WO2018033460A1 - Kraftstoffeinspritzdüse - Google Patents

Kraftstoffeinspritzdüse Download PDF

Info

Publication number
WO2018033460A1
WO2018033460A1 PCT/EP2017/070285 EP2017070285W WO2018033460A1 WO 2018033460 A1 WO2018033460 A1 WO 2018033460A1 EP 2017070285 W EP2017070285 W EP 2017070285W WO 2018033460 A1 WO2018033460 A1 WO 2018033460A1
Authority
WO
WIPO (PCT)
Prior art keywords
blind hole
shoulder
fuel
fuel injection
nozzle
Prior art date
Application number
PCT/EP2017/070285
Other languages
English (en)
French (fr)
Inventor
Birgit LENZ
Gerhard Suenderhauf
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020197007574A priority Critical patent/KR102310574B1/ko
Priority to CN201780050925.9A priority patent/CN109642534B/zh
Priority to RU2019107137A priority patent/RU2734502C2/ru
Priority to US16/325,821 priority patent/US11041471B2/en
Priority to EP17754318.8A priority patent/EP3500749B1/de
Publication of WO2018033460A1 publication Critical patent/WO2018033460A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/3033Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head
    • B05B1/304Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head the controlling element being a lift valve
    • B05B1/3046Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head the controlling element being a lift valve the valve element, e.g. a needle, co-operating with a valve seat located downstream of the valve element and its actuating means, generally in the proximity of the outlet orifice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1886Details of valve seats not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1893Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement

Definitions

  • the invention relates to a fuel injector, as it is preferably used for fuel injection and thus for use in an internal combustion engine.
  • the fuel is introduced under high pressure directly into the combustion chambers of the internal combustion engine.
  • the high pressure serves to finely atomize the fuel and thus to achieve an optimum mixing ratio between the fuel and the oxygen in the combustion chamber, which is essential for a low-emission and effective combustion.
  • fuel injection valves use, as they are known from the prior art, for example from DE 10 2004 050 048 AI.
  • Such a fuel injection valve has a nozzle body, in which a pressure space can be filled with fuel under high pressure and in which a nozzle needle is arranged longitudinally displaceable, which cooperates with a body seat for opening and closing one or more injection openings.
  • a so-called blind hole is often present at the combustion chamber end of the nozzle body, which adjoins the body seat and emanating from the injection openings.
  • the blind hole serves to evenly distribute the fuel to the individual injection openings and thus to achieve a correspondingly uniform distribution of the fuel in the combustion chamber.
  • the pending in the pressure chamber fuel which is under high pressure, flows during the injection between the sealing surface of the nozzle needle and the body seat in the blind hole, from where the fuel in the Injection openings flows and is finally atomized through them into the combustion chamber.
  • Gap between the sealing surface of the nozzle needle and the body seat through into the blind hole which leads to a turbulence of the fuel in the blind hole. This improves the atomization when the turbulence is not so strong that the fuel is distributed unevenly on the spray holes.
  • the gap between the nozzle needle and the body seat becomes larger, so that the fuel in the blind hole is less swirled and thus the atomization tendency of the fuel when passing through the injection openings.
  • the fuel injector according to the invention with the features of claim 1 has the advantage over that the inflow of the fuel to the spray holes in the blind hole area is improved by a sufficient amount of turbulence is introduced into the spray hole and a partial stroke of the nozzle needle in the spray hole and thus the jet break-up Outflow of fuel from the spray holes is intensified in the combustion chamber.
  • the blind hole adjoins directly to the body seat and there forms a cylindrical portion, so that an inlet edge is formed at the transition between the body seat and the blind hole.
  • at least one injection opening which opens into the blind hole, is formed in the nozzle body.
  • the cylindrical portion of the blind hole is at its end facing away from the inlet edge in a diameter reduction, so that at this point a paragraph is formed, wherein the at least one injection port between the shoulder and the inlet edge opens into the blind hole, ie in the region of the cylindrical portion.
  • the fuel flow is guided at the inlet into the blind hole on this paragraph and thereby swirled, which causes corresponding turbulence in the flow, which leads to an intensification of the jet breakup on the passage of the fuel through the injection port, that is, the fuel as it exits the spray hole breaks up very quickly and forms a fine mist of fuel droplets that burn effectively and cleanly with the existing oxygen in the combustion chamber.
  • the shoulder is followed by a substantially hemispherical blind hole bottom. This promotes the flow of fuel over the heel away, so that the desired additional turbulence is intensified by the paragraph.
  • the paragraph is annular disc-shaped, which can be produced in a simple manner.
  • the thus formed relatively sharp edges leads to a significant turbulence of Kraftastoffs in the blind hole.
  • the paragraph is conical, which avoids sharp edges at the transition, but increases the mechanical stability.
  • the transitions from the cylindrical portion of the blind hole to the edge and from the edge to the blind hole bottom may be rounded, in particular in order to reduce notch stresses.
  • the shoulder over the entire circumference of the blind hole is formed with the same depth, so that the flow is symmetrized within the blind hole and thus a supply of all injection openings is ensured, if several of them are distributed over the circumference.
  • the depth of the shoulder is preferably 5 ⁇ m to 100 ⁇ m so that, on the one hand, the desired additional turbulence within the blind hole is achieved and, on the other hand, the volume of the blind hole is not excessively increased.
  • a plurality of injection openings are formed in the nozzle body, which open into the blind hole between the shoulder and the transition edge and which are advantageously distributed uniformly over the circumference. The more injection ports are present, the more uniform the fuel can be distributed in the combustion chamber and the better is usually the combustion.
  • At least one further injection opening is present, which opens into the conical body seat.
  • Figure 1 shows a longitudinal section through a fuel injector, as shown in the
  • FIG. 2 shows a first exemplary embodiment of a fuel injection nozzle according to the invention
  • FIG. 3 shows a further illustration of the fuel injection nozzle according to FIG. 2,
  • FIG 4 shows the same fuel injector as in Figure 3, the course of the
  • Fuel flow is illustrated within the blind hole, and Figure 5 and
