WO2018037707A1 - 断熱部材 - Google Patents

断熱部材 Download PDF

Info

Publication number
WO2018037707A1
WO2018037707A1 PCT/JP2017/023608 JP2017023608W WO2018037707A1 WO 2018037707 A1 WO2018037707 A1 WO 2018037707A1 JP 2017023608 W JP2017023608 W JP 2017023608W WO 2018037707 A1 WO2018037707 A1 WO 2018037707A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating member
zro
particles
heat
Prior art date
Application number
PCT/JP2017/023608
Other languages
English (en)
French (fr)
Inventor
晃暢 織部
崇弘 冨田
博治 小林
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP17843195.3A priority Critical patent/EP3505805B1/en
Priority to CN201780051957.0A priority patent/CN109642696B/zh
Priority to JP2018504961A priority patent/JP6415780B2/ja
Publication of WO2018037707A1 publication Critical patent/WO2018037707A1/ja
Priority to US16/282,703 priority patent/US11572315B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/06Porous ceramics

Definitions

  • the present invention relates to a heat insulating member sandwiched between objects.
  • the member that performs heat insulation has a soft structure such as a fiber structure or a foamed structure in order to reduce heat conduction.
  • a soft structure such as a fiber structure or a foamed structure in order to reduce heat conduction.
  • the heat insulating member cannot be stably held between the object and the object depending on the environment.
  • the heat insulating member is greatly deformed, and the heat insulating performance is deteriorated.
  • the present invention is directed to a heat insulating member.
  • the heat insulating member according to the present invention is directly or indirectly sandwiched between the first object and the second object, thereby transferring heat between the first object and the second object.
  • Suppress or block The heat insulating member includes a first main surface that faces the first object, and a second main surface that is located on the opposite side of the first main surface and faces the second object.
  • the heat insulating member has a porous structure of ceramics having pores, and ZrO 2 particles and different materials present on the surface of the ZrO 2 particles form a skeleton of the porous structure.
  • the dissimilar material includes at least one selected from SiO 2 , TiO 2 , La 2 O 3 and Y 2 O 3 .
  • the amount of the different material with respect to the ZrO 2 particles is 0.1 volume% or more and 30 volume% or less.
  • the average of the minimum width of the connecting portion of the particles of the ZrO 2 is 100% or less 40% of the average particle diameter of the ZrO 2 particles.
  • a compression force acts on the heat insulating member from the first object and the second object when sandwiched between the first object and the second object.
  • the compressive strength of the heat insulating member is preferably 10 MPa or more and 1000 MPa or less.
  • the Young's modulus of the heat insulating member is preferably 2 GPa or more and 200 GPa or less.
  • the heat conductivity of the heat insulating member is preferably 0.1 W / mK or more and 1.5 W / mK or less.
  • the heat capacity of the heat insulating member is preferably 500 kJ / m 3 K or more and 2000 kJ / m 3 K or less.
  • FIG. 1 is a perspective view showing a heat insulating member assembly 14 according to an embodiment of the present invention.
  • the heat insulating member assembly 14 is fixed on the peelable sheet 12.
  • the configuration in which the heat insulating member aggregate 14 is fixed on the sheet 12 is referred to as an “aggregate sheet 10”.
  • the heat insulating member assembly 14 is stored, transported, etc. in the state of the assembly sheet 10, and the sheet 12 is peeled off from the heat insulating member assembly 14 immediately after being placed at a desired position.
  • the heat insulating member assembly 14 is fixed on the sheet 12 by the adhesive force of the sheet 12, for example.
  • the sheet 12 is, for example, a resin sheet or a resin film having adhesive strength.
  • the adhesive strength (JIS Z0237) of the sheet 12 is preferably 1.0 N / 10 mm or more. Thereby, the heat insulation member assembly 14 can be firmly fixed to the sheet 12.
  • the heat insulating member assembly 14 may be temporarily firmly fixed to the sheet 12 at the sticking interface.
  • the heat insulating member assembly 14 may be fixed to the sheet 12 via an adhesive or the like.
  • the adhesive strength of the sheet 12 is reduced by applying heat, water, solvent, electricity, light (including ultraviolet light), microwave, external force, or the like to the sheet 12 or due to a change with time. Thereby, the fixing state with respect to the sheet
  • the adhesive force of the sheet 12 when the heat insulating member assembly 14 is peeled is preferably 0.1 N / 10 mm or less. Thereby, the heat insulation member assembly 14 can be easily peeled from the sheet 12.
  • the heat insulating member assembly 14 includes a plurality of heat insulating members 16.
  • Each heat insulating member 16 is plate-shaped. “Plate-like heat insulating member” includes not only a flat plate (a flat and uncurved plate) but also a curved plate and a plate whose thickness (minimum length) is not constant. .
  • the number of the heat insulating members 16 included in the heat insulating member assembly 14 is not limited to the example shown in FIG.
  • the overall contour of the heat insulating member assembly 14 is not limited to that shown in FIG. In the example illustrated in FIG. 1, each heat insulating member 16 has the same shape, but the shape of the plurality of heat insulating members 16 in plan view, that is, the planar shape may be different from each other.
  • each heat insulating member 16 which is a relatively wide surface with respect to the side surface, hereinafter referred to as “first main surface” is an object in use as described later. Opposite to. A wide surface 162 on the lower side of each heat insulating member 16 (which is a surface relatively wide with respect to the side surface, hereinafter referred to as “second main surface”) faces other objects during use.
  • first main surface a relatively wide surface with respect to the side surface
  • second main surface faces other objects during use.
  • only one heat insulating member 16 indicates the back surface with a broken line. The heat insulating member 16 is used while being sandwiched between objects, and suppresses or blocks heat transfer between the objects.
  • the heat insulating member 16 has a ceramic porous structure having pores.
  • the porous structure has a network skeleton in which fine particles are three-dimensionally connected, and voids other than the skeleton are pores.
  • the fine particles are also referred to as “skeleton particles”.
  • FIG. 2 is a diagram showing an outline of a skeleton 20 formed by ZrO 2 particles 21 which are skeleton particles.
  • the particle diameter of the ZrO 2 particles 21 is preferably 10 nm or more and 5 ⁇ m or less, and more preferably 30 nm or more and 1 ⁇ m or less.
  • the ZrO 2 particle 21 may be a particle composed of one crystal grain (ie, a single crystal particle) or a particle composed of a large number of crystal grains (ie, a polycrystalline particle).
  • the particle diameter of the ZrO 2 particle 21 is, for example, the size of one fine particle contained in the skeletal particle group constituting the skeleton (for example, the diameter if the fine particle is spherical, the maximum diameter if the fine particle is not spherical). It is measured from the image etc.
  • the particle diameter of the ZrO 2 particles 21 is obtained as follows, for example. As shown in FIG. 3, attention is paid to a certain ZrO 2 particle 21 in the microstructure image obtained by observation using a transmission electron microscope (TEM). Although the image of the ZrO 2 particle 21 is substantially circular, the distance 22 between the parallel lines that is the maximum when the particle image is sandwiched between a pair of parallel lines is acquired as the maximum diameter.
  • TEM transmission electron microscope
  • the average particle diameter of the ZrO 2 particles 21 is preferably 10 nm or more and 1 ⁇ m or less, more preferably 10 nm or more and 500 nm or less, and particularly preferably 10 nm or more and 100 nm or less.
  • the average particle diameter of the ZrO 2 particles 21 is obtained, for example, by obtaining the maximum diameter of 10 or more ZrO 2 particles from the TEM image as the particle diameter by the above-described method. Next, the average value of the obtained maximum diameters is acquired as the average particle diameter of ZrO 2 particles.
  • Other elements for example, Mg, Ca, Y, Ce, Yb, Sc, etc.
  • the skeleton of the porous structure is formed by ZrO 2 particles and different materials existing on the surface of the ZrO 2 particles.
  • the dissimilar material includes at least one selected from SiO 2 , TiO 2 , La 2 O 3 and Y 2 O 3 .
  • the dissimilar material is at least one selected from SiO 2 , TiO 2 , La 2 O 3 and Y 2 O 3 .
  • Such a porous structure is excellent in heat insulation performance.
  • the heat insulating member 16 by the different materials is present on the surface of the ZrO 2 particles, since the phonon scattering at the grain boundaries of the ZrO 2 particles and different materials increases, it is possible to lower the thermal conductivity.
  • the region 23 in which the different material is present is conceptually shown with parallel oblique lines.
  • a different material exists on the surface of the ZrO 2 particle is a concept including a state in which the different material is interposed between the ZrO 2 particles.
  • it is a concept that includes a state in which different kinds of materials exist around the connection part, that is, around the neck part (constricted part) formed by the ZrO 2 particles to be connected, while the ZrO 2 particles are connected with a small contact point. is there.
  • the dissimilar material may exist in a state of reacting with another material.
  • the dissimilar material is SiO 2
  • it may exist not only in the form of SiO 2 but also as ZrSiO 4 reacted with ZrO 2 , a composite oxide reacted with other dissimilar materials, or an amorphous phase. Good.
  • the foreign material is preferably present between the ZrO 2 particles. That is, it is preferable that the different material is interposed between the ZrO 2 particles (in other words, the different material exists at the grain boundary of the ZrO 2 particle).
  • the different material is present between the ZrO 2 grains, since the phonon scattering is further increased at the grain boundaries of the ZrO 2 grains can be further reduced thermal conductivity.
  • the dissimilar material is dissolved in the ZrO 2 particles.
  • the thermal conductivity can be further reduced.
  • "Heterologous material is dissolved in ZrO 2 within the particles” means that part of the elements constituting the heterogeneous material ZrO 2 in the particle is in a state that is present in the crystal structure of ZrO 2 particles .
  • Such a state can be confirmed by analyzing the crystal structure by X-ray diffraction together with elemental analysis using TEM.
  • the minimum width at the connecting portion between the ZrO 2 particles that is, the average width of the neck portion is preferably 40% or more and 100% or less of the average particle diameter of the ZrO 2 particles.
  • strength of the heat insulation member 16 is securable. Further, securing such strength is particularly suitable when a compressive force acts on the heat insulating member 16, as will be described later.
  • the neck portion may be formed of only ZrO 2 particles and may contain a different material.
  • FIG. 3 An example of acquiring the width of the neck portion will be described with reference to FIG.
  • a certain ZrO 2 particle 21 (indicated by reference numeral 21A in FIG. 3) and a ZrO 2 particle 21 in contact with this particle (indicated by reference numeral 21B) in a microstructure image obtained by observation using a TEM.
  • these particles those arranged in a direction substantially perpendicular to the viewing direction are selected. Since the images of the ZrO 2 particles 21A and 21B are substantially circular, the center of these particles can be acquired as the center of the circumscribed circle.
  • a similar process is performed at the neck portion 24 between 10 or more ZrO 2 particles 21, and the average value is acquired as the average width of the neck portion 24.
  • the amount of the different material with respect to the ZrO 2 particles is preferably 0.1% by volume or more and 30% by volume or less, more preferably 0.5% by volume or more and 20% by volume or less, and 1% by volume or more and 18% by volume or less. It is particularly preferred that By being within the above range, the neck portion can have an appropriate width while maintaining the skeleton structure, and the thermal conductivity can be kept low while maintaining the mechanical strength of the heat insulating member 16.
