WO2018035811A1 - 全景拍摄方法、终端、旋转组件及全景拍摄装置 - Google Patents

全景拍摄方法、终端、旋转组件及全景拍摄装置 Download PDF

Info

Publication number
WO2018035811A1
WO2018035811A1 PCT/CN2016/096738 CN2016096738W WO2018035811A1 WO 2018035811 A1 WO2018035811 A1 WO 2018035811A1 CN 2016096738 W CN2016096738 W CN 2016096738W WO 2018035811 A1 WO2018035811 A1 WO 2018035811A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
component
camera
panoramic
rotating
Prior art date
Application number
PCT/CN2016/096738
Other languages
English (en)
French (fr)
Inventor
冯智勇
林形省
刘通
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2016/096738 priority Critical patent/WO2018035811A1/zh
Priority to CN201680000811.9A priority patent/CN106416224A/zh
Publication of WO2018035811A1 publication Critical patent/WO2018035811A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture

Definitions

  • the present disclosure relates to the field of imaging technologies, and in particular, to a panoramic imaging method, a terminal, a rotating component, and a panoramic imaging device.
  • a panoramic picture is a picture of a complete scene in a range of 360 degrees, usually composed of multiple pictures taken at different angular positions.
  • Terminal devices such as mobile phones and tablets can take panoramic pictures through the front camera and the rear camera.
  • the FOV (Field Of View) of the front camera and the rear camera needs to reach 180 degrees.
  • the terminal device simultaneously opens the front camera and the rear camera to shoot, and splicing the picture captured by the front camera and the picture captured by the rear camera into a panoramic picture, but on the terminal device
  • the pixels of the front camera are usually low, resulting in a lower image quality of the resulting panoramic image.
  • the present disclosure provides a panoramic shooting method, a terminal, a rotating component, and a panoramic shooting device.
  • the technical solution is as follows:
  • a panoramic photographing method comprising:
  • the rotation instruction is used to instruct the rotation component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the camera component to rotate;
  • a panoramic picture is generated based on the collected images.
  • the panoramic photographing method when detecting the start of the panoramic photographing, acquires an image at a starting angular position by the camera assembly and sequentially sends at least one rotation instruction to the rotating component, the rotation instruction is used to indicate that the rotating component rotates according to the specified Direction and rotation angle are rotated, in each rotation After the transfer instruction is sent, the rotated image is collected by the camera component, and a panoramic image is generated according to the collected images; the same camera component is driven by the rotating component to rotate to a plurality of angular positions to collect images, and according to the same camera component A plurality of images acquired at different angular positions generate a panoramic image, and the generated image quality of the panoramic image is high.
  • the method further includes:
  • the rotation angle is determined according to the FOV, and the rotation angle is less than or equal to the FOV.
  • the panoramic photographing method provided by the embodiment of the present disclosure determines the rotation angle indicated to the rotating component according to the FOV of the camera assembly, and reduces the number of rotations and the number of images collected on the basis of collecting a plurality of images required to generate a panoramic image. Optimized the process of panoramic shooting.
  • At least one rotation instruction is sequentially sent to the rotating component, including:
  • the rotation component is configured to drive the camera assembly to rotate the rotation angle according to the rotation direction to the i-th angular position according to the received i-th rotation instruction, where i is a positive integer;
  • the panoramic image is generated according to the collected images, including:
  • the display images corresponding to the camera components are obtained according to the plurality of image images collected by the camera component;
  • the panoramic photographing method provided by the embodiment of the present disclosure includes at least two camera assemblies, and more images of different angular positions can be collected by a plurality of camera assemblies, thereby achieving the effect of generating a panoramic picture with a wider display range.
  • At least one rotation instruction is sequentially sent to the rotating component, including:
  • the at least one rotation instruction is sequentially sent to the rotating component through the internal circuit
  • the communication component sequentially transmits at least one rotation instruction to the rotating component.
  • a panoramic photographing terminal comprising: The camera assembly, the rotating assembly and the processor are respectively electrically connected to the camera assembly and the rotating assembly, the camera assembly is coupled to the rotating assembly, and the processor is configured to perform the panoramic photographing method according to any one of claims 1 to 5.
  • a rotary assembly comprising:
  • a rotary table disposed on the base, the rotary table being used for placing the control terminal;
  • the communication component is configured to be connected to a control terminal placed on the rotating platform;
  • a rotary table driving device disposed on the base, the rotary table driving device is electrically connected to the communication component, and the rotary driving device is configured to drive the rotating table to rotate;
  • the rotary table driving device is further configured to sequentially receive at least one rotation instruction sent by the control terminal through the communication component, and drive the rotary table to rotate according to the specified rotation direction and the rotation angle according to the rotation instruction;
  • control terminal includes a camera assembly for performing the panoramic photographing method according to any one of claims 1 to 5 above.
  • a panoramic photographing apparatus comprising:
  • a first acquisition module configured to acquire an image at a starting angular position by the camera assembly when detecting a panoramic shot is detected
  • the sending module is configured to sequentially send at least one rotation instruction to the rotating component, the rotation instruction is used to instruct the rotating component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the camera component to rotate;
  • a second acquisition module configured to collect the rotated image through the camera component after each rotation instruction is sent
  • the generating module is configured to generate a panoramic picture according to the collected images.
  • the panoramic photographing apparatus acquires an image at a starting angular position by the camera assembly and sequentially transmits at least one rotation instruction to the rotating component when the panoramic photographing is detected, and the rotation instruction is used to indicate that the rotating component rotates according to the specified
  • the direction and the rotation angle are rotated, and after each rotation command is sent, the rotated image is collected by the camera component, and the panoramic image is generated according to the collected images; the rotation of the same camera component is driven by the rotation component to a plurality of angular positions.
  • the image is acquired, and a panoramic image is generated according to several images acquired by the same camera component at different angular positions, and the generated image quality of the panoramic image is high.
  • the device further includes:
  • a first determining module configured to determine a field of view FOV of the camera assembly
  • the second determining module is configured to determine a rotation angle according to the FOV, the rotation angle being less than or equal to the FOV.
  • the panoramic photographing apparatus determines the rotation angle indicated to the rotating component according to the FOV of the camera assembly, and reduces the number of rotations and the number of collected images on the basis of acquiring a plurality of images required to generate a panoramic picture. Optimized the process of panoramic shooting.
  • the sending module includes:
  • the sending submodule is configured to send an ith rotation instruction to the rotation component, and the rotation component is configured to drive the camera component to rotate the rotation angle according to the rotation direction to the i-th angular position according to the received i-th rotation instruction, where i is a positive integer ;
  • the detecting submodule is configured to detect whether the total rotation angle reaches a panoramic angle, and the total rotation angle is an angle rotated by the i-th angular position relative to the starting angular position;
  • the generating module includes:
  • the first splicing sub-module is configured to, for each of the at least two camera components, obtain a display picture corresponding to the camera component according to the splicing of the plurality of images collected by the camera component;
  • the second splicing sub-module is configured to obtain a panoramic picture according to the display picture corresponding to each camera component.
  • the panoramic photographing apparatus includes at least two camera assemblies, and more images of different angular positions can be collected by a plurality of camera assemblies, thereby achieving the effect of generating a panoramic picture with a wider display range.
  • the sending module is further configured to sequentially send at least one rotation instruction to the rotating component through the internal circuit when the camera component and the rotating component are included in the same terminal;
  • the transmitting module is further configured to sequentially transmit at least one rotation instruction to the rotating component through the communication component when the camera component and the rotating component are included in different terminals, and the rotating component includes the communication component.
  • a panoramic photographing apparatus comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the rotation instruction is used to instruct the rotation component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the camera component to rotate;
  • a panoramic picture is generated based on the collected images.
  • the panoramic photographing apparatus acquires an image at a starting angular position by the camera assembly and sequentially transmits at least one rotation instruction to the rotating component when the panoramic photographing is detected, and the rotation instruction is used to indicate that the rotating component rotates according to the specified
  • the direction and the rotation angle are rotated, and after each rotation command is sent, the rotated image is collected by the camera component, and the panoramic image is generated according to the collected images; the rotation of the same camera component is driven by the rotation component to a plurality of angular positions.
  • the image is acquired, and a panoramic image is generated according to several images acquired by the same camera component at different angular positions, and the generated image quality of the panoramic image is high.
  • FIG. 1A is a schematic structural diagram of a panoramic photographing terminal according to an exemplary embodiment
  • FIG. 1B is a schematic structural diagram of a panoramic photographing terminal according to another exemplary embodiment
  • FIG. 2 is a schematic structural view of a rotating assembly according to an exemplary embodiment
  • FIG. 3 is a schematic structural diagram of a panoramic photographing system according to an exemplary embodiment
  • FIG. 4 is a flowchart of a panoramic photographing method according to an exemplary embodiment
  • FIG. 5 is a flowchart of a panoramic photographing method according to an exemplary embodiment
  • FIG. 6 is a schematic diagram of panoramic shooting according to an exemplary embodiment
  • FIG. 7 is a flowchart of a panoramic photographing method according to another exemplary embodiment.
  • FIG. 8 is a flowchart of a panoramic photographing method according to another exemplary embodiment
  • FIG. 9 is a flowchart of a panoramic photographing method according to another exemplary embodiment.
  • FIG. 10 is a block diagram of a panoramic photographing apparatus according to an exemplary embodiment
  • FIG. 11 is a block diagram of a panoramic photographing apparatus according to another exemplary embodiment.
  • FIG. 12 is a schematic structural diagram of a panoramic photographing terminal or a control terminal according to another exemplary embodiment.
  • FIG. 1A is a schematic structural diagram of a panoramic photographing terminal 10 including a camera assembly 110, a rotating component 120, and a processor 130, according to an exemplary embodiment.
  • the camera assembly 110 is a fisheye lens, and the fisheye lens is a wide-angle lens with a FOV close to or equal to 180 degrees.
  • the camera assembly 110 in the panoramic camera terminal 10 can also be a standard lens and a telephoto lens. Lens, zoom lens or other lens with a smaller FOV.
  • the present embodiment does not limit the lens type of the camera assembly 110 in the panoramic photographing terminal 10 and the FOV of the camera assembly 110.
  • the rotating assembly 120 includes a drive device for driving the rotating assembly 120 for rotation.
  • the drive unit is a drive motor.
  • the processor 130 is electrically connected to the camera assembly 110 and the rotating assembly 120, respectively.
  • the processor 130 and the driving device in the rotating component 120 are electrically connected by an internal circuit, the processor 130 is configured to control the camera component 110 to acquire an image, and is configured to control the driving device to drive the rotating component 120 to rotate.
  • the camera assembly 110 is coupled to the rotating assembly 120 that, when rotated, drives the camera assembly 110 to rotate.
  • the panoramic camera terminal 10 includes at least two camera assemblies electrically connected to the processor 130 and connected to the rotating component 120.
  • the at least two camera components are along the rotating component 120.
  • the directions of rotation are arranged in a vertical direction.
  • the rotating assembly 120 is rotated in the horizontal direction, the camera assemblies are arranged in the vertical direction.
  • at least two camera components in the panoramic camera terminal 10 have the same angular position.
  • the FOV of each of the at least two camera assemblies is the same.
  • the panoramic photographing terminal 10 can realize an electronic device having a rotatable camera assembly such as a mobile phone, a tablet computer, and a notebook computer, and the panoramic photographing terminal 10 is realized as shown in FIG. 1A above.
  • the panoramic camera terminal 10 can be implemented as a rotatable device integrated with a processor and a camera assembly.
  • FIG. 1B FIG. 1B is rotated in a horizontal direction by the rotating assembly 120, and two camera assemblies are along The vertical position is set and the angular positions of the two camera assemblies facing each other are the same, and the processor 130 is not shown in FIG. 1B.
  • FIG. 2 is a schematic structural view of a rotating assembly including a base 210, a rotating table 220, a communication assembly 230, and a rotary table driving device 240, according to an exemplary embodiment.
  • the rotary table 220 is disposed on the base 210.
  • the communication component 230 is disposed on the base 210 or the rotary table 220.
  • the communication component 230 includes at least one of a hardware communication interface and a wireless communication module.
  • the communication component 230 has data communication capability.
  • the communication component 230 also has power supply capabilities.
  • the communication component 230 is a hardware communication interface
  • the communication component 230 is directly fixed on the base 210 or the rotary table 220, or the communication component 230 is connected to the connection line, and the other end of the connection line is disposed on the base 210 or the rotary table.
  • 220 on. 2 is exemplified by a hardware communication interface in which the communication component 230 in the rotating assembly 20 is fixed to the rotating table 220 by a connecting line.
  • the hardware communication interface is a USB A-type interface, a USB B-type interface, a Mini USB A-type interface, a Mini USB B-type interface, a Mini USB AB-type interface, a Micro USB A-type interface, a MicroUSB B-type interface, and a USB Type- Any of the C interface and the Lightning interface (lightning interface).
  • the wireless communication module is a WiFi (Wireless-Fidelity) module, a Bluetooth module, a NFC (Near Field Communication) module, and any one of Zigbee (Zigzag Flying of Bees) modules.
  • WiFi Wireless-Fidelity
  • Bluetooth Wireless-Fidelity
  • NFC Near Field Communication
  • Zigbee Zigzag Flying of Bees
  • the rotary table driving device 240 is disposed on the base 210, and the rotary table driving device 240 is electrically connected to the communication assembly 230.
  • the rotary table drive 240 is a drive motor.
  • the rotary table driving device 240 is configured to drive the rotary table 220 to rotate.
  • the rotary table 220 is connected to the rotary shaft, and the rotary table drive device 240 rotates by driving the rotary shaft to drive the rotary table 220 to rotate; or, the rotary table 220 is rotated
  • the rotary table driving device 240 has a driving gear or is connected to the driving gear.
  • the driving gear meshes with the rotating gear.
  • the rotary table driving device 240 rotates by driving the driving gear to drive the rotating table 220 to rotate. .
  • the rotating assembly 20 generally further includes a housing, the rotary table driving device 240 may be disposed in the housing, and the rotating table 220 may be exposed outside the housing; when the communication assembly 230 is a hardware communication interface, the communication assembly may be exposed to the housing In addition, when the communication component 230 is a wireless communication module, The communication component can be disposed within the housing.
