WO2018035963A1 - 移动电源 - Google Patents

移动电源 Download PDF

Info

Publication number
WO2018035963A1
WO2018035963A1 PCT/CN2016/104172 CN2016104172W WO2018035963A1 WO 2018035963 A1 WO2018035963 A1 WO 2018035963A1 CN 2016104172 W CN2016104172 W CN 2016104172W WO 2018035963 A1 WO2018035963 A1 WO 2018035963A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
battery pack
charging
resistor
circuit
Prior art date
Application number
PCT/CN2016/104172
Other languages
English (en)
French (fr)
Inventor
陈鹏辉
于小双
Original Assignee
天津市天楚科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津市天楚科技有限公司 filed Critical 天津市天楚科技有限公司
Priority to EP16913983.9A priority Critical patent/EP3506450B1/en
Publication of WO2018035963A1 publication Critical patent/WO2018035963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0077
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of power supply technologies, for example, to a mobile power supply.
  • the mobile power source has a charging interface and a discharging interface.
  • the external charging power source is used to charge the mobile power source through the charging interface; when charging the different electronic devices, the mobile power source is supplied to the electronic device through the discharging interface. The device is charged.
  • a charging circuit matched with a charging interface and a discharging circuit matched with a discharging interface are required in a circuit inside the mobile power source, and the charging circuit needs to meet requirements of matching different charging power sources and battery packs in the mobile power source, And the discharge circuit needs to meet the requirements of the battery pack to match different electronic devices. Therefore, the circuit design is complicated and the cost is increased.
  • the application provides a mobile power source, which can charge different electronic devices and charge themselves through a charging and discharging interface and a matching charging and discharging circuit, thereby simplifying the circuit and reducing the cost.
  • the embodiment of the present application provides a mobile power source, including: a charging and discharging interface, a charging and discharging circuit, a central processing unit, and a battery pack;
  • the first end of the charging and discharging interface is connected to the first end of the charging and discharging circuit for connecting an external charging power source or an electronic device to be charged or to be powered;
  • a second end of the charging and discharging circuit is connected to an anode of the battery pack, and is configured to input to the battery when a voltage input by the charging power source to the battery pack does not match a voltage of the battery pack The voltage of the group is adjusted to charge the battery pack; or
  • the voltage output to the electronic device is adjusted to charge or power the electronic device
  • the negative electrode of the battery pack is connected to the third end of the charging and discharging circuit; the fourth end of the charging and discharging circuit is connected to the second end of the charging and discharging interface;
  • the central processor is coupled to the fifth end of the charging and discharging circuit for controlling the charging and discharging circuit to charge the battery pack or to charge or power the electronic device.
  • the mobile power supply provided by the embodiment of the present application can charge or discharge the battery pack in the mobile power source to different external electronic devices through the charging and discharging interface and the charging and discharging circuit, and can also make the external charging power source to the battery pack. Charging; simplifies the circuit, reduces costs, and increases usability.
  • FIG. 1 is a structural diagram of a mobile power supply according to Embodiment 1 of the present application.
  • FIG. 2 is a circuit structural diagram of a mobile power supply according to Embodiment 2 of the present application.
  • FIG. 3 is a structural diagram of a mobile power supply according to Embodiment 3 of the present application.
  • FIG. 1 is a structural diagram of a mobile power supply according to Embodiment 1 of the present application; as shown in FIG. 1, the mobile power supply includes a charging and discharging interface 10, a charging and discharging circuit 20, a battery pack 30, and a central processing unit 40.
  • the first end of the charging and discharging interface 10 is connected to the first end of the charging and discharging circuit 20 for connecting an external charging power source or an electronic device to be charged or to be powered; the charging and discharging interface 10 can be designed as a USB interface, or It can also be designed in the form of other interfaces.
  • the charging and discharging interface is connected to different electronic devices, since the interfaces of different electronic devices are different, different electronic devices can be connected through different data lines to realize charging of different electronic devices.
  • the charging and discharging interface can be connected to a three-socket connection line, and the socket at one end of the connection line is connected to the charging and discharging interface, and the sockets at the other ends of the connection line are respectively matched with the interfaces of the charging power source and the electronic device.
  • the port can connect the charging power source and the electronic equipment to be charged or to be powered, which simplifies the structure of the mobile power source and reduces the cost.
  • the second end of the charging and discharging circuit 20 is connected to the positive electrode of the battery pack 30 for adjusting the voltage input to the battery pack 30 when the voltage input from the charging power source to the battery pack 30 does not match the voltage of the battery pack 30.
  • the battery pack 30 is charged; or when the voltage output from the battery pack 30 to the electronic device does not match the rated voltage of the electronic device, the voltage output to the electronic device is adjusted to charge or power the electronic device.
  • the negative electrode of the battery pack 30 is connected to the third end of the charge and discharge circuit 20; the fourth end of the charge and discharge circuit 20 is connected to the second end of the charge and discharge interface 10.
  • the voltage input to the battery pack 30 by the charging power source is greater than the voltage of the battery pack 30, and the charging power source is input to the battery pack 30.
  • the difference between the voltage and the voltage of the battery pack 30 is large, the voltage input to the battery pack 30 is lowered by the charge and discharge circuit 20, and the voltage input to the battery pack 30 is matched with the voltage of the battery pack 30, that is, input to the battery pack 30.
  • the difference between the voltage and the voltage of the battery pack 30 is within a first predetermined range to charge the battery pack 30 to avoid damage to the battery pack 30.
  • the charging and discharging circuit 20 can charge or supply the battery pack 30 in the mobile power source by using different charging power sources, and the charging power source can be a solar battery or an energy storage device capable of converting wind energy into electric energy.
  • the voltage of the external charging power source connected to the charging and discharging interface to the charging and discharging interface can be between 4.5V and 80V through the charging and discharging circuit.
  • the voltage output to the electronic device is reduced by the charging and discharging circuit 20, so that the battery pack 30 is
  • the voltage output to the electronic device matches the rated voltage of the electronic device, that is, the difference between the voltage output from the battery pack 30 to the electronic device and the rated voltage of the electronic device is within a second predetermined range to charge the electronic device.
  • the voltage output from the battery pack 30 to the electronic device is less than the rated voltage of the electronic device, the voltage output to the electronic device is increased by the charging and discharging circuit 20, and the voltage output from the battery pack 30 to the electronic device and the rated voltage of the electronic device are used.
  • the matching that is, the voltage output by the battery pack 30 to the electronic device is greater than the rated voltage of the electronic device, and the difference between the two is within a second preset range to charge the electronic device. Therefore, the battery pack 30 in the mobile power source can be charged or powered by different charging devices by the charging and discharging circuit 20.
  • the battery pack 30 is output to the charging and discharging circuit 20
  • the voltage range of the electronic device is between 0V and 80V; the electronic device can be a mobile phone, a tablet computer or a laptop computer.
  • the mobile power source can also charge the automobile battery, the electric vehicle battery, and the like through the charge and discharge circuit.
  • the charging and discharging interface and the charging and discharging circuit can enable the battery pack in the mobile power source to charge or supply power to different external electronic devices, and also enable the external charging power source to charge the battery pack, simplifying the mobile power source.
  • the circuit structure reduces the cost and increases the practicality.
  • the central processing unit 40 is coupled to the fifth end of the charge and discharge circuit 20 for controlling the charge and discharge circuit 20 to charge the battery pack 30 or to charge or power the electronic device.
  • the central processor 40 reduces the charging and discharging circuit 20. Or boost to control.
  • the central processor 40 reduces or boosts the charge and discharge circuit 20. Take control.
  • the mobile power supply provided in this embodiment can charge the battery pack in the mobile power source to different external electronic devices through the charging and discharging interface and the charging and discharging circuit, and can also enable the external charging power source to charge the battery pack; Simplifies the circuit, reduces costs, and increases usability.
  • the charge and discharge circuit includes a buck-boost circuit 21.
  • the buck-boost circuit includes a first transistor 211, a second transistor 212, a third transistor 213, a fourth transistor 214, a first gate driver 215, a second gate driver 216, and an inductor 217.
  • the drain of the first transistor 211 is connected to the first end of the charge and discharge interface 10; the source of the first transistor 211 is respectively connected to the first end of the inductor 217 and the drain of the second transistor 212; the gate of the first transistor 211 Connected to the first output of the first gate driver 215.
  • the source of the second transistor 212 is connected to the cathode of the battery pack 30, and the gate of the second transistor 212 is connected to the second output of the first gate driver 215.
  • the second end of the inductor 217 is respectively connected to the source of the third transistor 213 and the drain of the fourth transistor 214; the drain of the third transistor 213 is connected to the anode of the battery pack 30; the gate of the third transistor 213 is connected to the second The first output of the gate driver 216 is coupled.
