WO2023189349A1 - 処理装置、電動車両、処理方法、およびプログラム - Google Patents

処理装置、電動車両、処理方法、およびプログラム Download PDF

Info

Publication number
WO2023189349A1
WO2023189349A1 PCT/JP2023/009038 JP2023009038W WO2023189349A1 WO 2023189349 A1 WO2023189349 A1 WO 2023189349A1 JP 2023009038 W JP2023009038 W JP 2023009038W WO 2023189349 A1 WO2023189349 A1 WO 2023189349A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonic
motor
fundamental wave
information
waveform
Prior art date
Application number
PCT/JP2023/009038
Other languages
English (en)
French (fr)
Inventor
正仁 上川畑
励 本間
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2024511633A priority Critical patent/JPWO2023189349A1/ja
Publication of WO2023189349A1 publication Critical patent/WO2023189349A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a processing device, an electric vehicle, a processing method, and a program, and is particularly suitable for use in exciting a motor.
  • Vibration of the motor during operation causes noise. Further, for example, vibrations of a drive motor (power source) in an electric vehicle such as a hybrid vehicle (HV) or an electric vehicle (EV) affect ride comfort. Therefore, it is desirable to suppress vibrations of the motor.
  • One possible method for suppressing motor vibration is to change the structure of the motor. However, it is difficult to change the structure of the motor of an existing electric vehicle.
  • a method has been proposed for suppressing motor vibration by controlling harmonics included in an excitation signal supplied to a stator coil of a motor.
  • Non-Patent Document 1 discloses a technology aimed at reducing motor torque ripple and vibration in the radial direction of the motor, targeting a PMSM (Permanent Magnet Synchronous Motor) with an open winding structure. has been done. As such a technique, Non-Patent Document 1 describes that a current in which a third harmonic current is superimposed on a fundamental wave current is supplied to the PMSM as an excitation current.
  • PMSM Permanent Magnet Synchronous Motor
  • Non-Patent Document 1 states that even if a current in which a third harmonic current is superimposed on a fundamental wave is supplied to the PMSM as an excitation current, the effect of suppressing vibration in the radial direction of the motor is small. ing. Therefore, there is room for improvement in the technique described in Non-Patent Document 1. For example, when a star-connected (Y-connected) three-phase AC power source operates a motor whose stator coil is connected in a star-connected manner, harmonic currents of orders that are multiples of three do not flow in the motor. Therefore, even if a current in which a third harmonic is superimposed on a fundamental wave is supplied to the motor as an exciting current, the effect of suppressing vibration in the radial direction of the motor is not sufficient.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to improve the effect of suppressing vibrations of a motor.
  • the processing device of the present invention is a processing device that performs processing to generate an excitation waveform that is a time waveform of an excitation signal supplied to a stator coil of a motor, and includes fundamental wave information and harmonic information.
  • a waveform information setting unit configured to set waveform information; the fundamental wave information is information for generating a fundamental wave to be included in the excitation waveform; and the harmonic information is information for generating a fifth harmonic to be superimposed on the fundamental wave.
  • the information is information for generating a wave
  • the waveform information setting section has a harmonic information setting section that sets the harmonic information
  • the harmonic information has an amplitude ratio A5 , a phase difference ⁇ 5
  • the amplitude ratio A 5 is a ratio of the amplitude I 5 of the fifth harmonic to the amplitude I 0 of the fundamental wave expressed as a percentage
  • the phase difference ⁇ 5 is the amplitude I 5 of the fundamental wave.
  • the harmonic information setting unit sets the amplitude I5 of the fifth harmonic so that the amplitude ratio A5 is more than 20% and less than or equal to 80%.
  • the harmonic information setting unit is configured such that the phase of the fifth harmonic with respect to the fundamental wave is a leading phase, and the phase difference ⁇ 5 is 80° or more and 106° or less. , the phase difference ⁇ 5 is set.
  • the processing method of the present invention is a processing method that performs processing to generate an excitation waveform that is a time waveform of an excitation signal supplied to a stator coil of a motor, and includes fundamental wave information and harmonic information.
  • a waveform information setting step of setting waveform information the fundamental wave information is information for generating a fundamental wave to be included in the excitation waveform
  • the harmonic information is information for generating a fifth harmonic to be superimposed on the fundamental wave.
  • the waveform information setting step includes a harmonic information setting step of setting the harmonic information
  • the harmonic information includes an amplitude ratio A5 , a phase difference ⁇ 5 , and , the amplitude ratio A 5 is a ratio of the amplitude I 5 of the fifth harmonic to the amplitude I 0 of the fundamental wave expressed as a percentage, and the phase difference ⁇ 5 is the amplitude I 5 of the fundamental wave.
  • the amplitude I5 of the fifth harmonic is set so that the amplitude ratio A5 is more than 20% and less than or equal to 80%.
  • the harmonic information setting step is such that the phase of the fifth harmonic with respect to the fundamental wave is a leading phase, and the phase difference ⁇ 5 is 80° or more and 106° or less. , the phase difference ⁇ 5 is set.
  • the program of the present invention causes a computer to function as the waveform information setting section of the processing device.
  • FIG. 1 is a diagram showing an example of the configuration of a motor.
  • FIG. 2 is a diagram showing an example of the relationship between the amplitude ratio of the fifth harmonic to the fundamental wave and electromagnetic force.
  • FIG. 3 is a diagram showing an example of the relationship between the phase difference between the fundamental wave and the fifth harmonic and electromagnetic force.
  • FIG. 4 is a diagram showing an example of the functional configuration of the processing device.
  • FIG. 5 is a flowchart illustrating an example of a processing method.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the processing device.
  • FIG. 1 is a diagram showing an example of the configuration of a motor M to be investigated.
  • FIG. 1 shows a cross section of the motor M taken perpendicularly to the rotational axis 0 (z-axis direction).
  • hatching representing the cut end of the cross section is not shown.
  • arrow lines shown beside x, y, and z indicate the directions of the x, y, and z coordinates in the xyz orthogonal coordinate system.
  • arrow lines shown beside r and ⁇ indicate the directions of the r and ⁇ coordinates in the two-dimensional polar coordinate system.
  • each coordinate shown in FIG. 1 is, for example, the rotation axis 0 (center line) of the motor M. In FIG. 1, for convenience of notation, the origin of each coordinate is shown at a position away from the rotational axis 0 of the motor M.
  • motor M includes a rotor 110 and a stator 120.
  • the rotor 110 includes a rotor core 111 and permanent magnets 112a to 112p.
  • the rotor core 111 is constructed, for example, by stacking a plurality of non-oriented electromagnetic steel plates having the same planar shape.
  • the rotor core 111 is not limited to one using a non-oriented electromagnetic steel plate, which is an example of a soft magnetic plate.
  • the rotor core 111 may be constructed using a soft magnetic plate other than a non-oriented electromagnetic steel plate.
  • the soft magnetic material plate other than the non-oriented electromagnetic steel plate is, for example, a grain-oriented electromagnetic steel plate.
  • the rotor core 111 may be, for example, a powder magnetic core, an amorphous core, or a nanocrystalline core.
  • the rotor core 111 is formed with through holes 111a to 111i that extend through the rotor core 111 in a direction parallel to the rotation axis of the motor M (z-axis direction).
  • the position of the center of the through hole 111a is the same as the position of the rotation axis 0 of the motor M.
  • a rotation axis (shaft) is installed in the through hole 111a.
  • the through holes 111b to 111i are arranged at intervals in the circumferential direction of the motor M so as to surround the through hole 111a.
  • the circumferential direction of the motor M is a direction around the rotation axis 0 of the motor M. More specifically, the circumferential direction of the motor M is the ⁇ -axis direction shown in FIG.
  • the shapes and sizes of the through holes 111b to 111i are the same.
  • Permanent magnets 112a to 112p are installed in the through holes 111b to 111i. With the permanent magnets 112a to 112p installed in the through holes 111b to 111i, gaps are formed on both sides of the permanent magnets 112a to 112p.
  • the void is a part of the through holes 111b to 111i
  • the plurality of soft magnetic plates constituting the rotor core 111 are manufactured, for example, by processing a circular soft magnetic plate so that holes corresponding to the through holes 111a to 111i are formed.
  • An example of the rotor core 111 is one in which a plurality of these soft magnetic plates are stacked and fixed so that the positions of the holes match. Note that through holes other than the through holes 111a to 111i may be formed in the rotor core 111. Further, the rotor core 111 may be provided with a so-called skew.
  • the stator 120 includes a stator core 121 and a stator coil 122.
  • the stator core 121 is configured, for example, by stacking a plurality of non-oriented electromagnetic steel plates having the same planar shape.
  • the stator core 121 is not limited to one using a non-oriented electromagnetic steel plate, which is an example of a soft magnetic plate.
  • the stator core 121 may be constructed using a soft magnetic plate other than a non-oriented electromagnetic steel plate.
  • the soft magnetic material plate other than the non-oriented electromagnetic steel plate is, for example, a grain-oriented electromagnetic steel plate.
  • the stator core 121 may be, for example, a powder magnetic core, an amorphous core, or a nanocrystalline core.
  • Stator core 121 includes a plurality of teeth portions 121a and a yoke portion 121b (core back portion).
  • a plurality of teeth portions 121a for convenience of notation, only one of the plurality of teeth portions is designated by the reference numeral 121a.
  • the plurality of teeth portions 121a are arranged at equal intervals in the circumferential direction of the motor M.
  • the shape and size of the plurality of teeth portions 121a are the same.
  • the yoke portion 121b has a generally hollow cylindrical shape.
  • the plurality of teeth portions 121a and the yoke portion 121b have an inner peripheral side (rotation axis 0 side) end surface of the plurality of teeth portions 121b and an outer peripheral side (positive direction side of the r axis shown in FIG. 1) of the plurality of teeth portions 121a.
  • the end faces are arranged so that they coincide with each other.
  • the plurality of teeth portions 121a and yoke portions 121b are integrated (there is no boundary line).
  • stator coil 122 is arranged in the slot 121c.
  • the slot 121c is a region between two adjacent teeth portions 121a spaced apart from each other in the circumferential direction of the motor M. Note that in FIG. 1, only one stator coil is designated by the reference numeral 122 for convenience of notation.
  • the plurality of soft magnetic plates constituting the stator core 121 are manufactured, for example, by processing a circular soft magnetic plate so that regions having shapes corresponding to the plurality of teeth portions 121a and yoke portions 121b are formed.
  • An example of the stator core 121 is one in which a plurality of these soft magnetic plates are stacked and fixed so that their contours (inner edges and outer edges) match. Note that the stator core 121 may be provided with a so-called skew.
  • FIG. 1 exemplifies a case where the motor M is an inner rotor type IPM (Interior Permanent Magnet) motor.
  • the motor M is not limited to an inner rotor type IPM motor.
  • the motor M may be a motor other than a synchronous motor, or may be an outer rotor type motor.
  • the motor M is not limited to a radial gap type motor.
  • the motor M may be an axial gap type motor.
  • the motor M shown in FIG. 1 is such that the outer diameter of the stator 120 is 140 mm, the outer diameter of the rotor 110 is 90 mm, and the height (length in the z-axis direction) of the rotor 110 and stator 120 is 24 mm.
  • the number of slots in the stator 120 is 48, the soft magnetic plates constituting the rotor core 111 and the stator core 121 are non-oriented electromagnetic steel sheets, the number of poles is 8, and the connection method of the stator coil 122 is star connection.
  • the results of the investigation conducted by the present inventors will be shown by exemplifying a three-phase AC motor.
  • Equations (1) to (4) ⁇ is magnetic permeability
  • A is vector potential
  • is electrical conductivity
  • J 0 exciting current density
  • Je is eddy current B is the magnetic flux density.
  • Equations (1) and (2) are solved simultaneously to obtain vector potential A and scalar potential ⁇ . Thereafter, the magnetic flux density B and the eddy current density Je are determined for each element from equations (3) and (4).
  • the electromagnetic force F generated in the stator core 121 is calculated based on the magnetic flux density B in each element set for the stator core 121 (in the following explanation, the electromagnetic force F generated in the stator core 121 is calculated as necessary). (abbreviated as F).
  • the torque T generated in the motor M is calculated based on the magnetic flux density B in each element set for the air gap between the rotor core 111 and the stator core 121 (in the following explanation, the torque T generated in the motor M is (abbreviated as torque T if necessary).
  • the electromagnetic force F and the torque T are calculated, for example, by using a known nodal force method. In the nodal force method, a Maxwell stress tensor is calculated based on the magnetic flux density B.
  • an electromagnetic force F including electromagnetic forces F r , F ⁇ , F z in the r direction, ⁇ direction, and z direction as components is calculated (the electromagnetic force F is a vector quantity).
  • the torque T is calculated using the electromagnetic force F ⁇ in the ⁇ direction (the torque T is a vector quantity).
  • the method for calculating the electromagnetic force F and the torque T is not limited to the nodal force method, and may be any other known method. Further, since the method of performing electromagnetic field analysis itself is a general method, detailed explanation thereof will be omitted.
  • the present inventors have calculated the electromagnetic force F when an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122, and the excitation current whose time waveform is a time waveform in which various harmonics are superimposed on the fundamental wave.
  • the electromagnetic force F when supplied to the stator coil 122 was calculated by performing electromagnetic field analysis (numerical analysis).
  • the excitation current I( ⁇ t) [A] is expressed by the following equation (5).
  • is each frequency [rad/s].
  • t is time [s].
  • n is the harmonic order [-].
  • I 0 is the amplitude [A] of the fundamental wave.
  • I n is the amplitude [A] of the nth harmonic.
  • ⁇ n is the phase difference [rad] between the fundamental wave and the n-th harmonic. Note that the symbols shown in [ ] represent units. Moreover, [-] indicates that it is a dimensionless quantity. Further, when the phase difference ⁇ n between the fundamental wave and the n-th harmonic is a positive value, the n-th harmonic is assumed to have a leading phase with respect to the fundamental wave.
  • the torque T corresponds to the effective value of the excitation current. Therefore, in this investigation, we investigated two cases: an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122, and an excitation current whose time waveform is a fundamental wave with various harmonics superimposed on the stator coil 122.
  • the electromagnetic force F in each case was compared under the same torque conditions so that the same torque T was generated in both cases. Specifically, the effective value of the excitation current whose time waveform is a fundamental wave, and the effective value of the excitation current whose time waveform is a time waveform in which harmonics are superimposed on the fundamental wave, each correspond to the desired torque T.
  • each excitation current was adjusted so that it was the same as the effective value of the excitation current.
  • the effective value of the excitation current whose time waveform is a fundamental wave and the effective value of the excitation current whose time waveform is a time waveform in which harmonics are superimposed on the fundamental wave are excitation currents corresponding to the desired torque T, respectively. In some cases, it was not exactly the same as the effective value.
  • the effective value of the excitation current whose time waveform is a fundamental wave and the effective value of the excitation current whose time waveform is a time waveform in which harmonics are superimposed on the fundamental wave correspond to the desired torque T, respectively.
  • the effective value of each excitation current was adjusted to be as close as possible to the effective value of the excitation current.
  • torque T and electromagnetic force F were calculated by performing static magnetic field analysis. Specifically, in the time waveform of the excitation current for one period, the value of the excitation current at a plurality of discrete times was used to calculate the torque at the time at each of the plurality of times. . Then, the average value of the torque at each time point calculated in this manner was calculated as the torque T generated in the motor M. Then, so that the torque T calculated in this way is the same as the desired torque, the effective value of the excitation current whose time waveform is a fundamental wave, and the time waveform whose time waveform is a harmonic superimposed on the fundamental wave. The effective value of the excitation current was adjusted.
  • the electromagnetic force F when the excitation current whose effective value has been adjusted in this way is supplied to the stator coil 122
  • the electromagnetic force F when the excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122
  • the electromagnetic force F when the stator coil 122 is supplied with an excitation current whose time waveform is a fundamental wave superimposed with various harmonics was calculated and compared.
