WO2016173202A1 - 平板电脑 - Google Patents

平板电脑 Download PDF

Info

Publication number
WO2016173202A1
WO2016173202A1 PCT/CN2015/090751 CN2015090751W WO2016173202A1 WO 2016173202 A1 WO2016173202 A1 WO 2016173202A1 CN 2015090751 W CN2015090751 W CN 2015090751W WO 2016173202 A1 WO2016173202 A1 WO 2016173202A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
tablet computer
voltage
output
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2015/090751
Other languages
English (en)
French (fr)
Inventor
曾超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
K Tronics Suzhou Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
K Tronics Suzhou Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, K Tronics Suzhou Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to US15/038,295 priority Critical patent/US10031568B2/en
Publication of WO2016173202A1 publication Critical patent/WO2016173202A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is DC
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • H02J2007/0067
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of smart terminal devices, and in particular to a tablet computer.
  • the battery of the tablet is mainly used to supply power to the screen and the internal processor and circuit.
  • the voltage of the battery is small, and the corresponding current is generally not more than 500 mA.
  • External devices that are often connected to a tablet also require tablet power.
  • a charging current greater than 500 mA requires power from the tablet, the current within 500 mA generally cannot simultaneously charge the internal circuit, the processor, and the external device.
  • the present application is directed to at least one of the technical problems existing in the prior art, and proposes a tablet computer that can charge an external device connected thereto.
  • a tablet computer includes a battery and a voltage regulating circuit; the voltage regulating circuit includes a boosting circuit, and the boosting circuit is configured to boost a voltage provided by the battery to The boosted voltage can be used to charge external devices connected to the tablet.
  • the tablet computer has a first charging port, one end of the first charging port is connected to the boosting circuit, and the other end is used for connecting with an external device to be charged. Further preferably, the first charging port is a USB port or a DC port.
  • the tablet computer has a wireless transmitting module, and the wireless reflecting module sends a signal for wirelessly connecting the tablet computer with an external device to be charged having a wireless receiving module.
  • the boosting circuit is a Boost circuit.
  • the Boost circuit comprises an inductor, a diode and a triode, the inductor and the diode are sequentially connected in series between a positive pole of the battery and a positive pole of an output end of the Boost circuit, and the triode is used as a switch, and an input end thereof is connected to Between the inductor and the input end of the diode, the output of the diode is connected to the negative terminal of the battery and the output of the Boost circuit Between the poles.
  • the voltage regulating circuit further comprises a step-down circuit, wherein the step-down circuit is configured to step down a voltage to be input to the battery, so that a voltage input to the battery is in a charging voltage range of the battery Inside.
  • the tablet has a second charging port, one end of which is connected to the step-down circuit and the other end is connected to the charger. Further preferably, the second charging port is a USB port or a DC port.
  • the step-down circuit is a Buck circuit or a DC-DC step-down circuit.
  • the DC-DC step-down circuit comprises: a power input end for inputting a power supply voltage; a power output end for outputting a load supply voltage; and a buck control module for converting a power supply voltage input from the power input end into a load a supply voltage, and outputting the load supply voltage through a power output terminal, an input end of the buck control module is connected to the power input end and an output end thereof is connected to the power output end, and the buck control module includes a buck control chip And an external linear voltage regulator module for converting a load supply voltage into a chip operating voltage to supply power to the buck control chip, wherein an input of the external linear voltage regulator module is connected to the power output terminal and an output terminal thereof is lowered The bias control power supply terminal of the voltage control module is connected.
  • the DC-DC step-down circuit further includes an input filter module 300 connected between the power input end and the input end of the buck control module for inputting a power supply voltage from the power input end.
  • the output feedback module 400 has an input end connected to an output end of the buck control module, and an output end thereof is connected to a feedback end of the buck control module, and the output feedback module is used for sampling down And a voltage supply voltage outputted by the control module is fed back to the buck control module; and an output filter module 500 is connected between the output end of the buck control module and the power output end for The load supply voltage output by the voltage control module is filtered.
  • the Buck circuit includes a main control circuit, a single chip microcomputer, and a MOS drive module.
  • the tablet computer has a dual-purpose port connected to the step-down circuit and the booster circuit, the dual-purpose port is used for connecting with an external device to be charged, and for connecting with a charger.
  • the voltage regulating circuit further comprises a protection circuit.
  • the capacity of the battery is not less than 5000 mAh.
  • the voltage regulating circuit is connected to an operating system of the tablet computer, so as to The battery capacity and charge and discharge status are monitored.
  • the tablet provided by the present application includes a voltage regulating circuit, and the boosting circuit included in the voltage regulating circuit can boost the voltage provided by the battery of the tablet computer, thereby using the boosted voltage to connect the external device to the tablet computer.
  • the device is charged, so that after the power of the external device such as a mobile phone with a small battery capacity is used up, the external device can be charged by using a tablet computer that is carried and has a large battery capacity, thereby eliminating The trouble of carrying a dedicated mobile power source with you.
  • FIG. 1 is a schematic diagram of a tablet computer according to a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of a Boost boost circuit in the tablet computer shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a DC-DC step-down circuit in the tablet computer shown in FIG. 1;
  • FIG. 4 is a schematic diagram of a tablet computer according to a second embodiment of the present application.
  • Figure 5 is a schematic diagram of a main control circuit in a Buck circuit
  • Figure 6 is a schematic diagram of a single chip microcomputer in a Buck circuit
  • FIG. 7 is a schematic diagram of a Mos driving module in a Buck circuit
  • FIG. 8 is a schematic diagram of a tablet computer according to a third embodiment of the present application.
  • the tablet computer includes: a battery 1 and a voltage regulating circuit 2; the voltage regulating circuit 2 includes a boosting circuit 21, and the boosting circuit 21 is used.
  • the voltage supplied from the battery 1 is boosted to charge the external device W connected to the tablet with the boosted voltage.
  • the boosting circuit 21 boosts the voltage provided by the battery 1 so that the boosted voltage is not lower than the battery charging voltage of the external device W, so that after the tablet is connected to the external device W,
  • the battery 1 in the tablet can charge the battery of the external device W.
  • the external device such as the mobile phone can be connected to the tablet computer, and
  • the voltage supplied from the battery 1 of the tablet is boosted by the booster circuit 21 in the tablet computer, so that the battery in the external device such as a mobile phone is charged by the boosted voltage, so that external devices such as mobile phones can be avoided. It can't be used due to insufficient power, and it can also avoid the trouble of carrying mobile power.
  • the voltage regulating circuit 2 may further include a buck circuit 22, and/or a protection circuit 23.
  • the step-down circuit 22 is configured to step down the charging voltage of the battery 1 input from the external power source to the tablet computer, so that The voltage input to the battery 1 is within the charging voltage range of the battery 1, so that the battery 1 of the tablet is charged with the voltage after the step-down.
