WO2017197750A1 - 一种充电控制方法、装置及系统 - Google Patents

一种充电控制方法、装置及系统 Download PDF

Info

Publication number
WO2017197750A1
WO2017197750A1 PCT/CN2016/090327 CN2016090327W WO2017197750A1 WO 2017197750 A1 WO2017197750 A1 WO 2017197750A1 CN 2016090327 W CN2016090327 W CN 2016090327W WO 2017197750 A1 WO2017197750 A1 WO 2017197750A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
terminal device
feedback
charger
Prior art date
Application number
PCT/CN2016/090327
Other languages
English (en)
French (fr)
Inventor
刘世伟
陈涛
王建成
彭聪
宁金星
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/097,365 priority Critical patent/US20190140458A1/en
Priority to EP16902130.0A priority patent/EP3460945A4/en
Publication of WO2017197750A1 publication Critical patent/WO2017197750A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/0077
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • H02J7/045
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • This document relates to, but is not limited to, the field of communications, and in particular, to a charging control method, apparatus and system.
  • Intelligent terminal or mobile phone charging scheme has been very mature.
  • different manufacturers use the method of increasing the charging voltage or increasing the charging current to shorten the charging time.
  • the charging line has a certain impedance (except for wireless charging), whether it is raising the charging voltage or increasing the charging current, a certain voltage drop is introduced, resulting in the voltage of the terminal charging control chip being lower than the preset output voltage of the charger. , to some extent, reduce the charging efficiency.
  • a voltage regulating circuit such as a boost & buck (BUCK & BOOST) chip
  • BUCK & BOOST boost & buck
  • the buck-boost module starts the boosting function to 4.5V. It is raised to 5V and sent to the charging chip to achieve the purpose of charging the management chip voltage to 5V.
  • the scheme adds a buck-boost module inside the communication terminal, although the voltage after passing through the charging line can be raised, but the number of devices on the printed circuit board (PCB) of the terminal device is increased, and a large heat is introduced.
  • Source, BUCK & BOOST chip has a certain conversion efficiency, which increases the difficulty of terminal equipment's battery life and cooling scheme.
  • the present invention provides a charging control method, device and system, which can adjust the charging voltage of the charging device according to the feedback voltage of the charging input terminal of the terminal device obtained in real time, and ensure the input voltage of the charging input terminal of the terminal device side is constant, effectively avoiding the The voltage drop caused by the impedance of the charging line causes The problem of reduced charging efficiency.
  • This article provides a charging control method that includes:
  • the terminal device obtains a voltage value of the feedback voltage of the charging input terminal, and transmits the voltage value of the feedback voltage to the charger;
  • the charger adjusts a charging voltage provided by the charger for the terminal device according to a voltage value of the feedback voltage, and supplies power to the terminal device according to the adjusted voltage.
  • the terminal device acquires a voltage value of a feedback voltage of the charging input terminal, including:
  • the terminal device acquires a voltage value of an input voltage of the charging input end
  • the terminal device acquires a voltage value of the feedback voltage according to a voltage value of the input voltage, wherein a ratio of a voltage value of the feedback voltage to a voltage value of the input voltage is equal to a preset ratio value.
  • the charger adjusts a charging voltage provided by the charger for the terminal device according to a voltage value of the feedback voltage, and supplies power to the terminal device according to the adjusted voltage, including:
  • the charger determines whether the voltage value of the feedback voltage is less than a voltage value of the preset reference voltage
  • the charger acquires a difference voltage between the preset reference voltage and the feedback voltage, and performs the difference voltage Boosting to a target voltage, wherein the target voltage is equal to a voltage drop across a line between the terminal device and the charger;
  • the charger superimposes the target voltage with the charging voltage, and supplies power to the terminal device according to the superposed voltage.
  • This article also provides a charging control method, including:
  • the charger receives the voltage value of the feedback voltage sent by the terminal device
  • the charger adjusts the charging voltage to be provided by the terminal device according to the voltage value of the feedback voltage, and supplies power to the terminal device according to the adjusted voltage.
  • the charger adjusts a charging voltage to be provided by the terminal device according to a voltage value of the feedback voltage, and supplies power to the terminal device according to the adjusted voltage.
  • the charger determines whether the voltage value of the feedback voltage is less than a voltage value of the preset reference voltage
  • the charger acquires a difference voltage between the preset reference voltage and the feedback voltage, and performs the difference voltage Boosting to a target voltage, wherein the target voltage is equal to a voltage drop across a line between the terminal device and the charger;
  • the charger superimposes the target voltage with the charging voltage, and supplies power to the terminal device according to the superposed voltage.
  • the article also provides a charging control device, including:
  • Obtaining a module configured to obtain a voltage value of a feedback voltage of the charging input end of the terminal device, and send the voltage value of the feedback voltage to the charger;
  • the adjusting module is configured to adjust a charging voltage provided by the charger to the terminal device according to the voltage value of the feedback voltage acquired by the acquiring module, and supply power to the terminal device according to the adjusted voltage.
  • the acquiring module includes:
  • a first acquiring unit configured to acquire a voltage value of an input voltage of the charging input end of the terminal device
  • the second obtaining unit is configured to obtain a voltage value of the feedback voltage according to the voltage value of the input voltage, wherein a ratio of a voltage value of the feedback voltage to a voltage value of the input voltage is equal to a preset ratio value.
  • the adjusting module includes:
  • a determining unit configured to determine whether the voltage value of the feedback voltage is less than a voltage value of the preset reference voltage
  • a step-up unit configured to acquire a difference voltage between the preset reference voltage and the feedback voltage when a voltage value of the feedback voltage is less than a voltage value of the preset reference voltage, and set the difference The value voltage is boosted to a target voltage, wherein the target voltage is equal to a voltage drop across a line between the terminal device and the charger;
  • a superimposing unit configured to superimpose the target voltage and the charging voltage, and supply power to the terminal device according to the superposed voltage.
  • This article also provides a charger that includes:
  • An AC-DC conversion module includes a DC output terminal that supplies a charging voltage to a terminal device to be charged;
  • the voltage adjustment circuit is configured to receive a feedback voltage outputted by the feedback voltage output end of the terminal device, and adjust the charging voltage to a preset voltage according to the voltage value of the feedback voltage, where the voltage adjustment circuit includes a first port, a second port and a third port, the first port is electrically connected to the DC output end, and the second port is electrically connected to a feedback voltage output end of the terminal device, the third port and the terminal device
  • the input of the charge control circuit is electrically connected.
  • the voltage regulating circuit further includes an operational amplifier and an adding circuit:
  • the non-inverting input terminal of the operational amplifier is connected to a predetermined reference voltage Vref, and the inverting input terminal of the operational amplifier is used as the second port;
  • the adding circuit includes a first input end, a second input end, and a preset voltage value output end, the output end of the operational amplifier is electrically connected to the first input end, and the second input end is used as the first a port, the preset voltage value output end as the third port;
  • the voltage value of the preset reference voltage Vref is equal to the voltage value of the voltage of the input terminal of the charging control circuit is equal to the voltage value of the charging voltage, the voltage value of the feedback voltage is the first voltage value Vsense1;
  • the voltage drop, Vsense2 represents the second voltage value of the feedback voltage when the charger reaches constant current charging.
  • the charger further includes a common ground, and one end of the common ground is electrically connected to the other end of the second resistor, and the other end of the common ground and the ground of the operational amplifier Electrical connection.
