WO2018034260A1 - 欠相検知システム、欠相検知装置および欠相検知方法 - Google Patents

欠相検知システム、欠相検知装置および欠相検知方法 Download PDF

Info

Publication number
WO2018034260A1
WO2018034260A1 PCT/JP2017/029258 JP2017029258W WO2018034260A1 WO 2018034260 A1 WO2018034260 A1 WO 2018034260A1 JP 2017029258 W JP2017029258 W JP 2017029258W WO 2018034260 A1 WO2018034260 A1 WO 2018034260A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
wiring
current
excitation current
harmonics
Prior art date
Application number
PCT/JP2017/029258
Other languages
English (en)
French (fr)
Inventor
高橋 正雄
雄大 田中
祥吾 三浦
前嶋 宏行
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2018034260A1 publication Critical patent/WO2018034260A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system

Definitions

  • Embodiments of the present invention relate to a phase loss detection system, a phase loss detection device, and a phase loss detection method.
  • protective relays are connected to transformers that transform high voltage of three-phase alternating current, and measures are taken in the event of a landslide or short-circuit event.
  • one-phase open failure the insulator connected to the primary side of the transformer is broken and, for example, one of the three phases is lost (hereinafter referred to as “one-phase open failure”).
  • a single-phase open fault in a three-phase transformer is difficult to find because a voltage is also induced in the open phase.
  • a single-phase open fault occurs on the primary side of the transformer, and the abnormal current value is a protective relay. Can be detected when the set value is reached.
  • the value may not change to the set value of the protective relay depending on the equipment configuration and load conditions. In such a case, the single-phase open failure cannot be detected. Sometimes.
  • the value may not change up to the set value of the protective relay depending on the equipment configuration and load conditions. In this case, a single-phase open failure can be detected. First, it was handled by combining artificial detection.
  • the problem to be solved by the present invention is that a phase-opening detection system, a phase-opening detection device, and a missing-phase detection device that can mechanically detect a one-phase open failure that does not involve a groundfall or a short circuit, regardless of the equipment configuration and load conditions. It is to provide a phase detection method.
  • the phase loss detection system of the embodiment includes a three-phase static induction electrical device, a current detector, an extraction unit, and a determination unit.
  • the three-phase static induction electric device has a primary side circuit in which an excitation current flows through three-phase wiring.
  • the current detector detects the excitation current flowing in each wiring of the primary circuit for each wiring.
  • the extraction unit extracts harmonics from the excitation current of the wiring detected by the current detector.
  • the determination unit determines whether the excitation current detection source wiring is in a connected state or an open state depending on whether or not a harmonic is extracted by the extraction unit.
  • FIG. 4 is a diagram showing a flow of electric reasons when a certain wiring is disconnected in the circuit of FIG. 3. It is a figure which shows the example which cannot detect a part of open phase only by the presence or absence of an exciting current. It is a figure which shows the waveform of the exciting current of a transformer. It is the figure which decomposed
  • FIG. 1 is a diagram illustrating a phase loss detection system according to the first embodiment.
  • the phase loss detection system includes a transformer 1 as a three-phase static induction electrical device, and wirings 4 a, 4 b for each phase of a primary side circuit 2 of the transformer 1.
  • the current detectors 5 are arranged one by one in 4c, and the phase loss detection device 6 is connected to the current detectors 5 of the respective phases.
  • the transformer 1 has a primary side circuit 2 including wirings 4a, 4b, 4c and coils of three phases, for example, U phase, V phase, and W phase, and a coil of the primary side circuit 2 that are connected to the outside. And a secondary circuit 3 having a coil to be induced. Excitation currents (excitation currents having different phases) that flow out of phase by 120 ° flow through the wirings 4a, 4b, and 4c of the primary side circuit 2, respectively.
  • the secondary circuit 3 is electromagnetically coupled to the primary circuit 2.
  • the exciting current is passed through the wirings 4 a, 4 b, 4 c of the primary side circuit 2 in accordance with the winding ratio of the coils of the primary side circuit 2 and the secondary side circuit 3.
  • the generated power is induced in the secondary circuit 3.
  • Each current detector 5 arranged in each wiring 4a, 4b, 4c detects the current flowing through each wiring 4a, 4b, 4c for each wiring.
  • a current transformer using electromagnetic induction usually called CT, or optical CT using the Faraday effect is used.
  • CT is an abbreviation for current transformer.
  • the phase loss detection device 6 determines whether or not the wirings 4a, 4b, and 4c that are detection sources of the excitation current are in an open state. If there is an open wiring, an alarm is output to that effect. If the wiring in which the excitation current is detected by the current detector 5 is, for example, the wiring 4a, the detection source wiring is the wiring 4a.
  • the phase loss detection device 6 includes an input converter 61, a filter unit 62, a determination unit 67, and an alarm output unit 68.
  • the input converter 61 converts the input excitation current (current signal) into a voltage signal.
  • the filter unit 62 includes an analog filter 63, an AD converter 64, and a digital filter 65.
  • the analog filter 63 attenuates a high frequency noise component (for example, a component obtained by converting a current of about 10 amperes into a voltage) included in a voltage signal obtained by converting the input excitation current.
  • a high frequency noise component for example, a component obtained by converting a current of about 10 amperes into a voltage
  • the AD converter 64 converts the excitation current (analog signal) in which the noise component (high frequency component) is attenuated by the analog filter 63 into a digital signal.
  • the digital filter 65 separates the commercial frequency (50 Hz or 60 Hz fundamental wave fm) and harmonic components such as the third harmonic 3fm and the fifth harmonic 5fm included in the digital signal converted by the AD converter 64.
  • the filter unit 62 extracts one or more harmonics that are an integral multiple of the fundamental wave fm of the excitation current. That is, the filter unit 62 is a band-pass filter, and from the voltage signal converted by the input converter 61, the fundamental wave fm, the third harmonic 3fm of the triple frequency, and the fifth harmonic of the five times the frequency. It functions as an extraction unit for extracting the waves 5fm and the like.