  • the protection circuit 23 is for preventing one or more of the following abnormal conditions when the external device W is charged by the battery 1 of the tablet, and when the battery 1 of the tablet is charged from the external power source: the tablet The battery 1 of the computer is over-discharged, the battery 1 of the tablet is overcharged, an overcurrent occurs during charging of the battery 1 of the tablet by the external power source, and charging of the battery 1 to the external device W from the tablet, the battery The voltage supplied by 1 is excessively raised by the booster circuit 21, the circuit is short-circuited, and the temperature of the battery 1 of the tablet computer is too high.
  • the tablet computer has a first charging port, one end of which is connected to the boosting circuit 21 and the other end is connected to the external device W to be charged.
  • the first charging port is a USB (Universal Serial Bus) port that is connected to an external device W to be charged through a USB cable.
  • the first charging port may be a USB Type A port 3.
  • the external device is also configured with a port matching the first charging port, and the port is connected to the first charging port through a patch cord.
  • the USB A-type port 3 is connected to the Micro USB port on the external device W via the USB extension cable 30 to charge the external device W.
  • the tablet computer may further have a second charging port, the second charging port One end is connected to the step-down circuit 22, and the other end is connected to the charger C.
  • the second charging port is a USB port 4.
  • the second charging port 4 can be a Micro USB type port, that is, the end corresponding to the USB A-type port of the USB adapter cable is connected to the charger C of the tablet, and the USB adapter cable corresponds to the Micro USB type port.
  • the USB adapter cable can be a USB adapter cable 30, that is, the same USB cable can be used as a USB adapter cable for connecting the tablet to the external device W and a USB adapter cable for connecting the tablet to its charger C.
  • the input and output voltage ratings of the USB port 3 and the USB port 4 are both 5V.
  • the charging voltage of the battery is generally about 5V, so that the setting can be compatible with most existing mobile portable devices with USB ports and their external devices.
  • the process of charging the tablet computer is roughly: inputting 5V voltage to the tablet computer via the charger C, and the buck circuit 22 will be 5V.
  • the voltage drops to 4.2V, and the voltage after the step-down is slightly higher than the rated voltage of the battery 1 by 3.7V, so that the battery is charged by the voltage after the step-down;
  • the process of charging the external device by the tablet is roughly as follows:
  • the voltage circuit 21 raises the rated voltage of the battery 3.7V to 5V, and the boosted voltage is input to the external device W via the USB port 3 and the USB extension cable 30, thereby charging the battery of the external device W.
  • USB port 3 is not limited to a USB A-type port
  • USB port 4 is not limited to a Micro USB-type port
  • the two may be any other USB-compliant port or compatible with a commercially available portable electronic device. Match any standard port.
  • the number of USB ports in the tablet is not limited to two, and it may be one, that is, the connection with the charger C and the connection with the external device W through one USB port, thereby making the USB port Become a dual-use port.
  • the capacity of the battery 1 of the tablet computer is not less than 5000 mAh, so that the battery 1 of the tablet computer has sufficient power and can be used to charge different external devices.
  • the boosting circuit 21 may be a boost boosting circuit for raising the voltage supplied from the battery 1 to an output voltage that can be used to charge the external device W connected through the USB port 3 (this embodiment) Medium is 5V), and then the external device W is charged through the USB port 3.
  • the Boost boost circuit may be the circuit structure shown in FIG.
  • the power supply Vi is supplied with power, and the inductor Lr stores energy when the transistor Q is turned on, and the inductor Lr releases power to the circuit output terminal Vo through the Do when the transistor Q is turned off, thereby controlling the on and off of the transistor Q.
  • a stable boost output is achieved.
  • the step-down circuit 22 may be a DC-DC step-down circuit for reducing a voltage (5 V in the present embodiment) input from an external power source to a charging voltage of the battery 1 (4.2 in the present embodiment). V), thereby charging the battery 1.
  • the DC-DC buck circuit may be the structure shown in FIG. 3, and includes a power input terminal VIN, a power output terminal VOUT, a buck control module 100, and an external linear voltage stabilizing module 200.
  • the input end of the buck control module 100 is connected to the power input terminal VIN, the output end of the buck control module 100 is connected to the power output terminal VOUT; the input end of the external linear voltage stabilizing module 200 is connected to the power output terminal VOUT, and the external linearity
  • the output of the voltage stabilizing module 200 is connected to the bias power supply end of the buck control module 100.
  • the power input terminal VIN is used to input the power supply voltage
  • the power output terminal VOUT is used to output the load supply voltage
  • the buck control module 100 includes the buck control chip U1
  • the buck control module 100 converts the power supply voltage input from the power input terminal VIN into a load.
  • the external linear voltage regulator module 200 converts the load supply voltage into a chip operating voltage to supply power to the buck control chip U1, so that when the DC-DC buck circuit is just powered on, Before the load supply voltage is not output, the buck control chip U1 converts the input power supply voltage through its internal LDO (Low Dropout Regulator) and outputs the chip operating voltage to the buck control chip U1; After the output load voltage is output, the chip operating voltage converted from the load supply voltage is used to replace the chip operating voltage of the internal LDO output of the buck control chip U1 to supply power to the buck control chip U1.
  • LDO Low Dropout Regulator
  • the DC-DC step-down circuit further includes an input filter module 300, an output feedback module 400, and an output filter module 500.
  • the output end of the output feedback module 400 is connected to the output end of the buck control module 100, and the output end of the output feedback module 400 is connected to the feedback end of the buck control module 100.
  • the output feedback module 400 is used for sampling step-down control.
  • the load supply voltage output by the module 100 is fed back to the buck control module 100, so that the buck control module 100 adaptively adjusts the output of the load supply voltage according to the feedback result to ensure that the load supply voltage can be stably output.
  • the input filter module 300 is connected between the power input terminal VIN and the input terminal of the buck control module 100 for filtering the power supply voltage input from the power input terminal VIN to filter out the ripple signal in the power supply voltage.
  • the output filter module 500 is connected between the output end of the buck control module 100 and the power output terminal VOUT, and is configured to filter the load supply voltage outputted by the buck control module 100, and filter the ripple signal of the load supply voltage, thereby The power output OUT is output to a stable load supply voltage.
  • An exemplary circuit configuration of the buck control module 100, the external linear voltage stabilizing module 200, the input filtering module 300, the output feedback module 400, and the output filtering module 500 is as shown in FIG.
  • the external linear voltage regulator module 200 includes a transistor Q1, a Zener diode D1, a first resistor R1, and a second resistor R2.
  • the transistor Q1 is an NPN transistor.
  • One end of the first resistor R1 is connected to the power output terminal VOUT.
  • the other end of a resistor R1 is connected to the collector of the transistor Q1 and one end of the second resistor R2; the other end of the second resistor R2 is connected to the base of the transistor Q1 and the cathode of the Zener diode D1; the anode of the Zener diode D1 is grounded