  • the confirmation of the ZrO 2 particles constituting the porous structure and the kind of different materials on the ZrO 2 particles can be performed by a transmission electron microscope (TEM), a scanning electron microscope (SEM) or a field emission scanning electron microscope. It is possible by elemental analysis using (FE-SEM). It may also be determined amount of different materials for the ZrO 2 grains by using this device.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • FE-SEM field emission scanning electron microscope
  • the volume ratio value is preferably 1/9 or more and 9 or less. If the value of the ratio is out of the above range, the effect of adding both may be low.
  • the average particle diameter of the particles of the different material in the raw material stage is smaller than the average particle diameter of the ZrO 2 particles in the raw material stage. This makes it easy to maintain the characteristics of ZrO 2 .
  • the average particle size of the different materials in the raw material stage is preferably 2 nm or more and 300 nm or less, and more preferably 2 nm or more and 100 nm or less so as to be advantageous in manufacturing properties, material properties such as heat resistance and strength. It is preferably 2 nm or more and 50 nm or less.
  • the “average particle diameter of different materials” is a value measured in the same manner as the average particle diameter of the ZrO 2 particles described above.
  • the raw material of the heat insulating member 16 may contain other particles in addition to the ZrO 2 particles and the different material particles.
  • the total content of the ZrO 2 particles and the different material particles is preferably 90% by volume or more so as to be advantageous in material properties such as heat resistance and strength.
  • the average pore diameter is preferably 0.5 nm or more and 500 nm or less, more preferably 1 nm or more and 300 nm or less, and more preferably 10 nm or more and 100 nm or less so as to be advantageous in manufacturing cost and thermal conductivity. It is particularly preferred that In the present specification, “average pore diameter” is a value measured using a mercury porosimeter (mercury intrusion method). When the average pore diameter is 10 nm or less, measurement is performed by a gas adsorption method.
  • the distribution of pore diameters does not have to be the same throughout the heat insulating member 16, and may vary depending on the position. That is, the average pore diameter within a certain range at different sites may be different.
  • the porosity of the porous structure is preferably 20% or more and 80% or less, and more preferably 20% or more and 70% or less, so as to be advantageous in terms of thermal conductivity and strength.
  • the porosity is more preferably 40% or more and 70% or less, and particularly preferably 50% or more and 70% or less.
  • “porosity” is a value measured by a mercury porosimeter (mercury intrusion method).
  • the pores may include closed pores. The shape of the pores is not particularly limited and varies.
  • the thermal conductivity of the heat insulating member 16 is preferably 1.5 W / mK or less, and the lower limit is not limited, but is usually 0.1 W / mK or more. More preferably, it is 0.1 W / mK or more and 1 W / mK or less. Thereby, the heat insulation effect can be acquired favorably.
  • the heat capacity of the heat insulating member 16 is preferably 500 kJ / m 3 K or more and 2000 kJ / m 3 K or less, more preferably 500 kJ / m 3 K or more and 1500 kJ / m 3 K or less.
  • the aspect ratio of each heat insulating member 16 is preferably 3 or more, more preferably 5 or more, and more preferably 7 or more.
  • the aspect ratio of the heat insulating member 16 is the ratio of the maximum length of one main surface to the thickness.
  • the one main surface is the widest surface among a plurality of surfaces constituting the surface of the heat insulating member 16.
  • the maximum length of the main surface is the maximum distance among the distances between a pair of parallel straight lines sandwiching the outer periphery of the main surface.
  • the thickness of the heat insulating member 16 is preferably 0.1 mm or more, and the upper limit is not limited, but is, for example, 10 mm or less. More preferably, it is 0.5 mm or more and 5 mm or less.
  • the length of one side is 0.1 mm or more, and the upper limit is not limited, but is, for example, 10 mm or less, more preferably 0.5 mm or more. 5 mm or less.
  • the heat insulating member 16 has a plate shape or a tile shape, but may have a large block shape. By making the heat insulating member 16 into a tile shape, a plurality of heat insulating members 16 can be arranged on the curved surface.
  • a method using tape forming will be described as an example of a method for manufacturing the heat insulating member assembly 14.
  • a molding slurry is prepared by adding a pore former, a binder, a plasticizer, a solvent, and the like to the powder of the constituent material of the heat insulating member 16 and mixing them.
  • the pore former is not particularly limited as long as it disappears in the subsequent firing and forms a plurality of pores.
  • the pore former include carbon black, latex particles, melamine resin particles, polymethyl methacrylate (PMMA) particles, polyethylene particles, polystyrene particles, foamed resins, water absorbent resins and the like.
  • carbon black having a small particle size and easily forming small pores in the porous material is preferable.
  • binder examples include polyvinyl butyral resin (PVB), polyvinyl alcohol resin, polyvinyl acetate resin, and polyacrylic resin.
  • plasticizer examples include dibutyl phthalate (DBP) and dioctyl phthalate (DOP).
  • solvent examples of the solvent include xylene and 1-butanol.
  • the content ratio of ZrO 2 particles in the slurry is preferably 5% by volume or more and 20% by volume or less.
  • the content ratio of the different materials in the slurry is preferably 0.1% by volume or more and 5% by volume or less.
  • the content of the pore former in the slurry is preferably 0% by volume or more and 20% by volume or less.
  • the content of other components in the slurry is preferably 70% by volume or more and 90% by volume or less.
  • the viscosity is adjusted by subjecting the molding slurry to a vacuum defoaming treatment.
  • the viscosity of the slurry is preferably from 0.1 Pa ⁇ s to 10 Pa ⁇ s.
  • a molding slurry is placed on a polyester film, and a molded body is produced using a doctor blade or the like so that the thickness after firing becomes a desired thickness.
  • the molded body is peeled from the polyester film and collected.
  • a plate-like sintered body is formed by firing the collected molded body.
  • the firing is preferably performed at 800 ° C. to 2000 ° C. for 0.5 hours to 20 hours, more preferably 800 ° C. to 1800 ° C. for 0.5 hours to 15 hours, and more preferably 800 ° C. to 1300. It is particularly preferable that the reaction be carried out at 0.5 ° C. or less for 0.5 hours or more and 10 hours or less.
  • one main surface of the plate-like fired body is mirror-finished, the surface roughness Ra is set to 1 ⁇ m, and the fired body is stuck on the sheet 12 with the mirror surface facing the surface of the sheet 12.
  • the adhesive is applied on the sheet 12
  • a surface opposite to the mirror surface may be attached on the sheet 12.
  • Mirror finishing may not be performed.
  • a plurality of heat insulating members 16 that is, heat insulating member aggregates 14
  • the heat insulating member 16 is prevented from being peeled off from the sheet 12 when the sintered body is divided.
  • the division of the sintered body may be performed by various methods.
  • the plurality of heat insulating members 16 are formed by pressing (or splitting) the blade against the sintered body.
  • the blade is repeatedly pressed by hand on the sintered body to form a groove
  • the groove is pressed by pressing a grid-like blade with a press or a rolling mill
  • the groove is formed by a laser processing machine
  • the sintered body may be cracked along the groove.
  • the crushing of the sintered body may be performed manually or by a machine.
  • the groove may be formed by a method similar to the above method at any stage before firing.
  • the sintered body may be crushed without providing a groove.
  • a technique using extrusion molding is particularly preferred when the thickness of the molded body is large.
  • a forming paste is prepared by adding a pore former, a binder, a plasticizer, a solvent, and the like to the powder of the constituent material of the heat insulating member 16 and mixing them.
  • a pore former, binder, plasticizer, solvent and the like those suitable for extrusion molding are employed.
  • the paste is extruded from the die having the elongated opening, and the die is continuously moved along the support plate, whereby a molded body is continuously formed on the support plate.
  • the molded body is removed from the support plate and collected after drying.
  • By firing the molded body a plate-like sintered body is formed.
  • the firing conditions are in principle the same as in the case of tape molding, but are adjusted as needed.
  • the sintered body is stuck on the sheet 12, and the sintered body is divided by the method described above.
  • Various other techniques in ceramic production can also be used for forming the formed body. For example, press molding, injection molding, cast molding, and the like can be used.
  • FIG. 4 is a diagram illustrating a state in which the heat insulating member assembly 14 is disposed between the first object 91 and the second object 92.
  • One of the first object 91 and the second object 92 is a high temperature part, and the other is a relatively low temperature part.
  • the heat insulating member assembly 14, that is, the plurality of heat insulating members 16 are directly sandwiched between the first object 91 and the second object 92. Thereby, the heat insulating member 16 suppresses or blocks heat transfer between the first object 91 and the second object 92.
  • the heat insulating member 16 may be indirectly sandwiched between the first object 91 and the second object 92. For example, another member such as a sheet may be interposed between the heat insulating member 16 and the first object 91 or the second object 92.
  • each heat insulating member 16 is the first main surface 161 in FIG. 1, and the upper main surface is the second main surface 162 in FIG. 1.
  • the first main surface 161 faces the first object 91.
  • the second major surface 162 faces the second object 92.
  • the first main surface 161 and the second main surface 162 need not be positioned up and down as long as they are positioned on opposite sides of the heat insulating member 16.
  • the first object 91 and the second object 92 are rigid objects that can support the heat insulating member 16 with the heat insulating member 16 interposed therebetween.
  • the first object 91 and the second object 92 are, for example, metal, resin, plastic, wood, ceramics, cement, concrete, ceramics, glass, and the like.
  • the first object 91 and the second object 92 may be the same material or different materials.
  • a force is applied to the first object 91 and the second object 92 in a direction approaching each other by a bolt 93 that is a fastening member.
  • the bolt 93 shows only the center line.
  • the first object 91 and the heat insulating member 16 may be fixed by an adhesive
  • the second object 92 and the heat insulating member 16 may be fixed by an adhesive.
  • the heat insulating member 16 may be simply sandwiched between the first object 91 and the second object 92 without using an adhesive or the like.
  • the surface of the first object 91 facing the heat insulating member assembly 14 is not limited to a flat surface, and may be a curved surface.
  • the surface of the second object 92 facing the heat insulating member assembly 14 is not limited to a flat surface, and may be a curved surface.
  • the heat insulating member 16 Since the compressive strength of the heat insulating member 16 is high, the heat insulating member 16 is used when a compressive force is applied from the first object 91 and the second object 92 between the first object 91 and the second object 92. It is preferred that Preferably, the compressive strength of the heat insulating member 16 is 10 MPa or more, and more preferably 50 MPa or more. In addition, although there is no upper limit in the compressive strength of the heat insulation member 16, it is 1000 MPa or less normally.
  • the Young's modulus of the heat insulating member 16 is preferably 2 GPa or more, and more preferably 5 GPa or more. Although there is no upper limit to the Young's modulus of the heat insulating member 16, it is usually 300 GPa or less.
  • the assembly sheet 10 is disposed on the first object 91 with the sheet 12 facing upward.
  • the sheet 12 is peeled from the heat insulating member assembly 14, and the second object 92 is further disposed on the heat insulating member assembly 14.
  • An adhesive or an adhesive may be interposed between the heat insulating member assembly 14 and the first object 91, and an adhesive or an adhesive may be interposed between the heat insulating member assembly 14 and the second object 92.
  • An agent may intervene. Without separating the sheet 12 from the heat insulating member assembly 14, the heat insulating member assembly 14 and the sheet 12 may be sandwiched between the first object 91 and the second object 92.