  • a control terminal 30 can be placed on the rotating component 20 shown in FIG. 2 , as shown in FIG. 3 , which is a schematic structural diagram of a panoramic imaging system according to an exemplary embodiment of the present disclosure.
  • the system includes: a rotating component 20 and control terminal 30, control terminal 30 is placed on rotating assembly 20, and control terminal 30 is coupled to rotating assembly 20 via communication assembly 230 in rotating assembly 20.
  • the rotating table 220 in the rotating assembly 20 is used for placing the control terminal 30.
  • the rotating table 220 is provided with a groove, and the control terminal 30 can be placed horizontally or vertically in the groove of the rotating table 220 to ensure that the control terminal is Stability when rotating.
  • the control terminal 30 is an electronic device such as a mobile phone, a tablet computer, a notebook computer, and the control terminal 30 includes a camera assembly.
  • the meaning of the camera assembly in the control terminal 30 can be combined with the camera assembly in the embodiment shown in FIG. 1A. The meaning of this embodiment is not described in detail herein.
  • the camera assembly in the control terminal 30 is not shown in FIG.
  • control terminal 30 includes at least two camera assemblies arranged in a direction perpendicular to a rotation direction of the rotating assembly 20.
  • the rotating assembly 20 drives the control terminal 30 to rotate in the horizontal direction, and the camera assemblies are arranged in the vertical direction.
  • at least two camera components in the control terminal 30 have the same angular position.
  • the FOV of each of the at least two camera assemblies is the same.
  • the control terminal 30 further includes a communication component, the type of the communication component in the control terminal 30 is the same as the type of the communication component 230 in the rotation component 20; the meaning of the communication component in the control terminal 30 can be combined with the embodiment shown in FIG. 2 above. The meaning of the communication component 230 in the rotating component 20 is not described in this embodiment.
  • the communication component 230 in the rotating assembly 20 is for connection to a control terminal 30 placed on the rotary table 220, that is, the communication component 230 in the rotary assembly 20 is coupled to the communication component in the control terminal 30.
  • the hardware communication interface in the rotating component 20 is used to be electrically connected to the hardware communication interface in the control terminal 30, and the hardware communication interface in the control terminal 30 is the same as the interface type of the hardware communication interface in the rotating component 20, and is controlled.
  • the hardware communication interface in the control terminal 30 is inserted into the hardware communication interface in the rotating component 20; and/or the rotating component 20 passes through the wireless communication module and the wireless communication module in the control terminal 30. Establish a wireless communication connection.
  • the rotating component 20 can be connected to the control terminal 30 via a communication component for data communication.
  • the rotary table driving device 240 is configured to sequentially receive at least one rotation sent by the control terminal through the communication component 230.
  • the rotation command drives the rotary table 220 to rotate according to the specified rotation direction and rotation angle according to the rotation command.
  • the rotary table driving device 240 is further configured to send a feedback signal to the control terminal 30 through the communication component 230 after the driving rotary table 220 rotates.
  • the hardware communication interface in the rotating assembly 20 is also used to power the rotary table drive 240 in the rotary assembly 20 when the hardware communication interface in the rotary assembly 20 is electrically coupled to the hardware communication interface of the control terminal 30.
  • the rotating component 20 of FIG. 2 and FIG. 3 can also supply power to the rotary table driving device 240 by an external power source, or the dry battery can supply power to the rotating table driving device 240, and then rotate the component 20 Components such as a battery case and a battery cable can also be included.
  • FIG. 4 is a flowchart of a panoramic photographing method, which is applied to the panoramic photographing terminal shown in FIG. 1A or FIG. 1B, or applied to the rotating assembly shown in FIG. 2, according to an exemplary embodiment.
  • the method includes the following steps:
  • step 401 an image is acquired at the starting angular position by the camera assembly upon detecting the initiation of panoramic photography.
  • step 402 at least one rotation instruction is sequentially transmitted to the rotating component.
  • the rotation command is used to instruct the rotating component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the camera component to rotate.
  • the panoramic shooting terminal when the camera assembly and the rotating assembly are included in the same terminal, that is, when the method is used in a panoramic shooting terminal including a camera assembly and a rotating assembly as shown in FIG. 1A or FIG. 1B, the panoramic shooting terminal
  • the processor sequentially transmits at least one rotation instruction to the rotating component through the internal circuit.
  • the rotating component when the camera component and the rotating component are included in different terminals, and the rotating component includes a communication component, that is, when the method is used in the panoramic shooting system shown in FIG. 3, the rotating component is as shown in FIG. 2.
  • Illustrated is a rotating assembly including a communication assembly that, when the camera assembly is a camera assembly placed in a control terminal on a rotating assembly as shown in FIG. 2, the control terminal sequentially transmits at least one rotation command to the rotating assembly via the communication assembly.
  • step 403 after each rotation command is sent, the rotated image is acquired by the camera assembly.
  • step 404 a panoramic picture is generated based on the collected images.
  • the panoramic photographing method acquires an image at a starting angular position by the camera assembly and sequentially transmits at least one rotation to the rotating component when detecting the start of panoramic shooting.
  • the rotation instruction is used to instruct the rotation component to rotate according to the specified rotation direction and rotation angle.
  • the rotated image is collected by the camera component, and a panoramic image is generated according to the collected images;
  • the image quality of the panoramic picture is low due to the lower pixels of the front camera; due to the processor in the panoramic shooting terminal
  • the rotating component By instructing the rotating component to drive the camera assembly to rotate and acquire images, and generating panoramic images based on several images acquired by the same camera assembly at different angular positions, it is possible to use only one camera component with a higher pixel height. Produces the effect of a panoramic image with a higher image quality.
  • FIG. 5 is a flowchart of a panoramic photographing method, which is applied to the panoramic photographing terminal shown in FIG. 1A or FIG. 1B, which may be the panorama shown in FIG. 1A or FIG. 1B, according to an exemplary embodiment.
  • the processor in the shooting terminal is implemented; or the method is applied to a panoramic shooting system as shown in FIG. 3, which can be implemented by a control terminal placed on the rotating assembly shown in FIG. 2.
  • the method includes the following steps:
  • step 501 an image is acquired at the starting angular position by the camera assembly upon detecting the initiation of panoramic photography.
  • the user can select to enter the panoramic shooting mode in the panoramic shooting terminal or the camera application of the control terminal, and when in the panoramic shooting mode, and the processor detects that there is a key operation acting on the shooting button, the panoramic shooting is started.
  • the starting angle position is an angular position where the camera component is facing when the terminal device starts the panoramic shooting.
  • step 502 an ith rotation instruction is sent to the rotating component.
  • the rotation instruction is used to instruct the rotation component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the rotation of the camera component, and the rotation component is configured to drive the camera component to rotate in the rotation direction according to the received i-th rotation instruction.
  • Angle to the i-th angular position, i is a positive integer, and the starting value of i is 1.
  • the rotation instruction includes a rotation direction field and a rotation angle field
  • the rotation direction field in the rotation instruction is used to indicate the rotation direction
  • the rotation angle field in the rotation instruction is used to indicate the rotation angle.
  • the rotation component parses the rotation instruction to obtain a rotation direction field and a rotation angle field, determines a rotation direction according to the rotation direction field, and determines a rotation angle according to the rotation angle field. For example, if the rotation component parses the rotation instruction, the rotation direction field is right, and the rotation angle field is 30, which means rotation to the right. 30 degrees.
  • the rotation instruction includes a rotation angle field having a predetermined format for indicating a rotation direction and a rotation angle
  • the predetermined format includes at least one of a symbol and a number.
  • the rotation component parses the rotation instruction to obtain a rotation angle field having a predetermined format, and determines a rotation direction and a rotation angle according to a rotation angle field having a predetermined format. For example, if the rotation component has a rotation angle of a predetermined format and the rotation angle field obtained by the rotation component is +30, it means that the rotation angle field is 30 degrees to the right.
  • the rotation component has a rotation angle field of a predetermined format obtained by the rotation component for the rotation instruction is -50. , means to rotate 50 degrees to the left.
  • the rotation direction and the rotation angle of the i-th rotation instruction are the rotation directions and rotation angles of the rotation component driving the camera assembly from the i-1th angular position to the ith angular position, and optionally, different rotation commands.
  • the rotation direction and the rotation angle for the indication are the same or different, and the embodiment of the present disclosure is described by taking the same rotation direction and rotation angle indicated by each rotation instruction as an example. It should be noted that the 0th angular position is the starting angular position.
  • step 503 after each rotation command is sent, the rotated image is acquired by the camera assembly.
  • the rotated image is an image acquired by the camera assembly after being rotated by the rotating component.
  • This step can be implemented by any of the following two implementations:
  • the rotated image is acquired by the camera assembly when a predetermined time interval is reached.
  • the predetermined time interval is a preset value of the system or is customized by the user.
  • the rotating component After the rotating component rotates according to the rotation instruction, the rotating component returns a feedback signal to the processor, and after receiving the feedback signal, the processor determines that the camera component has been rotated to the i-th angular position under the driving of the rotating component, and controls the camera component.
  • the image is acquired, and the acquired image is the image of the i-th angular position.
  • step 504 it is detected whether the total rotation angle has reached a panoramic angle.
  • the total rotation angle is an angle rotated by the i-th angular position relative to the starting angular position
  • the panoramic angle is an angular range covered by the panoramic image when the panoramic shooting is started
  • the panoramic angle is the system preset value or Custom.
  • the panoramic angle is 360 degrees.
  • step 506 if the total rotation angle reaches the panoramic angle, a panoramic picture is generated according to the collected images.
  • the processor ends the panoramic shooting and splices the collected images according to the order of the acquired images.
  • the processor ends the panoramic shooting and splices the collected images according to the order of the acquired images.
  • the image preprocessing including at least one of image denoising and image histogram equalization.
  • the image pre-processing also includes distortion correction when the camera assembly is a fisheye lens.
  • the image features include at least one of a feature point, a feature contour, and a characteristic curve
  • the common feature points include a SIFT (Scale-invariant feature transform).
  • FAST Features from Accelerated Segment Test
  • SURF Speeded Up Robust Features
  • the i-th angular position of the terminal device and the starting angular position are the same angular position, and the terminal device collects at the i-th angular position.
  • the image may be the same as the image acquired at the starting angular position.
  • the terminal device may use the image acquired at the starting angular position instead of the first image.
  • the angular position, the second angular position, the i images acquired at the i-th angular position generate a panoramic picture.
  • the image may be acquired by each camera component at the same time, or the image may be acquired only by some of the camera components.
  • the embodiment of the present disclosure is described by taking an image acquired by each camera component at the same time as an example.
  • the step can include the following two steps:
  • a plurality of images collected by the camera assembly are stitched to obtain a display picture corresponding to the camera component.
  • the method shown in the above three steps is used to splicing a plurality of images collected according to the camera assembly to obtain a display picture corresponding to the camera component.
  • the image features of the two displayed images are extracted, and the two display images are stitched together.
  • the method of splicing two panoramic pictures may be combined with the method of splicing the i-1th image and the ith image, which will not be described in detail in this embodiment.
  • a panoramic picture may be generated according to the collected images. For example, when the user selects to end the panorama mode in the camera application, the panoramic shooting is ended and a panoramic picture is generated based on the collected images.
  • the panoramic photographing method acquires an image at a starting angular position by the camera assembly and sequentially sends at least one rotation instruction to the rotating component when the panoramic shooting is detected, and the rotation instruction is used to indicate the rotation.
  • the component rotates according to the specified rotation direction and rotation angle. After each rotation command is sent, the rotated image is collected by the camera component, and a panoramic image is generated according to the collected images; the front end of the terminal device is solved at the same time.
  • the image quality of the panoramic picture is low due to the lower pixels of the front camera; since the processor in the panoramic shooting terminal drives the camera assembly by instructing the rotating component Rotate and acquire images, and generate panoramic images based on several images acquired by different camera positions at different angular positions, so that a panoramic image with higher image quality can be generated by using only one pixel component with higher pixels. effect.
  • the panoramic photographing method provided by the embodiment of the present disclosure rotates the camera assembly under the driving of the processor or the control terminal, so as to avoid the jitter, the rotation angle is too large/too small, and the position is rotated by the camera assembly in the user rotating the terminal device.
  • the problem of poor picture quality of the generated panoramic picture caused by the offset or the like achieves an effect of improving the image quality of the generated panoramic picture.
  • the panoramic photographing method provided by the embodiment of the present disclosure may use only one camera assembly, and there is no limitation on the FOV of the camera assembly, which expands the applicable range of the panoramic photographing method.
  • the panoramic photographing method provided by the embodiment of the present disclosure may include at least two camera components in the panoramic photographing terminal or the control terminal, so that images of more different angular positions can be collected through multiple camera assemblies, and a panoramic image with wider display range is generated. Effect.
  • the panoramic shooting method described above is used for the panoramic shooting shown in FIG. 1A.
  • the terminal 10 is taken as an example, and a schematic plan view of the camera unit in the panoramic photographing terminal 10 when performing panoramic shooting is shown in FIG. 6 . It is assumed that the plurality of rotation commands sequentially sent by the processor in the panoramic photographing terminal 10 to the rotating component are used to indicate that the rotation directions are all rotated to the right, the indicated rotation angles are all 90 degrees, and the panoramic angle is 360 degrees.
  • an image is acquired at the starting angle position 601, as shown in (a) of FIG. 6, and a first rotation command is sent to the rotating component, and the rotating component drives the camera component according to the first rotation command.
  • a feedback signal is sent to the processor, and after receiving the feedback signal, the processor collects an image at the first angular position 602 through the camera assembly, as shown in (b) of FIG. 6 . Shown.
  • the processor detects that the total rotation angle is less than 90 degrees and is smaller than the panoramic angle, and sends a second rotation instruction to the rotation component, and the rotation component drives the camera assembly to rotate to the right by 90 degrees to the second angular position 603 according to the second rotation instruction.
