WO2018034277A1 - 自家発電照明装置 - Google Patents

自家発電照明装置 Download PDF

Info

Publication number
WO2018034277A1
WO2018034277A1 PCT/JP2017/029338 JP2017029338W WO2018034277A1 WO 2018034277 A1 WO2018034277 A1 WO 2018034277A1 JP 2017029338 W JP2017029338 W JP 2017029338W WO 2018034277 A1 WO2018034277 A1 WO 2018034277A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
solar cell
light
light energy
light source
Prior art date
Application number
PCT/JP2017/029338
Other languages
English (en)
French (fr)
Inventor
兵治 新山
Original Assignee
兵治 新山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兵治 新山 filed Critical 兵治 新山
Priority to US16/326,144 priority Critical patent/US20190189695A1/en
Priority to JP2018534400A priority patent/JPWO2018034277A1/ja
Priority to CN201780050428.9A priority patent/CN109769409A/zh
Publication of WO2018034277A1 publication Critical patent/WO2018034277A1/ja
Priority to PH12019500333A priority patent/PH12019500333A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/18Edge-illuminated signs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/18Edge-illuminated signs
    • G09F2013/1872Casing
    • G09F2013/1881Frame-like
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a self-powered lighting device that absorbs light energy emitted from a light source from the inside of the housing and from the light source by a solar cell, and generates the electromotive force by the photovoltaic effect.
  • solar power generation is a device that absorbs ultraviolet light and light energy of daytime sunlight and generates electromotive force by the photovoltaic effect. It is a light source for lighting instead of daytime sunlight.
  • power generation there was not much interest in power generation that reuses the light energy emitted by.
  • lighting light sources have been striving to reduce power consumption. However, it has been neglected to effectively use light energy emitted by the lighting light sources themselves.
  • the entire casing is configured by a transparent solar cell
  • the amount of power generation due to the weather is large because the light energy of sunlight is used.
  • the electric bulletin board described in Patent Document 3 still uses the light energy of sunlight, there is a problem that the amount of power generation is extremely reduced in the case of rainy weather.
  • the organic EL device including the solar cell described in Patent Document 4 generates power by absorbing the light energy of sunlight in the daytime, so there is a variation in power generation capacity due to weather, and there is a problem that stable power generation cannot be expected. .
  • the amount of power stored in a mobile terminal or the like has become zero, and it has been necessary to visit an unpowered place for recharging.
  • An object is to provide a self-powered lighting device.
  • the first aspect of the present invention is: A housing that opens an installation area where the object to be irradiated is installed; A light source for illumination that is provided in the housing and emits light upon receiving power supply; A solar cell that absorbs light energy to generate electricity; A display panel that is installed in an installation area of the housing as the irradiation object, and displays a predetermined image by receiving supply of light energy emitted from the light source; A light guide plate provided in the housing; A light reflecting plate formed on the bottom surface of the light guide plate; A power control unit that controls power supplied to the light source and includes at least commercial power as one of powers to be controlled; A power storage device that includes a storage battery that receives and stores power from the power control unit, and that supplies power stored in the storage battery to the light source; With The light source is provided at one end of the installation area in the housing, emits light energy on the side facing the one end of the installation area, The light guide plate guides light energy emitted from the light source to the display panel side, The light reflecting plate reflects light energy
  • the second aspect of the present invention is: A housing that opens an installation area where the object to be irradiated is installed; A light source for illumination that is provided in the housing and emits light upon receiving power supply; A solar cell that absorbs light energy to generate electricity; A display panel that is installed in the installation area of the casing as the irradiation object, receives a supply of light energy, and displays a predetermined image; A light reflector provided in the housing; A power control unit that controls power supplied to the light source and includes at least commercial power as one of powers to be controlled; A power storage device that includes a storage battery that receives and stores power from the power control unit, and that supplies power stored in the storage battery to the light source; With The light source is provided at one end of the installation area in the housing, emits light energy on the side facing the one end of the installation area, The light reflecting plate has a reflecting surface disposed to face the display panel, and a facing distance between the reflecting surface and the display panel is directed from
  • the reflection surface In order to gradually reduce the reflection surface, the reflection surface is inclined at an angle, and a part of light energy emitted from the light source is reflected to the display panel side by the reflection surface,
  • the solar cell absorbs light energy of both direct light emitted from the light source and reflected light that is emitted from the light source and reflected by the reflective surface toward the display panel, and generates power. It is a private power generation lighting device.
  • the third aspect of the present invention is: A housing with an open installation area; A self-luminous panel that is installed in the installation area of the housing and emits light upon receiving power supply; A solar cell that absorbs light energy to generate electricity; A power control unit that controls power supplied to the panel and includes at least commercial power as one of powers to be controlled; A power storage device that includes a storage battery that receives and stores power from the power control unit, and that supplies power stored in the storage battery to the panel; With The solar cell is a transparent first solar cell formed in a planar shape on the outer surface of the panel with the light absorption surface facing inward, and is planar on the outer surface of the panel with the light absorption surface facing outward.
  • the first solar cell is disposed in the light emission direction of the panel, absorbs light energy emitted by the panel, and generates power
  • the solar cell includes the second solar cell and the third solar cell
  • the second solar cell and the third solar cell generate electricity by absorbing light energy from sunlight or outdoor lighting outdoors.
  • Indoors absorb light energy from indoor lighting and generate electricity
  • the power storage device receives the supply of power generated by at least one of the first solar cell, the second solar cell, and the third solar cell from the power control unit and stores the power in the storage battery. It is a private power generation lighting device.
  • an in-house power generation lighting device that can regenerate light energy emitted from a light source for illumination, etc., and realize further power saving.
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
  • FIG. It is sectional drawing which shows the other structure of a surface mount type LED package.
  • FIG. 3B is a cross-sectional view taken along line AA in FIG. 3A.
  • FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A.
  • FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A.
  • FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A.
  • FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A.
  • FIG. 4B is a schematic diagram which shows the structural example of the electric circuit of the private power generation lighting apparatus which concerns on 2nd Embodiment of this invention.
  • It is a perspective view including the housing of the private power generation lighting device according to the third embodiment of the present invention. It is AA arrow sectional drawing of FIG. 5A.
  • FIG. 6B is a cross-sectional view taken along the line AA in FIG. 6A. It is a schematic diagram which shows the structural example of the electric circuit of the private power generation lighting apparatus which concerns on 4th Embodiment of this invention.
  • FIG. 1A is a schematic plan view showing the configuration of a surface-mount type LED package
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
  • a surface-mounted purple LED package 1 is used as the LED package.
  • the purple LED package 1 includes a cavity 12 formed of ceramic or resin, a purple LED element 10 mounted in the cavity 12, a reflector 14 formed on the inner surface of the cavity 12, and a sealing material that fills the cavity 12. 15, a condenser lens 16, and an LED substrate 17.
  • the sealing material 15 and the condensing lens 16 are laminated
  • the reflector 14 reflects the purple light energy 74 emitted from the purple LED element 10 to the front surface (upper side in FIG. 1B).
  • the sealing material 15 seals the purple LED element 10 and is made of a silicone resin containing R (red), G (green), and B (blue) phosphors.
  • a silicone resin having ultraviolet resistance and heat resistance in which RGB phosphors for simultaneous additive color mixing are dispersed.
  • the purple LED element 10 is mounted on the LED substrate 17.
  • the purple LED element 10 emits purple light energy 74.
  • the purple LED package 1 uses a combination of the purple light energy 74 emitted from the purple LED element 10 and the RGB phosphor contained in the sealing material 15 to convert the white light energy 68 that has been additively mixed into ultraviolet light (ultraviolet light energy). ).
  • the violet light energy 74 emitted from the purple LED element 10 is applied to the RGB phosphors contained in the sealing material 15, and the entire visible light region is obtained by simultaneous additive color mixture using the three primary colors of light.
  • the white light energy 68 obtained by phosphor emission is realized.
  • the color reproducibility is far higher than that of the method of emitting pseudo white light by the combination of the blue LED element and the yellow phosphor, which has been the mainstream until now, and Ra can be adjusted by adjusting the increase or decrease of the phosphors of RGB. It is easy to get close to (average color rendering index) 100.
  • the purple light energy 74 emitted from the purple LED element 10 is radiated as light energy 68 of a color that can be emitted by white light or simultaneous additive color mixture by simultaneous additive color mixing with RGB phosphors, and ultraviolet light (ultraviolet light energy). ) Is also emitted.
  • the purple LED element 10 is employed as the LED element, but other LED elements such as a near ultraviolet light LED element, a blue LED element, or a near infrared light LED element may be employed.
  • the face-up type is adopted as the mounting structure of the purple LED element 10 mounted in the cavity 12 on the LED substrate 17, but a face-down type may be adopted.
  • the number of LED elements used in the LED package may be one or plural.
  • the condensing lens 16 may be attached to the blue LED package 2, this is not essential as the blue LED package 2 or the purple LED package 1, and may be provided as necessary.
  • the purple LED element and RGB fluorescent substance are used, as shown to FIG. 1C, it combined the blue LED element 11 and the sealing material 13 containing yellow fluorescence, as shown in FIG. 1C.
  • Light energy 68 may be emitted by the blue LED package 2.
  • the combination of the blue LED element 11 and the yellow phosphor-containing sealing material 13 emits almost no ultraviolet rays, no countermeasures against ultraviolet rays are required.
  • Sunlight poured from the sun onto the ground includes light having a wavelength of about 50% visible light, about 44% infrared light, and about 6% ultraviolet light.
  • the current transparent solar cell is configured to absorb visible light and ultraviolet light, or visible light and infrared light from wavelength light contained in sunlight, and generate an electromotive force by the photovoltaic effect.
  • FIG. 2 is a schematic perspective view showing the arrangement of a liquid crystal panel, a transparent UV cut film, an organic thin film transparent solar cell, and a light source.
  • an organic thin film transparent solar cell 100, a transparent UV cut film 104, and a liquid crystal panel 50 are stacked in this order in the light emitting direction of the purple LED module 20 serving as a light source.
  • the purple LED module 20 constitutes a light source for the backlight of the liquid crystal panel 50.
  • the backlight includes a direct type and an edge light type, and either type may be adopted, but in this embodiment, a direct type is adopted as an example. That is, the purple LED module 20 is formed by connecting a plurality of the above-described surface-mounted purple LED packages 1.
  • the term “connected” means a state in which they are arranged and electrically connected to each other.
  • the direct type backlight is configured by arranging a plurality of purple LED packages 1 in a two-dimensional shape (matrix shape) at a predetermined interval.
  • the purple LED module 20 emits ultraviolet light (ultraviolet light energy 73) together with white light energy 68 by simultaneous additive color mixing.
  • the organic thin film transparent solar cell 100 is composed of a first transparent electrode layer 101, a transparent photoelectric conversion layer 102, and a second transparent electrode layer 103 as viewed from the purple LED module 20, and is laminated in this order.
  • the organic thin-film transparent solar cell 100 generates a high electromotive force by adjusting the amount of ultraviolet rays by increasing or decreasing RGB phosphors.
  • the organic thin-film transparent solar cell 100 absorbs ultraviolet light energy 73 emitted from the purple LED module 20 and generates electric power by the photovoltaic effect.
  • the electromotive force self-generated by the organic thin-film transparent solar cell 100 is supplied to the purple LED module 20 via a DC controller (not shown) or stored in a secondary lithium ion storage battery (not shown).
  • the generated voltage of the electromotive force generated by the organic thin film transparent solar cell 100 is dependent on the amount of incident light of the ultraviolet light energy 73, and thus cannot be used as it is. Therefore, a direct current controller that controls the generated voltage generated by the organic thin-film transparent solar cell 100 so as to match the planned supply destination is provided. If the supply destination of the generated voltage generated by the organic thin-film transparent solar cell 100 is, for example, a purple LED element 10 or a lithium ion storage battery, the DC controller is configured to apply the generated voltage to each supply destination. Control. That is, after the generated voltage from the organic thin film transparent solar cell 100 is controlled by a DC controller, it is supplied to the purple LED module 20 or stored in a secondary lithium ion storage battery.
  • the transparent UV cut film 104 is formed just outside the organic thin film transparent solar cell 100 when viewed from the purple LED module 20.
  • the transparent UV cut film 104 absorbs and extinguishes ultraviolet light that has not been absorbed by the organic thin film transparent solar cell 100 after being absorbed by the organic thin film transparent solar cell 100 and generating electromotive force. Thereby, the transparent UV cut film 104 transmits the light energy 68 which does not contain ultraviolet rays as it is, thereby suppressing the adverse effects of radiating ultraviolet rays to the liquid crystal panel 50 and the human body existing from the transparent UV cut film 104 first. .
  • the transparent UV cut film 104 is used, but other materials may be used as long as they are transparent and absorb and extinguish ultraviolet rays. Further, in the organic thin film transparent solar cell 100, the transparent UV cut film 104 is not provided as long as the ultraviolet light is absorbed to some extent and the liquid crystal panel 50 existing outside the organic thin film transparent solar cell 100 or the human body is less affected by ultraviolet rays. May be.
  • the liquid crystal panel 50 When viewed from the purple LED module 20, the liquid crystal panel 50 includes a first polarizing plate 60, an array substrate 61, a first transparent electrode (sub-pixel electrode) 62, a first alignment film 63, a liquid crystal layer 64, The bi-alignment film 65, the second transparent electrode (common electrode) 66, and the second polarizing plate 67 are laminated in this order.
  • Ultraviolet light energy 73 emitted and emitted from the purple LED module 20 serving as a light source enters the liquid crystal panel 50 through the organic thin film transparent solar cell 100 and the transparent UV cut film 104. Part of the ultraviolet light energy 73 emitted from the purple LED module 20 is absorbed by the organic thin film transparent solar cell 100.
  • the transparent UV cut film 104 absorbs and extinguishes the remaining ultraviolet rays that could not be absorbed by the organic thin film transparent solar cell 100. Therefore, the light incident on the liquid crystal panel 50 becomes light energy 68 that does not include ultraviolet rays, and the liquid crystal panel 50 is turned on by the supply of the light energy 68. The light energy 68 that turns on the liquid crystal panel 50 becomes visible light, and eventually disappears.
  • FIG. 3A is a schematic perspective view including a housing of the private power generation lighting device according to the first embodiment of the present invention.
  • 3B is a cross-sectional view taken along the line AA in FIG. 3A
  • FIG. 3C is a schematic diagram illustrating a configuration example of an electric circuit of the private power generation lighting device according to the first embodiment of the present invention.
  • the illustrated self-powered illumination device includes a purple LED module 20, a housing 30, a liquid crystal panel 50, organic thin-film transparent solar cells 100, 100a, and 100b, and a transparent UV cut film 104.
  • the purple LED module 20 is a light source for backlight, which is formed by connecting a plurality of surface-mounted purple LED packages 1 as described above.
  • the housing 30 opens an installation area in which the liquid crystal panel 50 and other devices to be irradiated are installed, and the organic thin film transparent solar cells 100 and 100a and the transparent UV cut film 104 together with the liquid crystal panel 50 are opened in the opening. is set up. Further, a purple LED module 20 (purple LED package 1) is installed in the housing 30, and an organic thin film transparent solar cell 100b is installed on the back side of the housing 30 (the side opposite to the opening of the installation area).
  • the liquid crystal panel 50 receives a supply of light energy emitted from each purple LED package 1 of the purple LED module 20 and displays a predetermined image (still image, moving image, etc.).
  • Organic thin film transparent solar cells 100, 100a, 100b are each formed in a planar shape.
  • the organic thin-film transparent solar cell 100 absorbs ultraviolet light energy 73 emitted and emitted from each of the purple LED packages 1 connected to the purple LED module 20 and self-generates the electromotive force by the photovoltaic effect.
  • the organic thin-film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from sunlight or outdoor lighting (street lights, mercury lamps, etc.) and generate electric power by the photovoltaic effect.
  • the organic thin film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from indoor lighting (fluorescent lamp, LED lighting, etc.) indoors, and generate electric power by the photovoltaic effect.
  • the organic thin film transparent solar cell 100 is disposed in the housing 30 so as to face the purple LED module 20.
  • An organic thin film transparent solar cell 100 is disposed on the inner surface of the liquid crystal panel 50 via a transparent UV cut film 104, and an organic thin film transparent solar cell 100 a is disposed on the outer surface of the liquid crystal panel 50.
  • the ultraviolet light energy 73 emitted from each purple LED package 1 of the purple LED module 20 is absorbed by the organic thin-film transparent solar cell 100, and the ultraviolet rays that could not be absorbed there are absorbed and extinguished by the transparent UV cut film 104.
  • the liquid crystal panel 50 is irradiated with light energy 68 that does not include ultraviolet rays.
  • the transparent UV cut film 104 is formed just outside the organic thin film transparent solar cell 100 when viewed from the surface-mounted purple LED package 1.
  • the transparent UV cut film 104 absorbs and extinguishes ultraviolet rays transmitted through the organic thin film transparent solar cell 100.
  • the transparent UV cut film 104 absorbs and extinguishes the remaining ultraviolet light after it is absorbed by the organic thin film transparent solar cell 100 and generates electromotive force, and the light energy 68 not containing the ultraviolet light is transmitted as it is.
  • the adverse effect of radiating ultraviolet rays to the liquid crystal panel 50 and the human body existing ahead of 104 is suppressed.
