave line (7; 7a; 7b).
  • the surface wave line together with the matching section can be directed in an appropriate direction for matching.
  • the matching part (9c) may be installed in a direction that improves the weight balance with respect to the portion (6). According to this aspect, the surface wave line can be easily rotated. As a result, desired heat treatments can be performed on various objects to be heated.
  • the high-frequency heating device according to the present disclosure can be applied to cooking household appliances.
  • Heating chamber 2 Object to be heated 3 Mounting table 4 High frequency power generation section 5 Waveguide 6 Power feeding section 7, 7a, 7b Surface wave line 8, 8a, 8b Termination 9a, 9b, 9c, 9d, 9e Matching section 10 Coupling section 11, 11a, 11b, 11c Basic conductor 12, 12a, 12b, 12c Stub-shaped conductor 13 Insulator 14, 14a, 14b Radiation part 20, 20a, 20b, 20c High frequency power 21 High frequency current 22 Electric field 91a Open end 92a Connection end

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

本開示に係る高周波加熱装置は、表面波線路と、給電部と、結合部と、整合部と、を備える。表面波線路は表面波を伝播させる。給電部は、高周波電力を表面波線路に供給する。結合部は、表面波線路と給電部とを結合する。整合部は、結合部と表面波線路の終端との間に設置される。表面波線路は、給電部から表面波線路の終端までの高周波電力の流路を有する。整合部は、高周波電力の流路が延在する方向とは異なる方向に延在する。

