WO2018033025A1 - 电子膨胀阀、控制系统以及控制方法 - Google Patents

电子膨胀阀、控制系统以及控制方法 Download PDF

Info

Publication number
WO2018033025A1
WO2018033025A1 PCT/CN2017/097048 CN2017097048W WO2018033025A1 WO 2018033025 A1 WO2018033025 A1 WO 2018033025A1 CN 2017097048 W CN2017097048 W CN 2017097048W WO 2018033025 A1 WO2018033025 A1 WO 2018033025A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hall sensor
stepping motor
controller
electronic expansion
Prior art date
Application number
PCT/CN2017/097048
Other languages
English (en)
French (fr)
Inventor
张斌
蓝垚锋
姜骏骁
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to US16/326,156 priority Critical patent/US10935155B2/en
Priority to PL17840999.1T priority patent/PL3502531T3/pl
Priority to EP17840999.1A priority patent/EP3502531B1/en
Publication of WO2018033025A1 publication Critical patent/WO2018033025A1/zh
Priority to US17/156,358 priority patent/US11448335B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/042Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves with electric means, e.g. for controlling the motor or a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/36Protection against faults, e.g. against overheating or step-out; Indicating faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the field of automobiles, in particular to an electronic expansion valve, a control system and a control method.
  • the electronic expansion valve includes a stepping motor, and the stepping motor is controlled to rotate by the controller, and the stepping motor will be blocked when an obstacle is encountered during the rotation of the stepping motor.
  • the controller can not correctly detect the stall and take corresponding measures, the operation of the electronic expansion valve will be abnormal; or if the controller misreports the blocking information of the stepping motor, This will cause the electronic expansion valve to work abnormally.
  • the object of the present invention is to provide an electronic expansion valve, a control system and a control method, which are beneficial to improving the detection accuracy of the stepping motor.
  • an electronic expansion valve including steps a motor, a Hall sensor, and a circuit board, the stepping motor including a rotor and a stator, the rotor including a permanent magnet, the permanent magnet including at least two pairs of magnetic poles, the stator including a coil and a magnetic conductive portion, the guide a magnetic portion is disposed at a periphery of the permanent magnet, the Hall sensor is disposed at a periphery of the permanent magnet, the Hall sensor is located at one end of the magnetic conductive portion, and the Hall sensor includes a main body portion and a connecting portion. The connecting portion and the coil are both electrically connected to the circuit board, and the main body portion is for sensing a magnetic pole change of the permanent magnet.
  • the sum of the length of the main body portion and the length of the magnetic conductive portion may be smaller than the length of the permanent magnet.
  • an electronic expansion valve includes a stepping motor, a Hall sensor, and a circuit board, the stepping motor including a rotor and a stator, the rotor including a permanent magnet, and the permanent magnet includes at least two
  • the magnetic pole includes an outer circumference extending along an axial direction of the rotor, the upper end and the lower end extending in a radial direction of the rotor, the stator including a coil and a stator core
  • the stator core provides support for the coil, the stator core is disposed around the permanent magnet, the Hall sensor is disposed at a periphery of the permanent magnet, and the Hall sensor is located at the stator core
  • the Hall sensor includes a main body portion and a connecting portion, the connecting portion and the coil are electrically connected to the circuit board, and the main body portion is disposed near an outer circumference of the magnetic pole, at least a part of the main body portion It is always located between the upper and lower ends of the magnetic pole during the
  • an electronic expansion valve includes a stepping motor, a sensor Hall sensor, and a circuit board, the stepping motor including a rotor and a stator, the rotor including a permanent magnet, and the permanent magnet includes At least two pairs of magnetic poles, the stator includes a coil and a magnetic conductive portion, the magnetic conductive portion is disposed at a periphery of the permanent magnet, and the sensor Hall sensor is disposed at the permanent magnet a sensor Hall sensor is located at one end of the magnetic conductive portion, the sensor Hall sensor includes a main body portion and a connecting portion, and the connecting portion and the coil are electrically connected to the circuit board, a main body portion for sensing a magnetic pole change of the permanent magnet; the stepping motor includes an injection portion, the injection molding portion including a first partition portion and a second partition portion, the electronic expansion valve having a first cavity and a second cavity The first cavity and the second cavity are separated by the first partition, the Hall sensor is disposed in a first cavity, the rot
  • the invention also discloses a control system comprising a stepping motor, a controller and a Hall sensor, the stepping motor comprising a rotor and a stator, the rotor comprising a permanent magnet, the Hall sensor being arranged at a periphery of the permanent magnet, the Hall sensor sensing a change in a magnetic field of the rotor and obtaining a feedback signal; when the control system is in operation, the controller collects the feedback signal in real time and obtains each of the feedback signals a running duration, the controller pre-stores a first time period, the controller determines whether the running duration is equal to the first time period, and if so, determining that the electronic expansion valve is working normally, and if not, determining The electronic expansion valve is blocked, and the controller sends a stall signal.
  • the invention also discloses a control method of a control system, the control system comprising a controller, a stepping motor, a Hall sensor, a valve body and a valve needle, the stepping motor comprising a rotor and a stator, the rotor and the a valve needle is disposed, the valve body and the stator are connected, the valve body is formed with a first flow passage and a second flow passage, and the valve needle and the valve body are cooperatively connected or cut off the first circulation passage and a second flow channel, the Hall sensor detecting a magnetic pole change of the rotor and generating a feedback signal, the control method comprising the steps of:
  • the rotor drives the valve needle to run from a position where the valve needle was last stopped to the top dead center, then to the bottom dead center, and stops at the bottom dead center; define the position where the valve needle stops at the bottom dead center as the mechanical zero point Re-starting the control system, the rotor drives the valve needle to move from the bottom dead center to the top dead center, and detects the feedback signal, and defines the feedback signal to move upward in the valve needle before the first circulation passage and the second circulation passage are connected.
  • the point at which the signal jumps during the process is the Hall origin; the number of pulses between the point where the valve origin is located when the Hall origin is connected to the first flow passage and the second flow passage is the valve opening pulse.
  • the electronic expansion valve uses independent Hall sensors for detection, which reduces the influence of the working conditions of the electronic expansion valve on the detection, and is beneficial to improve the detection accuracy.
  • Figure 1 is a system block diagram of an electronic expansion valve of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of an electronic expansion valve of the present invention.
  • Figure 3 is a partial structural view of Figure 2;
  • Figure 4 is a schematic view showing the combined structure of the injection molding portion and the Hall sensor of Figure 2;
  • Figure 5 is a schematic view showing the combined structure of the combined structure and the circuit board of Figure 4.
  • Figure 6 is a schematic structural view of an embodiment of the rotor of Figure 2;
  • Figure 7 is a schematic structural view of the Hall sensor of Figure 1;
  • FIG. 8 is a schematic diagram showing the corresponding relationship between the number of steps of the stepping motor of the electronic expansion valve, the rotor pole and the feedback signal in time;
  • Figure 9 is a schematic view showing the control principle of the electronic expansion valve
  • Fig. 10 is a schematic diagram showing the control flow for judging whether or not the electronic expansion valve is blocked.
  • the electronic expansion valve includes a stepper motor 10.
  • a controller 20 collects the running signal of the stepping motor 10, and sends different control signals to the stepping motor 10 according to the collected running signal of the stepping motor 10, so that the controller 20 forms a control on the stepping motor 10.
  • the power supply supplies power to the stepping motor 10 and the controller 20.