  • the source and the electric of the fourth transistor 214 The cathode of the bank 30 is connected; the gate of the fourth transistor 214 is connected to the second output of the second gate driver 216; the cathode of the battery pack 30 is grounded.
  • the central processing unit 40 is connected to the input end of the first gate driver 215 and the input end of the second gate driver 216, and is also used to control the first transistor 211 and the second transistor 212 through the first gate driver 215. Turning on or off, and controlling conduction or disconnection of the third transistor 213 and the fourth transistor 214 by the second gate driver 216.
  • the charge and discharge circuit further includes a control circuit.
  • the control circuit includes a first resistor 221 , a second resistor 222 , a third resistor 223 , a fourth resistor 224 , a fifth resistor 225 , a fifth transistor 226 , a sixth transistor 227 , and a third gate driver 228 .
  • the first end of the first resistor 221 is connected to the first end of the charging and discharging interface 10; the second end of the first resistor 221 is connected to the first end of the second resistor 222, and the second resistor 222 is The two ends are respectively connected to the first end of the third resistor 223 and the negative terminal of the battery pack 30; the second end of the third resistor 223 is connected to the second end of the charging and discharging interface 10.
  • the fifth transistor 226 and the sixth transistor 227 are both disposed between the first end of the charging and discharging interface 10 and the drain of the first transistor 211; the drain of the fifth transistor 226 is respectively connected to the first end of the charging and discharging interface 10 and A first end of a resistor 221 is coupled; a source of the fifth transistor 226 is coupled to a source of the sixth transistor 227.
  • the drain of the sixth transistor 227 is connected to the drain of the first transistor 211; the input of the third gate driver 228 is connected to the central processing unit 40, and the output of the third gate driver 228 is respectively connected to the gate of the fifth transistor 226.
  • the gate of the pole and the sixth transistor 227 are connected.
  • the first end of the fourth resistor 224 is connected to the anode of the battery pack 30; the second end of the fourth resistor 224 is connected to the first end of the fifth resistor 225; and the second end of the fifth resistor 225 is opposite to the cathode of the battery pack 30, respectively. And connecting the second end of the second resistor 222.
  • the central processing unit 40 is connected to the second end of the first resistor 221, the second end of the third resistor 223, and the second end of the fourth resistor 224, and is also used when the external charging power source charges the battery pack 30.
  • the central processing unit 40 is further configured to: when the battery pack 30 charges or supplies the electronic device, acquire a second voltage signal at the second end of the fourth resistor 224, and control the third gate driver 228 according to the second voltage signal, To control the on or off of the sixth transistor 227 and the fifth transistor 226.
  • An amplifier 229 is disposed between the second end of the charging and discharging interface 10 and the central processing unit 40 for amplifying the current signal.
  • the charging and discharging interface 10 when the charging and discharging interface 10 is connected to the external charging power source, the voltage input from the charging power source to the battery pack 30 through the charging and discharging interface 10 is different, and the second end of the first resistor 221 collected by the central processing unit 40 is used.
  • the first voltage signal at the second voltage and the current signal at the second end of the third resistor 223 are different, so the central processor 40 can determine the voltage input to the battery pack 30 based on the collected first voltage signal and the current signal. Since the voltage of the battery pack 30 is different, when the battery pack 30 is discharged, the voltage signal at the second end of the fourth resistor 224 is also different. Therefore, the battery pack 224 can be judged by the second voltage signal at the second end of the fourth resistor 224.
  • the central processing unit 40 determines the magnitude relationship between the voltage input to the battery pack 30 and the voltage of the battery pack 30 through the collected first voltage signal and the second voltage signal, thereby controlling the buck-boost circuit 21 to perform step-down or boosting, thereby achieving Charging of the battery pack 30.
  • the central processing unit 40 controls the buck-boost circuit 21 to perform step-down or boosting according to the magnitude relationship between the first voltage signal and the second voltage signal and the product of the first voltage signal and the current signal to realize charging of the battery pack 30.
  • the boosting or stepping of the buck-boost circuit is controlled by the central processing unit according to the first voltage signal, the current signal, and the second voltage signal, but the embodiment is only an example.
  • the central processing unit may further control the step-up or step-down of the buck-boost circuit by other means, for example, the controllable lifting and lowering of the input voltage of the buck-boost circuit and the set value may be performed.
  • the voltage circuit optionally, when the input voltage of the buck-boost circuit is greater than the set value, the buck-boost circuit is controlled to step down, and when the input voltage of the buck-boost circuit is less than the set value, the buck-boost circuit is controlled Boost.
  • the central processor 40 controls the fifth transistor 226 and the sixth transistor 227 to be turned on by the third gate driver 228.
  • the current signal input from the charging power source flows through the fifth transistor 226 and the sixth transistor 227, and then the current signal flows into the step-up and step-down circuit 21.
  • the conduction of the fifth transistor 226 and the sixth transistor may further have a control mode: when the voltage value of the first voltage signal at the second end of the first resistor 221 is smaller than the second end of the fourth resistor 224 The voltage value of the second voltage signal, and the power calculated by the product of the first voltage signal at the second end of the first resistor 221 and the current signal at the second end of the third resistor 223 does not exceed the first preset value
  • the central processing unit 40 controls the fifth transistor 226 and the sixth transistor 227 to be turned on.
  • the first preset value is determined by parameter information of the pre-stored battery pack.
  • the central processing unit 40 controls the first gate driver 215 to the first transistor 211 and the second crystal, respectively
  • the tube 212 transmits a PWM signal to control the alternate conduction of the first transistor 211 and the second transistor 212; at the same time, the third transistor 213 is controlled to be in an on state, and the fourth transistor 214 is in an off state.
  • the first transistor 211 is turned on, the current signal input by the charging power source flows through the first transistor 211, the inductor 217, and the third transistor 213 to enter the positive pole of the battery pack 30, and a part of the energy is stored in the inductor 217.
  • the first transistor 211 is turned off, the energy stored in the inductor 217 charges the battery pack 30 by forming a current through the third transistor 213, the battery pack 30, and the second transistor 212.
  • the central processing unit 40 controls the fifth transistor 226 and the sixth transistor 227 to be turned on by the third gate driver 228.
  • the current signal input from the charging power source flows through the fifth transistor 226 and the sixth transistor 227, and then the current signal flows into the step-up and step-down circuit 21.
  • the central processing unit 40 controls the first gate driver 215 to send a high level signal to the first transistor 211 to control the first transistor 211 to be turned on; and the central processing unit 40 controls the second gate driver 216 to the third transistor 213 and the third
  • the four transistor 214 transmits a PWM signal, and controls the fourth transistor 214 and the third transistor 213 to be in an alternately conducting state. When the fourth transistor 214 is turned on, current flows through the inductor 217, and the inductor 217 stores energy.
  • the inductor 217 releases energy, and the sum of the generated electromotive force and the voltage input by the charging power source is greater than the voltage of the battery pack 30, and the current signal flows into the battery pack 30 to realize the charging power source.
  • the input voltage is boosted.
  • the voltage value of the first voltage signal at the second end of the first resistor 221 collected by the central processing unit 40 and the current value of the current signal at the second end of the third resistor 223 are PID (Proportional Integral Derivative Control) ) Closed loop automatic control to achieve constant current and constant voltage charging of the battery.
  • the central processing unit 40 can control the buck-boost circuit to perform step-down or boosting according to the collected second voltage signal to implement charging or power supply to the electronic device.
  • the central processing unit 40 controls the sixth transistor 227 and the fifth transistor 226 to be turned on by the third gate driver 228.
  • the control of the sixth transistor 227 and the fifth transistor 226 may also be performed in such a manner that the voltage value of the second voltage signal at the second end of the fourth resistor 224 is greater than the target voltage to be output, and the second end of the first resistor
  • the central processor 40 controls the sixth transistor 227 and the power value calculated by the product of the voltage value of the first voltage signal and the current value of the current signal at the second end of the third resistor does not exceed the second predetermined value.
  • the fifth transistor 226 is turned on, and the second preset value and the output target voltage are determined by the parameter information of the electronic device connected to the charging and discharging interface acquired by the central processing unit.
  • the central processor 40 controls the third transistor 213 and the fourth transistor 214 to be alternately turned on by the second gate driver 216, while the first transistor 211 is in an on state and the second transistor 212 is in an off state.
  • the third transistor 213 is turned on and the fourth transistor 214 is turned off, the current signal passes from the battery pack 30 through the third transistor 213, the inductor 217, the first transistor 211, the sixth transistor 227, the fifth transistor 226, and the charging and discharging interface 10, respectively.
  • the inductor 217 stores energy.
  • the third transistor 213 When the third transistor 213 is turned off and the fourth transistor 214 is turned on, the energy stored in the inductor 217 is released, and the current signal passes from the inductor 217 through the first transistor 211, the sixth transistor 227, the fifth transistor 226, and the charging and discharging interface 10, respectively. Charging or powering the electronic device and reducing the voltage that the battery pack 30 outputs to the electronic device.
  • the matching relationship between the voltage output from the battery pack to the electronic device and the rated voltage of the electronic device can be determined by other means.