Description

高周波加熱装置
 本開示は、表面波を伝播させる高周波加熱装置に関する。
 特許文献1は、表面波を伝播する表面波励振体に高周波電力を導くための導波管内に調整手段を備え、食品などの被加熱物を加熱する高周波加熱装置を開示する。特許文献1によれば、被加熱物の量に応じてインピーダンス整合を取ることで、発振源の最大電力を被加熱物に入力することができる。
 特許文献2は、表面波伝播線路と、伝達部と、表面波伝達線路と伝達部との間に配置され、表面波伝播線路と伝達部との間のインピーダンス整合を取る整合部とを備えたマイクロ波処理装置を開示する。特許文献2によれば、表面波伝達線路からの反射波を打ち消して、効率的に高周波電力を伝達することができる。
 特許文献3は、表面波を生成する複数の帯状起立片を備えた、高周波加熱装置用の表面波発生体を開示する。具体的には、特許文献3は、所定領域とその他の領域とで異なる高さを有する帯状起立片を備えた複数の表面波発生体を用意することを開示する。特許文献3によれば食品の種類に応じて表面波の生成強度を可変することで、最適加熱を行うことができる。
特開平6-338387号公報 国際公開第2014/087666号 特開平10-41064号公報
 特許文献1に記載の高周波加熱装置において、表面波線路を伝播する高周波電力以外に、加熱室に放射される高周波電力も使用される。そのため、特許文献1に記載のように導波管の調整手段によりインピーダンス整合を取ったとしても、必ずしも表面波線路により加熱を最大化することができるわけではない。
 特許文献2に記載のように整合部を設けても、表面波線路の途中に設置される食品によるインピーダンスの不整合を解決できず、食品の位置において高周波電力の放射などが生じる。このため、食品の加熱を最大化することができない。整合部は、表面波伝播線路と伝達部との間に直列に配置される。このため、表面波線路までの伝播距離が長くなる。その結果、空間に放射される高周波電力が増加する。
 特許文献3に記載のように様々な食品に応じた複数の表面波線路を用意する場合、食品の種類に対応して多数の表面波線路を用意することが必要である。また、それらが適切に使用されないことも想定される。このため、特許文献3に記載の表面波発生体は実用に適さない。
 本開示は、様々な食品に応じてインピーダンス整合を確保し、表面波線路による食品の加熱を最大化する高周波加熱装置を提供することを目的とする。
 本開示の一態様に係る高周波加熱装置は、給電部と、表面波線路と、結合部と、整合部と、を備える。給電部は高周波電力を供給する。表面波線路は、高周波電力を表面波として伝播させる。結合部は、表面波線路と給電部とを結合する。整合部は、結合部と表面波線路の終端との間に設置される。
 本開示によれば、高周波電力の空間への放射および表面波線路における反射波を最小化することができる。また、表面波線路による被加熱物の加熱を最大化するのに適した位置においてインピーダンス整合を確保することができる。その結果、様々な被加熱物に対して所望の加熱処理を行うことができる。
図1は、本開示の実施の形態1に係る高周波加熱装置の概略正面図である。 図2は、表面波線路における不整合点を説明するための図である。 図3は、実施の形態1に係る高周波加熱装置における整合部の概略斜視図である。 図4は、表面波線路における高周波電流の流路を説明するための図である。 図5は、実施の形態1の変形例に係る高周波加熱装置における整合部の概略斜視図である。 図6は、本開示の実施の形態2に係る高周波加熱装置における表面波線路の概略平面図である。 図7は、本開示の実施の形態3に係る高周波加熱装置における表面波線路の概略斜視図である。
 (本開示の基礎となった知見など)
 発明者らが本開示に想い到った当時、高周波電力を表面波として表面波線路により伝播させることで食品を加熱するという技術は、食品をグリルするための技術として知られていた。
 そうした状況において、発明者らは下記課題を発見した。すなわち、表面波線路上の高周波電力の伝播経路に存在する複数の不整合点において、多くの放射および反射電力などが生じる。一つの場所における整合は、その場所での反射波の最小化により伝播電力の最大化を図るものであるが、それ以外の場所での整合にはほとんど寄与しない。
 この問題を解決するために、発明者らは、不整合点ごとに整合を確保することが望ましいという本開示の主題を想い至った。
 以下、図面を参照しながら、本開示の実施の形態を詳細に説明する。ただし、既知の事項の詳細説明および実質的に同一の構成に対する重複説明を省略する場合がある。
 (実施の形態1)
 以下、図1~図4を参照して、本開示の実施の形態1に係る高周波加熱装置について説明する。
 図1は、本実施の形態に係る高周波加熱装置の概略正面図である。図2は、表面波線路7における不整合点を説明するための図である。図3は、本実施の形態に係る高周波加熱装置における整合部の概略斜視図である。図1~図3に示すように、本実施の形態に係る高周波加熱装置は、加熱室1と、高周波電力発生部4と、導波管5と、給電部6と、表面波線路7と、結合部10と、を備える。
 加熱室1は、六つの金属壁面と、内部に配置された載置台3とを備えて、被加熱物2を収容するためのキャビティである。高周波電力発生部4は、マグネトロンまたは半導体発振器で構成され、高周波電力を発生する。導波管5は、高周波電力発生部4により発生された高周波電力を給電部6に供給する。
 結合部10は、給電部6と表面波線路7とを結合する。給電部6は、結合部10に接続された棒状の部材である。給電部6は、導波管5により供給された高周波電力を、結合部10を介して表面波線路7に供給する。
 表面波線路7は、周期構造を有するスタブ型表面波励振体である。表面波線路7は、基礎導体11と、複数のスタブ状導体12と、放射部14と、を備える。表面波線路7は、結合部10を介して受信した高周波電力を表面波として終端8まで伝播させる。