  • the reference voltage Vref is input to the determination unit 67.
  • the determination unit 67 samples each signal every predetermined period (operation period) in accordance with the cycle of the reference voltage Vref.
  • the reference voltage Vref is a signal for obtaining a synchronization timing, and an AC voltage or a normal commercial AC voltage (100 V, 50 Hz sine wave) applied to any wiring (in this example, the wiring 4 c) of the primary side circuit 2. Signal) or the like.
  • the determination unit 67 determines the connection state when harmonics exceeding a certain level are extracted from the excitation current by the filter unit 62 (extraction unit), and determines the open state when harmonics exceeding the certain level are not extracted. More specifically, the determination unit 67 has a determination threshold value for each of the fundamental wave fm and the harmonics 3fm and 5fm. The threshold for the amplitude value of the fundamental wave fm is set as the first threshold, and the threshold for the amplitude values of the harmonics 3fm and 5fm is set as the second threshold. For the second threshold value of the harmonics, threshold values corresponding to the third harmonic 3fm and the fifth harmonic 5fm are set.
  • the determination unit 67 is the current because the current is a charging current. It is determined that the wiring is in an open state.
  • the determination unit 67 is an excitation current. It is determined that the wiring is in a connected state.
  • the determination unit 67 is the primary side of the detection source of the excitation current according to the presence or absence of the fundamental wave fm and the harmonics 3fm and 5fm exceeding the predetermined threshold values (first threshold value and second threshold value of the amplitude value) extracted by the filter unit 62. It is determined whether the wiring 4a, 4b, 4c of the circuit 2 is in an open state or a connected state.
  • the determination unit 67 determines the excitation current according to the magnitude relationship (larger or smaller than the threshold value) with the excitation current extracted by the filter unit 62 and the threshold value with which it is determined that harmonics are flowing. It is determined whether or not the wires 4a, 4b, and 4c of the primary circuit 2 that is the detection source are in an open state (at least one phase is an open failure). When the amplitude value of one or more extracted harmonics 3fm and 5fm does not exceed the second threshold value, the determination unit 67 assumes that no harmonics have been extracted, and the wirings 4a, 4b, and 4c are in an open state. Judge that it is.
  • the current is an excitation current, and the wiring is in a connected state.
  • the current may be simply determined as the wiring being open because the current is a charging current.
  • the determination unit 67 determines whether the wirings 4a, 4b, and 4c of the primary side circuit 2 that is the detection source of the excitation current are in an open state or a connected state depending on whether or not the harmonics 3fm and 5fm are extracted by the filter unit 62. To do.
  • the determination unit 67 If the result of determination is that there is an open wiring (in this example, wiring 4b), the determination unit 67 outputs an alarm signal indicating that the wiring 4b is open to the alarm output unit 68.
  • the alarm output unit 68 is, for example, a speaker, a buzzer, or a display device, and is a notification unit or a notification unit that outputs an alarm that the wiring 4b is in an open state based on an alarm signal received from the determination unit 67.
  • an alarm sound or an alarm display informs that the wiring 4b is in an open state.
  • the determination unit 67 determines the presence / absence of a phase loss of the corresponding wiring based on the harmonics included in the excitation current, but the presence / absence of the phase loss can be determined with high sensitivity by using not only the fundamental wave but also the harmonics. It becomes possible. This principle is shown below.
  • the problem in measuring the excitation current is that the charging current flows through the line even when the excitation current is not flowing. This will be described with reference to FIGS.
  • FIG. 2 is a connection diagram of a transformer 1 generally used in a nuclear power plant. As shown in FIG. 2, a Y-connected transformer 1 is used on both the primary side and the secondary side. In order to stabilize the voltage, it is generally made to include a winding of ⁇ connection inside.
  • FIG. 3 shows an equivalent circuit of the circuit including the transformer 1 at this time. Although it is actually a three-phase alternating current, the phase loss detection device 6 determines the presence or absence of an excitation current for each phase, so only one phase is illustrated.
  • the charging current I CS 9 due to the stray capacitance Cs8 of the line and the exciting current I L 10 of the transformer 1 flow through the line.
  • the CT observes and outputs only the exciting current I L.
  • the transformer 1 is provided with the stabilizing winding, and the voltage E L 30 that is substantially the same as that in the normal state is induced in the primary circuit 2 of the transformer 1 even in the disconnection phase. For this reason, the charging current I CS2 40 from the voltage E L 30 to the line flows.
  • the charging current I CS2 40 is a phase of current advances supplied from the voltage E L 30, excitation of sound when the excitation current I L 10, i.e. delayed phase supplied from the power source 7 current I L 10 The current is just in phase.
  • the charging current I CS2 40 for example, in the case of CV cable, significantly large, the line length up to the fault point may also be the same as the exciting current I L 10.
  • FIG. 5 shows an example in which a CV cable is used for the secondary side circuit 3 of the transformer 1 as a second example in which the presence or absence of the excitation current cannot be determined.
  • a relatively large charging current I CS3 30 flows as shown in FIG.
  • the charging current I CS3 30 becomes a current corresponding to a turn ratio of the transformer 1 and flows to the primary side of the transformer 1 and flows the component current I CS31 31.
  • CS31 31 is just in antiphase with the exciting current I L 10 of the transformer 1, and both cancel each other.
  • the lead component current I CS31 31 and the excitation current I L 10 may be exactly the same, that is, the current may be zero. This indicates the same current value as when a disconnection occurs in the immediate vicinity of the transformer 1 on the primary side of the transformer 1, and the disconnection detection by the excitation current detection is no longer valid.