  • the terminal device includes a charging control circuit and a voltage feedback circuit:
  • the charging control circuit is configured to perform charging control on a battery, and the charging control circuit includes an input terminal, and the input terminal receives a charging voltage from the charger;
  • the voltage feedback circuit includes a feedback voltage input terminal and a feedback voltage output terminal, and the feedback voltage input terminal is electrically connected to an input end of the charging control circuit.
  • the technical solution provided by the present invention obtains the feedback voltage of the charging input terminal of the terminal device in real time, and adjusts the charging voltage of the charging device according to the feedback voltage, and transmits the charging voltage to the terminal device, so that the input voltage of the charging terminal of the terminal device can reach the provided by the charger.
  • the charging voltage is kept constant, effectively avoiding the problem of lowering the charging efficiency due to the voltage drop caused by the impedance of the charging line.
  • Fig. 1 is a block diagram showing the configuration of a terminal device capable of maintaining a constant charging voltage in the related art.
  • FIG. 2 is a flow chart showing a charging control method according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing the structure of a charging control device according to a second embodiment of the present invention.
  • FIG. 4 is a second structural block diagram of a charging control device according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the circuit connection of the charging control system according to Embodiment 3 of the present invention.
  • FIG. 6 is a second schematic diagram showing the circuit connection of the charging control system according to Embodiment 3 of the present invention.
  • Figure 7 is a third schematic diagram showing the circuit connection of the charging control system according to the third embodiment of the present invention.
  • FIG. 8 is a fourth schematic diagram showing the circuit connection of the charging control system according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a data line of a charger in Embodiment 3 of the present invention.
  • An embodiment of the present invention provides a charging control method. As shown in FIG. 2, the method includes the following steps S21 and S22:
  • Step 21 The terminal device acquires a feedback voltage of the charging input end and transmits the feedback voltage to the charger.
  • the charging control method of the embodiment of the present invention can be applied to a system including a terminal device and a charger.
  • the terminal device is provided with a charging control circuit for charging control of the battery of the terminal device
  • the feedback voltage obtained in step 21 may be a feedback voltage collected from an input end of the charging control circuit.
  • step 21 includes the following operations:
  • the terminal device acquires an input voltage of the charging input end
  • the terminal device acquires a feedback voltage according to the input voltage, wherein a ratio of the feedback voltage to the input voltage is equal to a preset ratio value.
  • the preset ratio value is less than 1, that is, a part of the input voltage of the charging input end of the terminal device is taken as a feedback voltage for adjusting the charging voltage.
  • the feedback voltage can be obtained by a software program or by a hardware circuit.
  • Step 22 The charger adjusts a charging voltage provided by the charger for the terminal device according to the feedback voltage, and transmits the charging voltage to the terminal device.
  • the charging voltage of the charger needs to be adjusted according to the feedback voltage and transmitted to the terminal device, so that the input voltage of the charging input end of the terminal device is equal to the charging voltage.
  • an AC-DC conversion module for converting an AC voltage into a DC voltage required by the terminal device may be disposed in the charger, and the charging voltage to be adjusted in Step 21 is The voltage at the DC output of the current-to-dc converter module.
  • the foregoing step 22 may include the following operations:
  • the charger determines whether the feedback voltage is less than a preset reference voltage
  • the charger acquires a difference voltage between the preset reference voltage and the feedback voltage, and boosts the difference voltage to a target voltage, where The target voltage is equal to a voltage drop on a line between the terminal device and the charger;
  • the charger superimposes the target voltage with the charging voltage and transmits it to the terminal device.
  • the charging voltage output by the AC-DC conversion module of the charger when the terminal device is charged by the charger, the charging voltage output by the AC-DC conversion module of the charger generates a voltage drop on the line after passing the line between the charger and the terminal device, so that the terminal device The input voltage of the charging control circuit is less than the charging voltage.
  • the voltage drop when the voltage drop is generated, by comparing the feedback voltage with the preset reference voltage, if the feedback voltage is less than the preset reference voltage, the charging voltage is generated by the line between the charger and the terminal device.
  • the voltage drop is such that the voltage at the input end of the charging control circuit is decreased, and the difference voltage between the preset reference voltage and the feedback voltage is boosted to the target voltage, and the target voltage is superimposed with the charging voltage, and then transmitted to Terminal Equipment. Since the target voltage is equal to the voltage drop on the line between the terminal device and the charger, the voltage at which the superimposed voltage of the target voltage and the charging voltage reaches the charging input terminal of the terminal device is equal to the charging voltage.
  • the charging control method of the embodiment of the present invention can adjust the charging voltage of the charger according to the feedback voltage of the charging input end of the terminal device obtained in real time, ensure the input voltage of the charging input end of the terminal device is constant, and effectively avoid the impedance of the charging line.
  • the resulting voltage drop results in a problem of reduced charging efficiency.
  • the embodiment further provides a charging control method, which is described from the charger side, and the method includes the following operations:
  • the charger receives the voltage value of the feedback voltage sent by the terminal device
  • the charger adjusts the charging voltage to be provided by the terminal device according to the voltage value of the feedback voltage, and supplies power to the terminal device according to the adjusted voltage.
  • the charger adjusts the charging voltage to be provided by the terminal device according to the voltage value of the feedback voltage, and supplies the terminal device with power according to the adjusted voltage.
  • the charger determines whether the voltage value of the feedback voltage is less than a voltage value of the preset reference voltage
  • the charger acquires a difference voltage between the preset reference voltage and the feedback voltage, and performs the difference voltage Boosting to a target voltage, wherein the target voltage is equal to a voltage drop across a line between the terminal device and the charger;
  • the charger superimposes the target voltage on the charging voltage, and supplies power to the terminal device according to the superposed voltage.
  • the embodiment of the invention provides a charging control device. As shown in FIG. 3, the device 300 includes:
  • the obtaining module 301 is configured to acquire a feedback voltage of the charging input end of the terminal device, and transmit the feedback voltage to the charger;
  • the adjustment module 302 is configured to adjust the charging voltage provided by the charger for the terminal device according to the feedback voltage acquired by the acquiring module 301, and transmit the charging voltage to the terminal device.
  • the obtaining module 301 includes:
  • the first obtaining unit 3011 is configured to acquire an input voltage of the charging input end of the terminal device
  • the second obtaining unit 3012 is configured to acquire a feedback voltage according to the input voltage, wherein a ratio of the feedback voltage to the input voltage is equal to a preset ratio value.
  • the adjustment module 302 includes:
  • the determining unit 3021 is configured to determine whether the feedback voltage is less than a preset reference voltage
  • the boosting unit 3022 is configured to acquire a difference voltage between the preset reference voltage and the feedback voltage when the feedback voltage is less than the preset reference voltage, and boost the differential voltage To a target voltage, wherein the target voltage is equal to a voltage drop on a line between the terminal device and the charger;
  • the superimposing unit 3023 is configured to superimpose the target voltage and the charging voltage, and transmit the same to the terminal device.