  • a prior art fuel injector is shown in longitudinal section, showing only the essential parts of the fuel injector.
  • the fuel injection nozzle has a nozzle body 1 in which a pressure space 2 which can be filled with fuel under high pressure is formed.
  • the compressed fuel is provided for example in a so-called common rail available, a high-pressure fuel storage, which is fed for example by a high-pressure fuel pump.
  • a piston-shaped nozzle needle 4 is arranged longitudinally displaceable, which has at its combustion chamber side end a sealing surface 5 which is conical and with which the nozzle needle 4 cooperates with a likewise conical body seat 7 for opening and closing a flow cross-section.
  • the conical body seat 7 is followed by a blind hole 10, which has a cylindrical portion 12 and a blind hole bottom 13, wherein the blind hole bottom 13 is formed substantially hemispherical.
  • a blind hole 10 From the blind hole 10 is an injection port 14, wherein a plurality of injection ports may be provided through which the fuel can escape and enter the combustion chamber of an internal combustion engine.
  • the nozzle needle 4 is moved by a suitable mechanism in the longitudinal direction, so that it lifts off the body seat 7 and a flow cross-section between the sealing surface 5 and the body seat 7 releases so that fuel under high pressure from the pressure chamber 2 in the Blind hole 10 flows. From there, the fuel continues to flow through one or more injection openings 14 and thus enters the combustion chamber. The fuel is atomized on exiting the injection openings 14, that is, the jet breaks up and forms many small fuel droplets, which mix well with the oxygen in the combustion chamber and thus become an ignitable mixture. To complete the injection, the nozzle needle 4 is back in pressed their closed position in contact with the body seat 7, so that the inflow of fuel into the blind hole 10 is terminated.
  • FIG. 2 Shown in FIG. 2 in a first exemplary embodiment of a fuel injection nozzle according to the invention, which differs from the fuel injection nozzle shown in FIG. 1 by a shoulder 16 within the blind hole 10.
  • the blind hole 10 has a cylindrical portion 12 which connects directly to the body seat 7.
  • the cylindrical portion 12 is bounded by a shoulder 16, which is caused by a reduction in diameter by a depth T, wherein the shoulder 16 is conical in this embodiment.
  • the depth T is 5 to 100 ⁇ (0.005 to 0.1 mm), so that the blind hole 10 compared to the known embodiment, as shown in Figure 1, only a slightly larger volume.
  • the injection openings 14 always open into the cylindrical portion 12 of the blind hole 10, ie between the shoulder 16 and the inlet edge 11. This ensures a uniform distribution of the fuel to all injection openings 14, since all the injection openings 14 have the same inlet characteristic.
  • paragraph 16 is illustrated in Figure 4, where again the same fuel injector as shown in Figure 3.
  • the fuel flows at the opening position of the nozzle needle 4 between the sealing surface 5 and the body seat 7 into the blind hole 10. Since the nozzle needle 4 is relatively far away from the body seat 7 at a late time of the opening stroke, the fuel flows into the blind hole 10 without much turbulence From there, the fuel flows laterally back and flows over the paragraph 16.
  • This overflow of the paragraph 16 leads to a turbulence of the fuel before it enters the same in the injection hole 14, what goes through the Spray hole 14 continues and finally leads to the emergence of the fuel from the injection hole 14 to a better atomization.
  • FIG. 5 shows a further exemplary embodiment of the fuel injection nozzle according to the invention.
  • This differs from the fuel injection nozzle shown in Figure 3 and Figure 4 by a rounded transition between the cylindrical portion of the blind hole 12 and the shoulder 16 and the shoulder 16 to the blind hole bottom 13.
  • the paragraph 16 is formed as an annular disc, that is, it has a rectangular transition between the cylindrical portion 12 of the blind hole 10 and the shoulder 16.
  • injection openings 15 are a characteristic of so-called seat hole nozzles and have a different jet characteristic compared to the injection openings 14, which start from the blind hole 10.
  • the fuel can thus be distributed effectively in the entire combustion chamber volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzdüse zur Verwendung in einer Brennkraftmaschine mit einem Düsenkörper (1), in dem ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum (2) ausgebildet ist und in dem eine längsverschiebbare Düsennadel (4) angeordnet ist, wobei die Düsennadel (4) eine Dichtfläche (5) aufweist, mit der sie mit einem im Düsenkörper (1) ausgebildeten, konischen Körpersitz (7) zusammenwirkt und dadurch die Verbindung vom Druckraum (2) zu einem Sackloch (10) öffnet und schließt. Das Sackloch (10) bildet unmittelbar an den Körpersitz (7) anschließend einen zylindrischen Abschnitt (12), so dass am Übergang zwischen dem Körpersitz (7) und dem Sackloch (10) eine Einlaufkante (11) gebildet wird. Im Düsenkörper (1) ist wenigstens eine Einspritzöffnung (14) ausgebildet, die in das Sackloch (10) mündet. Der zylindrische Abschnitt des Sacklochs (10) weist eine Durchmesserverringerung auf, so dass im Sackloch (10) ein Absatz (16) gebildet wird, wobei die wenigstens eine Einspritzöffnung (14) zwischen dem Absatz (16) und der Einlaufkante (11) in das Sackloch (10) mündet.