  • the emitter of the transistor Q1 is connected to the bias power supply pin VCC of the buck control chip U1 in the buck control module 100; the external linear voltage regulator module 200 further includes a first capacitor C1, one end of the first capacitor C1
  • the common terminal of the first resistor R1 and the second resistor R2 are connected, and the other end is connected to the cathode of the Zener diode D1.
  • the output feedback module 400 includes a third resistor R3 and a fourth resistor R4; one end of the third resistor R3 is connected to the power switching output pin SW of the buck control chip U1 in the buck control module 100, and the third resistor R3 is another One end is connected to the feedback input pin FB of the buck control chip U1, and is grounded via the fourth resistor R4; the third resistor R3 and the fourth resistor R4 are used as voltage sampling resistors, sampling the output load supply voltage, and outputting the load The power supply voltage is divided to be fed back to the buck control chip U1 in the buck control module 100. According to the actual situation, the resistance values of the third resistor R3 and the fourth resistor R4 may be appropriately selected, or may be appropriately increased.
  • the number of voltage sampling resistors is used to divide the load supply voltage.
  • the output feedback module 400 further includes a fifth resistor R5, wherein the fourth resistor R4 is grounded via the fifth resistor R5, and the fifth resistor R5 is used as a voltage sampling resistor. After the third resistor R3 and the fourth resistor R4 are connected in series, the load voltage is divided.
  • the output feedback module 400 further includes a sixth resistor R6, one end of the sixth resistor R6 and the third resistor R3.
  • the feedback input pin FB of the buck control chip U1 is connected, and the sixth resistor R6 acts as a current limiting resistor on the feedback input pin FB of the buck control chip U1 to protect the buck control chip U1.
  • the input filtering module 300 includes a second capacitor C2 and a third capacitor C3. Wherein, one end of the second capacitor C2 is connected to the power input terminal VIN, and is connected to the power input pin IN of the buck control chip U1 in the buck control module 100, the other end of the second capacitor C2 is grounded, and the third capacitor C3 is The second capacitor C2 is connected in parallel, and the second capacitor C2 and the third capacitor C3 serve as decoupling filter capacitors for the power supply voltage input to the power input terminal VIN.
  • the output filtering module 500 includes a fourth capacitor C4, a fifth capacitor C5, and a sixth capacitor C6.
  • One end of the fourth capacitor C4 is connected to the power switching output pin SW of the buck control chip U1 in the buck control module 100, and is connected to the power output terminal VOUT, and the other end of the fourth capacitor C4 is grounded, and the fifth capacitor C5
  • the sixth capacitor C6 is connected in parallel with the fourth capacitor C4, and the fourth capacitor C4, the fifth capacitor C5 and the sixth capacitor C6 are used as decoupling filter capacitors of the load supply voltage outputted by the power output terminal VOUT.
  • the voltage regulating circuit 2 is connected to an operating system of the tablet computer to monitor the capacity and the state of charge and discharge of the battery 1. This setting allows you to visually observe the battery level of the tablet 1 through the operating system of the tablet or a software application, as well as monitor the process and status of charging the external device W by the tablet.
  • FIG. 4 is a schematic diagram of a tablet computer provided by a second embodiment of the present application. As shown in FIG. 4, the difference between the tablet computer in this embodiment and the first embodiment is that the first charging port of the tablet computer is a DC (Direct Current) port 3', and the DC port is DC-transferred.
  • the wiring 30' is connected to the external device W to be charged, that is, the USB port 3 in the first embodiment is replaced with a DC port 3'.
  • the DC port can be used as an output during the discharge process or as an input during the charging process, that is, as a dual-purpose port.
  • the DC port 3' is also connected to the charger C, so that the tablet can be provided with only one port, reducing the number of ports.
  • the DC port can allow a larger input and output voltage range, and thus, in the present embodiment, when the boost circuit 21 is a Boost circuit, the voltage of the battery 1 can be raised to different according to the type of the external device W to be charged.
  • the voltage such as 5V, 9V, 12V, etc., charges the external device W.
  • the buck circuit 22 can be a Buck circuit, and the buck circuit can be compatible.
  • a charger having a different output voltage such as a charger having an output voltage of 5V, 9V, 12V, etc., charges the battery of the tablet 1.
  • the Buck circuit may include the main control circuit, the single chip microcomputer, and the MOS drive module shown in FIGS. 5-7. As shown in FIG.
  • the main control circuit includes an inductor L3, a diode D1, a Mos tube Q2-Q3, a resistor R1-R6, a capacitor C2-C4, and electrolytic capacitors EC3, EC6; wherein the cathode of the diode D1 is One end of the inductor L3, one end of the capacitor C2, one end of the capacitor C3, one end of the resistor R2, one end of the resistor R5, the source of the Mos tube Q2, the source of the Mos tube Q3, and the MOS drive module are connected, and the cathode of the diode D1 is connected.
  • the other end of the capacitor C2 is connected to one end of the resistor R1, the other end of the resistor R2 is connected to the gate of the Mos tube Q2 and one end of the resistor R3; the other end of the capacitor C3 is connected to one end of the resistor R4, The other end of the resistor R5 is connected to the gate of the Mos tube Q3 and one end of the resistor R6; the other end of the resistor R3 is connected to the 1 pin of the MOS drive module, and the other end of the resistor R6 is connected to the 3 pin of the MOS drive module; the anode of the electrolytic capacitor EC3 is The other end of the resistor R1, the other end of the resistor R4, the drain of the Mos tube Q2, and the drain of the Mos tube Q3 are connected; the anode of the electrolytic capacitor EC6 is connected to one end of the capacitor C4 and the other end of the inductor L3, and serves as a main control circuit.
  • the single chip microcomputer is connected with the MOS driving module, wherein the 3 pins of the single chip are connected with the 6 pins of the MOS driving module; the 5 pins of the single chip are connected with the 5 pins of the MOS driving module.
  • the Mos tube Q2 and the Mos tube Q3 are N-type Mos tubes.
  • the single chip microcomputer is a single chip microcomputer capable of generating two PWM (Pulse Width Modulation) waveforms with a phase difference of 180 degrees.
  • FIG. 8 is a schematic diagram of a tablet computer according to a third embodiment of the present application.
  • the difference between the tablet computer in this embodiment and the first and second embodiments is that the tablet computer has a wireless charging sensing module 3", and the wireless charging sensing module 3" utilizes a near field. Inductively transfers energy to the external device W to be charged with the wireless charging sensing module, ie, replaces the USB port 3 in the first embodiment with the wireless charging sensing module 3", and the DC port 3' in the second embodiment , wireless inductive charging with external device W.
  • the booster circuit 21 boosts the voltage supplied from the battery 1
  • the boosted voltage is transmitted to the wireless charging sensor module of the external device W through the wireless charging sensing module 3" to implement wireless inductive charging. , thereby wirelessly charging the external device.
  • the wireless in the present embodiment Charging is more convenient.
  • the tablet computer provided by the present application includes a voltage regulating circuit 2, and the voltage regulating circuit 2 includes a boosting circuit 21, and the voltage supplied from the battery 1 of the tablet computer is boosted by the boosting circuit 21, and the boosting circuit 21 can be used.
  • the pressed voltage charges the external device W connected to the tablet computer, so that after the battery with a small battery capacity such as a mobile phone is used up, the portable device such as a tablet computer can be used and the battery capacity is relatively high. Large devices charge external devices so that you can avoid the hassle of carrying a dedicated mobile power source with you.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种平板电脑,包括电池(1)和调压单元(2);所述调压单元(2)包括升压电路(21),所述升压电路(21)用以对所述电池(1)提供的电压进行升压,以使所述电池(1)向与平板电脑连接的外部设备(W)充电。