  • the controller 20 may be disposed in the electronic expansion valve or not in the electronic expansion valve, but in a system applied to the electronic expansion valve, and the electronic expansion valve is provided with a driver that receives the control signal and converts the control signal into a driving signal. This also achieves the purpose of the invention.
  • the electronic expansion valve 100 includes a stepping motor 10 including a rotor 1 and a stator 2, the rotor 1 includes a permanent magnet, the permanent magnet includes at least one pair of magnetic poles 101, and the magnetic pole 101 includes a periphery 102, The upper end 103 and the lower end 104 extend in the axial direction of the rotor 1, and the upper end 103 and the lower end 104 extend in the radial direction of the rotor 1.
  • the stator 2 includes a coil 2a and a stator core 2b.
  • the stator core 2b supports the coil 2a.
  • the stator core 2b includes a magnetic conductive portion 2b1.
  • the coil 2a has a regularly varying current, thereby forming an excitation at the magnetic conductive portion 2b1.
  • the magnetic field, the magnetic field of the permanent magnet of the rotor 1 interacts with the exciting magnetic field of the stator 2, the rotor 1 is rotatable about a central axis, the electronic expansion valve 100 further includes a Hall sensor 3 and a circuit board 4, and the Hall sensor 3 is used to sense the rotor
  • the magnetic field of 1 changes and forms a feedback signal.
  • the controller includes a microprocessor that is fixed to the circuit board 4 for collecting feedback signals. Wherein, the feedback signal is a Hall signal.
  • the electronic expansion valve 100 further includes a valve needle 5, a valve seat 6, a valve body 7, and a valve port member 8.
  • the valve needle 5 is driven by the rotor 1, and the valve needle 5 is moved between a top dead center and a bottom dead center. At the bottom dead center, the valve port is closed, and the flow passages on both sides of the valve port are closed; as the valve needle 5 moves from the bottom dead center to the top dead center, the valve port is gradually opened, and the flow passages on both sides pass through the valve port and The gap between the valve needles 5 is communicated, and after the valve needle 5 reaches the top dead center, the opening of the valve port is maximized.
  • valve port is located between the flow passages on both sides, the valve port member 8 is formed with a valve port, and the valve port member 8 is fixedly connected with the valve body 7,
  • the valve seat 6 is fixedly connected to the valve body 7, and the valve needle 5 is connected to the rotor 1.
  • the electronic expansion valve 100 further includes a lead screw 11, a nut member 12, and a stopper rod 13.
  • the nut member 12 is sleeved on the periphery of the lead screw 11, and the nut member 12 and the lead screw 11 are screwed, and the nut member 12 is coupled to
  • the valve seat 6 is fixedly disposed, the lead screw 11 can be moved upward or downward relative to the nut member 12, the stop rod 13 and the lead screw 11 are fixedly connected by the connecting plate, and the stopping rod 13 moves upward or downward relative to the nut member 12.
  • the locking rod 13 cooperates with the nut member 12 to restrict the movement of the lead screw 11 between the top dead center and the bottom dead center.
  • valve needle 5 and the lead screw 11 are relatively fixedly connected, the movement of the valve needle 5 is limited to the top dead center. Within the distance between the bottom dead center and the bottom dead center. An elastic member 18 is disposed between the valve needle 5 and the lead screw 11, so that when the valve needle 5 is moved to the bottom dead center, the valve needle 5 and the valve port member 8 are elastically contacted, and the valve needle 5 and the valve port member 9 are buffered, which is advantageous for improvement. The life of the two components.
  • the electronic expansion valve 100 includes an injection molding portion 21 formed by insert molding the stator 2, the electronic expansion valve 100 has a first cavity 211 and a second cavity 212, and the injection molding portion 21 includes a first side.
  • the wall 213 and the first bottom portion 214, the first side wall 213 and the first bottom portion 214 surround the first cavity 211, wherein the first cavity 211 and the stator 2 are axially arranged;
  • the injection molding portion 21 includes the second The sidewall 215 and the second bottom 216, the second sidewall 215 and the second bottom 216 surround the second cavity 212, and the second cavity 212 is radially arranged with the stator 2, wherein the circuit board 4 and the Hall sensor 3 are disposed at A cavity 211, the rotor 1 is disposed in the second cavity 212.
  • the lower end of the injection molding portion 21 forms a cavity for accommodating the stator 2, and the upper end forms a shell-shaped body with an opening upward, and the periphery of the shell-shaped body is the first side wall 213; wherein the shell-shaped body
  • the bottom portion protrudes upward to form a protruding portion, and the periphery of the protruding portion is the second side wall 215, the top surface of the protruding portion and the second bottom portion 216, the inner cavity formed by the protruding portion is the second cavity 212, and the bottom portion of the shell body is removed from the protruding portion.
  • the other part is the first bottom 214.
  • the electronic expansion valve 100 further includes a sleeve 9 disposed in the second cavity 212, the sleeve 9 and the second side wall 215 areolating the stator 2 and the rotor 1, the sleeve 9 is fixedly connected with the valve seat 6, and the rotor 1 is sleeved The lumen formed by the barrel 9 moves.
  • the injection molding portion 21 includes a first partition portion and a second partition portion, the first partition portion includes a second side wall 215, and the second partition portion includes a first bottom portion 214, and the first chamber 211 and the second chamber 212 are divided by the first partition portion
  • the Hall sensor 3 and the stator 2 are separated by a second partition.
  • the second partition may be formed with a receiving portion that fixes the Hall sensor 3.
  • the Hall sensor 3 includes a main body portion 31 and a connecting portion 32.
  • the connecting portion 32 is electrically connected to the circuit board 4, and the connecting portion 32 is soldered and fixed to the circuit board 4.
  • the circuit board 4 is formed with a communication hole 41 through which the connecting portion 31 passes.
  • the communication hole 41 is disposed and welded and fixedly connected to the circuit board 4.
  • the main body portion 31 of the Hall sensor 3 is disposed adjacent to the outer circumference of the second side wall 215, and the injection portion 21 includes a convex portion 217 located between the first cavity 211 and the second side wall 215.
  • a mounting portion is formed, and the mounting portion limits the Hall sensor 3 to the first cavity 211.
  • Raised portion 217 The first bottom portion 214 is integrally molded, and the Hall sensor 3 is disposed at the mounting portion and is tightly engaged with the boss portion 217 and the second side wall 215.
  • the mounting portion thus formed has a simple structure and a small change to the original structure, which is advantageous in cost saving.
  • the thickness of the second side wall 215 is greater than or equal to 1 mm and less than or equal to 1.5 mm, or in the radial direction of the rotor 1, the distance from the outer circumference of the rotor 1 to the inner side surface of the Hall sensor 3 is greater than or equal to 2 mm and less than or equal to 3 mm, thus ensuring the second side.
  • the rotor 1 is elongated, and the length L of the rotor 1 is greater than the sum of the length H1 of the magnetic conductive portion 2b1 and the length of the main body portion H2 of the Hall sensor 3;
  • the rotor 1 includes a first upper end surface 15, a first upper end surface 15 is a face away from the valve needle 5,
  • the Hall sensor 3 includes a second upper end surface 311, the second upper end surface 311 is a face away from the valve needle 5, and when the rotor 1 is at the bottom dead center, the rotor 1 at the bottom dead center
  • the first upper end surface 15 is higher than the second upper end surface 311 of the Hall sensor 3, and at least the first upper end surface 15 of the rotor 1 is flush with the second upper end surface 311 of the Hall sensor 3; this is to ensure the Hall sensor The accuracy of the test.
  • the length L of the above rotor 1 is designed to ensure that the Hall sensor 3 can always detect a change in the magnetic field and form a feedback signal during the operation of the electronic expansion valve. It can be understood that the purpose of the Hall sensor 3 is to be able to sense the change of the magnetic field, so that this can be achieved.
  • the Hall sensor 3 is disposed at the periphery of the permanent magnet, and the upper end of the permanent magnet is disposed closer to the Hall sensor 3 than the lower end; the Hall sensor 3 is located at one end of the stator core 2b, and the main body portion is disposed close to the outer circumference of the magnetic pole, and at least Part of the main body portion is always located between the upper end and the lower end of the magnetic pole during the movement of the permanent magnet, so that the Hall sensor 3 can always detect the change of the magnetic field.