  • the charging control device of the embodiment of the present invention obtains the feedback voltage of the charging input end of the terminal device in real time through the obtaining module 301, and the trigger adjusting module 302 adjusts the charging of the charger according to the feedback voltage.
  • the electric voltage is transmitted to the terminal device, so that the input voltage of the terminal device can reach the charging voltage output by the charger and is kept constant, effectively avoiding the problem of lowering the charging efficiency due to the voltage drop caused by the impedance of the charging line.
  • An embodiment of the present invention provides a charging system. As shown in FIG. 5, the system includes: a charger and a terminal device;
  • the terminal device includes a charging control circuit 400 and a voltage feedback circuit 500:
  • the charging control circuit 400 is configured to perform charging control on the battery, and the charging control circuit 400 may include an input terminal for receiving a charging voltage from the charger;
  • the voltage feedback circuit 500 includes a feedback voltage input terminal 501 and a feedback voltage output terminal 502, and the feedback voltage input terminal 501 is electrically connected to an input end of the charging control circuit 400;
  • the charger includes an AC-DC conversion module 100 and a voltage regulation circuit 200:
  • the AC-DC conversion module 100 includes a DC output terminal 101 for providing a charging voltage to a terminal device to be charged;
  • the voltage regulating circuit 200 receives the feedback voltage of the output of the feedback voltage output terminal 502 and adjusts the charging voltage to a predetermined voltage according to the feedback voltage.
  • the voltage regulating circuit 200 includes a first port 201 and a second a port 202 and a third port 203, the first port 201 is electrically connected to the DC output terminal 101, the second port 202 is electrically connected to the feedback voltage output terminal 502, and the third port 203 is The input terminals of the charge control circuit 400 are electrically connected.
  • the voltage feedback circuit 500 feeds back the feedback voltage detected from the input end of the charging control circuit 400 to the voltage regulating circuit 2 of the charger, and the voltage adjusting circuit 2 raises its own output voltage to the preset according to the feedback voltage.
  • the voltage is kept constant, which improves the charging efficiency.
  • the voltage regulating circuit 200 includes:
  • the operational amplifier 700 the non-inverting input of the operational amplifier 700 is connected to a predetermined reference voltage Vref, the inverting input of the operational amplifier 700 as the second port 202;
  • An adding circuit 600 includes a first input end 601, a second input end 602, and a preset voltage value output end 603.
  • the output end of the operational amplifier 700 is electrically connected to the first input end 601.
  • the second input end 602 is the first port 201, and the preset voltage value output end 603 is used as the third port 203;
  • the feedback voltage is the first voltage value Vsense1, and the Vsense1 is equal to the preset reference voltage Vref. ;
  • the voltage drop of the line between the two, Vsense2 represents the second voltage value of the feedback voltage when the charger reaches constant current charging.
  • the AC-DC conversion module 100 converts the alternating current into a direct current, for example, converting an alternating current voltage (AC) of 110V or 220V into a direct current voltage (DC) of 5V, 9V, 12V, etc. required by the terminal device, and the in-phase of the operational amplifier 700
  • the preset reference voltage Vref connected to the input terminal can be obtained from the AC-DC conversion module 100, that is, the non-inverting input terminal of the operational amplifier 7 is connected to the relevant voltage output end of the AC-DC conversion module 100.
  • Vref is equal to the first voltage value Vsense1 of the feedback voltage when the voltage of the input terminal of the charging control circuit 400 is equal to the charging voltage. That is, Vsense1 is equal to Vref when the terminal device is not charged or the terminal device is fully charged.
  • the open loop gain of the operational amplifier 700 is X
  • the output voltage of the operational amplifier 700 is X*(Vref-Vsense2)
  • the first resistor R1 and the second resistor R2 may be placed beside the charging pin of the charging control circuit 4 during PCB design to ensure that the voltage fed back is infinitely close to the input voltage of the charging control circuit 400.
  • the first resistor R1 and the second resistor R2 can select a resistor with an accuracy of 1% or more.
  • r1 and r2 need to be greater than 10,000 ohms, and the inverting input terminal and the first resistor of the operational amplifier 700 are connected. There is no large current flowing on the line between the other end of R1, and the voltage drop on it is basically ignored, so the voltage at the input end of the charging control circuit 4 can be accurately fed back to the charger to realize dynamic voltage compensation.
  • Vref is equal to the first voltage value Vsense1 of the feedback voltage when the voltage of the input terminal of the charging control circuit 4 is equal to the charging voltage.
  • the preset reference voltage Vref of the non-inverting input terminal of the operational amplifier 700 is set to 1.2V
  • the first resistor R1 is 38 kilo ohms
  • the second resistor R2 is 12 kilo ohms
  • the output of the DC output terminal 101 when charging is started.
  • the charging voltage V0 5V
  • the charging current is dynamically changed during the entire charging process (from turbulent to constant current to constant voltage)
  • the voltage drop on the charging line is also constantly changing, so the entire loop is also dynamically operated to reach the terminal device.
  • the input voltage on the side is stable.
  • the voltage feedback circuit 500 can also be disposed on the charger. As shown in FIG. 7, this type of charger can be applied to a common terminal device, so that the general terminal device is using the type of charger. When charging is performed, the charging voltage on the terminal device side can be maintained in a stable state, and the charging efficiency can be improved. However, in order for the feedback voltage collected by the voltage feedback circuit 5 to be more accurate, the voltage feedback circuit 500 is preferably disposed on the terminal device.
  • the voltage adjustment circuit 200 can also be disposed on the terminal device.
  • the charging voltage on the terminal device side can be maintained in a stable state, and the charging is improved. effectiveness.
  • the voltage regulating circuit 200 may generate some heat. Therefore, in order to avoid the case where the terminal device is overheated during charging, the voltage regulating circuit 200 is preferably disposed on the charger.
  • the charger further includes a common ground, and one end of the common ground is electrically connected to the other end of the second resistor R2, and the other end of the common ground is connected to the operational amplifier 700 The ground wire is electrically connected.
  • the added common ground line connects the ground line of the voltage feedback circuit 500 and the ground line of the voltage adjusting circuit 200, so that the voltage feedback circuit 500 and the voltage adjusting circuit 200 are shared, and the terminal device side can be fed back with higher precision. Charging voltage.
  • the charger may further include a voltage feedback line and a power line, and the feedback voltage output end 502 and the second port 202 are electrically connected through the voltage feedback line, and the charging control
  • the input end of the circuit 400 and the third port 203 are electrically connected by the power line. That is, when the voltage regulating circuit 200 is disposed on the charger, and the voltage feedback circuit 500 is disposed on the terminal device, the circuit connecting the feedback voltage output terminal 502 and the second port 202 is separated as a feedback line, and the charging control circuit is used.
  • the line between the input terminal of the fourth port and the third port 203 is independent, and as a power supply line, the usability is improved.
  • the feedback line, the power line, and the common ground line are both wrapped inside a data line of the charger, so that the connection between the charger and the terminal device is more Convenience.
  • the technical solution of the embodiment of the present invention can ensure the constant charging voltage of the terminal device without increasing the power consumption and heat generation of the motherboard of the terminal device, and effectively avoid the voltage drop caused by the impedance of the charging line, thereby reducing the charging efficiency.
  • the problem can ensure the constant charging voltage of the terminal device without increasing the power consumption and heat generation of the motherboard of the terminal device, and effectively avoid the voltage drop caused by the impedance of the charging line, thereby reducing the charging efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种充电控制方法、装置及系统,其中,该充电控制方法包括:终端设备获取充电输入端的反馈电压,并传输给充电器;充电器根据所述反馈电压,调整所述充电器为所述终端设备提供的充电电压,并传输给所述终端设备。