  • the electromagnetic force F calculated in this manner is an electromagnetic force generated in the entire stator core 121.
  • the effective value of the excitation current whose time waveform is the fundamental wave is the same as the effective value of the excitation current whose time waveform is the fundamental wave with harmonics superimposed. do.
  • the torque T of the motor T is This corresponds to making them the same (that is, making the electromagnetic force in the rotational direction of the motor M the same). Therefore, the difference in electromagnetic force F calculated under the condition that the effective values of the excitation currents are the same as described above is expressed as the difference in electromagnetic force in the radial direction of the motor M.
  • the electromagnetic force in the radial direction of the motor M is a component in the radial direction of the motor M among the components of the electromagnetic force that are vector quantities.
  • the radial component of the motor M is, for example, the r component of the two-dimensional polar coordinate system shown in FIG.
  • reducing the electromagnetic force F calculated as described above corresponds to reducing the average value of the time waveform of the vibration of the motor M.
  • reducing the vibration of the motor M means reducing the average value of the time waveform of the vibration of the motor M.
  • the time waveform of the excitation current becomes complicated.
  • the circuit and control for generating the excitation current may become complicated, or the effects of switching noise caused by switching of the switching elements included in the circuit for generating the excitation current may increase. be.
  • the motor will generate harmonics of orders that are multiples of 3. No current flows.
  • the present inventors determined that the harmonics to be intentionally superimposed on the fundamental wave should be the lowest harmonics among the odd harmonics higher than the third harmonic.
  • the vibration of the motor M can be suppressed without making the time waveform of the excitation current extremely complicated. (That is, the electromagnetic force in the radial direction of the motor M) can be suppressed effectively.
  • the present inventors have optimized the phase difference ⁇ 5 between the fundamental wave and the 5th harmonic in addition to the amplitude I 5 of the 5th harmonic, thereby reducing the electromagnetic force in the radial direction of the motor M. It has been found that it is possible to further reduce the amount. Note that intentionally superimposing only the 5th harmonic on the fundamental wave means that when generating the excitation signal, an operation to generate the 5th harmonic is carried out, and a wave other than the 5th harmonic is This means that no operation that generates harmonics is performed.
  • a n be the amplitude ratio of the n-th harmonic to
  • the amplitude I n of the n-th harmonic is expressed by the following equation (7) using the amplitude I 0 of the fundamental wave and the amplitude ratio A n of the n-th harmonic to the fundamental wave.
  • the amplitude I n of the n-th harmonic is expressed by the following equation (7a).
  • FIG. 2 is a diagram showing an example of the relationship between the amplitude ratio A 5 (horizontal axis) and the electromagnetic force F (vertical axis). Note that FIG. 2 illustrates a case where the phase difference ⁇ 5 between the fundamental wave and the fifth harmonic is fixed at 1.65 rad ( ⁇ 95°).
  • a broken line 201 indicates the value of the electromagnetic force F when an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122.
  • a broken line 202 indicates a value of an electromagnetic force F that is 0.9 times the electromagnetic force F when an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122.
  • the black circles indicate the electromagnetic force F when the stator coil 122 is supplied with an excitation current whose time waveform is a fundamental wave superimposed with a fifth harmonic. Note that in FIG. 2, the electromagnetic force F is normalized and expressed as a dimensionless quantity.
  • the difference in electromagnetic force F calculated under the condition that the effective values of the excitation currents are the same is expressed as the difference in electromagnetic force in the radial direction of the motor M.
  • An increase in the electromagnetic force in the radial direction of the motor M corresponds to an increase in the vibration of the motor M.
  • the amplitude ratio A5 may be set to more than 0% and less than or equal to 90%.
  • FIG. 2 shows that the amplitude ratio A5 may be set to more than 0% and less than or equal to 90%.
  • the present inventors have determined that if the amplitude ratio A 5 is set to more than 20% but not more than 80% (20% ⁇ A 5 ⁇ 80%), the temporal waveform becomes It has been found that this is preferable because the electromagnetic force F can be reduced by 10% or more compared to the case where the excitation current, which is the fundamental wave, is supplied to the stator coil 122. If the electromagnetic force F can be reduced to about 10% compared to the case where an excitation current having a fundamental time waveform is supplied to the stator coil 122, it is considered that a reliable effect of suppressing the vibration of the motor M can be obtained.
  • the electromagnetic force F can be reduced to about 10% compared to the case where an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122
  • the operating conditions for example, under Even when the motor M is operated under conditions of low rotational speed and low torque, when an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122
  • the amplitude ratio A5 is more than 20% and less than 80%. It is considered that a clear difference can be made in the absolute value (amplitude) of the vibration of the motor M between the two cases. Therefore, it is considered that the vibration suppressing effect of the motor M can be reliably exerted by setting the amplitude ratio A5 to more than 20% and less than 80%.
  • the present inventors have found that if the amplitude ratio A 5 is set to 40% or more and 70% or less (40% ⁇ A 5 ⁇ 70%), when an excitation current whose temporal waveform is a fundamental wave is supplied to the stator coil 122. It was found that this method is more preferable because the electromagnetic force F can be reduced by nearly 25% compared to the above method.
  • the present inventors found that it is even more preferable to set the amplitude ratio A 5 to 45% or more and 55% or less (45% ⁇ A 5 ⁇ 55%) because the electromagnetic force F can be made close to the minimum value. I got this knowledge.
  • the upper and lower limits of the above range of amplitude ratio A5 may be arbitrarily changed within the range of more than 0% and less than or equal to 90%.
  • “more than 20%” in “more than 20% and less than 80%” “more than 0%”, “more than 40%”, or “more than 45%” may be adopted.
  • “80% or less” of “more than 20% and 80% or less” “90% or less”, “70% or less”, or “55% or less” may be adopted.
  • "40% or more” of "40% or more and 70% or less “more than 0%", “more than 20%", or “45% or more” may be adopted.
  • the actual excitation signal may contain harmonics of orders other than the fifth.
  • the amplitude of the fifth harmonic is larger than the amplitudes of the other harmonics. That is, the amplitude ratio A 5 of the fifth harmonic to the fundamental wave is preferably larger than the amplitude ratio A n (n ⁇ 5) of harmonics other than the fifth harmonic to the fundamental wave.
  • noise and high frequencies may be superimposed on the fundamental wave. Noise is a signal that is irregularly superimposed on the fundamental wave. Therefore, noise is a signal that is not synchronized with the fundamental wave.
  • the order n of harmonics is 40 or less.
  • FIG. 2 shows the case where the phase difference ⁇ 5 between the fundamental wave and the fifth harmonic is 1.65 rad ( ⁇ 95°).
  • the phase difference ⁇ 5 between the fundamental wave and the fifth harmonic is not limited to 1.65 rad ( ⁇ 95°).
  • the phase difference ⁇ 5 between the fundamental wave and the fifth harmonic is within a range that allows the operation of a motor such as a drive motor of an electric vehicle, the value other than 1.65 rad ( ⁇ 95°) is acceptable.
  • the range of the amplitude ratio A 5 that can reduce the electromagnetic force F is within the range described above (for example, 0% ⁇ A 5 ⁇ 90%, preferably 20% ⁇ A 5 ⁇ 80%, more preferably 40% ⁇ A 5 ⁇ 70%, even more preferably 45% ⁇ A 5 ⁇ 55%).
  • the drive motor is a motor that serves as the power source for movable electric vehicles such as hybrid cars and electric cars, and generates torque to rotate the wheels (wheels and tires). It's a motor.
  • an electric vehicle that is movable using a motor as a drive source will be simply referred to as an electric vehicle as necessary.
  • ranges described above as ranges of the amplitude ratio A 5 which are more preferable than 0% ⁇ A 5 ⁇ 90% (for example, 20% ⁇ A 5 ⁇ 80%, 40% ⁇ A 5 ⁇ 70%, and 45% ⁇ A 5 ⁇ 55%) is referred to as a preferable range of the amplitude ratio A 5 or simply a preferable range, if necessary.
  • FIG. 3 is a diagram showing an example of the relationship between the phase difference ⁇ 5 (horizontal axis) between the fundamental wave and the fifth harmonic and the electromagnetic force F (vertical axis). Note that FIG. 3 illustrates a case where the amplitude ratio A5 is fixed at 50%. In the following description, the phase difference ⁇ 5 between the fundamental wave and the fifth harmonic will be abbreviated as phase difference ⁇ 5 if necessary.
  • dashed lines 201 and 202 are the same as those shown in FIG. That is, the broken line 201 is the value of the electromagnetic force F when an excitation current whose temporal waveform is a fundamental wave is supplied to the stator coil 122.
  • a broken line 202 is a value of an electromagnetic force F that is 0.9 times the electromagnetic force F when an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122.
  • the black circles indicate the electromagnetic force F when the stator coil 122 is supplied with an excitation current whose time waveform is a fundamental wave superimposed with a fifth harmonic.
  • the radial vibration of the motor M corresponds to the electromagnetic force of the motor M in the radial direction. Therefore, determining the range of the phase difference ⁇ 5 based on the relationship between the phase difference ⁇ 5 and the electromagnetic force F is effective from the viewpoint of suppressing vibrations of the motor M. Based on the results shown in FIG . 2 and FIG . First, the electromagnetic force F can be reduced compared to the case where an excitation current whose temporal waveform is a fundamental wave is supplied to the stator coil 122.
  • the amplitude ratio A5 is within a suitable range, the phase difference ⁇ 5
  • the electromagnetic force F is reduced by 10% or more compared to the case where an excitation current whose time waveform is a fundamental wave is supplied to the stator coil 122.
  • the present inventors found that when the amplitude ratio A5 is within a suitable range, by setting the phase difference ⁇ 5 to more than 90° and less than or equal to 106° (90° ⁇ ⁇ 5 ⁇ 106°), the time waveform is It has been found that this is more preferable because the electromagnetic force F can be reduced by 20% or more compared to the case where the excitation current, which is the fundamental wave, is supplied to the stator coil 122. Furthermore, the present inventors have found that when the amplitude ratio A5 is within a suitable range, if the phase difference ⁇ 5 is set to 95° or more and 106° or less (95° ⁇ ⁇ 5 ⁇ 106°), the time waveform becomes the fundamental wave.
  • FIG. 3 shows the relationship between the phase difference ⁇ 5 and the electromagnetic force F when the amplitude ratio A 5 is 50%, but within the range where the electric vehicle drive motor can be operated. If so, the preferable range of phase difference ⁇ 5 that can reduce the electromagnetic force F even if the amplitude ratio A 5 is a value other than 50% is within the range described above (80° ⁇ 5 ⁇ 106°, Preferably 90° ⁇ ⁇ 5 ⁇ 106°, even more preferably 95° ⁇ ⁇ 5 ⁇ 106°, most preferably 103° ⁇ ⁇ 5 ⁇ 106°.
  • the range of 106° is referred to as the preferred range of the phase difference ⁇ 5 or simply the preferred range, if necessary.
  • the electromagnetic force F does not depend on the rotation speed of the motor M. Therefore, the results described with reference to FIGS. 2 and 3 do not depend on the rotation speed of the motor M. Therefore, for example, by setting the amplitude ratio A5 to more than 0% and less than or equal to 90%, the vibration of the drive motor can be reduced regardless of the rotation speed of the drive motor. From this, for example, the riding comfort of the electric vehicle can be improved regardless of the rotation speed of the drive motor.
  • the vibration of the drive motor can be further reduced. From this, for example, the ride comfort of an electric vehicle can be further improved. Further, for example, by setting the amplitude ratio A 5 to more than 20% and not more than 80% and making the phase difference ⁇ 5 more than 90° and not more than 106°, the vibration of the drive motor can be further reduced. From this, for example, the ride comfort of an electric vehicle can be further improved.
  • the range of the amplitude ratio A 5 and phase difference ⁇ 5 that can reduce the vibration of the drive motor is the above-mentioned range. (0% ⁇ A 5 ⁇ 90%, preferably 20% ⁇ A 5 ⁇ 80% and 80° ⁇ 5 ⁇ 106°, etc.) was obtained.
  • the power source for operating the motor is a star connection (Y connection) three-phase AC power source
  • the stator coil connection method is star connection
  • the power source for operating the motor is not limited to a star-connected (Y-connected) three-phase AC power source.
  • the method of connecting the stator coils is not limited to star connection.
  • FIG. 4 is a diagram showing an example of the functional configuration of the processing device 400.
  • the hardware of the processing device 400 may be, for example, an information processing device including a processor (for example, a central processing unit), a storage device (for example, a main storage device and an auxiliary storage device), and various interface devices, or dedicated hardware.
  • a processor for example, a central processing unit
  • a storage device for example, a main storage device and an auxiliary storage device
  • various interface devices or dedicated hardware.
  • the processing device 400 performs processing to generate an excitation waveform that is a time waveform of the excitation signal ES supplied to the stator coil 122 of the motor M.
  • a case will be exemplified in which the processing device 400 generates a time waveform of an excitation current as an excitation waveform.
  • the value of the excitation signal at each time of one electrical cycle is specified. Each time may be consecutive times at arbitrary time intervals. For example, when the excitation waveform is a value at each time in one electrical cycle, the value at each time in each cycle is calculated from the value.
  • the value at each time in the electric half cycle may be specified as the excitation waveform.
  • the motor M is, for example, a motor for driving an electric vehicle, such as an IPM motor.
  • the waveform information setting unit 401 sets waveform information.
  • the waveform information is information necessary to generate an excitation waveform in which a fifth harmonic is superimposed on a fundamental wave.
  • the waveform information can also be said to be information indicating the generation conditions of an excitation waveform in which a fifth harmonic is superimposed on a fundamental wave.
  • the waveform information includes information for generating a fundamental wave to be included in the excitation waveform and information for generating a fifth harmonic to be superimposed on the fundamental wave.
  • setting is, for example, processing that includes storing in at least one of volatile memory and nonvolatile memory.
  • the waveform information setting unit 401 sets this waveform information based on operating conditions. Moreover, in this embodiment, a case is illustrated in which the waveform information setting section 401 includes an operating condition setting section 401a, a fundamental wave information setting section 401b, and a harmonic information setting section 401c.
  • ⁇ Operating condition setting section 401a>> a case will be exemplified in which a control device 410 of an electric vehicle that controls a motor M transmits operating conditions OC of the motor M to a processing device 400.
  • the electric vehicle control device 410 that controls the motor M will be referred to as the electric vehicle control device 410 or simply the control device 410 as necessary.
  • the operating condition setting unit 401a acquires and sets operating conditions OC for operating the motor M transmitted from the control device 410 of the electric vehicle.
  • the operating conditions during operation of the motor M will be simply referred to as the operating conditions of the motor M as necessary.
  • the operating condition setting unit 401a may acquire the operating condition OC of the motor M at a prescribed timing (for example, periodically). Further, the operating condition setting unit 401a may request the control device 410 of the electric vehicle to obtain the operating condition OC of the motor M, for example.
  • the operating condition setting unit 401a sets the operating condition OC of the motor M when the obtained operating condition OC of the motor M is different from the operating condition OC of the motor M obtained immediately before the operating condition OC of the motor M.
  • the operating conditions OC of the motor M include, for example, a speed command value of the motor M and a torque command value of the motor M.
  • the speed command value of the motor M is a command value of the rotational speed of the motor M.
  • the motor M torque command value is a motor M torque command value.
  • the operating condition setting unit 401a obtains and sets the operating condition OC of the motor M from the electric vehicle control device 410 that controls the motor M.
  • the control device 410 of the electric vehicle may generate a torque command value according to the difference between the measured value and the target value of the torque of the motor M.
  • the electric vehicle control device 410 may generate a speed command value according to the difference between the actual measurement value and the target value of the rotational speed of the motor M, for example.
  • the target value of the torque of the motor M and the target value of the rotational speed of the motor M are calculated by using, for example, the accelerator opening degree and (the actual measured value of) the vehicle speed of the electric vehicle.
  • the fundamental wave information setting section 401b acquires and sets information for generating a fundamental wave to be included in the excitation waveform, based on the operating condition OC of the motor M set by the operating condition setting section 401a.