  • the heat insulating member 16 may have not only a heat insulating function but also a function as a structural member that relatively supports the second object 92 with respect to the first object 91.
  • the first object 91 or the second object 92 in which the heat insulating member 16 is disposed is also simply expressed as “object”.
  • the heat insulating member 16 has a high mechanical strength that is used by being sandwiched between objects due to the presence of a large amount of different materials on the surface of the ZrO 2 particles, particularly at the connection part between the particles. Excellent heat insulation performance can be exhibited.
  • Table 1 shows examples of heat insulating members. “A” in the column of thermal insulation evaluation in Table 1 is “best”, “B” is “very good”, “C” is “good”, “D” is “slightly bad”, “E” is “ Indicates "bad”.
  • Example 1 TiO 2 and SiO 2 were used as different materials. These proportions are the same, i.e. 50% and 50% of the total dissimilar materials.
  • the amount of the dissimilar material relative to the ZrO 2 particles is 10% by volume.
  • the width of the neck portion with respect to the average particle diameter of ZrO 2 was 80%. There was no change even when the heat insulating member was sandwiched between the objects and a predetermined compressive force was applied. The evaluation of heat insulation was the best.
  • Example 2 TiO 2 and SiO 2 were used as different materials. These proportions are the same.
  • the amount of dissimilar material relative to the ZrO 2 particles is 20% by volume.
  • the width of the neck portion with respect to the average particle diameter of ZrO 2 was 90%. There was no change even when the heat insulating member was sandwiched between the objects and a predetermined compressive force was applied. The evaluation of heat insulation was very good.
  • Example 3 TiO 2 and SiO 2 were used as different materials. These proportions are the same. The amount of dissimilar material relative to the ZrO 2 particles is 5% by volume. The width of the neck portion with respect to the average particle diameter of ZrO 2 was 70%. There was no change even when the heat insulating member was sandwiched between the objects and a predetermined compressive force was applied. The evaluation of heat insulation was very good.
  • Example 4 SiO 2 was used as the different material.
  • the amount of the dissimilar material relative to the ZrO 2 particles is 10% by volume.
  • the width of the neck portion with respect to the average particle diameter of ZrO 2 was 70%. There was no change even when the heat insulating member was sandwiched between the objects and a predetermined compressive force was applied. The evaluation of heat insulation was very good.
  • Example 5 TiO 2 was used as a different material.
  • the amount of the dissimilar material relative to the ZrO 2 particles is 10% by volume.
  • the width of the neck portion with respect to the average particle diameter of ZrO 2 was 70%. There was no change even when the heat insulating member was sandwiched between the objects and a predetermined compressive force was applied. The evaluation of heat insulation was very good.
  • Example 6 La 2 O 3 was used as a different material.
  • the amount of dissimilar material relative to the ZrO 2 particles is 5% by volume.
  • the width of the neck portion with respect to the average particle diameter of ZrO 2 was 50%. There was no change even when the heat insulating member was sandwiched between the objects and a predetermined compressive force was applied. The evaluation of heat insulation was very good.
  • Example 7 TiO 2 was used as a different material.
  • the amount of the dissimilar material relative to the ZrO 2 particles is 0.1% by volume.
  • the neck width with respect to the particle diameter of the ZrO 2 particles was 40%.
  • Comparative Example 1 a rock wool heat insulating material was used. Since the rock wool-based heat insulating material is poor in rigidity, it deformed greatly when a predetermined compressive force was applied. Due to the deformation, the evaluation of heat insulation was bad.
  • Comparative Example 2 the same ZrO 2 particles as in Examples 1 to 7 were used, and firing was performed at a relatively low temperature without adding different materials.
  • the width of the neck portion with respect to the average particle diameter of ZrO 2 was 20%.
  • the average width of the neck portion is preferably 40% or more of the average particle diameter of the ZrO 2 particles. More preferably, the average width of the neck portion is 50% or more of the average particle diameter of the ZrO 2 particles.
  • the average width of the neck portion is usually 100% or less of the average particle diameter of the ZrO 2 particles.
  • the amount of the different material is changed in the range of 0.1% by volume to 20% by volume with respect to the ZrO 2 particles, but as a result of referring to other experimental results, as described above, It has been found that the amount of the dissimilar material is preferably 0.1 volume% or more and 30 volume% or less.
  • each heat insulating member 16 viewed from the upper surface is a square.
  • the planar shape of the heat insulating member 16 is not limited to a square, and is preferably a polygonal shape.
  • the shape of each heat insulating member 16 may be different from the shape of other heat insulating members 16.
  • five or more heat insulating members 16 may each have a portion arranged with one vertex facing each other.
  • the outer periphery of the planar shape of any of the heat insulating members 16 may include a curve.
  • the planar shape of the heat insulating member 16 includes a curve or a broken line that fits with the adjacent heat insulating member 16, a positional shift between these heat insulating members 16 is suppressed. Thereby, arrangement
  • the gap 165 between adjacent heat insulating members 16 is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. Thereby, the some heat insulation member 16 can be easily arrange
  • the gap 165 is the narrowest interval among the gaps between adjacent heat insulating members 16. For example, the gap 165 is obtained by measuring the space between adjacent heat insulating members 16 with an optical microscope or the like in the heat insulating member assembly 14 adhered on the sheet 12.
  • the angle formed between the side surface and the normal line of the sheet 12 is preferably 0 degree or more and 45 degrees or less. Thereby, when arrange
  • the side surface is not limited to a flat surface, and the angle formed between the side surface and the normal line of the sheet 12 does not need to be constant.
  • the number density of the heat insulating members 16 in the heat insulating member assembly 14 is usually not constant.
  • the ratio of the maximum number density to the minimum value is preferably 1 or more and 1.5 or less.
  • the size of the planar shape of the heat insulating member 16 in the heat insulating member assembly 14 is not constant.
  • the ratio of the maximum value of the planar shape to the minimum value is preferably 1 or more and 1.5 or less.
  • the number density of the heat insulating members 16 is reduced in the flat region to increase the planar shape of each heat insulating member 16, and the number density of the heat insulating members 16 in the non-flat region.
  • the plurality of heat insulating members 16 can be arranged to follow the surface of the object.
  • the number density of the heat insulating members 16 included in each field of view is determined by observing an arbitrary field of view at a plurality of locations with an optical microscope or the like in the heat insulating member assembly 14 stuck on the sheet 12. It is obtained by dividing by the area.
  • the tensile elongation (JIS K7127) of the sheet 12 to which the heat insulating member assembly 14 is fixed is preferably 0.5% or more. Thereby, even if it is a case where the surface of a target object is a curved surface, the some heat insulation member 16 on the sheet
  • the thickness of the sheet 12 is preferably larger than 0 mm and not larger than 5 mm. Thereby, even if it is a case where the surface of a target object is a curved surface, the some heat insulation member 16 on the sheet
  • a matrix may exist between and around the heat insulating members 16 for the purpose of joining the heat insulating members 16 and protecting the heat insulating members 16.
  • the matrix preferably contains at least one of ceramics, glass and resin. From the viewpoint of good heat resistance, the matrix is more preferably ceramics or glass. More specifically, examples of the matrix material include silica, alumina, mullite, zirconia, titania, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, calcium silicate, calcium aluminate, calcium aluminosilicate, Examples thereof include aluminum phosphate, potassium aluminosilicate, and glass. These are preferably amorphous from the viewpoint of low thermal conductivity.
  • the matrix material is ceramics
  • the matrix is preferably an aggregate of fine particles having a particle diameter of 500 nm or less.
  • the thermal conductivity can be kept low.
  • the material used as the matrix is a resin
  • examples of the matrix include a silicone resin, a polyimide resin, a polyamide resin, an acrylic resin, and an epoxy resin.
  • the porosity of the matrix is preferably 0% or more and 70% or less.
  • the heat insulating member assembly 14 As a preferred example of use of the heat insulating member assembly 14, there can be mentioned a structure in which a purification catalyst carrier for automobile exhaust gas is fixed to an exhaust pipe.
  • honeycomb ceramics as a purification catalyst carrier are wrapped in a mat made of fibrous ceramics and pushed into a metal tube on an exhaust pipe to be fixed.
  • honeycomb ceramics as a purification catalyst carrier are wrapped in a mat made of fibrous ceramics and pushed into a metal tube on an exhaust pipe to be fixed.
  • honeycomb ceramics as a purification catalyst carrier are wrapped in a mat made of fibrous ceramics and pushed into a metal tube on an exhaust pipe to be fixed.
  • the heat insulating member assembly 14 sandwiching the heat insulating member assembly 14 between the outer periphery of the honeycomb-shaped ceramics and the metal tube, it is possible to suppress the release of heat from the honeycomb-shaped ceramics via the metal tube. As a result, it is possible to warm the catalyst at an early stage after the engine
  • the honeycomb ceramics are required to be fixed so as not to move in the metal tube. Therefore, in order to arrange a soft heat insulating member between the honeycomb-shaped ceramics and the metal tube, it is necessary to dispose the heat insulating member in a collapsed state. In this case, heat insulation performance will fall.
  • the heat insulating member 16 of the heat insulating member assembly 14 is formed of a ceramic having a porous structure with high mechanical strength, so that the heat insulating performance is not limited even when sandwiched between the honeycomb-shaped ceramics and the metal tube. It will not decline.
  • the sheet 12 to which the heat insulating member assembly 14 is fixed is not limited to a resin sheet or a resin film having adhesive strength, and may have various structures.
  • the sheet 12 may be formed by applying an adhesive or the like on a base material (that is, a support member).
  • a base material that is, a support member.
  • the base material of the sheet 12 is preferably a cloth, a rubber sheet, a foam, or the like. In this way, by using a relatively soft and stretchable base material, the plurality of heat insulating members 16 on the sheet 12 can be easily and accurately arranged to follow the surface of the object.
  • the base material of the sheet 12 is preferably a film, a metal foil, paper, or the like.
  • one heat insulating member 16 may be sandwiched between the first object 91 and the second object 92.
  • the heat insulating member assembly 14 is configured by at least one heat insulating member 16.
  • the pore distribution of the heat insulating member 16 may not be constant.
  • the porosity may be lower than the inside, and furthermore, only closed pores may exist in these areas.
  • the surface facing the first object 91 and the second object 92 may be subjected to a modification process.
  • Two or more heat insulating member assemblies 14 may be sandwiched between the first object 91 and the second object 92.
  • the heat insulating member assembly 14 is fixed on the first object 91
  • the heat insulating member assembly 14 is also fixed on the second object 92
  • the first object 91 and the second object 92 are combined.
  • the two-layer heat insulating member assembly 14 is disposed between the first object 91 and the second object 92.
  • the manufacturing method of the heat insulating member assembly 14 and the heat insulating member 16 is not limited to the above-described method, and may be variously changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Insulation (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