  • the feedback signal is sent, and after receiving the feedback signal, the processor acquires an image at the second angular position 603 through the camera assembly, as shown in (c) of FIG.
  • the processor detects that the total rotation angle is less than 180 degrees and is smaller than the panoramic angle, and sends a third rotation instruction to the rotation component, and the rotation component drives the camera assembly to rotate to the right by 90 degrees to the third angular position 604 according to the third rotation instruction.
  • the feedback signal is sent, and after receiving the feedback signal, the processor acquires an image at the third angular position 604 through the camera assembly, as shown in (d) of FIG.
  • the processor detects that the total rotation angle is 270 degrees smaller than the panoramic angle, and sends a fourth rotation instruction to the rotation component, and the rotation component drives the camera assembly to rotate to the right by 90 degrees to the fourth angular position 605 according to the fourth rotation instruction to the processor.
  • the feedback signal is sent, and after receiving the feedback signal, the processor acquires an image at the fourth angular position 605 through the camera assembly, as shown in (e) of FIG.
  • the processor detects that the total rotation angle is 360, and then ends the panoramic shooting and collects at the first angular position 602, the second angular position 603, the third angular position 604, and the fourth angular position 605.
  • the four images are combined into a panoramic picture.
  • the rotation instruction sent by the processor of the panoramic photographing terminal to the rotating component through the internal circuit, or the rotation command sent by the control terminal to the rotating component is used to indicate the rotation angle is processed by The device is determined according to the FOV of the camera component, and the method further includes The next few steps are shown in Figure 7:
  • step 701 the FOV of the camera assembly is determined.
  • the FOV of the camera component is included in the configuration information of the panoramic shooting terminal or the control terminal, and the processor or the control terminal of the panoramic shooting terminal determines the FOV of the camera component by querying the configuration information.
  • a rotation angle is determined based on the FOV, the rotation angle being less than or equal to the FOV.
  • the FOV of the camera assembly is determined to be the angle of rotation.
  • the rotation component drives the camera assembly to rotate when the total rotation angle reaches the panoramic angle.
  • the number of times is not an integer.
  • the panoramic angle is 360 degrees
  • the FOV of the camera assembly is 100 degrees. If the rotation angle is determined to be 100 degrees, the rotating component needs to drive the camera assembly to perform 3.6 rotations to make the total rotation angle reach 360 degrees, which is unreasonable. At this point, you can use the following steps to determine the rotation angle:
  • the panoramic photographing method determines the rotation angle according to the FOV of the camera assembly, and reduces the number of rotations and the number of images collected on the basis of collecting a plurality of images required to generate a panoramic image. Optimized the process of panoramic shooting.
  • step 504-step 506 may be implemented as the following steps instead, as shown in FIG.
  • step 801 it is detected whether the number of rotations reaches the total number of rotations.
  • the total number of rotations is determined by the quotient of the panoramic angle and the rotation angle, or the total number of rotations is determined by the quotient of the panoramic angle and the rotation angle.
  • step 803 if the total rotation angle reaches the panoramic angle, a panoramic picture is generated according to the collected images.
  • the foregoing steps 502-606 can be implemented as the following steps instead, as shown in FIG.
  • step 901 a rotation instruction is sent to the rotating component.
  • the rotation command is used to indicate a rotation direction, a rotation angle, a rotation frequency, and a total rotation number
  • the rotation instruction is used to instruct the rotation component to rotate the specified total rotation number according to the specified rotation direction, the rotation angle, and the rotation frequency
  • the rotation frequency is used to indicate
  • the time interval between each rotation of the rotating assembly, the meaning of the total number of rotations can be combined with the embodiment shown in Figure 8 above.
  • step 902 the rotated image is acquired by the camera assembly when a feedback signal returned by the rotating assembly is received.
  • the rotating component After completing each rotation, the rotating component returns a feedback signal to the processor of the panoramic photographing terminal, or returns a feedback signal to the control terminal.
  • step 903 a panoramic picture is generated based on the collected images.
  • detecting whether the time interval between the current time and the time of the last acquired image reaches a preset time interval When the preset time interval is reached, ending the panoramic shooting and generating a panoramic picture according to the collected images, Set the time interval to be the system default or user-defined.
  • the total number of images collected is determined according to the total number of rotations, and the total number of images is a total number of rotations plus a determined number, and the number of collected images is detected to reach the total number of images, and the total image is reached.
  • the panoramic shot is ended and a panoramic picture is generated based on the collected images.
  • the rotation command sent by the processor of the panoramic photographing terminal to the rotating component is used to indicate that the rotation direction is rightward rotation, the rotation angle is 90 degrees, and the rotation frequency is 10 seconds/ The number of rotations is 4, and the total number of images is 5. Then, after the driving camera assembly rotates to the first angular position 602, the rotating component sends a feedback signal to the processor, and the processor acquires the image at the first angular position 602 after receiving the feedback signal.
  • the rotating component drives the camera assembly to rotate to the first angular position 602
  • the driving camera assembly continues to rotate from the first angular position 602 to the second angular position 603, and sends a feedback signal to the processor, and the processor receives An image is acquired at the second angular position 603 after the feedback signal.
  • the rotating assembly continues to drive the camera assembly to rotate to the third angular position 604 and the fourth After the angular position 605, a feedback signal is also sent to the processor, and the processor continues to acquire images at the third angular position 604 and the fourth angular position 605.
  • the processor detects that the number of images collected is six, reaching the total number of images, and the processor ends the panoramic shooting and according to the collected 6 images generate a panoramic picture.
  • the panoramic photographing method provided by the embodiment of the present disclosure sends a rotation command to the rotating component, and the rotating component rotates the specified total number of rotations according to the rotation instruction, and does not need to send a rotation instruction to the rotating component every time. Reduces the number of communications with rotating components and reduces power consumption.
  • FIG. 10 is a block diagram of a panoramic photographing apparatus, which may be implemented as part or all of the panoramic photographing apparatus shown in FIG. 1A or FIG. 1B by hardware, software, or a combination of both, according to an exemplary embodiment; or The device may be implemented as part or all of a control terminal placed on a rotating assembly as shown in FIG. 2 by hardware, software or a combination of both, including but not limited to:
  • the first acquisition module 1010 is configured to acquire an image at a starting angular position by the camera assembly upon detecting the initiation of panoramic photography.
  • the sending module 1020 is configured to sequentially send at least one rotation instruction to the rotating component, the rotation instruction is used to instruct the rotating component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the camera component to rotate.
  • the second acquisition module 1030 is configured to acquire the rotated image through the camera component after each rotation command is sent.
  • the generating module 1040 is configured to generate a panoramic picture according to the collected images.
  • the panoramic photographing apparatus acquires an image at a starting angular position by the camera assembly and sequentially sends at least one rotation instruction to the rotating component when the panoramic photographing is detected, and the rotation instruction is used to indicate the rotation.
  • the component rotates according to the specified rotation direction and rotation angle. After each rotation command is sent, the rotated image is collected by the camera component, and a panoramic image is generated according to the collected images; the front end of the terminal device is solved at the same time.
  • the panoramic image is caused by the lower pixels of the front camera.
  • the problem of low image quality since the processor in the panoramic camera terminal rotates and captures the image by instructing the rotating component to drive the camera component, the panoramic image is generated according to several images acquired by the same camera component at different angular positions. It is achieved that a panoramic image with higher image quality can be generated using only one camera component with a higher pixel.
  • FIG. 11 is a block diagram of a panoramic photographing apparatus according to another exemplary embodiment, which may be implemented as part or all of the panoramic photographing apparatus shown in FIG. 1A or FIG. 1B by hardware, software, or a combination of both;
  • the device may be implemented as part or all of a control terminal placed on a rotating assembly as shown in FIG. 2 by hardware, software or a combination of both, including but not limited to:
  • the first determining module 1110 is configured to determine an FOV of the camera assembly.
  • the second determining module 1120 is configured to determine a rotation angle according to the FOV, and the rotation angle is less than or equal to the FOV.
  • the first acquisition module 1130 is configured to acquire an image at a starting angular position by the camera assembly upon detecting the initiation of panoramic photography.
  • the sending module 1140 is configured to sequentially send at least one rotation instruction to the rotating component, the rotation instruction is used to instruct the rotating component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the camera component to rotate.
  • the sending module 1140 is further configured to sequentially send at least one rotation instruction to the rotating component through the internal circuit when the camera component and the rotating component are included in the same terminal;
  • the sending module 1140 is further configured to sequentially transmit at least one rotation instruction to the rotating component through the communication component when the camera component and the rotating component are included in different terminals, and the rotating component includes the communication component.
  • the sending module 1140 includes:
  • the transmitting sub-module 1141 is configured to send an ith rotation instruction to the rotation component, and the rotation component is configured to drive the camera component to rotate the rotation angle to the ith angular position according to the rotation direction according to the received ith rotation instruction, where i is positive Integer.
  • the detection sub-module 1142 is configured to detect whether the total rotation angle reaches a panoramic angle, and the total rotation angle is an angle rotated by the i-th angular position relative to the starting angular position.
  • the second acquisition module 1150 is configured to acquire the rotated image through the camera component after each rotation instruction is sent.
  • the generating module 1160 is configured to generate a panoramic picture according to the collected images.
  • the panoramic shooting terminal includes at least two camera components
  • the generating module 1160 includes:
  • the first splicing sub-module 1161 is configured to, for each of the at least two camera components, obtain a display picture corresponding to the camera component according to the splicing of the plurality of images collected by the camera component.
  • the second splicing sub-module 1162 is configured to splicing a panoramic picture according to the display picture corresponding to each camera component.
  • the panoramic photographing apparatus acquires an image at a starting angular position by the camera assembly and sequentially sends at least one rotation instruction to the rotating component when the panoramic photographing is detected, and the rotation instruction is used to indicate the rotation.
  • the component rotates according to the specified rotation direction and rotation angle. After each rotation command is sent, the rotated image is collected by the camera component, and a panoramic image is generated according to the collected images; the front end of the terminal device is solved at the same time.
  • the image quality of the panoramic picture is low due to the lower pixels of the front camera; since the processor in the panoramic shooting terminal drives the camera assembly by instructing the rotating component Rotate and acquire images, and generate panoramic images based on several images acquired by different camera positions at different angular positions, so that a panoramic image with higher image quality can be generated by using only one pixel component with higher pixels. effect.
  • An exemplary embodiment of the present disclosure provides a panoramic photographing apparatus capable of implementing the panoramic photographing method provided by the present disclosure, the apparatus comprising: a processor, a memory for storing processor-executable instructions;
  • processor is configured to:
  • the rotation instruction is used to instruct the rotation component to rotate according to a specified rotation direction and a rotation angle, and the rotation component is used to drive the camera component to rotate;
  • a panoramic picture is generated based on the collected images.
  • FIG. 12 is a block diagram of a panoramic photographing terminal or a control terminal, according to an exemplary embodiment.
  • device 1200 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a personal digital assistant, and the like.
  • apparatus 1200 can include one or more of the following components: processing component 1202, memory 1204, power component 1206, multimedia component 1208, audio component 1210, input/output (I/O) interface 1212, sensor component 1214, and Communication component 1216.
  • Processing component 1202 typically controls the overall operation of device 1200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1202 can include one or more processors 1218 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 1202 can include one or more modules to facilitate interaction between component 1202 and other components.
  • processing component 1202 can include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202.
  • Memory 1204 is configured to store various types of data to support operation at device 1200. Examples of such data include instructions for any application or method operating on device 1200, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1204 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 1206 provides power to various components of device 1200.
  • Power component 1206 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1200.
  • the multimedia component 1208 includes a screen between the device 1200 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1208 includes a front camera and/or a rear camera. When the device 1200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera The head and rear cameras can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1210 is configured to output and/or input an audio signal.
  • audio component 1210 includes a microphone (MIC) that is configured to receive an external audio signal when device 1200 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1204 or transmitted via communication component 1216.
  • audio component 1210 also includes a speaker for outputting an audio signal.
  • the I/O interface 1212 provides an interface between the processing component 1202 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1214 includes one or more sensors for providing status assessment of various aspects to device 1200.
  • sensor assembly 1214 can detect an open/closed state of device 1200, a relative positioning of components, such as a display and a keypad of device 1200, and sensor component 1214 can also detect a change in position of a component of device 1200 or device 1200, the user The presence or absence of contact with device 1200, device 1200 orientation or acceleration/deceleration and temperature change of device 1200.
  • Sensor assembly 1214 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1214 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1216 is configured to facilitate wired or wireless communication between device 1200 and other devices.
  • the device 1200 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • communication component 1216 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 1216 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 1200 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation is used to perform the panoramic capture method described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation is used to perform the panoramic capture method described above.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 1204 comprising instructions executable by processor 1218 of apparatus 1200 to perform the panoramic photographing method described above.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