  • information for generating the fundamental wave included in the excitation waveform will be referred to as fundamental wave information as necessary.
  • the rotational speed of the motor M corresponds to the frequency of the fundamental wave (fundamental frequency f 0 ).
  • the torque of the motor M corresponds to the effective value I rms of the excitation current and the advance angle ⁇ .
  • the fundamental wave information setting unit 401b may obtain the frequency of the fundamental wave (fundamental frequency f 0 ), the effective value I rms of the exciting current, and the advance angle ⁇ by calculating them from the operating conditions OC of the motor M. good.
  • the fundamental wave information setting unit 401b calculates the frequency of the fundamental wave (fundamental frequency f 0 ), the effective value I rms of the exciting current, and the advance angle ⁇ based on the operating condition OC of the motor M.
  • the fundamental wave information setting unit 401b does not need to calculate the lead angle ⁇ .
  • the rotational speed, torque, and advance angle of the motor M, the frequency of the fundamental wave (fundamental frequency f 0 ), the effective value I rms of the excitation current, and the advance angle ⁇ are stored in correspondence with each other.
  • the lookup table may be stored in the processing device 400 in advance.
  • the fundamental wave information setting unit 401b sets the frequency of the fundamental wave (fundamental frequency f 0 ), the effective value I rms of the exciting current, and lead angle ⁇ are read from the lookup table. Note that if the lead angle is fixed, the lead angle may or may not be stored in the lookup table.
  • the pre-stored fifth harmonic information includes, for example, an amplitude ratio A5 and a phase difference ⁇ 5 .
  • the pre-stored fifth harmonic information is based on the operating conditions OC of the motor M (speed command value of the motor M and torque command value of the motor M) and the amplitude ratio A5 . and phase difference ⁇ 5 are stored in a mutually correlated manner.
  • the harmonic information includes the amplitude proportion A 5 and the phase difference ⁇ 5 read from the look-up table.
  • the amplitude ratio A 5 is selected from the range of 0% ⁇ A 5 ⁇ 90%. Further, the phase difference ⁇ 5 is selected from the range of 0° ⁇ 5 ⁇ 360°. Further, the amplitude ratio A5 is preferably selected from the range of 20% ⁇ A5 ⁇ 80%, more preferably selected from the range of 40% ⁇ A5 ⁇ 70%, and 45% ⁇ It is even more preferable to select from the range of A 5 ⁇ 55%.
  • the phase difference ⁇ 5 is preferably selected from the range of 80° ⁇ 5 ⁇ 106°, for example, and from the range of 90° ⁇ 5 ⁇ 106°. It is more preferably selected from the range of 95° ⁇ 5 ⁇ 106°, and most preferably selected from the range of 103° ⁇ 5 ⁇ 106°.
  • the values of the amplitude ratio A 5 and the phase difference ⁇ 5 may be determined depending on, for example, how much vibration of the motor M needs to be suppressed. For example, in the range assumed as the range of the operating conditions OC of the motor M (speed command value of the motor M and torque command value of the motor M), the amplitude ratio A5 and the phase difference ⁇ are as shown in FIGS. 2 and 3. 5 and the electromagnetic force F may be investigated. The investigation is performed, for example, by using a simulation experiment using an actual motor M or an electromagnetic field analysis assuming an actual motor M.
  • the amplitude ratio A 5 and the phase difference ⁇ 5 at which the electromagnetic force F is as small as possible (preferably minimized) are determined from the above-mentioned range. You may choose the value of .
  • the operating conditions OC of the motor M (the speed command value of the motor M and the torque command value of the motor M), the amplitude ratio A 5 and the phase difference ⁇ 5 are mutually adjusted.
  • a lookup table to be stored in association with each other may be stored in the processing device 400 in advance.
  • the harmonic information setting unit 401c reads the amplitude ratio A 5 and the phase difference ⁇ 5 corresponding to the speed command value of the motor M and the torque command value of the motor M from the lookup table. Then, the harmonic information setting unit 401c sets the amplitude ratio A 5 and the phase difference ⁇ 5 read from the lookup table as harmonic information.
  • the harmonic information setting unit 401c refers to the lookup table based on the operating condition OC of the motor M set by the operating condition setting unit 401a, thereby determining the amplitude ratio A5 and the phase difference ⁇ . A case where 5 is set will be exemplified.
  • the method of obtaining the amplitude ratio A 5 and the phase difference ⁇ 5 is not limited to the method described above.
  • the fundamental wave information explained in the column of ⁇ fundamental wave information setting section 401b>> the amplitude ratio A 5 and the phase difference ⁇ 5 are stored in correspondence with each other.
  • a lookup table may be stored in the processing device 400 in advance.
  • the harmonic information setting unit 401c may obtain the same values as the amplitude ratio A5 and the phase difference ⁇ 5 regardless of the speed command value of the motor M and the torque command value of the motor M. In this case, the harmonic information setting unit 401c may obtain the amplitude ratio A 5 and the phase difference ⁇ 5 based on, for example, an input operation by an operator of the user interface of the processing device 400.
  • the excitation waveform generation unit 402 generates an excitation waveform in which a fifth harmonic is superimposed on a fundamental wave as an excitation waveform that is a time waveform of an excitation signal supplied to the stator coil 122 of the motor M. Further, the excitation waveform generation unit 402 supplies the motor M with an excitation signal ES based on the excitation waveform.
  • the excitation waveform generation unit 402 generates fundamental wave information (fundamental wave frequency (fundamental frequency f 0 ), effective value I rms of excitation current, and advance angle ⁇ ) set by the fundamental wave information setting unit 401b.
  • the excitation waveform of the excitation current to be supplied to the stator coil 122 of the motor M is generated based on the harmonic information (amplitude ratio A 5 and phase difference ⁇ 5 ) set by the harmonic information setting unit 401c.
  • the excitation waveform generation unit 402 may supply an excitation current having an excitation waveform in which a fifth harmonic is superimposed on a fundamental wave to a signal line that supplies an excitation signal to the motor M.
  • the excitation waveform generation unit 402 separately generates a time waveform of the fundamental wave and a time waveform of the fifth harmonic, and separates the time waveform of the fundamental wave and the time waveform of the fifth harmonic by a phase difference ⁇ 5 .
  • the signal may be supplied to the above-mentioned signal line after being shifted by a time difference based on .
  • the excitation waveform generation unit 402 calculates that the effective value I rms of the excitation current when the fifth harmonic is superimposed on the fundamental wave is the fundamental wave, with the amplitude I 0 of the fundamental wave and the amplitude I 5 of the fifth harmonic. be as close as possible to (preferably match) the effective value I rms of the excitation current acquired by the information setting unit 401b, and set the ratio of the amplitude I 5 of the fifth harmonic to the amplitude I 0 of the fundamental wave to be An amplitude whose value expressed as a percentage is as close as possible to (preferably matches) the amplitude ratio A5 acquired by the harmonic information setting unit 401c is calculated.
  • the frequency of the fundamental wave is acquired by the fundamental wave information setting unit 401b.
  • the frequency of the fifth harmonic is five times the frequency of the fundamental wave.
  • the excitation waveform generation unit 402 generates a fifth harmonic whose phase is advanced by a phase difference ⁇ 5 acquired by the harmonic information setting unit 401c with respect to the fundamental wave whose amplitude I 0 and frequency are determined as described above. , a time waveform is generated in which the fifth harmonic, whose amplitude I5 and frequency are determined as described above, is superimposed on the fundamental wave. Then, the excitation waveform generation unit 402 generates a phase of the time waveform generated in this way by a phase difference (phase difference with respect to the excitation voltage) determined based on the advance angle ⁇ acquired by the fundamental wave information setting unit 401b. A time waveform with a shifted value is generated as an excitation waveform.
  • the excitation waveform generation unit 402 executes, for example, the following processing.
  • the excitation waveform generating section 402 generates a modulated wave having the excitation waveform generated as described above.
  • the excitation waveform generation unit 402 generates a pulse signal by comparing the modulated wave with a predetermined carrier wave (for example, a triangular wave), and supplies the pulse signal to the stator coil 122 of the motor M.
  • a predetermined carrier wave for example, a triangular wave
  • the exciting current may be generated using PAM (Pulse Amplitude Modulation) control.
  • the excitation waveform generating section 402 may supply the excitation current of the excitation waveform generated as described above to the motor M as is. Further, the excitation waveform generation unit 402 may convert the excitation current of the excitation waveform generated as described above into an excitation voltage using the impedance of the motor M, and supply the excitation voltage to the motor M. That is, if the excitation waveform generation unit 402 supplies the excitation signal ES for exciting the motor M (stator core 121) to the motor M (stator coil 122) based on the excitation waveform generated as described above, The method of supplying the excitation signal is not limited. As described above, this embodiment exemplifies the case where the processing device 400 has a role as a control device that controls the operation of the motor M.
  • step S501 the operating condition setting unit 401a obtains and sets the operating condition OC of the motor M.
  • the processing device 400 determines whether to end the operation of the motor M based on the operating condition OC of the motor M. As a result of this determination, if the operation of the motor M is not terminated (NO in step S502), the process of step S503 is executed.
  • the fundamental wave information setting unit 401b sets the fundamental wave information (the frequency of the fundamental wave (fundamental frequency f 0 ), the effective value I rms of the exciting current, and the advance angle ⁇ ) based on the operating condition OC of the motor M. Calculate and set.
  • the harmonic information setting unit 401c reads and sets harmonic information (amplitude ratio A 5 and phase difference ⁇ 5 ) corresponding to the operating condition OC of the motor M from the lookup table.
  • the amplitude ratio A5 set in step S504 may be more than 0% and less than or equal to 90%. However, the amplitude ratio A5 set in step S504 is preferably more than 20% and less than 80%, more preferably more than 40% and less than 70%, and more preferably more than 45% and less than 55%. is even more preferable.
  • the phase difference ⁇ 5 obtained in step S504 is preferably 80° or more and 106° or less, more preferably more than 90° and 106° or less, and preferably 95° or more and 106° or less. is even more preferable, and most preferably 103° or more and 106° or less.
  • step S505 the excitation waveform generation unit 402 generates fundamental wave information (fundamental wave frequency (fundamental frequency f 0 ), effective value I rms of excitation current, and advance angle ⁇ ) and harmonic information (amplitude ratio A 5 and the phase difference ⁇ 5 ), an excitation waveform to be supplied to the stator coil 122 of the motor M is generated, and an excitation current having the excitation waveform is supplied to the motor M.
  • fundamental wave information fundamental wave frequency (fundamental frequency f 0 )
  • effective value I rms of excitation current and advance angle ⁇
  • harmonic information amplitude ratio A 5 and the phase difference ⁇ 5
  • step S506 If the result of the determination in step S502 described above is to end the operation of motor M (YES in step S502), the process of step S506 is executed. In step S506, the excitation waveform generation unit 402 stops supplying the excitation current to the motor M. When the process in step S506 ends, the process according to the flowchart of FIG. 5 ends.
  • the processing device 400 includes a CPU 601, a main storage device 602, an auxiliary storage device 603, a communication circuit 604, a signal processing circuit 605, an image processing circuit 606, an I/F circuit 607, a user interface 608, a display 609, and a bus. 610.
  • the CPU 601 performs overall control of the entire processing device 400.
  • the CPU 601 uses the main storage device 602 as a work area to execute programs stored in the auxiliary storage device 603.
  • Main storage device 602 temporarily stores data.
  • the auxiliary storage device 603 stores various data in addition to programs executed by the CPU 601.
  • the communication circuit 604 is a circuit for communicating with the outside of the processing device 400.
  • the communication circuit 604 may perform wireless communication or wired communication with the outside of the processing device 400.
  • the signal processing circuit 605 performs various signal processing on the signals received by the communication circuit 604 and the signals input under the control of the CPU 601.
  • the image processing circuit 606 performs various image processing on the input signal under the control of the CPU 601.
  • the signal subjected to this image processing is output to, for example, a display 7609.
  • the user interface 608 is a part through which the operator OP gives instructions to the processing device 400.
  • User interface 608 includes, for example, buttons, switches, and dials. Further, the user interface 608 may include a graphical user interface using a display 609.
  • the display 609 displays an image based on the signal output from the image processing circuit 606.
  • the I/F circuit 607 exchanges data with devices connected to the I/F circuit 607.
  • FIG. 6 shows a user interface 608 and a display 609 as devices connected to the I/F circuit 607.
  • the devices connected to the I/F circuit 607 are not limited to these.
  • a portable storage medium may be connected to the I/F circuit 607.
  • at least a portion of user interface 608 and display 609 may be external to processing device 400.
  • the CPU 601, main storage device 602, auxiliary storage device 603, signal processing circuit 605, image processing circuit 606, and I/F circuit 607 are connected to the bus 610. Communication between these components occurs via bus 610.
  • the hardware of the processing device 400 is not limited to the hardware shown in FIG. 6 as long as it can realize the functions of the processing device 400 described above.
  • a GPU may be used as a processor instead of or in addition to the CPU 601.
  • the processing device 400 sets waveform information including fundamental wave information and harmonic information.
  • the processing device 400 sets information including the amplitude ratio A5 and the phase difference ⁇ 5 as harmonic information.
  • the processing device 400 sets the amplitude I5 of the fifth harmonic so that the amplitude ratio A5 is more than 20% and less than 80%.
  • the processing device 400 sets the phase difference ⁇ 5 so that the phase of the fifth harmonic is advanced with respect to the fundamental wave, and the phase difference ⁇ 5 is 80° or more and 106° or less. Therefore, it becomes possible to enhance the effect of suppressing vibrations in the radial direction of the motor M.
  • the processing device 400 generates an excitation waveform in which a fifth harmonic is superimposed on the fundamental wave based on the waveform information described above. Therefore, setting of waveform information and generation of excitation waveform can be realized with one device. Therefore, compared to, for example, setting waveform information and generating excitation waveforms using separate devices, it is possible to reduce the possibility of communication failures and to reduce the number of components such as communication interfaces and communication cables. and become possible.
  • the processing device 400 does not need to include the excitation waveform generation unit 402 that generates the excitation waveform.
  • the individual devices when setting waveform information and generating excitation waveforms are performed using separate devices, the individual devices can be installed in different locations, and the setting of waveform information and the generation of excitation waveforms can be performed simultaneously.
  • the size can be reduced compared to the case where it is realized with one device. Therefore, for example, compared to the case where setting of waveform information and generation of excitation waveform are realized by one device, restrictions due to installation space can be suppressed.
  • the processing device 400 performs processing to generate an excitation waveform that is a time waveform of an excitation signal supplied to the stator coil 122 of the motor M that serves as the power source of the electric vehicle. Therefore, it is possible to generate an excitation waveform that can improve the riding comfort of an electric vehicle.
  • the motor M to which this embodiment is applied is not limited to a drive motor for an electric vehicle.
  • processing device and processing method described in the embodiments of the present invention described above may be realized by a PLC (Programmable Logic Controller) or by dedicated hardware such as an ASIC (Application Specific Integrated Circuit). be able to.
  • the processing device and processing method described in the embodiments of the present invention may be realized by a computer executing a program.
  • a computer-readable recording medium recording the program and a computer program product such as the program can also be applied as embodiments of the present invention.
  • the computer-readable recording medium refers to a non-temporary recording medium.
  • the recording medium for example, a flexible disk, hard disk, optical disk, magneto-optical disk, CD-ROM, magnetic tape, nonvolatile memory card, ROM, etc. can be used.
  • the processing device 400 is mounted on an electric vehicle and is configured to generate an excitation waveform for a drive motor of the electric vehicle. It may also be applied to other devices (equipment) other than electric vehicles, such as tools.
  • the present invention can be used, for example, to excite a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