Description

一种充电控制方法、装置及系统 技术领域
本文涉及但不限于通信领域,尤其涉及一种充电控制方法、装置及系统。
背景技术
智能终端或手机充电方案已经非常成熟,相关技术为了缩短充电时间,不同厂商分别采用升高充电电压或提高充电电流等方式缩短充电时间。其中,由于充电线具有一定的阻抗(无线充电除外),所以无论是升高充电电压还是提高充电电流,都会引入一定的压降,导致到终端充电控制芯片的电压低于充电器预设输出电压,在一定程度上降低了充电效率。
另外,在相关技术中,提出在通讯设备内增加调压电路,比如升压&降压(BUCK&BOOST)芯片,使得终端充电芯片的输入电压维持恒定。其中,如图1所示,若充电器设置输出为5伏特(V),由于充电线压降导致到终端侧的充电实际电压只有4.5V,则升降压模块启动升压功能将4.5V电压升到5V再送至充电芯片以达到充电管理芯片电压为5V的目的。
其中,该方案在通讯终端内部增加升降压模块虽然可以将经过充电线后的电压进行升高,但增加了终端设备的印制电路板(PCB)上的器件数量,并且引入了一大发热源,BUCK&BOOST芯片存在一定的转换效率,对终端设备的续航、散热方案等方面增加了难度。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供了一种充电控制方法、装置及系统,可以根据实时获取的终端设备的充电输入端的反馈电压来调整充电器的充电电压,保证终端设备侧充电输入端的输入电压的恒定,有效规避了由于充电线阻抗带来的压降而导致 充电效率降低的问题。
本文提供了一种充电控制方法,包括:
终端设备获取充电输入端的反馈电压的电压值,将所述反馈电压的电压值传输给充电器;
充电器根据所述反馈电压的电压值,调整所述充电器为所述终端设备提供的充电电压,按照调整后的电压为所述终端设备供电。
可选地,上述方法中,所述终端设备获取充电输入端的反馈电压的电压值,包括:
所述终端设备获取充电输入端的输入电压的电压值;
所述终端设备根据所述输入电压的电压值获取所述反馈电压的电压值,其中,所述反馈电压的电压值与所述输入电压的电压值之比等于预设比例值。
可选地,上述方法中所述充电器根据所述反馈电压的电压值,调整所述充电器为所述终端设备提供的充电电压,按照调整后的电压为所述终端设备供电,包括:
所述充电器判断所述反馈电压的电压值是否小于预设参考电压的电压值;
若所述反馈电压的电压值小于所述预设参考电压的电压值,所述充电器获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
所述充电器将所述目标电压与所述充电电压叠加,按照叠加后的电压为所述终端设备供电。
本文还提供了一种充电控制方法,包括:
充电器接收终端设备发送的反馈电压的电压值;
所述充电器根据所述反馈电压的电压值调整为所述终端设备待提供的充电电压,按照调整后的电压为所述终端设备供电。
可选地,上述方法中,所述充电器根据所述反馈电压的电压值调整为所述终端设备待提供的充电电压,按照调整后的电压为所述终端设备供电,包 括:
所述充电器判断所述反馈电压的电压值是否小于预设参考电压的电压值;
若所述反馈电压的电压值小于所述预设参考电压的电压值,所述充电器获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
所述充电器将所述目标电压与所述充电电压叠加,按照叠加后的电压为所述终端设备供电。
本文还提供了一种充电控制装置,包括:
获取模块,设置为获取终端设备的充电输入端的反馈电压的电压值,将所述反馈电压的电压值发送给充电器;
调整模块,设置为根据所述获取模块获取的所述反馈电压的电压值,调整所述充电器为所述终端设备提供的充电电压,按照调整后的电压为所述终端设备供电。
可选地,上述装置中,所述获取模块包括:
第一获取单元,设置为获取所述终端设备的充电输入端的输入电压的电压值;
第二获取单元,设置为根据所述输入电压的电压值获取反馈电压的电压值,其中,所述反馈电压的电压值与所述输入电压的电压值之比等于预设比例值。
可选地,上述装置中,所述调整模块包括:
判断单元,设置为判断所述反馈电压的电压值是否小于预设参考电压的电压值;
升压单元,设置为当所述反馈电压的电压值小于所述预设参考电压的电压值时,获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
叠加单元,设置为将所述目标电压与所述充电电压叠加,按照叠加后的电压为所述终端设备供电。
本文还提供了一种充电器,包括:
交流-直流转换模块,包括向待充电的终端设备提供充电电压的直流输出端;
所述电压调节电路,设置为接收终端设备的反馈电压输出端输出的反馈电压,根据所述反馈电压的电压值调整所述充电电压至一预设电压,所述电压调节电路包括第一端口、第二端口和第三端口,所述第一端口与所述直流输出端电连接,所述第二端口与所述终端设备的反馈电压输出端电连接,所述第三端口与所述终端设备的充电控制电路的输入端电连接。
可选地,上述充电器中,所述电压调节电路还包括运算放大器和加法电路:
所述运算放大器的同相输入端连接一预设参考电压Vref,所述运算放大器的反相输入端作为所述第二端口;
所述加法电路包括第一输入端、第二输入端和预设电压值输出端,所述运算放大器的输出端与所述第一输入端电连接,所述第二输入端作为所述第一端口,所述预设电压值输出端作为所述第三端口;
其中,所述预设参考电压Vref的电压值等于所述充电控制电路的输入端的电压的电压值等于所述充电电压的电压值时,所述反馈电压的电压值为第一电压值Vsense1;
所述运算放大器的开环增益X=V/(Vref-Vsense2),其中,V表示所述充电器达到恒流充电时,所述第三端口与所述充电控制电路的输入端之间的线路的电压降,Vsense2表示所述充电器达到恒流充电时,所述反馈电压的第二电压值。
可选地,上述充电器,还包括共地线,且所述共地线的一端与所述第二电阻的另一端电连接,所述共地线的另一端与所述运算放大器的接地线电连接。
本文还提供了一种充电控制系统,包括终端设备,以及如上所述的充电 器;
其中,所述终端设备包括充电控制电路和电压反馈电路:
所述充电控制电路,设置为对电池进行充电控制,所述充电控制电路包括有一输入端,所述输入端接收来自充电器的充电电压;
所述电压反馈电路,包括反馈电压输入端和反馈电压输出端,所述反馈电压输入端与所述充电控制电路的输入端电连接。
可选地,上述充电控制系统中,所述电压反馈电路还包括第一电阻和第二电阻,所述第一电阻的一端为所述反馈电压输入端,所述第一电阻的另一端为所述反馈电压输出端,且所述第一电阻的另一端与所述第二电阻的一端电连接,所述第二电阻的另一端接地,且r1/r2=V0/Vref-1,其中,r1表示所述第一电阻的电阻值,r2表示所述第二电阻的电阻值,V0表示所述充电电压的电压值。
本文提供的技术方案,通过实时获取终端设备的充电输入端的反馈电压,并根据该反馈电压调整充电器的充电电压,并传输给终端设备,使得终端设备的充电端的输入电压能够达到充电器提供的充电电压,并维持恒定,有效规避由于充电线阻抗带来的压降而导致充电效率降低的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1表示相关技术中能够维持充电电压恒定的终端设备的结构框图。
图2表示本发明实施例一的充电控制方法的流程图;
图3表示本发明实施例二的充电控制装置的结构框图之一;