本申请提供了一种全景拍摄方法、终端、旋转组件及全景拍摄装置,涉及摄像技术领域,该全景拍摄方法包括:在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像,向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;解决了通过同时使用终端设备中的前置摄像头和后置摄像头采集图像合成的全景图片的图像质量较低的问题;达到了仅使用一个像素较高的摄像头组件就能生成图像质量较高的全景图片的效果。

Description

全景拍摄方法、终端、旋转组件及全景拍摄装置 技术领域
本公开涉及摄像技术领域,特别涉及一种全景拍摄方法、终端、旋转组件及全景拍摄装置。
背景技术
全景图片是包含360度范围内的完整场景的图片,通常是由多张在不同角度位置拍摄到的的图片拼接而成。
手机和平板电脑等终端设备可以通过前置摄像头和后置摄像头来拍摄全景图片,前置摄像头和后置摄像头的FOV(Field Of View,视场角)需要达到180度。在拍摄全景图片时,终端设备同时打开前置摄像头和后置摄像头进行拍摄,并将通过前置摄像头拍摄到的图片和通过后置摄像头拍摄到的图片进行拼接合成为全景图片,但是终端设备上的前置摄像头的像素通常比较低,会导致得到的全景图片的图像质量较低。
发明内容
为了解决由终端设备的前置摄像头和后置摄像头拍摄到的图片合成的全景图片的图像质量较低的问题,本公开提供了一种全景拍摄方法、终端、旋转组件及全景拍摄装置。所述技术方案如下:
根据本公开的第一方面,提供一种全景拍摄方法,该方法包括:
在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像;
向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转;
在每个旋转指令发送后,通过摄像头组件采集旋转后的图像;
根据采集到的若干个图像生成全景图片。
本公开实施例提供的全景拍摄方法,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像并向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,在每个旋 转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;达到了通过旋转组件驱动同一个摄像头组件旋转至多个角度位置采集图像,并根据同一个摄像头组件在不同角度位置采集到的若干个图像生成全景图片,生成的全景图片的图像质量较高的效果。
可选的,该方法还包括:
确定摄像头组件的视场角FOV;
根据FOV确定旋转角度,旋转角度小于或等于FOV。
本公开实施例提供的全景拍摄方法,根据摄像头组件的FOV确定向旋转组件指示的旋转角度,在采集到生成全景图片所需的若干个图像的基础上,减少旋转次数和采集的图像的个数,优化了全景拍摄的流程。
可选的,向旋转组件依次发送至少一个旋转指令,包括:
向旋转组件发送第i个旋转指令,旋转组件用于根据接收到的第i个旋转指令驱动摄像头组件按照旋转方向旋转旋转角度至第i个角度位置,i为正整数;
检测总旋转角度是否达到全景角度,总旋转角度是第i个角度位置相对于起始角度位置所旋转的角度;
在总旋转角度小于全景角度时,则令i=i+1,再次执行向旋转组件发送第i个旋转指令的步骤。
可选的,当包括至少两个摄像头组件时,根据采集到的若干个图像生成全景图片,包括:
对于至少两个摄像头组件中的每个摄像头组件,根据摄像头组件采集到的若干个图像拼接得到与摄像头组件对应的显示图片;
根据每个摄像头组件所对应的显示图片拼接得到全景图片。
本公开实施例提供的全景拍摄方法,包括至少两个摄像头组件,可以通过多个摄像头组件采集更多不同角度位置的图像,达到了生成显示范围更广的全景图片的效果。
可选的,向旋转组件依次发送至少一个旋转指令,包括:
当摄像头组件与旋转组件包括在同一个终端中时,通过内部电路向旋转组件依次发送至少一个旋转指令;
或者,当摄像头组件与旋转组件包括在不同的终端中,且旋转组件中包括有通信组件时,通过通信组件向旋转组件依次发送至少一个旋转指令。
根据本公开的第二方面,提供一种全景拍摄终端,该全景拍摄终端包括: 摄像头组件、旋转组件和处理器,处理器分别与摄像头组件和旋转组件电性连接,摄像头组件与旋转组件相连,处理器用于执行如上述权利要求1至5任一的全景拍摄方法。
根据本公开的第三方面,提供一种旋转组件,该旋转组件包括:
底座;
设置在底座上的旋转台,旋转台用于放置控制终端;
通信组件,通信组件用于与放置于旋转台上的控制终端相连;
设置在底座上的旋转台驱动装置,旋转台驱动装置与通信组件电性相连,旋转驱动装置用于驱动旋转台进行旋转;
旋转台驱动装置,还用于通过通信组件依次接收控制终端发送的至少一个旋转指令,根据旋转指令驱动旋转台按照指定的旋转方向和旋转角度进行旋转;
其中,控制终端中包括摄像头组件,控制终端用于执行如上述权利要求1至5任一的全景拍摄方法。
根据本公开的第四方面,提供一种全景拍摄装置,该装置包括:
第一采集模块,被配置为在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像;
发送模块,被配置为向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转;
第二采集模块,被配置为在每个旋转指令发送后,通过摄像头组件采集旋转后的图像;
生成模块,被配置为根据采集到的若干个图像生成全景图片。
本公开实施例提供的全景拍摄装置,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像并向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;达到了通过旋转组件驱动同一个摄像头组件旋转至多个角度位置采集图像,并根据同一个摄像头组件在不同角度位置采集到的若干个图像生成全景图片,生成的全景图片的图像质量较高的效果。
可选的,该装置还包括:
第一确定模块,被配置为确定摄像头组件的视场角FOV;
第二确定模块,被配置为根据FOV确定旋转角度,旋转角度小于或等于FOV。
本公开实施例提供的全景拍摄装置,根据摄像头组件的FOV确定向旋转组件指示的旋转角度,在采集到生成全景图片所需的若干个图像的基础上,减少旋转次数和采集的图像的个数,优化了全景拍摄的流程。
可选的,发送模块包括:
发送子模块,被配置为向旋转组件发送第i个旋转指令,旋转组件用于根据接收到的第i个旋转指令驱动摄像头组件按照旋转方向旋转旋转角度至第i个角度位置,i为正整数;
检测子模块,被配置为检测总旋转角度是否达到全景角度,总旋转角度是第i个角度位置相对于起始角度位置所旋转的角度;
发送子模块,还被配置为在总旋转角度小于全景角度时,则令i=i+1,再次执行向旋转组件发送第i个旋转指令的步骤。
可选的,在包括至少两个摄像头组件时,生成模块包括:
第一拼接子模块,被配置为对于至少两个摄像头组件中的每个摄像头组件,根据摄像头组件采集到的若干个图像拼接得到与摄像头组件对应的显示图片;
第二拼接子模块,被配置为根据每个摄像头组件所对应的显示图片拼接得到全景图片。
本公开实施例提供的全景拍摄装置,包括至少两个摄像头组件,可以通过多个摄像头组件采集更多不同角度位置的图像,达到了生成显示范围更广的全景图片的效果。
可选的,发送模块,还被配置为在摄像头组件与旋转组件包括在同一个终端中时,通过内部电路向旋转组件依次发送至少一个旋转指令;
或者,发送模块,还被配置为在摄像头组件与旋转组件包括在不同的终端中,且旋转组件中包括有通信组件时,通过通信组件向旋转组件依次发送至少一个旋转指令。
根据本公开的第五方面,提供一种全景拍摄装置,该装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像;
向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转;
在每个旋转指令发送后,通过摄像头组件采集旋转后的图像;
根据采集到的若干个图像生成全景图片。
本公开实施例提供的全景拍摄装置,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像并向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;达到了通过旋转组件驱动同一个摄像头组件旋转至多个角度位置采集图像,并根据同一个摄像头组件在不同角度位置采集到的若干个图像生成全景图片,生成的全景图片的图像质量较高的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示意性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1A是根据一示例性实施例示出的一种全景拍摄终端的结构示意图;
图1B是根据另一示例性实施例示出的一种全景拍摄终端的结构示意图;
图2是根据一示例性实施例示出的一种旋转组件的结构示意图;
图3是根据一示例性实施例示出的一种全景拍摄系统的结构示意图;
图4是根据一示例性实施例示出的一种全景拍摄方法的流程图;
图5是根据一示例性实施例示出的一种全景拍摄方法的流程图;
图6是根据一示例性实施例示出的一种全景拍摄示意图;
图7是根据另一示例性实施例示出的一种全景拍摄方法的流程图;
图8是根据另一示例性实施例示出的一种全景拍摄方法的流程图;
图9是根据另一示例性实施例示出的一种全景拍摄方法的流程图;
图10是根据一示例性实施例示出的一种全景拍摄装置的框图;
图11是根据另一示例性实施例示出的一种全景拍摄装置的框图;
图12是根据另一示例性实施例示出的一种全景拍摄终端或控制终端的结构示意图。
具体实施方式
这里将详细地对示意性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示意性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1A是根据一示例性实施例示出的一种全景拍摄终端的结构示意图,该全景拍摄终端10包括:摄像头组件110、旋转组件120和处理器130。
可选的,摄像头组件110为鱼眼镜头,鱼眼镜头是一种FOV接近或等于180度的广角镜头,在实际实现时,该全景拍摄终端10中的摄像头组件110也可以是标准镜头、长焦镜头、变焦镜头或其他FOV较小的镜头。本实施例对全景拍摄终端10中的摄像头组件110的镜头类型和摄像头组件110的FOV不作限定。
旋转组件120中包括驱动装置,驱动装置用于驱动旋转组件120进行旋转。可选的,驱动装置是驱动马达。
处理器130分别与摄像头组件110和旋转组件120电性连接。可选的,处理器130与旋转组件120中的驱动装置通过内部电路电性连接,处理器130用于控制摄像头组件110采集图像,以及,用于控制驱动装置驱动该旋转组件120进行旋转。
摄像头组件110与旋转组件120相连,旋转组件120在旋转时,驱动摄像头组件110旋转。
可选的,全景拍摄终端10中包括至少两个摄像头组件,该至少两个摄像头组件分别与处理器130电性连接,且与旋转组件120相连,该至少两个摄像头组件沿与旋转组件120的旋转方向垂直的方向排列。比如,旋转组件120在水平方向上旋转,则摄像头组件沿竖直方向排列。可选的,全景拍摄终端10中的至少两个摄像头组件正对的角度位置相同。可选的,至少两个摄像头组件中的每个摄像头组件的FOV相同。
该全景拍摄终端10可以实现成为手机、平板电脑和笔记本电脑之类的具有可旋转的摄像头组件的电子设备,如上图1A以该全景拍摄终端10实现成为 手机为例;或者,该全景拍摄终端10可以实现成为集成有处理器和摄像头组件的可旋转的设备,如图1B所示,图1B以旋转组件120在水平方向上旋转,两个摄像头组件沿垂直方向设置且两个摄像头组件正对的角度位置相同为例,图1B中未示出处理器130。