処理装置(400)は、振幅割合(A5)が20%超80%以下となるように、第5次高調波の振幅(I5)を設定する。また、処理装置(400)は、基本波に対する第5次高調波の位相が進み位相となり、且つ、位相差(φ5)が80°以上106°以下となるように、位相差(φ5)を設定する。

Description

処理装置、電動車両、処理方法、およびプログラム
 本発明は、処理装置、電動車両、処理方法、およびプログラムに関し、特に、モータを励磁するために用いて好適なものである。本願は、2022年3月29日に日本に出願された特願2022-053569号に基づき優先権を主張し、それらの内容を全てここに援用する。
 運転中のモータの振動は騒音の原因となる。また、例えば、ハイブリッド自動車(HV:Hybrid Vehicle)や電気自動車(EV:Electric Vehicle)などの電動車両における駆動用モータ(動力源)の振動は乗り心地に影響を与える。したがって、モータの振動を抑制することが望まれる。モータの振動を抑制する手法の一つとしては、モータの構造を変更することが考えられる。しかしながら、既存の電動車両のモータの構造を変更することは難しい。モータのステータコイルに供給される励磁信号に含まれる高調波を制御することによってモータの振動を抑制する手法が提案されている。
 非特許文献1には、オープン巻線構造のPMSM(Permanent Magnet Synchronous Motor)を対象として、モータのトルクリップルの低減や、モータの半径方向における振動の低減を実現することを目的とする技術が開示されている。かかる技術として非特許文献1には、基本波電流に第3次高調波電流が重畳された電流を励磁電流としてPMSMに供給することが記載されている。
本田一成、赤津観共著、「第3次高調波電流制御を用いたオープン巻線構造PMSMの駆動手法検討」、電気学会論文誌D、Vol.141、No.1、pp.35-45、2021年1月1日
 しかしながら、非特許文献1には、第3次高調波電流が基本波に重畳された電流を励磁電流としてPMSMに供給しても、モータの半径方向における振動を抑制する効果は小さいことが記載されている。したがって、非特許文献1に記載の技術には改善の余地がある。例えば、スター結線(Y結線)の三相交流電源により、ステータコイルの結線方法がスター結線であるモータを動作させる場合、当該モータにおいては、3の倍数の次数の高調波電流は流れない。したがって、基本波に第3次高調波が重畳された電流を励磁電流としてモータに供給しても、モータの半径方向における振動の抑制効果は十分ではない。
 本発明は、以上のような問題点に鑑みてなされたものであり、モータの振動の抑制効果を高めることを目的とする。
 本発明の処理装置は、モータのステータコイルに供給される励磁信号の時間波形である励磁波形を生成するための処理を行う処理装置であって、基本波情報と、高調波情報と、を含む波形情報を設定する波形情報設定部を備え、前記基本波情報は、前記励磁波形に含める基本波を生成するための情報であり、前記高調波情報は、前記基本波に重畳させる第5次高調波を生成するための情報であり、前記波形情報設定部は、前記高調波情報を設定する高調波情報設定部を有し、前記高調波情報は、振幅割合Aと、位相差φと、を含み、前記振幅割合Aは、前記基本波の振幅Iに対する前記第5次高調波の振幅Iの比を百分率で表したものであり、前記位相差φは、前記基本波と前記第5次高調波との位相差であり、前記高調波情報設定部は、前記振幅割合Aが、20%超80%以下になるように、前記第5次高調波の振幅Iを設定し、前記高調波情報設定部は、前記基本波に対する前記第5次高調波の位相が、進み位相になり、且つ、前記位相差φが、80°以上106°以下になるように、前記位相差φを設定する。
 本発明の処理方法は、モータのステータコイルに供給される励磁信号の時間波形である励磁波形を生成するための処理を行う処理方法であって、基本波情報と、高調波情報と、を含む波形情報を設定する波形情報設定工程を備え、前記基本波情報は、前記励磁波形に含める基本波を生成するための情報であり、前記高調波情報は、前記基本波に重畳させる第5次高調波を生成するための情報であり、前記波形情報設定工程は、前記高調波情報を設定する高調波情報設定工程を有し、前記高調波情報は、振幅割合Aと、位相差φと、を含み、前記振幅割合Aは、前記基本波の振幅Iに対する前記第5次高調波の振幅Iの比を百分率で表したものであり、前記位相差φは、前記基本波と前記第5次高調波との位相差であり、前記高調波情報設定工程は、前記振幅割合Aが、20%超80%以下になるように、前記第5次高調波の振幅Iを設定し、前記高調波情報設定工程は、前記基本波に対する前記第5次高調波の位相が、進み位相になり、且つ、前記位相差φが、80°以上106°以下になるように、前記位相差φを設定する。
 本発明のプログラムは、前記処理装置の前記波形情報設定部としてコンピュータを機能させる。
図1は、モータの構成の一例を示す図である。 図2は、基本波に対する第5次高調波の振幅割合と電磁力との関係の一例を示す図である。 図3は、基本波と第5次高調波との位相差と電磁力との関係の一例を示す図である。 図4は、処理装置の機能的な構成の一例を示す図である。 図5は、処理方法の一例を説明するフローチャートである。 図6は、処理装置のハードウェアの構成の一例を示す図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 なお、以下の説明において、長さ、位置、大きさ、間隔など、比較対象が同じであることは、厳密に同じである場合の他、発明の主旨を逸脱しない範囲で異なるもの(例えば、設計時に定められる公差の範囲内で異なるもの)も含むものとする。
[知見]
 本発明の実施形態を説明する前に、本発明の実施形態に至るに際して本発明者らが得た知見を説明する。
 モータに生じる騒音の主要な要因は、ステータ(ステータコア)の振動である。ステータの振動は、ステータ(ステータコア)に生じる電磁力により直接的に評価することができる。そこで、本発明者らは、特願2021-185783号において、基本波に対して重畳させる高調波として、ステータに生じる電磁力を低減することができる高調波を探索する手法を提案した。そして、本発明者らは、電磁界解析(数値解析)を行うことにより、どのような高調波を基本波に重畳させれば、ステータに生じる電磁力を低減することができるのかを調査した。
<モータMの構成>
 図1は、調査対象のモータMの構成の一例を示す図である。なお、図1は、モータMを回転軸線0(z軸方向)に垂直に切った断面を示す。図1では表記の都合上、断面の切り口を表すハッチングの図示を省略する。図1において、x、y、zの傍らに示す矢印線は、x-y-z直交座標系におけるx座標、y座標、z座標の向きを示す。また、r、θの傍らに示す矢印線は、二次元極座標系におけるr座標、θ座標の向きを示す。なお、白丸(〇)の中に黒丸(●)を付した記号は、z座標の向きを示す。また、紙面の奥側から手前側に向かう方向が正の方向であることを示す。また、図1に示す各座標の原点は、例えば、モータMの回転軸線0(中心線)である。図1では、表記の都合上、各座標の原点を、モータMの回転軸線0から離れた位置に示す。
 図1において、モータMは、ロータ110と、ステータ120と、を備える。
 ロータ110は、ロータコア111と、永久磁石112a~112pと、を備える。ロータコア111は、例えば、平面形状が同じ複数の無方向性電磁鋼板を積み重ねることにより構成される。なお、ロータコア111は、軟磁性体板の一例である無方向性電磁鋼板を用いるものに限定されない。例えば、ロータコア111は、無方向性電磁鋼板以外の軟磁性体板を用いることによって構成されても良い。無方向性電磁鋼板以外の軟磁性体板は、例えば、方向性電磁鋼板である。また、ロータコア111は、例えば、圧粉磁心、アモルファスコア、およびナノ結晶コアであっても良い。
 ロータコア111には、モータMの回転軸に平行な方向(z軸方向)において貫通する貫通穴111a~111iが形成されている。
 貫通穴111aの中心の位置は、モータMの回転軸線0の位置と同じである。貫通穴111aには、回転軸(シャフト)が設置される。
 貫通穴111b~111iは、貫通穴111aを取り巻くように、モータMの周方向において間隔を有して配置される。なお、モータMの周方向は、モータMの回転軸線0周りの方向である。より具体的にモータMの周方向は、図1に示すθ軸方向である。貫通穴111b~111iの形状および大きさは同じである。貫通穴111b~111iには、永久磁石112a~112pが設置される。貫通穴111b~111iに永久磁石112a~112pが設置された状態で、永久磁石112a~112pの両側方に空隙が形成される。当該空隙は、貫通穴111b~111iの一部の領域である。
 ロータコア111を構成する複数の軟磁性体板は、例えば、貫通穴111a~111iに対応する穴が形成されるように円形の軟磁性体板を加工することによって製造される。これらの複数の軟磁性体板を、当該穴の位置が合うようにして積み重ねて固定したものがロータコア111の一例である。なお、貫通穴111a~111i以外の貫通穴がロータコア111に形成されていても良い。また、ロータコア111に対して所謂スキューが施されていても良い。
 ステータ120は、ステータコア121と、ステータコイル122と、を備える。ステータコア121は、例えば、平面形状が同じ複数の無方向性電磁鋼板を積み重ねることにより構成される。なお、ステータコア121は、軟磁性体板の一例である無方向性電磁鋼板を用いるものに限定されない。例えば、ステータコア121は、無方向性電磁鋼板以外の軟磁性体板を用いることによって構成されても良い。無方向性電磁鋼板以外の軟磁性体板は、例えば、方向性電磁鋼板である。また、ステータコア121は、例えば、圧粉磁心、アモルファスコア、およびナノ結晶コアであっても良い。
 ステータコア121は、複数のティース部121aと、ヨーク部121b(コアバック部)と、を有する。なお、図1では、表記の都合上、複数のティース部のうちの1つのみに符号121aを付す。
 複数のティース部121aは、モータMの周方向において等間隔となるように配置される。複数のティース部121aの形状および大きさは同じである。ヨーク部121bは、概ね中空円筒形状を有する。複数のティース部121aおよびヨーク部121bは、ヨーク部121bの内周側(回転軸線0側)の端面と、複数のティース部121aの外周側(図1に示すr軸の正の方向側)の端面と、が一致するように配置される。ただし、複数のティース部121aおよびヨーク部121bは、一体となっている(境界線がない)。
 また、スロット121cにステータコイル122が配置される。スロット121cは、モータMの周方向において間隔を有した状態で隣り合う2つのティース部121aの間の領域である。なお、図1では、表記の都合上、1つのステータコイルにのみ符号122を付す。
 ステータコア121を構成する複数の軟磁性体板は、例えば、複数のティース部121aおよびヨーク部121bに対応する形状の領域が形成されるように円形の軟磁性体板を加工することによって製造される。これらの複数の軟磁性体板を、それらの輪郭(内縁および外縁)が合うようにして積み重ねて固定したものがステータコア121の一例である。なお、ステータコア121に対して所謂スキューが施されていても良い。
 なお、図1では、モータMが、インナーロータ型のIPM(Interior Permanent Magnet)モータである場合を例示する。ただし、モータMは、インナーロータ型のIPMモータに限定されない。例えば、モータMは、同期モータ以外のモータであっても良いし、アウターロータ型のモータであっても良い。また、モータMは、ラジアルギャップ型のモータに限定されない。例えば、モータMは、アキシャルギャップ型のモータであっても良い。
 以下では、図1に示すモータMとして、ステータ120の外径が140mmであり、ロータ110の外径が90mmであり、ロータ110およびステータ120の高さ(z軸方向の長さ)が24mmであり、ステータ120のスロットの数が48であり、ロータコア111およびステータコア121を構成する軟磁性体板が無方向性電磁鋼板であり、極数が8であり、ステータコイル122の結線方法がスター結線である三相交流モータを例示して、本発明者らが行った調査の結果を示す。
<数値解析の概要>
 本発明者らは、電磁界解析(数値解析)を行うことにより、基本波に重畳させる高調波について後述する知見を得た。そこで、以下に、電磁界解析(数値解析)の概要を説明する。
 本調査では、数値解析の一例である有限要素法を用いて、モータMの計算モデルに対して設定した要素(メッシュ)のそれぞれにおける磁束密度Bおよび渦電流密度Jeを算出した。なお、磁束密度Bおよび渦電流密度Jeは、ベクトル量である。また、基本波に重畳させる高調波について後述する知見は、差分法など、有限要素法以外の数値解析の手法(離散化手法)を用いて電磁界解析を実行しても得られる。
 有限要素法を用いた電磁界解析の手法としてA-φ法を用いる手法がある。この場合、電磁界解析を行うための基礎方程式は、マクスウェルの方程式(Maxwell)に基づき以下の(1)式~(4)式で与えられる。なお、各式において、→は、ベクトルであることを表す。
Figure JPOXMLDOC01-appb-M000001
 (1)式~(4)式において、μは、透磁率であり、Aは、ベクトルポテンシャルであり、σは、導電率であり、Jは、励磁電流密度であり、Jeは、渦電流密度であり、Bは、磁束密度である。(1)式および(2)式を連立して解いて、ベクトルポテンシャルAとスカラーポテンシャルφを求める。その後、(3)式および(4)式から、磁束密度Bと、渦電流密度Jeとを要素のそれぞれに対して求める。なお、(1)式では、表記を簡素化するため、透磁率のx成分μ、y成分μ、z成分μが等しい場合(μ=μ=μの場合)の式を示す。