  • the rotor 1 includes at least two pairs of magnetic poles 101, each pair of magnetic poles 101 including N, respectively.
  • the pole and the S pole, the N pole and the S pole are spaced apart in the circumferential direction of the rotor.
  • the electronic expansion valve uses a two-phase twelve-pole stepping motor, and the rotor 1 includes twelve N poles and twelve S poles.
  • the Hall sensor 3 is located at the periphery of the rotor 1 and is disposed near the rotor 1. When the rotor 1 rotates, the N and S poles of the rotor 1 alternately pass through the Hall sensor 3, and the Hall sensor 3 generates a periodic feedback signal.
  • the signal is a square wave.
  • the controller 20 collects the feedback signal, and judges the running state of the stepping motor through the state of the feedback signal.
  • the running state of the stepping motor includes the normal operation of the stepping motor, the first blocking of the stepping motor, and the second blocking of the stepping motor. Wait.
  • the electronic expansion valve adopts a two-phase twelve-pole stepping motor
  • the stepping motor 10 includes a rotor 1.
  • the rotor 1 includes 12 N poles and 12 S poles, that is, the rotor 1 includes 24 magnetic poles and along The circumference of the rotor 1 is arranged, and the magnetic pole of the rotor 1 passing through the Hall sensor 3 changes once, from the N pole to the S pole or from the S pole to the N pole, generating a feedback signal, that is, the feedback signal is from a low level to a high level. Level transition or transition from low to high.
  • the stepping motor 10 runs one revolution, that is, one rotation of the rotor 1 generates 24 feedback signals, and the elapsed time of the Hall sensor 3 corresponding to one magnetic pole is the running duration of the feedback signal.
  • the stepping motor of the electronic expansion valve adopts a 16 microstep control scheme, one full step includes 16 microsteps, and the stepping motor runs two full steps, corresponding to one rotor magnetic pole change, that is, a feedback signal
  • the duration of the run consists of two full-step times, which is theoretically 32 microsteps.
  • the stepping motor runs the corresponding time of two full steps
  • the Hall sensor 3 rotates from the end of the rotor pole from the N pole to the junction of the N pole and the S pole, corresponding to The feedback signal is low
  • Hall sensing 3 corresponds to the change of the rotor magnetic pole from the N pole to the S pole
  • the feedback signal jumps to the high level
  • the stepping motor runs two full steps
  • the Hall sensor 3 corresponds to the rotor pole rotating from the S pole to the junction of the N pole and the S pole.
  • the feedback signal continues to maintain a high level.
  • the Hall sensor 3 changes from the S pole to the N pole corresponding to the rotor pole, and the feedback signal jumps to a low level, so that the rotor rotates one revolution.
  • the stepping motor runs 48 full steps and generates 24 feedback signals.
  • the running duration of the high and low levels of the feedback signal is equal to the corresponding time of the two full steps.
  • the stalling includes a first blocking and a second blocking.
  • the electronic expansion valve usually has a second blocking near the top dead center and the bottom dead center.
  • the electronic expansion valve usually has a first blocking between the top dead center and the bottom dead center. turn.
  • the electronic expansion valve When the electronic expansion valve first stalls, usually the rotor does not rotate, so the feedback signal will remain in the current state for a while, and the time of continuing high level or low level exceeds the corresponding time of the first time period T.
  • the length of the feedback signal may be irregularly hopped, and the high level and the low level last for less than the corresponding time of the first time period T.
  • the electron The expansion valve has a first stall; if the feedback signal continues for a high level or a low level for a plurality of times and is less than 0.5 times the first period, the electronic expansion valve generates a second stall.
  • a control method of a control system includes a stepping motor, a controller, and a Hall sensor, the stepping motor including a rotor, the rotor including a plurality of magnetic poles, and the control method includes the following step:
  • the Hall sensor senses a magnetic pole change of the rotor and forms a feedback signal
  • the controller collects the feedback signal in real time and obtains a running duration of the feedback signal.
  • the controller determines, according to the running duration of the collected feedback signal, whether the stepping motor is blocked or not. If yes, a stalling alarm signal is issued. If not, determining that the stepping motor is working normally, and continuing Perform S2 and cycle through the work.
  • the controller prestores a first time period, and the controller determines that the running duration is within a range of 0.5 times the first time period to 2 times the first time period, and if yes, determining the The electronic expansion valve is in normal operation, and if not, it is judged that the electronic expansion valve is blocked.
  • the stalling includes a first stalling, and the controller determines that the running duration of the feedback signal is greater than 2 times the first time period, the stepping motor generates the first blocking, the controller The first stalled stall warning signal is issued.
  • the stalling includes a second stalling, in which the controller determines that the running duration of at least two consecutive feedback signals is less than 0.5 times the first time period, and the stepping motor occurs The second blocking, the controller sends a second stalling stalling alarm signal.
  • the controller first determines whether the running duration of the feedback signal is greater than the first time period. When the determination is yes, the stepping motor generates a first blocking, and the controller sends a first blocking.
  • the stalling alarm signal when the judgment is no, the controller judges at least two consecutive The operation duration of the feedback signal is less than the first time period, the stepping motor generates a second stall, and the controller issues a second stalling stall warning signal. When the determination is no, the step is determined. The motor is in normal operation, continue with S2, and cycle.
  • the invention also discloses a control method of a control system, the control system comprises a controller, a stepping motor, a Hall sensor, a valve body and a valve needle, the stepping motor comprises a rotor and a stator, the rotor is connected with the valve needle, and the valve body Connected with the stator, the valve body is formed with a first circulation passage and a second circulation passage.
  • the valve needle and the valve body cooperate or intercept the first circulation passage and the second circulation passage, and the Hall sensor detects the magnetic pole change of the rotor and generates a feedback signal.
  • the control method includes the following steps:
  • the system is powered on, the control system is started, and the rotor drives the valve needle from a position where the valve needle was last stopped to the top dead center, then to the bottom dead center, and stops at the bottom dead center; the valve needle is stopped at the bottom dead center.
  • the position is the mechanical zero point; the control system is restarted, the rotor drives the valve needle to move from the bottom dead center to the top dead center, and the feedback signal is detected, and the feedback signal is defined in the valve before the first circulation passage and the second circulation passage are connected.
  • the point at which the Hall signal jumps during the upward movement of the needle is the Hall origin; the number of pulses between the point where the valve origin is located when the Hall origin is connected to the first circulation passage and the second circulation passage is the development pulse .
  • Such a control method can obtain a certain valve opening pulse by detecting the Hall origin, thereby avoiding the influence of the elastic component on the development pulse at the bottom dead center of the valve needle, and is advantageous for ensuring the consistency of the factory inspection.
  • the point at which the first signal jumps in the process of defining the feedback signal in the upward movement of the valve needle is the Hall origin. This eliminates the need to calculate the count of the feedback signal, making the operation easier.
  • the controller controls the stepping motor to be microstep control
  • the stepping motor is a two-phase motor
  • the stepping motor runs two full steps.
  • the time is equal to one feedback signal operation duration
  • each full step includes a plurality of microsteps
  • the valve opening pulse is equal to a plurality of microsteps
  • the number of valve opening pulses is equal to the number of microsteps in each full step .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种电子膨胀阀(100)、控制系统及控制方法,包括步进电机(10)和霍尔传感器(3),步进电机包括转子(1)和定子(2),转子包括永磁体,霍尔传感器设置于永磁体的外围,霍尔传感器和转子径向排布,定子和霍尔传感器轴向排布,霍尔传感器的主体部(31)用于感应所述永磁体的磁极变化;这样的结构可以减少工作环境对于霍尔传感器在检测信号时候的影响。