图2是根据一示例性实施例示出的一种旋转组件的结构示意图,该旋转组件20包括:底座210、旋转台220、通信组件230和旋转台驱动装置240。
旋转台220设置在底座210上。
通信组件230设置在底座210或旋转台220上,通信组件230包括硬件通信接口和无线通信模块中的至少一种,通信组件230具有数据通信能力,当通信组件230是硬件通信接口时,通信组件230还具有供电能力。可选的,当通信组件230是硬件通信接口时,通信组件230直接固定在底座210或旋转台220上,或者,通信组件230与连接线相连,连接线的另一端设置在底座210或旋转台220上。图2以旋转组件20中的通信组件230是通过连接线固定在旋转台220上的硬件通信接口为例。
可选的,硬件通信接口是USB A型接口、USB B型接口、Mini USB A型接口、Mini USB B型接口、Mini USB AB型接口、Micro USB A型接口、MicroUSB B型接口、USB Type-C接口和Lightning接口(闪电接口)中的任意一种。
可选的,无线通信模块是WiFi(Wireless-Fidelity,无线保真)模块、蓝牙模块、NFC(Near Field Communication,近距离无线通信技术)模块以及Zigbee(Zigzag Flying ofBees,紫蜂)模块中的任意一种。
旋转台驱动装置240设置在底座210上,旋转台驱动装置240与通信组件230电性相连。可选的,旋转台驱动装置240是驱动马达。
旋转台驱动装置240用于驱动旋转台220进行旋转,可选的,旋转台220与旋转轴相连,旋转台驱动装置240通过驱动旋转轴旋转以驱动旋转台220旋转;或者,旋转台220上带有旋转齿轮或与旋转齿轮相连,旋转台驱动装置240上带有驱动齿轮或与驱动齿轮相连,驱动齿轮与旋转齿轮相啮合,旋转台驱动装置240通过驱动该驱动齿轮旋转以驱动旋转台220旋转。
在实际实现时,旋转组件20通常还包括外壳,旋转台驱动装置240可以设置于外壳内,旋转台220可以外露于外壳之外;当通信组件230是硬件通信接口时,通信组件可以外露于外壳之外,当通信组件230是无线通信模块时, 通信组件可以设置于外壳内。
可选的,图2所示的旋转组件20上可以放置有控制终端30,如图3所示,本公开一示例性实施例示出的一种全景拍摄系统的结构示意图,该系统包括:旋转组件20和控制终端30,控制终端30放置于旋转组件20上,且控制终端30通过旋转组件20中的通信组件230与旋转组件20相连。
旋转组件20中的旋转台220用于放置控制终端30,可选的,旋转台220上设置有凹槽,控制终端30可以横置或竖置于旋转台220的凹槽中,保证控制终端在旋转时的稳定性。
控制终端30是诸如手机、平板电脑、笔记本电脑之类的电子设备,控制终端30中包括摄像头组件,控制终端30中的摄像头组件的含义可以结合上述图1A所示的实施例中的摄像头组件的含义,本实施例对此不再赘述,图3中未示出控制终端30中的摄像头组件。
可选的,控制终端30中包括至少两个摄像头组件,该至少两个摄像头组件沿与旋转组件20的旋转方向垂直的方向排列。比如,旋转组件20驱动控制终端30在水平方向上旋转,则摄像头组件沿竖直方向排列。可选的,控制终端30中的至少两个摄像头组件正对的角度位置相同。可选的,至少两个摄像头组件中的每个摄像头组件的FOV相同。
控制终端30中还包括通信组件,控制终端30中的通信组件的类型与旋转组件20中的通信组件230的类型相同;控制终端30中的通信组件的含义可以结合上述图2所示的实施例中的旋转组件20中的通信组件230的含义,本实施例对此不再赘述。
旋转组件20中的通信组件230用于与放置于旋转台220上的控制终端30相连,也即,旋转组件20中的通信组件230与控制终端30中的通信组件相连。可选的,旋转组件20中的硬件通信接口用于与控制终端30中的硬件通信接口电性相连,控制终端30中的硬件通信接口与旋转组件20中的硬件通信接口的接口类型相同,控制终端30在放置于旋转台220上时,控制终端30中的硬件通信接口插入旋转组件20中的硬件通信接口中;和/或,旋转组件20通过无线通信模块与控制终端30中的无线通信模块建立无线通信连接。
旋转组件20通过通信组件与控制终端30相连后可以进行数据通信。旋转台驱动装置240,用于通过通信组件230依次接收控制终端发送的至少一个旋 转指令,根据旋转指令驱动旋转台220按照指定的旋转方向和旋转角度进行旋转。可选的,旋转台驱动装置240,还用于在驱动旋转台220进行旋转后,通过通信组件230向控制终端30发送反馈信号。
可选的,当旋转组件20中的硬件通信接口与控制终端30的硬件通信接口电性相连时,旋转组件20中的硬件通信接口还用于为旋转组件20中的旋转台驱动装置240供电。
需要说明的是,在实际实现时,图2和图3中的旋转组件20也可以由外接电源为旋转台驱动装置240供电,或者由干电池为旋转台驱动装置240进行供电,则旋转组件20中还可以包括电池盒和电池连接线等组件。
图4是根据一示例性实施例示出的一种全景拍摄方法的流程图,该方法应用于图1A或图1B所示的全景拍摄终端中,或者,应用于放置在图2所示旋转组件上的控制终端中,该方法包括如下几个步骤:
在步骤401中,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像。
在步骤402中,向旋转组件依次发送至少一个旋转指令。
其中,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转。
可选的,当摄像头组件和旋转组件包括在同一个终端中时,即当该方法用于如图1A或图1B所示的包括摄像头组件和旋转组件的全景拍摄终端中时,全景拍摄终端的处理器通过内部电路向旋转组件依次发送至少一个旋转指令。
可选的,当摄像头组件和旋转组件包括在不同的终端中,且旋转组件中包括有通信组件时,即当该方法用于如图3所示的全景拍摄系统中,旋转组件是如图2所示的包括通信组件的旋转组件,摄像头组件是放置在如图2所示的旋转组件上的控制终端中的摄像头组件时,控制终端通过通信组件向旋转组件依次发送至少一个旋转指令。
在步骤403中,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像。
在步骤404中,根据采集到的若干个图像生成全景图片。
综上所述,本公开实施例提供的全景拍摄方法,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像并向旋转组件依次发送至少一个旋 转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;解决了在同时使用终端设备的前置摄像头和后置摄像头采集图像合成全景图片时,由于前置摄像头的像素较低而造成的全景图片的图像质量较低的问题;由于全景拍摄终端中的处理器是通过指示旋转组件驱动摄像头组件进行旋转并采集图像,根据由同一个摄像头组件在不同的角度位置采集到的若干个图像生成全景图片的,达到了可以仅使用一个像素较高的摄像头组件就能生成图像质量较高的全景图片的效果。
图5是根据一示例性实施例示出的一种全景拍摄方法的流程图,该方法应用于图1A或图1B所示的全景拍摄终端中,该方法可以由图1A或图1B所示的全景拍摄终端中的处理器来实现;或者,该方法应用于如图3所示的全景拍摄系统中,该方法可以由放置在图2所示的旋转组件上的控制终端来实现。该方法包括如下几个步骤:
在步骤501中,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像。
用户可以在全景拍摄终端或控制终端的相机应用中选择进入全景拍摄模式,当处于全景拍摄模式,且处理器检测到存在作用于拍摄按钮的按键操作时,启动全景拍摄。
其中,起始角度位置是终端设备在启动全景拍摄时,摄像头组件正对的角度位置。
在步骤502中,向旋转组件发送第i个旋转指令。
其中,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转,旋转组件用于根据接收到的第i个旋转指令驱动摄像头组件按照旋转方向旋转旋转角度至第i个角度位置,i为正整数,i的起始值为1。
可选的,旋转指令中包括旋转方向字段和旋转角度字段,旋转指令中的旋转方向字段用于指示旋转方向,旋转指令中的旋转角度字段用于指示旋转角度。旋转组件对旋转指令进行解析得到旋转方向字段和旋转角度字段,根据旋转方向字段确定旋转方向,根据旋转角度字段确定旋转角度。比如,旋转组件对旋转指令解析得到旋转方向字段为right,旋转角度字段为30,则表示向右旋转 30度。
可选的,旋转指令中包括具有预定格式的旋转角度字段,该具有预定格式的旋转角度字段用于指示旋转方向和旋转角度,预定格式包括符号和数字中的至少一种。旋转组件对旋转指令进行解析得到具有预定格式的旋转角度字段,根据具有预定格式的旋转角度字段确定旋转方向和旋转角度。比如,旋转组件对旋转指令解析得到的具有预定格式的旋转角度字段为+30,则表示向右旋转30度,再比如,旋转组件对旋转指令解析得到的具有预定格式的旋转角度字段为-50,则表示向左旋转50度。
第i个旋转指令用于指示的旋转方向和旋转角度是旋转组件驱动摄像头组件从第i-1个角度位置旋转至第i个角度位置的旋转方向和旋转角度,可选的,不同的旋转指令用于指示的旋转方向和旋转角度相同或者不同,本公开实施例以每个旋转指令指示的旋转方向和旋转角度均相同为例进行说明。需要说明的是,第0个角度位置即为起始角度位置。
在步骤503中,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像。
其中,旋转后的图像是摄像头组件在旋转组件的驱动下进行旋转后所采集的图像。
该步骤可以通过以下两种实现方式中的任意一种实现方式来实现:
在第一种可能的实现方式中,在每个旋转指令发送后,当达到预定时间间隔时,通过摄像头组件采集旋转后的图像。
其中,预定时间间隔为系统预设值或由用户自定义。
在另一种可能的实现方式中,在每个旋转指令发送后,当接收到旋转组件返回的反馈信号时,通过摄像头组件采集旋转后的图像。
当旋转组件根据旋转指令进行旋转后,旋转组件向处理器返回反馈信号,处理器在接收到反馈信号后,确定摄像头组件已经在旋转组件的驱动下旋转至第i个角度位置,则控制摄像头组件采集图像,采集到的图像即为第i个角度位置的图像。
在步骤504中,检测总旋转角度是否达到全景角度。
其中,总旋转角度是第i个角度位置相对于起始角度位置所旋转的角度,全景角度是启动全景拍摄拍摄全景图片时,全景图片所覆盖的角度范围,全景角度为系统预设值或由用户自定义。可选的,全景角度是360度。
在步骤505中,在总旋转角度小于全景角度时,则令i=i+1,再次执行向旋转组件发送第i个旋转指令的步骤。
在步骤506中,若总旋转角度达到全景角度,根据采集到的若干个图像生成全景图片。
当总旋转角度达到全景角度时,处理器结束全景拍摄并根据采集图像的顺序对采集到的若干个图像进行拼接,在对第i-1个图像和第i个图像进行拼接时,包括如下几个步骤:
1、对第i-1个图像和第i个图像进行图像预处理,图像预处理包括图像去噪、图像直方图均衡中的至少一种。可选的,当摄像头组件为鱼眼镜头时,图像预处理还包括畸变校正。
2、提取第i-1个图像和第i个图像的图像特征,图像特征包括特征点、特征轮廓和特征曲线中的至少一种,常见的特征点包括SIFT(Scale-invariant feature transform,尺度不变特征变换)、FAST(Features fromaccelerated segment test)和SURF(Speeded Up Robust Features)中的至少一种。
3、将第i个图像与第i-1个图像进行拼接,并将第i-1个图像中与第i个图像的图像特征相同的图像特征部分丢弃,或者,将第i个图像中与第i-1个图像的图像特征相同的图像特征部分丢弃,直至生成完整的全景图片。