断熱部材(16)は、対象物に挟まれた場合に一方の対象物に対向する第1主面(161)と、第1主面(161)とは反対側に位置し、他の対象物に対向する第2主面(162)とを備える。断熱部材(16)は、気孔を有するセラミックの多孔質構造を有し、ZrO粒子、および、ZrO粒子の表面に存在する異種材料が、多孔質構造の骨格を形成する。異種材料は、SiO、TiO、LaおよびYから選択された少なくとも1つを含む。異種材料がZrO粒子の表面、特に、粒子間の接続部に存在することにより、断熱部材(16)の機械的強度を高く維持しつつ、優れた断熱性能が得られる。

Description

断熱部材
 本発明は、対象物の間に挟まれる断熱部材に関する。
 従来より、多孔質材料を断熱膜として利用する技術が提案されている。例えば、国際公開第2015/080065号(文献1)には、マトリックス中に多孔質材料がフィラーとして分散された断熱膜が開示されている。文献1に開示される多孔質材料は網目構造を有する。網目構造では、ZrO粒子が骨格を構成し、ZrO粒子の表面に異種材料が存在する。
 ところで、断熱を行う部材は、熱伝導を低減するために、例えば、繊維構造や発泡構造等の柔らかい構造を有する。しかし、このような構造の場合、環境によっては、対象物と対象物との間にて断熱部材を安定して保持できない虞がある。また、対象物間に互いに近づく方向に力が加わる場合、断熱部材は大きく変形し、断熱性能が低下する。
 本発明は、断熱部材に向けられている。
 本発明に係る断熱部材は、第1対象物と第2対象物との間に直接的または間接的に挟まれることにより、前記第1対象物と前記第2対象物との間における伝熱を抑制または遮断する。前記断熱部材は、前記第1対象物に対向する第1主面と、前記第1主面とは反対側に位置し、前記第2対象物に対向する第2主面とを備える。前記断熱部材は、気孔を有するセラミックの多孔質構造を有し、ZrO粒子、および、前記ZrO粒子の表面に存在する異種材料が、前記多孔質構造の骨格を形成する。前記異種材料は、SiO、TiO、LaおよびYから選択された少なくとも1つを含む。
 本発明によれば、対象物間に挟まれて使用される高い機械的強度を有し、かつ、対象物間の断熱性能に優れた断熱部材を提供することができる。
 好ましくは、前記断熱部材において、前記ZrO粒子に対する前記異種材料の量は、0.1体積%以上30体積%以下である。
 好ましくは、前記骨格において、ZrOの粒子同士の接続部における最小幅の平均は、前記ZrO粒子の平均粒子径の40%以上100%以下である。
 前記断熱部材の好ましい使用例では、前記第1対象物および前記第2対象物に挟まれた場合に、前記第1対象物および前記第2対象物から前記断熱部材に圧縮力が作用する。
 前記断熱部材の圧縮強度は、好ましくは、10MPa以上1000MPa以下である。前記断熱部材のヤング率は、好ましくは、2GPa以上200GPa以下である。前記断熱部材の熱伝導率は、好ましくは、0.1W/mK以上1.5W/mK以下である。前記断熱部材の熱容量は、好ましくは、500kJ/mK以上2000kJ/mK以下である。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
断熱部材集合体を示す斜視図である。 多孔質構造の骨格の概略を示す図である。 骨格の一部を拡大して示す図である。 断熱部材集合体が第1対象物と第2対象物との間に配置された様子を示す図である。
 図1は、本発明の一の実施の形態に係る断熱部材集合体14を示す斜視図である。断熱部材集合体14は、剥離可能なシート12上に固定される。以下、シート12上に断熱部材集合体14が固定された構成を、「集合体シート10」と呼ぶ。断熱部材集合体14は、集合体シート10の状態で、保管、輸送等が行われ、所望の位置に配置された後またはその直前に、シート12は断熱部材集合体14から剥離される。
 断熱部材集合体14は、例えば、シート12の粘着力によりシート12上に固定される。シート12は、例えば、粘着力を有する樹脂製シートまたは樹脂製フィルムである。シート12の粘着力(JIS Z0237)は、好ましくは、1.0N/10mm以上である。これにより、断熱部材集合体14をシート12に強固に固定することができる。断熱部材集合体14は、貼着界面で一時的にシート12に強固に固定されていてもよい。断熱部材集合体14は、粘着剤等を介してシート12に固定されてもよい。
 シート12の粘着力は、例えば、熱、水、溶剤、電気、光(紫外光を含む。)、マイクロ波もしくは外力等をシート12に付与することにより、または、経時変化等により低下する。これにより、断熱部材集合体14のシート12に対する固定状態を容易に解除し、断熱部材集合体14をシート12から剥離させることができる。断熱部材集合体14の剥離時におけるシート12の粘着力は、好ましくは、0.1N/10mm以下である。これにより、断熱部材集合体14をシート12から容易に剥離させることができる。
 断熱部材集合体14は、複数の断熱部材16を含む。各断熱部材16は板状である。 「板状の断熱部材」には、平板状(平らで湾曲していない板)のみならず、湾曲した板状のものや、厚さ(最小長)が一定ではない板状のものも含まれる。断熱部材集合体14に含まれる断熱部材16の数は、図1に示す例には限定されない。断熱部材集合体14の全体の輪郭も図1に示すものには限定されない。図1に示す例では、各断熱部材16は同じ形状を有するが、複数の断熱部材16の平面視における形状、すなわち、平面形状は互いに異なってもよい。多数の断熱部材16をシート12上に固定された状態で扱うことにより、断熱部材16を所望の位置に容易に配置することができる。
 図1の状態において、各断熱部材16の上側の広い面161(側面に対して相対的に広い面であり、以下、「第1主面」という。)は、後述するように使用時に対象物に対向する。各断熱部材16の下側の広い面162(側面に対して相対的に広い面であり、以下、「第2主面」という。)は、使用時に他の対象物に対向する。図1では、1つの断熱部材16についてのみ、破線にて背後の面を示している。断熱部材16は、対象物に挟まれて使用され、対象物間の伝熱を抑制または遮断する。
 断熱部材16は、気孔を有するセラミックの多孔質構造を有する。多孔質構造は、微粒子が三次元に繋がった網目構造の骨格を有し、骨格以外の空隙が気孔になっている。当該微粒子を、以下、「骨格粒子」とも呼ぶ。図2は、骨格粒子であるZrO粒子21により形成される骨格20の概略を示す図である。ZrO粒子21の粒子径は、好ましくは、10nm以上5μm以下であり、さらに好ましくは、30nm以上1μm以下である。これにより、熱伝導の主因である格子振動(フォノン)の発生が好適に阻害され、断熱部材16の熱伝導率が低くなる。ZrO粒子21は、1つの結晶粒からなる粒子(すなわち、単結晶粒子)であってもよく、多数の結晶粒からなる粒子(すなわち、多結晶粒子)であってもよい。
 ZrO粒子21の粒子径は、例えば、骨格を構成する骨格粒子群に含まれる1つの微粒子の大きさ(例えば、微粒子が球状であれば直径、球状でなければ最大径)を、電子顕微鏡観察の画像等から計測したものである。ZrO粒子21の粒子径は、例えば、次のようにして取得される。図3に示すように、透過型電子顕微鏡(TEM)を用いた観察によって得た微構造の画像において、あるZrO粒子21に注目する。ZrO粒子21の像はほぼ円形であるが、粒子像を一組の平行線で挟み込んだ場合の最大となる平行線間の距離22を最大直径として取得する。
 ZrO粒子の径を平均粒子径で捉えた場合、平均粒子径は10nm以上1μm以下であることが好ましく、10nm以上500nm以下であることがさらに好ましく、10nm以上100nm以下であることが特に好ましい。ZrO粒子21の平均粒子径は、例えば、まず、上述の手法にてTEMの画像から10個以上のZrO粒子の最大直径を粒子径として取得する。次に、得られた最大直径の平均値をZrO粒子の平均粒子径として取得する。ZrO粒子には他の元素(例えば、Mg,Ca,Y,Ce,Yb,Scなど)が固溶していてもよく、部分安定化ジルコニアや完全安定化ジルコニアであってもよい。
 多孔質構造の骨格は、ZrO粒子、および、当該ZrO粒子の表面に存在する異種材料により形成される。異種材料は、SiO、TiO、LaおよびYから選択された少なくとも1つを含む。好ましくは、異種材料は、SiO、TiO、LaおよびYから選択された少なくとも1つである。このような多孔質構造は、断熱性能に優れる。断熱部材16では、異種材料がZrO粒子の表面に存在することにより、ZrO粒子と異種材料の粒界におけるフォノン散乱が増えるため、熱伝導率を低くすることができる。図3では、異種材料が存在する領域23を、平行斜線を付して概念的に示している。
 なお、「ZrO粒子の表面に異種材料が存在する」とは、異種材料がZrO粒子間に介在している状態を含む概念である。また、ZrO粒子同士が小さな接点で接続しつつ、その接続部の周辺、すなわち、接続するZrO粒子同士が作るネック部(くびれた部分)の周辺に異種材料が存在する状態を含む概念である。また、異種材料は他の材料と反応した状態で存在してもよい。例えば、異種材料がSiOであれば、SiOの形態のみならず、ZrOと反応したZrSiOや、他の異種材料と反応した複合酸化物、あるいは、非晶質相として存在してもよい。
 異種材料は、ZrO粒子間に存在していることが好ましい。つまり、異種材料がZrO粒子間に介在していること(換言すれば、異種材料は、ZrO粒子の粒界に存在していること)が好ましい。異種材料がZrO粒子間に存在することにより、ZrO粒子の粒界におけるフォノン散乱がさらに増えるため、熱伝導率をさらに低くすることができる。