Description

电子膨胀阀、控制系统以及控制方法
本申请要求于2016年08月18日提交中国专利局、申请号为201610688346.4、发明名称为“电子膨胀阀、控制系统以及控制系统的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种汽车领域,具体涉及一种电子膨胀阀、控制系统及控制方法。
背景技术
电子膨胀阀包括步进电机,步进电机由控制器控制转动,在步进电机转动的过程中遇到障碍物时步进电机会发生堵转。在电子膨胀阀发生堵转时,如果控制器不能正确的检测到堵转并采取相应的措施,电子膨胀阀的工作将出现异常;或者如果控制器误报了步进电机的堵转信息,也会导致电子膨胀阀的工作异常。
因此,有必要对以上技术进行改进,以解决以上技术问题。
发明内容
本发明的目的在于提供一种电子膨胀阀、控制系统和控制方法,有利于提高步进电机的检测精度。
为实现上述目的,本发明的一种技术方案:一种电子膨胀阀,包括步 进电机、霍尔传感器以及电路板,所述步进电机包括转子和定子,所述转子包括永磁体,所述永磁体包括至少两对磁极,所述定子包括线圈和导磁部,所述导磁部设置于所述永磁体外围,所述霍尔传感器设置于所述永磁体的外围,所述霍尔传感器位于所述导磁部的一端,所述霍尔传感器包括主体部和连接部,所述连接部和所述线圈均与所述电路板电连接,所述主体部用于感应所述永磁体的磁极变化。
所述主体部的长度和所述导磁部的长度之和可以小于所述永磁体的长度。
本发明的一种技术方案,一种电子膨胀阀,包括步进电机、霍尔传感器以及电路板,所述步进电机包括转子和定子,所述转子包括永磁体,所述永磁体包括至少两对磁极,所述磁极包括外周、上端以及下端,所述外周沿所述转子的轴向延伸,所述上端和所述下端沿所述转子的径向延伸,所述定子包括线圈和定子铁芯,所述定子铁芯为所述线圈提供支撑,所述定子铁芯围绕所述永磁体设置,所述霍尔传感器设置于所述永磁体的外围,所述霍尔传感器位于所述定子铁芯的一端,所述霍尔传感器包括主体部和连接部,所述连接部和所述线圈均与所述电路板电连接,所述主体部靠近所述磁极的外周设置,至少部分所述主体部在所述永磁体的运动过程中始终位于所述磁极的上端和下端之间。
本发明的另一种技术方案,一种电子膨胀阀,包括步进电机、传感器霍尔传感器以及电路板,所述步进电机包括转子和定子,所述转子包括永磁体,所述永磁体包括至少两对磁极,所述定子包括线圈和导磁部,所述导磁部设置于所述永磁体外围,所述传感器霍尔传感器设置于所述永磁体 的外围,所述传感器霍尔传感器位于所述导磁部的一端,所述传感器霍尔传感器包括主体部和连接部,所述连接部和所述线圈均与所述电路板电连接,所述主体部用于感应所述永磁体的磁极变化;所述步进电机包括注塑部,所述注塑部包括第一分隔部和第二分隔部,所述电子膨胀阀具有第一腔和第二腔,所述第一腔和所述第二腔通过所述第一分隔部分隔,所述霍尔传感器设置于第一腔,所述转子设置于第二腔,所述霍尔传感器和所述定子通过所述第二分隔部隔离,所述第二分隔部成形有用于固定所述霍尔传感器的容纳部。
本发明还公开了一种控制系统,所述控制系统包括步进电机、控制器以及霍尔传感器,所述步进电机包括转子和定子,所述转子包括永磁体,所述霍尔传感器设置于所述永磁体的外围,所述霍尔传感器感应所述转子的磁场变化并得到反馈信号;所述控制系统工作时,所述控制器实时采集所述反馈信号并得到每一个所述反馈信号的运行持续时间,所述控制器预存有第一时段,所述控制器判断所述运行持续时间是否等于所述第一时段,如果是,判断所述电子膨胀阀为正常工作,如果否,判断所述电子膨胀阀发生堵转,所述控制器发出堵转信号。
本发明还公开一种控制系统的控制方法,所述控制系统包括控制器、步进电机、霍尔传感器、阀体以及阀针,所述步进电机包括转子和定子,所述转子与所述阀针连接设置,所述阀体和所述定子连接设置,所述阀体成形有第一流通通道和第二流通通道,所述阀针和所述阀体配合连通或者截断第一流通通道和第二流通通道,所述霍尔传感器检测所述转子的磁极变化并生成反馈信号,所述控制方法包括以下步骤:
启动控制系统,转子带动阀针从阀针上次工作停止的某一位置运行到上止点,再运行到下止点,并停止在下止点;定义阀针停止在下止点的位置为机械零点;再次启动控制系统,转子带动阀针自下止点向上止点运动,同时检测反馈信号,在所述第一流通通道和所述第二流通通道连通前,定义反馈信号在阀针向上运动的过程中信号跳变的点为霍尔原点;定义霍尔原点至第一流通通道和所述第二流通通道连通时阀针所在的点之间的脉冲的数量为开阀脉冲。
电子膨胀阀采用独立的霍尔传感器进行检测,减少电子膨胀阀的工作条件对检测的影响,有利于提高检测精度。
附图说明
图1是本发明的电子膨胀阀的一种系统框图;
图2是本发明的电子膨胀阀的一种实施方式的结构示意图;
图3是图2中的局部结构示意图;
图4是图2中注塑部和霍尔传感器的组合结构示意图;
图5是图4的组合结构与电路板的组合结构示意图;
图6是图2中转子的一种实施方式的结构示意图;
图7是图1中霍尔传感器的一个结构示意图;
图8是电子膨胀阀的步进电机运行步数、转子磁极以及反馈信号在时间上的对应关系示意图;
图9是电子膨胀阀控制原理示意图;
图10是判断电子膨胀阀是否发生堵转的控制流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明:
参见图1,电子膨胀阀包括步进电机10。一控制器20采集步进电机10运行信号,根据采集到的步进电机10的运行信号对步进电机10发出不同的控制信号,这样控制器20对步进电机10形成控制。电源向步进电机10和控制器20供电。控制器20可以设置在电子膨胀阀也可以不设置在电子膨胀阀,而是设置在电子膨胀阀应用的系统中,在电子膨胀阀设置有接收控制信号并将控制信号转化为驱动信号的驱动器,这样同样能实现发明目的。