Description

Beschreibung
Titel
Kraftstoffeinspritzdüse
Die Erfindung betrifft eine Kraftstoffeinspritzdüse, wie sie vorzugsweise zur Kraftstoffeinspritzung und damit zur Verwendung in einer Brennkraftmaschine verwendet wird.
Stand der Technik
Bei modernen selbstzündenden Brennkraftmaschinen wird der Kraftstoff unter hohem Druck direkt in die Brennräume der Brennkraftmaschine eingebracht. Der hohe Druck dient dabei dazu, den Kraftstoff fein zu zerstäuben und somit ein optimales Mischungsverhältnis zwischen dem Kraftstoff und dem im Brennraum befindlichen Sauerstoff zu erreichen, was unerlässlich für eine schadstoffarme und effektive Verbrennung ist. Dazu finden Kraftstoffeinspritzventile Verwendung, wie sie aus dem Stand der Technik beispielsweise aus der DE 10 2004 050 048 AI bekannt sind. Ein solches Kraftstoffeinspritzventil weist einen Düsenkörper auf, in dem ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum ausgebildet ist und in dem eine Düsennadel längsverschiebbar angeordnet ist, die mit einem Körpersitz zum Öffnen und Schließen einer oder mehrerer Einspritzöffnungen zusammenwirkt. Dabei ist häufig am brennraumseitigen Ende des Düsenkörpers ein sogenanntes Sackloch vorhanden, das sich an den Körpersitz anschließt und von dem die Einspritzöffnungen ausgehen. Das Sackloch dient dabei dazu, den Kraftstoff gleichmäßig auf die einzelnen Einspritzöffnungen zu verteilen und damit eine entsprechend gleichmäßige Verteilung des Kraftstoffs im Brennraum zu erreichen. Der im Druckraum anstehende Kraftstoff, der unter hohem Druck steht, fließt während der Einspritzung zwischen der Dichtfläche der Düsennadel und dem Körpersitz hindurch in das Sackloch, von wo aus der Kraftstoff in die Einspritzöffnungen strömt und durch diese hindurch schließlich in den Brennraum zerstäubt wird.
Zu Beginn der Öffnungshubbewegung der Düsennadel, also wenn diese von ih- rer Anlage am Körpersitz abhebt, strömt der Kraftstoff durch einen sehr engen
Spalt zwischen der Dichtfläche der Düsennadel und dem Körpersitz hindurch in das Sackloch, was zu einer Verwirbelung des Kraftstoffs im Sackloch führt. Dies verbessert die Zerstäubung, wenn die Verwirbelung nicht so stark ist, dass der Kraftstoff ungleichmäßig auf die Spritzlöcher verteilt wird. Im weiteren Verlauf der Hubbewegung wird der Spalt zwischen der Düsennadel und dem Körpersitz größer, so dass der Kraftstoff im Sackloch weniger verwirbelt wird und damit die Zerstäubungsneigung des Kraftstoffs beim Durchtritt durch die Einspritzöffnungen.
Vorteile der Erfindung
Die erfindungsgemäße Kraftstoffeinspritzdüse mit den Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass die Zuströmung des Kraft- Stoffs zu den Spritzlöchern im Sacklochbereich verbessert wird, indem auch bei einem Teilhub der Düsennadel eine ausreichende Turbulenz in das Spritzloch eingebracht wird und damit der Strahlaufbruch beim Austritt des Kraftstoffs aus den Spritzlöchern im Brennraum intensiviert wird. Dazu weist die Kraftstoffeinspritzdüse einen Düsenkörper auf, in dem ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum ausgebildet ist und in dem eine längsverschiebbare Düsennadel angeordnet ist, wobei die Düsennadel eine Dichtfläche aufweist, mit der sie mit einem im Düsenkörper ausgebildeten konischen Körpersitz zusammenwirkt und dadurch die Verbindung vom Druckraum zu einem Sackloch öffnet und schließt. Das Sackloch schließt sich dabei unmittelbar an den Körpersitz an und bildet dort einen zylindrischen Abschnitt, so dass am Übergang zwischen Körpersitz und dem Sackloch eine Einlaufkante gebildet wird. Im Düsenkörper ist darüber hinaus wenigstens eine Einspritzöffnung ausgebildet, die in das Sackloch mündet. Der zylindrische Abschnitt des Sacklochs geht an seinem der Einlaufkante abgewandten Ende in eine Durchmesserverringerung über, so dass an dieser Stelle ein Absatz gebildet wird, wobei die wenigstens eine Einspritzöffnung zwischen dem Absatz und der Einlaufkante in das Sackloch mündet, also im Bereich des zylindrischen Abschnitts.
Durch den Absatz im Sackloch wird die Kraftstoffströmung beim Einlauf in das Sackloch über diesen Absatz geführt und dadurch verwirbelt, was entsprechende Turbulenzen in der Strömung hervorruft, die beim Durchtritt des Kraftstoffs durch die Einspritzöffnung zu einer Intensivierung des Strahlaufbruchs führt, das heißt, dass der Kraftstoff beim Austritt aus dem Spritzloch sehr rasch aufbricht und einen feinen Nebel von Kraftstofftröpfchen bildet, die mit dem vorhandenen Sauerstoff im Brennraum effektiv und sauber verbrennen.
In einer ersten vorteilhaften Ausgestaltung schließt sich an den Absatz ein im Wesentlichen halbkugelförmiger Sacklochgrund an. Dieser begünstigt die Strömung des Kraftstoffs über den Absatz hinweg, so dass die gewünschte zusätzliche Verwirbelung durch den Absatz intensiviert wird.