 異種材料は、ZrO粒子内に固溶していることも好ましい。ZrO粒子内に異種材料が固溶すると、さらに熱伝導率を低くすることができる。「ZrO粒子内に異種材料が固溶する」とは、ZrO粒子内に異種材料を構成する元素の一部がZrO粒子の結晶構造内に存在している状態であることを意味する。例えば、ZrO粒子の結晶構造中のZrのサイトに、異種材料の金属原子が置換することを意味する。このような状態であることは、TEMを用いた元素分析と共に、X線回折による結晶構造解析をすることで確認することができる。
 骨格において、ZrOの粒子同士の接続部における最小幅、すなわち、ネック部の幅の平均は、ZrO粒子の平均粒子径の40%以上100%以下であることが好ましい。これにより、断熱部材16の強度を確保することができる。また、このような強度確保は、後述するように、断熱部材16に圧縮力が作用する場合に特に適している。ネック部はZrO粒子のみにより形成されてもよく、異種材料を含んでいてもよい。
 図3を参照して、ネック部の幅の取得例について説明する。まず、TEMを用いた観察によって得た微構造の画像において、あるZrO粒子21(図3において符号21Aを付す。)と、この粒子に接するZrO粒子21(符号21Bを付す。)に注目する。これらの粒子としては、視線方向に対してほぼ垂直な方向に並ぶものが選択される。ZrO粒子21A,21Bの像はほぼ円形であるため、外接円の中心としてこれらの粒子の中心が取得可能である。2つの中心を結ぶ直線に平行な一組の平行線であって、ZrO粒子21A,21Bの間のネック部24に接するものを取得し、平行線間の距離25をネック部24の幅として取得する。同様の処理を10カ所以上のZrO粒子21間のネック部24で行い、平均値をネック部24の幅の平均として取得する。
 ZrO粒子に対する異種材料の量は、0.1体積%以上30体積%以下であることが好ましく、0.5体積%以上20体積%以下であることがさらに好ましく、1体積%以上18体積%以下であることが特に好ましい。上記範囲内であることにより、骨格構造を維持しつつネック部を適切な幅とすることができ、断熱部材16の機械的強度を維持しつつ熱伝導率を低く抑えることができる。
 多孔質構造を構成するZrO粒子の確認、および、ZrO粒子上の異種材料の種類の確認は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)または電界放出型走査型電子顕微鏡(FE-SEM)を用いる元素分析により可能である。また、これらの装置を用いてZrO粒子に対する異種材料の量も求めることができる。
 異種材料が2種類である場合、これらの体積比の値は、1/9以上9以下であることが好ましい。上記比の値が上記範囲外であると、両者を共に添加する効果が低くなる場合がある。
 異種材料の原料段階での粒子の平均粒子径は、原料段階でのZrO粒子の平均粒子径よりも小さいことが好ましい。これにより、ZrOの特性が維持し易くなる。異種材料の原料段階での平均粒子径は、製造コストや、耐熱性や強度等の材料特性において有利となるように、2nm以上300nm以下であることが好ましく、2nm以上100nm以下であることがさらに好ましく、2nm以上50nm以下であることが特に好ましい。「異種材料の平均粒子径」は、上述したZrO粒子の平均粒子径と同様にして測定した値である。
 断熱部材16の原料は、ZrO粒子および異種材料粒子以外に、他の粒子を含有していてもよい。他の粒子を含有する場合、ZrO粒子および異種材料粒子の合計の含有割合は、耐熱性や強度等の材料特性において有利となるように、90体積%以上であることが好ましい。
 多孔質構造では、平均気孔径は、製造コストや熱伝導率において有利となるように、0.5nm以上500nm以下であることが好ましく、1nm以上300nm以下であることがさらに好ましく、10nm以上100nm以下であることが特に好ましい。本明細書において「平均気孔径」は、水銀ポロシメータ(水銀圧入法)を用いて測定した値である。平均気孔径が10nm以下の場合は、ガス吸着法にて測定が行われる。
 気孔径の分布は、断熱部材16全体に亘って同じである必要はなく、位置によって異なってもよい。すなわち、異なる部位における一定範囲内の平均気孔径は異なってもよい。
 多孔質構造の気孔率は、熱伝導率や強度で有利となるように、20%以上80%以下であることが好ましく、さらに好ましくは20%以上70%以下である。気孔率は、より好ましくは40%以上70%以下であり、特に好ましくは50%以上70%以下である。ここで、本明細書において「気孔率」は、水銀ポロシメータ(水銀圧入法)で測定した値である。気孔には、閉気孔が含まれてもよい。気孔の形状は特に限定されず、様々である。
 断熱部材16の熱伝導率は、好ましくは1.5W/mK以下であり、下限は制限されないが、通常は0.1W/mK以上である。さらに好ましくは0.1W/mK以上1W/mK以下である。これにより、断熱効果を良好に得ることができる。「熱伝導率」は、以下のようにして算出される値である。まず、水銀ポロシメータで断熱部材の密度を測定する。次に、示差走査熱量計(DSC)を用いて断熱部材の比熱を測定する。次に、光交流法で断熱部材の熱拡散率を測定する。その後、熱拡散率×比熱×密度=熱伝導率の関係式から、断熱部材の熱伝導率を算出する。
 断熱部材16の熱容量は、好ましくは500kJ/mK以上2000kJ/mK以下であり、さらに好ましくは500kJ/mK以上1500kJ/mK以下である。
 各断熱部材16のアスペクト比は、好ましくは3以上であり、さらに好ましくは5以上であり、より好ましくは7以上である。断熱部材16のアスペクト比とは、厚さに対する一の主面における最大長の割合である。当該一の主面は、断熱部材16の表面を構成する複数の面のうち最も広い面である。主面の最大長は、主面の外周を挟む平行な1組の直線の間の距離のうち、最大の距離である。断熱部材16の厚さは、好ましくは0.1mm以上であり、上限は制限されないが、例えば、10mm以下である。さらに好ましくは0.5mm以上5mm以下である。
 断熱部材16を平面視した場合の形状が矩形である場合、1辺の長さは、0.1mm以上であり、上限は制限されないが、例えば、10mm以下であり、さらに好ましくは0.5mm以上5mm以下である。通常、断熱部材16は板状またはタイル状であるが、大きなブロック状であってもよい。断熱部材16をタイル状とすることにより、複数の断熱部材16を曲面上に配置することが可能となる。
 次に、断熱部材集合体14の製造方法の例としてテープ成形を利用する手法について説明する。まず、断熱部材16の構成材料の粉末に、造孔材、バインダ、可塑剤、溶剤等を加えて混合することにより、成形用スラリーが調製される。
 造孔材は、後の焼成において消失して複数の気孔を形成するものであれば特に制限はない。造孔材としては、例えば、カーボンブラック、ラテックス粒子、メラミン樹脂粒子、ポリメチルメタクリレート(PMMA)粒子、ポリエチレン粒子、ポリスチレン粒子、発泡樹脂、吸水性樹脂等を挙げることができる。これらの中でも、粒子サイズが小さく、多孔質材料に小さな気孔を形成しやすいカーボンブラックが好ましい。
 バインダとしては、ポリビニルブチラール樹脂(PVB)、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリアクリル樹脂等を挙げることができる。可塑剤としては、フタル酸ジブチル(DBP)、フタル酸ジオクチル(DOP)等を挙げることができる。溶剤としては、キシレン、1-ブタノール等を挙げることができる。
 スラリー中のZrO粒子の含有割合は、5体積%以上20体積%以下であることが好ましい。スラリー中の異種材料の含有割合は、0.1体積%以上5体積%以下であることが好ましい。スラリー中の造孔材の含有割合は、0体積%以上20体積%以下であることが好ましい。スラリー中の他の成分の含有割合は、70体積%以上90体積%以下であることが好ましい。
 続いて、成形用スラリーに真空脱泡処理を施すことにより粘度調整が行われる。スラリーの粘度は、0.1Pa・s以上10Pa・s以下が好ましい。
 テープ成形では、例えば、ポリエステルフィルム上に成形用スラリーが載置され、焼成後の厚さが所望の厚さとなるように、ドクターブレード等を用いて成形体が作製される。成形体はポリエステルフィルムから剥離されて回収される。
 回収された成形体を焼成することにより、板状の焼結体が形成される。焼成は、800℃以上2000℃以下で0.5時間以上20時間以下行われることが好ましく、800℃以上1800℃以下で0.5時間以上15時間以下行われることがさらに好ましく、800℃以上1300℃以下で0.5時間以上10時間以下行われることが特に好ましい。
 次に、板状の焼成体の一主面を鏡面加工し、表面粗さRaを1μmとし、鏡面をシート12の表面に対向させた状態で、焼成体がシート12上に貼着される。シート12上に粘着剤が塗布される場合は、鏡面とは反対側の面がシート12上に貼着されてもよい。鏡面加工は行われなくてもよい。その後、焼結体をシート12上において分割することにより、シート12上に複数の断熱部材16(すなわち、断熱部材集合体14)が貼着された状態で得られる。焼結体はシート12に強固に貼着されているため、焼結体の分割時に断熱部材16がシート12から剥離することが防止される。