结合参见图2和图3,电子膨胀阀100包括步进电机10,步进电机10包括转子1和定子2,转子1包括永磁体,永磁体包括至少一对磁极101,磁极101包括外周102、上端103以及下端104,所述外周102沿所述转子1的轴向延伸,所述上端103和所述下端104沿所述转子1的径向延伸。定子2包括线圈2a和定子铁芯2b,定子铁芯2b为线圈2a提供支持,定子铁芯2b包括导磁部2b1,线圈2a通有一定规律变化的电流,进而在导磁部2b1处形成激励磁场,转子1的永磁体的磁场与定子2的激励磁场相互作用,转子1能够围绕一中心轴转动,电子膨胀阀100还包括霍尔传感器3和电路板4,霍尔传感器3用于感应转子1的磁场变化并形成反馈信号,控制器包括微处理器,微处理器固定于电路板4上,微处理器用于采集反馈信号。其中,反馈信号为霍尔信号。
电子膨胀阀100还包括阀针5、阀座6、阀体7以及阀口部件8,阀针5由转子1带动运动,阀针5在上止点和下止点之间运动,阀针5位于下止点时,阀口被关闭,阀口两侧的流道被截止;随着阀针5自下止点向上止点运动,阀口被逐渐打开,两侧的流道通过阀口和阀针5之间的间隙连通,阀针5到达上止点后,阀口的开口达到最大。本实施例中,阀口两侧的流道均成形于阀体7上,阀口位于两侧流道之间,阀口部件8形成有阀口,阀口部件8与阀体7固定连接,阀座6与阀体7固定连接,阀针5和转子1连接设置。
参见图3,电子膨胀阀100还包括丝杆11、螺母部件12以及止动杆13,螺母部件12套设于丝杠11外围,螺母部件12和丝杠11通过螺纹配合,螺母部件12相于对阀座6固定设置,丝杠11可以相对于螺母部件12向上或向下运动,止动杆13与丝杠11通过连接板固定连接,止动杆13相对于螺母部件12向上或向下运动,止动杆13与螺母部件12配合将丝杠11运动限制在上止点和下止点之间,由于阀针5与丝杠11相对固定连接,进而阀针5的运动限制于上止点和下止点之间的距离内。阀针5和丝杆11之间设置有弹性元件18,这样阀针5运动到下止点时,阀针5和阀口部件8弹性接触,缓冲阀针5和阀口部件9,有利于提高两个部件的寿命。
结合图4和图5,电子膨胀阀100包括注塑部21,注塑部21以定子2为嵌件注塑形成,电子膨胀阀100具有第一腔211和第二腔212,注塑部21包括第一侧壁213和第一底部214,第一侧壁213和第一底部214围绕形成第一腔211,其中第一腔211与定子2轴向排布;注塑部21包括第二 侧壁215和第二底部216,第二侧壁215和第二底部216围绕形成第二腔212,第二腔212与定子2径向排布,其中电路板4和霍尔传感器3设置于第一腔211,转子1设置于第二腔212。
具体而言,图4、5中,注塑部21下端形成容纳定子2的腔体,上端形成开口向上的壳状体,壳状体的四周即所述第一侧壁213;其中,壳状体底部的部分向上突出形成突出部,突出部的四周即第二侧壁215,突出部的顶面及第二底部216,突出部形成的内腔即第二腔212,壳状体底部除去突出部以外的部分为第一底部214。
电子膨胀阀100还包括套筒9,套筒9设置于第二腔212,套筒9和第二侧壁215隔离定子2和转子1,套筒9与阀座6固定连接,转子1在套筒9形成的内腔运动。
注塑部21包括第一分隔部和第二分隔部,第一分隔部包括第二侧壁215,第二分隔部包括第一底部214,第一腔211和第二腔212通过第一分隔部分割;霍尔传感器3和定子2通过第二分隔部隔离。第二分隔部可以成形有固定霍尔传感器3的容纳部。
霍尔传感器3包括主体部31和连接部32,连接部32与电路板4电连接,连接部32与电路板4焊接固定,具体地,电路板4成形有连通孔41,连接部31穿过连通孔41设置并与电路板4焊接固定连接。
霍尔传感器3的主体部31紧贴第二侧壁215的外周设置,注塑部21包括凸起部217,凸起部217位于第一腔211,凸起部217与第二侧壁215之间形成安装部,安装部将霍尔传感器3限位于第一腔211。凸起部217 与第一底部214一体注塑,霍尔传感器3设置于安装部并与凸起部217和第二侧壁215紧配合。这样形成的安装部结构简单并且对原有结构改变较小,有利于节省成本。第二侧壁215的厚度大于等于1mm小于等于1.5mm,或者在转子1的径向,转子1的外周至霍尔传感器3的内侧面的距离大于等于2mm小于等于3mm,这样既保证第二侧壁215的强度,同时又要兼顾霍尔传感器3的灵敏度。
本实施例中,转子1经过加长设计,转子1的长度L大于导磁部2b1的长度H1与霍尔传感器3的主体部H2长度之和;转子1包括第一上端面15,第一上端面15为远离阀针5的面,霍尔传感器3包括第二上端面311,第二上端面311为远离阀针5的面,当转子1位于下止点时,位于下止点的转子1的第一上端面15高于霍尔传感器3的第二上端面311,至少转子1的第一上端面15与霍尔传感器3的第二上端面311平齐设置;这样用以保证霍尔传感器的检测的准确性。
以上转子1的长度L设计是为了保证霍尔传感器3在电子膨胀阀工作过程中始终能够检测到磁场变化并形成反馈信号。可以理解,霍尔传感器3设置的目的就是要能够感应磁场的变化,因此,只要能够实现该目的即可。实际上,霍尔传感器3设于永磁体的外围,永磁体上端比下端更靠近霍尔传感器3设置;霍尔传感器3位于定子铁芯2b的一端,其主体部靠近磁极的外周设置,且至少部分主体部在永磁体的运动过程中始终位于所述磁极的上端和下端之间,即可保证霍尔传感器3能够始终检测到磁场变化。
参见图6,转子1包括至少两对磁极101,每对磁极101分别包括N 极和S极,N极和S极沿转子的圆周方向间隔分布。本实施例中,电子膨胀阀采用两相十二对极的步进电机,转子1包括12个N极和12个S极。霍尔传感器3位于转子1的外围并靠近转子1设置,当转子1旋转时,转子1的N极和S极交替经过霍尔传感器3,霍尔传感器3会产生周期性的反馈信号,该反馈信号为方波。控制器20采集反馈信号,并通过反馈信号的状态来判断步进电机的运行状态,步进电机的运行状态包括步进电机正常运行、步进电机第一堵转、步进电机第二堵转等。