  • the power control unit 112 controls power supplied to the purple LED module 20 (purple LED package 1) serving as a light source, and includes commercial power as one of the powers to be controlled.
  • the power control unit 112 captures commercial power and power generated by the transparent solar cells 100, 100 a, and 100 b and supplies the captured power to the power storage device 121.
  • the AC / DC converter 110 receives commercial power (AC) and converts it into DC power.
  • the DC power converted by the AC / DC converter 110 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the direct current controller 111 controls the electromotive force generated by the transparent solar cells 100, 100 a, 100 b so as to be adapted to the purple LED module 20.
  • the electric power controlled by the DC controller 111 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the power storage device 121 includes a lithium ion storage battery 120 that receives and stores power from the power control unit 112, and supplies the power stored in the lithium ion storage battery 120 to the purple LED package 1 of the purple LED module 20.
  • the lithium ion storage battery 120 stores electric power supplied from the AC / DC converter 110 and the DC controller 111 of the power control unit 112.
  • the electric power stored in the lithium ion storage battery 120 is supplied to the purple LED module 20.
  • the electric power supplied to the purple LED module 20 is consumed in order to cause each purple LED package 1 to emit light (light up the purple LED module 20).
  • the power storage device 121 receives overpower from the power control unit 112 and prevents overcharging by itself stopping the power supply from the power control unit 112 when the storage amount of the lithium ion storage battery 120 is fully charged. It has a function.
  • each purple LED package 1 Emits ultraviolet light energy 73.
  • the organic thin film transparent solar cell 100 absorbs the ultraviolet light energy 73 emitted from each purple LED package 1, and generates an electromotive force by the photovoltaic effect.
  • the electric power generated by the organic thin-film transparent solar cell 100 is stored in the lithium ion storage battery 120 and used for light emission in the purple LED package 1.
  • the light energy emitted from the purple LED package 1 can be reused by the organic thin film transparent solar cell 100 for self-power generation and further power saving can be realized.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 from sunlight by being exposed to sunlight in the daytime, and generate an electromotive force by the photovoltaic effect.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 emitted from outdoor illumination or indoor illumination at night, and generate an electromotive force by the photovoltaic effect.
  • the electromotive forces generated by the organic thin film transparent solar cells 100, 100 a, and 100 b are taken into the power storage device 121 through the DC controller 111 and stored in the lithium ion storage battery 120 there. Thereby, the lifetime improvement of the discharge capability of the lithium ion storage battery 120 can be achieved.
  • the amount of power stored in the lithium ion storage battery 120 can be recovered.
  • the photoelectric conversion efficiency of the organic thin film transparent solar cells 100, 100a, and 100b used in the present embodiment is significantly improved, it is possible to eliminate the need for recharging with commercial power.
  • the solar cell installed in the back side of the housing 30 is made into the organic thin film transparent solar cell 100b, this is not transparent, and it is good also as an opaque solar cell excellent in photoelectric conversion efficiency. This also applies to other embodiments described below.
  • the purple LED module (purple LED package) was used as an LED module (LED package) used as the light source for illumination, it is not restricted to this, A near ultraviolet light LED module (near ultraviolet light LED) Package), blue LED module (blue LED package), near infrared light LED module (near infrared light LED package), and the like may be used.
  • the lithium ion storage battery was used as an example of a storage battery (secondary battery), other storage batteries (for example, lead storage battery, nickel storage battery etc.) will be sufficient if the electrical storage capacity and charging / discharging capacity are excellent. May be used.
  • organic thin film transparent solar cell was used as a transparent solar cell, it is not restricted to this, Organic type
  • FIG. 4A is a schematic perspective view including a housing of the private power generation lighting device according to the second embodiment of the present invention.
  • 4B is a cross-sectional view taken along the line AA in FIG. 4A
  • FIG. 4C is a schematic diagram illustrating a configuration example of an electric circuit of the private power generation lighting device according to the second embodiment of the present invention.
  • elements different from those in the first embodiment will be mainly described. Elements that are substantially the same as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be made as much as possible. Omitted.
  • the self-powered lighting device includes a blue LED module 21, a housing 30, a liquid crystal panel 50, a light guide plate 52, a light reflecting plate 53, a dye-sensitized transparent solar cell 95, Organic thin film transparent solar cells 100a and 100b.
  • the blue LED module 21 includes a plurality of surface-mounted blue LED packages 2 connected in series.
  • the blue LED module 21 is a light source constituting an edge light type backlight.
  • the blue LED module 21 is provided at one end (upper part in the present embodiment) of the installation area in the housing 30 and emits light energy 68 to the side facing from the one end side.
  • the housing 30 opens an installation area in which the liquid crystal panel 50 and other devices to be irradiated are installed, and the dye-sensitized transparent solar cell 95 and the organic thin film transparent solar cell 100a together with the liquid crystal panel 50 are opened in the opening. is set up.
  • a light guide plate 52 is installed in the housing 30 together with the blue LED module 21 serving as a light source for illumination.
  • the light guide plate 52 is disposed so as to face the dye-sensitized transparent solar cell 95, and a light reflection plate 53 is disposed on one main surface (hereinafter referred to as a bottom surface) of the light guide plate 52.
  • the liquid crystal panel 50 emits light from each of the blue LED packages 2 of the blue LED module 21 and receives light energy supplied by the light guide plate 52 or the light reflection plate 53 to receive a predetermined image (still image, moving image, etc.). Is displayed.
  • the liquid crystal panel 50 is installed in the installation area of the housing 30 as an irradiation object.
  • the irradiation object refers to an object that irradiates light emitted from a light source for illumination (in this embodiment, the blue LED module 21).
  • the light guide plate 52 efficiently guides light energy 68 incident from the side surface of the light guide plate 52 to the liquid crystal panel 50 side by performing laser processing, etching processing, or the like on a plastic plate such as an acrylic plate. Therefore, when light energy 68 is incident on the light guide plate 52 from the blue LED module 21, the light energy 68 is radiated (surface light emission) from the plate surface of the light guide plate 52 facing the liquid crystal panel 50.
  • the light reflection plate 53 forcibly reflects the light energy 68 guided to the bottom surface side of the light guide plate 52 out of the light energy 68 incident on the light guide plate 52 from the blue LED module 21 to the liquid crystal panel 50 side. And it has a reflective surface for it.
  • the reflection surface of the light reflection plate 53 is disposed in close contact with or close to the bottom surface of the light guide plate 52.
  • the dye-sensitized transparent solar cell 95 and the organic thin film transparent solar cells 100a and 100b are each formed in a planar shape.
  • the dye-sensitized transparent solar cell 95 is disposed on the inner surface of the liquid crystal panel 50 so as to face the light guide plate 52, and the organic thin film transparent solar cell 100 a is disposed on the outer surface of the liquid crystal panel 50.
  • the organic thin-film transparent solar cell 100b is installed on the surface on the back side (opposite to the opening of the installation area) of the housing 30.
  • the dye-sensitized transparent solar cell 95 absorbs light energy 68 emitted and emitted from each of the blue LED packages 2 connected to the blue LED module 21 and self-generates the electromotive force by the photovoltaic effect. Specifically, the dye-sensitized transparent solar cell 95 absorbs the light guided from the blue LED module 21 to the liquid crystal panel 50 side by the light guide plate 52 and generates power. Power is generated by absorbing the light energy 68 of both the direct light and the reflected light from the light reflecting plate 53. The direct light from the blue LED module 21 is leaked light leaked from the blue LED module 21 without entering the light guide plate 52.
  • Reflected light from the light reflecting plate 53 is light that is guided to the bottom surface of the light guide plate 52 out of the light energy 68 incident on the light guide plate 52 from the blue LED module 21 and is reflected by the light reflecting plate 53 there. .
  • the organic thin-film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from sunlight or outdoor lighting (street lights, mercury lamps, etc.) and generate electric power by the photovoltaic effect.
  • the organic thin film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from indoor lighting (fluorescent lamp, LED lighting, etc.) indoors, and generate electric power by the photovoltaic effect.
  • the structure which combined the dye-sensitized transparent solar cell 95 and the organic thin film transparent solar cells 100a and 100b is employ
  • adopted not only this but the dye-sensitized transparent solar cell 95 is used independently. Or a combination of the dye-sensitized transparent solar cell 95 and the organic thin-film transparent solar cell 100a, or a combination of the dye-sensitized transparent solar cell 95 and the organic thin-film transparent solar cell 100b.
  • the blue LED module 21 was installed in the upper part of the housing 30, it is not restricted to this, Among the one end side of the upper and lower sides, right and left of the housing 30 for the convenience of the design of a private power generation lighting device. It is possible to install the blue LED module 21 at a place considered to be most suitable.
  • the power control unit 112 controls power supplied to the blue LED module 21 (blue LED package 2) serving as a light source, and includes commercial power as one of the powers to be controlled.
  • the power control unit 112 captures commercial power and power generated by the transparent solar cells 95, 100 a, and 100 b and supplies the captured power to the power storage device 121.
  • the AC / DC converter 110 receives commercial power (AC) and converts it into DC power.
  • the DC power converted by the AC / DC converter 110 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the DC controller 111 controls the electromotive force generated by the transparent solar cells 95, 100 a, 100 b so as to be adapted to the blue LED module 21.
  • the electric power controlled by the DC controller 111 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the power storage device 121 includes a lithium ion storage battery 120 that receives and stores power from the power control unit 112, and supplies the power stored in the lithium ion storage battery 120 to the blue LED package 2 of the blue LED module 21.
  • the lithium ion storage battery 120 stores electric power supplied from the AC / DC converter 110 and the DC controller 111 of the power control unit 112.
  • the electric power stored in the lithium ion storage battery 120 is supplied to the blue LED module 21.
  • the electric power supplied to the blue LED module 21 is consumed to cause each blue LED package 2 to emit light (light up the blue LED module 21).
  • the power storage device 121 receives overpower from the power control unit 112 and prevents overcharging by itself stopping the power supply from the power control unit 112 when the storage amount of the lithium ion storage battery 120 is fully charged. It has a function.
  • the commercial power stored in the lithium ion storage battery 120 via the AC / DC converter 110 is supplied to the blue LED module 21 by the power storage device 121, whereby each blue LED package 2. Emits light energy 68. Then, much of the light energy 68 emitted from the blue LED package 2 is incident on the light guide plate 52 and guided to the liquid crystal panel 50 side, and this is incident on the dye-sensitized transparent solar cell 95 as light guide light. In addition to this, there is leakage light that is not incident on the light guide plate 52, and this leakage light is incident on the dye-sensitized transparent solar cell 95 as direct light from the blue LED module 21.
  • a part of the light energy 68 incident on the light guide plate 52 from the blue LED package 2 is guided to the bottom side of the light guide plate 52, and the reflected light reflected by the light reflecting plate 53 to the liquid crystal panel 50 side is dyed.
  • the light enters the sensitized transparent solar cell 95.
  • the dye-sensitized transparent solar cell 95 absorbs not only the light guided by the light guide plate 52 but also the light energy 68 of both the direct light from the blue LED module 21 and the reflected light from the light reflecting plate 53. Generate electricity.
  • the electric power generated by the dye-sensitized transparent solar cell 95 is stored in the lithium ion storage battery 120 and used for light emission by the blue LED module 21. As a result, the light energy emitted from the blue LED module 21 is reused by the dye-sensitized transparent solar cell 95 to generate electric power in-house, thereby realizing further power saving.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 from sunlight by being exposed to sunlight in the daytime, and generate an electromotive force by the photovoltaic effect.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 emitted from outdoor illumination or indoor illumination at night, and generate an electromotive force by the photovoltaic effect.
  • the electromotive forces generated by the dye-sensitized transparent solar cell 95 and the organic thin-film transparent solar cells 100a and 100b are taken into the power storage device 121 via the DC controller 111 and stored in the lithium ion storage battery 120 there.
  • the lifetime improvement of the discharge capability of the lithium ion storage battery 120 can be achieved. Further, even if the supply of commercial power is cut off due to a long-term disaster or the like, and the amount of power stored in the lithium ion storage battery 120 becomes 0, at least one of the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b is solar. By storing the electromotive force generated in-house by absorbing the ultraviolet light energy 73 from light or the like in the lithium ion storage battery 120, the amount of power stored in the lithium ion storage battery 120 can be recovered.
  • a blue LED module (blue LED package) is used as an LED module (LED package) serving as a light source for illumination.
  • LED package LED module
  • the present invention is not limited to this, and a near ultraviolet LED module (near ultraviolet LED).
  • LED near ultraviolet LED
  • Package purple LED module (purple LED package), near infrared light LED module (near infrared light LED package), and the like may be used.
  • the liquid crystal panel was used as a display panel, it is not restricted to this, For example, you may use a pattern display panel.
  • the picture display panel is a transparent or translucent panel used for an internally illuminated signboard or the like, on which a picture to be displayed as a signboard is formed.
  • the lithium ion storage battery was used as an example of a storage battery (secondary battery), other storage batteries (for example, a lead storage battery, a nickel storage battery etc.) will be sufficient if the electrical storage capability and charging / discharging capability are excellent. May be used.
  • the dye-sensitized transparent solar cell and the organic thin film transparent solar cell were used as a transparent solar cell, it is not restricted to this, A transparent innovative type solar cell, a transparent compound type solar cell, Transparent solar cells such as transparent thin film solar cells can be widely used.
  • FIG. 5A is a schematic perspective view including a housing of the private power generation lighting device according to the third embodiment of the present invention.
  • 5B is a cross-sectional view taken along the line AA in FIG. 5A
  • FIG. 5C is a schematic diagram illustrating a configuration example of an electric circuit of the private power generation lighting device according to the third embodiment of the present invention.
  • elements different from those in the first embodiment will be mainly described. Elements that are substantially the same as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be made as much as possible. Omitted.
  • the private power generation lighting device includes a purple LED module 20, a casing 80, a pattern display panel 83, a light reflection plate 86, organic thin-film transparent solar cells 100, 100a, 100b, and transparent.
  • a UV cut film 104 is included in the third embodiment of the present invention.
  • the purple LED module 20 includes a plurality of surface-mounted purple LED packages 1 connected in series.
  • the purple LED module 20 is an edge light type illumination light source.
  • the purple LED module 20 is provided in one end (upper part in the present embodiment) of the installation area in the housing 30.
  • the purple LED module 20 emits and emits ultraviolet light energy 73 on the side (lower end side) facing one end of the housing 30.
  • the casing 80 opens an installation area in which the pattern display panel 83 to be irradiated and other devices are installed, and the organic thin film transparent solar cells 100 and 100a are installed in the opening together with the pattern display panel 83.
  • a light reflecting plate 86 is installed in the housing 80 together with a pattern display panel 83 that is an irradiation object. The light reflecting plate 86 is installed so as to face the organic thin film transparent solar cell 100.
  • the picture display panel 83 is a panel on which a picture to be displayed with an internally illuminated signboard is formed, and is attached to the housing 80.
  • the picture display panel 83 is configured using a transparent or translucent panel having light transmittance, and a picture is formed on the display surface side.
  • the display surface of the picture display panel 83 is arranged outward.
  • the light reflection plate 86 has a reflection surface on the side facing the organic thin film transparent solar cell 100.
  • the reflecting surface of the light reflecting plate 86 is uniformly formed in a flat shape, and a part of the ultraviolet light energy 73 emitted and emitted from the purple LED module 20 is forcibly reflected by the reflecting surface to the picture display panel 83 side.
  • the light reflecting plate 86 has a reflecting surface at a predetermined angle so that the facing distance (horizontal distance) between the reflecting surface and the organic thin film transparent solar cell 100 gradually decreases from the upper end to the lower end of the housing 80. It is installed at an angle.
  • the light reflecting plate 86 for example, by supporting one end (the upper end in the present embodiment) of the light reflecting plate 86 so as to be rotatable using a rotating instrument such as a hinge, It is good also as a structure which can change an inclination angle arbitrarily.
  • Organic thin film transparent solar cells 100, 100a, 100b are each formed in a planar shape.
  • the organic thin-film transparent solar cell 100 absorbs ultraviolet light energy 73 emitted and emitted from each of the purple LED packages 1 connected to the purple LED module 20 and self-generates the electromotive force by the photovoltaic effect.
  • the organic thin film transparent solar cell 100 generates power by absorbing the ultraviolet light energy 73 of both the direct light from the purple LED module 20 and the reflected light from the light reflecting plate 86.
  • the organic thin-film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from sunlight or outdoor lighting (street lights, mercury lamps, etc.) and generate electric power by the photovoltaic effect.
  • the organic thin film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from indoor lighting (fluorescent lamp, LED lighting, etc.) indoors, and generate electric power by the photovoltaic effect.
  • the organic thin film transparent solar cell 100 is disposed in the housing 30 so as to face the light reflecting plate 86.
  • An organic thin film transparent solar cell 100 is disposed on the inner surface of the pattern display panel 83 via a transparent UV cut film 104, and an organic thin film transparent solar cell 100 a is disposed on the outer surface of the pattern display panel 83.