  • the charging current I CS3 30 includes almost no harmonic component with respect to the power supply frequency, whereas the excitation current I L 10 has nonlinearity in the excitation characteristics of the transformer 1 and has a relatively large harmonic component.
  • Fig. 6 shows an example of the waveform of the excitation current of the transformer 1. It can be seen that the excitation current waveform 70 shown in FIG. 6 is a greatly distorted waveform that is no longer a sine wave because harmonics are superimposed on the sine wave fundamental wave.
  • This waveform 70 is decomposed (separated) into fundamental and harmonic components. The result is shown in FIG. The point of phase 0 of the applied voltage not shown is plotted as the time origin. With respect to the applied voltage, each harmonic current of the fundamental wave 71, the third harmonic 72, and the fifth harmonic 73 flows with a phase delayed by 90 °.
  • FIG. 8 shows harmonic components when the amplitude of the fundamental component included in the exciting current of the transformer 1 is 1.
  • a third harmonic 72 having a distortion rate substantially equal to the current of the fundamental wave 71 and a fifth harmonic 73 having a distortion rate of about 50% flow.
  • the harmonics flow only due to the excitation current.
  • the transformer is clearly distinguished from other currents such as the charging current of the line. 1 excitation current can be measured.
  • the load current often includes an iron core such as a motor, and there are many loads such as a rectifier circuit in which the current responds nonlinearly to the voltage.
  • phase loss detection device 6 when the load current is large, it is difficult to detect the phase loss using the harmonic current, and other methods of phase loss detection such as detection of voltage drop after locking the output of the phase loss detection device 6 are performed. It is desirable to combine.
  • the phase of the excitation current described above can be used. That is, the load current is generally resistive and has the same phase as the applied voltage, whereas the excitation current has a 90 ° delayed phase. Therefore, the load current is detected by detecting a current having a 90 ° delayed phase with respect to the applied voltage. It is possible to measure by dividing to some extent.
  • the first embodiment depending on the presence or absence of the fundamental wave and the harmonic wave exceeding the predetermined threshold included in the excitation current detected by the current detector 5 provided in the wiring 4a, 4b, 4c of each phase. Therefore, it is determined whether any of the wirings 4a, 4b, and 4c of the primary side circuit 2 that is the detection source of the excitation current is in a connected state or an open state, so that there is no landslide or short circuit regardless of the equipment configuration and load conditions. One-phase open failure can be mechanically detected.
  • FIG. 9 shows an example of changes in the fundamental current 71 of the excitation current and the harmonics 72 and 73 with respect to the applied voltage.
  • the excitation current varies greatly depending on the voltage applied to the transformer 1, and this change is particularly noticeable in the harmonic current.
  • an instrument transformer PT as a voltage detector is provided in any of the wirings 4a, 4b, 4c of the primary circuit 2 of the transformer 1, and this instrument is used.
  • the circuit is configured such that the voltage detected by the transformer PT is input to the determination unit 67 of the phase loss detection device 6 via the voltage regulator 69, the analog filter 63, the AD converter 64, and the digital filter 65.
  • the instrument transformer PT is a measuring device for obtaining the reference voltage Vref, and here detects an AC voltage applied to any of the wires (for example, the wire 4c) of the primary circuit 2.
  • a voltage regulator 69 is provided.
  • the noise is removed from the voltage corrected by the voltage regulator 69 by passing through the analog filter 63, the AD converter 64, the digital filter 65, and the like. Filter components.
  • the voltage applied to the transformer 1 is detected (measured) simultaneously with the excitation current by the instrument transformer PT and input to the determination unit 67.
  • the determination unit 67 changes the threshold value for determining the presence or absence of the excitation current based on the detected (measured) applied voltage.
  • the applied voltage of the transformer 1 is measured and input to the determination unit 67 simultaneously with the excitation current, and the determination unit 67 is measured. Since the threshold value for determining the presence or absence of the excitation current is changed according to the applied voltage, the excitation current can be detected corresponding to the fluctuation of the applied voltage.
  • one current detector 5 is provided for each of the wirings 4a, 4b, and 4c. However, as shown in FIG. 11, the number of signal waveforms to be detected for each wiring 4a, 4b, and 4c. Only current detectors 5a, 5b and 5c are provided.
  • the current detector 5a is for detecting the fundamental wave
  • the current detector 5b is for detecting the third harmonic
  • the current detector 5c is for detecting the fifth harmonic. Then, the circuit is configured to input the detected currents to the phase loss detection device 6.
  • the filter unit 62 extracts a signal having a corresponding waveform (fundamental wave fm, 3rd harmonic wave 3fm, 5th harmonic wave 5fm, etc.) from each detected current and inputs it to the determination unit 67.
  • a corresponding waveform fundamental wave fm, 3rd harmonic wave 3fm, 5th harmonic wave 5fm, etc.
  • the cable to the phase loss detector 6 can be made thinner. Moreover, since detection in a low voltage region is possible according to the number of turns of the optical fiber, for example, when used as a gas insulated switchgear (GIS device), the weight can be reduced.
  • GIS device gas insulated switchgear
  • each component of the phase loss detection device 6 shown in the above embodiment may be realized by a program installed in a storage such as a hard disk device of a computer, and the program may be realized by a computer-readable electronic medium: electronic media
  • the function of the present invention may be realized by the computer by causing the computer to read the program from the electronic medium.
  • Examples of the electronic medium include a recording medium such as a CD-ROM, a flash memory, and removable media such as removable media. Further, the configuration may be realized by distributing and storing components in different computers connected via a network, and communicating between computers in which the components are functioning.