  • the central processing unit 40 controls the third transistor 213 to be turned on by the second gate driver 216. And the fourth transistor 214 is turned off, and the alternate conduction of the second transistor 212 and the first transistor 211 is controlled by the first gate driver 215.
  • the second transistor 212 is turned on and the first transistor 211 is turned off, the current signal from the battery pack 30 through the third transistor 213, the inductor 217, and the second transistor 212, respectively, to achieve energy storage of the inductor 217.
  • the inductor 217 releases energy to generate an electromotive force, and the electromotive force generated by the inductor 217 is superimposed with the voltage of the battery pack 30, and is output to an external electronic device, and the electromotive force generated by the inductor 217 is generated.
  • the sum of the voltages with the battery pack 30 is greater than the rated voltage of the electronic device (the difference between the sum of the electromotive force generated by the inductor 217 and the voltage of the battery pack 30 and the rated voltage of the electronic device is within a second predetermined range), and the current signal is from the battery pack. 30, through the third transistor 213, the inductor 217, the first transistor 211, the sixth transistor 227, the fifth transistor 226, and the charge and discharge interface 10, respectively, to charge or supply power to the electronic device.
  • the voltage value of the first voltage signal at the second end of the first resistor 221 collected by the central processing unit 40 and the current value of the current signal at the second end of the third resistor 223 are PID (proportional integral micro Sub-control) Closed-loop automatic control to achieve constant current and constant voltage power supply or charging to electronic equipment.
  • the voltage input to the battery pack can be boosted or lowered by a buck-boost circuit, or the voltage outputted from the battery pack to the electronic device can be boosted or stepped down, and the battery can be controlled by the control circuit.
  • the group is protected from excessive damage to the battery pack by the external charging power source, and the buck-boost circuit can also be controlled by the control circuit.
  • the charging and discharging circuit further includes a voltage stabilizing component;
  • the voltage stabilizing component includes a first capacitor 231 and a second capacitor 232; the first end of the first capacitor 231 and the sixth transistor respectively The drain of 227 and the drain of the first transistor 211 are connected; the second end of the first capacitor 231 is connected to the cathode of the battery pack 30; the first end of the second capacitor 232 is respectively connected to the anode of the battery pack 30, and the fourth resistor 224 The first end and the drain of the third transistor 213 are connected; the second end of the second capacitor 232 is connected to the negative terminal of the battery pack 30.
  • the central processing unit 40 is connected to the third end of the charging and discharging interface 10 for acquiring parameters of the external electronic device when the battery pack 30 charges the external electronic device.
  • the parameter information of the acquired electronic device may be information such as a rated current and a rated voltage of the electronic device, and the type of the electronic device is identified by the acquired parameter information, and some preset values in the central processing unit may also be used through the parameter information. Make settings.
  • the embodiment provides a mobile power source, which can enable the charging of the battery pack or the charging of the electronic device when the external charging power source or the electronic device does not match the rated voltage of the battery pack through the buck-boost circuit;
  • the battery pack in the mobile power supply can be protected by the control circuit; the charge and discharge circuit can be stabilized by the voltage regulator component.
  • the mobile power supply includes a charging and discharging interface 10, a charging and discharging circuit 20, a battery pack 30, and a central processing unit 40, based on the above embodiments. Also included are a heat sink 50 and a temperature sensor 60.
  • the heat sink 50 is configured to dissipate heat from the mobile power source; the temperature sensor 60 is coupled to the central processing unit 40 for detecting the temperature inside the mobile power source, and transmitting the detected temperature signal to the central processing unit 40; 40 is further configured to control the heat sink 50 according to the received temperature signal.
  • the heat sink 50 includes a heat dissipation fan 51 and a controller 52; the controller 52 and the center
  • the processor 40 is connected to receive the rotational speed control signal sent by the central processing 40, and controls the rotational speed of the cooling fan 52 according to the rotational speed control signal.
  • the rotation speed of the cooling fan 52 is controlled by the controller 51 to increase the temperature value of the temperature signal received by the central processing unit 40.
  • the rotation speed of the cooling fan 52 is controlled to decrease.
  • the charging and discharging circuit is integrated on the circuit board; the heat dissipating device further includes a thermal conductive pad (not shown); and the thermal pad is disposed on the battery pack and the circuit board.
  • the heat dissipation pad can speed up the heat dissipation of the battery pack and the board.
  • the mobile power source further includes: a DC output circuit 70, a USB interface 80, an inverter circuit 90, an AC/DC interface 91, and a control device 92;
  • the input end of the DC output circuit 70 is connected to the battery pack 30, and the output end of the DC output circuit 70 is connected to the USB interface 80; the input end of the inverter circuit 90 is connected to the battery pack 30, and the inverter circuit 90 is connected.
  • the output terminal is connected to the AC/DC interface 91; the central processing unit 40 is respectively connected to the control device 92, the DC output circuit 70 and the inverter circuit 90 for receiving a current output command to control the mobile power output DC or AC power; Input current output command.
  • the USB interface 80 may have one or more, and may be used to charge a smartphone, a navigation device, and the like.
  • the AC/DC interface 91 may have one or more, and the voltage of the alternating current output through the AC/DC interface 91 is AC 120V/DC 150V or AC 230V/DC 300V, and the AC/DC interface 91 can also be a notebook computer, a desk lamp or Electronic equipment such as television is powered.
  • the mobile power source further includes an OLED display screen 93.
  • the OLED display screen 93 is disposed on the outer casing of the mobile power source.
  • the OLED display screen 93 is connected to the central processing unit 40 for displaying the remaining power and charging power of the mobile power source. , discharge power, internal temperature and remaining operating time in the current charge and discharge state.
  • the OLED display has high definition and low power consumption, and is connected to the central processing unit 40 through a CAN (Controller Area Network) bus. Of course, other SPI (Serial Peripheral Interface) ) Bus connection.
  • the OLED display can display real-time battery power, charging power, discharge power, internal temperature of the mobile power supply, estimated running time remaining, and other function setting menus, which can provide customers with more parameter information. It should be noted that, in the present solution, the battery power is not the voltage of the collection battery pack 30, and the capacity of the battery pack 30 is roughly determined by the comparison of the voltages.
  • the energy of the input and output is calculated by collecting the current of the voltage of the charging and discharging, and the capacity of the battery pack 30 is accurately calculated. It is a new battery pack or an old battery pack.
  • the calculated absolute value of the remaining battery, rather than the relative value of the initial capacity, can give the user very direct and accurate battery information for their convenience.
  • the mobile power source further includes: a wireless charging manager 94 and a wireless charging transmitter 95.
  • the wireless charging transmitter 95 is connected to the battery pack 30 for transmitting the energy outputted by the battery pack 30 to the external electronic device in the form of electromagnetic waves; the wireless charging manager 94 and the central processing unit 40 and the wireless charging transmitter 95, respectively.
  • the connection is for receiving a control command sent by the central processing unit 40, and controlling the wireless charging transmitter 95 according to the control instruction.
  • the wireless charging transmitter 95 is disposed on the casing of the mobile power source (not shown).
  • the wireless charging and discharging transmitter 95 and the wireless charging manager 94 can charge the electronic device having the wireless charging function, so that the mobile power source can be conveniently carried, and the problem of inconvenience caused by the winding of the connecting wire is avoided.
  • the DC output circuit 70 and the inverter circuit 90 can be respectively connected to the charge and discharge circuit 20, and the voltage input to the mobile power source is adjusted and output to the external electronic device.
  • the DC output circuit 70 and the inverter circuit 90 can be respectively connected to the binding post of the battery pack base.
  • the DC output circuit 70 and the inverter circuit 90 are respectively connected to the charging and discharging circuit 20.
  • the charge and discharge circuit in this embodiment has the same configuration as that of the charge and discharge circuit described in the second embodiment.
  • the embodiment provides a mobile power source, which can accelerate the heat dissipation of the mobile power source and increase the service life of the mobile power source through the heat dissipation device, and can output the DC power to the mobile power source through the DC output circuit and the USB interface, and perform the electronic device for the USB interface.
  • the mobile power source outputs AC/DC power to charge or supply power to the electronic device; through the OLED display, the parameters of the mobile power source can be displayed, so that the user can understand the parameters of the mobile power source; Through the wireless charging and discharging transmitter and the wireless charging manager, the electronic device with wireless charging function can be charged, so that the mobile power source is convenient to carry, and the problem of inconvenient use caused by the winding of the connecting wire is avoided.
  • the embodiment of the present application provides a mobile power source, which can charge or power different electronic devices and charge itself through a charging and discharging interface and a matching charging and discharging circuit, thereby simplifying the circuit and reducing the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种移动电源,包括:充放电接口(10)、充放电电路(20)、中央处理器(40)和电池组(30);充放电接口(10),用于连接外部的充电电源、或待充电或待供电的电子设备;充放电电路(20),用于当充电电源输入给电池组(30)的电压与电池组(30)的电压不匹配时,对输入给电池组(30)的电压进行调整以对电池组(30)进行充电;或者用于当电池组(30)输出给电子设备的电压与电子设备的额定电压不匹配时,对输出给电子设备的电压进行调整以对电子设备进行充电;中央处理器(40),用于对充放电电路(20)进行控制以对电池组(30)进行充电、或对电子设备进行充电或供电。