本实施例中,电子膨胀阀采用两相十二对极的步进电机,步进电机10包括转子1,转子1包括12个N极和12个S极,即转子1包括24个磁极并沿转子1的圆周排布,经过霍尔传感器3的转子1的磁极变化一次,从N极变化到S极或者从S极运行到N极,产生一个反馈信号,即反馈信号从低电平向高电平跳变或者从低电平向高电平跳变。步进电机10运行一圈,即转子1转动一圈,会产生24个反馈信号,霍尔传感器3对应一个磁极的经过的时间为反馈信号的运行持续时间。
本实施例中,电子膨胀阀的步进电机采用的是16微步的控制方案,一个全步包括16个微步,步进电机运行两个全步,对应一个转子磁极变化,即一个反馈信号的运行持续时间包括两个全步对应的时间,即理论上32个微步的时间。
具体地,参见图7,电子膨胀阀正常工作时,步进电机运行两个全步的对应时间,霍尔传感器3对应转子磁极自N极的一端转动到N极和S极的交界处,对应的反馈信号为低电平,随着步进电机的运行,霍尔传感 器3对应转子磁极自N极向S极变化,反馈信号跳变为高电平,步进电机运行两个全步,霍尔传感器3对应转子磁极自S极转动到N极和S极的交界处,反馈信号持续保持高电平,随着步进电机的运行,霍尔传感器3对应转子磁极自S极向N极变化,反馈信号跳变为低电平,如此往复运行,转子转动一圈,步进电机运行48个全步,产生24个反馈信号,反馈信号的高电平和低电平的运行持续时间等于两个全步的对应时间。
参见图8,当控制器检测到的反馈信号的运行持续时间不等于理论上的两个全步时间时,则步进电机发生堵转。堵转包括第一堵转和第二堵转,电子膨胀阀通常在上止点和下止点附近发生第二堵转,电子膨胀阀通常在上止点和下止点之间发生第一堵转。本实施例中将第一时段定义为步进电机的两个全步对应的时间,第一时段T与电机的转速n和转子的磁极对数p以及电机相数m有关,具体关系如下:T=60/(n*m*P),其中n单位为转/分钟,m=2,p=12。
当电子膨胀阀发生第一堵转时,通常转子不转动,因此反馈信号会一直保持当前的状态,持续高电平或低电平的时间超过第一时段T对应时间。
当电子膨胀阀发生第二堵转时,反馈信号的长度会出现无规律的跳变,高电平和低电平持续的时间少于第一时段T的对应时间。
具体地,当反馈信号的持续时间异常时,如果反馈信号持续高电平或低电平的运行时间不在一预定的的0.5倍第一时段T至2倍第一时段T的范围时,则电子膨胀阀发生第一堵转;如果反馈信号持续高电平或低电平的时间连续多次并少于0.5倍第一时段,则电子膨胀阀发生第二堵转。
参见图9,一种控制系统的控制方法,所述控制系统包括步进电机、控制器以及霍尔传感器,所述步进电机包括转子,所述转子包括多个磁极,所述控制方法包括以下步骤:
S1、所述步进电机运行,所述转子转动;
S2、所述霍尔传感器感应所述转子的磁极变化并形成反馈信号;
S3、所述控制器实时采集所述反馈信号并得到反馈信号的运行持续时间;
S4、所述控制器根据采集到的反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,继续进行S2,并循环工作。
其中S4中,所述控制器预存有第一时段,所述控制器判断所述运行持续时间位于0.5倍所述第一时段至2倍所述第一时段的范围内,如果是,判断所述电子膨胀阀为正常工作,如果否,判断所述电子膨胀阀发生堵转。
所述堵转包括第一堵转,所述控制器判断所述反馈信号的运行持续时间大于2倍所述第一时段时,所述步进电机发生所述第一堵转,所述控制器发出第一堵转的堵转报警信号。
所述堵转包括第二堵转,在所述第一时段内,所述控制器判断至少连续两个所述反馈信号的运行持续时间小于0.5倍所述第一时段,所述步进电机发生第二堵转,所述控制器发出第二堵转的堵转报警信号。
其中S4中,所述控制器先判断所述反馈信号的运行持续时间是否大于第一时段时,当判断为是,所述步进电机发生第一堵转,所述控制器发出第一堵转的堵转报警信号,当判断为否时,所述控制器再判断至少连续两 个所述反馈信号的运行持续时间小于所述第一时段,所述步进电机发生第二堵转,所述控制器发出第二堵转的堵转报警信号,当判断为否时,判断步进电机为正常工作,继续进行S2,并循环工作。
本发明还公开了一种控制系统的控制方法,控制系统包括控制器、步进电机、霍尔传感器、阀体以及阀针,步进电机包括转子和定子,转子与阀针连接设置,阀体和定子连接设置,阀体成形有第一流通通道和第二流通通道,阀针和阀体配合连通或者截断第一流通通道和第二流通通道,霍尔传感器检测转子的磁极变化并生成反馈信号,控制方法包括以下步骤:
系统上电,启动控制系统,转子带动阀针从阀针上次工作停止的某一位置运行到上止点,再运行到下止点,并停止在下止点;定义阀针停止在下止点的位置为机械零点;再次启动控制系统,转子带动阀针自下止点向上止点运动,同时检测反馈信号,在所述第一流通通道和所述第二流通通道连通前,定义反馈信号在阀针向上运动的过程中霍尔信号跳变的点为霍尔原点;定义霍尔原点至第一流通通道和所述第二流通通道连通时阀针所在的点之间的脉冲的数量为开发脉冲。这样的控制方法,通过检测霍尔原点能够得到一个确定的开阀脉冲,可以避免阀针在下止点时弹性元件对开发脉冲的影响,有利于保证产品出厂检测的一致性。
其中,定义反馈信号在阀针向上运动的过程中第一次信号跳变的点为霍尔原点。这样省去计算反馈信号的计数,操作更加简便。
其中,在所述电子膨胀阀正常工作时,所述控制器对所述步进电机的控制为微步控制,所述步进电机为两相电机,所述步进电机运行两个全步 的时间等于一个所述反馈信号运行持续时间,每个全步包括多个微步,所述开阀脉冲等于多个微步,开阀脉冲的数量等于每个全步中多个微步的数量。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (22)