Description

平板电脑 技术领域
本申请涉及智能终端设备领域,具体地,涉及一种平板电脑。
背景技术
目前,平板电脑的电池主要用于对屏幕以及内部的处理器和电路供电,电池的电压较小,对应的电流一般不大于500mA。
往往存在与平板电脑连接的外部设备(例如通过On The Go数据连接线,即OTG线)也需要平板电脑供电。但是,当存在充电电流大于500mA的外部设备需要平板电脑供电时,该500mA以内的电流一般无法同时对内部电路、处理器以及所述的外部设备进行充电。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一,提出了一种平板电脑,所述平板电脑可以对与其连接的外部设备进行充电。
为实现本申请的目的而提供一种平板电脑,其包括电池和调压电路;所述调压电路包括升压电路,所述升压电路用于对所述电池提供的电压进行升压,以利用升压后的电压可对与平板电脑连接的外部设备充电。
其中,所述平板电脑具有第一充电端口,该第一充电端口的一端与所述升压电路连接,另一端用于与待充电的外部设备连接。进一步优选的,所述第一充电端口为USB端口或DC端口。
其中,所述平板电脑具有无线发射模块,所述无线反射模块发出信号,用于使所述平板电脑与具有无线接收模块的待充电的外部设备无线连接。
其中,所述升压电路为Boost电路。
其中,所述Boost电路包括电感、二极管和三极管,所述电感和二极管依次串联在所述电池的正极与所述Boost电路的输出端的正极之间,并且所述三极管作为开关,其输入端连接至所述电感与所述二极管的输入端之间,其输出端连接至所述电池的负极与所述Boost电路的输出端的负 极之间。
其中,所述调压电路还包括降压电路,所述降压电路用于对将被输入至所述电池的电压进行降压,使输入到电池中的电压处于所述电池的充电电压范围之内。
其中,所述平板电脑具有第二充电端口,该第二充电端口的一端与所述降压电路连接,另一端用于与充电器连接。进一步优选的,所述第二充电端口为USB端口或DC端口。
其中,所述降压电路为Buck电路或DC-DC降压电路。
其中,所述DC-DC降压电路包括:电源输入端,用于输入电源电压;电源输出端,用于输出负载供电电压;降压控制模块,其将电源输入端输入的电源电压转换为负载供电电压,并通过电源输出端输出该负载供电电压,所述降压控制模块的输入端与电源输入端连接且其输出端与电源输出端连接,并且所述降压控制模块包括降压控制芯片;和外部线性稳压模块,用于将负载供电电压转换为芯片工作电压以给所述降压控制芯片供电,所述外部线性稳压模块的输入端与电源输出端连接且其输出端与降压控制模块的偏置电源供电端连接。
其中,所述DC-DC降压电路还包括:输入滤波模块300,其连接于所述电源输入端与所述降压控制模块的输入端之间,用于对从电源输入端输入的电源电压进行滤波处理;输出反馈模块400,其输入端与所述降压控制模块的输出端连接,且其输出端与所述降压控制模块的反馈端连接,并且所述输出反馈模块用于采样降压控制模块输出的负载供电电压,并反馈给所述降压控制模块;和输出滤波模块500,其连接于所述降压控制模块的输出端与所述电源输出端之间,用于对降压控制模块输出的负载供电电压进行滤波处理。
其中,所述Buck电路包括主控电路、单片机和MOS驱动模块。
其中,所述平板电脑具有与降压电路和升压电路连接的两用端口,所述两用端口用于与待充电的外部设备连接,以及用于与充电器连接。
其中,所述调压电路还包括保护电路。
其中,所述电池的容量不小于5000mAh。
其中,所述调压电路与所述平板电脑的操作系统连接,以便对所述 电池的容量及充放电状态进行监控。
本申请具有以下有益效果:
本申请提供的平板电脑包括调压电路,所述调压电路中所包括的升压电路能够对平板电脑的电池提供的电压进行升压,从而利用升压后的电压对与平板电脑连接的外部设备进行充电,这样就可以在诸如手机之类的电池容量较小的外部设备的电量用完之后,使用随身携带的、且电池容量较大的平板电脑对该外部设备进行充电,从而可以免去随身携带专用的移动电源的麻烦。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1为本申请第一个实施方式提供的平板电脑的示意图;
图2为图1所示平板电脑中Boost升压电路的示意图;
图3为图1所示平板电脑中DC-DC降压电路的示意图;
图4为本申请第二个实施方式提供的平板电脑的示意图;
图5为Buck电路中的主控电路的示意图;
图6为Buck电路中的单片机的示意图;
图7为Buck电路中的Mos驱动模块的示意图;
图8为本申请第三个实施方式提供的平板电脑的示意图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本申请的其中一个实施方式中,如图1所示,所述平板电脑包括:电池1和调压电路2;所述调压电路2包括升压电路21,所述升压电路21用以对所述电池1提供的电压进行升压,以利用升压后的电压对与平板电脑连接的外部设备W充电。
具体的,所述升压电路21对电池1提供的电压进行升压,以使升压后的电压不低于外部设备W的电池充电电压,从而在将该平板电脑与外部设备W连接后,平板电脑中的电池1可以对外部设备W的电池进行充电。这样,在使用者同时携带平板电脑和诸如手机之类的其他外部设备时,在手机等外部设备中的电池的电量不足或用尽的情况下,可以将手机等外部设备与平板电脑连接,并由平板电脑中的升压电路21对该平板电脑的电池1所提供的电压进行升压,从而利用升压后的电压对手机等外部设备中的电池进行充电,这样就可以避免手机等外部设备由于电量不足而无法使用,同时还可以避免携带移动电源的麻烦。
在申请的一个实施方式中,参见图1,所述调压电路2还可以包括降压电路22,和/或,保护电路23。在实际应用场景中,当外部电源需要针对所述平板电脑的电池1进行充电时,所述降压电路22用于对外部电源输入到所述平板电脑的电池1的充电电压进行降压,使输入到电池1中的电压处于所述电池1的充电电压范围之内,从而利用降压后的电压对平板电脑的电池1进行充电。所述保护电路23用于在利用平板电脑的电池1对外部设备W充电时,以及在从外部电源对平板电脑的电池1充电时,防止出现下述异常情况中的一种或多种:平板电脑的电池1发生过放电、平板电脑的电池1被过充电、在通过外部电源向平板电脑的电池1充电和从平板电脑的电池1向外部设备W充电的过程中出现过电流、所述电池1所提供的电压被所述升压电路21过度升高、电路短路、和平板电脑的电池1的温度过高。