 そして、ステータコア121に対して設定された各要素における磁束密度Bに基づいて、ステータコア121に生じる電磁力Fを算出する(以下の説明では、ステータコア121に生じる電磁力Fを必要に応じて電磁力Fと略称する)。また、ロータコア111とステータコア121との間のエアギャップに対して設定された各要素における磁束密度Bに基づいて、モータMに生じるトルクTを算出する(以下の説明では、モータMに生じるトルクTを必要に応じてトルクTと略称する)。電磁力FおよびトルクTは、例えば、公知の節点力法を用いることにより算出される。節点力法では、磁束密度Bに基づいてマクスウェル応力テンソルが算出される。また、マクスウェル応力テンソルを用いて、r方向、θ方向、z方向の電磁力F、Fθ、Fを成分として含む電磁力Fが算出される(電磁力Fはベクトル量である)。また、θ方向の電磁力Fθを用いてトルクTが算出される(トルクTはベクトル量である)。なお、電磁力FおよびトルクTを算出する方法は、節点力法に限定されず、その他の公知の手法であっても良い。また、電磁界解析を行う手法自体は、一般的な手法であるので、その詳細な説明を省略する。
<基本波に重畳させる高調波についての知見>
 本発明者らは、時間波形が基本波である励磁電流をステータコイル122に供給した場合の電磁力Fと、時間波形が基本波に各種の高調波を重畳させた時間波形である励磁電流をステータコイル122に供給した場合の電磁力Fと、を、電磁界解析(数値解析)を行うことにより算出した。ここで、励磁電流I(ωt)[A]は、以下の(5)式で表されるものとする。(5)式において、ωは、各周波数[rad/s]である。tは、時刻[s]である。nは、高調波の次数[-]である。Iは、基本波の振幅[A]である。Iは、第n次高調波の振幅[A]である。φは、基本波と第n次高調波との位相差[rad]である。なお、[]内に示す記号は単位を表す。また、[-]は、無次元量であることを示す。また、基本波と第n次高調波との位相差φが正の値である場合に、第n次高調波は基本波に対して進み位相であるものとする。
Figure JPOXMLDOC01-appb-M000002
 トルクTは、励磁電流の実効値に対応する。そこで、本調査では、時間波形が基本波である励磁電流をステータコイル122に供給した場合と、時間波形が基本波に各種の高調波を重畳させた時間波形である励磁電流をステータコイル122に供給した場合と、で同等のトルクTが発生するようにして、それぞれの場合の電磁力Fを同等のトルク条件の下で比較した。具体的には、時間波形が基本波である励磁電流の実効値と、時間波形が基本波に高調波を重畳させた時間波形である励磁電流の実効値と、がそれぞれ所望のトルクTに対応する励磁電流の実効値と同じになるように、それぞれの励磁電流の実効値を調整した。なお、時間波形が基本波である励磁電流の実効値と、時間波形が基本波に高調波を重畳させた時間波形である励磁電流の実効値と、がそれぞれ所望のトルクTに対応する励磁電流の実効値と厳密に同じにならない場合があった。この場合には、時間波形が基本波である励磁電流の実効値と、時間波形が基本波に高調波を重畳させた時間波形である励磁電流の実効値と、がそれぞれ所望のトルクTに対応する励磁電流の実効値に可及的に近い値になるように、それぞれの励磁電流の実効値を調整した。
 また、本調査では、静磁界解析を行うことにより、トルクTおよび電磁力Fを算出した。具体的には、一周期分の励磁電流の時間波形において、離散的な複数の時刻における励磁電流の値を用いて、当該時刻におけるトルクを算出することを、当該複数の時刻のそれぞれにおいて行った。そして、このようにして算出した各時刻におけるトルクの平均値をモータMに生じるトルクTとして算出した。そして、このようにして算出したトルクTが、所望のトルクと同じになるように、時間波形が基本波である励磁電流の実効値と、時間波形が基本波に高調波を重畳させた時間波形である励磁電流の実効値と、をそれぞれ調整した。なお、トルクTが、所望のトルクと厳密に同じにならない場合があった。この場合には、当該トルクTが所望のトルクTに可及的に近い値になるように、時間波形が基本波である励磁電流の実効値と、時間波形が基本波に高調波を重畳させた時間波形である励磁電流の実効値と、をそれぞれ調整した。
 そして、このようにして実効値を調整した励磁電流をステータコイル122に供給した場合の電磁力Fとして、時間波形が基本波である励磁電流をステータコイル122に供給した場合の電磁力Fと、時間波形が基本波に各種の高調波を重畳させた時間波形である励磁電流をステータコイル122に供給した場合の電磁力Fと、をそれぞれ算出して比較した。なお、このようにして算出される電磁力Fは、ステータコア121の全体に生じる電磁力である。しかしながら、前述したように本調査では、時間波形が基本波である励磁電流の実効値と、時間波形が基本波に高調波を重畳させた時間波形である励磁電流の実効値と、を同じにする。時間波形が基本波である励磁電流の実効値と、時間波形が基本波に高調波を重畳させた時間波形である励磁電流の実効値と、を同じにすることは、モータTのトルクTを同じにすること(すなわちモータMの回転方向における電磁力を同じにすること)に対応する。したがって、以上のように励磁電流の実効値を同じにするという条件の下で算出される電磁力Fの差には、モータMの半径方向における電磁力の差となって表される。なお、モータMの半径方向における電磁力は、ベクトル量である電磁力の成分のうち、モータMの半径方向の成分である。モータMの半径方向の成分は、例えば、図1に示す二次元極座標系のr成分である。
 また、以上のようにして算出される電磁力Fを小さくすることは、モータMの振動の時間波形の平均値を小さくすることに対応する。本調査では、モータMの振動を低減することは、モータMの振動の時間波形の平均値を小さくすることを意味する。
 ところで、複数の次数の高調波を基本波に重畳させたり、極端に高次の次数の高調波を基本波に重畳させたりすると、励磁電流の時間波形が複雑な形状になる。そうすると、例えば、励磁電流を生成するための回路や制御が複雑になったり、励磁電流を生成するための回路に備わるスイッチング素子がスイッチングを行うことにより生じるスイッチングノイズの影響が大きくなったりする虞がある。また、前述したように例えば、スター結線(Y結線)の三相交流電源により、ステータコイルの結線方法がスター結線であるモータを動作させる場合、当該モータにおいては、3の倍数の次数の高調波電流は流れない。したがって、第3次高調波電流を基本波電流に重畳させても、モータMの半径方向における振動の抑制効果は十分ではない。以上のことを踏まえ、本発明者らは、前述した比較の結果から、基本波に意図的に重畳させる高調波を、第3次高調波よりも高い奇数次の高調波のうち最も低次の高調波である第5次高調波のみとし、且つ、第5次高調波の振幅Iを適正化することにより、励磁電流の時間波形の形状を極端に複雑にしなくても、モータMの振動(すなわち、モータMの半径方向における電磁力)の抑制効果を大きくすることが可能になることを見出した。さらに、本発明者らは、第5次高調波の振幅Iに加え、基本波と第5次高調波との位相差φを適正化することにより、モータMの半径方向における電磁力をより低減させることが可能になることを見出した。なお、基本波に第5次高調波のみを意図的に重畳させるとは、励磁信号を生成するときに、第5次高調波を生成する動作が行われ、且つ、第5次高調波以外の高調波を生成する動作が行われないことをいう。
 ここで、以下の(6)式に示すように、基本波の振幅Iに対する第n次高調波の振幅Iの比(=I÷I)を百分率で表したものを、基本波に対する第n次高調波の振幅割合Aとする。第n次高調波の振幅Iは、基本波の振幅Iと、基本波に対する第n次高調波の振幅割合Aと、を用いると、以下の(7)式で表される。また、第n次高調波の振幅Iは、以下の(7a)式で表される。また、基本波に第5次高調波を重畳させた励磁電流I(ωt)[A]は、(5)式より、以下の(8)式で表されるものとする。以下の説明では、基本波に対する第5次高調波の振幅割合Aを、必要に応じて振幅割合Aと略称する。
Figure JPOXMLDOC01-appb-M000003
 図2は、振幅割合A(横軸)と電磁力F(縦軸)との関係の一例を示す図である。なお、図2では、基本波と第5次高調波との位相差φを1.65rad(≒95°)に固定している場合を例示する。図2において、破線201は、時間波形が基本波である励磁電流をステータコイル122に供給した場合の電磁力Fの値を示す。破線202は、時間波形が基本波である励磁電流をステータコイル122に供給した場合の電磁力Fの0.9倍の電磁力Fの値を示す。黒丸は、時間波形が基本波に第5次高調波を重畳させた時間波形である励磁電流をステータコイル122に供給した場合の電磁力Fを示す。なお、図2では、電磁力Fを正規化して無次元量で表す。
 モータMの半径方向における振動は、モータMの半径方向における電磁力に対応する。したがって、振幅割合Aと電磁力Fとの関係などから、振幅割合Aの範囲を定めることは、モータMの振動を抑制する観点から効果的である。本発明者らは、図2に示す結果などから、振幅割合Aを0%超90%以下(0%<A≦90%)とすることにより、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて電磁力Fを低減することができるという知見を得た。前述したように励磁電流の実効値を同じにするという条件の下で算出される電磁力Fの差は、モータMの半径方向における電磁力の差となって表される。モータMの半径方向における電磁力が大きくなることはモータMの振動が大きくなることに対応する。図2に示すように、振幅割合Aを0%超90%以下とすれば、電磁力Fを低減することができるので、モータMの振動(すなわち、モータMの半径方向における電磁力)の抑制効果を発現させることができる。したがって、振幅割合Aを0%超90%以下としても良い。しかしながら、図2に示すように、振幅割合Aを0%超90%以下とすると、電磁力Fを十分に低減することができない場合を含む(例えば、振幅割合Aが0%および90%に近い値での電磁力Fを参照)。したがって、モータMの振動の抑制効果を確実に発現させることがでない場合が生じ得る。そこで本発明者らは、モータMの振動の抑制効果を確実に発現させる観点から、振幅割合Aを20%超80%以下(20%<A≦80%)にすれば、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて電磁力Fを10%以上低減させることができるので好ましいという知見を得た。時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて10%程度まで電磁力Fを低減できれば、モータMの振動の抑制効果として確実な効果が得られると考えられる。例えば、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて10%程度まで電磁力Fを低減できれば、モータMの振動(振幅)が小さくなり易い運転条件(例えば、低回転数、低トルクの運転条件)でモータMを運転している場合でも、時間波形が基本波である励磁電流をステータコイル122に供給する場合と、振幅割合Aを20%超80%以下にする場合とで、モータMの振動の絶対値(振幅)に明確な差を生じさせることができると考えられる。したがって、振幅割合Aを20%超80%以下にすることによるモータMの振動の抑制効果を確実に発現させることができると考えられる。
 さらに、本発明者らは、振幅割合Aを40%以上70%以下(40%≦A≦70%)にすれば、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて電磁力Fを25%近く低減させることができるのでさらに好ましいという知見を得た。
 また、本発明者らは、振幅割合Aを45%以上55%以下(45%≦A≦55%)にすれば、電磁力Fを最小値付近にすることができるので、より一層好ましいという知見を得た。
 なお、以上の振幅割合Aの範囲の上下限値は、0%超90%以下の範囲で任意に入れ替えられても良い。例えば、「20%超80%以下」の「20%超」に代えて、「0%超」、「40%以上」、または「45%以上」が採用されても良い。また、「20%超80%以下」の「80%以下」に代えて、「90%以下」、「70%以下」、または「55%以下」が採用されても良い。また、「40%以上70%以下」の「40%以上」に代えて、「0%超」、「20%超」、または「45%以上」が採用されても良い。また、「40%以上70%以下」の「70%以下」に代えて、「90%以下」、「80%以下」、または「55%以下」が採用されても良い。「0%超90%以下」の「0%超」に代えて、「20%超」、「40%以上」、または「45%以上」が採用されても良い。「0%超90%以下」の「90%以下」に代えて、「80%以下」、「70%以下」、または「55%以下」が採用されても良い。また、「45%以上55%以下」の「45%以上」に代えて、「0%超」、「20%超」、または「40%以上」が採用されても良い。「45%以上55%以下」の「55%以下」に代えて、「90%以下」、「80%以下」、または「70%以下」が採用されても良い。
 ここで、基本波に意図的に重畳させる高調波を第5次高調波のみとしても、実際の励磁信号(励磁電流および励磁電圧)には、5以外の次数の高調波が含まれる場合がある。この場合、第5次高調波の振幅が、その他の次数の高調波の振幅よりも大きいのが好ましい。すなわち、基本波に対する第5次高調波の振幅割合Aは、基本波に対する第5次高調波以外の高調波の振幅割合A(n≠5)よりも大きいのが好ましい。なお、実際の励磁信号には、高調波以外に、ノイズおよび高周波が基本波に重畳される場合がある。ノイズは、不定期に基本波に重畳される信号である。したがって、ノイズは、基本波に同期しない信号である。よって、ノイズは、高調波に含まれない。また、本実施形態では、高調波の次数nは、40以下であるものとする。また、本実施形態では、高周波は、第40次高調波の周波数(=基本波の周波数×40)を上回る高い周波数の信号であるものとする。すなわち、本実施形態では、第40次高調波の周波数を上回る高い周波数の信号は、高調波に含まれないものとする。
 なお、前述したように図2では、基本波と第5次高調波との位相差φを1.65rad(≒95°)とした場合を示す。しかしながら、基本波と第5次高調波との位相差φは1.65rad(≒95°)に限定されない。例えば、電動車両の駆動用モータなどのモータを動作させることができる範囲内であれば、基本波と第5次高調波との位相差φが1.65rad(≒95°)以外の値であっても、電磁力Fを低減することができる振幅割合Aの範囲は、前述した範囲(例えば、0%<A≦90%、好ましくは20%<A≦80%、より好ましくは40%≦A≦70%、より一層好ましくは45%≦A≦55%)であった。なお、駆動用モータとは、ハイブリッド自動車および電気自動車などの、モータを駆動源として移動可能な電動車両の動力源となるモータであり、車輪(ホイールおよびタイヤ)を回転させるためのトルクを発生するモータである。なお、以下の説明では、モータを駆動源として移動可能な電動車両を、必要に応じて単に電動車両と称する。また、以下の説明では、0%<A≦90%よりも好ましい振幅割合Aの範囲として前述した範囲(例えば、20%<A≦80%、40%≦A≦70%、および45%≦A≦55%)を、必要に応じて振幅割合Aの好適範囲、または単に好適範囲と称する。