Abstract

実施形態の欠相検知システムは、3相静止誘導電気機器(1)、電流検知器(5)、抽出部(62)、判定部(67)を備える。3相静止誘導電気機器は3つの相の配線に励磁電流が流される1次側回路を有する。電流検知器は1次側回路の各々の配線に流れる励磁電流を配線毎に検知する。抽出部は電流検知器により検知された配線の励磁電流から高調波を抽出する。判定部は抽出部により高調波が抽出されたか否かに応じて励磁電流の検知元の配線が開放状態か接続状態かを判定する。

Description

欠相検知システム、欠相検知装置および欠相検知方法
 本発明の実施形態は、欠相検知システム、欠相検知装置および欠相検知方法に関する。
 発電所などの発電施設では、3相交流の高電圧を変圧する変圧器に保護継電器が接続されており、地落や短絡の事象発生時の対応が図られている。
 ところで、変圧器の1次側に接続されている碍子などが破損して3相のうちの例えば1相が欠相すること(以下これを「1相開放故障」と称す)がまれにある。
 3相変圧器における1相開放故障は、開放した相にも電圧が誘起されるため、発見が難しく、例えば変圧器の1次側に1相開放故障が発生し、異常電流の値が保護継電器の設定値まで到達するような場合は、検知可能である。
 しかしながら、地落や短絡を伴わない1相開放故障が発生すると、設備構成や負荷状況によっては保護継電器の設定値まで値が変動しない場合があり、このような場合は1相開放故障を検知できないことがある。
 このため、従来は機械的な検知のほか、人為的な検知を組み合わせて地落や短絡を伴わない1相開放故障を検知するよう対応を図っている。
特開2015-006076号公報
 従来、地落や短絡を伴わない1相開放故障が発生した場合に、設備構成や負荷状況によっては保護継電器の設定値まで値が変動しないことがあり、この場合は1相開放故障を検知できず、人為的な検知を組み合わせて対応していた。
 本発明が解決しようとする課題は、設備構成や負荷状況によらずに地落や短絡を伴わない1相開放故障を機械的に検知することができる欠相検知システム、欠相検知装置および欠相検知方法を提供することにある。
 実施形態の欠相検知システムは、3相静止誘導電気機器、電流検知器、抽出部、判定部を備える。3相静止誘導電気機器は3つの相の配線に励磁電流が流される1次側回路を有する。電流検知器は1次側回路の各々の配線に流れる励磁電流を配線毎に検知する。抽出部は電流検知器により検知された配線の励磁電流から高調波を抽出する。判定部は抽出部により高調波が抽出されたか否かに応じて励磁電流の検知元の配線が接続状態か開放状態かを判定する。
第1実施形態の欠相検知システムの構成を示す図である。 発電所などで用いられる変圧器の結線図である。 変圧器を含めた等価回路を示す図である。 図3の回路において、ある配線が断線した場合の電理由の流れを示す図である。 励磁電流の有無だけでは一部の欠相を検知できない例を示す図である。 変圧器の励磁電流の波形を示す図である。 図6の波形の励磁電流から基本波、3倍高調波、5倍高調波を分解した図である。 変圧器の励磁電流の基本波の振幅を1としたときの高調波成分の歪み率を示す図である。 印加電圧に対する励磁電流の基本波、高調波の変化を示す図である。 第2実施形態の回路構成を示す図である。 他の実施形態(変形例)の回路構成を示す図である。
 以下、図面を参照して、実施形態を詳細に説明する。 
 図1は第1実施形態の欠相検知システムを示す図である。
 図1に示すように、第1実施形態の欠相検知システムは、3相静止誘導電気機器としての変圧器1と、この変圧器1の1次側回路2の各相の配線4a、4b、4cに一つずつ配置された電流検出器5と、各相の電流検出器5が接続される欠相検知装置6とを有する。
 変圧器1は、外部へ続く例えばU相、V相、W相の3つの相の配線4a、4b、4cおよびコイルを含む1次側回路2と、この1次側回路2のコイルにより電圧が誘起されるコイルを有する2次側回路3とを有する。1次側回路2の各々の配線4a、4b、4cには120°ずつ位相をずらした励磁電流(位相の異なる励磁電流)が流れる。2次側回路3は1次側回路2に電磁的に結合されている。この変圧器1では、1次側回路2の各配線4a、4b、4cに位相を変えて励磁電流を流すことで、1次側回路2と2次側回路3のコイルの巻線比に応じた電力が2次側回路3に誘起される。
 各配線4a、4b、4cに配置されたそれぞれの電流検出器5は、各々の配線4a、4b、4cに流れる電流を配線毎に検知する。電流検出器5には、例えば通常CTと呼ばれる電磁誘導を用いた変流器、ファラデー効果を利用する光CTなどを用いる。CTはカレントトランスフォーマー(電流変換器)の略称である。
 欠相検知装置6は各相の電流検知器5により検出される配線4a、4b、4cの励磁電流を基に、励磁電流の検知元の配線4a、4b、4cが開放状態か否かを判定し、開放状態の配線が存在した場合、その旨を警報出力する。電流検知器5により励磁電流が検出された配線が例えば配線4aであれば、検知元の配線は配線4aである。
 欠相検知装置6は、入力変換器61、フィルタ部62、判定部67、警報出力部68を有する。
 入力変換器61は入力される励磁電流(電流の信号)を電圧の信号へ変換する。フィルタ部62はアナログフィルタ63、AD変換器64、デジタルフィルタ65を有する。
 アナログフィルタ63は入力される励磁電流を変換した電圧の信号)に含まれる高周波ノイズ成分(例えば10アンペア程度の電流を電圧に変換した成分)を減衰させる。
 AD変換器64はアナログフィルタ63によりノイズ成分(高周波成分)が減衰される励磁電流(アナログの信号)をデジタルの信号に変換する。
 デジタルフィルタ65はAD変換器64により変換されたデジタルの信号に含まれる商用周波数(50Hzまたは60Hzの基本波fm)と3倍高調波3fmおよび5倍高調波5fmなどの高調波成分を分離する。
 この例では、フィルタ部62は励磁電流の基本波fmに対する整数倍の高調波を一つ以上抽出する。つまりフィルタ部62はバンドパスフィルタであり、入力変換器61により変換された電圧信号から、基本波fmと、その3倍の周波数の3倍高調波3fm、およびその5倍の周波数の5倍高調波5fmなどを抽出する抽出部として機能する。
 判定部67には基準電圧Vrefが入力される。判定部67は基準電圧Vrefの周期に合わせて各信号を所定期間(動作期間)毎にサンプリングする。基準電圧Vrefは同期タイミングをとるための信号であり、1次側回路2のいずれかの配線(この例では配線4c)に印加される交流電圧または通常の商用交流電圧(100V、50Hzの正弦波の信号)などを用いるものとする。
 判定部67はフィルタ部62(抽出部)により励磁電流から一定レベルを超える高調波が抽出された場合は接続状態と判定し、一定レベルを超える高調波が抽出されない場合は開放状態と判定する。