Description

移动电源 技术领域
本申请涉及电源技术领域,例如涉及一种移动电源。
背景技术
随着科学技术的不断发展,越来越多的电子产品成为市场上或人们生活中的主流;众所周知,如手机、电脑以及数码相机等电子设备在使用过程中均需要充电,使用移动电源为上述电子设备充电,可以为用户提供便利,防止了用户在出行时电子设备电量不足的情形。
相关技术中的移动电源,存在充电接口和放电接口,当移动电源电量不足时,使用外部充电电源通过充电接口对移动电源进行充电;当给不同的电子设备充电时,移动电源通过放电接口给电子设备充电。在相关技术中,移动电源内部的电路中需要设计与充电接口匹配的充电电路,以及与放电接口匹配的放电电路,并且充电电路需要符合不同的充电电源与移动电源中的电池组匹配的要求、以及放电电路需要符合电池组与不同的电子设备匹配的要求。因此,电路设计较复杂,成本增加。
发明内容
本申请提供一种移动电源,通过一个充放电接口以及与之匹配的一个充放电电路能够实现给不同的电子设备进行充电以及对自身进行充电,简化了电路,降低了成本。
本申请实施例提供了一种移动电源,包括:充放电接口、充放电电路、中央处理器和电池组;
所述充放电接口的第一端与所述充放电电路的第一端连接,用于连接外部的充电电源、或待充电或待供电的电子设备;
所述充放电电路的第二端与所述电池组的正极连接,用于当所述充电电源输入给所述电池组的电压与所述电池组的电压不匹配时,对输入给所述电池组的电压进行调整以对所述电池组进行充电;或者
用于当所述电池组输出给所述电子设备的电压与所述电子设备的额定电压 不匹配时,对输出给所述电子设备的电压进行调整以对所述电子设备进行充电或者供电;
所述电池组的负极与所述充放电电路的第三端连接;所述充放电电路的第四端与所述充放电接口的第二端连接;
所述中央处理器与所述充放电电路的第五端连接,用于对所述充放电电路进行控制以对所述电池组进行充电、或对所述电子设备进行充电或者供电。
本申请实施例提供的一种移动电源,通过充放电接口以及充放电电路,能够使移动电源中的电池组为外部不同的电子设备进行充电或者供电,并且还能够使外部的充电电源对电池组进行充电;简化了电路,降低了成本,增加了实用性。
附图说明
图1是本申请实施例一提供的一种移动电源的结构图;
图2是本申请实施例二提供的一种移动电源的电路结构图;
图3是本申请实施例三提供的一种移动电源的结构图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的可选实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部内容。在不冲突的情况下,实施例和实施例中的特征可以相互任意组合。
实施例一
图1是本申请实施例一提供的一种移动电源的结构图;如图1所示,所述移动电源包括:充放电接口10、充放电电路20、电池组30和中央处理器40。
其中,充放电接口10的第一端与充放电电路20的第一端连接,用于连接外部的充电电源、或待充电或待供电的电子设备;充放电接口10可以设计成USB接口,或者也可以设计成其他接口的形式。当充放电接口连接不同的电子设备时,由于不同电子设备的接口是不同的,可以通过不同的数据线与不同的电子设备连接,以实现给不同的电子设备充电。在本实施例中,充放电接口可以连接一个三插口的连接线,连接线一端的插口与充放电接口连接,连接线的另外两端的插口分别与充电电源和电子设备的接口相匹配。采用一个充放电接 口,既可以连接充电电源,又可以连接待充电或待供电的电子设备,简化了移动电源的结构,降低了成本。
充放电电路20的第二端与电池组30的正极连接,用于当充电电源输入给电池组30的电压与电池组30的电压不匹配时,对输入给电池组30的电压进行调整以对电池组30进行充电;或者用于当电池组30输出给电子设备的电压与电子设备的额定电压不匹配时,对输出给电子设备的电压进行调整以对电子设备进行充电或供电。电池组30的负极与充放电电路20的第三端连接;充放电电路20的第四端与充放电接口10的第二端连接。
可选的,在本实施例中,当充电电源给移动电源中的电池组30进行充电或供电、充电电源输入给电池组30的电压大于电池组30的电压,且充电电源输入给电池组30的电压与电池组30的电压之差较大时,通过充放电电路20降低输入给电池组30的电压,使输入给电池组30的电压与电池组30的电压匹配,即输入给电池组30的电压与电池组30的电压之差在第一预设范围内,以对电池组30进行充电,避免电池组30的损害。同理,当充电电源输入给电池组30的电压小于电池组30的电压时,通过充放电电路20提高输入给电池组30的电压,使输入给电池组30的电压与电池组30的电压匹配,即输入给电池组30的电压大于电池组30的电压,且两者之差在第一预设范围内,以对电池组30进行充电或者供电。因此,通过充放电电路20能够采用不同的充电电源对移动电源中的电池组30进行充电或供电,充电电源可以是太阳能电池、或者能够将风能转换成电能的储能设备等。其中,通过充放电电路可以使充放电接口连接的外部充电电源的输入到充放电接口的电压在4.5V到80V之间。
当电池组30对外部的电子设备进行充电或供电、且电池组30输出给电子设备的电压远大于电子设备的额定电压时,通过充放电电路20降低输出给电子设备的电压,使电池组30输出给电子设备的电压与电子设备的额定电压匹配,即电池组30输出给电子设备的电压与电子设备的额定电压之差在第二预设范围内,以对电子设备进行充电。同理,当电池组30输出给电子设备的电压小于电子设备的额定电压时,通过充放电电路20提高输出给电子设备的电压,使电池组30输出给电子设备的电压与电子设备的额定电压匹配,即电池组30输出给电子设备的电压大于电子设备的额定电压,且两者之差在第二预设范围内,以对电子设备进行充电。因此,通过充放电电路20能够使移动电源中的电池组30给不同的电子设备进行充电或供电。其中,通过充放电电路20,电池组30输出给 电子设备的电压范围在0V-80V之间;电子设备可以是手机、平板电脑或笔记本电脑等。在本实施例中,通过充放电电路,使移动电源还可以为汽车蓄电池以及电动车电瓶等进行充电。
由此,通过充放电接口和充放电电路可以能够使移动电源中的电池组为外部不同的电子设备进行充电或供电,并且还能够使外部的充电电源对电池组进行充电,简化了移动电源的电路结构,降低了成本,增加了实用性。
在本实施例中,中央处理器40与充放电电路20的第五端连接,用于对充放电电路20进行控制以对电池组30进行充电、或对电子设备进行充电或供电。
可选的,当外部充电电源给移动电源中的电池组30进行充电、且充电电源输入给电池组30的电压与电池组30的电压不匹配时,中央处理器40对充放电电路20的降低或升压进行控制。当移动电源中的电池组30给外部的电子设备进行充电、且电池组30输出给电子设备的电压与电子设备的额定电压不匹配时,中央处理器40对充放电电路20的降低或升压进行控制。
本实施例提供的一种移动电源,通过充放电接口以及充放电电路,能够使移动电源中的电池组为外部不同的电子设备进行充电,并且还能够使外部的充电电源对电池组进行充电;简化了电路,降低了成本,增加了实用性。
实施例二
图2是本申请实施例二提供的一种移动电源的电路结构图,在上述实施例一的基础上,可选的,如图2所示,充放电电路包括升降压电路21。
其中,升降压电路包括第一晶体管211、第二晶体管212、第三晶体管213、第四晶体管214、第一栅极驱动器215、第二栅极驱动器216以及电感217。
第一晶体管211的漏极与充放电接口10的第一端连接;第一晶体管211的源极分别与电感217的第一端以及第二晶体管212的漏极连接;第一晶体管211的栅极与第一栅极驱动器215的第一输出端连接。第二晶体管212的源极与电池组30的负极连接,第二晶体管212的栅极与第一栅极驱动器215的第二输出端连接。电感217的第二端分别与第三晶体管213的源极以及第四晶体管214的漏极连接;第三晶体管213的漏极与电池组30的正极连接;第三晶体管213的栅极与第二栅极驱动器216的第一输出端连接。第四晶体管214的源极与电 池组30的负极连接;第四晶体管214的栅极与第二栅极驱动器216的第二输出端连接;电池组30的负极接地。中央处理器40分别与第一栅极驱动器215的输入端和第二栅极驱动器216的输入端连接,还用于通过第一栅极驱动器215控制第一晶体管211和所述第二晶体管212的导通或断开,以及通过第二栅极驱动器216控制所述第三晶体管213和第四晶体管214的导通或断开。