在本实施方式中,所述平板电脑具有第一充电端口,该第一充电端口的一端与升压电路21连接、另一端用于与待充电的外部设备W连接。在一些实施方式中,所述第一充电端口为USB(Universal Serial Bus,即通用串行总线)端口,其通过USB转接线与待充电的外部设备W连接。具体地,如图1所示,第一充电端口可以为USB A型端口3。在具体实施时,外部设备也配置有与所述第一充电端口相匹配的端口,该端口与所述第一充电端口通过转接线连接。如图1所示,USB A型端口3与外部设备W上的Micro USB端口通过USB转接线30连接,以实现对外部设备W充电。
此外,所述平板电脑还可以具有第二充电端口,该第二充电端口的 一端与降压电路22连接,另一端用于与充电器C连接。在一些实施方式中,所述第二充电端口为USB端口4。具体地,第二充电端口4可以为Micro USB型端口,即:使USB转接线的与USB A型端口对应的一端与平板电脑的充电器C连接,USB转接线的与Micro USB型端口对应的一端与平板电脑连接。进一步地,该USB转接线可以为USB转接线30,即可以使用同一根USB转接线作为连接平板电脑与外部设备W的USB转接线和连接平板电脑与其充电器C的USB转接线。
可选地,所述USB端口3和USB端口4的输入和输出额定电压均为5V。由于现有的具有USB端口的移动便携设备,例如平板电脑、手机等,其电池的充电电压一般为5V左右,这样设置可以兼容现有的大多数具有USB端口的移动便携设备及其外部设备。在此情况下,以平板电脑的电池1的额定电压为常见的3.7V为例,对平板电脑进行充电的过程大致为:经充电器C向平板电脑输入5V的电压,降压电路22将5V的电压降至4.2V,降压后的电压略高于电池1的额定电压3.7V,从而利用该降压后的电压对电池1进行充电;平板电脑对外部设备进行充电的过程大致为:升压电路21将电池的额定电压3.7V升至5V,将该升压后的电压经USB端口3和USB转接线30输入到外部设备W中,从而对外部设备W的电池进行充电。
需要说明的是,所述USB端口3并不限于USB A型端口,USB端口4也不限于Micro USB型端口,其二者还可以为其他任何符合USB标准的端口或与市售便携式电子设备相匹配的任何标准端口。当然,所述平板电脑中USB端口的数量也不限于2个,其可以为1个,即通过1个USB端口实现与充电器C的连接,以及与外部设备W的连接,从而使该USB端口成为一个两用端口。
在本实施方式中,所述平板电脑的电池1的容量不小于5000mAh,以使所述平板电脑的电池1具有足够的电量,能够用于对不同的外部设备进行充电。
具体地,所述升压电路21可以为Boost升压电路,其用于将电池1提供的电压升至能够用于对通过USB端口3所连接的外部设备W进行充电的输出电压(本实施方式中为5V),而后通过USB端口3向外部设备W充电。具体地,所述Boost升压电路可以为图2所示电路结构,其包括依 次串联在电源Vi的正极和电路输出端Vo的正极之间的电感Lr和二极管Do,以及一端并联在所述电感Lr与二极管Do之间的作为开关的三极管Q;其中,所述三极管Q的输入端连接至电感Lr与二极管Do的输入端之间,三极管Q的输出端连接至电源Vi的负极与电路输出端Vo的负极之间。在图2所示的电路结构中,电源Vi供电,三极管Q导通时电感Lr储能,三极管Q关断时电感Lr通过Do释放电能到电路输出端Vo,从而,通过控制三极管Q的通断即可实现稳定的升压输出。
具体地,所述降压电路22可以为DC-DC降压电路,其用于将从外部电源输入的电压(本实施方式中为5V)降至电池1的充电电压(本实施方式中为4.2V),从而对电池1充电。具体地,所述DC-DC降压电路可以为图3所示结构,其包括电源输入端VIN、电源输出端VOUT、降压控制模块100和外部线性稳压模块200。其中,降压控制模块100的输入端与电源输入端VIN连接,降压控制模块100的输出端与电源输出端VOUT连接;外部线性稳压模块200的输入端与电源输出端VOUT连接,外部线性稳压模块200的输出端与降压控制模块100的偏置电源供电端连接。电源输入端VIN用于输入电源电压,电源输出端VOUT用于输出负载供电电压,降压控制模块100包括降压控制芯片U1,降压控制模块100将电源输入端VIN输入的电源电压转换为负载供电电压,并通过电源输出端VOUT输出该负载供电电压,以给需要该负载供电电压供电的负载提供工作电压。同时,在降压控制模块100输出负载供电电压后,外部线性稳压模块200将负载供电电压转换为芯片工作电压给降压控制芯片U1供电,从而当DC-DC降压电路刚上电,还未输出负载供电电压之前,降压控制芯片U1通过其内部的LDO(Low Dropout Regulator,即低压差线性稳压器)对输入的电源电压进行转换并输出芯片工作电压给降压控制芯片U1供电;当有输出负载供电电压之后,利用从负载供电电压转换的芯片工作电压代替降压控制芯片U1的内部LDO输出的芯片工作电压给降压控制芯片U1供电。
如图3所示,优选的是,所述DC-DC降压电路还包括输入滤波模块300、输出反馈模块400和输出滤波模块500。其中,输出反馈模块400的输入端与降压控制模块100的输出端连接,输出反馈模块400的输出端与降压控制模块100的反馈端连接,该输出反馈模块400用于采样降压控 制模块100输出的负载供电电压,并反馈给降压控制模块100,以便降压控制模块100根据反馈结果适应性调整负载供电电压的输出,以确保负载供电电压能够稳定输出。输入滤波模块300连接于电源输入端VIN与降压控制模块100的输入端之间,用于对从电源输入端VIN输入的电源电压进行滤波处理,以滤除电源电压中的纹波信号。输出滤波模块500连接于降压控制模块100的输出端与电源输出端VOUT之间,用于对降压控制模块100输出的负载供电电压进行滤波处理,滤除负载供电电压的纹波信号,从而使电源输出端OUT输出稳定的负载供电电压。所述降压控制模块100、外部线性稳压模块200、输入滤波模块300、输出反馈模块400和输出滤波模块500的示例性电路构造如图3所示。
具体地,外部线性稳压模块200包括三极管Q1、稳压管D1、第一电阻R1和第二电阻R2,三极管Q1为NPN三极管;其中,第一电阻R1的一端与电源输出端VOUT连接,第一电阻R1的另一端与三极管Q1的集电极和第二电阻R2的一端连接;第二电阻R2的另一端与三极管Q1的基极和稳压管D1的阴极连接;稳压管D1的阳极接地;三极管Q1的发射极与降压控制模块100中的降压控制芯片U1的偏置电源脚VCC连接;所述外部线性稳压模块200还包括第一电容C1,该第一电容C1的一端与第一电阻R1和第二电阻R2的公共端连接,另一端与稳压管D1的阴极连接。