需要说明的是,当全景角度为360度,且总旋转角度达到全景角度时,终端设备的第i个角度位置与起始角度位置是相同的角度位置,终端设备在第i个角度位置采集到的图像与在起始角度位置采集到的图像可能是相同,则为了避免生成的全景图片中存在重复的部分,终端设备可以不使用在起始角度位置采集到的图像,而使用在第1个角度位置、第2个角度位置…第i个角度位置所采集到的i个图像生成全景图片。
需要说明的是,当图1A或图1B所示的全景拍摄终端中包括至少两个摄像头组件时,或者,当放置于图2所示的旋转组件上的控制终端中包括至少两个摄像头组件时,向旋转组件发送每个旋转指令后,可以同时通过每个摄像头组件采集图像,也可以仅通过其中部分摄像头组件采集图像,本公开实施例以同时通过每个摄像头组件采集图像为例进行说明。
则该步骤可以包括如下两个步骤:
1、对于至少两个摄像头组件中的每个摄像头组件,根据摄像头组件采集到的若干个图像拼接得到与摄像头组件对应的显示图片。
使用上述三个步骤示出的方法将根据摄像头组件采集到的若干个图像拼接得到与摄像头组件对应的显示图片。
2、根据每个摄像头组件所对应的显示图片拼接得到全景图片。
对于每两个相邻设置的摄像头组件所对应的显示图片,提取这两个显示图片的图像特征,将这两个显示图片进行拼接。将两个全景图片进行拼接的方法可以结合上述将第i-1个图像和第i个图像进行拼接的方法,本实施例对此不再赘述。
需要说明的是,在实际实现时,也可以是在接收到在检测到结束全景拍摄时,根据采集到的若干个图像生成全景图片。比如,当用户在相机应用中选择结束全景模式时,结束全景拍摄并根据采集到的若干个图像生成全景图片。
综上所述,本公开实施例提供的全景拍摄方法,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像并向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;解决了在同时使用终端设备的前置摄像头和后置摄像头采集图像合成全景图片时,由于前置摄像头的像素较低而造成的全景图片的图像质量较低的问题;由于全景拍摄终端中的处理器是通过指示旋转组件驱动摄像头组件进行旋转并采集图像,根据由同一个摄像头组件在不同的角度位置采集到的若干个图像生成全景图片的,达到了可以仅使用一个像素较高的摄像头组件就能生成图像质量较高的全景图片的效果。
本公开实施例提供的全景拍摄方法,摄像头组件在处理器或控制终端的驱动下进行旋转,避免了由用户旋转终端设备中的摄像头组件进行旋转时因抖动、旋转角度太大/太小、位置偏移等导致的生成的全景图片的图片质量较差的问题,达到了提高生成的全景图片的图像质量的效果。
本公开实施例提供的全景拍摄方法,可以仅使用一个摄像头组件,且对于摄像头组件的FOV没有限制,扩大了该全景拍摄方法的适用范围。
本公开实施例提供的全景拍摄方法,全景拍摄终端或控制终端中可以包括至少两个摄像头组件,达到了可以通过多个摄像头组件采集更多不同角度位置的图像,生成显示范围更广的全景图片的效果。
在一个示例性的例子中,以上述全景拍摄方法用于图1A所示的全景拍摄 终端10中为例,全景拍摄终端10中的摄像头组件进行全景拍摄时的俯视示意图如图6所示。假设全景拍摄终端10中的处理器向旋转组件依次发送的若干个旋转指令用于指示的旋转方向均为向右旋转,指示的旋转角度均为90度,且全景角度为360度。
处理器启动全景拍摄时,在起始角度位置601采集图像,如图6中的(a)所示,并向旋转组件发送第1个旋转指令,旋转组件根据第1个旋转指令驱动摄像头组件向右旋转90度至第1个角度位置602后向处理器发送反馈信号,处理器在接收到反馈信号后,通过摄像头组件在第1个角度位置602处采集图像,如图6中的(b)所示。
处理器检测总旋转角度为90度小于全景角度,向旋转组件发送第2个旋转指令,旋转组件根据第2个旋转指令驱动摄像头组件向右旋转90度至第2个角度位置603后向处理器发送反馈信号,处理器在接收到反馈信号后,通过摄像头组件在第2个角度位置603处采集图像,如图6中的(c)所示。
处理器检测总旋转角度为180度小于全景角度,向旋转组件发送第3个旋转指令,旋转组件根据第3个旋转指令驱动摄像头组件向右旋转90度至第3个角度位置604后向处理器发送反馈信号,处理器在接收到反馈信号后,通过摄像头组件在第3个角度位置604处采集图像,如图6中的(d)所示。
处理器检测总旋转角度为270度小于全景角度,向旋转组件发送第4个旋转指令,旋转组件根据第4个旋转指令驱动摄像头组件向右旋转90度至第4个角度位置605后向处理器发送反馈信号,处理器在接收到反馈信号后,通过摄像头组件在第4个角度位置605处采集图像,如图6中的(e)所示。此时处理器检测到总旋转角度为360,则结束全景拍摄并将在第1个角度位置602、第2个角度位置603、第3个角度位置604和第4个角度位置605处采集到的4个图像合成为全景图片。
需要说明的是,图6中将摄像头组件在进行全景拍摄时所处的(a)、(b)、(c)、(d)和(e)的五个状态在不同的显示图中进行显示,但是实际实现时,摄像头组件都是绕着同一个旋转轴61进行旋转的。
可选的,基于图5所示的实施例,全景拍摄终端的处理器通过内部电路向旋转组件发送的旋转指令,或者,控制终端向旋转组件发送的旋转指令用于指示的旋转角度是由处理器根据摄像头组件的FOV确定的,则该方法还包括如 下几个步骤,如图7所示:
在步骤701中,确定摄像头组件的FOV。
可选的,摄像头组件的FOV包括在全景拍摄终端或控制终端的配置信息中,全景拍摄终端的处理器或者控制终端通过查询配置信息确定摄像头组件的FOV。
在步骤702中,根据FOV确定旋转角度,旋转角度小于或等于FOV。
该步骤至少存在以下两种可能的实现方式:
在第一种可能的实现方式中,将摄像头组件的FOV确定为旋转角度。
在第二种可能的实现方式中,当摄像头组件的FOV不能被全景角度整除时,若将摄像头组件的FOV确定为旋转角度,则在总旋转角度达到全景角度时,旋转组件驱动摄像头组件进行旋转的次数不是整数次。比如,全景角度为360度,摄像头组件的FOV为100度,若确定旋转角度为100度,则旋转组件需要驱动摄像头组件进行3.6次旋转使总旋转角度达到360度,并不合理。此时,可以使用以下几个步骤确定旋转角度:
1、将全景角度和FOV的商确定为旋转次数。
2、对旋转次数执行向上取整得到调整后的旋转次数。
3、将全景角度和调整后的旋转次数的商确定为旋转角度。
在上述示例性的例子中,旋转次数为全景角度和FOV的商,即旋转次数为360/100=3.6次,将旋转次数向上取整得到调整后的旋转次数为4次,确定旋转角度为全景角度和调整后的旋转次数的商,即旋转角度为360/4=90度。
综上所述,本公开实施例提供的全景拍摄方法,根据摄像头组件的FOV确定旋转角度,在采集到生成全景图片所需的若干个图像的基础上,减少旋转次数和采集的图像的个数,优化了全景拍摄的流程。
可选的,在基于上述实施例的其他可选实施例中,上述步骤504-步骤506可被替代实现为如下步骤,如图8所示:
在步骤801中,检测旋转次数是否达到总旋转次数。
其中,总旋转次数是由全景角度与旋转角度的商所确定的次数,或者,总旋转次数是由全景角度与旋转角度的商执行向上取整后所确定的次数。
在步骤802中,若旋转次数小于总旋转次数,则令i=i+1,再次执行向旋转组件发送第i个旋转指令的步骤。
在步骤803中,若总旋转角度达到全景角度,根据采集到的若干个图像生成全景图片。
可选的,在基于上述实施例的其他可选实施例中,上述步骤502-606可被替代实现为如下步骤,如图9所示:
在步骤901中,向旋转组件发送旋转指令。
其中,旋转指令用于指示旋转方向、旋转角度、旋转频率和总旋转次数,旋转指令用于指示旋转组件按照指定的旋转方向、旋转角度和旋转频率旋转指定的总旋转次数,旋转频率用于指示旋转组件进行的每两次旋转之间的时间间隔,总旋转次数的含义可以结合上述图8所示的实施例。
在步骤902中,当接收到旋转组件返回的反馈信号时,通过摄像头组件采集旋转后的图像。
旋转组件在完成每次旋转后,向全景拍摄终端的处理器返回反馈信号,或者,向控制终端返回反馈信号。
在步骤903中,根据采集到的若干个图像生成全景图片。
可选的,检测当前时刻与上一个采集图像的时刻之间的时间间隔是否达到预设时间间隔,当达到预设时间间隔时,结束全景拍摄并根据采集到的若干个图像生成全景图片,预设时间间隔是系统预设值或由用户自定义。
可选的,根据总旋转次数确定采集的总图像个数,总图像个数为总旋转次数加一所确定的个数,检测采集到的图像个数是否达到总图像个数,当达到总图像个数时,结束全景拍摄并根据采集到的若干个图像生成全景图片。
比如,在图6所示的示例性的例子中,全景拍摄终端的处理器向旋转组件发送的旋转指令用于指示的旋转方向为向右旋转,旋转角度为90度,旋转频率为10秒/次,旋转次数为4次,则总图像个数为5个。则旋转组件在驱动摄像头组件旋转至第1个角度位置602后,向处理器发送反馈信号,处理器接收到反馈信号后在第1个角度位置602处采集图像。
旋转组件在驱动摄像头组件旋转至第1个角度位置602后,经过10秒,驱动摄像头组件从第1个角度位置602继续旋转至第2个角度位置603,向处理器发送反馈信号,处理器接收到反馈信号后在第2个角度位置603处采集图像。
同理,旋转组件继续驱动摄像头组件旋转至第3个角度位置604和第4个 角度位置605后,也向处理器发送反馈信号,处理器继续在第3个角度位置604和第4个角度位置605处采集图像。当摄像头组件在旋转组件的驱动下旋转至第4个角度位置605处时,处理器检测到采集到的图像个数为6个,达到总图像个数,处理器结束全景拍摄并根据采集到的6个图像生成全景图片。
综上所述,本公开实施例提供的全景拍摄方法,向旋转组件发送一个旋转指令后,旋转组件根据该旋转指令旋转指定的总旋转次数,不需要每次都向旋转组件发送旋转指令,达到了减少与旋转组件之间的通信次数,减少功耗的效果。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图10是根据一示例性实施例示出的一种全景拍摄装置的框图,该装置可以通过硬件、软件或两者的结合实现成为图1A或图1B所示的全景拍摄装置的部分或者全部;或者,该装置可以通过硬件、软件或两者的结合实现成为放置在如图2所示的旋转组件上的控制终端的部分或者全部,该装置包括但不限于:
第一采集模块1010,被配置为在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像。
发送模块1020,被配置为向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转。
第二采集模块1030,被配置为在每个旋转指令发送后,通过摄像头组件采集旋转后的图像。
生成模块1040,被配置为根据采集到的若干个图像生成全景图片。
综上所述,本公开实施例提供的全景拍摄装置,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像并向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;解决了在同时使用终端设备的前置摄像头和后置摄像头采集图像合成全景图片时,由于前置摄像头的像素较低而造成的全景图片的 图像质量较低的问题;由于全景拍摄终端中的处理器是通过指示旋转组件驱动摄像头组件进行旋转并采集图像,根据由同一个摄像头组件在不同的角度位置采集到的若干个图像生成全景图片的,达到了可以仅使用一个像素较高的摄像头组件就能生成图像质量较高的全景图片的效果。
图11是根据另一示例性实施例示出的一种全景拍摄装置的框图,该装置可以通过硬件、软件或两者的结合实现成为图1A或图1B所示的全景拍摄装置的部分或者全部;或者,该装置可以通过硬件、软件或两者的结合实现成为放置在如图2所示的旋转组件上的控制终端的部分或者全部,该装置包括但不限于:
第一确定模块1110,被配置为确定摄像头组件的FOV。
第二确定模块1120,被配置为根据FOV确定旋转角度,旋转角度小于或等于FOV。
第一采集模块1130,被配置为在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像。