 基礎導体11は水平の金属板である。複数のスタブ状導体12は、基礎導体11上に高周波電力の伝播方向に所定間隔で周期的に配列された複数の垂直の金属板である。基礎導体11は終端8を有する。終端8は、複数のスタブ状導体12に直交する方向における表面波線路7の終端である。放射部14は終端8に配置される。
 複数のスタブ状導体12において、各々の高さ、幅、配置間隔、厚みなどは、表面波線路7がその機能を十分発揮できるように最適化される。その結果、表面波線路7は、高周波電力を加熱室1内に放射させずに表面波として伝播させることができる。表面波線路7を伝播する表面波としての高周波電力は、表面波線路7の近傍に配置された被加熱物2を強く加熱して被加熱物2に焦げ目をつける。
 放射部14は、上方空間に向かって傾斜して配置された平板状のアンテナである。放射部14は、使用される周波数帯で共振して放射効率が高くなるように、高周波電力の波長λの4分の1の長さを有する。放射部14は、高周波電流が最大となる基礎導体11の部分の近傍に結合される。これにより、終端8に到達した高周波電力は、放射部14から加熱室1内に放射されて被加熱物2を誘電加熱する。
 放射部14は、表面波線路7の終端8に接続され、上方空間に向けて延在する。なお、表面波線路7は、給電部6の中心軸に関して回転自在に設置されてもよい。
 図2に示すように、給電部6から供給された高周波電力20は、複数のスタブ状導体12を伝播し、図2の破線矢印で示される経路を経て、表面波線路7の終端8に到達する。不整合は、主に高周波電力の伝播経路においてインピーダンスが急激に変化する場所で発生する。
 このような伝播経路における主な不整合点を破線A~Cで示す。破線Aで示す不整合点は、結合部10、すなわち給電部6と表面波線路7との境界である。破線Cで示す不整合点は、終端8と放射部14との境界に位置する表面波線路7上の場所である。
 破線Bで示す不整合点は、何も載置されていない載置台3の部分と被加熱物2が載置された載置台3の部分との境界の近傍の表面波線路7上の場所である。このため、破線Bで示す不整合点は、被加熱物2の載置場所に応じて変動する。
 被加熱物2の加熱を最大化するには、表面波線路7上を伝播する高周波電力が被加熱物2に到達するまでに、すなわち、破線Aで示す位置または破線Bで示す位置において整合が確保される必要がある。
 一つの被加熱物2を加熱する場合、通常、被加熱物2は載置台3の中央に配置される。この場合、破線Aおよび破線Bで示す二つの不整合点が一致することが多い。従って、結合部10と表面波線路7の終端8との間に少なくとも一つの整合部を設置する。
 図3に示すように、整合部9aは、破線A(図2参照)で示す位置に設置される。整合部9bは、破線B(図2参照)で示す位置に設置される。破線Bに示す不整合点に対応する載置台3の場所に目印を表示すれば、使用者は容易に整合部9bの近傍に被加熱物2を載置することができる。整合部9bは、必要に応じて移動させることが可能に構成されてもよい。
 整合部9a、9bが表面波線路7の被加熱物2に対向する側に設置されると、整合部9a、9bは表面波の伝播を妨げる可能性がある。そのため、整合部9a、9bは、表面波線路7の被加熱物2に対向する側ではなく、表面波線路7の基礎導体11に設置されることが好ましい。
 整合部9a、9bは、細長い板状のタブ形状である。整合部9aは、開放端91aと接続端92aとを有する。開放端91aおよび接続端92aは、整合部9aの長手方向の両端である。接続端92aは、高周波電力20の流路(図2参照)の途中における基礎導体11の部分に接続される。整合部9aの長手方向は、表面波線路7の長手方向、すなわち表面波線路7における高周波電力20の流路に対して垂直(略垂直を含む)である。
 整合部9aの接続端92aから開放端91aまでの長さは高周波電力の1波長以下であり、整合部9aの幅は高周波電力の半波長以下であることが望ましい。整合部9bも整合部9aと同様に基礎導体11に接続される。整合部9bは、整合部9aより、高周波電力20の流路の下流の基礎導体11の部分に接続される。
 このような配置により、給電距離を必要以上に延長したり、表面波線路7の途中に性能の異なる伝送部品を挿入したりすることなく、最適な整合を確保することができる。その結果、表面波線路7における反射波を最小化して効率的に高周波電力を伝達することができる。
 整合部9a、9bの素材は主にアルミニウムなどの金属である。しかし、整合部9a、9bの素材は、高周波伝送経路の意図する場所に意図するインピーダンスを提供することができれば、これに限定されるものではない。
 図4は、スタブ状導体12における高周波電流21の流路を説明するための図である。図4は、表面波線路7を構成する基礎導体11とスタブ状導体12とを流れるある瞬時の高周波電流21を示す。
 図4に示すように、表面波線路7は、一つのスタブ状導体12の先端から基礎導体11を経由して別のスタブ状導体12の先端までの流路(図4の破線矢印)に流れる高周波電流21を繰り返し発生する。
 整合部9a、9bのそれぞれの一端は、高周波電流21の流路の途中における基礎導体11の部分に接続される。表面波線路7は、高周波電流21と、スタブ状導体12の先端に生じる電界22との相互作用により、高周波電力を表面波として伝播させる。
 スタブ状導体12の先端近傍に被加熱物2が配置されると、被加熱物2の近傍の電界22に変化が生じ、その変化は高周波電流21に影響を及ぼす。このため、スタブ状導体12および載置台3から離れた基礎導体11の部分に整合部9bを設置しても、整合部9bが高周波電流21の流路上にあれば、整合部9bはその機能を発揮する。
 図2において、破線Aに示す位置と破線Bに示す位置とで、インピーダンスの変化は異なる。破線Aに示す位置では、高周波電流21の流路は高周波電流21の流れに沿って給電部6から表面波線路7に変わる。破線Bに示す位置では、高周波電流21の流路は高周波電流21の流れに沿って表面波線路7のままである。しかし、表面波線路7における被加熱物2の載置場所から終端8までの表面波線路7の流路には被加熱物2のインピーダンスが付加される。