 より具体的には、判定部67は基本波fmおよび高調波3fm、5fmそれぞれに判定用の閾値を持っている。基本波fmの振幅値に対する閾値を第1閾値とし、高調波3fm、5fmの振幅値に対する閾値を第2閾値とする。高調波の第2閾値については3倍高調波3fm、5倍高調波5fmそれぞれに対応する閾値が設定されている。
 判定部67は検知された基本波の振幅値が予め設定された第1閾値を超え、かつ高調波の振幅値が予め設定された第2閾値を超えない場合、その電流は充電電流のため当該配線が開放状態であるものと判定する。
 また判定部67は検知された基本波の振幅値が予め設定された第1閾値を超え、かつ高調波の振幅値が予め設定された第2閾値を超えた場合、その電流は励磁電流のため当該配線が接続状態であるものと判定する。
 判定部67はフィルタ部62により抽出された所定閾値(振幅値の第1閾値および第2閾値)を超える基本波fmおよび高調波3fm、5fmの有無に応じて励磁電流の検知元の1次側回路2の配線4a、4b、4cが開放状態か接続状態かを判定する。
 具体的には、判定部67はフィルタ部62により抽出された励磁電流および高調波が流れていると判定される閾値との大小関係(閾値よりも大きいか小さいか)に応じて、励磁電流の検知元の1次側回路2の配線4a、4b、4cが開放状態(少なくとも1相が開放故障)か否かを判定する。判定部67は抽出された一つ以上の高調波3fm、5fmの振幅値が第2閾値を超えない場合、高調波が抽出されなかったものとして、当該配線4a、4b、4cが開放状態であるものと判定する。
 なお基本波を用いずに高調波の有無だけ、つまり高調波の振幅値予め設定された第2閾値を超えた場合、その電流は励磁電流のため当該配線が接続状態であり、高調波の振幅値第2閾値以下の場合、その電流は充電電流のため当該配線が開放状態であるものと簡易的に判定してもよい。
 すなわち判定部67はフィルタ部62により高調波3fm、5fmが抽出されたか否かに応じて励磁電流の検知元の1次側回路2の配線4a、4b、4cが開放状態か接続状態かを判定する。
 そして、判定の結果、開放状態の配線が存在する場合(この例では配線4b)、判定部67は当該配線4bが開放状態であることを示す警報信号を警報出力部68へ出力する。
 警報出力部68は例えばスピーカやブザー、あるいは表示装置などであり、判定部67から受信された警報信号により、配線4bが開放状態であることを警報出力する報知部または発報部である。
 図1の例のように配線4bに断線箇所Pがある場合、配線4bが開放状態であることが警報音や警報表示などで報知される。
 つまり判定部67は励磁電流に含まれる高調波を基に該当配線の欠相の有無を判定するが、基本波だけなく高調波を用いることで、欠相の有無を高感度に判別することが可能となる。この原理を以下に示す。
 励磁電流を測定する上での問題点は、励磁電流が流れていなくても、線路に充電電流が流れることである。この様子を図1、図2を用いて説明する。
 図2は一般に原子力発電所で用いられている変圧器1の結線図である。 
 図2に示すように、1次側、2次側ともにY結線の変圧器1が用いる。電圧の安定化のため、内部にはΔ結線の巻き線を含むように作られるのが、一般的である。
 このため、入力側のY結線に接続される配線のうちいずれか1つの配線に断線故障を生じても、無負荷あるいは軽い負荷の場合には、断線相においても、ほぼ正常時に近い電圧が誘起され、従来用いられてきた電圧低下を検出することによる欠相検出の方法では欠相が検知できない事象が発生していた。
 この問題を解消するために、変圧器1の励磁電流の有無を測定して、欠相の有無を判定する。このときの、変圧器1を含めた回路の等価回路を図3に示す。実際には3相交流であるが、欠相検知装置6は各相毎に励磁電流の有無を判別しているので、1相分のみを図示する。
 図3に示すように、線路の浮遊容量Cs8による充電電流ICS9、変圧器1の励磁電流IL10が線路には流れている。ここで、励磁電流IL10を測定するCTを変圧器1近傍に設置した場合、CTは励磁電流ILのみを観測して出力することになる。
 次に、図4を参照して変圧器1の1次側回路の配線4a、4b、4cのいずれかで断線故障が生じた場合について考える。 
 図4に示すように、変圧器1(図3参照)から比較的離れた点×で断線が発生した場合、その断線した配線の相(断線相)には変圧器1の励磁電流は流れず0アンペアとなる。
 一方、線路の充電電流はどうかというと、断線が発生している状況のため、電源7からは供給されない。
 しかし、変圧器1には前述の通り、安定化巻線が備えられており、断線相においても、変圧器1の1次側回路2にほぼ健全時と同じ電圧E30が誘起される。このため、電圧E30から線路への充電電流ICS240が流れることとなる。
 このとき、充電電流ICS240は、電圧E30より供給された進み位相の電流となるが、健全時の励磁電流IL10、つまり電源7より供給された遅れ位相の励磁電流IL10と丁度同位相の電流となる。かつ充電電流ICS240は、例えばCVケーブルの場合、無視できない程大きく、事故点までの線路長によっては、励磁電流IL10と同一になることもあり得る。
 つまり、励磁電流の単純な検出だけで断線を判別するだけでは不十分であり、充電電流と励磁電流との識別を行うことが重要となる。
 図5に、励磁電流の有無を判別できない第2の例として、変圧器1の2次側回路3にCVケーブルが用いられている例を示す。
 変圧器1の2次側回路3にCVケーブルが用いられている場合、図5に示すように、比較的大きな充電電流ICS330が流れることとなる。この充電電流ICS330は、変圧器1の巻き数比分の1の電流となって変圧器1の1次側に進み成分の電流ICS3131を流すこととなるが、この進み成分の電流ICS3131は、変圧器1の励磁電流I10と丁度逆位相であり、両者は打ち消し合うこととなる。
 ここで、CVケーブルの長さによっては、進み成分の電流ICS3131と励磁電流I10が丁度同じ大きさ、つまり電流が0となる場合が生じ得ることとなる。これは、変圧器1の1次側の変圧器1直近で断線が生じた場合と同じ電流値を示すこととなり、やはり、励磁電流検知による断線検出は成り立たなくなる。
 そこで、励磁電流I10と充電電流ICS330の性質の違いに着目して、充電電流の影響がある場合についても、励磁電流I10の有無を正確に判別する手法を考案した。
 励磁電流I10と充電電流ICS330の性質の差として、高調波電流の発生がある。充電電流ICS330は、電源周波数に対する高調波成分を殆ど含まないのに対し、励磁電流I10については、変圧器1の励磁特性に非線形性をもっており、比較的大きな高調波成分を有する。
 図6に変圧器1の励磁電流の波形の一例を示す。図6に示す励磁電流の波形70は、正弦波の基本波に高調波が重畳された状態のため、もはや正弦波とは言い難い大きく歪んだ波形となっていることが分かる。