在上述实施例的基础上,如图2所示,充放电电路还包括控制电路。
其中,控制电路包括第一电阻221、第二电阻222、第三电阻223、第四电阻224、第五电阻225、第五晶体管226、第六晶体管227以及第三栅极驱动器228。
在本实施例中,第一电阻221的第一端与充放电接口10的第一端连接;第一电阻221的第二端与第二电阻222的第一端连接,第二电阻222的第二端分别与第三电阻223的第一端以及电池组30的负极连接;第三电阻223的第二端与充放电接口10的第二端连接。
第五晶体管226和第六晶体管227均设于充放电接口10的第一端与第一晶体管211的漏极之间;第五晶体管226的漏极分别与充放电接口10的第一端以及第一电阻221的第一端连接;第五晶体管226的源极与第六晶体管227的源极连接。第六晶体管227的漏极与第一晶体管211的漏极连接;第三栅极驱动器228的输入端与中央处理器40连接,第三栅极驱动器228的输出端分别与第五晶体管226的栅极以及第六晶体管227的栅极连接。第四电阻224的第一端与电池组30的正极连接;第四电阻224的第二端与第五电阻225的第一端连接;第五电阻225的第二端分别与电池组30的负极以及第二电阻222的第二端连接。中央处理器40分别与第一电阻221的第二端、第三电阻223的第二端以及第四电阻224的第二端连接,还用于当外部的充电电源对电池组30进行充电时,采集第一电阻221的第二端处的第一电压信号、第三电阻223的第二端处的电流信号以及第四电阻224的第二端处的第二电压信号,并根据第一电压信号、电流信号以及第二电压信号控制第三栅极驱动器228,以控制第五晶体管226和第六晶体管227的导通或断开。中央处理器40还用于当电池组30对电子设备进行充电或供电时,采集第四电阻224的第二端处的第二电压信号,并根据第二电压信号控制第三栅极驱动器228,以控制第六晶体管227和第五晶体管226的导通或断开。其中,在充放电接口10的第二端与中央处理器40之间设置有放大器229,用于对电流信号进行放大。
如图2所示,当充放电接口10连接外部的充电电源时,充电电源通过充放电接口10输入给电池组30的电压不同,则中央处理器40采集到的第一电阻221的第二端处的第一电压信号以及第三电阻223的第二端处的电流信号是不同的,因此中央处理器40可以根据采集的第一电压信号以及电流信号判断输入给电池组30的电压。由于电池组30的电压不同,电池组30放电时,第四电阻224第二端处的电压信号也是不同的,因此,可以通过第四电阻224第二端处的第二电压信号判断电池组224的电压。中央处理器40通过采集到的第一电压信号以及第二电压信号判断输入给电池组30的电压与电池组30电压的大小关系,从而控制升降压电路21进行降压或者升压,实现对电池组30的充电。或者中央处理器40根据第一电压信号和第二电压信号的大小关系、以及第一电压信号和电流信号的乘积控制升降压电路21进行降压或者升压,实现对电池组30的充电。
需要说明的是,本申请实施例示例性的通过中央处理器根据第一电压信号、电流信号以及第二电压信号控制升降压电路的升压或者降压,但是本实施例只是一种示例,在本申请其他实施例中,中央处理器还可以通过其他方式控制升降压电路的升压或者降压,例如,可以通过升降压电路的输入电压与设定值的大小关系进行控制升降压电路,可选的,当升降压电路的输入电压大于设定值时,控制升降压电路进行降压,当升降压电路的输入电压小于设定值时,控制升降压电路进行升压。
可选的,当采用外部的充电电源给电池组30进行充电时,如果中央处理器40采集到的第一电阻221的第二端处的第一电压信号的电压值大于第四电阻224的第二端处的第二电压信号的电压值,中央处理器40通过第三栅极驱动器228控制第五晶体管226和第六晶体管227导通。充电电源输入的电流信号流过第五晶体管226以及第六晶体管227,然后电流信号流入升降压电路21。其中,对于第五晶体管226和第六晶体管的导通还可以有如下的控制方式:当第一电阻221的第二端处的第一电压信号的电压值小于第四电阻224的第二端处的第二电压信号的电压值,且第一电阻221的第二端处的第一电压信号和第三电阻223第二端处的电流信号的乘积计算出来的功率不超过第一预设值时,中央处理器40控制第五晶体管226和第六晶体管227导通。其中,第一预设值由预存的电池组的参数信息进行确定。
中央处理器40控制第一栅极驱动器215分别向第一晶体管211和第二晶体 管212发送PWM信号,控制第一晶体管211和第二晶体管212的交替导通;同时控制第三晶体管213处于导通状态,第四晶体管214处于断开的状态。当第一晶体管211导通时,由充电电源输入的电流信号流过第一晶体管211、电感217、第三晶体管213进入电池组30的正极,电感217上储存了一部分能量。第一晶体管211截止时,电感217上储存的能量通过第三晶体管213、电池组30、第二晶体管212形成电流对电池组30充电。
在本实施例中,如图2所示,当采用外部的充电电源给电池组30进行充电时,如果中央处理器40采集到的第一电阻221的第二端处的第一电压信号的电压值小于第四电阻224的第二端处的第二电压信号的电压值,中央处理器40通过第三栅极驱动器228控制第五晶体管226和第六晶体管227导通。由充电电源输入的电流信号流过第五晶体管226以及第六晶体管227,然后电流信号流入升降压电路21。中央处理器40控制第一栅极驱动器215向第一晶体管211发送高电平信号,控制第一晶体管211导通;同时中央处理器40控制第二栅极驱动器216分别向第三晶体管213和第四晶体管214发送PWM信号,控制第四晶体管214和第三晶体管213处于交替导通的状态。当第四晶体管214的导通时,电流流过电感217,电感217储存能量。当第四晶体管214断开,第三晶体管213导通时,电感217释放能量,产生的电动势与充电电源输入的电压之和大于电池组30的电压,电流信号流入电池组30,实现对充电电源输入的电压进行升压。
并且,中央处理器40采集到的第一电阻221的第二端处的第一电压信号的电压值、以及第三电阻223的第二端处的电流信号的电流值进行PID(比例积分微分控制)闭环自动控制,实现对电池恒流恒压充电。
在本实施例中,如图2所示,当充放电接口10连接外部的电子设备时,电池组30通过充放电接口10输入给电子设备的电压不同,则中央处理器40采集到的第四电阻224第二端处的第二电压信号是不同的,因此中央处理器40可以根据采集的第二电压信号控制升降压电路进行降压或者升压,实现对电子设备的充电或供电。
可选的,当电池组30对外部的电子设备进行充电或供电时,如果中央处理器40采集到的第四电阻224的第二端处的第二电压信号的电压值大于要输出的目标电压。中央处理器40通过第三栅极驱动器228控制第六晶体管227和第五晶体管226导通。其中,当电池组30对外部的电子设备进行充电或供电时,对 于第六晶体管227和第五晶体管226的控制还可以采用如下的方式:第四电阻224的第二端处的第二电压信号的电压值大于要输出的目标电压,且第一电阻第二端处的第一电压信号的电压值、与第三电阻第二端处的电流信号的电流值的乘积计算出来的功率值不超过第二预设值时,中央处理器40控制第六晶体管227和第五晶体管226导通,第二预设值和输出的目标电压均由中央处理器获取的与充放电接口连接的电子设备的参数信息进行确定的。
中央处理器40通过第二栅极驱动器216控制第三晶体管213和第四晶体管214交替导通,而第一晶体管211处于导通状态,第二晶体管212处于断开状态。当第三晶体管213导通,第四晶体管214截止时,电流信号从电池组30分别通过第三晶体管213,电感217,第一晶体管211,第六晶体管227,第五晶体管226、充放电接口10,电感217储能。当第三晶体管213截止,第四晶体管214导通时,电感217上储存的能量进行释放,电流信号从电感217分别通过第一晶体管211,第六晶体管227,第五晶体管226、充放电接口10,向电子设备充电或者供电,且降低了电池组30输出给电子设备的电压。
需要说明的是,当电池组给外部的电子设备进行充电或供电时,还可以通过其他的方式判断电池组输出给电子设备的电压与电子设备的额定电压的匹配关系。