In einer weiteren vorteilhaften Ausgestaltung ist der Absatz ringscheibenförmig ausgebildet, was sich in einfacher Weise herstellen lässt. Die dadurch ausgebildete relativ scharfe Kanten führt zu einer deutlichen Verwirbelung des Kraftastoffs im Sackloch. Ebenso kann es auch vorgesehen sein, dass der Absatz konisch ausgebildet ist, was zwar scharfe Kanten am Übergang vermeidet, jedoch die mechanische Stabilität erhöht. Ebenso können die Übergänge vom zylindrischen Abschnitt des Sacklochs zur Kante und von der Kante zum Sacklochgrund gerundet ausgebildet sein, insbesondere um Kerbspannungen zu reduzieren.
In einer weiteren vorteilhaften Ausgestaltung ist der Absatz über den gesamten Umfang des Sacklochs mit gleicher Tiefe ausgebildet, so dass die Strömung innerhalb des Sacklochs symmetrisiert wird und damit eine Versorgung sämtlicher Einspritzöffnungen sichergestellt ist, sofern mehrere davon über den Umfang verteilt sind. Dabei beträgt die Tiefe des Absatzes vorzugsweise 5 μηη bis 100 μηη, so dass einerseits die erwünschte zusätzliche Turbulenz innerhalb des Sacklochs erreicht wird und andererseits das Volumen des Sacklochs nicht über Gebühr erhöht wird. In einer weiteren vorteilhaften Ausgestaltung sind mehrere Einspritzöffnungen im Düsenkörper ausgebildet, die zwischen dem Absatz und der Übergangskante in das Sackloch münden und die vorteilhafterweise gleichmäßig über den Umfang verteilt sind. Je mehr Einspritzöffnungen vorhanden sind, desto gleichmäßiger kann der Kraftstoff im Brennraum verteilt werden und desto besser ist in der Regel die Verbrennung.
In einer weiteren vorteilhaften Ausgestaltung ist wenigstens eine weitere Einspritzöffnung vorhanden, die in den konischen Körpersitz mündet. Dadurch können zwei verschiedene Typen von Einspritzöffnungen gleichzeitig mit Kraftstoff versorgt werden, nämlich solche, die vom Sackloch ausgehen und solche, die direkt vom Körpersitz ausgehen und die eine andere Strahlcharakteristik aufweisen, was insbesondere für die Versorgung von komplexen und großen Brennräumen vorteilhaft sein kann.
Zeichnung
In der Zeichnung sind verschiedene Ausführungsbeispiele der erfindungsgemäßen Kraftstoffeinspritzdüse gezeigt. Es zeigt
Figur 1 einen Längsschnitt durch eine Kraftstoffeinspritzdüse, wie sie aus dem
Stand der Technik bekannt ist,
Figur 2 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Kraftstoffeinspritzdüse,
Figur 3 eine weitere Veranschaulichung der Kraftstoffeinspritzdüse nach Figur 2,
Figur 4 die gleiche Kraftstoffeinspritzdüse wie in Figur 3, wobei der Verlauf der
Kraftstoffströmung innerhalb des Sacklochs verdeutlicht ist, und Figur 5 und
Figur 6 weitere Ausführungsbeispiele der erfindungsgemäßen Kraftstoffeinspritzdüse mit modifizierten Absätzen innerhalb des Sacklochs. Beschreibung der Ausführungsbeispiele
In Figur 1 ist eine Kraftstoffeinspritzdüse nach dem Stand der Technik im Längsschnitt dargestellt, wobei nur die wesentlichen Teile der Kraftstoffeinspritzdüse gezeigt sind. Die Kraftstoffeinspritzdüse weist einen Düsenkörper 1 auf, in dem ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum 2 ausgebildet ist. Der verdichtete Kraftstoff wird dabei beispielsweise in einem sogenannten Common Rail zur Verfügung gestellt, einem Kraftstoff- Hochdruckspeicher, der beispielsweise durch eine Kraftstoff-Hochdruckpumpe gespeist wird. Im Druckraum 2 ist eine kolbenförmige Düsennadel 4 längsverschiebbar angeordnet, die an ihrem brennraumseiteigen Ende eine Dichtfläche 5 aufweist, die konisch ausgebildet ist und mit der die Düsennadel 4 mit einem ebenfalls konischen Körpersitz 7 zum Öffnen und Schließen eines Strömungsquerschnitts zusammenwirkt. An den konischen Körpersitz 7 schließt sich ein Sackloch 10 an, das einen zylindrischen Abschnitt 12 und einen Sacklochgrund 13 aufweist, wobei der Sacklochgrund 13 im Wesentlichen halbkugelförmig ausgebildet ist. Vom Sackloch 10 geht eine Einspritzöffnung 14 aus, wobei auch mehrere Einspritzöffnungen vorgesehen sein können, durch die der Kraftstoff austreten und in den Brennraum einer Brennkraftmaschine gelangen kann. Bei Anlage der Düsennadel 4 mit der Dicht- fläche 5 auf dem Körpersitz 7 wird der Strömungsquerschnitt zwischen der Düsennadel 4 und dem Körpersitz 7 verschlossen, so dass der im Druckraum 2 anstehende Kraftstoff unter hohem Druck dort verbleibt; das Sackloch 10 ist damit drucklos und entsprechend tritt kein Kraftstoff über die Einspritzöffnungen 14 aus.