所述输出反馈模块400包括第三电阻R3和第四电阻R4;第三电阻R3的一端与降压控制模块100中的降压控制芯片U1的功率切换输出脚SW连接,第三电阻R3的另一端与降压控制芯片U1的反馈输入脚FB连接,且经由第四电阻R4接地;第三电阻R3和第四电阻R4作为电压采样电阻,采样所输出的负载供电电压,并对所输出的负载供电电压进行分压,以反馈给降压控制模块100中的降压控制芯片U1;本实施例根据实际情况,可以适当的选取第三电阻R3和第四电阻R4的阻值,或者适当的增加电压采样电阻的个数来对负载供电电压进行分压,例如,所述输出反馈模块400还包括第五电阻R5,其中第四电阻R4经由第五电阻R5接地,第五电阻R5作为电压采样电阻,与第三电阻R3、第四电阻R4串联后对载供电电压进行分压;所述输出反馈模块400还包括第六电阻R6,第六电阻R6的一端与第三电阻R3和第四电阻R4的公共端连接,第六电阻R6的另一端与 降压控制芯片U1的反馈输入脚FB连接,第六电阻R6作为降压控制芯片U1的反馈输入脚FB上的限流电阻,起保护降压控制芯片U1的作用。
输入滤波模块300包括第二电容C2和第三电容C3。其中,第二电容C2的一端与电源输入端VIN连接,且与降压控制模块100中的降压控制芯片U1的电源输入脚IN连接,第二电容C2的另一端接地,第三电容C3与第二电容C2并联,第二电容C2和第三电容C3作为电源输入端VIN输入的电源电压的去耦滤波电容。
输出滤波模块500包括第四电容C4、第五电容C5和第六电容C6。其中,第四电容C4的一端与降压控制模块100中的降压控制芯片U1的功率切换输出脚SW连接,且与电源输出端VOUT连接,第四电容C4的另一端接地,第五电容C5、第六电容C6均与第四电容C4并联,第四电容C4、第五电容C5和第六电容C6作为电源输出端VOUT输出的负载供电电压的去耦滤波电容。
在本实施方式中,所述调压电路2与所述平板电脑的操作系统连接,以便对所述电池1的容量及充放电状态进行监控。这样设置可以通过平板电脑的操作系统,或者软件应用程序直观地观察平板电脑的电池1的电量,以及对平板电脑对外部设备W充电的过程和状态进行监控。
图4为本申请第二个实施方式提供的平板电脑的示意图。如图4所示,本实施方式中的平板电脑与上述第一个实施方式的区别是,平板电脑的第一充电端口为DC(Direct Current,即直流电)端口3’,该DC端口通过DC转接线30’与待充电的外部设备W连接,即以DC端口3’替换第一个实施方式中的USB端口3。
DC端口既可以作为放电过程中的输出端,也可以作为充电过程中的输入端,即可以作为两用端口。本实施方式中还采用DC端口3’与充电器C连接,从而使平板电脑可以仅设置一个端口,减少了端口的数量。
此外,DC端口可以允许更大的输入和输出电压范围,从而,在本实施方式中,升压电路21为Boost电路时,可以根据待充电外部设备W的类型,将电池1的电压升至不同的电压,如5V、9V、12V等,从而向外部设备W充电。
同时,所述降压电路22可以为Buck电路,所述Buck电路可以兼容 具有不同输出电压的充电器,如输出电压为5V、9V、12V等的充电器,从而对平板电脑1的电池进行充电。具体地,所述Buck电路可以包括图5~7所示的主控电路、单片机及MOS驱动模块。如图5所示,所述主控电路包括电感L3、二极管D1、Mos管Q2-Q3、电阻R1-R6、电容C2-C4,以及电解电容EC3、EC6;其中,所述二极管D1的阴极与电感L3的一端、电容C2的一端、电容C3的一端、电阻R2的一端、电阻R5的一端、Mos管Q2的源极、Mos管Q3的源极以及MOS驱动模块连接,上述二极管D1的阴极接MOS驱动模块的2脚及4脚;电容C2的另一端接电阻R1的一端,电阻R2的另一端接Mos管Q2的栅极及电阻R3的一端;电容C3的另一端接电阻R4的一端,电阻R5的另一端接Mos管Q3的栅极及电阻R6的一端;电阻R3的另一端接MOS驱动模块的1脚,电阻R6的另一端接MOS驱动模块的3脚;电解电容EC3的正极与电阻R1的另一端、电阻R4的另一端、Mos管Q2的漏极以及Mos管Q3的漏极连接;电解电容EC6的正极与电容C4的一端以及电感L3的另一端连接,并作为主控电路的输出端;电解电容EC3的负极与二极管D1的阳极、电解电容EC6的负极以及电容C4的另一端均接地。如图6和图7所示,所述单片机与MOS驱动模块连接,其中单片机的3脚与MOS驱动模块的6脚相连;单片机的5脚与MOS驱动模块的5脚相连。其中,所述Mos管Q2及Mos管Q3为N型Mos管。单片机是能产生相位相差180度的两路PWM(Pulse Width Modulation,即脉冲宽度调制)波形的单片机。
图8为本申请第三个实施方式提供的平板电脑的示意图。如图8所示,本实施方式中的平板电脑与上述第一个、第二个实施方式的区别是,所述平板电脑具有无线充电感应模块3”,该无线充电感应模块3”利用近场感应将能量传送至具有无线充电感应模块的待充电的外部设备W,即,以无线充电感应模块3”替代第一个实施方式中的USB端口3、第二个实施方式中的DC端口3’,与外部设备W之间实现无线感应充电。
在本实施方式中,升压电路21对电池1提供的电压进行升压后,通过无线充电感应模块3”将升压后的电压传输到外部设备W的无线充电感应模块,以实现无线感应充电,从而对外部设备进行无线充电。相比上述第一个、第二个实施方式中的有线连接和充电相比,本实施方式中的无线 充电更加方便。
综上所述,本申请提供的平板电脑,其包括调压电路2,调压电路2包括升压电路21,通过升压电路21对平板电脑的电池1提供的电压进行升压,可以利用升压后的电压对与平板电脑连接的外部设备W进行充电,这样就可以在如手机之类的电池容量较小的外部设备电量用完之后,使用如平板电脑之类的随身携带且电池容量较大的设备对外部设备进行充电,这样就可以避免随身携带专用的移动电源的麻烦。
可以理解的是,以上实施方式仅仅是为了说明本申请的原理而采用的示例性实施方式,然而本申请并不局限于此。对于本领域内的普通技术人员而言,在不脱离本申请的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本申请的保护范围。