  1. 一种电子膨胀阀,包括步进电机、霍尔传感器以及电路板,所述步进电机包括转子和定子,所述转子包括永磁体,所述永磁体包括至少两对磁极,所述定子包括线圈和导磁部,所述导磁部设置于所述永磁体外围,所述霍尔传感器设置于所述永磁体的外围,所述霍尔传感器位于所述导磁部的一端,所述霍尔传感器包括主体部和连接部,所述连接部和所述线圈均与所述电路板电连接,所述主体部用于感应所述永磁体的磁极变化。
  2. 根据权利要求1所述电子膨胀阀,其特征在于:所述主体部长度和所述导磁部长度之和小于所述永磁体的长度。
  3. 根据权利要求1所述电子膨胀阀,其特征在于:所述步进电机包括注塑部,所述注塑部包括第一分隔部和第二分隔部,所述电子膨胀阀具有第一腔和第二腔,所述第一腔和所述第二腔通过所述第一分隔部分隔,所述霍尔传感器设置于第一腔,所述转子设置于第二腔,所述霍尔传感器和所述定子通过所述第二分隔部隔离。
  4. 一种电子膨胀阀,包括步进电机、霍尔传感器以及电路板,所述步进电机包括转子和定子,所述转子包括永磁体,所述永磁体包括至少两对磁极,所述磁极包括外周、上端以及下端,所述外周沿所述转子的轴向延伸,所述上端和所述下端沿所述转子的径向延伸,所述定子包括线圈和定子铁芯,所述定子铁芯为所述线圈提供支撑,所述定子铁芯围绕所述永磁体设置,所述霍尔传感器设置于所述永磁体的外围,所述霍尔传感器位于所述定子铁芯的一端,所述霍尔传感器包括主体部和连接部,所述连接部 和所述线圈均与所述电路板电连接,所述主体部靠近所述磁极的外周设置,至少部分所述主体部在所述永磁体的运动过程中始终位于所述磁极的上端和下端之间。
  5. 根据权利要求3或4所述电子膨胀阀,其特征在于:所述霍尔传感器设置所述第一分隔部的外围,所述第二分隔部成形有凸起部,所述凸起部和所述第一分隔部之间形成安装部,所述霍尔传感器设置于所述安装部。
  6. 根据权利要求1-4任一项所述电子膨胀阀,其特征在于:所述电子膨胀阀还包括阀体,所述阀体位于所述步进电机下方设置,所述转子运动包括转动和轴向移动,所述轴向移动的极限位置分别为上止点和下止点,所述转子在下止点比在上止点更靠近所述阀体设置,位于下止点的所述转子的上端面与所述霍尔传感器的上端面平齐设置或者高于所述霍尔传感器的上端面设置。
  7. 根据权利要求5所述电子膨胀阀,其特征在于:在所述霍尔传感器的主体部和所述转子之间的所述第一分隔部的厚度大于等于1mm小于等于1.5mm。
  8. 根据权利要求5所述电子膨胀阀,其特征在于:所述转子的外围至所述霍尔传感器的主体部的内侧的距离为2mm至3mm。
  9. 根据权利要求1至4任一项所述电子膨胀阀,其特征在于:一控制器发送转子转动命令给所述步进电机,所述霍尔传感器根据所述转子磁极的变化产生霍尔信号,所述控制器采集所述反馈信号。
  10. 一种控制系统,所述控制系统包括步进电机、控制器以及霍尔传感器,所述步进电机包括转子和定子,所述转子包括永磁体,所述霍尔传 感器设置于所述永磁体的外围,所述霍尔传感器感应所述转子的磁场变化并得到反馈信号;所述控制器根据采集到的反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,并循环工作。
  11. 根据权利要求10所述控制系统,其特征在于:所述控制系统工作时,所述控制器实时采集所述反馈信号并得到每一个所述反馈信号的运行持续时间,所述控制器预存有第一时段,所述控制器判断所述运行持续时间是否位于所述第一时段的0.5倍至所述第一时段的2倍的范围内,如果是,判断所述电子膨胀阀为正常工作,如果否,判断所述电子膨胀阀发生堵转,所述控制器发出堵转信号;
    所述第一时段(T)与所述步进电机的转速(n)和转子的磁极对数(p)以及电机相数(m)有关,具体关系如下:T=60/(n*m*P),其中n的单位为转/分钟。
  12. 根据权利要求11所述控制系统,其特征在于:所述堵转包括第一堵转,所述控制器判断所述反馈信号的所述运行持续时间大于所述第一时段的2倍时,判断所述步进电机发生所述第一堵转,所述控制器发出第一堵转的堵转信号。
  13. 根据权利要求11或12所述控制系统,其特征在于:所述堵转包括第二堵转,所述第一时段内,至少连续两个所述反馈信号的运行持续时间小于所述第一时段的0.5倍,判断所述电子膨胀阀发生所述第二堵转,所述控制器发出第二堵转的堵转信号。
  14. 根据权利要求10所述控制系统,其特征在于:在所述电子膨胀阀 正常工作时,所述转子包括至少一对磁极,其中每对磁极包括一个N极和一个S极,所述转子的每个磁极经过所述霍尔传感器变化一次产生一个所述反馈信号。
  15. 一种控制方法,所述控制方法通过控制系统实现,所述控制系统包括控制器、步进电机、霍尔传感器、阀体以及阀针,所述步进电机包括转子和定子,所述转子与所述阀针连接设置,所述阀体和所述定子连接设置,所述阀体成形有第一流通通道和第二流通通道,所述阀针和所述阀体配合连通或者截断第一流通通道和第二流通通道,所述霍尔传感器检测所述转子的磁极变化并生成反馈信号,所述控制方法包括以下步骤:
    启动控制系统;转子带动阀针从工作停止位置运行到上止点,再运行到下止点,并停止在下止点;定义阀针停止在下止点附近的位置为机械零点;再次启动控制系统,转子带动阀针自下止点向上止点运动,同时检测反馈信号,在所述第一流通通道和所述第二流通通道连通前,定义反馈信号在阀针向上运动的过程中信号跳变的点为霍尔原点;定义霍尔原点至第一流通通道和所述第二流通通道连通时阀针所在的点之间的脉冲的数量为开发脉冲。
  16. 根据权利要求15所述控制方法,其特征在于:定义反馈信号在阀针向上运动的过程中第一次信号跳变的点为霍尔原点。
  17. 根据权利要求15所述控制系统的控制方法,其特征在于:在所述电子膨胀阀正常工作时,所述控制器对所述步进电机的控制为微步控制,所述步进电机为两相电机,所述步进电机运行两个全步的时间等于一个所述反馈信号运行持续时间,每个全步包括多个微步,所述开阀脉冲等于多 个微步,开阀脉冲的数量等于每个全步中多个微步的数量。
  18. 一种控制方法,所述控制方法通过控制系统控制,所述控制系统包括步进电机、控制器以及霍尔传感器,所述步进电机包括转子,所述转子包括多个磁极,所述控制方法包括以下步骤:
    S1、所述步进电机运行,所述转子转动;
    S2、所述霍尔传感器感应所述转子的磁极变化并形成反馈信号;
    S3、所述控制器实时采集所述反馈信号并得到反馈信号的运行持续时间;
    S4、所述控制器根据采集到的反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,继续进行S2,并循环工作。
  19. 根据权利要求18所述控制方法,其特征在于:步骤S4中,所述控制器预存有第一时段,所述控制器判断所述运行持续时间位于0.5倍所述第一时段至2倍所述第一时段的范围内,如果是,判断所述电子膨胀阀为正常工作,继续进行S2,并循环工作,如果否,判断所述电子膨胀阀发生堵转。
  20. 根据权利要求19所述控制方法,其特征在于:所述堵转包括第一堵转,所述控制器判断所述反馈信号的运行持续时间大于2倍所述第一时段时,所述步进电机发生所述第一堵转,所述控制器发出第一堵转的堵转报警信号。
  21. 根据权利要求20所述控制方法,其特征在于:所述堵转包括第二堵转,在所述第一时段内,所述控制器判断至少连续两个所述反馈信号的 运行持续时间小于0.5倍所述第一时段,所述步进电机发生第二堵转,所述控制器发出第二堵转的堵转报警信号。
  22. 根据权利要求21所述控制方法,其特征在于:步骤S4中,所述控制器先判断所述反馈信号的运行持续时间是否大于第一时段时,当判断为是,所述步进电机发生第一堵转,所述控制器发出第一堵转的堵转报警信号,当判断为否时,所述控制器再判断至少连续两个所述反馈信号的运行持续时间小于所述第一时段,所述步进电机发生第二堵转,所述控制器发出第二堵转的堵转报警信号,当判断为否时,判断步进电机为正常工作,继续进行S2,并循环工作。
PCT/CN2017/097048 2016-08-18 2017-08-11 电子膨胀阀、控制系统以及控制方法 WO2018033025A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/326,156 US10935155B2 (en) 2016-08-18 2017-08-11 Electronic expansion valve, control system, and control method
PL17840999.1T PL3502531T3 (pl) 2016-08-18 2017-08-11 Elektroniczny zawór rozprężny, układ sterowania i sposób sterowania
EP17840999.1A EP3502531B1 (en) 2016-08-18 2017-08-11 Electronic expansion valve, control system, and control method
US17/156,358 US11448335B2 (en) 2016-08-18 2021-01-22 Electronic expansion valve, control system, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610688346.4A CN107763284B (zh) 2016-08-18 2016-08-18 电子膨胀阀、控制系统以及控制系统的控制方法
CN201610688346.4 2016-08-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/326,156 A-371-Of-International US10935155B2 (en) 2016-08-18 2017-08-11 Electronic expansion valve, control system, and control method
US17/156,358 Division US11448335B2 (en) 2016-08-18 2021-01-22 Electronic expansion valve, control system, and control method