Soll eine Einspritzung geschehen, so wird die Düsennadel 4 durch einen geeigneten Mechanismus in Längsrichtung bewegt, so dass sie vom Körpersitz 7 abhebt und einen Strömungsquerschnitt zwischen der Dichtfläche 5 und dem Körpersitz 7 freigibt, so dass Kraftstoff unter hohem Druck aus dem Druckraum 2 in das Sackloch 10 strömt. Von dort strömt der Kraftstoff weiter durch eine oder mehrere Einspritzöffnungen 14 und gelangt so in den Brennraum. Der Kraftstoff wird beim Austritt aus den Einspritzöffnungen 14 zerstäubt, das heißt, der Strahl bricht auf und bildet viele kleine Kraftstofftröpfchen, die sich gut mit dem im Brennraum befindlichen Sauerstoff mischen und so zu einem zündfähigen Ge- misch werden. Zur Beendigung der Einspritzung wird die Düsennadel 4 zurück in ihre Schließstellung in Anlage an den Körpersitz 7 gedrückt, so dass die Zuströ- mung von Kraftstoff in das Sackloch 10 beendet wird.
In Figur 2 in ein erstes Ausführungsbeispiel einer erfindungsgemäßen Kraftstoffeinspritzdüse gezeigt, die sich von der in Figur 1 gezeigten Kraftstoffeinspritzdüse durch einen Absatz 16 innerhalb des Sacklochs 10 unterscheidet. In Figur 3 ist die rechte Seite dieser Kraftstoffeinspritzdüse nochmals vergrößerst dargestellt. Das Sackloch 10 weist einen zylindrischen Abschnitt 12 auf, der sich direkt an den Körpersitz 7 anschließt. Der zylindrische Abschnitt 12 wird begrenzt durch einen Absatz 16, der durch eine Durchmesserverringerung um eine Tiefe T hervorgerufen wird, wobei der Absatz 16 in diesem Ausführungsbeispiel konisch ausgebildet ist. Die Tiefe T beträgt 5 bis 100 μηη (0,005 bis 0,1 mm), so dass das Sackloch 10 gegenüber der bekannten Ausführungsvariante, wie in Figur 1 gezeigt, nur ein geringfügig größeres Volumen aufweist. Dies ist deshalb von Vorteil, da ein großes Sacklochvolumen zu einem unbeabsichtigten Austritt von Kraftstoff über die Einspritzöffnungen 14 auch während der Einspritzpausen führen kann, der dann ohne Druck und damit mit unzureichender Zerstäubung in den Brennraum austritt und dort zu erhöhten Kohlenwasserstoff- Emissionen führen kann. Die Einspritzöffnungen 14 münden stets in den zylindrischen Abschnitt 12 des Sacklochs 10, also zwischen dem Absatz 16 und der Einlaufkante 11. Damit ist eine gleichmäßige Verteilung des Kraftstoffs auf alle Einspritzöffnungen 14 gewährleistet, da alle Einspritzöffnungen 14 die gleiche Einlaufcharakteristik aufweisen.
Die Wirkung des Absatzes 16 ist in Figur 4 verdeutlicht, wo nochmals dieselbe Kraftstoffeinspritzdüse wie in Figur 3 dargestellt ist. Der Kraftstoff strömt bei Öffnungsstellung der Düsennadel 4 zwischen der Dichtfläche 5 und dem Körpersitz 7 hindurch in das Sackloch 10. Da die Düsennadel 4 zu einem späten Zeitpunkt der Öffnungshubbewegung relativ weit vom Körpersitz 7 entfernt ist, strömt der Kraftstoff ohne große Verwirbelungen in das Sackloch 10, folgt dabei der Dichtfläche 5 und gelangt so ohne größere Verwirbelungen in den Sacklochgrund 13. Von dort strömt der Kraftstoff seitlich wieder zurück und überströmt dabei den Absatz 16. Dieses Überströmen des Absatzes 16 führt zu einer Verwirbelung des Kraftstoffs vor dem Eintritt desselben in das Spritzloch 14, was sich durch das Spritzloch 14 fortsetzt und schließlich beim Austritt des Kraftstoffs aus dem Spritzloch 14 zu einer besseren Zerstäubung führt.
In Figur 5 ist ein weiteres Ausführungsbeispiel der erfindungsgemäßen Kraftstoffeinspritzdüse gezeigt. Diese unterscheidet sich von der in Figur 3 bzw. Figur 4 gezeigten Kraftstoffeinspritzdüse durch einen verrundeten Übergang zwischen dem zylindrischen Abschnitt des Sacklochs 12 und dem Absatz 16 bzw. vom Absatz 16 zum Sacklochgrund 13. Durch die Verrundung lassen sich Kerbspannungen minimieren, wie sie bei einem scharfkantigen Verlauf auftreten würden, allerdings ist die Wirkung in Bezug auf die eingebrachten Turbulenzen geringer. Bei dem in Figur 6 gezeigten Ausführungsbeispiel ist hingegen der Absatz 16 als Ringscheibe ausgebildet, das heißt, er weist einen rechtwinkligen Übergang zwischen dem zylindrischen Abschnitt 12 des Sacklochs 10 und dem Absatz 16 auf. Dadurch wird einerseits die Einbringung von Turbulenzen begünstigt, andererseits treten am scharfkantigen Übergang Kerbspannungen auf, die die Festigkeit des Düsenkörper beeinträchtigen können, insbesondere bei sehr hohen Einspritzdrücken.
In Figur 2 ist zusätzlich zu den Einspritzöffnungen 14 von denen auch mehrere über den Umfang des Düsenkörpers 1 verteilt angeordnet sein können, eine weitere Einspritzöffnung 15 ausgebildet, die direkt vom Körpersitz 7 ausgeht. Solche Einspritzöffnungen 15 sind ein Kennzeichen sogenannter Sitzlochdüsen und weisen gegenüber den Einspritzöffnungen 14, die vom Sackloch 10 ausgehen, eine andere Strahlcharakteristik auf. Insbesondere bei Brennräumen, die groß sind, lässt sich so der Kraftstoff effektiv im gesamten Brennraumvolumen verteilen.