 この波形70を、基本波および高調波の各成分に分解(分離)する。この結果を図7に示す。なお図示していない印加電圧の位相0の点を時間原点としてプロットしている。印加電圧について90°遅れ位相で基本波71、3倍高調波72および5倍高調波73の各高調波電流が流れている。
 変圧器1の励磁電流に含まれる基本波成分の振幅を1としたときの高調波成分を図8に示す。図8では、基本波71の電流とほぼ同等の歪み率の3倍高調波72と、約50%の歪み率の5倍高調波73が流れていることが分かる。
 変圧器1が無負荷の状態では、このような高調波の流れる原因は励磁電流のみであり、高調波電流を測定することによって、線路の充電電流など、他の電流と明確に区別して変圧器1の励磁電流を測定することができる。
 変圧器1に負荷電流が流れた場合についても考えると、負荷電流は、モーターなど鉄心を含んだものも多く、また、整流回路など電圧に対して非線形に電流が応答する負荷は多数ある。
 よって、負荷電流が大きい場合には、もはや高調波電流を用いた欠相検知は難しく、この欠相検知装置6の出力をロックした上で、電圧低下の検出など、他の欠相検知の手法を組み合わせることが望ましい。
 この負荷電流の高調波成分と、励磁電流の高調波成分を判別する方法として、先に示した励磁電流の位相を用いることができる。つまり、負荷電流は一般に抵抗性であり、印加電圧と同位相なのに対し、励磁電流は90°遅れ位相となることから、印加電圧に対して90°遅れ位相の電流を検出することによって、負荷電流とある程度分けて計測することが可能である。
 このようにこの第1実施形態によれば、各相の配線4a、4b、4cに設けた電流検知器5により検知された励磁電流に含まれる所定閾値を超える基本波と高調波の有無に応じて励磁電流の検知元の1次側回路2の配線4a、4b、4cのいずれかが接続状態か開放状態かを判定するので、設備構成や負荷状況によらずに地落や短絡を伴わない1相開放故障を機械的に検知することができる。
 次に、図9、図10を参照して第2実施形態を説明する。 
 変圧器1の励磁電流は、印加電圧によって大きく変動することに対しても、注意を払う必要がある。図9に印加電圧に対する励磁電流の基本波71、および高調波72、73の電流の変化の一例を示す。
 図9に示すように、励磁電流は変圧器1の印加電圧によって大きく変化し、この変化は特に高調波電流に顕著に現れる。
 そこで、第2実施形態は、図10に示すように、変圧器1の一次側回路2の配線4a、4b、4cのいずれかに電圧検知器としての計器用変圧器PTを設け、この計器用変圧器PTにより検知された電圧を電圧調整器69、アナログフィルタ63、AD変換器64、デジタルフィルタ65を介して、欠相検知装置6の判定部67に入力するように回路を構成する。
 計器用変圧器PTは、基準電圧Vrefを取得するための測定用の機器であり、ここでは1次側回路2のいずれかの配線(例えば配線4cなど)に印加される交流電圧を検出するものとする。
 計器用変圧器PTが検出した基準電圧Vrefを欠相検知装置6に入力する際に、電圧を補正する必要があるため電圧調整器69を設ける。また電圧調整器69により補正された電圧にはノイズ成分がのっているため、アナログフィルタ63、AD変換器64、デジタルフィルタ65などを通すことにより、電圧調整器69により補正された電圧からノイズ成分をフィルタリングする。
 この第2実施形態の場合、計器用変圧器PTにより、励磁電流と同時に変圧器1の印加電圧を検知(計測)し判定部67に入力する。判定部67は、検知(計測)された印加電圧により励磁電流の有無を判定するための閾値を変化させるものとする。
 このようにこの第2実施形態によれば、第1実施形態の効果に加えて、励磁電流と同時に変圧器1の印加電圧を計測して判定部67に入力し、判定部67は、計測された印加電圧により励磁電流の有無を判定するための閾値を変化させるので、印加電圧の変動に対応して励磁電流を検知できるようになる。
 本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 上記第1実施形態では、配線4a、4b、4cにそれぞれ電流検知器5を1つずつ設けたが、図11に示すように、各配線4a、4b、4cに、検知すべき信号波形の数だけ電流検知器5a、5b、5cを設ける。
 例えば電流検知器5aは基本波検知用とし、電流検知器5bは3倍高調波検知用とし、電流検知器5cは5倍高調波検知用とする。そして、それぞれ検知された電流を欠相検知装置6に入力するように回路を構成する。
 この場合、フィルタ部62では、それぞれ検知された電流から該当する波形の信号(基本波fm、3倍高調波3fm、5倍高調波5fmなど)を抽出し、判定部67へ入力する。
このように回路を構成することで、フィルタ部62での基準波と高調波の分解(分離)が不要になり、個々の信号(波形)を抽出するだけで済む。
 さらに、上記実施形態では、電流検知器として一般的な鉄心CTを用いた例について説明したが、通常の励磁電流の検知には使用しないような、例えば0.2A程度の極微少な電流を検出する欠相検知専用の光CTを各配線4a、4b、4cに配置することで、雑音成分はサチレーションしてしまい検出できないものの、微弱な励磁電流のみを検出することができる。
 電流検知器を光CTとすることで、欠相検知装置6へのケーブルを細くすることができる。また、光ファイバーの巻数に応じて低電圧領域での検出が可能になるので、例えばガス絶縁開閉装置(GIS機器)として使用する際に、軽重量にすることができる。
 また上記実施形態に示した欠相検知装置6の各構成要素を、コンピュータのハードディスク装置などのストレージにインストールしたプログラムで実現してもよく、また上記プログラムを、コンピュータ読取可能な電子媒体:electronic mediaに記憶しておき、プログラムを電子媒体からコンピュータに読み取らせることで本発明の機能をコンピュータが実現するようにしてもよい。
 電子媒体としては、例えばCD-ROM等の記録媒体やフラッシュメモリ、リムーバブルメディア:Removable media等が含まれる。さらに、ネットワークを介して接続した異なるコンピュータに構成要素を分散して記憶し、各構成要素を機能させたコンピュータ間で通信することで実現してもよい。
 1…変圧器、11…1次巻き線、12…2次巻き線、13…安定化巻き線、2…1次側回路、3…2次側回路、4a、4b、4c…配線、5…電流検出器、6…欠相検知装置、7…電源、8…浮遊容量Cs、9…充電電流ICS、10…励磁電流IL、20…CT、30…2次側充電電流ICS3、31…1次換算2次側充電電流ICS31、61…入力変換器、62…フィルタ部、63…アナログフィルタ、64…AD変換器、65…デジタルフィルタ、67…判定部、68…警報出力部。