如果中央处理器40采集到的第四电阻224的第二端处的第二电压信号的电压值小于要输出的目标电压,中央处理器40通过第二栅极驱动器216控制第三晶体管213导通和第四晶体管214截止,并通过第一栅极驱动器215控制第二晶体管212和第一晶体管211的交替导通。当第二晶体管212导通,第一晶体管211截止时,电流信号从电池组30分别通过第三晶体管213,电感217,第二晶体管212,实现电感217的储能。当第二晶体管212的截止,第一晶体管211导通时,电感217释放能量,产生电动势,电感217产生的电动势与电池组30的电压叠加,输出给外部的电子设备,且电感217产生的电动势与电池组30的电压之和大于电子设备的额定电压(电感217产生的电动势与电池组30的电压之和与电子设备的额定电压之差在第二预设范围内),电流信号从电池组30分别通过第三晶体管213,电感217,第一晶体管211,第六晶体管227,第五晶体管226以及充放电接口10,实现对电子设备充电或供电。
并且中央处理器40采集到的第一电阻221的第二端处的第一电压信号的电压值、以及第三电阻223的第二端处的电流信号的电流值进行PID(比例积分微 分控制)闭环自动控制,实现对电子设备恒流恒压供电或充电。
由此,通过一个升降压电路可以实现对输入给电池组的电压进行升压或者降低,或者也可以实现对电池组输出给电子设备的电压进行升压或者降压,通过控制电路能够对电池组进行保护,避免外部充电电源过大对电池组的损害,并且通过控制电路还能够对升降压电路进行控制。
如图2所示,在上述实施例的基础上,充放电电路还包括稳压组件;稳压组件包括第一电容231和第二电容232;第一电容231的第一端分别与第六晶体管227的漏极以及第一晶体管211的漏极连接;第一电容231的第二端与电池组30的负极连接;第二电容232的第一端分别与电池组30的正极、第四电阻224的第一端以及第三晶体管213的漏极连接;第二电容232的第二端与电池组30的负极连接。通过设置稳压组件,使充放电电路保持稳定,避免信号不稳定造成不良的影响。
在上述实施例的基础上,如图2所示,中央处理器40与充放电接口10的第三端连接,用于当电池组30给外部的电子设备进行充电时,获取外部电子设备的参数信息,并根据参数信息对电子设备的类别进行识别。其中,获取的电子设备的参数信息可以是电子设备的额定电流以及额定电压等信息,通过获取的参数信息识别对电子设备的类别,并且通过参数信息还可以对中央处理器中的一些预设数值进行设定。
本实施例提供了一种移动电源,通过升降压电路能够使当外部的充电电源或电子设备与电池组的额定电压不匹配时,也能够完成对电池组的充电或对电子设备的充电;通过控制电路能够对移动电源中的电池组进行保护;通过稳压组件能够使充放电电路保持稳定。
实施例三
图3是本申请实施例三提供的一种移动电源的结构示意图,所述的移动电源包括充放电接口10、充放电电路20、电池组30和中央处理器40,在上述实施例的基础上,还包括散热装置50和温度传感器60。
其中,散热装置50,用于对移动电源进行散热;温度传感器60与中央处理器40连接,用于检测移动电源内部的温度,并将检测到的温度信号发送给中央处理器40;中央处理器40,还用于根据接收到的温度信号对散热装置50进行控制。可选的,散热装置50包括散热风扇51和控制器52;控制器52与中央处 理器40连接,用于接收中央处理40发送的转速控制信号,并根据转速控制信号控制散热风扇52的转速。
在本实施例中,可选的,如果中央处理器40接收的温度信号的温度值较大时,通过控制器51控制散热风扇52的转速增加,如果中央处理器40接收的温度信号的温度值较小时,控制散热风扇52的转速减少。
在本实施例中,可选的,充放电电路集成在电路板上;散热装置还包括导热胶垫(图中未示出);导热胶垫设置在电池组以及电路板上。通过导热胶垫能够加快电池组和电路板的散热。
在上述实施例的基础上,如图3所示,所述移动电源还包括:直流输出电路70、USB接口80、逆变电路90、AC/DC接口91和控制装置92;
如图3所示,直流输出电路70的输入端与电池组30连接,直流输出电路70的输出端与USB接口80连接;逆变电路90的输入端与电池组30连接,逆变电路90的输出端与AC/DC接口91连接;中央处理器40分别与控制装置92、直流输出电路70以及逆变电路90连接,用于接收电流输出指令以控制移动电源输出直流电或交流电;控制装置92用于输入电流输出指令。其中,USB接口80可以有一个或者多个,可以用于给智能手机以及导航设备等进行充电。AC/DC接口91可以有一个或者多个,通过AC/DC接口91输出的交流电的电压是AC 120V/DC 150V或者AC 230V/DC 300V,通过AC/DC接口91还可以为笔记本电脑、台灯或者电视等电子设备进行供电。
在上述实施例的基础上,移动电源还包括OLED显示屏93,OLED显示屏93设置于移动电源的外壳,OLED显示屏93与中央处理器40连接,用于显示移动电源的剩余电量、充电功率、放电功率、内部温度和当前充放电状态下的剩余运行时间。
OLED显示屏,清晰度高,功耗低,并通过CAN(Controller Area Network,区域网络控制器)总线与中央处理器40连接,当然也可是其它的例如SPI(Serial Peripheral Interface,串行外围设备接口)总线连接。OLED显示屏可显示实时的电池电量、充电功率、放电功率、移动电源内部温度、估算运行剩余时间、以及其他功能设置菜单,可以提供给客户更多参数信息。需要说明的是,在本方案中,电池电量不是采集电池组30的电压,通过电压的对比大致判断电池组30的容量。而实际上,电池组30随着使用时间的增加,容量会有衰减,无法恢复到最初状态时的容量,也就导致电量显示都会出现电池容量偏差情况,因此用 户不能准确掌握电池实际的容量,造成充电不足或使用时电量不够,在本方案中,通过采集充电和放电的电压的电流,计算出输入和输出的能量,准确计算出电池组30容量,无论是新电池组或旧电池组,计算出的都是剩余电量的绝对值,而不是相对于初始容量的相对值,都可以给用户很直接很准确的电池信息,方便他们的使用。
在上述实施例的基础上,移动电源还包括:无线充电管理器94以及无线充电发射器95。其中,无线充电发射器95与电池组30连接,用于将电池组30输出的能量以电磁波的形式发送给外部的电子设备;无线充电管理器94分别与中央处理器40和无线充电发射器95连接,用于接收中央处理器40发送的控制指令,并根据控制指令对无线充电发射器95进行控制。其中,无线充电发射器95设置在移动电源的外壳上(图中未示出)。通过无线充放电发射器95和无线充电管理器94可以给具有无线充电功能的电子设备进行充电,使移动电源携带方便,避免了连接线缠绕造成的使用不便的问题。
在本实施例中,当移动电源的电池组已拆卸时,直流输出电路70以及逆变电路90可以分别与充放电电路20连接,将输入到移动电源的电压进行调整,并输出给外部的电子设备,为电子设备进行充电或者供电。其中,直流输出电路70以及逆变电路90可以分别连接在承载电池组底座的接线柱上,当电池组被拆卸时,直流输出电路70以及逆变电路90分别与充放电电路20进行连接。在本实施例中的充放电电路与实施二中的表述的充放电电路的结构相同。
本实施例提供了一种移动电源,通过散热装置,能够加快移动电源的散热,增加移动电源的使用寿命,通过直流输出电路以及USB接口可以使移动电源输出直流电,且为USB接口的电子设备进行充电或供电,通过逆变电路和AC/DC接口使移动电源输出交流电/直流电,为电子设备进行充电或供电;通过OLED显示,能够显示移动电源的参数,便于用户对移动电源的参数进行了解;通过无线充放电发射器和无线充电管理器,能够给具有无线充电功能的电子设备进行充电,使移动电源携带方便,避免了连接线缠绕造成的使用不便的问题。
注意,上述仅为本申请的可选实施例。本领域技术人员会理解,本申请可以为这里所述的实施例,对本领域技术人员来说能够进行多种变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了说明,但是本申请不仅仅限于以上实施例,本申请的范围由所附的权利要求范围决定。
工业实用性
本申请实施例提供一种移动电源,通过一个充放电接口以及与之匹配的一个充放电电路实现给不同的电子设备进行充电或供电以及对自身进行充电,简化了电路,降低了成本。