图4表示本发明实施例二的充电控制装置的结构框图之二;
图5表示本发明实施例三的充电控制系统的电路连接示意图之一;
图6表示本发明实施例三的充电控制系统的电路连接示意图之二;
图7表示本发明实施例三的充电控制系统的电路连接示意图之三;
图8表示本发明实施例三的充电控制系统的电路连接示意图之四;
图9表示本发明实施例三中充电器的数据线的结构示意图。
本发明的实施方式
下文中将结合附图对本文的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例一
本发明实施例提供了一种充电控制方法,如图2所示,该方法包括如下步骤S21和S22:
步骤21、终端设备获取充电输入端的反馈电压,并传输给充电器。
可选地,本发明实施例的充电控制方法可以应用于包括终端设备与充电器的系统。其中,该终端设备上设置有用于对终端设备的电池进行充电控制的充电控制电路,则在步骤21中获取的反馈电压,可以为从该充电控制电路的输入端的采集的反馈电压。
一个可选的实施例中,上述步骤21包括如下操作:
所述终端设备获取充电输入端的输入电压;
所述终端设备根据所述输入电压获取反馈电压,其中,所述反馈电压与所述输入电压之比等于预设比例值。
可选地,预设比例值小于1,即取终端设备的充电输入端的输入电压的一部分作为调节充电电压的反馈电压。另外,反馈电压可以由软件程序获得,也可由硬件电路采集获得。
步骤22、充电器根据所述反馈电压,调整所述充电器为所述终端设备提供的充电电压,并传输给所述终端设备。
本发明实施例通过步骤21获取到反馈电压后,需要根据该反馈电压,调整充电器的充电电压,并传输给终端设备,以使得所述终端设备的充电输入端的输入电压等于所述充电电压。
可选地,充电器中可以设置有用于将交流电压转换为终端设备所需要的直流电压的交流-直流转换模块,则步骤21中需要调整的充电电压,为该交 流-直流转换模块的直流输出端的电压。
一个可选的实施例中,上述步骤22可以包括如下操作:
所述充电器判断所述反馈电压是否小于预设参考电压;
若所述反馈电压小于所述预设参考电压,所述充电器获取所述预设参考电压与所述反馈电压之间的差值电压,将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
所述充电器将所述目标电压与所述充电电压叠加,并传输给所述终端设备。
其中,在利用充电器对终端设备进行充电时,充电器的交流-直流转换模块输出的充电电压在经过充电器与终端设备之间的线路后,在该线路上产生了电压降,使得终端设备的充电控制电路的输入端电压小于充电电压。然而,本发明实施例中,在产生上述电压降时,通过将反馈电压与预设参考电压进行比较,若反馈电压小于预设参考电压,表示充电电压通过充电器与终端设备之间的线路产生了电压降,使得充电控制电路的输入端的电压减小,则将预设参考电压与反馈电压之间的差值电压进行升压至目标电压,并将该目标电压与充电电压叠加后,传输给终端设备。由于所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降,所以,目标电压与充电电压的叠加电压到达终端设备的充电输入端的输入电压等于充电电压。
因此,本发明实施例的充电控制方法,能够根据实时获取的终端设备的充电输入端的反馈电压来调整充电器的充电电压,保证终端设备侧充电输入端的输入电压的恒定,有效规避由于充电线阻抗带来的压降而导致充电效率降低的问题。
本实施例还提供一种充电控制方法,从充电器侧进行描述,该方法包括如下操作:
充电器接收终端设备发送的反馈电压的电压值;
所述充电器根据所述反馈电压的电压值调整为所述终端设备待提供的充电电压,按照调整后的电压为所述终端设备供电。
可选地,上述方法中,充电器根据所述反馈电压的电压值调整为所述终端设备待提供的充电电压,按照调整后的电压为所述终端设备供电的过程, 可以包括如下操作:
充电器判断所述反馈电压的电压值是否小于预设参考电压的电压值;
若所述反馈电压的电压值小于所述预设参考电压的电压值,所述充电器获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
充电器将所述目标电压与所述充电电压叠加,按照叠加后的电压为所述终端设备供电。
实施例二
本发明实施例提供了一种充电控制装置,如图3所示,该装置300包括:
获取模块301,设置为获取终端设备的充电输入端的反馈电压,并传输给充电器;
调整模块302,设置为根据所述获取模块301获取的所述反馈电压,调整所述充电器为所述终端设备提供的充电电压,并传输给所述终端设备。
可选地,如图4所示,所述获取模块301包括:
第一获取单元3011,设置为获取所述终端设备的充电输入端的输入电压;
第二获取单元3012,设置为根据所述输入电压获取反馈电压,其中,所述反馈电压与所述输入电压之比等于预设比例值。
可选地,如图4所示,所述调整模块302包括:
判断单元3021,设置为判断所述反馈电压是否小于预设参考电压;
升压单元3022,设置为当所述反馈电压小于所述预设参考电压时,获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
叠加单元3023,设置为将所述目标电压与所述充电电压叠加,并传输给所述终端设备。
本发明实施例的充电控制装置,通过获取模块301实时获取终端设备的充电输入端的反馈电压,触发调整模块302根据该反馈电压调整充电器的充 电电压,并传输给终端设备,使得终端设备的输入电压能够达到充电器输出的充电电压,并维持恒定,有效规避由于充电线阻抗带来的压降而导致充电效率降低的问题。
实施例三
本发明实施例提供了一种充电系统,如图5所示,该系统包括:充电器和终端设备;
其中,所述终端设备包括充电控制电路400和电压反馈电路500:
充电控制电路400,设置为对电池进行充电控制,所述充电控制电路400可以包括有一输入端,所述输入端用于接收来自充电器的充电电压;
电压反馈电路500,包括反馈电压输入端501和反馈电压输出端502,且所述反馈电压输入端501与所述充电控制电路400的输入端电连接;
其中,所述充电器包括交流-直流转换模块100和电压调节电路200:
交流-直流转换模块100,包括用于向待充电的终端设备提供充电电压的直流输出端101;
电压调节电路200,接收所述反馈电压输出端502的输出的反馈电压并根据所述反馈电压调整所述充电电压至一预设电压的,所述电压调节电路200包括第一端口201、第二端口202和第三端口203,所述第一端口201与所述直流输出端101电连接,所述第二端口202与所述反馈电压输出端502电连接,所述第三端口203与所述充电控制电路400的输入端电连接。
其中,将充电器与终端设备连接后,开始充电时充电器的直流输出端101输出充电电压V0,若第三端口203与充电控制电路4的输入端之间的线路阻是R,充电电流是I,则实际到充电控制电路400的输入端的电压V2为:V2=V0-I*R。其中,电压反馈电路500将从充电控制电路400的输入端检测到的反馈电压反馈给充电器的电压调节电路2,电压调节电路2则根据该反馈电压,将自身的输出电压升高到预设电压值V1,使得V1=V0+I*R,则可保证到终端设备侧的新的充电电压V3=V1-I*R=V0,使得终端设备的输入电压等于交流-直流转换模块输出的充电电压,并保持恒定,提升了充电效率。
如图6所示,可选地,所述电压调节电路200包括:
运算放大器700,所述运算放大器700的同相输入端连接一预设参考电压Vref,所述运算放大器700的反相输入端作为所述第二端口202;
加法电路600,所述加法电路600包括第一输入端601、第二输入端602和预设电压值输出端603,所述运算放大器700的输出端与所述第一输入端601电连接,所述第二输入端602作为所述第一端口201,所述预设电压值输出端603作为所述第三端口203;
其中,所述预设参考电压Vref等于所述充电控制电路400的输入端的电压等于所述充电电压时,所述反馈电压为第一电压值Vsense1此时Vsense1与预设的参考电压Vref相等。;
所述运算放大器7的开环增益X=V/(Vref-Vsense2),其中,V表示所述充电器达到恒流充电时,所述第三端口203与所述充电控制电路400的输入端之间的线路的电压降,Vsense2表示所述充电器达到恒流充电时,所述反馈电压的第二电压值。
其中,交流-直流转换模块100将交流电转换为直流电,比如将110V或220V的交流电压(AC)转换成终端设备所需要的直流电压(DC)5V、9V、12V等,则运算放大器700的同相输入端连接的预设参考电压Vref可从交流-直流转换模块100中获取,即将运算放大器7的同相输入端与交流-直流转换模块100的相关电压输出端连接即可。
如图6所示,在利用充电器对终端设备进行充电时,当终端设备的充电电流为0,即充满或不充电时,应设置反馈电压与Vref完全相同,保证运算放大器700的差模输入为0,则运算放大器700的差模放大信号也是0V,通过加法电路600后,充电器电压维持恒定。所以,Vref等于所述充电控制电路400的输入端的电压等于所述充电电压时,所述反馈电压的第一电压值Vsense1。即不对终端设备进行充电或者终端设备已经充满电时Vsense1等于Vref。
另外,设运算放大器的700的开环增益为X,则当充电器达到恒流充电时,运算放大器700的输出端电压为X*(Vref-Vsense2),又因为该输出电压与直流输出端101输出的充电电压V0通过加法电路600叠加后为预设电压值V1,所以可得到等式:X*(Vref-Vsense2)+V0=V1,进而得出运算放大 器700的开环增益X=(V1-V0)/(Vref-Vsense2),其中,V1-V0=IR,若IR用V表示,则X=V/(Vref-Vsense2)。
可选地,如图6所示,所述电压反馈电路500包括第一电阻R1和第二电阻R2,所述第一电阻R1的一端为所述反馈电压输入端501,所述第一电阻R1的另一端为所述反馈电压输出端502,且所述第一电阻R1的另一端与所述第二电阻R2的一端电连接,所述第二电阻R2的另一端接地,且r1/r2=V0/Vref-1其中,r1表示所述第一电阻R1的电阻值,r2表示所述第二电阻R2的电阻值,V0表示所述充电电压。
可选地,在PCB设计时可以将第一电阻R1和第二电阻R2放置在充电控制电路4的充电管脚旁边,以保证其反馈的电压无限接近充电控制电路400的输入电压。其中,第一电阻R1和第二电阻R2可以选用精度1%以上的电阻,出于功耗考虑,r1和r2需要均大于一万欧姆,则连接运算放大器700的反相输入端与第一电阻R1的另一端之间的线路上并没有大电流流过,其上压降基本忽略,所以可以精确地将充电控制电路4输入端的电压反馈给充电器,实现动态电压补偿。
另外,如图6所示,利用充电器对终端设备进行充电时,当终端设备的充电电流为0,即充满或不充电时,应设置反馈电压与Vref完全相同,保证运算放大器700的差模输入为0,则运算放大器700的差模放大信号也是0V,通过加法电路600后,充电器电压维持恒定。所以,Vref等于所述充电控制电路4的输入端的电压等于所述充电电压时,所述反馈电压的第一电压值Vsense1。而Vsense1=V0*r2/(r1+r2),则V0*r2/(r1+r2)=Vref,则可以获得r1/r2=V0/Vref-1。
可选地,若设置运算放大器700的同相输入端的预设参考电压Vref为1.2V,第一电阻R1为38千欧姆,第二电阻R2为12千欧姆,则开始充电时直流输出端101的输出的充电电压V0=5V,到充电控制电路400输入端的电压也是V2=5V,电压反馈电路500检测的分压Vsense为:Vsense=V2*R2/(R2+R1)=5*12/(12+38)=1.2V;此时Vsense和Vref相等,功放差模输出为0。
随着充电电流逐步上升,到达充电控制电路400的输入端的电压逐渐降 低,则电压反馈电路300的分压Vsense电压随着降低。假设预设电压值输出端603与充电控制电路400的输入端之间的充电线阻抗为0.3欧姆,且当达到恒流充电时,充电电流为1A,则到达充电控制电路400的输入端电压V2=5-1*0.3=4.7V,则Vsense电压为4.7*12/(12+38)=1.128V,比Vref低0.072V,则合理设计运算放大器700的增益,可使得此时差模输出电压为0.3V,充电器获得此差值后将此电压通过加法电路600叠加到输出端,则充电器新的输出电压V1为5.3V,保证在以1A电流充电时充电控制电路4的输入端电压V0=V1-1*0.3=5V,维持了终端设备侧的输入电压的恒定,提高充电效率。
其中,由于在整个充电过程中(从涓流到恒流再到恒压)充电电流是动态变化的,导致充电线上的压降也是不断变化的,所以整个环路也是动态工作以达到终端设备侧的输入电压的稳定。
在一个可选的实施例中,电压反馈电路500还可以设置在充电器上,如图7所示,该类型的充电器可以适用于普通终端设备,使得普通终端设备在使用该类型的充电器进行充电时,均可维持终端设备侧的充电电压处于稳定状态,并提高充电效率。然而,为了电压反馈电路5采集的反馈电压更加准确,电压反馈电路500最好设置在终端设备上。
可选地,电压调节电路200还可以设置在终端设备上,如图8所示,该类型的终端设备使用普通充电器进行充电时,可以维持终端设备侧的充电电压处于稳定状态,并提高充电效率。然而,该类终端设备在进行充电时,电压调节电路200可能会产生一些热量,所以,为了避免终端设备在充电过程中出现过热的情况,电压调节电路200最好设置在充电器上。
可选地,所述充电器还包括共地线,且所述共地线的一端与所述第二电阻R2的另一端电连接,所述共地线的另一端与所述运算放大器700的接地线电连接。
可选地,增加的共地线将电压反馈电路500的接地线和电压调节电路200的接地线连接,使得电压反馈电路500与电压调节电路200共地,可更高精度地反馈终端设备侧的充电电压。
可选地,所述充电器还可以包括电压反馈线和电源线,所述反馈电压输出端502与所述第二端口202之间通过所述电压反馈线电连接,所述充电控 制电路400的输入端与所述第三端口203之间通过所述电源线电连接。即:当电压调节电路200设置在充电器上,且电压反馈电路500设置在终端设备上时,将连接反馈电压输出端502与第二端口202的线路独立出来,作为反馈线,将充电控制电路4的输入端与第三端口203之间的线路独立出来,作为电源线,可提高使用便利性。
可选地,如图6所示,所述反馈线、所述电源线和所述共地线均被包裹在所述充电器的数据线的内部,使得充电器与终端设备之间的连接更加方便。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例的技术方案,能够在不增加终端设备的主板功耗与发热的前提下,保证终端设备侧充电电压的恒定,有效规避了由于充电线阻抗带来的压降而导致充电效率降低的问题。