Claims (7)

  1.  3つの相の配線に励磁電流が流される1次側回路を有する3相静止誘導電気機器と、
     前記1次側回路の各々の配線に流れる励磁電流を配線毎に検知する電流検知器と、
     前記電流検知器により検知された配線の励磁電流から高調波を抽出する抽出部と、
     前記抽出部により高調波が抽出されたか否かに応じて前記励磁電流の検知元の配線が接続状態か開放状態かを判定する判定部と
    を具備する欠相検知システム。
  2.  前記判定部は、
     前記高調波の振幅値が予め高調波用に設定した第2閾値を超えない場合、前記高調波が抽出されなかったものとして、当該配線が開放状態であるものと判定する請求項1に記載の欠相検知システム。
  3.  前記抽出部は、
     前記励磁電流の基本波に対する整数倍の高調波を一つ以上抽出し、
     前記判定部は、
     抽出された一つ以上の高調波の振幅値が前記第2閾値を超えない場合、当該配線が開放状態であるものと判定する請求項1または請求項2いずれかに記載の欠相検知システム。
  4.  前記抽出部は、
     前記励磁電流から基本波を抽出し、
     前記判定部は、
     前記基本波の振幅値が予め基本波用に設定された第1閾値を超え、かつ前記高調波の振幅値が予め高調波用に設定した第2閾値を超えない場合、当該配線が開放状態であるものと判定する請求項2に記載の欠相検知システム。
  5.  前記判定部により前記配線が開放状態と判定された場合、警報を出力する警報出力部をさらに具備する請求項1乃至4いずれか1項に記載の欠相検知欠相検知システム。
  6.  3相静止誘導電気機器の1次側回路の3つの相の配線に流される励磁電流から高調波を抽出する抽出部と、
     前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の配線が接続状態か開放状態かを判定する判定部と
    を具備する欠相検知装置。
  7.  3相静止誘導電気機器の1次側回路の3つの相の配線に流される励磁電流から高調波を抽出し、
     前記高調波が抽出されたか否かに応じて前記励磁電流の検知元の配線が接続状態か開放状態かを判定する欠相検知方法。
PCT/JP2017/029258 2016-08-19 2017-08-14 欠相検知システム、欠相検知装置および欠相検知方法 WO2018034260A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-161074 2016-08-19
JP2016161074A JP6678539B2 (ja) 2016-08-19 2016-08-19 欠相検知システム、欠相検知装置および欠相検知方法