Claims (12)

  1. 一种移动电源,包括:充放电接口、充放电电路、中央处理器和电池组;
    所述充放电接口的第一端与所述充放电电路的第一端连接,用于连接外部的充电电源、或待充电或待供电的电子设备;
    所述充放电电路的第二端与所述电池组的正极连接,用于当所述充电电源输入给所述电池组的电压与所述电池组的电压不匹配时,对输入给所述电池组的电压进行调整以对所述电池组进行充电;或者
    用于当所述电池组输出给所述电子设备的电压与所述电子设备的额定电压不匹配时,对输出给所述电子设备的电压进行调整以对所述电子设备进行充电或者供电;
    所述电池组的负极与所述充放电电路的第三端连接;所述充放电电路的第四端与所述充放电接口的第二端连接;
    所述中央处理器与所述充放电电路的第五端连接,用于对所述充放电电路进行控制以对所述电池组进行充电、或对所述电子设备进行充电或者供电。
  2. 根据权利要求1所述的移动电源,还包括散热装置和温度传感器;
    所述散热装置,用于对所述移动电源进行散热;
    所述温度传感器与所述中央处理器连接,用于检测所述移动电源内部的温度,并将检测到的温度信号发送给所述中央处理器;
    所述中央处理器,还用于根据接收到的温度信号对散热装置进行控制。
  3. 根据权利要求2所述的移动电源,其中,所述散热装置包括散热风扇和控制器;
    所述控制器与所述中央处理器连接,用于接收所述中央处理发送的转速控制信号,并根据所述转速控制信号控制所述散热风扇的转速。
  4. 根据权利要求3所述的移动电源,其中,所述充放电电路集成在电路板上;所述散热装置还包括导热胶垫;
    所述导热胶垫设置在所述电池组以及所述电路板上。
  5. 根据权利要去1所述的移动电源,其中,所述充放电电路包括升降压电路;
    所述升降压电路包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第一栅极驱动器、第二栅极驱动器以及电感;
    所述第一晶体管的漏极与所述充放电接口的第一端连接;所述第一晶体管的源极分别与所述电感的第一端以及第二晶体管的漏极连接;所述第一晶体管 的栅极与所述第一栅极驱动器的第一输出端连接;
    所述第二晶体管的源极与所述电池组的负极连接,所述第二晶体管的栅极与所述第一栅极驱动器的第二输出端连接;
    所述电感的第二端分别与第三晶体管的源极以及第四晶体管的漏极连接;
    所述第三晶体管的漏极与所述电池组的正极连接;所述第三晶体管的栅极与所述第二栅极驱动器的第一输出端连接;
    所述第四晶体管的源极与所述电池组的负极连接;所述第四晶体管的栅极与所述第二栅极驱动器的第二输出端连接;
    所述电池组的负极接地;
    所述中央处理器分别与所述第一栅极驱动器的输入端和所述第二栅极驱动器的输入端连接,还用于通过所述第一栅极驱动器控制所述第一晶体管和所述第二晶体管的导通或断开,以及通过所述第二栅极驱动器控制所述第三晶体管和第四晶体管的导通或断开。
  6. 根据权利要求5所述的移动电源,所述充放电电路还包括控制电路;
    所述控制电路包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第五晶体管、第六晶体管以及第三栅极驱动器;
    所述第一电阻的第一端与所述充放电接口的第一端连接;所述第一电阻的第二端与所述第二电阻的第一端连接,所述第二电阻的第二端分别与所述第三电阻的第一端以及所述电池组的负极连接;所述第三电阻的第二端与所述充放电接口的第二端连接;
    所述第五晶体管和所述第六晶体管均设于所述充电放接口的第一端与所述第一晶体管的漏极之间;所述第五晶体管的漏极分别与所述充放电接口的第一端以及所述第一电阻的第一端连接;所述第五晶体管的源极与所述第六晶体管的源极连接;所述第六晶体管的漏极与所述第一晶体管的漏极连接;
    所述第三栅极驱动器的输入端与所述中央处理器连接,所述第三栅极驱动器的输出端分别与所述第五晶体管的栅极以及所述第六晶体管的栅极连接;
    所述第四电阻的第一端与所述电池组的正极连接;所述第四电阻的第二端与所述第五电阻的第一端连接;所述第五电阻的第二端分别与所述电池组的负极以及所述第二电阻的第二端连接;
    所述中央处理器分别与所述第一电阻的第二端、第三电阻的第二端以及所述第四电阻的第二端连接,还用于当所述充电电源对所述电池组进行充电时, 采集所述第一电阻的第二端处的第一电压信号、所述第三电阻的第二端处的电流信号以及所述第四电阻的第二端处的第二电压信号,并根据所述第一电压信号、所述电流信号以及所述第二电压信号控制第三栅极驱动器,以控制所述第五晶体管和所述第六晶体管的导通或断开;
    所述中央处理器还用于当所述电池组对所述电子设备进行充电或供电时,采集所述第四电阻的第二端处的第二电压信号,并根据所述第二电压信号控制所述第三栅极驱动器,以控制所述第六晶体管和所述第五晶体管的导通或断开。
  7. 根据权利要求6所述的移动电源,其中,在所述充放电接口的第二端与所述中央处理器之间设置有放大器,用于对所述电流信号进行放大。
  8. 根据权利要求6所述的移动电源,所述充放电电路还包括稳压组件;
    所述稳压组件包括第一电容和第二电容;
    所述第一电容的第一端分别与所述第六晶体管的漏极以及所述第一晶体管的漏极连接;所述第一电容的第二端与所述电池组的负极连接;
    所述第二电容的第一端分别与所述电池组的正极、第四电阻的第一端以及第三晶体管的漏极连接;所述第二电容的第二端与所述电池组的负极连接。
  9. 根据权利要求1所述的移动电源,其中,所述中央处理器与所述充放电接口的第三端连接,用于当所述电池组给外部的电子设备进行充电或者供电时,获取所述电子设备的参数信息,并根据所述参数信息对所述电子设备的类别进行识别。
  10. 根据权利要求1所述的移动电源,还包括:直流输出电路、USB接口、逆变电路、AC/DC接口和控制装置;
    所述直流输出电路的输入端与所述电池组连接,所述直流输出电路的输出端与所述USB接口连接;
    所述逆变电路的输入端与所述电池组连接,所述逆变电路的输出端与所述AC/DC接口连接;
    所述中央处理器分别与所述控制装置、所述直流输出电流以及所述逆变电路连接,用于接收电流输出指令以控制所述移动电源输出直流电或交流电;
    所述控制装置用于输入电流输出指令。
  11. 根据权利要求1所述的移动电源,还包括OLED显示屏,所述OLED显示屏设置于所述移动电源的外壳,所述OLED显示屏与所述中央处理器连接,用于显示所述移动电源的剩余电量、充电功率、放电功率、内部温度和当前充 放电状态下的剩余运行时间。
  12. 根据权利要求1所述的移动电源,还包括:无线充电管理器以及无线充电发射器;
    无线充电发射器与所述电池组连接,用于将电池组输出的能量以电磁波的形式发送给所述电子设备;
    所述无线充电管理器分别与所述中央处理器以及所述无线充电发射器连接,用于接收所述中央处理器发送的控制指令,并根据所述控制指令对所述无线充电发射器进行控制。
PCT/CN2016/104172 2016-08-24 2016-11-01 移动电源 WO2018035963A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16913983.9A EP3506450B1 (en) 2016-08-24 2016-11-01 Mobile power source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610714564.0 2016-08-24
CN201610714564.0A CN106253399B (zh) 2016-08-24 2016-08-24 一种移动电源

Publications (1)

Publication Number Publication Date
WO2018035963A1 true WO2018035963A1 (zh) 2018-03-01

Family

ID=57595327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104172 WO2018035963A1 (zh) 2016-08-24 2016-11-01 移动电源

Country Status (4)

Country Link
US (1) US10116153B2 (zh)
EP (1) EP3506450B1 (zh)
CN (1) CN106253399B (zh)
WO (1) WO2018035963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116054337A (zh) * 2023-01-13 2023-05-02 中国铁塔股份有限公司 电源供电装置及方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10645782B2 (en) * 2012-06-15 2020-05-05 Aleddra Inc. Solid-state lighting with emergency power management
US10341165B2 (en) * 2017-05-23 2019-07-02 Microchip Technology Incorporated CAN transmitter with fast CANL control loop
CN109309397B (zh) * 2017-07-28 2024-05-14 西安中兴新软件有限责任公司 一种移动电源
CN109412390B (zh) * 2017-08-15 2020-09-25 泰达电子股份有限公司 电源转换装置
CN108075057B (zh) * 2017-12-06 2023-05-16 力帆实业(集团)股份有限公司 电动车用电芯成组结构
CN108091948A (zh) * 2017-12-22 2018-05-29 苏州精控能源科技有限公司 汽车电池管理装置
CN108282016B (zh) * 2018-04-09 2023-12-19 深圳市雅德电源科技股份有限公司 智能充电电路
EP3876335A1 (en) * 2018-10-30 2021-09-08 SZ DJI Technology Co., Ltd. Battery control circuit, battery and unmanned aerial vehicle
US11114868B2 (en) 2019-03-07 2021-09-07 Bby Solutions, Inc. Supplemental capacitor based battery charging system
CN110212600A (zh) * 2019-05-23 2019-09-06 欣旺达电子股份有限公司 多途径充电的移动电源
CN110098742B (zh) * 2019-06-01 2020-03-31 深圳市永航新能源技术有限公司 同步整流dc/dc变换器的应用
US20200395774A1 (en) * 2019-06-17 2020-12-17 Renesas Electronics America Inc. Single inductor multiple output charger for multiple battery applications
CN110445216B (zh) * 2019-08-14 2021-02-23 上海艾为电子技术股份有限公司 一种充电芯片
CN113472197A (zh) * 2020-03-30 2021-10-01 北京新能源汽车股份有限公司 一种直流转换器、直流充电控制方法及装置
US11705683B2 (en) 2020-04-22 2023-07-18 Black & Decker Inc. Battery pack power transfer adaptor
US11836027B2 (en) * 2020-07-06 2023-12-05 Baidu Usa Llc Enhanced battery backup unit battery management system
KR20230121132A (ko) * 2021-01-15 2023-08-17 필립모리스 프로덕츠 에스.에이. 재충전식 전자 장치용 스마트 충전기
CN113541274A (zh) * 2021-09-14 2021-10-22 深圳市沃特沃德信息有限公司 双向充电的控制方法、装置和计算机设备
CN113644751B (zh) * 2021-10-12 2022-02-22 深圳市驰普科达科技有限公司 具备无线充电功能的应急储能设备、系统及其控制方法
CN114006463A (zh) * 2021-11-05 2022-02-01 深圳市谦视智能科技有限责任公司 一种快速更换电池不掉电的装置及电子设备
CN114655071A (zh) * 2022-02-18 2022-06-24 华为数字能源技术有限公司 一种电池、电池控制方法及电动车
CN115347635A (zh) * 2022-07-22 2022-11-15 深圳市磐鼎科技有限公司 电量续航系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057826A (ja) * 2003-08-01 2005-03-03 Masayuki Hattori 充放電装置、充放電方法および2次電池の特性評価装置
CN201207578Y (zh) * 2008-04-18 2009-03-11 耿华 风光互补型移动电源
CN202127260U (zh) * 2011-06-07 2012-01-25 叶明祥 可反向放电的手持式电子装置
CN205489659U (zh) * 2016-02-29 2016-08-17 深圳市工宇科技有限公司 具有type-c接口的移动电源