Claims

Ansprüche
1. Kraftstoffeinspritzdüse zur Verwendung in einer Brennkraftmaschine mit einem Düsenkörper (1), in dem ein mit Kraftstoff unter hohem Druck befüllba- rer Druckraum (2) ausgebildet ist und in dem eine längsverschiebbare Düsennadel (4) angeordnet ist, wobei die Düsennadel (4) eine Dichtfläche (5) aufweist, mit der sie mit einem im Düsenkörper (1) ausgebildeten, konischen Körpersitz (7) zusammenwirkt und dadurch die Verbindung vom Druckraum (2) zu einem Sackloch (10) öffnet und schließt, wobei das Sackloch (10) unmittelbar an den Körpersitz (7) anschließend einen zylindrischen Abschnitt (12) bildet, so dass am Übergang zwischen dem Körpersitz (7) und dem Sackloch (10) eine Einlaufkante (11) gebildet wird, und mit wenigstens einer im Düsenkörper (1) ausgebildet Einspritzöffnung (14), die in das Sackloch
(10) mündet,
dadurch gekennzeichnet, dass
der zylindrische Abschnitt des Sacklochs (10) an seinem der Einlaufkante
(11) abgewandten Ende in eine Durchmesserverringerung übergeht, so dass an dieser Stelle ein Absatz (16) gebildet wird, wobei die wenigstens eine Einspritzöffnung (14) zwischen dem Absatz (16) und der Einlaufkante (11) in das Sackloch (10) mündet.
Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass sich dem Körpersitz (7) abgewandt an den Absatz (16) ein im Wesentlichen halbkugelförmiger Sacklochgrund (13) anschließt.
Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass der Absatz (16) ringscheibenförmig ausgebildet ist.
Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass der Absatz (16) konisch ausgebildet ist.
5. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass der Übergang vom zylindrischen Abschnitt (12) des Sacklochs zum Absatz (16) oder vom Absatz (16) zu dem sich anschließenden Sacklochgrund (13) gerundet ausgebildet ist.
6. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass der Absatz (16) über den gesamten Umfang des Sacklochs (10) die gleiche Tiefe (T) aufweist.
7. Kraftstoffeinspritzdüse nach Anspruch 6, dadurch gekennzeichnet, dass die Tiefe (T) des Absatzes (16) 5 μηη bis 100 μηη beträgt.
8. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass mehrere Einspritzöffnungen (14) im Düsenkörper (1) ausgebildet sind, die zwischen dem Absatz (16) und der Einlaufkante (11) in das Sackloch (10) münden, wobei die Einspritzöffnungen (14) vorzugsweise gleichmäßig über den Umfang des Düsenkörpers (1) verteilt sind.
9. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine Einspritzöffnung (14) in den konischen Körpersitz (7) mündet.
PCT/EP2017/070285 2016-08-19 2017-08-10 Kraftstoffeinspritzdüse WO2018033460A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197007574A KR102310574B1 (ko) 2016-08-19 2017-08-10 연료 분사 노즐
CN201780050925.9A CN109642534B (zh) 2016-08-19 2017-08-10 燃料喷射喷嘴
RU2019107137A RU2734502C2 (ru) 2016-08-19 2017-08-10 Топливная форсунка
US16/325,821 US11041471B2 (en) 2016-08-19 2017-08-10 Fuel injection nozzle
EP17754318.8A EP3500749B1 (de) 2016-08-19 2017-08-10 Kraftstoffeinspritzdüse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016215637.3A DE102016215637A1 (de) 2016-08-19 2016-08-19 Kraftstoffeinspritzdüse
DE102016215637.3 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018033460A1 true WO2018033460A1 (de) 2018-02-22

Family

ID=59656050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/070285 WO2018033460A1 (de) 2016-08-19 2017-08-10 Kraftstoffeinspritzdüse

Country Status (7)

Country Link
US (1) US11041471B2 (de)
EP (1) EP3500749B1 (de)
KR (1) KR102310574B1 (de)
CN (1) CN109642534B (de)
DE (1) DE102016215637A1 (de)
RU (1) RU2734502C2 (de)
WO (1) WO2018033460A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113339173A (zh) * 2021-06-18 2021-09-03 中国北方发动机研究所(天津) 一种高压共轨喷油器及其喷嘴

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229495A (en) * 1989-03-22 1990-09-26 Lucas Ind Plc Fuel injector
EP1117928A1 (de) * 1998-09-23 2001-07-25 Siemens Aktiengesellschaft Kraftstoffeinspritzdüse
WO2004031570A1 (de) * 2002-09-27 2004-04-15 Robert Bosch Gmbh Kraftstoffeinspritzventil für brennkraftmaschinen
EP1598550A1 (de) * 2004-05-18 2005-11-23 Robert Bosch GmbH Brennstoffeinspritzventil
DE102004050048A1 (de) 2004-10-14 2006-04-27 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU985386A1 (ru) 1981-08-17 1982-12-30 Центральный Научно-Исследовательский И Конструкторский Институт Топливной Аппаратуры Автотракторных И Стационарных Двигателей Распылитель форсунки дл дизел
DE3300867A1 (de) 1983-01-13 1984-07-19 Mannesmann AG, 4000 Düsseldorf Verfahren zur erzeugung von stahl durch einschmelzen von eisenschwamm im lichtbogenofen
US5037031A (en) * 1990-04-25 1991-08-06 Cummins Engine Company, Inc. Reduced trapped volume
EP0611885B1 (de) * 1993-02-17 1997-06-04 New Sulzer Diesel AG Brennstoffeinspritzventil für eine Hubkolbenbrennkraftmaschine
CN1169507A (zh) * 1996-06-21 1998-01-07 株式会社杰克赛尔 喷油器
DE19755057A1 (de) * 1997-12-11 1999-06-17 Bosch Gmbh Robert Kraftstoffeinspritzdüse für selbstzündende Brennkraftmaschinen
DE19931890A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Düsenkörper für eine Kraftstoffeinspritzdüse mit optimierter Spritzlochkanalgeometrie
DE10000574A1 (de) * 2000-01-10 2001-07-19 Bosch Gmbh Robert Kraftstoff-Einspritzdüse
DE10163908A1 (de) * 2001-12-22 2003-07-03 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
RU2232287C2 (ru) 2002-04-16 2004-07-10 Барышников Виктор Сергеевич Форсунка двигателя внутреннего сгорания
DE10315820A1 (de) * 2002-11-11 2004-05-27 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
US6908049B2 (en) 2003-11-14 2005-06-21 Alfred J. Buescher Diesel injection nozzle
DE102004002286A1 (de) * 2004-01-16 2005-08-11 Man B & W Diesel Ag Kraftstoffeinspritzdüse
DE102006033878A1 (de) * 2006-07-21 2008-01-31 Siemens Ag Düsenbaugruppe für ein Einspritzventil und Einspritzventil
EP2071178A1 (de) * 2007-12-10 2009-06-17 Delphi Technologies, Inc. Einspritzdüse
DE102008039920A1 (de) 2008-08-27 2010-03-04 Continental Automotive Gmbh Düsenkörper, Düsenbaugruppe und Kraftstoffinjektor, sowie Verfahren zum Herstellen eines Düsenkörpers
JP5648684B2 (ja) * 2010-05-12 2015-01-07 トヨタ自動車株式会社 燃料噴射弁
CH704964A1 (de) 2011-05-16 2012-11-30 Liebherr Machines Bulle Sa Düse.
US9470197B2 (en) * 2012-12-21 2016-10-18 Caterpillar Inc. Fuel injector having turbulence-reducing sac