 焼結体の分割、すなわち、解砕は、様々な方法により行われてよい。例えば、焼結体に刃物を押し当てて切る(または、割る)ことにより、複数の断熱部材16が形成される。あるいは、焼結体に、手で刃物を繰り返し押し当てて溝を形成したり、プレス機や圧延機で格子状の刃を押し当てて溝を形成したり、レーザ加工機により溝を形成し、溝に沿って焼結体が割られてもよい。焼結体の解砕は、手で行われもよく、機械で行われてもよい。溝は、焼成前の任意の段階で上記手法と同様の手法により形成されてもよい。溝を設けることなく、焼結体が解砕されてもよい。
 断熱部材集合体14の製造方法の他の好ましい例として、押出成形を利用する手法を挙げることができる。成形体の厚さが大きい場合、押出成形は特に好ましい。まず、断熱部材16の構成材料の粉末に、造孔材、バインダ、可塑剤、溶剤等を加えて混合することにより、成形用ペースト(坏土)が調製される。造孔材、バインダ、可塑剤、溶剤等としては、押出成形に適したものが採用される。
 次に、細長い開口が形成された口金からペーストが押し出され、口金を支持板に沿って相対的に移動することにより、支持板上に連続的に成形体が成形される。成形体は、乾燥
後に支持板から取り外されて回収される。成形体を焼成することにより、板状の焼結体が形成される。焼成条件は原則としてテープ成形の場合と同様であるが、必要に応じて適宜調整される。その後、焼結体はシート12上に貼着され、既述の手法にて焼結体の分割が行われる。なお、成形体の成形には、セラミックス製造における様々な他の手法も利用することができる。例えば、プレス成形、射出成形、鋳込み成形等も利用可能である。
 図4は、断熱部材集合体14が、第1対象物91と、第2対象物92との間に配置された様子を示す図である。第1対象物91および第2対象物92の一方は高温部であり、他方は相対的に低温部である。断熱部材集合体14、すなわち、複数の断熱部材16は、第1対象物91と第2対象物92との間に直接的に挟まれる。これにより、断熱部材16は、第1対象物91と第2対象物92との間における伝熱を抑制または遮断する。断熱部材16は、第1対象物91と第2対象物92との間に間接的に挟まれてもよい。例えば、断熱部材16と第1対象物91または第2対象物92との間に、シート等の他の部材が介在してもよい。
 図4に示す状態において、各断熱部材16の下側の主面が図1の第1主面161であり、上側の主面が図1の第2主面162であるものとする。第1主面161は、第1対象物91に対向する。第2主面162は、第2対象物92に対向する。第1主面161と第2主面162とは、断熱部材16において互いに反対側に位置するのであれば、上下に位置する必要はない。
 第1対象物91および第2対象物92は、断熱部材16を挟んだ状態で断熱部材16を支持することができる剛性を有する物体である。第1対象物91および第2対象物92は、例えば、金属、樹脂、プラスチック、木材、セラミックス、セメント、コンクリート、陶磁器、ガラス等である。第1対象物91および第2対象物92は同じ材質であっても異なる材質であってもよい。
 図4の例の場合、第1対象物91と第2対象物92とには、締結部材であるボルト93により、互いに近づく方向に力が与えられる。図4では、ボルト93は、中心線のみを示している。他の構造として、例えば、第1対象物91と断熱部材16とが接着剤により固定され、第2対象物92と断熱部材16とが接着剤により固定されてもよい。断熱部材16は接着剤等を用いることなく単純に第1対象物91および第2対象物92により挟持されてもよい。第1対象物91の断熱部材集合体14に対向する面は平面には限定されず、曲面でもよい。第2対象物92の断熱部材集合体14に対向する面も平面には限定されず、曲面でもよい。
 断熱部材16の圧縮強度は高いため、断熱部材16は、第1対象物91および第2対象物92に挟まれて第1対象物91および第2対象物92から圧縮力が作用する場合に使用されることが好ましい。好ましくは、断熱部材16の圧縮強度は、10MPa以上であり、さらに好ましくは、50MPa以上である。なお、断熱部材16の圧縮強度に上限はないが、通常、1000MPa以下である。
 また、断熱部材16が第1対象物91および第2対象物92から圧縮力を受ける場合、第1対象物91と第2対象物92との相対位置の変化は小さいことが望ましい。そのため、断熱部材16のヤング率は、2GPa以上であることが好ましく、5GPa以上であることがさらに好ましい。断熱部材16のヤング率に上限はないが、通常、300GPa以下である。
 断熱部材集合体14が配置される際には、例えば、第1対象物91上に、集合体シート10がシート12を上にして配置される。断熱部材集合体14からシート12が剥離され、さらに第2対象物92が断熱部材集合体14上に配置される。断熱部材集合体14と第1対象物91との間には、粘着剤や接着剤が介在してもよく、断熱部材集合体14と第2対象物92との間にも、粘着剤や接着剤が介在してもよい。断熱部材集合体14からシート12を剥離することなく、断熱部材集合体14およびシート12が、第1対象物91と第2対象物92との間に挟まれてもよい。
 なお、断熱部材16には必ずしも圧縮力が作用する必要はなく、圧縮力が作用することなく断熱部材16が第1対象物91および第2対象物92に挟まれてもよい。このとき、断熱部材16は、断熱機能のみならず、第1対象物91に対して第2対象物92を相対的に支持する構造部材としての機能を有してもよい。以下、断熱部材16が間に配置される第1対象物91または第2対象物92を、単に、「対象物」とも表現する。
 断熱部材16では、異種材料がZrO粒子の表面、特に、粒子同士の接続部に多く存在することにより、対象物間に挟まれて使用される高い機械的強度を有し、かつ、対象物間において優れた断熱性能を発揮することができる。
 表1は、断熱部材の実施例を示す。表1における断熱性評価の欄の「A」は「最も良い」、「B」は「非常に良い」、「C」は「良い」、「D」は「やや悪い」、「E」は「悪い」を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1では、異種材料として、TiOとSiOとを用いた。これらの割合は同じ、すなわち、異種材料全体の50%と50%である。ZrO粒子に対する異種材料の量は、10体積%である。ZrOの平均粒子径に対するネック部の幅は80%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えても変化はなかった。断熱性の評価は最も良かった。
 実施例2では、異種材料として、TiOとSiOとを用いた。これらの割合は同じである。ZrO粒子に対する異種材料の量は、20体積%である。ZrOの平均粒子径に対するネック部の幅は90%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えても変化はなかった。断熱性の評価は非常に良かった。
 実施例3では、異種材料として、TiOとSiOとを用いた。これらの割合は同じである。ZrO粒子に対する異種材料の量は、5体積%である。ZrOの平均粒子径に対するネック部の幅は70%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えても変化はなかった。断熱性の評価は非常に良かった。
 実施例4では、異種材料として、SiOを用いた。ZrO粒子に対する異種材料の量は、10体積%である。ZrOの平均粒子径に対するネック部の幅は70%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えても変化はなかった。断熱性の評価は非常に良かった。
 実施例5では、異種材料として、TiOを用いた。ZrO粒子に対する異種材料の量は、10体積%である。ZrOの平均粒子径に対するネック部の幅は70%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えても変化はなかった。断熱性の評価は非常に良かった。
 実施例6では、異種材料として、Laを用いた。ZrO粒子に対する異種材料の量は、5体積%である。ZrOの平均粒子径に対するネック部の幅は50%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えても変化はなかった。断熱性の評価は非常に良かった。
 実施例7では、異種材料として、TiOを用いた。ZrO粒子に対する異種材料の量は、0.1体積%である。ZrO粒子の粒径に対するネック部幅は40%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えたところ、わずかに変形し、一部崩壊した。断熱性の評価は良かった。
 比較例1では、ロックウール系断熱材を用いた。ロックウール系断熱材は剛性に乏しいため、所定の圧縮力を加えたところ、大きく変形した。変形により、断熱性の評価は悪かった。
 比較例2では、実施例1ないし7と同様のZrO粒子を用い、異種材料を加えることなく比較的低温で焼成を行った。ZrOの平均粒子径に対するネック部の幅は20%となった。断熱部材を対象物間に挟み、所定の圧縮力を加えたところ、崩壊した。断熱性の評価はやや悪かった。
 上記実施例から、ネック部の幅の平均は、ZrO粒子の平均粒子径の40%以上であることが好ましいことが判る。より好ましくは、ネック部の幅の平均は、ZrO粒子の平均粒子径の50%以上である。ネック部の幅の平均は通常、ZrO粒子の平均粒子径の100%以下である。上記実施例では、異種材料の量は、ZrO粒子に対して0.1体積%から20体積%の範囲で変化させているが、他の実験結果も参照した結果、既述のように、異種材料の量は、0.1体積%以上30体積%以下であることが好ましいことが判っている。
 実験を繰り返した結果、以下の傾向が判明した。