  • the ultraviolet light energy 73 emitted from each purple LED package 1 of the purple LED module 20 is absorbed by the organic thin-film transparent solar cell 100, and the ultraviolet rays that could not be absorbed there are absorbed and extinguished by the transparent UV cut film 104. . Therefore, the pattern display panel 83 is irradiated with light energy 68 that does not include ultraviolet rays.
  • the organic thin film transparent solar cell 100b is installed on the back side of the housing 80 (on the side opposite to the opening of the installation area).
  • the transparent UV cut film 104 is formed just outside the organic thin film transparent solar cell 100 when viewed from the surface-mounted purple LED package 1.
  • the transparent UV cut film 104 absorbs and extinguishes ultraviolet rays transmitted through the organic thin film transparent solar cell 100.
  • the transparent UV cut film 104 absorbs and extinguishes the remaining ultraviolet light after it is absorbed by the organic thin film transparent solar cell 100 and generates electromotive force, and the light energy 68 not containing the ultraviolet light is transmitted as it is.
  • the adverse effect of radiating ultraviolet rays to the pattern display panel 83 and the human body existing ahead of 104 is suppressed.
  • the power control unit 112 controls power supplied to the purple LED module 20 (purple LED package 1) serving as a light source, and includes commercial power as one of the powers to be controlled.
  • the power control unit 112 captures commercial power and power generated by the transparent solar cells 100, 100 a, and 100 b and supplies the captured power to the power storage device 121.
  • the AC / DC converter 110 receives commercial power (AC) and converts it into DC power.
  • the DC power converted by the AC / DC converter 110 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the direct current controller 111 controls the electromotive force generated by the transparent solar cells 100, 100 a, 100 b so as to be adapted to the purple LED module 20.
  • the electric power controlled by the DC controller 111 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the power storage device 121 includes a lithium ion storage battery 120 that receives and stores power from the power control unit 112, and supplies the power stored in the lithium ion storage battery 120 to the purple LED package 1 of the purple LED module 20.
  • the lithium ion storage battery 120 stores electric power supplied from the AC / DC converter 110 and the DC controller 111 of the power control unit 112.
  • the electric power stored in the lithium ion storage battery 120 is supplied to the purple LED module 20.
  • the electric power supplied to the purple LED module 20 is consumed in order to cause each purple LED package 1 to emit light (light up the purple LED module 20).
  • the power storage device 121 has a sensing function of sensing a power supply stop from the power control unit 112 and / or a power failure, in addition to a power switch on (energization) and off (shutoff) function.
  • the power storage device 121 continues to store the power stored in the lithium ion storage battery 120 of the purple LED module 20.
  • the purple LED package 1 is always turned on, and the organic thin-film transparent solar cell 100 generates power by absorbing the ultraviolet light energy 73 emitted from the purple LED package 1 during the on-state.
  • the power switch is a switch for turning on the private power generation lighting device in the on state and turning off the private power generation lighting device in the off state. Also, “always on” means that the illumination light source is kept on before and after sensing by the sensing function.
  • the power storage device 121 receives overpower from the power control unit 112 and prevents overcharging by itself stopping the power supply from the power control unit 112 when the storage amount of the lithium ion storage battery 120 becomes fully charged. It has a function.
  • the power storage device 121 when the power supply from the power control unit 112 is stopped by the overcharge prevention function and after the power is consumed from the fully charged state and can be stored, the organic thin film transparent solar cell 100 or When the supply of electric power generated by the organic thin-film transparent solar cells 100a and 100b is received from the power control unit 112 and stored, and when the stored amount of the lithium ion storage battery 120 is reduced to a preset remaining stored amount during this storage, A function of receiving supply of commercial power from the power control unit 112 and resuming supply of commercial power to the purple LED package 1 of the purple LED module 20 is provided.
  • the remaining power storage amount may be set within a range of 30% or more and 50% or less, assuming that the charge amount in a fully charged state is 100%.
  • the reason why the remaining power storage amount is set to a range of 30% to 50% is that the appropriate value of the remaining power storage may change depending on the installation location of the private power generation lighting device and the infrastructure environment. is there. Specifically, the time required for recovery after a power failure tends to be relatively short in urban areas and relatively long in mountainous areas. In this case, it is better to set the remaining power storage amount to about 30% in urban areas. It is better to set the remaining power storage amount to about 50%. Therefore, it is desirable to set the remaining power storage amount as appropriate according to the place where the purple LED module 20 is used.
  • each purple LED package 1 Emits ultraviolet light energy 73. Then, a part of the ultraviolet light energy 73 emitted from the purple LED package 1 enters the organic thin film transparent solar cell 100 as direct light from the purple LED package 1, and the other ultraviolet light energy 73 is emitted from the light reflector 86. The light enters the organic thin-film transparent solar cell 100 as reflected light from the light. Thereby, the organic thin film transparent solar cell 100 absorbs the ultraviolet light energy 73 of both the direct light and the reflected light to generate electric power.
  • the electric power generated by the organic thin-film transparent solar cell 100 is stored in the lithium ion storage battery 120 and used for light emission in the purple LED package 1.
  • the light energy emitted from the purple LED package 1 can be reused by the organic thin film transparent solar cell 100 for self-power generation and further power saving can be realized.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 from sunlight by being exposed to sunlight in the daytime, and generate an electromotive force by the photovoltaic effect.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 emitted from outdoor illumination or indoor illumination at night, and generate an electromotive force by the photovoltaic effect.
  • the electromotive forces generated by the organic thin film transparent solar cells 100, 100 a, and 100 b are taken into the power storage device 121 through the DC controller 111 and stored in the lithium ion storage battery 120 there. Thereby, the lifetime improvement of the discharge capability of the lithium ion storage battery 120 can be achieved.
  • the amount of power stored in the lithium ion storage battery 120 can be recovered.
  • the purple LED package 1 emits ultraviolet light energy 73 upon receiving power from the lithium ion storage battery 120, and is organic.
  • the thin-film transparent solar cell 100 repeats power generation by absorption of the ultraviolet light energy 73 and self-generates electricity and stores it in the lithium ion storage battery 120, whereby the life of the discharge capacity time of the lithium ion storage battery 120 can be achieved.
  • the purple LED package 1 continues to emit the ultraviolet light energy 73 until the charged amount of the lithium ion storage battery 120 becomes zero, so that it can be used as a long-time emergency power outage luminaire.
  • a self-powered lighting device that has both the role of power saving function while the supply of commercial power is stopped can be realized.
  • the lighting device when the private power generation lighting device according to this embodiment is applied to an internally illuminated signboard lighting device, the lighting device is often installed on the wall of a building beside a sidewalk in a downtown area. For this reason, if the private power generation lighting device of this embodiment is applied to such an internally illuminated signboard lighting device, it is possible to give safety and security to the surroundings by brightly illuminating the entrance and sidewalk of the building at the time of a power failure .
  • a purple LED module (purple LED package) is used as an LED module (LED package) serving as a light source for illumination.
  • LED package LED module
  • the present invention is not limited to this, and a near ultraviolet LED module (near ultraviolet LED).
  • LED near ultraviolet LED
  • Blue LED module blue LED package
  • near infrared light LED module near infrared light LED package
  • the lithium ion storage battery was used as an example of a storage battery (secondary battery)
  • other storage batteries for example, a lead storage battery, a nickel storage battery, etc.
  • the electrical storage capability and charging / discharging capability are excellent. May be used.
  • the organic thin film transparent solar cell was used as a transparent solar cell, not only this but organic type transparent solar cells, such as a dye-sensitized transparent solar cell, a transparent innovative solar cell, Transparent solar cells such as transparent compound solar cells and transparent thin film solar cells can be widely used.
  • FIG. 6A is a schematic perspective view including a housing of the private power generation lighting device according to the fourth embodiment of the present invention.
  • 6B is a cross-sectional view taken along the line AA in FIG. 6A
  • FIG. 6C is a schematic diagram illustrating a configuration example of an electric circuit of the private power generation lighting device according to the fourth embodiment of the present invention.
  • elements different from those in the first embodiment will be mainly described. Elements that are substantially the same as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be made as much as possible. Omitted.
  • the self-powered lighting device includes a housing 30, an organic EL panel 27, a dye-sensitized transparent solar cell 95, and organic thin-film transparent solar cells 100a and 100b.
  • the housing 30 opens an installation area in which the organic EL panel 27 and other devices are installed, and the dye-sensitized transparent solar cell 95 and the organic thin film transparent solar cell 100a are installed in the opening portion together with the organic EL panel 27. Yes. Moreover, the organic thin film transparent solar cell 100b is installed on the back side of the housing 30 (on the side opposite to the opening of the installation region).
  • the organic EL panel 27 is a self-luminous panel installed in the installation area of the housing 30.
  • the organic EL panel 27 emits full-color light energy 29 upon receiving power.
  • the organic EL panel 27 includes a metal electrode 32, an organic electron transport layer 33, an organic light emitting layer 34, an organic hole transport layer 35, an ITO (indium tin oxide) transparent electrode 36, and a transparent substrate 37.
  • the organic light emitting layer 34 has light emitting layers of R (red), G (green), and B (blue) colors.
  • the ITO transparent electrode 36, the organic hole transport layer 35, the organic light emitting layer 34, the organic electron transport layer 33, and the metal electrode 32 are laminated in this order.
  • organic EL panel 27 electrons transported from the metal electrode 32 through the organic electron transport layer 33 and holes transported from the ITO transparent electrode 36 through the organic hole transport layer 35 are combined in the organic light emitting layer 34.
  • the light emitting material of the organic light emitting layer 34 is excited by the energy generated by the light, full color light energy 29 is emitted.
  • the dye-sensitized transparent solar cell 95 is formed in a planar shape on the outer surface of the organic EL panel 27 with the light absorption surface facing inward.
  • the organic thin-film transparent solar cell 100a is formed on the outer surface of the organic EL panel 27 in a planar shape with the light absorption surface facing outward.
  • the organic thin-film transparent solar cell 100b is formed in a planar shape on the surface opposite to the opening of the installation region of the housing 30.
  • the dye-sensitized transparent solar cell 95 is arranged in the light emitting direction of the organic EL panel 27. Specifically, the dye-sensitized transparent solar cell 95 is formed on one main surface of the transparent substrate 37 and on the surface opposite to the ITO transparent electrode 36. The dye-sensitized transparent solar cell 95 is formed in a planar shape so as to cover the main surface of the transparent substrate 37. The dye-sensitized transparent solar cell 95 absorbs the light energy 29 emitted from the organic EL panel 31 and generates an electromotive force by the photovoltaic effect.
  • the organic thin film transparent solar cell 100 a is laminated on the transparent substrate 37 via a dye-sensitized transparent solar cell 95.
  • the dye-sensitized transparent solar cell 95 and the organic thin-film transparent solar cell 100 are integrally formed with their light absorption surfaces opposite to each other.
  • the light absorption surface of the dye-sensitized transparent solar cell 95 is arranged facing the organic EL panel 27 (organic light emitting layer 34) side, and the light absorption surface of the organic thin film transparent solar cell 100a is opposite to the organic EL panel 27. Is placed outwards.
  • the organic thin film transparent solar cell 100a is formed in a planar shape so as to cover the dye-sensitized transparent solar cell 95.
  • the organic thin-film transparent solar cell 100b is formed in a planar shape on the back side of the housing 30 so as to cover the metal electrode 32.
  • the light absorption surface of the organic thin-film transparent solar cell 100 b is disposed outward so as to be opposite to the metal electrode 32.
  • the organic thin-film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from sunlight or outdoor lighting (street lights, mercury lamps, etc.) and generate electric power by the photovoltaic effect.
  • the organic thin film transparent solar cells 100a and 100b absorb ultraviolet light energy 73 from indoor lighting (fluorescent lamp, LED lighting, etc.) indoors, and generate electric power by the photovoltaic effect.
  • the structure which combined the dye-sensitized transparent solar cell 95 and the organic thin film transparent solar cells 100a and 100b is employ
  • adopted not only this but the dye-sensitized transparent solar cell 95 is used independently. Or a combination of the dye-sensitized transparent solar cell 95 and the organic thin-film transparent solar cell 100a, or a combination of the dye-sensitized transparent solar cell 95 and the organic thin-film transparent solar cell 100b.
  • the power control unit 112 controls power supplied to the organic EL panel 27 and includes commercial power as one of powers to be controlled, and includes an AC / DC converter 110 and a DC controller 111.
  • the power control unit 112 captures commercial power and power generated by the transparent solar cells 95, 100 a, and 100 b and supplies the captured power to the power storage device 121.
  • the AC / DC converter 110 receives commercial power (AC) and converts it into DC power.
  • the DC power converted by the AC / DC converter 110 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the DC controller 111 controls the electromotive force generated by the transparent solar cells 95, 100 a, 100 b so as to be adapted to the organic EL panel 27.
  • the electric power controlled by the DC controller 111 is stored in the lithium ion storage battery 120 of the power storage device 121.
  • the power storage device 121 includes a lithium ion storage battery 120 that receives and stores power from the power control unit 112, and supplies the power stored in the lithium ion storage battery 120 to the organic EL panel 27.
  • the lithium ion storage battery 120 stores electric power supplied from the AC / DC converter 110 and the DC controller 111 of the power control unit 112.
  • the electric power stored in the lithium ion storage battery 120 is supplied to the organic EL panel 27.
  • the electric power supplied to the organic EL panel 27 is consumed for causing the organic light emitting layer 34 of the organic EL panel 27 to emit light.
  • the power storage device 121 receives overpower from the power control unit 112 and prevents overcharging by itself stopping the power supply from the power control unit 112 when the storage amount of the lithium ion storage battery 120 is fully charged. It has a function.
  • the power storage device 121 supplies the commercial power stored in the lithium ion storage battery 120 via the AC / DC converter 110 to the organic EL panel 27, so that the organic EL panel 27 is full color. Light energy 29 is emitted. Then, the dye-sensitized transparent solar cell 95 absorbs the light energy 29 emitted from the organic EL panel 27 and generates an electromotive force by the photovoltaic effect. The electric power generated by the dye-sensitized transparent solar cell 95 is stored in the lithium ion storage battery 120 and used for light emission in the organic EL panel 27. As a result, the light energy emitted from the organic EL panel 27 can be reused by the dye-sensitized transparent solar cell 95 to generate power in-house, thereby realizing further power saving.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 from sunlight by being exposed to sunlight in the daytime, and generate an electromotive force by the photovoltaic effect.
  • the organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b absorb ultraviolet light energy 73 emitted from outdoor illumination or indoor illumination at night, and generate an electromotive force by the photovoltaic effect.
  • the electromotive forces generated by the organic thin film transparent solar cells 95, 100 a, and 100 b are taken into the power storage device 121 via the DC controller 111 and stored in the lithium ion storage battery 120 there. Thereby, the lifetime improvement of the discharge capability of the lithium ion storage battery 120 can be achieved.
  • the amount of power stored in the lithium ion storage battery 120 can be recovered.
  • a lithium ion storage battery is used as an example of a storage battery (secondary battery), but other storage batteries (for example, a lead storage battery, a nickel storage battery, etc.) can be used as long as the storage capacity and charge / discharge capacity are excellent. May be used.
  • other storage batteries for example, a lead storage battery, a nickel storage battery, etc.
  • the dye-sensitized transparent solar cell and the organic thin film transparent solar cell were used as a transparent solar cell, it is not restricted to this, A transparent innovative type solar cell, a transparent compound type solar cell, Transparent solar cells such as transparent thin film solar cells can be widely used.
  • a housing that opens an installation area where the object to be irradiated is installed;
  • a light source for illumination that is provided in the housing and emits light upon receiving power supply;
  • a transparent solar cell that absorbs light energy and generates electricity;
  • a display panel that is installed in an installation area of the housing as the irradiation object, and displays a predetermined image by receiving supply of light energy emitted from the light source;
  • a power control unit that controls power supplied to the light source and includes at least commercial power as one of powers to be controlled;
  • a power storage device that includes a storage battery that receives and stores power from the power control unit, and that supplies power stored in the storage battery to the light source;
  • the transparent solar cell includes a first transparent solar cell formed in a planar shape on the inner surface of the display panel, a second transparent solar cell formed in a planar shape on the outer surface of the display panel, and the installation region of the casing.
  • the power storage device receives the supply of power generated by at least the first transparent solar cell among the first transparent solar cell, the second transparent solar cell, and the third solar cell from the power control unit, and stores the storage battery. To store electricity, In-house power generation lighting system.
  • the power storage device has at least one of the second transparent solar cell and the third solar cell from the sunlight or the outdoor illumination. By receiving supply of power generated by absorbing light energy from the power control unit, the storage amount of the storage battery is recovered, The self-powered illumination device according to appendix 1.
  • the private power generation lighting device of the present invention can regenerate the self-generated light energy to generate private power.
  • a transparent solar cell that generates light by absorbing light energy from the light source stable in-house power generation can be calculated without being influenced by the weather.
  • a solar cell that generates power by absorbing sunlight, outdoor lighting, or light energy of indoor lighting outside the enclosure enormous power saving can be achieved, which can help to prevent global warming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