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10262719A (ja) * 1997-03-27 1998-10-06 Mitsubishi Electric Corp ノートパソコン収納ケース
US6788033B2 (en) * 2002-08-08 2004-09-07 Vlt, Inc. Buck-boost DC-DC switching power conversion
US6801028B2 (en) * 2002-11-14 2004-10-05 Fyre Storm, Inc. Phase locked looped based digital pulse converter
US7117044B2 (en) * 2003-12-30 2006-10-03 Square D Company Alternative energy system control method and apparatus
US20100171465A1 (en) * 2005-06-08 2010-07-08 Belkin International, Inc. Charging Station Configured To Provide Electrical Power to Electronic Devices And Method Therefor
US8026698B2 (en) * 2006-02-09 2011-09-27 Scheucher Karl F Scalable intelligent power supply system and method
US20070273325A1 (en) * 2006-02-24 2007-11-29 Black & Decker Inc. Power station with built in battery charger
EP1998428B9 (en) * 2006-03-22 2021-08-11 Mitsubishi Electric Corporation Bidirectional buck boost dc/dc converter, railway coach drive control system, and railway feeder system
JP4707626B2 (ja) * 2006-08-11 2011-06-22 三洋電機株式会社 無接点の充電器とこの充電器と携帯電子機器の組み合わせ
CN101657916A (zh) * 2007-02-09 2010-02-24 西姆贝特公司 充电系统和方法
US8130499B2 (en) * 2007-11-30 2012-03-06 Panasonic Corporation Heat dissipating structure base board, module using heat dissipating structure base board, and method for manufacturing heat dissipating structure base board
US7782610B2 (en) * 2008-11-17 2010-08-24 Incase Designs Corp. Portable electronic device case with battery
US8461805B2 (en) * 2009-06-22 2013-06-11 Shuang SA Rechargeable battery pack with connecting ports for internal and external charging/output operations
CN102082309B (zh) * 2009-11-27 2014-09-17 尹学军 电动车辆快速补充电能的方法及其供电装置
TWM421641U (en) * 2011-08-09 2012-01-21 ming-xiang Ye Back discharging protection sleeve for handset device
US20130043827A1 (en) * 2011-08-10 2013-02-21 Nathan Daniel Weinstein Portable power charger
US8698450B2 (en) * 2011-12-27 2014-04-15 Ming-Hsiang Yeh Bidirectional wireless charging and discharging device for portable electronic device
US9250281B2 (en) * 2012-06-06 2016-02-02 Pison Inc. Method and system for reducing self-interference in a handheld communication device
CN202759261U (zh) * 2012-07-03 2013-02-27 东莞市中恒浩机电科技有限公司 无线充电式移动电源
US20140132206A1 (en) * 2012-11-12 2014-05-15 Ecosol Technologies Inc. Portable Battery Charger with Inductive Charging
US10340716B2 (en) * 2013-01-17 2019-07-02 Murata Manufacturing Co., Ltd. Electric storage device and start-up method
JP2014178308A (ja) * 2013-02-12 2014-09-25 Fujifilm Corp 電子カセッテ
US20140312691A1 (en) * 2013-03-15 2014-10-23 Cooper Technologies Company Smart power strip with automatic device connection detection
DE102013218534A1 (de) * 2013-09-16 2015-03-19 Robert Bosch Gmbh Akkuladevorrichtung
WO2016022612A1 (en) * 2014-08-04 2016-02-11 Innosys, Inc. Lighting systems
US20160043585A1 (en) * 2014-08-05 2016-02-11 Michael Jozef Zawadzki Rapid Charging Mobile Electronic Device Battery Case
KR20160041439A (ko) * 2014-10-07 2016-04-18 삼성전자주식회사 충전용 전자장치 및 충전용 전자장치의 전원제어 방법
CN204465081U (zh) * 2015-03-20 2015-07-08 陈泽茂 多功能户外移动电源
WO2016154431A1 (en) * 2015-03-24 2016-09-29 Horizon Hobby, LLC Systems and methods for battery charger with safety component
US10224732B2 (en) * 2016-01-28 2019-03-05 Dell Products L.P. Information handling system external adapter and battery source
CN105515137B (zh) * 2016-02-22 2019-02-26 天津市天楚科技有限公司 具有充电管理的移动电源
CN105680693B (zh) * 2016-03-31 2019-06-11 昆明理工大学 一种具有升降压功能的双向dc-dc装置
CN105896646A (zh) * 2016-04-07 2016-08-24 东莞市太业电子股份有限公司 智能升降压充放电电路及其充放电方法
CN206148971U (zh) * 2016-07-27 2017-05-03 深圳富泰宏精密工业有限公司 移动电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057826A (ja) * 2003-08-01 2005-03-03 Masayuki Hattori 充放電装置、充放電方法および2次電池の特性評価装置
CN201207578Y (zh) * 2008-04-18 2009-03-11 耿华 风光互补型移动电源
CN202127260U (zh) * 2011-06-07 2012-01-25 叶明祥 可反向放电的手持式电子装置
CN205489659U (zh) * 2016-02-29 2016-08-17 深圳市工宇科技有限公司 具有type-c接口的移动电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3506450A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116054337A (zh) * 2023-01-13 2023-05-02 中国铁塔股份有限公司 电源供电装置及方法
CN116054337B (zh) * 2023-01-13 2024-01-30 铁塔能源有限公司 电源供电装置及方法

Also Published As

Publication number Publication date
US20180062415A1 (en) 2018-03-01
US10116153B2 (en) 2018-10-30
CN106253399A (zh) 2016-12-21
EP3506450B1 (en) 2022-09-14
EP3506450A4 (en) 2020-01-22
EP3506450A1 (en) 2019-07-03
CN106253399B (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2018035963A1 (zh) 移动电源
ES2788707T3 (es) Adaptador y procedimiento de control de carga
JP6351653B2 (ja) モバイル装置充電器の適応型充電電圧発生装置
TWI597918B (zh) 能以不同組態進行操作的電池充電系統和方法
US9502917B2 (en) Charging method of electronic cigarettes and electronic cigarette box
US20170040813A1 (en) Power source adaptor for charging directly
TWI568136B (zh) 用於提供電力之設備、電子裝置及非暫態電腦可讀取媒體
US20160072331A1 (en) Method for limiting battery discharging current in battery charger and discharger circuit
US9825478B2 (en) Method for supplying power to a load within a portable electronic device
US10250059B2 (en) Charging circuit for battery-powered device
TW201818260A (zh) 通用序列匯流排集線器
US9419472B2 (en) Mobile device solar powered charging apparatus, method, and system
US20080174279A1 (en) Battery charging system and method thereof
KR19980026944A (ko) 2차 배터리 충전 회로
JP2016086527A (ja) Usb給電装置、それを用いた電子機器、usb給電装置の制御方法
US9153987B2 (en) Battery charger voltage control method for instant boot-up
WO2016173202A1 (zh) 平板电脑
JP2012009819A (ja) 太陽光発電装置
EP3087652A1 (en) Power delivery system for an electronic device
WO2017128619A1 (zh) 一种支持多电池快速充电的设备、装置及方法
KR20210042751A (ko) 충전 집적 회로 및 이의 동작 방법
WO2017197750A1 (zh) 一种充电控制方法、装置及系统
US9425648B2 (en) Mobile device solar powered charging apparatus, method, and system
US20150372521A1 (en) Portable Power Bank
TW202044719A (zh) 不斷電系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016913983

Country of ref document: EP

Effective date: 20190325