 このように、整合部に求められる性能は整合部の設置位置に依存する。このため、図3に示すように、整合部9aと整合部9bは、それらに求められる性能を実現するため、設置位置に応じた幅、長さ、形状を有する。
 具体的には、整合部の長さを長くすると、整合部のインピーダンスのL成分(インダクタンス成分)の値が増え、整合部の長さを短くするとL成分の値が減少する。整合部のインピーダンスのC成分(容量成分)の値は、整合部の面積を広くすると増え、整合部の面積を狭くすると減少する。このようにインピーダンスのLC成分を調整することで、必要なインピーダンスの値を実現する。
 例えば、整合部9aの長さ、幅は、給電部6と表面波線路7との整合を確保できるように設定される。整合部9bの長さ、幅は、被加熱物2が載置されない載置台3の部分に対向する表面波線路7の部分と、被加熱物2が載置された載置台3の部分に対向する表面波線路7の部分との整合を確保できるように設定される。
 このように、整合部の形状は、整合部に接する複数の物体の各々のインピーダンスの数値により異なる。本開示はこの例に限定されず、不整合点の近傍に意図するインピーダンスを提供することで、不整合による表面波線路7における反射波を最小化できればよい。例えば、整合部の長さ、幅以外に厚みおよび形状を変えてもよい。表面波線路7に誘電体など複数の部品を組み合わせてもよい。
 図2に示すように、高周波電力20は、表面波線路7上を左右に分かれて伝播する。図3では左方に向かう高周波電力20の表示が省略されている。表面波線路7の左方に向かう高周波電力20の流路にも同様に整合部が設置される。結合部10は、左右の高周波電力の流路が互いに接する場所に位置し、左右の高周波電力の流路に共通の不整合点である。このため、整合部9aは、左右両方の高周波電力の流路における整合に関与することができる。
 整合部9aの一端は、整合部9aの長手方向が表面波線路7の長手方向に対して所定の角度(本実施の形態では直角)をなすように基礎導体11に固定される。整合部9bの一端も、整合部9bの長手方向が表面波線路7の長手方向に対して所定の角度(本実施の形態では直角)をなすように基礎導体11に固定される。すなわち、整合部9a、9bは、表面波線路7における高周波電力20の流路に対して所定の角度(本実施の形態では直角)で配置される。整合部9a、9bのそれぞれの他端は開放端である。
 表面波線路7が結合部10の中心軸に関して回転する場合、表面波線路7は整合部9a、9bとともに回転することができる。その結果、表面波線路7と整合部9a、9bとを、整合に行うための適切な方向に向けることができる。
 ここまでの例では、被加熱物2は、結合部10と終端8との間の表面波線路7上に配置される。しかし、上述のように、一つの被加熱物2を加熱する場合、通常、被加熱物2は載置台3の中央に配置される。
 図5は、この場合に対処するための整合部9aの構成例を示す概略斜視図である。この場合、図2において破線Aおよび破線Bで示す二つの不整合点が一致する。このため、整合部9aのみを破線Aで示す場所に配置すればよい。
 以上のように、本実施の形態に係る高周波加熱装置は、結合部10と表面波線路7の終端8との間に設置された少なくとも一つの整合部(図3では整合部9aおよび9b、図7では整合部9aのみ)を備える。本実施の形態によれば、不整合点において整合を確保することができ、表面波線路7による被加熱物2の加熱処理を最大化することができる。
 (実施の形態2)
 以下、図6を参照して、本開示の実施の形態2に係る高周波加熱装置について説明する。
 図6は、本実施の形態に係る高周波加熱装置における表面波線路7aの概略平面図である。図6に示すように、実施の形態1と同様に、表面波線路7aは、基礎導体11と、複数のスタブ状導体12と、放射部14と、を備える。
 本実施の形態において、基礎導体11は、基礎導体11a、11b、11cを含む。複数のスタブ状導体12は、複数のスタブ状導体12aと複数のスタブ状導体12bと複数のスタブ状導体12cとを含む。放射部14は、放射部14aと放射部14bとを含む。
 高周波電力20は、高周波電力20a、20b、20cを含む。高周波電力20aは複数のスタブ状導体12aを伝播する。高周波電力20bは複数のスタブ状導体12bを伝播する。高周波電力20cは複数のスタブ状導体12cを伝播する。
 基礎導体11a、11bのそれぞれの一端は基礎導体11cに接続される。換言すると、基礎導体11は、鉛直上方から見て、全体としてV字形状を有する。すなわち、表面波線路7aも、鉛直上方から見てV字形状を有する。
 基礎導体11cは、結合部10に接続される基礎導体11の部分である。基礎導体11a、11bは、基礎導体11cから分岐する基礎導体11の二つの部分である。基礎導体11a、11bはそれぞれ、基礎導体11cと反対側の端部に終端8a、8bを有する。放射部14a、14bはそれぞれ終端8a、8bに配置される。
 複数のスタブ状導体12cは、基礎導体11c上に高周波電力20cの伝播方向に所定間隔で周期的に配列された複数の垂直の金属板である。高周波電力20cは、高周波電力20aと高周波電力20bとに分岐する。高周波電力20a、20bはそれぞれスタブ状導体12a、12bを伝播する。
 複数のスタブ状導体12aは、基礎導体11a上に高周波電力20aの伝播方向に所定間隔で周期的に配列された複数の垂直の金属板である。複数のスタブ状導体12bは、基礎導体11b上に高周波電力20bの伝播方向に所定間隔で周期的に配列された複数の垂直の金属板である。
 高周波電力20aは、スタブ状導体12aと終端8aとを介して放射部14aに到達する。高周波電力20bは、スタブ状導体12bと終端8bとを介して放射部14bに到達する。放射部14a、14bはそれぞれ、高周波電力20a、20bを加熱室1内に放射する。