Claims (13)

  1. 一种充电控制方法,包括:
    终端设备获取充电输入端的反馈电压的电压值,将所述反馈电压的电压值传输给充电器;
    充电器根据所述反馈电压的电压值,调整所述充电器为所述终端设备提供的充电电压,按照调整后的电压为所述终端设备供电。
  2. 如权利要求1所述的方法,其中,所述终端设备获取充电输入端的反馈电压的电压值,包括:
    所述终端设备获取充电输入端的输入电压的电压值;
    所述终端设备根据所述输入电压的电压值获取所述反馈电压的电压值,其中,所述反馈电压的电压值与所述输入电压的电压值之比等于预设比例值。
  3. 如权利要求1所述的方法,其中,所述充电器根据所述反馈电压的电压值,调整所述充电器为所述终端设备提供的充电电压,按照调整后的电压为所述终端设备供电,包括:
    所述充电器判断所述反馈电压的电压值是否小于预设参考电压的电压值;
    若所述反馈电压的电压值小于所述预设参考电压的电压值,所述充电器获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
    所述充电器将所述目标电压与所述充电电压叠加,按照叠加后的电压为所述终端设备供电。
  4. 一种充电控制方法,包括:
    充电器接收终端设备发送的反馈电压的电压值;
    所述充电器根据所述反馈电压的电压值调整为所述终端设备待提供的充电电压,按照调整后的电压为所述终端设备供电。
  5. 如权利要求4所述的方法,其中,所述充电器根据所述反馈电压的电压值调整为所述终端设备待提供的充电电压,按照调整后的电压为所述终端设备供电,包括:
    所述充电器判断所述反馈电压的电压值是否小于预设参考电压的电压值;
    若所述反馈电压的电压值小于所述预设参考电压的电压值,所述充电器获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
    所述充电器将所述目标电压与所述充电电压叠加,按照叠加后的电压为所述终端设备供电。
  6. 一种充电控制装置,包括:
    获取模块,设置为获取终端设备的充电输入端的反馈电压的电压值,将所述反馈电压的电压值发送给充电器;
    调整模块,设置为根据所述获取模块获取的所述反馈电压的电压值,调整所述充电器为所述终端设备提供的充电电压,按照调整后的电压为所述终端设备供电。
  7. 如权利要求6所述的装置,其中,所述获取模块包括:
    第一获取单元,设置为获取所述终端设备的充电输入端的输入电压的电压值;
    第二获取单元,设置为根据所述输入电压的电压值获取反馈电压的电压值,其中,所述反馈电压的电压值与所述输入电压的电压值之比等于预设比例值。
  8. 如权利要求6所述的装置,其中,所述调整模块包括:
    判断单元,设置为判断所述反馈电压的电压值是否小于预设参考电压的电压值;
    升压单元,设置为当所述反馈电压的电压值小于所述预设参考电压的电 压值时,获取所述预设参考电压与所述反馈电压之间的差值电压,并将所述差值电压进行升压至目标电压,其中,所述目标电压等于所述终端设备与所述充电器之间的线路上的电压降;
    叠加单元,设置为将所述目标电压与所述充电电压叠加,按照叠加后的电压为所述终端设备供电。
  9. 一种充电器,包括:
    交流-直流转换模块,包括向待充电的终端设备提供充电电压的直流输出端;
    所述电压调节电路,设置为接收终端设备的反馈电压输出端输出的反馈电压,根据所述反馈电压的电压值调整所述充电电压至一预设电压,所述电压调节电路包括第一端口、第二端口和第三端口,所述第一端口与所述直流输出端电连接,所述第二端口与所述终端设备的反馈电压输出端电连接,所述第三端口与所述终端设备的充电控制电路的输入端电连接。
  10. 如权利要求9所述的充电器,其中,所述电压调节电路还包括运算放大器和加法电路:
    所述运算放大器的同相输入端连接一预设参考电压Vref,所述运算放大器的反相输入端作为所述第二端口;
    所述加法电路包括第一输入端、第二输入端和预设电压值输出端,所述运算放大器的输出端与所述第一输入端电连接,所述第二输入端作为所述第一端口,所述预设电压值输出端作为所述第三端口;
    其中,所述预设参考电压Vref的电压值等于所述充电控制电路的输入端的电压的电压值等于所述充电电压的电压值时,所述反馈电压的电压值为第一电压值Vsense1;
    所述运算放大器的开环增益X=V/(Vref-Vsense2),其中,V表示所述充电器达到恒流充电时,所述第三端口与所述充电控制电路的输入端之间的线路的电压降,Vsense2表示所述充电器达到恒流充电时,所述反馈电压的第二电压值。
  11. 如权利要求10所述的充电器,还包括共地线,且所述共地线的一端与所述第二电阻的另一端电连接,所述共地线的另一端与所述运算放大器的接地线电连接。
  12. 一种充电控制系统,包括终端设备,以及如权利要求9至11任一项所述的充电器;
    其中,所述终端设备包括充电控制电路和电压反馈电路:
    所述充电控制电路,设置为对电池进行充电控制,所述充电控制电路包括有一输入端,所述输入端接收来自充电器的充电电压;
    所述电压反馈电路,包括反馈电压输入端和反馈电压输出端,所述反馈电压输入端与所述充电控制电路的输入端电连接。
  13. 如权利要求12所述的充电控制系统,其中,所述电压反馈电路还包括第一电阻和第二电阻,所述第一电阻的一端为所述反馈电压输入端,所述第一电阻的另一端为所述反馈电压输出端,且所述第一电阻的另一端与所述第二电阻的一端电连接,所述第二电阻的另一端接地,且r1/r2=V0/Vref-1,其中,r1表示所述第一电阻的电阻值,r2表示所述第二电阻的电阻值,V0表示所述充电电压的电压值。
PCT/CN2016/090327 2016-05-18 2016-07-18 一种充电控制方法、装置及系统 WO2017197750A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/097,365 US20190140458A1 (en) 2016-05-18 2016-07-18 Charging control method, device, and system
EP16902130.0A EP3460945A4 (en) 2016-05-18 2016-07-18 METHOD, DEVICE AND SYSTEM FOR CONTROLLING CHARGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610328994.9A CN107404131A (zh) 2016-05-18 2016-05-18 一种充电控制方法、装置及系统
CN201610328994.9 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017197750A1 true WO2017197750A1 (zh) 2017-11-23