Claims (16)

  1. 一种平板电脑,包括电池和调压电路,其中,所述调压电路包括升压电路,所述升压电路用于对所述电池提供的电压进行升压,以利用升压后的电压对与平板电脑连接的外部设备充电。
  2. 根据权利要求1所述的平板电脑,其中,所述平板电脑具有第一充电端口,该第一充电端口的一端与所述升压电路连接,另一端用于与待充电的外部设备连接。
  3. 根据权利要求2所述的平板电脑,其中,所述第一充电端口为USB端口或DC端口。
  4. 根据权利要求1所述的平板电脑,其中,所述平板电脑具有无线充电感应模块,所述无线充电感应模块通过感应将电能传送至具有无线充电感应模块的待充电的外部设备,以对外部设备进行无线充电。
  5. 根据权利要求1至4任意一项所述的平板电脑,其中,所述升压电路为Boost电路。
  6. 根据权利要求5所述的平板电脑,其中,所述Boost电路包括电感、二极管和三极管,所述电感和二极管依次串联在所述电池的正极与所述Boost电路的输出端的正极之间,并且所述三极管作为开关,其输入端连接至所述电感与所述二极管的输入端之间,其输出端连接至所述电池的负极与所述Boost电路的输出端的负极之间。
  7. 根据权利要求1所述的平板电脑,其中,所述调压电路还包括降压电路,所述降压电路用于对将被输入至所述电池的电压进行降压,使输入到电池中的电压处于所述电池的充电电压范围之内。
  8. 根据权利要求7所述的平板电脑,其中,所述平板电脑具有第二充电端口,该第二充电端口的一端与所述降压电路连接,另一端用于与充电器连接。
  9. 根据权利要求8所述的平板电脑,其中,所述第二充电端口为USB端口或DC端口。
  10. 根据权利要求7至9中任意一项所述的平板电脑,其中,所述降压电路为Buck电路或DC-DC降压电路。
  11. 根据权利要求10所述的平板电脑,其中,所述DC-DC降压电路包括:电源输入端,用于输入电源电压;电源输出端,用于输出负载供电电压;降压控制模块,其将电源输入端输入的电源电压转换为负载供电电压,并通过电源输出端输出该负载供电电压,所述降压控制模块的输入端与电源输入端连接且其输出端与电源输出端连接,并且所述降压控制模块包括降压控制芯片;和外部线性稳压模块,用于将负载供电电压转换为芯片工作电压以给所述降压控制芯片供电,所述外部线性稳压模块的输入端与电源输出端连接且其输出端与降压控制模块的偏置电源供电端连接。
  12. 根据权利要求11所述的平板电脑,其中,所述DC-DC降压电路还包括:输入滤波模块,其连接于所述电源输入端与所述降压控制模块的输入端之间,用于对从电源输入端输入的电源电压进行滤波处理;输出反馈模块,其输入端与所述降压控制模块的输出端连接,且其输出端与所述降压控制模块的反馈端连接,并且所述输出反馈模块用于采样降压控制模块输出的负载供电电压,并反馈给所述降压控制模块;和输出滤波模块,其连接于所述降压控制模块的输出端与所述电源输出端之间,用于对降压控制模块输出的负载供电电压进行滤波处理。
  13. 根据权利要求10所述的平板电脑,其中,所述Buck电路包括主控电路、单片机和MOS驱动模块。
  14. 根据权利要求7至9中任意一项所述的平板电脑,其中,所述平板电脑具有与降压电路和升压电路连接的两用端口,所述两用端口用于与待充电的外部设备连接,以及用于与充电器连接。
  15. 根据权利要求1至4、7至9中任意一项所述的平板电脑,其中,所述调压电路还包括保护电路。
  16. 根据权利要求1所述的平板电脑,其中,所述调压电路与所述平板电脑的操作系统连接,以便对所述电池的容量及充放电状态进行监控。
PCT/CN2015/090751 2015-04-28 2015-09-25 平板电脑 Ceased WO2016173202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/038,295 US10031568B2 (en) 2015-04-28 2015-09-25 Tablet computer with a step-up circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510208901.4 2015-04-28
CN201510208901.4A CN104767252A (zh) 2015-04-28 2015-04-28 平板电脑

Publications (1)

Publication Number Publication Date
WO2016173202A1 true WO2016173202A1 (zh) 2016-11-03

Family

ID=53648944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090751 Ceased WO2016173202A1 (zh) 2015-04-28 2015-09-25 平板电脑

Country Status (3)