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229495A (en) * 1989-03-22 1990-09-26 Lucas Ind Plc Fuel injector
EP1117928A1 (de) * 1998-09-23 2001-07-25 Siemens Aktiengesellschaft Kraftstoffeinspritzdüse
WO2004031570A1 (de) * 2002-09-27 2004-04-15 Robert Bosch Gmbh Kraftstoffeinspritzventil für brennkraftmaschinen
EP1598550A1 (de) * 2004-05-18 2005-11-23 Robert Bosch GmbH Brennstoffeinspritzventil
DE102004050048A1 (de) 2004-10-14 2006-04-27 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
KR102310574B1 (ko) 2021-10-08
DE102016215637A1 (de) 2018-02-22
RU2019107137A (ru) 2020-09-21
US20200378350A1 (en) 2020-12-03
CN109642534A (zh) 2019-04-16
KR20190039277A (ko) 2019-04-10
EP3500749B1 (de) 2020-05-27
RU2019107137A3 (de) 2020-09-21
CN109642534B (zh) 2021-11-05
RU2734502C2 (ru) 2020-10-19
US11041471B2 (en) 2021-06-22
EP3500749A1 (de) 2019-06-26

Similar Documents

Publication Publication Date Title
DE3234829C2 (de)
DE102006000407B4 (de) Kraftstoffeinspritzdüse mit mehreren Einspritzlöchern
DE663301C (de) Einspritzduese fuer Brennkraftmaschinen mit Selbstzuendung
EP3173614B1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
DE4214646A1 (de) Kraftstoffeinspritzduese fuer vor- und haupteinspritzung
DE2814999C2 (de)
DE102010063355A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19847460A1 (de) Kraftstoffeinspritzdüse für selbstzündende Brennkraftmaschinen
EP3500749B1 (de) Kraftstoffeinspritzdüse
DE10246693A1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
DE854599C (de) Verfahren zum Betrieb von Brennkraftmaschinen mit im Kolbenboden angeordneter, im wesentlichen kugelfoermiger Brennkammer
DE926643C (de) Einspritzduese
DE1146697B (de) Brennkraftmaschine, insbesondere mit Niederdruckeinspritzung
DE3936986C2 (de)
DE866574C (de) Lochduese fuer Brennkraftmaschinen mit Selbstzuendung
DE19706661A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2020165204A1 (de) Verfahren zum herstellen einer einspritzdüse zum einspritzen von kraftstoff in einen brennraum einer brennkraftmaschine und düsenanordnung mit einer einspritzdüse
DE3506729C2 (de)
DE3213843A1 (de) Kraftstoffeinspritzduesen
DE916011C (de) Verfahren und Vorrichtung zur Einspritzung von Brennstoff in Brennkraftmaschinen
AT394760B (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE19854828A1 (de) Kraftstoffeinspritzdüse für selbstzündende Brennkraftmaschinen
DE1247066B (de) Kraftstoff-Einspritzventil fuer fremdgezuendete Brennkraftmaschinen
DE2706374A1 (de) Brennstoffeinspritzventil fuer brennkraftmaschinen
DE3034824C2 (de) Brennkraftmaschine mit direkter Kraftstoffeinspritzung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17754318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197007574

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017754318

Country of ref document: EP

Effective date: 20190319