 図3は、基本波と第5次高調波との位相差φ(横軸)と電磁力F(縦軸)との関係の一例を示す図である。なお、図3では、振幅割合Aを50%に固定している場合を例示する。以下の説明では、基本波と第5次高調波との位相差φを、必要に応じて位相差φと略称する。
 図3において、破線201、202は、図2に示したものと同じである。すなわち、破線201は、時間波形が基本波である励磁電流をステータコイル122に供給した場合の電磁力Fの値である。破線202は、時間波形が基本波である励磁電流をステータコイル122に供給した場合の電磁力Fの0.9倍の電磁力Fの値である。黒丸は、時間波形が基本波に第5次高調波を重畳させた時間波形である励磁電流をステータコイル122に供給した場合の電磁力Fを示す。なお、図3でも図2と同様に、電磁力Fを正規化して無次元量で表す(ただし、各図の電磁力F=1.0[-]における電磁力Fの実際の値(単位をNとする値)は同じである)。
 モータMの半径方向における振動は、モータMの半径方向における電磁力に対応する。したがって、位相差φと電磁力Fとの関係などから、位相差φの範囲を定めることは、モータMの振動を抑制する観点から効果的である。本発明者らは、図2および図3に示す結果などから、振幅割合Aが0%超90%以下(0%<A≦90%)である場合には、位相差φに関わらず、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて電磁力Fを低減させることができるが、振幅割合Aが好適範囲である場合には、位相差φを80°以上106°以下(80°≦φ≦106°)にすることにより、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて電磁力Fを10%以上低減させることができるので好ましいという知見を得た。また、本発明者らは、振幅割合Aが好適範囲である場合には、位相差φを90°超106°以下(90°<φ≦106°)にすることにより、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて電磁力Fを20%以上低減させることができるのでより好ましいという知見を得た。さらに、本発明者らは、振幅割合Aが好適範囲である場合、位相差φを、95°以上106°以下(95°≦φ≦106°)にすれば、時間波形が基本波である励磁電流をステータコイル122に供給した場合に比べて電磁力Fを25%以上低減させることができるのでより一層好ましいという知見を得た。また、本発明者らは、振幅割合Aが好適範囲である場合、位相差φを、103°以上106°以下(103°≦φ≦106°)にすれば、電磁力Fを最小値付近にすることができるので最も好ましいという知見を得た。
 なお、前述したように図3では、振幅割合Aを50%とした場合の位相差φと電磁力Fとの関係を示すが、電動車両駆動用モータを動作させることができる範囲内であれば、振幅割合Aが50%以外の値であっても、電磁力Fを低減することができる好ましい位相差φの範囲は、前述した範囲(80°≦φ≦106°、より好ましくは90°<φ≦106°、より一層好ましくは95°≦φ≦106°、最も好ましくは103°≦φ≦106°)であった。なお、以下の説明では、80°≦φ≦106°、より好ましくは90°<φ≦106°、より一層好ましくは95°≦φ≦106°、最も好ましくは103°≦φ≦106°の範囲を、必要に応じて位相差φの好適範囲、または単に好適範囲と称する。
 前述したように本調査では静磁界解析を行っているので、励磁電流の実効値(振幅)が同等(すなわちトルクTが同等)であれば、電磁力FはモータMの回転数に依存しない。したがって、図2および図3を参照しながら説明した結果は、モータMの回転数に依存しない。よって、例えば、振幅割合Aを0%超90%以下にすることにより、駆動用モータの回転数に関わらず駆動用モータの振動を低減することができる。このことから、例えば、駆動用モータの回転数に関わらず電動車両の乗り心地を改善することができる。また、例えば、振幅割合Aを20%超80%以下にすると共に、位相差φを80°以上106°以下にすることにより、駆動用モータの振動をより低減することができる。このことから、例えば、電動車両の乗り心地をより一層改善することができる。さらに、例えば、振幅割合Aを20%超80%以下にすると共に、位相差φを90°超106°以下にすることにより、駆動用モータの振動をより一層低減することができる。このことから、例えば、電動車両の乗り心地をより一層改善することができる。
 なお、IPMモータなどの電動車両の駆動用モータとして一般的に使用される実用的な範囲においては、駆動用モータの振動を低減することができる振幅割合Aおよび位相差φの範囲として前述した範囲(0%<A≦90%、好ましくは20%<A≦80%且つ80°≦φ≦106°など)が得られた。
 また、本調査では、モータを動作させる電源が、スター結線(Y結線)の三相交流電源であり、且つ、ステータコイルの結線方法がスター結線である場合を例示した。しかしながら、振幅割合Aおよび位相差φを前述した範囲にすることが出来れば、モータを動作させる電源は、スター結線(Y結線)の三相交流電源に限定されない。また、ステータコイルの結線方法は、スター結線に限定されない。
 以下に説明する本発明の一実施形態は、以上の知見に基づいてなされたものである。
[実施形態]
 以下、本発明の一実施形態を説明する。
 図4は、処理装置400の機能的な構成の一例を示す図である。処理装置400のハードウェアは、例えば、プロセッサ(例えば中央処理装置)、記憶装置(例えば主記憶装置および補助記憶装置)、および各種のインターフェース装置を備える情報処理装置、または専用のハードウェアを用いることにより実現される。また、本実施形態では、不図示の電動車両が処理装置400を備える場合を例示する。ただし、処理装置400は、電動車両の外部に存在していても良い。このようにする場合、処理装置400は、例えば、電動車両が備える制御装置と無線通信を行っても良い。
 処理装置400は、モータMのステータコイル122に供給される励磁信号ESの時間波形である励磁波形を生成するための処理を行う。本実施形態では、処理装置400が、励磁波形として励磁電流の時間波形を生成する場合を例示する。励磁波形は、電気一周期の各時刻における励磁信号の値が特定されれば良い。各時刻は、任意の時間間隔で連続する時刻のそれぞれであっても良い。例えば、励磁波形を、電気一周期の各時刻における値とする場合、当該値から、各周期の各時刻における値が算出される。また、例えば、電気半周期の各時刻における値から、残りの半周期の各時刻における値を算出する場合、励磁波形は、電気半周期の各時刻における値が特定されれば良い。また、モータMは、例えば、IPMモータなどの、電動車両の駆動用モータである。
<波形情報設定部401>
 波形情報設定部401は、波形情報を設定する。波形情報は、基本波に第5次高調波を重畳させた励磁波形を生成するために必要な情報である。波形情報は、基本波に第5次高調波を重畳させた励磁波形の生成条件を示す情報であるともいえる。波形情報には、励磁波形に含める基本波を生成するための情報と、基本波に重畳させる第5次高調波を生成するための情報と、が含まれる。なお、設定とは、例えば、揮発性メモリおよび不揮発性メモリの少なくとも一方に記憶することを含む処理である。本実施形態では、波形情報設定部401が、この波形情報を、運転条件に基づいて設定する場合を例示する。また、本実施形態では、波形情報設定部401が、運転条件設定部401aと、基本波情報設定部401bと、高調波情報設定部401cと、を有する場合を例示する。
<<運転条件設定部401a>>
 本実施形態では、モータMを制御する電動車両の制御装置410が、モータMの運転条件OCを処理装置400に送信する場合を例示する。以下の説明では、モータMを制御する電動車両の制御装置410を、必要に応じて電動車両の制御装置410または単に制御装置410と称する。
 運転条件設定部401aは、電動車両の制御装置410から送信されたモータMの運転時の運転条件OCを取得して設定する。以下の説明では、モータMの運転時の運転条件を、必要に応じて単にモータMの運転条件と称する。運転条件設定部401aは、例えば、規定のタイミングで(例えば周期的に)モータMの運転条件OCを取得しても良い。また、運転条件設定部401aは、例えば、電動車両の制御装置410にモータMの運転条件OCの取得を要求して取得しても良い。運転条件設定部401aは、取得したモータMの運転条件OCが、当該モータMの運転条件OCの一つ前に取得したモータMの運転条件OCと違う場合に、当該モータMの運転条件OCを基本波情報設定部401bおよび高調波情報設定部401cに出力する。モータMの運転条件OCには、例えば、モータMの速度指令値およびモータMのトルク指令値が含まれる。モータMの速度指令値は、モータMの回転速度の指令値である。モータMのトルク指令値は、モータMのトルクの指令値である。このように本実施形態では、モータMの運転条件OCに、モータMを動作させるための指令値が含まれる場合を例示する。
 運転条件設定部401aは、例えば、モータMの運転条件OCを、モータMを制御する電動車両の制御装置410から取得して設定する。電動車両の制御装置410は、例えば、モータMのトルクの実測値と目標値との差に応じたトルク指令値を生成しても良い。また、電動車両の制御装置410は、例えば、モータMの回転速度の実測値と目標値との差に応じた速度指令値を生成しても良い。モータMのトルクの目標値およびモータMの回転速度の目標値は、例えば、電動車両のアクセル開度および車速(の実測値)を用いることにより算出される。なお、運転条件設定部401aは、必ずしも、モータMの運転条件OCを、電動車両の制御装置410から取得する必要はない。例えば、モータMの運転条件OCは予め設定(スケジューリング)されていても良い。このような場合、運転条件設定部401aは、当該設定された運転条件OCを、例えば、処理装置400のユーザインターフェースのオペレータによる入力操作に基づいて取得しても良い。また、運転条件設定部401aが運転条件OCを算出しても良い。例えば、運転条件設定部401aは、電動車両のアクセル開度および車速などに基づいて、モータMのトルクの目標値およびモータMの回転速度の目標値を算出して設定しても良い。なお、アクセル開度および車速は、例えば、実測値である。
<<基本波情報設定部401b>>
 基本波情報設定部401bは、運転条件設定部401aにより設定されたモータMの運転条件OCに基づいて、励磁波形に含める基本波を生成するための情報を取得して設定する。以下の説明では、励磁波形に含める基本波を生成するための情報を、必要に応じて、基本波情報と称する。モータMの回転速度は、基本波の周波数(基本周波数f)に対応する。モータMのトルクは、励磁電流の実効値Irmsおよび進角ηに対応する。そこで、基本波情報設定部401bは、基本波の周波数(基本周波数f)、励磁電流の実効値Irms、および進角ηを、モータMの運転条件OCから算出することで取得しても良い。本実施形態では、基本波情報設定部401bが、基本波の周波数(基本周波数f)、励磁電流の実効値Irms、および進角ηを、モータMの運転条件OCに基づいて算出することで取得する場合を例示する。なお、進角ηが固定されている場合、基本波情報設定部401bは、進角ηを算出しなくても良い。
 また、例えば、モータMの回転速度、トルク、および進角と、基本波の周波数(基本周波数f)、励磁電流の実効値Irms、および進角ηと、を相互に対応付けて記憶するルックアップテーブルを処理装置400に予め記憶させておいても良い。このようにする場合、基本波情報設定部401bは、モータMの速度指令値およびモータMのトルク指令値に対応する、基本波の周波数(基本周波数f)、励磁電流の実効値Irms、および進角ηを、当該ルックアップテーブルから読み出す。なお、進角が固定されている場合には、当該ルックアップテーブルに進角は記憶されていてもされていなくても良い。
<<高調波情報設定部401c>>
 高調波情報設定部401cは、例えば、運転条件設定部401aにより設定されたモータMの運転条件OCと、予め記憶されている第5次高調波の情報と、に基づいて、基本波に重畳させる第5次高調波を生成するための情報を取得して設定する。以下の説明では、基本波に重畳させる第5次高調波を生成するための情報を、必要に応じて、高調波情報と称する。
 予め記憶されている第5次高調波の情報には、例えば、振幅割合Aと位相差φとが含まれる。後述するように本実施形態では、予め記憶されている第5次高調波の情報が、モータMの運転条件OC(モータMの速度指令値およびモータMのトルク指令値)と、振幅割合Aおよび位相差φと、を相互に対応付けて記憶するルックアップテーブである場合を例示する。この場合、高調波情報は、ルックアップテーブルから読み出された振幅割合Aおよび位相差φを含む。
 <基本波に重畳させる高調波についての知見>の欄で説明したように本実施形態では、振幅割合Aは、0%<A≦90%の範囲から選択される。また、位相差φは0°≦φ<360°の範囲から選択される。また、振幅割合Aは、例えば、20%<A≦80%の範囲から選択されるのが好ましく、40%≦A≦70%の範囲から選択されるのがより好ましく、45%≦A≦55%の範囲から選択されるのがより一層好ましい。振幅割合Aの範囲がこれらの範囲の場合、位相差φは、例えば、80°≦φ≦106°の範囲から選択されるのが好ましく、90°<φ≦106°の範囲から選択されるのがより好ましく、95°≦φ≦106°の範囲から選択されるのがより一層好ましく、103°≦φ≦106°の範囲から選択されるのが最も好ましい。