 図6に示す高周波電力20a、20b、20cの伝播経路において、主な不整合点は、結合部10、表面波線路7aの分岐点、被加熱物2の載置場所の最も結合部10に近い場所(図2参照)、終端8a、8bの各々の位置である。
 被加熱物2の加熱を最大化するためには、上記のうち、表面波線路7aの分岐点と、被加熱物2の載置場所の最も結合部10に近い場所とで整合を確保することが望ましい。
 表面波線路7aは、整合部9cと、二つの整合部9dと、を有する。上記不整合点のうち、整合部9cは、被加熱物2の載置場所の最も結合部10に近い場所に配置される。二つの整合部9dの一方は、表面波線路7aの分岐点の一方、すなわち、基礎導体11cと基礎導体11aとの境界に接続され、基礎導体11bと反対方向に延在する。二つの整合部9dの他方は、表面波線路7aの分岐点の他方、すなわち、基礎導体11cと基礎導体11bとの境界に接続され、基礎導体11aと反対方向に延在する。
 表面波線路7aの分岐点が、表面波線路7aにおける被加熱物2の載置場所と近接する場合、基礎導体11a、11bの各々に整合部9dのみを設置すればよい。
 表面波線路7aが給電部6に対して非対称な構成を有する場合、給電部6の中心軸に関して表面波線路7aの重量バランスが悪く、表面波線路7aを水平に保ちにくい。給電部6に対して非対称な表面波線路7aの構成とは、図6に示すように、鉛直上方から見て表面波線路7aが給電部6の中心軸に対して点対称でない形状を意味する。
 この場合、表面波線路7aを給電部6の中心軸に関して回転させる際、円滑な回転を阻害する力が生じる。この力を抑制するため、整合部9cは、給電部6に対して重量バランスを改善する方向、望ましくは重量バランスが取れる方向に配置される。本実施の形態において、整合部9cは、基礎導体11a~11cが延在する方向と反対方向に延在する。
 整合部9cは、整合部9cの高周波電力20の流路に接続された側、すなわち、整合部9cの基礎導体11cに近い側に設けられたテーパ形状の端部を有する。整合部9cと基礎導体11cとの接合点を小さくすることで、整合場所を明確にすることができる。
 (実施の形態3)
 以下、図7を参照して、本開示の実施の形態3に係る高周波加熱装置について説明する。
 図7は、本実施の形態に係る高周波加熱装置における表面波線路7bの概略斜視図である。図7に示すように、表面波線路7bは、結合部10と終端8との間の基礎導体11に設置された整合部9eを有する。整合部9eは、絶縁物13を介して基礎導体11の裏面と、機構的には非接触で電気的には容量性結合する。
 整合部9eは、絶縁物13に機構的に固定される。絶縁物13は、基礎導体11の裏面に沿って移動可能に基礎導体11に接続される。すなわち、整合部9eは、表面波線路7b上を移動することができるように表面波線路7bに接続される。その結果、被加熱物2の配置位置などに応じた位置で整合を確保することができる。
 なお、被加熱物2の位置を撮像部またはセンサで検知してもよい。位置検知の結果に応じて、整合部9eが自動的に最適な位置に移動してもよい。絶縁物13には、例えばテフロン(登録商標)などが使用される。
 (構成および効果)
 本開示の第1態様に係る高周波加熱装置は、給電部(6)と、表面波線路(7;7a;7b)と、結合部(10)と、整合部(9a,9b;9c,9d;9e)と、を備える。
 給電部(6)は高周波電力(20;20a,20b,20c;20)を供給する。表面波線路(7;7a;7b)は、高周波電力を表面波として伝播させる。結合部(10)は、給電部(6)と表面波線路(7;7a;7b)とを結合する。整合部(9a,9b;9c,9d;9e)は、結合部(10)と表面波線路(7;7a;7b)の終端(8;8a,8b)との間に設置される。
 本態様によれば、不整合が発生する場所の近傍の最適な位置で整合を確保することができ、表面波による被加熱物の加熱を最大化することができる。その結果、様々な被加熱物に対して所望の加熱処理を行うことができる。
 本開示の第2態様に係る高周波加熱装置において、第1態様に加えて、表面波線路(7;7a;7b)は、給電部(6)から表面波線路(7;7a;7b)の終端(8;8a,8b)までの高周波電力(20;20a,20b,20c;20)の流路を有してもよい。整合部(9a,9b;9c,9d;9e)は、高周波電力(20;20a,20b,20c;20)の流路が延在する方向とは異なる方向に延在してもよい。
 本態様によれば、給電距離を必要以上に延長したり、表面波線路の途中に性能の異なる伝送部品を挿入したりすることなく、最適な整合を確保することができる。その結果、様々な被加熱物に対して所望の加熱処理を行うことができる。
 本開示の第3態様に係る高周波加熱装置は、第1態様または第2態様に加えて、表面波線路(7;7a;7b)の終端(8;8a,8b)に接続され、上方空間に向けて延在するように配置される放射部(14;14a,14b;14)をさらに備えてもよい。
 本態様によれば、表面波線路における反射波を最小化し、整合部による確実な整合により、被加熱物に対して効率的な加熱処理が可能である。また、反射波を最小化することで、表面波線路7上の定在波の発生を抑制することができる。その結果、加熱むらを改善することができる。
 本開示の第4態様に係る高周波加熱装置において、第1態様~第3態様のいずれかに加えて、整合部(9a,9b;9c,9d;9e)は、表面波線路(7;7a;7b)の高周波電流(21)の流路に接続されてもよい。本態様によれば、表面波として伝播する高周波電力に対して整合を確保することができる。その結果、表面波による加熱を最大化することができる。