发送模块1140,被配置为向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转。
可选的,发送模块1140,还被配置为在摄像头组件与旋转组件包括在同一个终端中时,通过内部电路向旋转组件依次发送至少一个旋转指令;
或者,发送模块1140,还被配置为在摄像头组件与旋转组件包括在不同的终端中,且旋转组件中包括有通信组件时,通过通信组件向旋转组件依次发送至少一个旋转指令。
可选的,发送模块1140包括:
发送子模块1141,被配置为向旋转组件发送第i个旋转指令,旋转组件用于根据接收到的第i个旋转指令驱动摄像头组件按照旋转方向旋转旋转角度至第i个角度位置,i为正整数。
检测子模块1142,被配置为检测总旋转角度是否达到全景角度,总旋转角度是第i个角度位置相对于起始角度位置所旋转的角度。
发送子模块1141,还被配置为在总旋转角度小于全景角度时,则令i=i+1,再次执行向旋转组件发送第i个旋转指令的步骤。
第二采集模块1150,被配置为在每个旋转指令发送后,通过摄像头组件采集旋转后的图像。
生成模块1160,被配置为根据采集到的若干个图像生成全景图片。
可选的,全景拍摄终端中包括至少两个摄像头组件,生成模块1160包括:
第一拼接子模块1161,被配置为对于至少两个摄像头组件中的每个摄像头组件,根据摄像头组件采集到的若干个图像拼接得到与摄像头组件对应的显示图片。
第二拼接子模块1162,被配置为根据每个摄像头组件所对应的显示图片拼接得到全景图片。
综上所述,本公开实施例提供的全景拍摄装置,在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像并向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,在每个旋转指令发送后,通过摄像头组件采集旋转后的图像,根据采集到的若干个图像生成全景图片;解决了在同时使用终端设备的前置摄像头和后置摄像头采集图像合成全景图片时,由于前置摄像头的像素较低而造成的全景图片的图像质量较低的问题;由于全景拍摄终端中的处理器是通过指示旋转组件驱动摄像头组件进行旋转并采集图像,根据由同一个摄像头组件在不同的角度位置采集到的若干个图像生成全景图片的,达到了可以仅使用一个像素较高的摄像头组件就能生成图像质量较高的全景图片的效果。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种全景拍摄装置,能够实现本公开提供的全景拍摄方法,该装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像;
向旋转组件依次发送至少一个旋转指令,旋转指令用于指示旋转组件按照指定的旋转方向和旋转角度进行旋转,旋转组件用于驱动摄像头组件旋转;
在每个旋转指令发送后,通过摄像头组件采集旋转后的图像;
根据采集到的若干个图像生成全景图片。
图12是根据一示例性实施例示出的一种全景拍摄终端或控制终端的框图。例如,装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,个人数字助理等。
参照图12,装置1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括一个或多个处理器1218来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在装置1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为装置1200的各种组件提供电力。电源组件1206可以包括电源管理系统,一个或多个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当装置1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄 像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到装置1200的打开/关闭状态,组件的相对定位,例如组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述全景拍摄方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1218执行以完成上述全景拍摄方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示意性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种全景拍摄方法,其特征在于,所述方法包括:
    在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像;
    向旋转组件依次发送至少一个旋转指令,所述旋转指令用于指示所述旋转组件按照指定的旋转方向和旋转角度进行旋转,所述旋转组件用于驱动所述摄像头组件旋转;
    在每个所述旋转指令发送后,通过所述摄像头组件采集旋转后的图像;
    根据采集到的若干个图像生成全景图片。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述摄像头组件的视场角FOV;
    根据所述FOV确定所述旋转角度,所述旋转角度小于或等于所述FOV。
  3. 根据权利要求1所述的方法,其特征在于,所述向旋转组件依次发送至少一个旋转指令,包括:
    向所述旋转组件发送第i个旋转指令,所述旋转组件用于根据接收到的所述第i个旋转指令驱动所述摄像头组件按照所述旋转方向旋转所述旋转角度至第i个角度位置,i为正整数;
    检测总旋转角度是否达到全景角度,所述总旋转角度是所述第i个角度位置相对于所述起始角度位置所旋转的角度;
    在所述总旋转角度小于所述全景角度时,则令i=i+1,再次执行所述向所述旋转组件发送第i个旋转指令的步骤。
  4. 根据权利要求1所述的方法,其特征在于,当包括至少两个所述摄像头组件时,所述根据采集到的若干个图像生成全景图片,包括:
    对于至少两个所述摄像头组件中的每个摄像头组件,根据所述摄像头组件采集到的所述若干个图像拼接得到与所述摄像头组件对应的显示图片;
    根据每个所述摄像头组件所对应的所述显示图片拼接得到所述全景图片。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述向旋转组件依 次发送至少一个旋转指令,包括:
    当所述摄像头组件与所述旋转组件包括在同一个终端中时,通过内部电路向所述旋转组件依次发送所述至少一个旋转指令;
    或者,
    当所述摄像头组件与所述旋转组件包括在不同的终端中,且所述旋转组件中包括有通信组件时,通过所述通信组件向所述旋转组件依次发送所述至少一个旋转指令。
  6. 一种全景拍摄终端,其特征在于,所述全景拍摄终端包括:摄像头组件、旋转组件和处理器,所述处理器分别与所述摄像头组件和所述旋转组件电性连接,所述摄像头组件与所述旋转组件相连,所述处理器用于执行如上述权利要求1至5任一所述的全景拍摄方法。
  7. 一种旋转组件,其特征在于,所述旋转组件包括:
    底座;
    设置在所述底座上的旋转台,所述旋转台用于放置控制终端;
    通信组件,所述通信组件用于与放置于所述旋转台上的所述控制终端相连;
    设置在所述底座上的旋转台驱动装置,所述旋转台驱动装置与所述通信组件电性相连,所述旋转驱动装置用于驱动所述旋转台进行旋转;
    所述旋转台驱动装置,还用于通过所述通信组件依次接收所述控制终端发送的至少一个旋转指令,根据所述旋转指令驱动所述旋转台按照指定的旋转方向和旋转角度进行旋转;
    其中,所述控制终端中包括摄像头组件,所述控制终端用于执行如上述权利要求1至5任一所述的全景拍摄方法。
  8. 一种全景拍摄装置,其特征在于,所述装置包括:
    第一采集模块,被配置为在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像;
    发送模块,被配置为向所述旋转组件依次发送至少一个旋转指令,所述旋转指令用于指示所述旋转组件按照指定的旋转方向和旋转角度进行旋转,所述旋转组件用于驱动所述摄像头组件旋转;
    第二采集模块,被配置为在每个所述旋转指令发送后,通过所述摄像头组件采集旋转后的图像;
    生成模块,被配置为根据采集到的若干个图像生成全景图片。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    第一确定模块,被配置为确定所述摄像头组件的视场角FOV;
    第二确定模块,被配置为根据所述FOV确定所述旋转角度,所述旋转角度小于或等于所述FOV。
  10. 根据权利要求8所述的装置,其特征在于,所述发送模块包括:
    发送子模块,被配置为向所述旋转组件发送第i个旋转指令,所述旋转组件用于根据接收到的所述第i个旋转指令驱动所述摄像头组件按照所述旋转方向旋转所述旋转角度至第i个角度位置,i为正整数;
    检测子模块,被配置为检测总旋转角度是否达到全景角度,所述总旋转角度是所述第i个角度位置相对于所述起始角度位置所旋转的角度;
    所述发送子模块,还被配置为在所述总旋转角度小于所述全景角度时,则令i=i+1,再次执行所述向所述旋转组件发送第i个旋转指令的步骤。
  11. 根据权利要求8所述的装置,其特征在于,在包括至少两个所述摄像头组件时,所述生成模块包括:
    第一拼接子模块,被配置为对于至少两个所述摄像头组件中的每个摄像头组件,根据所述摄像头组件采集到的所述若干个图像拼接得到与所述摄像头组件对应的显示图片;
    第二拼接子模块,被配置为根据每个所述摄像头组件所对应的所述显示图片拼接得到所述全景图片。
  12. 根据权利要求8至11任一所述的装置,其特征在于,
    所述发送模块,还被配置为在所述摄像头组件与所述旋转组件包括在同一个终端中时,通过内部电路向所述旋转组件依次发送所述至少一个旋转指令;
    或者,
    所述发送模块,还被配置为在所述摄像头组件与所述旋转组件包括在不同 的终端中,且所述旋转组件中包括有通信组件时,通过所述通信组件向所述旋转组件依次发送所述至少一个旋转指令。
  13. 一种全景拍摄装置,其特征在于,所述装置包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在检测到启动全景拍摄时,通过摄像头组件在起始角度位置采集图像;
    向旋转组件依次发送至少一个旋转指令,所述旋转指令用于指示所述旋转组件按照指定的旋转方向和旋转角度进行旋转,所述旋转组件用于驱动所述摄像头组件旋转;
    在每个所述旋转指令发送后,通过所述摄像头组件采集旋转后的图像;
    根据采集到的若干个图像生成全景图片。
PCT/CN2016/096738 2016-08-25 2016-08-25 全景拍摄方法、终端、旋转组件及全景拍摄装置 WO2018035811A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/096738 WO2018035811A1 (zh) 2016-08-25 2016-08-25 全景拍摄方法、终端、旋转组件及全景拍摄装置
CN201680000811.9A CN106416224A (zh) 2016-08-25 2016-08-25 全景拍摄方法、终端、旋转组件及全景拍摄装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096738 WO2018035811A1 (zh) 2016-08-25 2016-08-25 全景拍摄方法、终端、旋转组件及全景拍摄装置