・異種材料の原料粒径が小さいほど、異種材料が均一に分散し、幅の大きいネック部が多く形成され易い。
・異種材料の量が多いほどネック部の幅は大きくなり易い。
・複数種類の異種材料を添加すると、ネック部の幅は大きくなり易い。
・異種材料の種類によってネック部の幅に差が生じ、SiO、TiO、La、Yのうち、SiOの添加でネック部の幅が最も大きくなり、続いて、TiO、Laの順でネック部の幅が小さくなり、LaとYとではネック部の幅はほぼ同様である。
・焼成温度が高いほど、ZrOの平均粒子径は大きくなり、ネック部の幅は大きくなる。
・焼成時間が長いほど、ZrOの平均粒子径は大きくなり、ネック部の幅は大きくなる。
・ネック部の幅が大きいほど、対象物に挟まれたときに変形しないが、断熱性は悪くなる。すなわち、ネック部を熱が伝わり易くなる。
・ZrOの原料粒子の平均粒子径が小さいほど、焼成後のZrO粒子の平均粒子径は小さくなる。
 図1に示す例では、各断熱部材16を上面からみた平面形状は正方形である。既述のように、断熱部材16の平面形状は、正方形には限定されず、好ましくは、多角形状である。各断熱部材16の形状は、他の断熱部材16の形状と異なってもよい。断熱部材集合体14では、例えば、5つ以上の断熱部材16がそれぞれ1つの頂点を対峙させて配置された部分を有してもよい。さらに、いずれかの断熱部材16の平面形状の外周は、曲線を含んでもよい。断熱部材16の平面形状が、隣接する断熱部材16と嵌まり合う曲線または折れ線を含むことにより、これらの断熱部材16の間の位置ずれが抑制される。これにより、断熱部材16の第1対象物91または第2対象物92上への配置を容易に行うことができる。
 図1に示すように、断熱部材集合体14では、隣接する断熱部材16間の隙間165は、好ましくは、0.1μm以上10μm以下である。これにより、複数の断熱部材16を、対象物上に容易に配置することができる。上記隙間165は、隣接する断熱部材16間の隙間のうち、最も狭い部分の間隔である。当該隙間165は、例えば、シート12上に貼着された断熱部材集合体14において、隣接する断熱部材16間を光学顕微鏡等で測定したものである。
 断熱部材集合体14では、隣接する断熱部材16の側面同士が平行に対向する場合、側面とシート12の法線とのなす角は0度以上45度以下であることが好ましい。これにより、断熱部材集合体14を対象物上に配置する際に、断熱部材16が欠けることを防止または抑制することができる。側面は平面には限定されず、側面とシート12の法線とのなす角は一定である必要はない。
 断熱部材集合体14において断熱部材16の形状が一定ではない場合、通常、断熱部材集合体14内での断熱部材16の個数密度も一定ではない。当該個数密度の最大値の最小値に対する割合(すなわち、最大個数密度/最小個数密度)は、好ましくは、1以上1.5以下である。個数密度のばらつきを抑えることにより、断熱部材集合体14を対象物上に容易に配置することができる。
 また、断熱部材集合体14において断熱部材16の形状が一定ではない場合は、断熱部材集合体14内での断熱部材16の平面形状の大きさも一定ではない。当該平面形状の大きさの最大値の最小値に対する割合(すなわち、最大面積/最小面積)は、好ましくは、1以上1.5以下である。断熱部材16の面積のばらつきを抑えることにより、断熱部材集合体14を対象物上に容易に配置することができる。
 なお、対象物の表面が平坦でない部分を含む場合は、平坦な領域において断熱部材16の個数密度を小さくして各断熱部材16の平面形状を大きくし、平坦でない領域において断熱部材16の個数密度を大きくして各断熱部材16の平面形状を小さくすることにより、複数の断熱部材16を対象物の表面に追従させて配置することができる。
 上述の個数密度は、例えば、シート12上に貼着された断熱部材集合体14において、光学顕微鏡等により複数箇所の任意の視野を観察し、各視野に含まれる断熱部材16の個数を、視野の面積で除算することにより求められる。
 断熱部材集合体14が固定されるシート12の引張伸度(JIS K7127)は、好ましくは0.5%以上である。これにより、対象物の表面が曲面である場合であっても、シート12上の複数の断熱部材16を、対象物の表面に容易に、かつ、精度良く追従させて配置することができる。また、シート12の厚さは、好ましくは、0mmよりも大きく、5mm以下である。これにより、対象物の表面が曲面である場合であっても、シート12上の複数の断熱部材16を、対象物の表面に容易に、かつ、精度良く追従させて配置することができる。
 図4に示す状態において、断熱部材16の間や周囲に、断熱部材16同士の接合および断熱部材16の保護を目的として、マトリクスが存在してもよい。マトリックスは、セラミックス、ガラスおよび樹脂の少なくとも一種を含むことが好ましい。耐熱性が良好となるという観点から、マトリックスとしてはセラミックスまたはガラスがより好ましい。より具体的には、マトリックスとなる材料としては、例えば、シリカ、アルミナ、ムライト、ジルコニア、チタニア、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、カルシウムシリケート、カルシウムアルミネート、カルシウムアルミノシリケート、リン酸アルミニウム、カリウムアルミノシリケート、ガラス等を挙げることができる。これらは熱伝導率が低くなるという観点から非晶質であることが好ましい。
 マトリックスの材料がセラミックスの場合は、マトリックスは、粒子径が500nm以下の微粒子の集合体であることが望ましい。粒子径が500nm以下の微粒子の集合体をマトリックスとすることにより、熱伝導率を低く抑えることができる。また、マトリックスとなる材料が樹脂の場合、マトリックスとしては、シリコーン樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、エポキシ樹脂等を挙げることができる。マトリックスの気孔率は、0%以上70%以下であることが好ましい。
 断熱部材集合体14の好適な使用例の一つとして、自動車の排気ガスの浄化触媒担体を排気管に固定する構造を挙げることができる。従来より、浄化触媒担体であるハニカム状セラミックスは、繊維状のセラミックスからなるマットで包まれて排気管上の金属管に押し込まれて固定される。一方、ハニカム状セラミックスに担持した触媒を早期に暖めて、エンジンの始動直後から高効率にて排気ガスを浄化したいという要望が近年高まっている。そこで、ハニカム状セラミックスの外周と金属管との間に断熱部材集合体14を挟み込むことにより、ハニカム状セラミックスから金属管を経由して熱が放出されることを抑制することができる。その結果、エンジンの始動後の早期の段階で触媒を暖めることが実現される。
 自動車の振動によるハニカム状セラミックスの破損を防止するために、ハニカム状セラミックスは金属管内にて動かないように固定することが求められる。そのため、柔らかい断熱部材をハニカム状セラミックスと金属管との間に配置するには、断熱部材がつぶれた状態で配置される必要がある。この場合、断熱性能が低下してしまう。これに対し、断熱部材集合体14の断熱部材16は、機械的強度が高い多孔質構造を有するセラミックにて形成されるため、ハニカム状セラミックスと金属管との間に挟持されても断熱性能は低下しない。
 上述の断熱部材集合体14および断熱部材16では、様々な変更が可能である。
 断熱部材集合体14が固定されるシート12は、粘着力を有する樹脂製シートまたは樹脂製フィルムには限定されず、様々な構造を有していてもよい。例えば、シート12は、基材(すなわち、支持部材)上に接着剤等が塗布されることにより形成されてもよい。対象物の表面が曲面である場合、シート12の基材は、好ましくは、布、ゴムシートまたは発泡体等である。このように、比較的柔らかく伸縮性を有する基材を利用することにより、シート12上の複数の断熱部材16を、対象物の表面に容易に、かつ、精度良く追従させて配置することができる。また、対象物の表面が平坦である場合、シート12の基材は、好ましくは、フィルム、金属箔または紙等である。このように、比較的硬い基材を利用することにより、複数の断熱部材16を対象物の表面に転写する際に、シート12に皺が生じて断熱部材16の位置がずれることを防止または抑制することができる。
 断熱部材集合体14に代えて、1つの断熱部材16が第1対象物91と第2対象物92との間に挟まれてもよい。換言すれば、断熱部材集合体14は、少なくとも1つの断熱部材16により構成される。
 既述のように、断熱部材16の気孔の分布は一定でなくてもよい。例えば、第1対象物91および第2対象物92に対向する面近傍の領域において、内部よりも気孔率が小さくてもよく、さらには、これらの領域に閉気孔のみが存在してもよい。第1対象物91および第2対象物92に対向する面に改質処理が施されてもよい。
 第1対象物91および第2対象物92の間において、2層以上の断熱部材集合体14が挟まれてもよい。例えば、第1対象物91上に断熱部材集合体14が固定され、第2対象物92上にも断熱部材集合体14が固定され、第1対象物91と第2対象物92とが合わされることにより、第1対象物91と第2対象物92との間に2層の断熱部材集合体14が配置される。
 断熱部材集合体14および断熱部材16の製造方法は、上述のものには限定されず、様々に変更されてよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 16  断熱部材
 20  骨格
 21  ZrO粒子
 24  ネック部(粒子同士の接続部)
 91  第1対象物
 92  第2対象物
 161  第1主面
 162  第2主面