 振幅割合Aおよび位相差φの値は、例えば、モータMの振動をどの程度抑制する必要があるかに応じて定められれば良い。例えば、モータMの運転条件OC(モータMの速度指令値およびモータMのトルク指令値)の範囲として想定される範囲において、図2および図3に示すような、振幅割合Aおよび位相差φと電磁力Fとの関係を調査しても良い。当該調査は、例えば、実際のモータMを使用した模擬実験や、実際のモータMを想定した電磁界解析を用いることにより行われる。以上のような調査を行う場合、当該調査の結果に基づいて、前述した範囲の中から、電磁力Fが可及的に小さくなる(好ましくは最小になる)振幅割合Aおよび位相差φの値を選択しても良い。
 また、以上のような調査の結果に基づいて、モータMの運転条件OC(モータMの速度指令値およびモータMのトルク指令値)と、振幅割合Aおよび位相差φと、を相互に対応付けて記憶するルックアップテーブルを処理装置400に予め記憶させておいても良い。このようにする場合、高調波情報設定部401cは、モータMの速度指令値およびモータMのトルク指令値に対応する、振幅割合Aおよび位相差φを、当該ルックアップテーブルから読み出す。そして、高調波情報設定部401cは、当該ルックアップテーブルから読み出した振幅割合Aおよび位相差φを、調波情報として設定する。本実施形態では、高調波情報設定部401cが、運転条件設定部401aにより設定されたモータMの運転条件OCに基づいて、当該ルックアップテーブルを参照することにより、振幅割合Aおよび位相差φを設定する場合を例示する。
 ただし、振幅割合Aおよび位相差φを取得する方法は、前述した方法に限定されない。
 例えば、モータMの運転条件OCに代えて、<<基本波情報設定部401b>>の欄で説明した基本波情報と、振幅割合Aおよび位相差φと、を相互に対応付けて記憶するルックアップテーブルを処理装置400に予め記憶させておいても良い。
 また、高調波情報設定部401cは、振幅割合Aおよび位相差φとして、モータMの速度指令値およびモータMのトルク指令値に関わらず同一の値を取得しても良い。このようにする場合、高調波情報設定部401cは、振幅割合Aおよび位相差φを、例えば、処理装置400のユーザインターフェースのオペレータによる入力操作に基づいて取得しても良い。
<励磁波形生成部402>
 励磁波形生成部402は、モータMのステータコイル122に供給される励磁信号の時間波形である励磁波形として、基本波に第5次高調波を重畳させた励磁波形を生成する。また、励磁波形生成部402は、励磁波形に基づく励磁信号ESをモータMに供給する。
 本実施形態では、励磁波形生成部402は、基本波情報設定部401bにより設定された基本波情報(基本波の周波数(基本周波数f)、励磁電流の実効値Irms、および進角η)と、高調波情報設定部401cにより設定された高調波情報(振幅割合Aおよび位相差φ)と、に基づいて、モータMのステータコイル122に供給する励磁電流の励磁波形を生成する。具体的には、励磁波形生成部402は、基本波に第5次高調波を重畳させた励磁波形を有する励磁電流を、モータMに励磁信号を供給する信号線に供給しても良い。また、励磁波形生成部402は、基本波の時間波形と第5次高調波の時間波形とを別々に生成し、基本波の時間波形と第5次高調波の時間波形とを位相差φに基づく時間差だけずらして前述した信号線に供給しても良い。
 励磁波形生成部402は、基本波の振幅Iおよび第5次高調波の振幅Iとして、基本波に第5次高調波を重畳させたときの励磁電流の実効値Irmsが、基本波情報設定部401bにより取得された励磁電流の実効値Irmsに可及的に近くなり(好ましくは一致し)、且つ、基本波の振幅Iに対する第5次高調波の振幅Iの比を百分率で表した値が、高調波情報設定部401cにより取得された振幅割合Aに可及的に近くなる(好ましくは一致する)振幅を算出する。なお、基本波の周波数は、基本波情報設定部401bにより取得される。また、第5次高調波の周波数は、基本波の周波数の5倍の周波数である。
 励磁波形生成部402は、以上のようにして振幅Iおよび周波数が定まる基本波に対し、高調波情報設定部401cにより取得された位相差φだけ進み位相の第5次高調波であって、以上のようにして振幅Iおよび周波数が定まる第5次高調波を、当該基本波に重畳させた時間波形を生成する。そして、励磁波形生成部402は、このようにして生成した時間波形に対して、基本波情報設定部401bにより取得された進角ηに基づいて定められる位相差(励磁電圧に対する位相差)だけ位相をずらした時間波形を、励磁波形として生成する。
 例えば、PWM(Pulse Width Modulation)制御を実行する場合、励磁波形生成部402は、例えば、以下の処理を実行する。まず、励磁波形生成部402は、以上のようにして生成した励磁波形を有する変調波を生成する。励磁波形生成部402は、当該変調波と所定の搬送波(例えば三角波)とを比較することによりパルス信号を生成して、当該パルス信号をモータMのステータコイル122に供給する。なお、励磁電流の生成方法は、PWM制御による方法に限定されず、その他の公知の方法で実現しても良い。例えば、励磁電流の生成方法は、PAM(Pulse Amplitude Modulation)制御による方法でも良い。また、励磁波形生成部402は、前述したようにして生成した励磁波形の励磁電流をそのままモータMに供給しても良い。また、励磁波形生成部402は、前述したようにして生成した励磁波形の励磁電流を、モータMのインピーダンスを用いて、励磁電圧に変換してモータMに供給しても良い。すなわち、励磁波形生成部402が、前述したようにして生成した励磁波形に基づいてモータM(ステータコア121)を励磁するための励磁信号ESをモータM(ステータコイル122)に供給していれば、励磁信号の供給方法は限定されない。
 以上のように本実施形態では、処理装置400が、モータMの動作を制御する制御装置としての役割を有する場合を例示する。
[フローチャート]
 次に、図5のフローチャートを参照しながら、処理装置400を用いた本実施形態の処理方法の一例を説明する。
 まず、ステップS501において、運転条件設定部401aは、モータMの運転条件OCを取得して設定する。図5のフローチャートでは、ステップS501において取得されるモータMの運転条件OCは、前回のステップS501において取得されたモータMの運転条件OCと異なるものとする。
 次に、ステップS502において、処理装置400は、モータMの運転条件OCに基づいて、モータMの運転を終了するか否かを判定する。この判定の結果、モータMの運転を終了しない場合(ステップS502でNOの場合)、ステップS503の処理が実行される。ステップS503において、基本波情報設定部401bは、モータMの運転条件OCに基づいて、基本波情報(基本波の周波数(基本周波数f)、励磁電流の実効値Irms、および進角η)を算出して設定する。
 次に、ステップS504において、高調波情報設定部401cは、モータMの運転条件OCに対応する、高調波情報(振幅割合Aおよび位相差φ)をルックアップテーブルから読み出して設定する。ステップS504で設定される振幅割合Aは、0%超90%以下であれば良い。ただし、ステップS504で設定される振幅割合Aは、例えば、20%超80%以下であるのが好ましく、40%以上70%以下であるのがより好ましく、45%以上55%以下であるのがより一層好ましい。また、ステップS504で取得される振幅割合Aが、例えば、20%超80%以下である場合(好ましくは40%以上70%以下である場合、より好ましくは45%以上55%以下である場合)、ステップS504で取得される位相差φは、例えば、80°以上106°以下であるのが好ましく、90°超106°以下であるのがより好ましく、95°以上106°以下であるのがより一層好ましく、103°以上106°以下であるのが最も好ましい。
 次に、ステップS505において、励磁波形生成部402は、基本波情報(基本波の周波数(基本周波数f)、励磁電流の実効値Irms、および進角η)と、高調波情報(振幅割合Aおよび位相差φ)と、に基づいて、モータMのステータコイル122に供給する励磁波形を生成し、当該励磁波形を有する励磁電流をモータMに供給する。
 前述したステップS502の判定の結果、モータMの運転を終了する場合(ステップS502でYESの場合)、ステップS506の処理が実行される。ステップS506において、励磁波形生成部402は、励磁電流のモータMへの供給を停止する。ステップS506の処理が終了すると、図5のフローチャートによる処理は終了する。
[処理装置400のハードウェア]
 次に、処理装置400のハードウェアの一例について説明する。図6において、処理装置400は、CPU601、主記憶装置602、補助記憶装置603、通信回路604、信号処理回路605、画像処理回路606、I/F回路607、ユーザインターフェース608、ディスプレイ609、およびバス610を有する。
 CPU601は、処理装置400の全体を統括制御する。CPU601は、主記憶装置602をワークエリアとして用いて、補助記憶装置603に記憶されているプログラムを実行する。主記憶装置602は、データを一時的に格納する。補助記憶装置603は、CPU601によって実行されるプログラムの他、各種のデータを記憶する。
 通信回路604は、処理装置400の外部との通信を行うための回路である。通信回路604は、処理装置400の外部と無線通信を行っても有線通信を行っても良い。
 信号処理回路605は、通信回路604で受信された信号や、CPU601による制御に従って入力した信号に対し、各種の信号処理を行う。
 画像処理回路606は、CPU601による制御に従って入力した信号に対し、各種の画像処理を行う。この画像処理が行われた信号は、例えば、ディスプレイ7609に出力される。
 ユーザインターフェース608は、オペレータOPが処理装置400に対して指示を行う部分である。ユーザインターフェース608は、例えば、ボタン、スイッチ、およびダイヤルなどを有する。また、ユーザインターフェース608は、ディスプレイ609を用いたグラフィカルユーザインターフェースを有していても良い。
 ディスプレイ609は、画像処理回路606から出力された信号に基づく画像を表示する。I/F回路607は、I/F回路607に接続される装置との間でデータのやり取りを行う。図6では、I/F回路607に接続される装置として、ユーザインターフェース608およびディスプレイ609を示す。しかしながら、I/F回路607に接続される装置は、これらに限定されない。例えば、可搬型の記憶媒体がI/F回路607に接続されても良い。また、ユーザインターフェース608の少なくとも一部およびディスプレイ609は、処理装置400の外部にあっても良い。
 なお、CPU601、主記憶装置602、補助記憶装置603、信号処理回路605、画像処理回路606、およびI/F回路607は、バス610に接続される。これらの構成要素間の通信は、バス610を介して行われる。また、処理装置400のハードウェアは、前述した処理装置400の機能を実現することができれば、図6に示すハードウェアに限定されない。例えば、CPU601に代えてまたは加えてGPUがプロセッサとして用いられても良い。
[まとめ]
 以上のように本実施形態では、処理装置400は、基本波情報と高調波情報とを含む波形情報を設定する。処理装置400は、振幅割合Aと位相差φとを含む情報を、高調波情報として設定する。この際、処理装置400は、振幅割合Aが20%超80%以下となるように、第5次高調波の振幅Iを設定する。また、処理装置400は、基本波に対する第5次高調波の位相が進み位相となり、且つ、位相差φが80°以上106°以下となるように、位相差φを設定する。したがって、モータMの半径方向における振動の抑制効果を高めることが可能になる。
 また、本実施形態では、処理装置400は、前述した波形情報に基づいて、基本波に第5次高調波を重畳させた励磁波形を生成する。したがって、波形情報の設定と励磁波形の生成とを一つの装置で実現することができる。よって、例えば、波形情報の設定と励磁波形の生成とを別々の装置で実現する場合に比べて、通信障害が生じる可能性を低減することと、通信インターフェースや通信ケーブルなどの構成要素を削減することと、が可能になる。ただし、処理装置400は、励磁波形を生成する励磁波形生成部402を備えていなくても良い。例えば、波形情報の設定と励磁波形の生成とを別々の装置で実現する場合には、個々の装置を別々の場所に設置することができると共に、波形情報の設定と励磁波形の生成とを一つの装置で実現する場合に比べて小型化することができる。よって、例えば、波形情報の設定と励磁波形の生成とを一つの装置で実現する場合に比べて、設置スペースによる制約を受けることを抑制することができる。
 また、本実施形態では、処理装置400は、電動車両の動力源となるモータMのステータコイル122に供給する励磁信号の時間波形である励磁波形を生成するための処理を行う。したがって、電動車両の乗り心地を改善することができる励磁波形を生成することが可能になる。ただし、モータMの振動を抑制することは、電動車両の駆動用モータに限らず各種のモータMにおいて望まれる。したがって、本実施形態を適用するモータMは、電動車両の駆動用モータに限定されない。
 なお、以上説明した本発明の実施形態で説明した処理装置および処理方法は、PLC(Programmable Logic Controller)により実現されても良いし、ASIC(Application Specific Integrated Circuit)などの専用のハードウェアにより実現することができる。また、本発明の実施形態で説明した処理装置および処理方法は、コンピュータがプログラムを実行することによって実現しても良い。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体および前記プログラムなどのコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。なお、コンピュータ読み取り可能な記録媒体とは、非一時的な記録媒体を表す。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。
 また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。例えば、上述した実施形態では、処理装置400は、電動車両に搭載されており、電動車両の駆動用モータの励磁波形を生成するよう構成されているが、モータで回転させる回転体を有する例えば電動工具などの電動車両以外の他の装置(機器)に適用されても良い。
 本発明は、例えば、モータを励磁することに利用することができる。