Publications (1)

Publication Number Publication Date
WO2018035811A1 true WO2018035811A1 (zh) 2018-03-01

Family

ID=58087529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096738 WO2018035811A1 (zh) 2016-08-25 2016-08-25 全景拍摄方法、终端、旋转组件及全景拍摄装置

Country Status (2)

Country Link
CN (1) CN106416224A (zh)
WO (1) WO2018035811A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241618A (zh) * 2017-08-07 2017-10-10 苏州市广播电视总台 收录方法和收录装置
CN108846799A (zh) * 2018-05-29 2018-11-20 黄河科技学院 一种基于互联网的图像全景展示方法
WO2020238380A1 (zh) * 2019-05-31 2020-12-03 维沃移动通信有限公司 全景拍摄方法及终端设备
CN112287155A (zh) * 2020-10-30 2021-01-29 维沃移动通信有限公司 图片处理方法及装置
CN112306153A (zh) * 2020-10-30 2021-02-02 联想(北京)有限公司 一种电子设备及信息处理方法
CN114125270A (zh) * 2021-10-29 2022-03-01 山东顺国电子科技有限公司 多角度影像拼接、呈现方法
CN114928696A (zh) * 2022-05-11 2022-08-19 北京有竹居网络技术有限公司 拍摄方法、装置和拍摄设备
WO2022242169A1 (zh) * 2021-05-21 2022-11-24 深圳创维-Rgb电子有限公司 电视拍照方法、装置、设备与计算机可读存储介质
CN117278733A (zh) * 2023-11-22 2023-12-22 潍坊威龙电子商务科技有限公司 全景摄像在vr头显中的显示方法及系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035811A1 (zh) * 2016-08-25 2018-03-01 北京小米移动软件有限公司 全景拍摄方法、终端、旋转组件及全景拍摄装置
CN108195308B (zh) * 2017-12-28 2020-04-14 盎锐(上海)信息科技有限公司 3d扫描装置、系统及方法
CN107948528A (zh) * 2017-12-28 2018-04-20 盎锐(上海)信息科技有限公司 用于全景拍摄的拍摄终端支撑装置及系统
CN108111835B (zh) * 2017-12-28 2019-12-10 盎锐(上海)信息科技有限公司 用于3d影像成像的拍摄装置、系统及方法
CN108391115B (zh) * 2018-02-07 2019-10-15 盎锐(上海)信息科技有限公司 基于电脑的3d影像成像方法及成像系统
CN108845685A (zh) * 2018-06-01 2018-11-20 广东小天才科技有限公司 一种触控笔
CN108765500A (zh) * 2018-08-27 2018-11-06 深圳市寒武纪智能科技有限公司 一种旋转台及机器人相机标定系统
CN109743489A (zh) * 2019-02-14 2019-05-10 南京泓众电子科技有限公司 一种旋转式相机及大视角照片拍摄方法
CN110493457B (zh) * 2019-07-30 2021-10-15 维沃移动通信有限公司 一种终端设备控制方法及终端设备
CN110876018B (zh) * 2019-10-30 2021-10-01 深圳传音控股股份有限公司 移动终端及移动终端的控制方法、计算机存储介质
CN113273172A (zh) * 2020-08-12 2021-08-17 深圳市大疆创新科技有限公司 全景拍摄方法、装置、系统及计算机可读存储介质
CN114630037B (zh) * 2022-03-22 2024-02-02 北京有竹居网络技术有限公司 拍摄装置及其控制方法、装置、可读存储介质和电子设备
CN114727018A (zh) * 2022-03-30 2022-07-08 广东小天才科技有限公司 可旋转的内容捕获装置及内容捕获系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279515A (zh) * 2010-06-09 2011-12-14 鸿富锦精密工业(深圳)有限公司 全景拍照装置及方法
US20130141524A1 (en) * 2012-06-08 2013-06-06 Apple Inc. Methods and apparatus for capturing a panoramic image
CN104243805A (zh) * 2013-06-20 2014-12-24 Lg电子株式会社 移动终端和控制移动终端的方法
CN104320581A (zh) * 2014-10-28 2015-01-28 广东欧珀移动通信有限公司 一种全景拍摄的方法
CN105357433A (zh) * 2015-10-13 2016-02-24 哈尔滨工程大学 一种高速旋转焦距自适应全景成像方法
CN106416224A (zh) * 2016-08-25 2017-02-15 北京小米移动软件有限公司 全景拍摄方法、终端、旋转组件及全景拍摄装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795924B (zh) * 2014-02-07 2018-06-15 宇龙计算机通信科技(深圳)有限公司 全景拍照装置及方法
CN104735356A (zh) * 2015-03-23 2015-06-24 深圳市欧珀通信软件有限公司 全景照片拍摄方法及装置
CN105025222A (zh) * 2015-07-03 2015-11-04 广东欧珀移动通信有限公司 一种拍摄方法及移动终端
CN105072347A (zh) * 2015-08-27 2015-11-18 厦门美图移动科技有限公司 一种拍摄全景照片的方法、移动终端以及配套设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279515A (zh) * 2010-06-09 2011-12-14 鸿富锦精密工业(深圳)有限公司 全景拍照装置及方法
US20130141524A1 (en) * 2012-06-08 2013-06-06 Apple Inc. Methods and apparatus for capturing a panoramic image
CN104243805A (zh) * 2013-06-20 2014-12-24 Lg电子株式会社 移动终端和控制移动终端的方法
CN104320581A (zh) * 2014-10-28 2015-01-28 广东欧珀移动通信有限公司 一种全景拍摄的方法
CN105357433A (zh) * 2015-10-13 2016-02-24 哈尔滨工程大学 一种高速旋转焦距自适应全景成像方法
CN106416224A (zh) * 2016-08-25 2017-02-15 北京小米移动软件有限公司 全景拍摄方法、终端、旋转组件及全景拍摄装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241618A (zh) * 2017-08-07 2017-10-10 苏州市广播电视总台 收录方法和收录装置
CN108846799A (zh) * 2018-05-29 2018-11-20 黄河科技学院 一种基于互联网的图像全景展示方法
WO2020238380A1 (zh) * 2019-05-31 2020-12-03 维沃移动通信有限公司 全景拍摄方法及终端设备
CN112287155A (zh) * 2020-10-30 2021-01-29 维沃移动通信有限公司 图片处理方法及装置
CN112306153A (zh) * 2020-10-30 2021-02-02 联想(北京)有限公司 一种电子设备及信息处理方法
CN112287155B (zh) * 2020-10-30 2024-03-22 维沃移动通信有限公司 图片处理方法及装置
WO2022242169A1 (zh) * 2021-05-21 2022-11-24 深圳创维-Rgb电子有限公司 电视拍照方法、装置、设备与计算机可读存储介质
CN114125270A (zh) * 2021-10-29 2022-03-01 山东顺国电子科技有限公司 多角度影像拼接、呈现方法
CN114125270B (zh) * 2021-10-29 2023-07-18 山东顺国电子科技有限公司 多角度影像拼接、呈现方法
CN114928696A (zh) * 2022-05-11 2022-08-19 北京有竹居网络技术有限公司 拍摄方法、装置和拍摄设备
CN117278733A (zh) * 2023-11-22 2023-12-22 潍坊威龙电子商务科技有限公司 全景摄像在vr头显中的显示方法及系统
CN117278733B (zh) * 2023-11-22 2024-03-19 潍坊威龙电子商务科技有限公司 全景摄像在vr头显中的显示方法及系统

Also Published As

Publication number Publication date
CN106416224A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018035811A1 (zh) 全景拍摄方法、终端、旋转组件及全景拍摄装置
JP6106764B2 (ja) 撮像装置及びタイムラプス撮像方法
KR101834674B1 (ko) 영상 촬영 방법 및 장치
JP6134803B2 (ja) 映像記録装置およびカメラ機能制御プログラム
EP3328064B1 (en) Method and device for controlling electronic device and computer-readable storage medium
EP2523450B1 (en) Handheld electronic device with dual image capturing method and computer program product
KR101725533B1 (ko) 파노라마 이미지 획득을 위한 방법 및 단말기
EP3174283B1 (en) Preview image display method and apparatus, computer program and recording medium
US10334157B2 (en) Method of setting initial position of camera, camera, and camera system
WO2016029641A1 (zh) 照片获取方法及装置
US20100194860A1 (en) Method of stereoscopic 3d image capture using a mobile device, cradle or dongle
CN106210496B (zh) 照片拍摄方法及装置
WO2014071840A1 (zh) 一种拍摄照片和视频的方法及装置
US10158798B2 (en) Imaging apparatus and method of controlling the same
CN104243818A (zh) 图像处理方法、装置及设备
CN104869314A (zh) 拍照方法及装置
JP2017168882A (ja) 画像処理装置、画像処理方法及びプログラム
CN104460185A (zh) 自动对焦方法及装置
WO2018053722A1 (zh) 全景照片拍摄方法及装置
CN105323491A (zh) 图像拍摄方法及装置
CN104506770A (zh) 拍摄图像的方法及装置
CN105850110B (zh) 摄像设备及其控制方法、显示控制设备的控制方法和记录设备的控制方法
CN105357449A (zh) 拍摄方法、装置及图像处理方法、装置
CN105516588A (zh) 拍摄处理方法及装置
KR100629442B1 (ko) 카메라를 장착한 다수의 이동통신 단말기를 이용한 와이드화상 촬영 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913833

Country of ref document: EP

Kind code of ref document: A1