Publications (1)

Publication Number Publication Date
WO2018034260A1 true WO2018034260A1 (ja) 2018-02-22

Family

ID=61196559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029258 WO2018034260A1 (ja) 2016-08-19 2017-08-14 欠相検知システム、欠相検知装置および欠相検知方法

Country Status (2)

Country Link
JP (1) JP6678539B2 (ja)
WO (1) WO2018034260A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279381A (zh) * 2018-04-08 2018-07-13 沈阳工业大学 一种双三相永磁同步电机驱动系统的故障诊断方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189349A1 (ja) * 2022-03-29 2023-10-05 日本製鉄株式会社 処理装置、電動車両、処理方法、およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230420A (ja) * 1983-06-08 1984-12-25 関西電力株式会社 架空配電線のア−ク断線検出方法及び装置
JPS60190136U (ja) * 1984-05-25 1985-12-17 オムロン株式会社 欠相検出回路
JPH08331750A (ja) * 1995-05-31 1996-12-13 Mitsubishi Electric Corp 電力変換装置
WO2015126412A1 (en) * 2014-02-21 2015-08-27 Electric Power Research Institute, Inc. Method for detecting an open-phase condition of a transformer
JP2016206096A (ja) * 2015-04-27 2016-12-08 株式会社近計システム 欠相検出器
WO2016205479A1 (en) * 2015-06-16 2016-12-22 Ge Grid Solutions, Llc Methods and systems for open-phase detection in power transformers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230420A (ja) * 1983-06-08 1984-12-25 関西電力株式会社 架空配電線のア−ク断線検出方法及び装置
JPS60190136U (ja) * 1984-05-25 1985-12-17 オムロン株式会社 欠相検出回路
JPH08331750A (ja) * 1995-05-31 1996-12-13 Mitsubishi Electric Corp 電力変換装置
WO2015126412A1 (en) * 2014-02-21 2015-08-27 Electric Power Research Institute, Inc. Method for detecting an open-phase condition of a transformer
JP2016206096A (ja) * 2015-04-27 2016-12-08 株式会社近計システム 欠相検出器
WO2016205479A1 (en) * 2015-06-16 2016-12-22 Ge Grid Solutions, Llc Methods and systems for open-phase detection in power transformers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279381A (zh) * 2018-04-08 2018-07-13 沈阳工业大学 一种双三相永磁同步电机驱动系统的故障诊断方法
CN108279381B (zh) * 2018-04-08 2020-04-10 沈阳工业大学 一种双三相永磁同步电机驱动系统的故障诊断方法

Also Published As

Publication number Publication date
JP6678539B2 (ja) 2020-04-08
JP2018028501A (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
AU2013252914B2 (en) Method and apparatus for protecting power transformers from large electro-magnetic disturbances
US8896306B2 (en) Method and apparatus for detecting a magnetic characteristic variable in a core
RU2660128C2 (ru) Способ обнаружения состояния обрыва фазы трансформатора
US20120056637A1 (en) Apparatus and method for quickly determining fault in electric power system
JP2018526617A (ja) 電力変圧器における欠相検出のための方法およびシステム
WO2018034260A1 (ja) 欠相検知システム、欠相検知装置および欠相検知方法
JP6896592B2 (ja) 欠相検知装置および欠相検知システム
JP6989232B2 (ja) 部分放電測定装置
US20190033361A1 (en) Method and device for short-circuit monitoring of a three-phase load
JP2002311061A (ja) 電力用処理装置
JP2010276377A (ja) 直流回路の地絡事故検出システム
JP2012141232A (ja) 配電用変圧器2次側地絡検出システム
JP2017204973A (ja) 欠相検知システム、欠相検知装置および欠相検知方法
Kaczmarek Operation of inductive protective current transformer in condition of distorted current transformation
JP6929724B2 (ja) 欠相検知装置、欠相検知システム、および欠相検知方法
RU2521616C1 (ru) Устройство релейной защиты сетевой обмотки ушр
Ahmadzadeh-Shooshtari et al. A method to detect DC bias in transformers using differential current waveforms
JP2006038604A (ja) 漏れ電流計測器
JP2001242205A (ja) 絶縁監視装置
KR20230151599A (ko) 전류 비율 차동 계전기 및 그의 동작 방법
Bak et al. 3DPPS for early detection of arcing faults
Tsai et al. Design of a new Hall overcurrent protection relay with instantaneous characteristics
JP2000287362A (ja) 分散電源の単独運転検出装置
JP2001327064A (ja) 保護リレー監視装置
KR20160060407A (ko) 발전소 변압기 고전압측 상별 전류측정을 통한 개방위상상태 검출 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841482

Country of ref document: EP

Kind code of ref document: A1