Claims (8)

  1.  第1対象物と第2対象物との間に直接的または間接的に挟まれることにより、前記第1対象物と前記第2対象物との間における伝熱を抑制または遮断する断熱部材であって、
     前記第1対象物に対向する第1主面と、
     前記第1主面とは反対側に位置し、前記第2対象物に対向する第2主面と、
    を備え、
     気孔を有するセラミックの多孔質構造を有し、
     ZrO粒子、および、前記ZrO粒子の表面に存在する異種材料が、前記多孔質構造の骨格を形成し、
     前記異種材料が、SiO、TiO、LaおよびYから選択された少なくとも1つを含む。
  2.  請求項1に記載の断熱部材であって、
     前記ZrO粒子に対する前記異種材料の量が、0.1体積%以上30体積%以下である。
  3.  請求項1または2に記載の断熱部材であって、
     前記骨格において、ZrOの粒子同士の接続部における最小幅の平均が、前記ZrO粒子の平均粒子径の40%以上100%以下である。
  4.  請求項1ないし3のいずれかに記載の断熱部材であって、
     前記第1対象物および前記第2対象物に挟まれた場合に、前記第1対象物および前記第2対象物から圧縮力が作用する。
  5.  請求項1ないし4のいずれかに記載の断熱部材であって、
     圧縮強度が、10MPa以上1000MPa以下である。
  6.  請求項1ないし5のいずれかに記載の断熱部材であって、
     ヤング率が、2GPa以上200GPa以下である。
  7.  請求項1ないし6のいずれかに記載の断熱部材であって、
     熱伝導率が、0.1W/mK以上1.5W/mK以下である。
  8.  請求項1ないし7のいずれかに記載の断熱部材であって、
     熱容量が、500kJ/mK以上2000kJ/mK以下である。
PCT/JP2017/023608 2016-08-26 2017-06-27 断熱部材 WO2018037707A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17843195.3A EP3505805B1 (en) 2016-08-26 2017-06-27 Heat-insulating member
CN201780051957.0A CN109642696B (zh) 2016-08-26 2017-06-27 隔热部件
JP2018504961A JP6415780B2 (ja) 2016-08-26 2017-06-27 断熱部材
US16/282,703 US11572315B2 (en) 2016-08-26 2019-02-22 Thermal insulation member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016165764 2016-08-26
JP2016-165764 2016-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/282,703 Continuation US11572315B2 (en) 2016-08-26 2019-02-22 Thermal insulation member

Publications (1)

Publication Number Publication Date
WO2018037707A1 true WO2018037707A1 (ja) 2018-03-01

Family

ID=61246666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023608 WO2018037707A1 (ja) 2016-08-26 2017-06-27 断熱部材

Country Status (5)

Country Link
US (1) US11572315B2 (ja)
EP (1) EP3505805B1 (ja)
JP (2) JP6415780B2 (ja)
CN (1) CN109642696B (ja)
WO (1) WO2018037707A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092881A (ja) * 1995-06-15 1997-01-07 Riboole:Kk 発泡セラミック成形板
JP2005288350A (ja) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology 高圧装置の効率的な断熱方法及び装置
JP2008201636A (ja) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology マクロポーラスな連通孔を持つセラミック多孔体及びその製造方法
JP2012509827A (ja) * 2008-11-24 2012-04-26 エクソンモービル・ケミカル・パテンツ・インク 成形された熱安定性セラミック、それを使用した装置及び方法
JP2014172789A (ja) * 2013-03-08 2014-09-22 Mino Ceramic Co Ltd セラミックス多孔質積層断熱材およびその製造方法
WO2015080065A1 (ja) * 2013-11-26 2015-06-04 日本碍子株式会社 多孔質材料及び断熱膜
WO2015145354A1 (en) * 2014-03-27 2015-10-01 Innovnano – Materiais Avançados, Sa. Sintered ceramic material, powder composition for obtaining thereof, manufacturing process and ceramic pieces thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2171038C (en) 1995-03-15 2001-05-15 Mitsuo Minagawa Expanded ceramic molded plate
US20070163250A1 (en) * 2004-03-03 2007-07-19 Sane Ajit Y Highly insulated exhaust manifold
KR200374253Y1 (ko) * 2004-11-04 2005-01-27 주식회사 엘지화학 경량 세라믹 샌드위치 패널
US20070082131A1 (en) * 2005-10-07 2007-04-12 Sulzer Metco (Us), Inc. Optimized high purity coating for high temperature thermal cycling applications
JP4860005B1 (ja) * 2010-12-22 2012-01-25 ニチアス株式会社 断熱材及びその製造方法
JPWO2013129430A1 (ja) * 2012-02-27 2015-07-30 日本碍子株式会社 断熱部材、及びエンジン燃焼室構造
CN104467894B (zh) * 2013-09-17 2017-06-27 联想(北京)有限公司 一种电子设备及电子装置
JP6261316B2 (ja) * 2013-12-13 2018-01-17 三井金属鉱業株式会社 多孔質セラミックスの製造方法、多孔質セラミックス、セッターおよび焼成治具
WO2015119302A1 (ja) * 2014-02-10 2015-08-13 日本碍子株式会社 多孔質板状フィラー集合体及びその製造方法、並びに多孔質板状フィラー集合体を含む断熱膜
US10603865B2 (en) 2014-12-25 2020-03-31 AGC Inc. Insulating member and its attaching method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092881A (ja) * 1995-06-15 1997-01-07 Riboole:Kk 発泡セラミック成形板
JP2005288350A (ja) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology 高圧装置の効率的な断熱方法及び装置
JP2008201636A (ja) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology マクロポーラスな連通孔を持つセラミック多孔体及びその製造方法
JP2012509827A (ja) * 2008-11-24 2012-04-26 エクソンモービル・ケミカル・パテンツ・インク 成形された熱安定性セラミック、それを使用した装置及び方法
JP2014172789A (ja) * 2013-03-08 2014-09-22 Mino Ceramic Co Ltd セラミックス多孔質積層断熱材およびその製造方法
WO2015080065A1 (ja) * 2013-11-26 2015-06-04 日本碍子株式会社 多孔質材料及び断熱膜
WO2015145354A1 (en) * 2014-03-27 2015-10-01 Innovnano – Materiais Avançados, Sa. Sintered ceramic material, powder composition for obtaining thereof, manufacturing process and ceramic pieces thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3505805A4 *

Also Published As

Publication number Publication date
JP6415780B2 (ja) 2018-10-31
EP3505805A4 (en) 2020-04-15
JP2019027598A (ja) 2019-02-21
CN109642696A (zh) 2019-04-16
EP3505805A1 (en) 2019-07-03
EP3505805B1 (en) 2021-09-29
US20190185379A1 (en) 2019-06-20
CN109642696B (zh) 2021-05-14
JPWO2018037707A1 (ja) 2018-08-23
US11572315B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
US10315961B2 (en) Porous material and heat insulating film
US20060210764A1 (en) Ceramic honeycomb structure
JP2004283669A (ja) ハニカム構造体
JP6527139B2 (ja) 多孔質板状フィラー、断熱膜、及び多孔質板状フィラーの製造方法
US9764990B2 (en) Honeycomb structure
JPWO2008096851A1 (ja) 接合材組成物及びその製造方法並びに接合体及びその製造方法
EP1600433B1 (en) Honeycomb structure
JP6029141B2 (ja) セラミックス多孔質積層断熱材およびその製造方法
US10597336B2 (en) Porous ceramic structure
JP6415780B2 (ja) 断熱部材
US10933560B2 (en) Intermediate member
EP3135737B1 (en) Porous plate-shaped filler, method for producing same, and heat insulation film
US10745326B2 (en) Porous ceramic structure
US20190152862A1 (en) Porous ceramic particle and porous ceramic structure
JP6453234B2 (ja) 断熱膜
US10590004B2 (en) Porous ceramic particles
JP2009011911A (ja) ハニカム接合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504961

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017843195

Country of ref document: EP

Effective date: 20190326