Country Link
US (1) US10031568B2 (zh)
CN (1) CN104767252A (zh)
WO (1) WO2016173202A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707785A (zh) * 2019-11-07 2020-01-17 长春东煤高技术股份有限公司 矿用无线甲烷传感器子母式充电系统及其供电方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767252A (zh) * 2015-04-28 2015-07-08 高创(苏州)电子有限公司 平板电脑
WO2018195776A1 (zh) * 2017-04-25 2018-11-01 Oppo广东移动通信有限公司 电源提供设备和充电控制方法
CN107463489A (zh) * 2017-08-14 2017-12-12 郑州云海信息技术有限公司 不同供电电压下端接电阻对lpc信号影响的分析方法
CN107894825A (zh) * 2017-12-02 2018-04-10 深圳市乐凡信息科技有限公司 一种多功能平板电脑
CN110544963B (zh) * 2018-05-29 2021-05-04 青岛海信移动通信技术股份有限公司 一种电子设备转接电路
US11126232B2 (en) 2018-11-28 2021-09-21 Intel Corporation Battery heat balancing during peak power mode
US12079051B2 (en) 2018-11-28 2024-09-03 Intel Corporation Battery heat balancing apparatus and method during peak mode
CN109375758B (zh) * 2018-12-14 2024-03-22 佛山市伙伴联扬电子有限公司 一种电脑主机配置的充电装置
CN112540644A (zh) * 2019-09-23 2021-03-23 苏明晨 一种适用于笔记本电脑的便携式充电接口
CN114597983A (zh) * 2020-12-04 2022-06-07 华为技术有限公司 一种无线充电电路及系统、电子设备及控制方法
CN112821518B (zh) * 2021-02-24 2024-09-24 陈锐涛 宽电压供电智能充电电路及其电池充电器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202405818U (zh) * 2011-12-19 2012-08-29 叶明祥 携带式电子产品的双向无线充放电装置
CN103746411A (zh) * 2013-12-04 2014-04-23 芜湖迈特电子科技有限公司 快充移动电源
US20140217959A1 (en) * 2013-02-05 2014-08-07 Apple Inc. Hybrid bootstrap capacitor refresh technique for charger/converter
CN104767252A (zh) * 2015-04-28 2015-07-08 高创(苏州)电子有限公司 平板电脑
CN204615444U (zh) * 2015-04-28 2015-09-02 高创(苏州)电子有限公司 平板电脑

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894987B2 (ja) 2001-06-29 2012-03-14 三洋電機株式会社 表示用パネルの製造方法
CN101685974A (zh) * 2008-09-28 2010-03-31 徐建华 一种移动电源
CN201429756Y (zh) 2009-07-09 2010-03-24 北京京东方光电科技有限公司 液晶显示面板组装设备
US20150056476A1 (en) * 2010-09-20 2015-02-26 Batteroo, Inc. Methods of extending the life of battery
CN201868905U (zh) * 2010-10-30 2011-06-15 比亚迪股份有限公司 一种移动电源
CN201993719U (zh) * 2011-01-30 2011-09-28 天宝电子(惠州)有限公司 一种储能式充电鼠标
CN202068208U (zh) * 2011-05-20 2011-12-07 杨海燕 便携移动充电电源
DE112011105778T5 (de) * 2011-10-28 2014-07-17 Hewlett-Packard Development Company, L.P. Meldung aktualisierter Schwellenwerte auf Grundlage von Parametern
CN103515662B (zh) * 2012-06-19 2016-03-02 上海斐讯数据通信技术有限公司 一种移动设备间充电方法及可对外供电的移动设备
CN103383508B (zh) 2013-07-22 2015-12-23 京东方科技集团股份有限公司 一种液晶滴下装置及液晶滴下方法
US20150236538A1 (en) * 2013-11-15 2015-08-20 uNu Electronics, Inc. Mobile Device Case with Fast Charging Battery Pack
TWI506916B (zh) * 2013-12-27 2015-11-01 Generalplus Technology Inc 適用於行動電源之無線充電電路及使用其之行動電源
CN204103542U (zh) * 2014-09-04 2015-01-14 浙江超威创元实业有限公司 一种多功能移动电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202405818U (zh) * 2011-12-19 2012-08-29 叶明祥 携带式电子产品的双向无线充放电装置
US20140217959A1 (en) * 2013-02-05 2014-08-07 Apple Inc. Hybrid bootstrap capacitor refresh technique for charger/converter
CN103746411A (zh) * 2013-12-04 2014-04-23 芜湖迈特电子科技有限公司 快充移动电源
CN104767252A (zh) * 2015-04-28 2015-07-08 高创(苏州)电子有限公司 平板电脑
CN204615444U (zh) * 2015-04-28 2015-09-02 高创(苏州)电子有限公司 平板电脑

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707785A (zh) * 2019-11-07 2020-01-17 长春东煤高技术股份有限公司 矿用无线甲烷传感器子母式充电系统及其供电方法

Also Published As

Publication number Publication date
CN104767252A (zh) 2015-07-08
US10031568B2 (en) 2018-07-24
US20170102751A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2016173202A1 (zh) 平板电脑
US9893540B2 (en) Power adapter, electronic device, and charging apparatus for electronic device
US9866229B2 (en) Power adapter and control method thereof
US10574073B2 (en) Electronic device and method for controlling power supply
US20160006287A1 (en) Mobile power source with a single interface, a bluetooth keyboard and a protective sleeve
CN105162228A (zh) 智能充电器及其充电控制电路
CN110504728A (zh) 一种电池充电系统、方法、装置、计算机设备和存储介质
US7733053B2 (en) Charging circuit for a vehicle charger
CN107359663B (zh) 一种基于快充协议mcu控制调压装置及调压方法
KR101790046B1 (ko) 보조배터리를 이용한 마스터장치의 충전장치 및 방법
CN204615444U (zh) 平板电脑
CN107643998B (zh) 基于智能模块实现otg和充电双功能的系统
CN110165745A (zh) 线材电路及线材
CN201781302U (zh) 一种集成电池充电器和直流稳压电源的电路结构
CN103051211A (zh) 一种电源适配器
US9728988B2 (en) Charging circuit for USB port
CN211655760U (zh) 一种基于硬件控制的锂电池动态充放电管理电路
CN220775427U (zh) 快充转换电路及充电器
CN203933099U (zh) 一种移动电源装置
CN108365749A (zh) 一种直流atx电源
CN209375184U (zh) 耳机充电盒
CN204376473U (zh) 移动电源
US9711984B2 (en) High voltage generation method at battery system
CN113241813B (zh) 智能负载识别电路、方法及光伏发电系统
CN205092770U (zh) 电源升压管理电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15038295

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890577

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15890577

Country of ref document: EP

Kind code of ref document: A1