躯体と、光源と、太陽電池と、表示パネルと、導光板と、光反射板と、電力制御部と、蓄電装置と、を備える、電力制御部は、光源に供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む。蓄電装置は、電力制御部から電力の供給を受けて蓄電する蓄電池を含み、蓄電池に蓄電した電力を光源に供給する。光源は、躯体の設置領域の一端側からこれと対峙する側に光エネルギーを発光し、導光板は、光源からの光エネルギーを表示パネル側に導く。光反射板は、光源からの光エネルギーのうち導光板の底面部側に導かれた光エネルギーを表示パネル側に反射する。太陽電池は、光源からの直接光と、光反射板からの反射光の両方の光エネルギーを吸収して発電する。

Description

自家発電照明装置
 本発明は、躯体内と、躯体外の光源から発光される光エネルギーを太陽電池で吸収し、光起電力効果で起電力を自家発電する自家発電照明装置に関する。
 これまで、太陽光発電といえばその名の通り、昼間の太陽光の紫外線と光エネルギーを吸収し光起電力効果で起電力を自家発電する装置であり、昼間の太陽光ではなく照明用の光源が発光する光エネルギーを再利用する発電に関してはあまり関心が高くなかった。
 近年では、看板照明用の光源として、蛍光灯や水銀灯ではなく、LED(Light Emitting Diode)光源を用いた看板用照明装置が、本発明者によって開示されている(特許文献1参照)。
 また、昼間の太陽光を利用した透明太陽電池も開示されている(特許文献2、3、4参照)。
特許第5592528号公報 特開2005-129987号公報 特開2009-229975号公報 特開2011-119455号公報
 これまで、照明用の光源は消費電力の削減に努力しているが、照明用の光源が自ら発光照射する光エネルギーを有効利用することは放置されてきた。
 特許文献1に記載の看板用照明装置では、看板面全体の明るさを平均化し消費電力の削減に努力しているが、LED光源の発光照射する光エネルギーを有効利用することには触れていない。
 特許文献2に記載の携帯電話機では、筐体全体を透明太陽電池で構成しているものの、太陽光の光エネルギーを利用しているので、天候による発電量のバラツキが大きいという問題がある。
 また、特許文献3に記載の電気掲示器では、やはり太陽光の光エネルギーを利用しているので、雨天時などの場合は極端に発電量が少なくなるという問題がある。
 また、特許文献4に記載の太陽電池を備える有機EL装置では、昼間の太陽光の光エネルギーを吸収し発電するため、天候による発電能力のバラツキがあり、安定した発電が期待できないという問題がある。
 本発明は、福島県の原子力発電所の事故による長期間の停電により、モバイル端末などの蓄電量が0になり、再充電するために停電していない場所まで訪問しなければならなかった経験と、その後の電気料金の高騰と節電意識に鑑み、照明用の光源等から発せられる光エネルギーを放出するだけでなく、放出された光エネルギーを再利用して自家発電し、更なる節電を実現可能な自家発電照明装置を提供することを目的とする。
 (第1の態様)
 本発明の第1の態様は、
 照射対象物が設置される設置領域を開口した躯体と、
 前記躯体内に設けられ、電力の供給を受けて発光する照明用の光源と、
 光エネルギーを吸収して発電する太陽電池と、
 前記照射対象物として前記躯体の設置領域に設置され、前記光源が発光する光エネルギーの供給を受けて所定の画像を表示する表示パネルと、
 前記躯体内に設けられる導光板と、
 前記導光板の底面部に形成される光反射板と、
 前記光源に供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む電力制御部と、
 前記電力制御部から電力の供給を受けて蓄電する蓄電池を含み、前記蓄電池に蓄電した電力を前記光源に供給する蓄電装置と、
 を備え、
 前記光源は、前記躯体内で前記設置領域の一端に設けられ、前記設置領域の一端と対峙する側に光エネルギーを発光し、
 前記導光板は、前記光源が発光する光エネルギーを前記表示パネル側に導き、
 前記光反射板は、前記光源が発光する光エネルギーのうち前記導光板の底面部側に導かれた光エネルギーを前記表示パネル側に反射し、
 前記太陽電池は、前記光源からの直接光と、前記光反射板からの反射光の両方の光エネルギーを吸収して発電する、
 自家発電照明装置である。
 (第2の態様)
 本発明の第2の態様は、
 照射対象物が設置される設置領域を開口した躯体と、
 前記躯体内に設けられ、電力の供給を受けて発光する照明用の光源と、
 光エネルギーを吸収して発電する太陽電池と、
 前記照射対象物として前記躯体の設置領域に設置され、光エネルギーの供給を受けて所定の画像を表示する表示パネルと、
 前記躯体内に設けられる光反射板と、
 前記光源に供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む電力制御部と、
 前記電力制御部から電力の供給を受けて蓄電する蓄電池を含み、前記蓄電池に蓄電した電力を前記光源に供給する蓄電装置と、
 を備え、
 前記光源は、前記躯体内で前記設置領域の一端に設けられ、前記設置領域の一端と対峙する側に光エネルギーを発光し、
 前記光反射板は、前記表示パネルに対向して配置される反射面を有するとともに、前記反射面と前記表示パネルとの対向距離が、前記設置領域の一端からこれに対峙する他端側に向かって徐々に小さくなるように、前記反射面を斜めに傾けて設置され、前記光源から発光される光エネルギーの一部を前記反射面によって前記表示パネル側に反射し、
 前記太陽電池は、前記光源から発光される直接光と、前記光源から発光され、前記反射面によって前記表示パネル側に反射される反射光の両方の光エネルギーを吸収して発電する、
 自家発電照明装置である。
 (第3の態様)
 本発明の第3の態様は、
 設置領域を開口した躯体と、
 前記躯体の設置領域に設置され、電力の供給を受けて発光する自発光型のパネルと、
 光エネルギーを吸収して発電する太陽電池と、
 前記パネルに供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む電力制御部と、
 前記電力制御部から電力の供給を受けて蓄電する蓄電池を含み、前記蓄電池に蓄電した電力を前記パネルに供給する蓄電装置と、
 を備え、
 前記太陽電池は、前記パネルの外面上に、光吸収面を内側に向けて平面状に形成される透明な第1太陽電池と、前記パネルの外面上に、光吸収面を外側に向けて平面状に形成される透明な第2太陽電池と、前記躯体の前記設置領域の開口とは反対側の面に平面状に形成される透明または不透明な第3太陽電池のうち少なくとも前記第1太陽電池を含み、
 前記第1太陽電池は、前記パネルの発光方向に配置され、前記パネルが発光する光エネルギーを吸収して発電し、
 前記太陽電池が前記第2太陽電池および前記第3太陽電池を含む場合、前記第2太陽電池および前記第3太陽電池は、屋外では、太陽光または屋外照明からの光エネルギーを吸収して発電し、屋内では、屋内照明からの光エネルギーを吸収して発電し、
 前記蓄電装置は、前記第1太陽電池、前記第2太陽電池、および前記第3太陽電池のうち少なくとも1つの太陽電池が発電した電力の供給を前記電力制御部から受けて前記蓄電池に蓄電する、
 自家発電照明装置である。
 本発明によれば、照明用の光源等から発光された光エネルギーを再利用して自家発電し、更なる節電を実現可能な自家発電照明装置を提供することができる。
表面実装型のLEDパッケージの構成を示す概略平面図である。 図1AのA-A矢視断面図である。 表面実装型のLEDパッケージの他の構成を示す断面図である。 液晶パネルと、透明UVカットフィルムと、有機薄膜透明太陽電池と、光源の配置を示す概略斜視図である。 本発明の第1実施形態に係る自家発電照明装置の躯体を含む紫色LEDモジュールの概略斜視図である。 図3AのA-A矢視断面図である。 本発明の第1実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。 本発明の第2実施形態に係る自家発電照明装置(節電型複数列LED照明器具)の躯体を含む斜視図である。 図4AのA-A矢視断面図である。 本発明の第2実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。 本発明の第3実施形態に係る自家発電照明装置の躯体を含む斜視図である。 図5AのA-A矢視断面図である。 本発明の第3実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。 本発明の第4実施形態に係る自家発電照明装置の躯体を含む斜視図である。 図6AのA-A矢視断面図である。 本発明の第4実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。尚、本願の明細書には、基礎出願である特願2016-171256の明細書、特許請求の範囲および図面に記載された事項のすべてが漏れなく記載されているものとし、当該基礎出願で開示した事項を必要に応じて本願の明細書、特許請求の範囲および図面に追加できるものとする。
 (LEDパッケージの構成)
 まず、本発明の実施形態で用いるLEDパッケージの構成について図1A、図1B、図1Cを用いて説明する。図1Aは、表面実装型のLEDパッケージの構成を示す概略平面図であり、図1Bは、図1AのA-A矢視断面図である。
 本実施形態では、図1Aおよび図1Bに示すように、LEDパッケージとして表面実装型の紫色LEDパッケージ1を用いる。紫色LEDパッケージ1は、セラミックや樹脂で成形されたキャビティ12と、キャビティ12に実装された紫色LED素子10と、キャビティ12の内面に形成されたリフレクタ14と、キャビティ12内を充填する封止材15と、集光レンズ16と、LED基板17と、を備える。紫色LED素子10の上には、封止材15と集光レンズ16が、この順に積層して配置されている。
 リフレクタ14は、紫色LED素子10が発光した紫色光エネルギー74を前面(図1Bの上方)に反射する。
 封止材15は、紫色LED素子10を封止するもので、R(赤色)G(緑色)B(青色)蛍光体を含有するシリコーン樹脂からなる。封止材15には、同時加法混色用のRGB蛍光体を分散させた耐紫外性、耐熱性を有するシリコーン樹脂を用いることが好ましい。
 紫色LED素子10は、LED基板17上に実装されている。紫色LED素子10は、紫色光エネルギー74を放射する。紫色LEDパッケージ1は、紫色LED素子10が放射する紫色光エネルギー74と、封止材15に含まれるRGB蛍光体との組み合わせにより、同時加法混色された白色の光エネルギー68を紫外線(紫外線光エネルギー)と共に発光放射する。
 また、紫色LEDパッケージ1では、紫色LED素子10が発光した紫色光エネルギー74を、封止材15に含有されるRGB蛍光体に当てて、光の三原色を応用した同時加法混色により、可視光全域を蛍光体発光で得る白色の光エネルギー68を実現する。このため、これまで主流であった青色LED素子と黄色蛍光体の組み合わせで疑似白色光を発光照射させる方法と比べ、はるかに色再現度が高められ、RGBそれぞれの蛍光体の増減の調整でRa(平均演色評価数)100に近づけることが容易である。また、RGBそれぞれの蛍光体の増減の調整で白色光以外の、例えば、赤色系、緑色系、青色系、黄色系等の光エネルギーの発光照射も容易である。また、紫色LED素子10が発光する紫色光エネルギー74は、RGB蛍光体との同時加法混色により白色光または同時加法混色で発光可能な色の光エネルギー68として放射されるとともに、紫外線(紫外線光エネルギー)としても放射される。
 本実施形態では、LED素子として紫色LED素子10を採用したが、これ以外のLED素子、例えば、近紫外光LED素子、青色LED素子、または近赤外光LED素子を採用してもよい。また、本実施形態では、LED基板17上のキャビティ12に実装される紫色LED素子10の実装構造としてフェイスアップタイプを採用したが、フェイスダウンタイプを採用してもよい。
 また、図1Bおよび図1Cに示すように、LEDパッケージに用いるLED素子の数は、1つであっても複数であってもよい。また、集光レンズ16は、青色LEDパッケージ2に取り付けてもよいが、これは青色LEDパッケージ2または紫色LEDパッケージ1として必須ではなく、必要に応じて設けるようにすればよい。
 また、図1Bに示す態様では、紫色LED素子とRGB蛍光体を用いているが、これに限らず、図1Cに示すように、青色LED素子11と黄色蛍光含有の封止材13を組み合わせた青色LEDパッケージ2により光エネルギー68を発光させてもよい。その場合、封止材13には、黄色蛍光体を分散させた耐熱性を有するシリコーン樹脂を用いることが好ましい。また、青色LED素子11と黄色蛍光体含有の封止材13の組み合わせでは紫外線をほとんど放射しないため、紫外線対策はさほど必要ではない。
 (透明太陽電池の構成)
 太陽から地上に降り注がれる太陽光には、可視光線50%前後と赤外線44%前後と紫外線6%前後の波長光が含まれる。現在の透明太陽電池は、太陽光に含まれる波長光から、可視光線と紫外線、または可視光線と赤外線を吸収し、光起電力効果で起電力を発電する構成になっている。
 (液晶パネルと透明UVカットフィルムと有機薄膜透明太陽電池と光源の構成)
 図2は、液晶パネルと、透明UVカットフィルムと、有機薄膜透明太陽電池と、光源の配置を示す概略斜視図である。
 図2に示すように、光源となる紫色LEDモジュール20の光出射方向には、有機薄膜透明太陽電池100と、透明UVカットフィルム104と、液晶パネル50とが、この順に積層して配置されている。この場合、紫色LEDモジュール20は、液晶パネル50のバックライト用の光源を構成する。バックライトには直下型とエッジライト型があり、いずれを採用してもよいが、本実施形態では一例として直下型を採用している。すなわち、紫色LEDモジュール20は、上述した表面実装型の紫色LEDパッケージ1を複数連接してなる。連接とは、互いに連なるように配置されて電気的に接続されている状態を意味する。直下型のバックライトは、複数の紫色LEDパッケージ1を所定の間隔で二次元状(マトリックス状)に配置することで構成される。紫色LEDモジュール20は、同時加法混色で白色の光エネルギー68と一緒に紫外線(紫外線光エネルギー73)も放射する。
 有機薄膜透明太陽電池100は、紫色LEDモジュール20から見て、第1透明電極層101と透明光電変換層102と第2透明電極層103で構成され、この順番に積層されている。有機薄膜透明太陽電池100は、RGBそれぞれの蛍光体の増減で紫外線量を調整することにより、高い起電力を発電する。有機薄膜透明太陽電池100は、紫色LEDモジュール20から発光放射される紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。有機薄膜透明太陽電池100が自家発電した起電力は、図示しない直流制御器を経由して紫色LEDモジュール20に供給するか、または図示しない二次リチウムイオン蓄電池に蓄電する。
 尚、有機薄膜透明太陽電池100が自家発電した起電力の発生電圧は、紫外線光エネルギー73の入射光量に左右されるのでそのままの電圧を使用することはできない。そこで有機薄膜透明太陽電池100で発電した発生電圧を、供給予定先に適合するように制御する直流制御器を設ける。直流制御器は、有機薄膜透明太陽電池100で発電した発生電圧の供給先が、例えば、紫色LED素子10、またはリチウムイオン蓄電池等であれば、それぞれの供給先に適用するように当該発生電圧を制御する。すなわち、有機薄膜透明太陽電池100からの発生電圧を直流制御器で制御した後、紫色LEDモジュール20に供給するか、または二次リチウムイオン蓄電池に蓄電する。