Publications (1)

Publication Number Publication Date
WO2018033025A1 true WO2018033025A1 (zh) 2018-02-22

Family

ID=61197221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097048 WO2018033025A1 (zh) 2016-08-18 2017-08-11 电子膨胀阀、控制系统以及控制方法

Country Status (5)

Country Link
US (2) US10935155B2 (zh)
EP (1) EP3502531B1 (zh)
CN (2) CN107763285B (zh)
PL (1) PL3502531T3 (zh)
WO (1) WO2018033025A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221784A1 (de) * 2019-04-30 2020-11-05 Mahle International Gmbh Expansionsventil
CN112901795A (zh) * 2019-12-04 2021-06-04 伊希欧1控股有限公司 膨胀阀

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763285B (zh) 2016-08-18 2021-02-02 杭州三花研究院有限公司 控制系统以及控制方法
CN108132679B (zh) * 2016-12-01 2020-08-11 杭州三花研究院有限公司 流量控制装置及其控制系统、控制方法
CN109555891B (zh) 2017-09-27 2020-08-25 杭州三花研究院有限公司 电子膨胀阀
CN110277939B (zh) * 2018-03-15 2022-08-09 浙江三花智能控制股份有限公司 控制系统及控制方法、带有步进电机的冷媒阀
KR102490126B1 (ko) * 2018-07-20 2023-01-17 제지앙 산후아 인텔리전트 컨트롤즈 컴퍼니 리미티드 전자식 팽창 밸브 및 그 제조 방법 및 열관리 어셈블리
CN110735958A (zh) * 2018-07-20 2020-01-31 杭州三花研究院有限公司 一种电子膨胀阀以及热管理组件
CN111365511B (zh) * 2018-12-26 2022-01-11 浙江三花智能控制股份有限公司 球阀以及控制方法
CN111765289B (zh) * 2019-04-02 2021-12-07 盾安环境技术有限公司 线圈部件及具有其的电子膨胀阀
JP7272656B2 (ja) * 2020-01-10 2023-05-12 株式会社不二工機 電動弁
CN115443598A (zh) * 2020-04-22 2022-12-06 斯坦蒂内有限责任公司 致动器和紧凑的egr阀
CN112032313A (zh) * 2020-08-28 2020-12-04 北京京仪自动化装备技术有限公司 膨胀阀和制冷控制系统
CN114458807A (zh) * 2020-11-10 2022-05-10 盾安汽车热管理科技有限公司 电子膨胀阀和用于电子膨胀阀的监测方法
CN112526970A (zh) * 2020-11-27 2021-03-19 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种工控设备运行状态检测方法、装置及电子设备
DE102020215275A1 (de) * 2020-12-03 2022-06-09 Mahle International Gmbh Expansionsventil
CN112555427B (zh) * 2020-12-11 2022-07-22 上海交通大学 制冷系统用电子节流装置
CN115388582B (zh) * 2021-05-24 2023-12-26 盾安汽车热管理科技有限公司 控制方法及控制装置、电子膨胀阀
CN114135707A (zh) * 2021-11-02 2022-03-04 珠海爱迪生智能家居股份有限公司 Erv自动温控阀及其全关点位置定位方法和控温方法
WO2023183602A1 (en) * 2022-03-25 2023-09-28 Modine Manufacturing Company Valve with configurable default position

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794312A (en) * 1986-09-29 1988-12-27 Hitachi, Ltd. Method and apparatus for controlling a servo motor
EP0992397A1 (fr) * 1998-10-06 2000-04-12 Valeo Vision Dispositif de commande d'un moteur électrique pas a pas de vehicule
CN201830125U (zh) * 2010-10-30 2011-05-11 中山大洋电机股份有限公司 一种霍尔元件感应的直流无刷电机结构
CN103944343A (zh) * 2014-05-14 2014-07-23 欣旺达电子股份有限公司 一种基于霍尔元件的永磁无刷直流电机
CN103968621A (zh) * 2013-02-04 2014-08-06 杭州三花研究院有限公司 一种电子膨胀阀及车用空调系统
CN104092344A (zh) * 2014-06-24 2014-10-08 北京航天控制仪器研究所 一种内置霍尔传感器的无刷电机
CN204597830U (zh) * 2015-04-30 2015-08-26 比亚迪股份有限公司 电机控制装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065562A (zh) * 1991-04-02 1992-10-21 北京工业大学电子厂 直流速度伺服系统
JP2627868B2 (ja) * 1994-05-18 1997-07-09 太平洋工業株式会社 電動弁
US6460567B1 (en) * 1999-11-24 2002-10-08 Hansen Technologies Corpporation Sealed motor driven valve
JP4103388B2 (ja) * 2001-12-28 2008-06-18 松下電器産業株式会社 流体制御装置
JP4028291B2 (ja) * 2002-05-16 2007-12-26 株式会社鷺宮製作所 電動弁の駆動装置及び冷凍サイクル装置
DE102006026537A1 (de) * 2006-06-07 2007-12-20 Siemens Ag Verfahren und System zur Schrittverlustermittlung eines Schrittmotors
JP4835354B2 (ja) * 2006-09-27 2011-12-14 三浦工業株式会社 ニードル弁
JP2010078002A (ja) * 2008-09-24 2010-04-08 Aisan Ind Co Ltd 流量制御弁
KR20150032117A (ko) * 2013-09-17 2015-03-25 삼성전자주식회사 스테핑 모터 및 그 시스템
JP6218029B2 (ja) * 2013-11-29 2017-10-25 株式会社テージーケー ステッピングモータ駆動式の制御弁
GB2525866A (en) * 2014-05-06 2015-11-11 Johnson Electric Sa Controller for driving a stepper motor
CN107763285B (zh) * 2016-08-18 2021-02-02 杭州三花研究院有限公司 控制系统以及控制方法
US9746199B1 (en) * 2017-01-05 2017-08-29 Johnson Controls Technology Company Integrated smart actuator and valve device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794312A (en) * 1986-09-29 1988-12-27 Hitachi, Ltd. Method and apparatus for controlling a servo motor
EP0992397A1 (fr) * 1998-10-06 2000-04-12 Valeo Vision Dispositif de commande d'un moteur électrique pas a pas de vehicule
CN201830125U (zh) * 2010-10-30 2011-05-11 中山大洋电机股份有限公司 一种霍尔元件感应的直流无刷电机结构
CN103968621A (zh) * 2013-02-04 2014-08-06 杭州三花研究院有限公司 一种电子膨胀阀及车用空调系统
CN103944343A (zh) * 2014-05-14 2014-07-23 欣旺达电子股份有限公司 一种基于霍尔元件的永磁无刷直流电机
CN104092344A (zh) * 2014-06-24 2014-10-08 北京航天控制仪器研究所 一种内置霍尔传感器的无刷电机
CN204597830U (zh) * 2015-04-30 2015-08-26 比亚迪股份有限公司 电机控制装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221784A1 (de) * 2019-04-30 2020-11-05 Mahle International Gmbh Expansionsventil
CN112901795A (zh) * 2019-12-04 2021-06-04 伊希欧1控股有限公司 膨胀阀

Also Published As

Publication number Publication date
CN107763284B (zh) 2023-07-11
CN107763285A (zh) 2018-03-06
EP3502531B1 (en) 2023-06-07
US10935155B2 (en) 2021-03-02
CN107763285B (zh) 2021-02-02
CN107763284A (zh) 2018-03-06
EP3502531A1 (en) 2019-06-26
US11448335B2 (en) 2022-09-20
US20210140556A1 (en) 2021-05-13
US20190178404A1 (en) 2019-06-13
EP3502531A4 (en) 2020-05-06
PL3502531T3 (pl) 2023-09-18

Similar Documents

Publication Publication Date Title
WO2018033025A1 (zh) 电子膨胀阀、控制系统以及控制方法
CN101454965B (zh) 无刷电动机装置
KR102338469B1 (ko) 세탁기 및 그 제어 방법
CN102281027B (zh) 电动机控制装置
JP6466990B2 (ja) ブラシレス永久磁石モータの制御方法
JP6385514B2 (ja) 永久磁石モータのロータ位置を決定する方法
JP2014161152A (ja) ステッピングモータ及びそれを用いた電動弁
CN103988415A (zh) 启动无刷马达的方法
US8421396B2 (en) Motor controlling device
KR101796948B1 (ko) Bldc 모터의 센서리스 제어방법
CN104195791B (zh) 一种模糊称重方法及波轮洗衣机
JP3947922B2 (ja) モータ制御装置
CN108092572B (zh) 一种不具有整流器的三相同步电机的启动的控制方法
JP2004056856A (ja) モータ制御装置
JP2002272079A (ja) アウターロータ型ブラシレスモータの構造
CN110966811B (zh) 控制方法以及控制系统
KR100487399B1 (ko) 일조식 세탁기의 클러치 제어방법
KR20010076914A (ko) 단상 스위치드 릴럭턴스 모터 구동장치 및 방법
CN115388582B (zh) 控制方法及控制装置、电子膨胀阀
CN112398368A (zh) 静止模式下能耗较低的ec电动机
KR100476962B1 (ko) 1조식 세탁기의 클러치 제어방법
CN215744153U (zh) 一种离心机的转速检测和转头识别装置
WO2007119094A2 (en) Driving brushless dc motors
KR20050012602A (ko) 홀 센서를 이용한 모터 구동 제어장치
JP2002078375A (ja) モータ制御装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017840999

Country of ref document: EP

Effective date: 20190318