 本開示の第5態様に係る高周波加熱装置において、第4態様に加えて、表面波線路(7;7a;7b)は、基礎導体(11;11a,11b,11c;11)と、基礎導体(11;11a,11b,11c;11)上に配列された複数のスタブ状導体(12;12a,12b,12c)とを有してもよい。整合部(9a,9b;9c,9d;9e)は基礎導体(11;11a,11b,11c;11)に接続されてもよい。
 本態様によれば、表面波として伝播する高周波電力に対して整合を確保することができ、表面波による加熱を最大化することができる。
 本開示の第6態様に係る高周波加熱装置において、第1態様~第4態様のいずれかに加えて、整合部(9a,9b;9c,9d;9e)は、結合部(10)と表面波線路(7;7a;7b)における被加熱物(2)の載置場所との両方または一方に配置されてもよい。本態様によれば、表面波線路における不整合が発生する場所の近傍で整合を確保することができ、表面波による加熱を最大化することができる。
 本開示の第7態様に係る高周波加熱装置は、第2態様~第4態様のいずれかに加えて、高周波電力(20a,20b)の複数の流路を有する。高周波電力(20a,20b)の複数の流路の各々は、上述した高周波電力(20a,20b)の流路である。整合部(9d)は、高周波電力(20a,20b)の複数の流路の各々に配置されてもよい。
 本態様によれば、表面波線路における不整合が発生する場所の近傍で整合を確保することができ、表面波による加熱を最大化することができる。
 本開示の第8態様に係る高周波加熱装置は、第2態様~第4態様のいずれかに加えて、高周波電力(20a,20b)の複数の流路を有する。高周波電力(20a,20b)の複数の流路の各々は、上述した高周波電力(20)の流路である。整合部(9d)は、高周波電力(20a,20b)の複数の流路が接する場所に設置されてもよい。
 本態様によれば、一つの整合部により高周波電力の複数の流路に対して整合を確保することができる。これにより、部品数を削減して、アンテナの軽量化およびコストダウンを図ることができる。
 本開示の第9態様に係る高周波加熱装置において、第8態様に加えて、結合部(10)は、高周波電力(20a,20b)の複数の流路が接する場所に設置されてもよい。本態様によれば、一つの整合部により高周波電力の複数の流路に対して整合を確保することができる。これにより、部品数を削減して、アンテナの軽量化およびコストダウンを図ることができる。
 本開示の第10態様に係る高周波加熱装置において、第2態様~第4態様に加えて、整合部(9a,9b;9c,9d;9e)は板状のタブ形状を有する。整合部(9a,9b;9c,9d;9e)の一端は高周波電力(20;20a,20b,20c;20)の流路に接続されてもよい。整合部(9a,9b;9c,9d;9e)の他端は開放端であってもよい。
 本態様によれば、給電距離を必要以上に延長したり、表面波線路の途中に性能の異なる伝送部品を挿入したりすることなく、最適な整合を確保することができる。
 本開示の第11態様に係る高周波加熱装置において、第10態様に加えて、整合部(9a,9b;9c,9d;9e)は、表面波線路(7;7a;7b)における高周波電力(20;20a,20b,20c;20)の流路に対して所定の角度で配置されてもよい。本態様によれば、給電距離を必要以上に延長したり、表面波線路の途中に性能の異なる伝送部品を挿入したりすることなく、最適な整合を確保することができる。
 本開示の第12態様に係る高周波加熱装置において、第10態様に加えて、整合部(9a,9b;9c,9d;9e)は、整合部(9a,9b;9c,9d;9e)の設置位置に応じた幅と長さとを有する板形状を有してもよい。本態様によれば、適切な整合を確保することができる。
 本開示の第13態様に係る高周波加熱装置において、第10態様に加えて、整合部(9c)は、整合部(9c)の高周波電力(20c)の流路に接続された側に設けられたテーパ形状の端部を有してもよい。本態様によれば、整合場所を限定することで、整合場所を明確にすることができる。
 本開示の第14態様に係る高周波加熱装置において、第2態様~第4態様に加えて、整合部(9e)は、機構的には表面波線路(7b)と非接触で電気的には高周波電力(20)の流路と結合してもよい。整合部(9e)は、表面波線路(7b)上を移動可能に表面波線路(7b)に接続されてもよい。本態様によれば、被加熱物の載置場所などに応じた位置で整合を確保することができる。
 本開示の第15態様に係る高周波加熱装置において、第14態様に加えて、整合部(9e)は、絶縁物(13)を介して表面波線路(7b)に固定されてもよい。本態様によれば、被加熱物の載置場所などに応じた位置で整合を確保することができる。
 本開示の第16態様に係る高周波加熱装置において、第1態様~第4態様に加えて、表面波線路(7;7a;7b)は、給電部(6)の中心軸に関して回転可能であってもよい。整合部(9a,9b;9c,9d;9e)は、表面波線路(7;7a;7b)とともに回転可能であってもよい。本態様によれば、表面波線路を整合部とともに整合のための適切な方向に向けることができる。
 本開示の第17態様に係る高周波加熱装置において、第16態様に加えて、表面波線路(7a)が給電部(6)に対して非対称な構成を有する場合、整合部(9c)は、給電部(6)に対して重量バランスを改善する方向に設置されてもよい。本態様によれば、表面波線路が容易に回転させることができる。その結果、様々な被加熱物に対して所望の加熱処理を行うことができる。
 本開示に係る高周波加熱装置は調理家電に適用可能である。
 1 加熱室
 2 被加熱物
 3 載置台
 4 高周波電力発生部
 5 導波管
 6 給電部
 7、7a、7b 表面波線路
 8、8a、8b 終端
 9a、9b、9c、9d、9e 整合部
 10 結合部
 11、11a、11b、11c 基礎導体
 12、12a、12b、12c スタブ状導体
 13 絶縁物
 14、14a、14b 放射部
 20、20a、20b、20c 高周波電力
 21 高周波電流
 22 電界
 91a 開放端
 92a 接続端