 透明UVカットフィルム104は、紫色LEDモジュール20から見て、有機薄膜透明太陽電池100のすぐ外側に形成されている。透明UVカットフィルム104は、有機薄膜透明太陽電池100で吸収され起電力を発電した後の、有機薄膜透明太陽電池100で吸収しきれなかった紫外線を吸収消滅させる。これにより、透明UVカットフィルム104は、紫外線を含まない光エネルギー68をそのまま透過させることで、透明UVカットフィルム104から先に存在する液晶パネル50や人体に紫外線を放射することの悪影響を抑制する。
 尚、本実施形態では、透明UVカットフィルム104を採用したが、透明で紫外線を吸収消滅させる材料であれば他の材料を用いてもよい。また、有機薄膜透明太陽電池100において、ある程度紫外線を吸収し、有機薄膜透明太陽電池100の外側に存在する液晶パネル50や人体に紫外線を放射する影響が少なければ、透明UVカットフィルム104を設けなくてもよい。
 液晶パネル50は、紫色LEDモジュール20から見て、第1偏光板60と、アレイ基板61と、第1透明電極(サブ画素電極)62と、第1配向膜63と、液晶層64と、第2配向膜65と、第2透明電極(共通電極)66と、第2偏光板67と、をこの順に積層して構成されている。光源となる紫色LEDモジュール20から発光放射された紫外線光エネルギー73は、有機薄膜透明太陽電池100および透明UVカットフィルム104を通して液晶パネル50に入射される。紫色LEDモジュール20から発光される紫外線光エネルギー73は、その一部が有機薄膜透明太陽電池100で吸収される。透明UVカットフィルム104は、有機薄膜透明太陽電池100で吸収しきれなかった残りの紫外線を吸収消滅させる。このため、液晶パネル50に入射される光は、紫外線を含まない光エネルギー68となり、この光エネルギー68の供給により液晶パネル50が点灯する。液晶パネル50を点灯した光エネルギー68は可視光線となり、やがて消滅する。
 <第1実施形態>
 以下、本発明の第1実施形態に係る自家発電照明装置について説明する。
 図3Aは、本発明の第1実施形態に係る自家発電照明装置の躯体を含む概略斜視図である。また、図3Bは、図3AのA-A矢視断面図であり、図3Cは、本発明の第1実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。
 図示した自家発電照明装置は、紫色LEDモジュール20と、躯体30と、液晶パネル50と、有機薄膜透明太陽電池100,100a,100bと、透明UVカットフィルム104と、を備える。
 紫色LEDモジュール20は、上述したように表面実装型の紫色LEDパッケージ1を複数連接してなる、バックライト用の光源である。
 躯体30は、照射対象物となる液晶パネル50と他の機器類が設置される設置領域を開口し、この開口部分に液晶パネル50と共に有機薄膜透明太陽電池100,100aと透明UVカットフィルム104が設置されている。また、躯体30には紫色LEDモジュール20(紫色LEDパッケージ1)が設置され、躯体30の裏側(設置領域の開口と反対側)には有機薄膜透明太陽電池100bが設置されている。
 液晶パネル50は、紫色LEDモジュール20の各紫色LEDパッケージ1が発光する光エネルギーの供給を受けて所定の画像(静止画、動画など)を表示する。
 有機薄膜透明太陽電池100,100a,100bは、それぞれ平面状に形成されている。有機薄膜透明太陽電池100は、紫色LEDモジュール20に複数連接される各々の紫色LEDパッケージ1から発光放射された紫外線光エネルギー73を吸収し、光起電力効果で起電力を自家発電する。有機薄膜透明太陽電池100a,100bは、屋外では太陽光または屋外照明(街路灯、水銀灯など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。また、有機薄膜透明太陽電池100a,100bは、屋内では屋内照明(蛍光灯、LED照明など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。
 有機薄膜透明太陽電池100は、紫色LEDモジュール20と対向するように躯体30内に配置されている。液晶パネル50の内面には、透明UVカットフィルム104を介して有機薄膜透明太陽電池100が配置され、液晶パネル50の外面には有機薄膜透明太陽電池100aが配置されている。これにより、紫色LEDモジュール20の各紫色LEDパッケージ1が発光する紫外線光エネルギー73は、有機薄膜透明太陽電池100で吸収され、そこで吸収しきれなかった紫外線が透明UVカットフィルム104で吸収消滅される。したがって、液晶パネル50には、紫外線を含まない光エネルギー68が照射される。
 透明UVカットフィルム104は、表面実装型の紫色LEDパッケージ1から見て、有機薄膜透明太陽電池100のすぐ外側に形成されている。透明UVカットフィルム104は、有機薄膜透明太陽電池100を透過した紫外線を吸収消滅させる。透明UVカットフィルム104は、有機薄膜透明太陽電池100で吸収され起電力を発電した後の、残りの紫外線を吸収消滅し、紫外線を含まない光エネルギー68はそのまま透過させることで、透明UVカットフィルム104から先に存在する液晶パネル50や人体に紫外線を放射することの悪影響を抑制する。
 尚、本実施形態では、3つの有機薄膜透明太陽電池100,100a,100bを組み合わせた構成を採用しているが、これに限らず、有機薄膜透明太陽電池100を単独で用いた構成、有機薄膜透明太陽電池100と有機薄膜透明太陽電池100aを組み合わせた構成、有機薄膜透明太陽電池100と有機薄膜透明太陽電池100bを組み合わせた構成でもよい。
 (電気回路)
 電力制御部112は、光源となる紫色LEDモジュール20(紫色LEDパッケージ1)に供給する電力を制御するとともに、制御の対象とする電力の1つに商業用電力を含むもので、交流直流変換器110と直流制御器111を有する。電力制御部112は、商業用電力と、透明太陽電池100,100a,100bが発電する電力とを取り込むとともに、取り込んだ電力を蓄電装置121に供給する。交流直流変換器110は、商業用電力(交流)の供給を受けて直流電力に変換する。交流直流変換器110で変換された直流電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。直流制御器111は、透明太陽電池100,100a,100bで発電された起電力を、紫色LEDモジュール20に適合するように制御する。直流制御器111で制御された電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。
 蓄電装置121は、電力制御部112から電力の供給を受けて蓄電するリチウムイオン蓄電池120を含み、リチウムイオン蓄電池120に蓄電した電力を紫色LEDモジュール20の紫色LEDパッケージ1に供給する。リチウムイオン蓄電池120は、電力制御部112の交流直流変換器110や直流制御器111から供給される電力を蓄電する。リチウムイオン蓄電池120に蓄電された電力は、紫色LEDモジュール20に供給される。紫色LEDモジュール20に供給される電力は、各々の紫色LEDパッケージ1を発光(紫色LEDモジュール20を点灯)させるために消費される。
 また、蓄電装置121は、電力制御部112から電力の供給を受けてリチウムイオン蓄電池120の蓄電量が満充電状態になった場合に、電力制御部112からの電力供給を自ら停止する過充電防止機能を有する。
 本発明の第1実施形態においては、交流直流変換器110を介してリチウムイオン蓄電池120に蓄電された商業用電力を蓄電装置121が紫色LEDモジュール20に供給することにより、各々の紫色LEDパッケージ1が紫外線光エネルギー73を発光する。そうすると、有機薄膜透明太陽電池100は、各々の紫色LEDパッケージ1が発光した紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。有機薄膜透明太陽電池100が発電した電力はリチウムイオン蓄電池120に蓄電され、紫色LEDパッケージ1での発光に利用される。これにより、紫色LEDパッケージ1が発光する光エネルギーを有機薄膜透明太陽電池100で再利用して自家発電し、更なる節電を実現することが可能となる。
 一方、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、それぞれ昼間の太陽光に暴露されることで太陽光からの紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。また、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、夜間に屋外照明または屋内照明から発せられる紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。こうして有機薄膜透明太陽電池100,100a,100bが発電した起電力は、それぞれ直流制御器111を介して蓄電装置121に取り込まれ、そこでリチウムイオン蓄電池120に蓄電される。これにより、リチウムイオン蓄電池120の放電能力の長寿命化を達成することができる。また、長期間の災害発生などで商業用電力の供給が断たれ、リチウムイオン蓄電池120の蓄電量が0となっても、有機薄膜透明太陽電池100aおよび有機薄膜透明太陽電池100bの少なくとも一方が太陽光等からの紫外線光エネルギー73を吸収して自家発電した起電力をリチウムイオン蓄電池120に蓄電することにより、リチウムイオン蓄電池120の失われた蓄電量を回復させることができる。
 尚、本実施形態で用いた有機薄膜透明太陽電池100,100a,100bの光電変換効率が大幅に改善された場合は、商業用電力による再充電を不要とすることも可能である。また、本実施形態では、躯体30の裏側に設置する太陽電池を有機薄膜透明太陽電池100bとしているが、これを透明ではなく、光電変換効率に優れた不透明な太陽電池としてもよい。この点は、以降に述べる他の実施形態についても同様である。
 また、上記第1実施形態では、照明用の光源となるLEDモジュール(LEDパッケージ)として紫色LEDモジュール(紫色LEDパッケージ)を用いたが、これに限らず、近紫外光LEDモジュール(近紫外光LEDパッケージ)、青色LEDモジュール(青色LEDパッケージ)、近赤外光LEDモジュール(近赤外光LEDパッケージ)などを用いてもよい。また、上記第1実施形態では、蓄電池(二次電池)の一例としてリチウムイオン蓄電池を用いたが、蓄電能力や充放電能力が優れていれば他の蓄電池(例えば、鉛蓄電池、ニッケル蓄電池など)を用いてもよい。また、上記第1実施形態においては、透明太陽電池として有機薄膜透明太陽電池を用いたが、これに限らず、色素増感透明太陽電池等の有機系透明太陽電池、透明な革新型太陽電池、透明な化合物系太陽電池、透明な薄膜太陽電池など、透明な太陽電池を広く用いることができる。
 <第2実施形態>
 次に、本発明の第2実施形態に係る自家発電照明装置について説明する。
 図4Aは、本発明の第2実施形態に係る自家発電照明装置の躯体を含む概略斜視図である。また、図4Bは、図4AのA-A矢視断面図であり、図4Cは、本発明の第2実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。尚、本第2実施形態では、第1実施形態と異なる要素について主に説明し、第1実施形態で説明した要素と実質的に同一の要素には同一の符号を付してその説明をできるだけ省略する。
 本発明の第2実施形態に係る自家発電照明装置は、青色LEDモジュール21と、躯体30と、液晶パネル50と、導光板52と、光反射板53と、色素増感透明太陽電池95と、有機薄膜透明太陽電池100a,100bと、を備える。
 青色LEDモジュール21は、表面実装型の青色LEDパッケージ2が複数連接されてなる。青色LEDモジュール21は、エッジライト型のバックライトを構成する光源である。青色LEDモジュール21は、躯体30内で設置領域の一端(本実施形態では上部)に設けられ、その一端側から対峙する側に光エネルギー68を発光放射する。
 躯体30は、照射対象物となる液晶パネル50と他の機器類が設置される設置領域を開口し、この開口部分に液晶パネル50と共に色素増感透明太陽電池95と有機薄膜透明太陽電池100aが設置されている。また、躯体30内には、照明用の光源となる青色LEDモジュール21と共に、導光板52が設置されている。導光板52は、色素増感透明太陽電池95と対向するように設置され、この導光板52の一方の主面(以下、底面という)に光反射板53が設置されている。
 液晶パネル50は、青色LEDモジュール21の各青色LEDパッケージ2が発光し、かつ、導光板52や光反射板53によって導かれた光エネルギーの供給を受けて所定の画像(静止画、動画など)を表示する。液晶パネル50は、照射対象物として躯体30の設置領域に設置されている。照射対象物とは、照明用の光源(本実施形態では青色LEDモジュール21)が発する光を照射する対象物をいう。
 導光板52は、例えば、アクリル板などのプラスチック板にレーザー加工やエッチング加工等を施すことにより、導光板52の側面から入射される光エネルギー68を液晶パネル50側に効率良く導くものである。このため、青色LEDモジュール21から導光板52に光エネルギー68を入射すると、この光エネルギー68は、液晶パネル50と対向する導光板52の板面から放射(面発光)される。
 光反射板53は、青色LEDモジュール21から導光板52に入射される光エネルギー68のうち、導光板52の底面部側に導かれた光エネルギー68を液晶パネル50側に強制的に反射させるもので、そのための反射面を有する。光反射板53の反射面は、導光板52の底面に密着または近接して配置されている。
 色素増感透明太陽電池95および有機薄膜透明太陽電池100a,100bは、それぞれ平面状に形成されている。色素増感透明太陽電池95は、導光板52と対向するように液晶パネル50の内面に配置され、有機薄膜透明太陽電池100aは、液晶パネル50の外面に配置されている。また、有機薄膜透明太陽電池100bは、躯体30の裏側(設置領域の開口と反対側)の面に設置されている。
 色素増感透明太陽電池95は、青色LEDモジュール21に複数連接される各々の青色LEDパッケージ2から発光放射される光エネルギー68を吸収し、光起電力効果で起電力を自家発電する。具体的には、色素増感透明太陽電池95は、青色LEDモジュール21から導光板52により液晶パネル50側に導光される導光光を吸収して発電する以外に、青色LEDモジュール21からの直接光と光反射板53からの反射光との両方の光エネルギー68を吸収して発電する。青色LEDモジュール21からの直接光は、青色LEDモジュール21から導光板52に入射されずに、そこから漏れ出た漏れ光である。光反射板53からの反射光は、青色LEDモジュール21から導光板52に入射された光エネルギー68のうち、導光板52の底面部に導かれ、そこで光反射板53により反射された光である。有機薄膜透明太陽電池100a,100bは、屋外では太陽光または屋外照明(街路灯、水銀灯など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。また、有機薄膜透明太陽電池100a,100bは、屋内では屋内照明(蛍光灯、LED照明など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。
 尚、本実施形態では、色素増感透明太陽電池95と有機薄膜透明太陽電池100a,100bを組み合わせた構成を採用しているが、これに限らず、色素増感透明太陽電池95を単独で用いた構成、色素増感透明太陽電池95と有機薄膜透明太陽電池100aを組み合わせた構成、色素増感透明太陽電池95と有機薄膜透明太陽電池100bを組み合わせた構成でもよい。