Family

ID=60324642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090327 WO2017197750A1 (zh) 2016-05-18 2016-07-18 一种充电控制方法、装置及系统

Country Status (4)

Country Link
US (1) US20190140458A1 (zh)
EP (1) EP3460945A4 (zh)
CN (1) CN107404131A (zh)
WO (1) WO2017197750A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904884B (zh) * 2017-12-07 2023-10-17 中兴通讯股份有限公司 无线充电方法、装置、终端、存储介质及电子装置
CN110392968A (zh) * 2018-09-06 2019-10-29 Oppo广东移动通信有限公司 一种充电调整方法、终端及计算机存储介质
JP7228790B2 (ja) * 2019-02-05 2023-02-27 パナソニックIpマネジメント株式会社 充電制御装置及び充電制御方法
CN112034918B (zh) * 2020-08-27 2022-08-05 烽火通信科技股份有限公司 Avs调压电路和装置
CN113765177B (zh) * 2021-07-30 2024-06-11 华为数字能源技术有限公司 一种电池模块和充电系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201167240Y (zh) * 2007-11-30 2008-12-17 中兴通讯股份有限公司 一种镍氢电池的充电装置
CN105048593A (zh) * 2015-08-24 2015-11-11 南京特能电子有限公司 一种电动自行车安全型直流长线式充电器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130826A1 (en) * 2010-04-23 2011-10-27 Psion Inc. System and method for externally controlling the charging of a battery powered device
US9130376B2 (en) * 2010-04-23 2015-09-08 Psion Inc. System and method for externally controlling the charging of a battery powered device
WO2014194811A1 (en) * 2013-06-03 2014-12-11 Mediatek Inc. Method, device, and adaptor for dynamically adjusting charging current of adaptor to achieve thermal protection and fast charging
US9997933B2 (en) * 2014-09-03 2018-06-12 Mophie, Inc. Systems and methods for battery charging and management
US20170201101A1 (en) * 2016-01-12 2017-07-13 Richtek Technology Corporation Mobile device charger for charging mobile device and related adaptive charging voltage generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201167240Y (zh) * 2007-11-30 2008-12-17 中兴通讯股份有限公司 一种镍氢电池的充电装置
CN105048593A (zh) * 2015-08-24 2015-11-11 南京特能电子有限公司 一种电动自行车安全型直流长线式充电器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460945A4 *

Also Published As

Publication number Publication date
US20190140458A1 (en) 2019-05-09
EP3460945A4 (en) 2019-05-01
EP3460945A1 (en) 2019-03-27
CN107404131A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
CN109148990B (zh) 无线充电方法、电子设备、无线充电装置和无线充电系统
WO2017197750A1 (zh) 一种充电控制方法、装置及系统
US9859737B2 (en) Method and apparatus for performing system power management in electronic device equipped with battery
US10056779B2 (en) Power source adaptor for charging directly and mobile terminal
CN112640249B (zh) 无线电池充电期间的带内通信
JP6531097B2 (ja) 電圧コンバータ補償装置及び方法
JP6416580B2 (ja) Usb給電装置、それを用いた電子機器
US20170040813A1 (en) Power source adaptor for charging directly
US9997943B2 (en) Electronic device and power adapter capable of communicating with each other, and associated charging system
US10574073B2 (en) Electronic device and method for controlling power supply
US20070132427A1 (en) Charging and power supply for mobile devices
CN106059335A (zh) 总线控制器和电源装置、电源适配器
US10031568B2 (en) Tablet computer with a step-up circuit
US20220216738A1 (en) Wireless charging device, to-be-charged device, and charging
KR101204384B1 (ko) 고속충전회로, 고속충전회로를 구비한 usb 케이블 장치 및 고속충전회로를 구비한 전자 기기
CN108347089B (zh) 电能传输控制器、电能传输系统和电能传输方法
US20070019347A1 (en) Electrical device with adjustable voltage
WO2019242020A1 (zh) 充电装置、移动终端和充电控制方法
CN115336133A (zh) 调制由电压调节器生成的电源电压以用于数据和电力的传输
CN103647318A (zh) 通讯终端、充电控制方法、装置及电路
CN110970956A (zh) 充电方法、电子设备、充电装置和充电系统
TW201818630A (zh) 具有調節迴路之電池充電系統
WO2021262414A1 (en) Hardware architecture for usb-c port power
CN107846143B (zh) 电容式电源转换电路与充电控制方法
CN112803560A (zh) 无线充电装置、待充电设备、充电系统及方法、存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016902130

Country of ref document: EP

Effective date: 20181218