Claims (17)

  1.  高周波電力を供給するように構成された給電部と、
     前記高周波電力を表面波として伝播させるように構成された表面波線路と、
     前記給電部と前記表面波線路とを結合する結合部と、
     前記結合部と前記表面波線路の終端との間に設置された整合部と、を備える、高周波加熱装置。
  2.  前記表面波線路は、前記給電部から前記表面波線路の前記終端までの前記高周波電力の流路を有し、
     前記整合部は、前記高周波電力の前記流路が延在する方向とは異なる方向に延在する、請求項1に記載の高周波加熱装置。
  3.  前記表面波線路の前記終端に接続され、上方空間に向けて延在するように配置される放射部をさらに備える、請求項1または2に記載の高周波加熱装置。
  4.  前記整合部は、前記表面波線路の高周波電流の流路に接続された、請求項1~3のいずれかに記載の高周波加熱装置。
  5.  前記表面波線路は、基礎導体と、前記基礎導体上に配列された複数のスタブ状導体とを有し、前記整合部は前記基礎導体に接続される、請求項4に記載の高周波加熱装置。
  6.  前記整合部は、前記結合部と前記表面波線路における被加熱物の載置場所との両方または一方に配置される、請求項1~4のいずれか1項に記載の高周波加熱装置。
  7.  各々が前記高周波電力の前記流路である前記高周波電力の複数の流路を有し、前記整合部は、前記高周波電力の前記複数の流路の各々に配置される、請求項2~4のいずれか1項に記載の高周波加熱装置。
  8.  各々が前記高周波電力の前記流路である前記高周波電力の複数の流路を有し、前記整合部は、前記高周波電力の前記複数の流路が接する場所に設置される、請求項2~4のいずれか1項に記載の高周波加熱装置。
  9.  前記結合部は、前記高周波電力の前記複数の流路が接する場所に設置される、請求項8に記載の高周波加熱装置。
  10.  前記整合部は板状のタブ形状を有し、前記整合部の一端は前記高周波電力の前記流路に接続され、前記整合部の他端は開放端である、請求項2~4のいずれか1項に記載の高周波加熱装置。
  11.  前記整合部は、前記表面波線路における前記高周波電力の前記流路に対して所定の角度で配置される、請求項10に記載の高周波加熱装置。
  12.  前記整合部は、前記整合部の設置位置に応じた幅と長さとを有する板形状を有する、請求項10に記載の高周波加熱装置。
  13.  前記整合部は、前記整合部の前記表面波線路に近い側に設けられたテーパ形状の端部を有する、請求項10に記載の高周波加熱装置。
  14.  前記整合部は、機構的には前記表面波線路と非接触で電気的には前記高周波電力の前記流路と結合し、前記整合部は、前記表面波線路上を移動可能に前記表面波線路に接続される、請求項2~4のいずれか1項に記載の高周波加熱装置。
  15.  前記整合部は、絶縁物を介して前記表面波線路に固定される、請求項14に記載の高周波加熱装置。
  16.  前記表面波線路は、前記給電部の中心軸に関して回転可能であり、前記整合部は、前記表面波線路とともに回転可能である、請求項1~4のいずれか1項に記載の高周波加熱装置。
  17.  前記表面波線路が前記給電部に対して非対称な構成を有し、前記整合部は、前記給電部に対して重量バランスを改善する方向に設置される、請求項16に記載の高周波加熱装置。
PCT/JP2023/011229 2022-03-30 2023-03-22 高周波加熱装置 WO2023189941A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022056789A JP2023148648A (ja) 2022-03-30 2022-03-30 高周波加熱装置
JP2022-056789 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023189941A1 true WO2023189941A1 (ja) 2023-10-05