 また、本実施形態では、躯体30の上部に青色LEDモジュール21を設置したが、これに限らず、自家発電照明装置の設計上の都合により、躯体30の上下左右のいずれかの一端側のうち、最も好適と思われる場所に青色LEDモジュール21を設置することが可能である。
 (電気回路)
 電力制御部112は、光源となる青色LEDモジュール21(青色LEDパッケージ2)に供給する電力を制御するとともに、制御の対象とする電力の1つに商業用電力を含むもので、交流直流変換器110と直流制御器111を有する。電力制御部112は、商業用電力と、透明太陽電池95,100a,100bが発電する電力とを取り込むとともに、取り込んだ電力を蓄電装置121に供給する。交流直流変換器110は、商業用電力(交流)の供給を受けて直流電力に変換する。交流直流変換器110で変換された直流電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。直流制御器111は、透明太陽電池95,100a,100bで発電された起電力を、青色LEDモジュール21に適合するように制御する。直流制御器111で制御された電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。
 蓄電装置121は、電力制御部112から電力の供給を受けて蓄電するリチウムイオン蓄電池120を含み、リチウムイオン蓄電池120に蓄電した電力を青色LEDモジュール21の青色LEDパッケージ2に供給する。リチウムイオン蓄電池120は、電力制御部112の交流直流変換器110や直流制御器111から供給される電力を蓄電する。リチウムイオン蓄電池120に蓄電された電力は、青色LEDモジュール21に供給される。青色LEDモジュール21に供給される電力は、各々の青色LEDパッケージ2を発光(青色LEDモジュール21を点灯)させるために消費される。
 また、蓄電装置121は、電力制御部112から電力の供給を受けてリチウムイオン蓄電池120の蓄電量が満充電状態になった場合に、電力制御部112からの電力供給を自ら停止する過充電防止機能を有する。
 本発明の第2実施形態においては、交流直流変換器110を介してリチウムイオン蓄電池120に蓄電された商業用電力を蓄電装置121が青色LEDモジュール21に供給することにより、各々の青色LEDパッケージ2が光エネルギー68を発光する。そうすると、青色LEDパッケージ2から発光された光エネルギー68の多くは、導光板52に入射されて液晶パネル50側に導かれ、これが導光光として色素増感透明太陽電池95に入射されるが、これ以外にも、導光板52に入射されない漏れ光が存在し、この漏れ光が青色LEDモジュール21からの直接光として色素増感透明太陽電池95に入射される。また、青色LEDパッケージ2から導光板52に入射された光エネルギー68の一部は、導光板52の底部側に導かれ、そこで光反射板53によって液晶パネル50側に反射された反射光が色素増感透明太陽電池95に入射される。これにより、色素増感透明太陽電池95は、導光板52による導光光だけでなく、青色LEDモジュール21からの直接光と、光反射板53による反射光の両方の光エネルギー68を吸収して発電する。色素増感透明太陽電池95が発電した電力はリチウムイオン蓄電池120に蓄電され、青色LEDモジュール21での発光に利用される。これにより、青色LEDモジュール21が発光する光エネルギーを色素増感透明太陽電池95で再利用して自家発電し、更なる節電を実現することが可能となる。
 一方、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、それぞれ昼間の太陽光に暴露されることで太陽光からの紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。また、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、夜間に屋外照明または屋内照明から発せられる紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。こうして色素増感透明太陽電池95や有機薄膜透明太陽電池100a,100bが発電した起電力は、それぞれ直流制御器111を介して蓄電装置121に取り込まれ、そこでリチウムイオン蓄電池120に蓄電される。これにより、リチウムイオン蓄電池120の放電能力の長寿命化を達成することができる。また、長期間の災害発生などで商業用電力の供給が断たれ、リチウムイオン蓄電池120の蓄電量が0となっても、有機薄膜透明太陽電池100aおよび有機薄膜透明太陽電池100bの少なくとも一方が太陽光等からの紫外線光エネルギー73を吸収して自家発電した起電力をリチウムイオン蓄電池120に蓄電することにより、リチウムイオン蓄電池120の失われた蓄電量を回復させることができる。
 尚、上記第2実施形態では、照明用の光源となるLEDモジュール(LEDパッケージ)として青色LEDモジュール(青色LEDパッケージ)を用いたが、これに限らず、近紫外光LEDモジュール(近紫外光LEDパッケージ)、紫色LEDモジュール(紫色LEDパッケージ)、近赤外光LEDモジュール(近赤外光LEDパッケージ)などを用いてもよい。また、上記第2実施形態では、表示パネルとして液晶パネルを用いたが、これに限らず、例えば、絵柄表示パネルを用いてもよい。絵柄表示パネルは、内照式看板等で用いられる透明または半透明のパネルであって、看板として表示すべき絵柄が形成される。また、上記第2実施形態では、蓄電池(二次電池)の一例としてリチウムイオン蓄電池を用いたが、蓄電能力や充放電能力が優れていれば他の蓄電池(例えば、鉛蓄電池、ニッケル蓄電池など)を用いてもよい。また、上記第2実施形態においては、透明太陽電池として色素増感透明太陽電池と有機薄膜透明太陽電池を用いたが、これに限らず、透明な革新型太陽電池、透明な化合物系太陽電池、透明な薄膜太陽電池など、透明な太陽電池を広く用いることができる。
 <第3実施形態>
 次に、本発明の第3実施形態に係る自家発電照明装置について説明する。
 図5Aは、本発明の第3実施形態に係る自家発電照明装置の躯体を含む概略斜視図である。また、図5Bは、図5AのA-A矢視断面図であり、図5Cは、本発明の第3実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。尚、本第3実施形態では、第1実施形態と異なる要素について主に説明し、第1実施形態で説明した要素と実質的に同一の要素には同一の符号を付してその説明をできるだけ省略する。
 本発明の第3実施形態に係る自家発電照明装置は、紫色LEDモジュール20と、躯体80と、絵柄表示パネル83と、光反射板86と、有機薄膜透明太陽電池100,100a,100bと、透明UVカットフィルム104と、を備える。
 紫色LEDモジュール20は、表面実装型の紫色LEDパッケージ1が複数連接されてなる。紫色LEDモジュール20は、エッジライト型の照明用の光源である。紫色LEDモジュール20は、躯体30内で設置領域の一端(本実施形態では上部)に設けられている。紫色LEDモジュール20は、躯体30の一端と対峙する側(下端側)に紫外線光エネルギー73を発光放射する。
 躯体80は、照射対象物となる絵柄表示パネル83と他の機器類が設置される設置領域を開口し、この開口部分に絵柄表示パネル83と共に有機薄膜透明太陽電池100,100aが設置されている。また、躯体80内には、照射対象物となる絵柄表示パネル83と共に、光反射板86が設置されている。光反射板86は、有機薄膜透明太陽電池100と対向するように設置されている。
 絵柄表示パネル83は、内照式看板で表示すべき絵柄が形成されるパネルであって、躯体80に取り付けられている。絵柄表示パネル83は、光透過性を有する透明または半透明のパネルを用いて構成され、その表示面側に絵柄が形成される。絵柄表示パネル83の表示面は外向きに配置されている。
 光反射板86は、有機薄膜透明太陽電池100と対向する側に反射面を有する。光反射板86の反射面は、一様に平面状に形成され、紫色LEDモジュール20が発光放射する紫外線光エネルギー73の一部を反射面によって絵柄表示パネル83側に強制的に反射させる。光反射板86は、その反射面と有機薄膜透明太陽電池100との間の対向距離(水平距離)が、躯体80の上端から下端に向かって徐々に小さくなるよう、反射面を所定の角度で斜めに傾けて設置されている。尚、光反射板86については、例えば、光反射板86の一端(本実施形態では上端)を蝶番などの回動性を有する器具を用いて回動可能に支持することにより、その反射面の傾斜角度を任意に変更可能な構成としてもよい。
 有機薄膜透明太陽電池100,100a,100bは、それぞれ平面状に形成されている。有機薄膜透明太陽電池100は、紫色LEDモジュール20に複数連接される各々の紫色LEDパッケージ1から発光放射された紫外線光エネルギー73を吸収し、光起電力効果で起電力を自家発電する。具体的には、有機薄膜透明太陽電池100は、紫色LEDモジュール20からの直接光と光反射板86からの反射光の両方の紫外線光エネルギー73を吸収して発電する。有機薄膜透明太陽電池100a,100bは、屋外では太陽光または屋外照明(街路灯、水銀灯など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。また、有機薄膜透明太陽電池100a,100bは、屋内では屋内照明(蛍光灯、LED照明など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。
 有機薄膜透明太陽電池100は、光反射板86と対向するように躯体30内に配置されている。絵柄表示パネル83の内面には、透明UVカットフィルム104を介して有機薄膜透明太陽電池100が配置され、絵柄表示パネル83の外面には有機薄膜透明太陽電池100aが配置されている。これにより、紫色LEDモジュール20の各紫色LEDパッケージ1が発光する紫外線光エネルギー73は、有機薄膜透明太陽電池100で吸収され、そこで吸収しきれなかった紫外線が透明UVカットフィルム104で吸収消滅される。したがって、絵柄表示パネル83には、紫外線を含まない光エネルギー68が照射される。有機薄膜透明太陽電池100bは、躯体80の裏側(設置領域の開口と反対側)の面に設置されている。
 透明UVカットフィルム104は、表面実装型の紫色LEDパッケージ1から見て、有機薄膜透明太陽電池100のすぐ外側に形成されている。透明UVカットフィルム104は、有機薄膜透明太陽電池100を透過した紫外線を吸収消滅させる。透明UVカットフィルム104は、有機薄膜透明太陽電池100で吸収され起電力を発電した後の、残りの紫外線を吸収消滅し、紫外線を含まない光エネルギー68はそのまま透過させることで、透明UVカットフィルム104から先に存在する絵柄表示パネル83や人体に紫外線を放射することの悪影響を抑制する。
 尚、本実施形態では、3つの有機薄膜透明太陽電池100,100a,100bを組み合わせた構成を採用しているが、これに限らず、有機薄膜透明太陽電池100を単独で用いた構成、有機薄膜透明太陽電池100と有機薄膜透明太陽電池100aを組み合わせた構成、有機薄膜透明太陽電池100と有機薄膜透明太陽電池100bを組み合わせた構成でもよい。
 (電気回路)
 電力制御部112は、光源となる紫色LEDモジュール20(紫色LEDパッケージ1)に供給する電力を制御するとともに、制御の対象とする電力の1つに商業用電力を含むもので、交流直流変換器110と直流制御器111を有する。電力制御部112は、商業用電力と、透明太陽電池100,100a,100bが発電する電力とを取り込むとともに、取り込んだ電力を蓄電装置121に供給する。交流直流変換器110は、商業用電力(交流)の供給を受けて直流電力に変換する。交流直流変換器110で変換された直流電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。直流制御器111は、透明太陽電池100,100a,100bで発電された起電力を、紫色LEDモジュール20に適合するように制御する。直流制御器111で制御された電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。
 蓄電装置121は、電力制御部112から電力の供給を受けて蓄電するリチウムイオン蓄電池120を含み、リチウムイオン蓄電池120に蓄電した電力を紫色LEDモジュール20の紫色LEDパッケージ1に供給する。リチウムイオン蓄電池120は、電力制御部112の交流直流変換器110や直流制御器111から供給される電力を蓄電する。リチウムイオン蓄電池120に蓄電された電力は、紫色LEDモジュール20に供給される。紫色LEDモジュール20に供給される電力は、各々の紫色LEDパッケージ1を発光(紫色LEDモジュール20を点灯)させるために消費される。
 また、蓄電装置121は、電源スイッチのオン(通電)、オフ(遮断)機能の他に、電力制御部112からの電力の供給停止、および/または、停電を感知する感知機能を有する。そして、この感知機能により、電力制御部112からの電力の供給停止、および/または、停電を感知した場合、蓄電装置121は、リチウムイオン蓄電池120に蓄電されている電力を引き続き紫色LEDモジュール20の紫色LEDパッケージ1に供給することにより、紫色LEDパッケージ1を常時オン状態にするとともに、当該オン状態中に紫色LEDパッケージ1が発光した紫外線光エネルギー73の吸収により有機薄膜透明太陽電池100が発電した電力の供給を電力制御部112から受けて紫色LEDモジュール20の紫色LEDパッケージ1に再び供給するエンドレス機能を有する。尚、電源スイッチは、オン状態で自家発電照明装置を点灯させ、オフ状態で自家発電照明装置を消灯させるためのスイッチである。また、「常時オン状態にする」とは、上記感知機能で感知する前後において、照明用の光源をオン状態に維持するという意味である。
 さらに、蓄電装置121は、電力制御部112から電力の供給を受けてリチウムイオン蓄電池120の蓄電量が満充電状態になった場合に、電力制御部112からの電力供給を自ら停止する過充電防止機能を有する。また、蓄電装置121は、上記過充電防止機能によって電力制御部112からの電力供給を停止後、上記満充電状態から電力が消費されて蓄電可能になった場合に、有機薄膜透明太陽電池100や有機薄膜透明太陽電池100a,100bが発電する電力の供給を電力制御部112から受けて蓄電し、この蓄電中にリチウムイオン蓄電池120の蓄電量が予め設定された残蓄電量まで減少した場合に、商業用電力の供給を電力制御部112から受けて紫色LEDモジュール20の紫色LEDパッケージ1に対する商業用電力の供給を再開する機能を備える。上記残蓄電量は、例えば、満充電状態の充電量を100%としたときに、30%以上50%以下の範囲内で設定するとよい。尚、上記残蓄電量の設定に30%以上50%以下と幅を持たせたのは、自家発電照明装置の設置場所やインフラ環境などによって残蓄電量の適正値が変わる可能性があるためである。具体的には、停電後復旧までに要する時間は、市街地では比較的短く、山間部では比較的長くなる傾向があり、その場合、市街地では残蓄電量を30%程度に設定したほうがよく、山間部では残蓄電量を50%程度に設定したほうがよい。よって、紫色LEDモジュール20を使用する場所に応じて適宜、残蓄電量を設定することが望ましい。