Claims (8)

  1.  モータのステータコイルに供給される励磁信号の時間波形である励磁波形を生成するための処理を行う処理装置であって、
     基本波情報と、高調波情報と、を含む波形情報を設定する波形情報設定部を備え、
     前記基本波情報は、前記励磁波形に含める基本波を生成するための情報であり、
     前記高調波情報は、前記基本波に重畳させる第5次高調波を生成するための情報であり、
     前記波形情報設定部は、前記高調波情報を設定する高調波情報設定部を有し、
     前記高調波情報は、振幅割合Aと、位相差φと、を含み、
     前記振幅割合Aは、前記基本波の振幅Iに対する前記第5次高調波の振幅Iの比を百分率で表したものであり、
     前記位相差φは、前記基本波と前記第5次高調波との位相差であり、
     前記高調波情報設定部は、前記振幅割合Aが、20%超80%以下になるように、前記第5次高調波の振幅Iを設定し、
     前記高調波情報設定部は、前記基本波に対する前記第5次高調波の位相が、進み位相になり、且つ、前記位相差φが、80°以上106°以下になるように、前記位相差φを設定する、処理装置。
  2.  前記高調波情報設定部は、前記位相差φが、90°超106°以下となるように、前記位相差φを設定する、請求項1に記載の処理装置。
  3.  前記波形情報設定部により設定された波形情報に基づいて、前記励磁波形を生成する励磁波形生成部をさらに備え、
     前記励磁波形生成部は、前記波形情報設定部により設定された波形情報に基づいて生成した励磁波形に基づく励磁信号を前記モータに供給する、請求項1または2に記載の処理装置。
  4.  前記モータは、IPM(Interior Permanent Magnet)モータである、請求項1~3のいずれか1項に記載の処理装置。
  5.  前記モータは、電動車両を駆動するモータである、請求項1~4のいずれか1項に記載の処理装置。
  6.  請求項1~5のいずれか1項に記載の処理装置を備える、電動車両。
  7.  モータのステータコイルに供給される励磁信号の時間波形である励磁波形を生成するための処理を行う処理方法であって、
     基本波情報と、高調波情報と、を含む波形情報を設定する波形情報設定工程を備え、
     前記基本波情報は、前記励磁波形に含める基本波を生成するための情報であり、
     前記高調波情報は、前記基本波に重畳させる第5次高調波を生成するための情報であり、
     前記波形情報設定工程は、前記高調波情報を設定する高調波情報設定工程を有し、
     前記高調波情報は、振幅割合Aと、位相差φと、を含み、
     前記振幅割合Aは、前記基本波の振幅Iに対する前記第5次高調波の振幅Iの比を百分率で表したものであり、
     前記位相差φは、前記基本波と前記第5次高調波との位相差であり、
     前記高調波情報設定工程は、前記振幅割合Aが、20%超80%以下になるように、前記第5次高調波の振幅Iを設定し、
     前記高調波情報設定工程は、前記基本波に対する前記第5次高調波の位相が、進み位相になり、且つ、前記位相差φが、80°以上106°以下になるように、前記位相差φを設定する、処理方法。
  8.  請求項1~5のいずれか1項に記載の処理装置の前記波形情報設定部としてコンピュータを機能させるためのプログラム。
PCT/JP2023/009038 2022-03-29 2023-03-09 処理装置、電動車両、処理方法、およびプログラム WO2023189349A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024511633A JPWO2023189349A1 (ja) 2022-03-29 2023-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053569 2022-03-29
JP2022-053569 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189349A1 true WO2023189349A1 (ja) 2023-10-05

Family

ID=88200721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009038 WO2023189349A1 (ja) 2022-03-29 2023-03-09 処理装置、電動車両、処理方法、およびプログラム

Country Status (3)

Country Link
JP (1) JPWO2023189349A1 (ja)
TW (1) TW202404251A (ja)
WO (1) WO2023189349A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028501A (ja) * 2016-08-19 2018-02-22 株式会社東芝 欠相検知システム、欠相検知装置および欠相検知方法
WO2018117144A1 (ja) * 2016-12-21 2018-06-28 株式会社デンソー 界磁巻線型回転電機
JP2020191743A (ja) * 2019-05-22 2020-11-26 株式会社デンソー 界磁巻線型回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028501A (ja) * 2016-08-19 2018-02-22 株式会社東芝 欠相検知システム、欠相検知装置および欠相検知方法
WO2018117144A1 (ja) * 2016-12-21 2018-06-28 株式会社デンソー 界磁巻線型回転電機
JP2020191743A (ja) * 2019-05-22 2020-11-26 株式会社デンソー 界磁巻線型回転電機

Also Published As

Publication number Publication date
TW202404251A (zh) 2024-01-16
JPWO2023189349A1 (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
JP5576145B2 (ja) モータ制御装置
US20170133960A1 (en) Rotating electric machine drive system
WO2015182659A1 (ja) 多群多相駆動システムおよび回転電機の駆動方法
Khan et al. Review of switched flux wound-field machines technology
JP5354099B2 (ja) 回転電機制御システム及び回転電機の磁石温度操作方法
US10886869B2 (en) Control apparatus and vehicle drive system
JP2002369473A (ja) 永久磁石を使用したシンクロナスモーター
JP4239886B2 (ja) 交流回転電機の磁気音制御方法
JP2005304237A (ja) 交流回転電機の磁気音制御方法
JP4269881B2 (ja) 交流回転電機装置
JP6052727B2 (ja) モーター制御装置
JP6833100B2 (ja) 回転電機の制御方法、回転電機の制御装置、及び駆動システム
Husin et al. Design studies and effect of various rotor pole number of field excitation flux switching motor for hybrid electric vehicle applications
WO2023189349A1 (ja) 処理装置、電動車両、処理方法、およびプログラム
CN110994929B (zh) 旋转电机、车辆的驱动控制系统以及存储介质
JP4155152B2 (ja) 交流回転電機装置
JP3586593B2 (ja) モータ制御装置
JP2023154979A (ja) 処理装置、電動車両、処理方法、およびプログラム
JP7436778B2 (ja) 処理システム、処理方法、およびプログラム
CN211321250U (zh) 交替型马达
JP2014075905A5 (ja)
JP2018019544A (ja) 同期モータ制御装置
TWI822138B (zh) 激磁波形決定裝置、馬達驅動裝置、激磁波形決定方法、馬達驅動方法及程式
JP7326050B2 (ja) 回転電機、車両の駆動制御システム、回転電機の制御装置で実行させるプログラム、および、プログラムが記憶されている記憶媒体
JP6344144B2 (ja) リラクタンスモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779376

Country of ref document: EP

Kind code of ref document: A1