Family

ID=88201946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011229 WO2023189941A1 (ja) 2022-03-30 2023-03-22 高周波加熱装置

Country Status (2)

Country Link
JP (1) JP2023148648A (ja)
WO (1) WO2023189941A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597595U (ja) * 1982-07-07 1984-01-18 松下電器産業株式会社 高周波加熱器
JPS60170998U (ja) * 1984-04-23 1985-11-13 三洋電機株式会社 電子レンジ
JPH07161471A (ja) * 1993-12-07 1995-06-23 Matsushita Electric Ind Co Ltd 高周波加熱装置
WO2014087666A1 (ja) * 2012-12-07 2014-06-12 パナソニック株式会社 マイクロ波処理装置
JP2015162273A (ja) * 2014-02-26 2015-09-07 パナソニック株式会社 マイクロ波処理装置
WO2018037803A1 (ja) * 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 高周波加熱装置
WO2018037802A1 (ja) * 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 高周波加熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597595U (ja) * 1982-07-07 1984-01-18 松下電器産業株式会社 高周波加熱器
JPS60170998U (ja) * 1984-04-23 1985-11-13 三洋電機株式会社 電子レンジ
JPH07161471A (ja) * 1993-12-07 1995-06-23 Matsushita Electric Ind Co Ltd 高周波加熱装置
WO2014087666A1 (ja) * 2012-12-07 2014-06-12 パナソニック株式会社 マイクロ波処理装置
JP2015162273A (ja) * 2014-02-26 2015-09-07 パナソニック株式会社 マイクロ波処理装置
WO2018037803A1 (ja) * 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 高周波加熱装置
WO2018037802A1 (ja) * 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 高周波加熱装置

Also Published As

Publication number Publication date
JP2023148648A (ja) 2023-10-13

Similar Documents

Publication Publication Date Title
RU2215380C2 (ru) Микроволновая печь и волновод для устройства, использующего высокую частоту излучения
JP3031898B2 (ja) 電子レンジ
US4464554A (en) Dynamic bottom feed for microwave ovens
KR101495378B1 (ko) 마이크로파 가열 장치
CN104604331A (zh) 微波处理装置
EP2852251A1 (en) Microwave heating device
JPS60130094A (ja) 高周波加熱装置
WO2023189941A1 (ja) 高周波加熱装置
WO2019194098A1 (ja) 高周波加熱装置
US6888115B2 (en) Cascaded planar exposure chamber
JP2016213099A (ja) 加熱調理器
CN110547044B (zh) 微波处理装置
JP7178557B2 (ja) 高周波加熱装置
US11985753B2 (en) Oven
JP7113209B2 (ja) 高周波加熱装置
JP3619044B2 (ja) 高周波加熱装置
KR100275968B1 (ko) 전자레인지의 도파관 시스템
WO2020166410A1 (ja) 高周波加熱装置
JP2007141538A (ja) マイクロ波加熱装置
KR100311455B1 (ko) 도파관의시스템의임피던스정합장치
KR100284500B1 (ko) 전자레인지의 도파관 시스템
JP3966110B2 (ja) マイクロ波加熱装置
KR100304810B1 (ko) 전자레인지의 균일 가열장치
KR940004005B1 (ko) 전자레인지의 가열장치
JP2015162321A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779953

Country of ref document: EP

Kind code of ref document: A1