 本発明の第3実施形態においては、交流直流変換器110を介してリチウムイオン蓄電池120に蓄電された商業用電力を蓄電装置121が紫色LEDモジュール20に供給することにより、各々の紫色LEDパッケージ1が紫外線光エネルギー73を発光する。そうすると、紫色LEDパッケージ1から発光された紫外線光エネルギー73の一部は、紫色LEDパッケージ1からの直接光として有機薄膜透明太陽電池100に入射し、他の紫外線光エネルギー73は、光反射板86からの反射光として有機薄膜透明太陽電池100に入射する。これにより、有機薄膜透明太陽電池100は、直接光と反射光の両方の紫外線光エネルギー73を吸収して発電する。有機薄膜透明太陽電池100が発電した電力はリチウムイオン蓄電池120に蓄電され、紫色LEDパッケージ1での発光に利用される。これにより、紫色LEDパッケージ1が発光する光エネルギーを有機薄膜透明太陽電池100で再利用して自家発電し、更なる節電を実現することが可能となる。
 一方、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、それぞれ昼間の太陽光に暴露されることで太陽光からの紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。また、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、夜間に屋外照明または屋内照明から発せられる紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。こうして有機薄膜透明太陽電池100,100a,100bが発電した起電力は、それぞれ直流制御器111を介して蓄電装置121に取り込まれ、そこでリチウムイオン蓄電池120に蓄電される。これにより、リチウムイオン蓄電池120の放電能力の長寿命化を達成することができる。また、長期間の災害発生などで商業用電力の供給が断たれ、リチウムイオン蓄電池120の蓄電量が0となっても、有機薄膜透明太陽電池100aおよび有機薄膜透明太陽電池100bの少なくとも一方が太陽光等からの紫外線光エネルギー73を吸収して自家発電した起電力をリチウムイオン蓄電池120に蓄電することにより、リチウムイオン蓄電池120の失われた蓄電量を回復させることができる。
 また、紫色LEDモジュール20(紫色LEDパッケージ1)が点灯中に停電が発生しても引き続きリチウムイオン蓄電池120から電力の供給を受けて紫色LEDパッケージ1が紫外線光エネルギー73を発光し、かつ、有機薄膜透明太陽電池100が紫外線光エネルギー73の吸収による発電を繰り返して自家発電しリチウムイオン蓄電池120に蓄電することにより、リチウムイオン蓄電池120の放電能力時間の長寿命化を達成することができる。また、電源スイッチをオフ(遮断)にしない限りリチウムイオン蓄電池120の蓄電量が0になるまで紫色LEDパッケージ1が紫外線光エネルギー73を発光し続けるため、長時間にわたる非常用停電対応型照明器具としての役目と、商業用電力の供給停止中の節電機能を併せ持つ自家発電照明装置を実現することができる。
 特に、本実施形態に係る自家発電照明装置を内照式看板照明装置に適用する場合、当該照明装置は、繁華街で歩道脇のビルの壁面に設置される場合が多い。このため、そのような内照式看板照明装置に本実施形態の自家発電照明装置を適用すれば、停電時にビルの入口や歩道上を明るく照らすことで周囲に安全や安心感を与えることができる。
 尚、上記第3実施形態では、照明用の光源となるLEDモジュール(LEDパッケージ)として紫色LEDモジュール(紫色LEDパッケージ)を用いたが、これに限らず、近紫外光LEDモジュール(近紫外光LEDパッケージ)、青色LEDモジュール(青色LEDパッケージ)、近赤外光LEDモジュール(近赤外光LEDパッケージ)などを用いてもよい。また、上記第3実施形態では、蓄電池(二次電池)の一例としてリチウムイオン蓄電池を用いたが、蓄電能力や充放電能力が優れていれば他の蓄電池(例えば、鉛蓄電池、ニッケル蓄電池など)を用いてもよい。また、上記第3実施形態においては、透明太陽電池として有機薄膜透明太陽電池を用いたが、これに限らず、色素増感透明太陽電池等の有機系透明太陽電池、透明な革新型太陽電池、透明な化合物系太陽電池、透明な薄膜太陽電池など、透明な太陽電池を広く用いることができる。
 <第4実施形態>
 次に、本発明の第4実施形態に係る自家発電照明装置について説明する。
 図6Aは、本発明の第4実施形態に係る自家発電照明装置の躯体を含む概略斜視図である。また、図6Bは、図6AのA-A矢視断面図であり、図6Cは、本発明の第4実施形態に係る自家発電照明装置の電気回路の構成例を示す模式図である。尚、本第4実施形態では、第1実施形態と異なる要素について主に説明し、第1実施形態で説明した要素と実質的に同一の要素には同一の符号を付してその説明をできるだけ省略する。
 本発明の第4実施形態に係る自家発電照明装置は、躯体30と、有機ELパネル27と、色素増感透明太陽電池95と、有機薄膜透明太陽電池100a,100bと、を備える。
 躯体30は、有機ELパネル27と他の機器類が設置される設置領域を開口し、この開口部分に有機ELパネル27と共に色素増感透明太陽電池95と有機薄膜透明太陽電池100aが設置されている。また、躯体30の裏側(設置領域の開口と反対側)には有機薄膜透明太陽電池100bが設置されている。
 有機ELパネル27は、躯体30の設置領域に設置された自発光型のパネルである。有機ELパネル27は、電力の供給を受けてフルカラーの光エネルギー29を発光する。有機ELパネル27は、金属電極32と、有機電子輸送層33と、有機発光層34と、有機正孔輸送層35と、ITO(酸化インジウム錫)透明電極36と、透明基板37と、を有する。有機発光層34は、R(赤色)G(緑色)B(青色)の各色の発光層を有する。透明基板37上には、ITO透明電極36、有機正孔輸送層35、有機発光層34、有機電子輸送層33、金属電極32の順に積層されている。有機ELパネル27は、金属電極32から有機電子輸送層33を通して運ばれる電子と、ITO透明電極36から有機正孔輸送層35を通して運ばれる正孔とが、有機発光層34で結合し、この結合によるエネルギーで有機発光層34の発光材料が励起されることにより、フルカラーの光エネルギー29を発光する。
 色素増感透明太陽電池95は、有機ELパネル27の外面上に、光吸収面を内側に向けて平面状に形成されている。有機薄膜透明太陽電池100aは、有機ELパネル27の外面上に、光吸収面を外側に向けて平面状に形成されている。有機薄膜透明太陽電池100bは、躯体30の設置領域の開口とは反対側の面に平面状に形成されている。
 色素増感透明太陽電池95は、有機ELパネル27の発光方向に配置されている。具体的には、色素増感透明太陽電池95は、透明基板37の一方の主面であって、ITO透明電極36とは反対側の面に形成されている。色素増感透明太陽電池95は、透明基板37の主面を覆うように平面状に形成されている。色素増感透明太陽電池95は、有機ELパネル31から発光される光エネルギー29を吸収し、光起電力効果で起電力を発電する。
 有機薄膜透明太陽電池100aは、透明基板37上に色素増感透明太陽電池95を介して積層されている。色素増感透明太陽電池95と有機薄膜透明太陽電池100は、それぞれの光吸収面を逆向きにして一体に形成されている。色素増感透明太陽電池95の光吸収面は、有機ELパネル27(有機発光層34)側を向いて配置され、有機薄膜透明太陽電池100aの光吸収面は、有機ELパネル27と反対方向となる外向きに配置されている。有機薄膜透明太陽電池100aは、色素増感透明太陽電池95を覆うように平面状に形成されている。有機薄膜透明太陽電池100bは、躯体30の裏側に金属電極32を覆うように平面状に形成されている。有機薄膜透明太陽電池100bの光吸収面は、金属電極32と反対方向となる外向きに配置されている。有機薄膜透明太陽電池100a,100bは、屋外では太陽光または屋外照明(街路灯、水銀灯など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。また、有機薄膜透明太陽電池100a,100bは、屋内では屋内照明(蛍光灯、LED照明など)からの紫外線光エネルギー73を吸収し、光起電力効果で自家発電する。
 尚、本実施形態では、色素増感透明太陽電池95と有機薄膜透明太陽電池100a,100bを組み合わせた構成を採用しているが、これに限らず、色素増感透明太陽電池95を単独で用いた構成、色素増感透明太陽電池95と有機薄膜透明太陽電池100aを組み合わせた構成、色素増感透明太陽電池95と有機薄膜透明太陽電池100bを組み合わせた構成でもよい。
 (電気回路)
 電力制御部112は、有機ELパネル27に供給する電力を制御するとともに、制御の対象とする電力の1つに商業用電力を含むもので、交流直流変換器110と直流制御器111を有する。電力制御部112は、商業用電力と、透明太陽電池95,100a,100bが発電する電力とを取り込むとともに、取り込んだ電力を蓄電装置121に供給する。交流直流変換器110は、商業用電力(交流)の供給を受けて直流電力に変換する。交流直流変換器110で変換された直流電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。直流制御器111は、透明太陽電池95,100a,100bで発電された起電力を、有機ELパネル27に適合するように制御する。直流制御器111で制御された電力は、蓄電装置121のリチウムイオン蓄電池120に蓄電される。
 蓄電装置121は、電力制御部112から電力の供給を受けて蓄電するリチウムイオン蓄電池120を含み、リチウムイオン蓄電池120に蓄電した電力を有機ELパネル27に供給する。リチウムイオン蓄電池120は、電力制御部112の交流直流変換器110や直流制御器111から供給される電力を蓄電する。リチウムイオン蓄電池120に蓄電された電力は、有機ELパネル27に供給される。有機ELパネル27に供給される電力は、有機ELパネル27の有機発光層34を発光させるために消費される。
 また、蓄電装置121は、電力制御部112から電力の供給を受けてリチウムイオン蓄電池120の蓄電量が満充電状態になった場合に、電力制御部112からの電力供給を自ら停止する過充電防止機能を有する。
 本発明の第4実施形態においては、交流直流変換器110を介してリチウムイオン蓄電池120に蓄電された商業用電力を蓄電装置121が有機ELパネル27に供給することにより、有機ELパネル27がフルカラーの光エネルギー29を発光する。そうすると、色素増感透明太陽電池95は、有機ELパネル27から発光された光エネルギー29を吸収し、光起電力効果で起電力を発電する。色素増感透明太陽電池95が発電した電力はリチウムイオン蓄電池120に蓄電され、有機ELパネル27での発光に利用される。これにより、有機ELパネル27が発光する光エネルギーを色素増感透明太陽電池95で再利用して自家発電し、更なる節電を実現することが可能となる。
 一方、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、それぞれ昼間の太陽光に暴露されることで太陽光からの紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。また、有機薄膜透明太陽電池100aや有機薄膜透明太陽電池100bは、夜間に屋外照明または屋内照明から発せられる紫外線光エネルギー73を吸収し、光起電力効果で起電力を発電する。こうして有機薄膜透明太陽電池95,100a,100bが発電した起電力は、それぞれ直流制御器111を介して蓄電装置121に取り込まれ、そこでリチウムイオン蓄電池120に蓄電される。これにより、リチウムイオン蓄電池120の放電能力の長寿命化を達成することができる。また、長期間の災害発生などで商業用電力の供給が断たれ、リチウムイオン蓄電池120の蓄電量が0となっても、有機薄膜透明太陽電池100aおよび有機薄膜透明太陽電池100bの少なくとも一方が太陽光等からの紫外線光エネルギー73を吸収して自家発電した起電力をリチウムイオン蓄電池120に蓄電することにより、リチウムイオン蓄電池120の失われた蓄電量を回復させることができる。
 尚、上記第4実施形態では、蓄電池(二次電池)の一例としてリチウムイオン蓄電池を用いたが、蓄電能力や充放電能力が優れていれば他の蓄電池(例えば、鉛蓄電池、ニッケル蓄電池など)を用いてもよい。また、上記第4実施形態においては、透明太陽電池として色素増感透明太陽電池と有機薄膜透明太陽電池を用いたが、これに限らず、透明な革新型太陽電池、透明な化合物系太陽電池、透明な薄膜太陽電池など、透明な太陽電池を広く用いることができる。
 以下、本発明の好ましい態様の1つを以下に付記する。
 (付記1)
 照射対象物が設置される設置領域を開口した躯体と、
 前記躯体内に設けられ、電力の供給を受けて発光する照明用の光源と、
 光エネルギーを吸収して発電する透明太陽電池と、
 前記照射対象物として前記躯体の設置領域に設置され、前記光源が発光する光エネルギーの供給を受けて所定の画像を表示する表示パネルと、
 前記光源に供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む電力制御部と、
 前記電力制御部から電力の供給を受けて蓄電する蓄電池を含み、前記蓄電池に蓄電した電力を前記光源に供給する蓄電装置と、
 を備え、
 前記透明太陽電池は、前記表示パネルの内面に平面状に形成される第1透明太陽電池と、前記表示パネルの外面に平面状に形成される第2透明太陽電池と、前記躯体の前記設置領域の開口とは反対側の面に平面状に形成される第3太陽電池のうち少なくとも前記第1透明太陽電池を含み、
 前記第1透明太陽電池は、前記光源が発光する光エネルギーを吸収して発電し、
 前記第2透明太陽電池および前記第3太陽電池は、屋外では、太陽光または屋外照明からの光エネルギーを吸収して発電し、屋内では、屋内照明からの光エネルギーを吸収して発電し、
 前記蓄電装置は、前記第1透明太陽電池、前記第2透明太陽電池、および前記第3太陽電池のうち少なくとも前記第1透明太陽電池が発電した電力の供給を前記電力制御部から受けて前記蓄電池に蓄電する、
 自家発電照明装置。
 (付記2)
 前記蓄電装置は、長期間の災害発生などで前記商業用電力の供給を断たれた場合に、前記第2透明太陽電池および前記第3太陽電池の少なくとも一方が前記太陽光または前記屋外照明からの光エネルギーを吸収して発電した電力の供給を前記電力制御部から受けることにより、前記蓄電池の蓄電量を回復させる、
 付記1に記載の自家発電照明装置。
 現在使用される液晶用の光源、または内照式看板の照明用の光源、或いは有機発光ダイオードなどの光源は、自ら発光した光エネルギーを再利用することがなく、多くの消費電力を必要としている。本発明の自家発電照明装置は、自ら発光した光エネルギーを再利用して自家発電することができる。また、光源からの光エネルギーを吸収して発電する透明太陽電池を設けることにより、天候に左右されることがなく安定した自家発電を計算できる。さらに、躯体外の、太陽光や屋外照明、屋内照明の光エネルルギーを吸収して発電する太陽電池を併用することで膨大な節電が可能となり地球温暖化を防止するための一助となり得る。
 1…紫色LEDパッケージ
 2…青色LEDパッケージ
 10…紫色LED素子
 20…紫色LEDモジュール
 21…青色LEDモジュール
 27…有機ELパネル
 30…躯体
 50…液晶パネル
 52…導光板
 53…光反射板
 68…光エネルギー
 73…紫外線光エネルギー
 80…躯体
 83…絵柄表示パネル
 86…光反射板
 95…色素増感透明太陽電池
 100,100a,100b…有機薄膜透明太陽電池
 110…交流直流変換器
 111…直流制御器
 112…電力制御部
 120…リチウムイオン蓄電池
 121…蓄電装置

Claims (9)

  1.  照射対象物が設置される設置領域を開口した躯体と、
     前記躯体内に設けられ、電力の供給を受けて発光する照明用の光源と、
     光エネルギーを吸収して発電する太陽電池と、
     前記照射対象物として前記躯体の設置領域に設置され、前記光源が発光する光エネルギーの供給を受けて所定の画像を表示する表示パネルと、
     前記躯体内に設けられる導光板と、
     前記導光板の底面部に形成される光反射板と、
     前記光源に供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む電力制御部と、
     前記電力制御部から電力の供給を受けて蓄電する蓄電池を含み、前記蓄電池に蓄電した電力を前記光源に供給する蓄電装置と、
     を備え、
     前記光源は、前記躯体内で前記設置領域の一端に設けられ、前記設置領域の一端と対峙する側に光エネルギーを発光し、
     前記導光板は、前記光源が発光する光エネルギーを前記表示パネル側に導き、
     前記光反射板は、前記光源が発光する光エネルギーのうち前記導光板の底面部側に導かれた光エネルギーを前記表示パネル側に反射し、
     前記太陽電池は、前記光源からの直接光と、前記光反射板からの反射光の両方の光エネルギーを吸収して発電する、
     自家発電照明装置。
  2.  前記蓄電装置は、前記電力制御部から電力の供給を受けて前記蓄電池の蓄電量が満充電状態になった場合に、前記電力制御部からの電力供給を自ら停止する過充電防止機能を有する、
     請求項1に記載の自家発電照明装置。
  3.  前記太陽電池は、前記表示パネルの内面に平面状に形成される透明な第1太陽電池と、前記表示パネルの外面に平面状に形成される透明な第2太陽電池と、前記躯体の前記設置領域の開口とは反対側の面に平面状に形成される透明または不透明な第3太陽電池のうち少なくとも前記第1太陽電池を含み、
     前記第1太陽電池は、前記光源が発光する光エネルギーを吸収して発電し、
     前記太陽電池が前記第2太陽電池および前記第3太陽電池を含む場合、前記第2太陽電池および前記第3太陽電池は、屋外では、太陽光または屋外照明からの光エネルギーを吸収して発電し、屋内では、屋内照明からの光エネルギーを吸収して発電し、
     前記蓄電装置は、前記第1太陽電池、前記第2太陽電池、および前記第3太陽電池のうち少なくとも前記第1太陽電池が発電した電力の供給を前記電力制御部から受けて前記蓄電池に蓄電する、
     請求項1または2に記載の自家発電照明装置。
  4.  前記蓄電装置は、長期間の災害発生などで前記商業用電力の供給を断たれた場合に、前記第2太陽電池および前記第3太陽電池の少なくとも一方が前記太陽光または前記屋外照明からの光エネルギーを吸収して発電した電力の供給を前記電力制御部から受けることにより、前記蓄電池の蓄電量を回復させる、
     請求項3に記載の自家発電照明装置。
  5.  照射対象物が設置される設置領域を開口した躯体と、
     前記躯体内に設けられ、電力の供給を受けて発光する照明用の光源と、
     光エネルギーを吸収して発電する太陽電池と、
     前記照射対象物として前記躯体の設置領域に設置され、光エネルギーの供給を受けて所定の画像を表示する表示パネルと、
     前記躯体内に設けられる光反射板と、
     前記光源に供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む電力制御部と、
     前記電力制御部から電力の供給を受けて蓄電する蓄電池を含み、前記蓄電池に蓄電した電力を前記光源に供給する蓄電装置と、
     を備え、
     前記光源は、前記躯体内で前記設置領域の一端に設けられ、前記設置領域の一端と対峙する側に光エネルギーを発光し、
     前記光反射板は、前記表示パネルに対向して配置される反射面を有するとともに、前記反射面と前記表示パネルとの対向距離が、前記設置領域の一端からこれに対峙する他端側に向かって徐々に小さくなるように、前記反射面を斜めに傾けて設置され、前記光源から発光される光エネルギーの一部を前記反射面によって前記表示パネル側に反射し、
     前記太陽電池は、前記光源から発光される直接光と、前記光源から発光され、前記反射面によって前記表示パネル側に反射される反射光の両方の光エネルギーを吸収して発電する、
     自家発電照明装置。
  6.  前記蓄電装置は、電源スイッチのオン、オフ機能の他に、前記電力制御部からの電力の供給停止、および/または、停電を感知する感知機能を有し、前記感知機能によって前記電力制御部からの電力の供給停止、および/または、停電を感知した場合に、前記蓄電池に蓄電されている電力を引き続き前記光源に供給することにより、前記光源を常時オン状態にするとともに、前記オン状態中に前記光源が発光した光エネルギーの吸収により前記太陽電池が発電した電力の供給を前記電力制御部から受けて前記光源に再び供給するエンドレス機能を有する、
     請求項5に記載の自家発電照明装置。
  7.  前記太陽電池は、前記表示パネルの内面に平面状に形成される透明な第1太陽電池と、前記表示パネルの外面に平面状に形成される透明な第2太陽電池と、前記躯体の前記設置領域の開口とは反対側の面に平面状に形成される透明または不透明な第3太陽電池のうち少なくとも前記第1太陽電池を含み、
     前記第1太陽電池は、前記直接光と前記反射光の両方の光エネルギーを吸収して発電し、
     前記太陽電池が前記第2太陽電池および前記第3太陽電池を含む場合、前記第2太陽電池および前記第3太陽電池は、屋外では、太陽光または屋外照明からの光エネルギーを吸収して発電し、屋内では、屋内照明からの光エネルギーを吸収して発電し、
     前記蓄電装置は、前記第1太陽電池、前記第2太陽電池および前記第3太陽電池のうち少なくとも前記第1太陽電池が発電した電力の供給を前記電力制御部から受けて前記蓄電池に蓄電する、
     請求項5または6に記載の自家発電照明装置。
  8.  設置領域を開口した躯体と、
     前記躯体の設置領域に設置され、電力の供給を受けて発光する自発光型のパネルと、
     光エネルギーを吸収して発電する太陽電池と、
     前記パネルに供給する電力を制御するとともに、制御の対象とする電力の1つに少なくとも商業用電力を含む電力制御部と、
     前記電力制御部から電力の供給を受けて蓄電する蓄電池を含み、前記蓄電池に蓄電した電力を前記パネルに供給する蓄電装置と、
     を備え、
     前記太陽電池は、前記パネルの外面上に、光吸収面を内側に向けて平面状に形成される透明な第1太陽電池と、前記パネルの外面上に、光吸収面を外側に向けて平面状に形成される透明な第2太陽電池と、前記躯体の前記設置領域の開口とは反対側の面に平面状に形成される透明または不透明な第3太陽電池のうち少なくとも前記第1太陽電池を含み、
     前記第1太陽電池は、前記パネルの発光方向に配置され、前記パネルが発光する光エネルギーを吸収して発電し、
     前記太陽電池が前記第2太陽電池および前記第3太陽電池を含む場合、前記第2太陽電池および前記第3太陽電池は、屋外では、太陽光または屋外照明からの光エネルギーを吸収して発電し、屋内では、屋内照明からの光エネルギーを吸収して発電し、
     前記蓄電装置は、前記第1太陽電池、前記第2太陽電池、および前記第3太陽電池のうち少なくとも1つの太陽電池が発電した電力の供給を前記電力制御部から受けて前記蓄電池に蓄電する、
     自家発電照明装置。
  9.  前記蓄電装置は、長期間の災害発生などで前記商業用電力の供給を断たれた場合に、前記第2太陽電池および前記第3太陽電池の少なくとも一方が前記太陽光または前記屋外照明からの光エネルギーを吸収して発電した電力の供給を前記電力制御部から受けることにより、前記蓄電池の蓄電量を回復させる、
     請求項8に記載の自家発電照明装置。
PCT/JP2017/029338 2016-08-17 2017-08-15 自家発電照明装置 WO2018034277A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/326,144 US20190189695A1 (en) 2016-08-17 2017-08-15 Self-generated lighting device
JP2018534400A JPWO2018034277A1 (ja) 2016-08-17 2017-08-15 自家発電照明装置
CN201780050428.9A CN109769409A (zh) 2016-08-17 2017-08-15 自发电照明装置
PH12019500333A PH12019500333A1 (en) 2016-08-17 2019-02-15 Self-generated lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-171256 2016-08-17
JP2016171256A JP6183732B1 (ja) 2016-08-17 2016-08-17 透明太陽電池による自家発電照明装置。

Publications (1)

Publication Number Publication Date
WO2018034277A1 true WO2018034277A1 (ja) 2018-02-22

Family

ID=59678240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029338 WO2018034277A1 (ja) 2016-08-17 2017-08-15 自家発電照明装置

Country Status (5)

Country Link
US (1) US20190189695A1 (ja)
JP (2) JP6183732B1 (ja)
CN (1) CN109769409A (ja)
PH (1) PH12019500333A1 (ja)
WO (1) WO2018034277A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1009511B (el) * 2018-07-17 2019-04-22 Organic Electronic Technologies Private Company Φωτοεκπεμπουσα εξυπνη συσκευασια με ενεργειακη αυτονομια
JP7200331B1 (ja) 2021-11-04 2023-01-06 パシフィックコンサルタンツ株式会社 表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11251316B2 (en) * 2017-06-05 2022-02-15 University Of South Carolina Photovoltaic cell energy harvesting for fluorescent lights
JP6685574B1 (ja) * 2019-08-15 2020-04-22 兵治 新山 自家発電システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006769A (ja) * 2000-06-22 2002-01-11 Morio Taniguchi 有機エレクトロルミネッセンス発光表示装置
JP2003084281A (ja) * 2001-09-12 2003-03-19 Sharp Corp 携帯端末機器
JP2004103411A (ja) * 2002-09-10 2004-04-02 Alps Electric Co Ltd 面発光装置及び液晶表示装置
JP2010263039A (ja) * 2009-05-01 2010-11-18 Konica Minolta Holdings Inc 照明装置
JP2011142289A (ja) * 2010-01-05 2011-07-21 Samsung Mobile Display Co Ltd 有機発光表示装置
WO2012171396A1 (en) * 2011-06-17 2012-12-20 Yaping Wang Integrated module integrating amoled display with solar panel and electronic device applying such integrated module
JP2013040977A (ja) * 2009-12-17 2013-02-28 Sharp Corp 液晶表示装置、バックライトユニット、透光板および導光体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259469A (ja) * 2004-03-10 2005-09-22 Sharp Corp 有機エレクトロルミネッセンス表示装置
JP2008140934A (ja) * 2006-11-30 2008-06-19 Toshiba Lighting & Technology Corp 発光ダイオード装置及び照明装置
JP2009229975A (ja) * 2008-03-25 2009-10-08 Shinyosha:Kk 電気掲示器
CN101614927B (zh) * 2009-07-31 2012-07-04 友达光电股份有限公司 自身发电显示器及其制造方法
JP2013047700A (ja) * 2009-12-24 2013-03-07 Sharp Corp 液晶表示装置、照明装置ユニットおよび太陽電池
CN102313235A (zh) * 2010-07-05 2012-01-11 上海太阳能科技有限公司 Pv-led太阳电池照明装置及其应用
JP2012064550A (ja) * 2010-09-17 2012-03-29 Fujikura Ltd 色素増感太陽電池及び色素増感太陽電池付き表示装置
JP2015042016A (ja) * 2013-08-20 2015-03-02 和武 今仁 ソーラー充電器
CN203859127U (zh) * 2014-05-09 2014-10-01 上海和辉光电有限公司 自发电显示面板及其应用的便携式移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006769A (ja) * 2000-06-22 2002-01-11 Morio Taniguchi 有機エレクトロルミネッセンス発光表示装置
JP2003084281A (ja) * 2001-09-12 2003-03-19 Sharp Corp 携帯端末機器
JP2004103411A (ja) * 2002-09-10 2004-04-02 Alps Electric Co Ltd 面発光装置及び液晶表示装置
JP2010263039A (ja) * 2009-05-01 2010-11-18 Konica Minolta Holdings Inc 照明装置
JP2013040977A (ja) * 2009-12-17 2013-02-28 Sharp Corp 液晶表示装置、バックライトユニット、透光板および導光体
JP2011142289A (ja) * 2010-01-05 2011-07-21 Samsung Mobile Display Co Ltd 有機発光表示装置
WO2012171396A1 (en) * 2011-06-17 2012-12-20 Yaping Wang Integrated module integrating amoled display with solar panel and electronic device applying such integrated module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1009511B (el) * 2018-07-17 2019-04-22 Organic Electronic Technologies Private Company Φωτοεκπεμπουσα εξυπνη συσκευασια με ενεργειακη αυτονομια
JP7200331B1 (ja) 2021-11-04 2023-01-06 パシフィックコンサルタンツ株式会社 表示装置
JP2023068760A (ja) * 2021-11-04 2023-05-18 パシフィックコンサルタンツ株式会社 表示装置

Also Published As

Publication number Publication date
US20190189695A1 (en) 2019-06-20
PH12019500333A1 (en) 2019-11-11
CN109769409A (zh) 2019-05-17
JP2018029461A (ja) 2018-02-22
JP6183732B1 (ja) 2017-08-23
JPWO2018034277A1 (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
US9905709B2 (en) Photovoltaic cell device with switchable lighting/reflection
WO2018034277A1 (ja) 自家発電照明装置
JP5154498B2 (ja) 照明装置および平面光出力を生成する方法
KR200452570Y1 (ko) 솔라 led 시선유도등
JP5357881B2 (ja) 発光および/または受光装置
WO2018034276A1 (ja) 自家発電照明器具
US20140003038A1 (en) Lighting apparatus using solar cell
JP6621148B2 (ja) 表示装置
JP2014086490A (ja) 発光発電モジュール、発光発電装置
CN101493202B (zh) 一种亮度可调的发光指示牌
US20110227486A1 (en) White led light source module
KR101161681B1 (ko) 친환경 el 발광 도로표지판
CN102803833B (zh) 照明设备
JP2009266503A (ja) 照明装置
WO2019114683A1 (zh) 一种弱光光伏长余辉发光标识
JP2009229975A (ja) 電気掲示器
JP2018029053A (ja) 透明太陽電池による自家発電照明装置。
JP2018029185A (ja) 透明太陽電池による自家発電照明器具。
CN213366611U (zh) 光伏组件
JP5057574B2 (ja) 自発光式照明装置
KR101963896B1 (ko) 시선 유도등
KR100982002B1 (ko) 태양광 안내판
JP2005203239A (ja) 複合発光装置
KR20160005483A (ko) Led 조명장치
CN204066672U (zh) 一种自持式发光交通标识牌

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841499

Country of ref document: EP

Kind code of ref document: A1