WO2018029783A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2018029783A1
WO2018029783A1 PCT/JP2016/073434 JP2016073434W WO2018029783A1 WO 2018029783 A1 WO2018029783 A1 WO 2018029783A1 JP 2016073434 W JP2016073434 W JP 2016073434W WO 2018029783 A1 WO2018029783 A1 WO 2018029783A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air
heating operation
determination
heating
Prior art date
Application number
PCT/JP2016/073434
Other languages
English (en)
French (fr)
Inventor
元志 手塚
薦正 田辺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/300,222 priority Critical patent/US10837670B2/en
Priority to EP16900771.3A priority patent/EP3309470A4/en
Priority to JP2018533340A priority patent/JPWO2018029783A1/ja
Priority to CN201680088293.0A priority patent/CN109564021A/zh
Priority to PCT/JP2016/073434 priority patent/WO2018029783A1/ja
Publication of WO2018029783A1 publication Critical patent/WO2018029783A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • This invention relates to an air conditioner capable of performing a heating operation.
  • it relates to control related to automatic heating operation.
  • the dew point temperature in order to prevent dew condensation in the room, it is necessary to calculate the dew point temperature and perform air conditioning so that the dew point such as the wall surface does not become lower than the dew point temperature.
  • the temperature of the room is kept higher than the temperature at which the user does not suffer from hypothermia.
  • the air conditioner determines the situation where heating operation is required and starts the heating operation without the user's instruction. It is necessary to determine the end.
  • This invention aims at providing the air conditioning apparatus which can perform the heating operation of user protection, in order to solve the subject as mentioned above.
  • An air conditioner includes a heating device that heats and sends out indoor air to perform a heating operation, a floor temperature detection device that detects a floor temperature in the room, and a suction that is a temperature of air flowing into the heating device.
  • a determination temperature is calculated based on the suction air temperature detection device that detects the air temperature, the floor temperature and the suction air temperature, and the determination temperature is determined to be lower than the predetermined start determination temperature, the heating device is heated.
  • a control device is used to control the determination temperature.
  • the start of the heating operation of the heating device is controlled by the determination temperature calculated by calculating the floor temperature and the intake air temperature.
  • the body temperature can be maintained, for example, so as not to cause hypothermia, and the heating operation for protecting the user can be automatically performed.
  • Embodiment 1 FIG.
  • the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment.
  • the upper side in the figure is referred to as “upper side” and the lower side is described as “lower side”.
  • FIG. 1 is a view showing an appearance of an indoor unit 11 in an air-conditioning apparatus 10 according to Embodiment 1 of the present invention.
  • the indoor unit 11 of Embodiment 1 is assumed to be a wall-mounted indoor unit installed on a wall surface.
  • the type of the indoor unit 11 is not limited.
  • the up-and-down wind direction plate 6 is installed in a blow-out opening (not shown), and adjusts the blow-out direction of air sent out from the indoor unit 11 in the vertical direction (vertical direction).
  • the left and right wind direction plates 7 adjust the blowing direction of the air sent out from the indoor unit 11 in the horizontal direction (left and right direction).
  • the intake air temperature detection device 8 detects the temperature of the indoor air flowing into the indoor unit 11 as the intake air temperature Tb.
  • FIG. 2 is a diagram illustrating the infrared sensor 9 according to Embodiment 1 of the present invention.
  • Infrared sensor 9 of Embodiment 1 is attached on the lower surface side of indoor unit 11 at an angle such that the light receiving surface faces downward (for example, a depression angle of about 24.5 degrees) with respect to the horizontal plane.
  • eight light receiving elements (not shown) are arranged in a line in the vertical direction inside the metal can 100.
  • the metal can 100 is provided with a lens window (not shown) that allows infrared light to pass through and is received by eight light receiving elements.
  • the light distribution viewing angle 200 indicating the range in which infrared light can be received is, for example, 7 degrees in the vertical direction and 8 degrees in the horizontal direction.
  • the light distribution viewing angle 200 of each light receiving element is 7 degrees in the vertical direction and 8 degrees in the horizontal direction, but is limited to the light distribution viewing angle 200 in which the vertical direction is 7 degrees and the horizontal direction is 8 degrees. It is not a thing.
  • the number of light receiving elements may change. For example, the product of the vertical light distribution viewing angle 200 of one light receiving element and the number of light receiving elements can be made constant.
  • the light distribution viewing angle 200 of at least one light receiving element is included in a range in which infrared rays from the floor surface direction can be received.
  • the infrared sensor 9 functions as a floor temperature detection device that can detect the indoor floor temperature Ta.
  • FIG. 3 is a diagram showing a configuration of the air-conditioning apparatus 10 according to Embodiment 1 of the present invention.
  • the air conditioner 10 of Embodiment 1 has an outdoor unit 12 and an indoor unit 11 connected by a refrigerant pipe.
  • the compressor 1, the flow path switching device 13, the outdoor heat exchanger 2, the expansion valve 3, and the indoor heat exchanger 4 are connected by a refrigerant pipe to constitute a refrigerant circuit.
  • the outdoor unit 12 includes a compressor 1, a flow path switching device 13, an outdoor heat exchanger 2, and an expansion valve 3.
  • the compressor 1 compresses and discharges the sucked refrigerant.
  • the capacity of the compressor 1 (the amount of refrigerant sent out per unit time) can be changed by controlling the rotation speed of the compressor motor with an inverter device (not shown).
  • the flow path switching device 13 such as a four-way valve is a valve that switches the flow of the refrigerant in the refrigerant circuit depending on, for example, the cooling operation and the heating operation.
  • the outdoor heat exchanger 2 performs heat exchange between the refrigerant and air (outdoor air). For example, during the heating operation, it functions as an evaporator and evaporates and vaporizes the refrigerant. Further, during the cooling operation, it functions as a condenser and condenses and liquefies the refrigerant.
  • the outdoor heat exchanger 2 is described as functioning as a condenser, but may function as a radiator that radiates heat to the refrigerant.
  • the expansion valve 3 such as a throttling device or a flow rate control means expands the refrigerant by reducing the pressure. For example, in the case of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from a control device 50 or the like which will be described later.
  • the indoor unit 11 has an indoor heat exchanger 4 and a blower 5.
  • the indoor heat exchanger 4 performs heat exchange between indoor air to be air-conditioned and a refrigerant, for example. During heating operation, it functions as a condenser and condenses and liquefies the refrigerant.
  • the indoor heat exchanger 4 may function as a radiator that radiates heat to the refrigerant.
  • it functions as an evaporator during cooling operation, evaporating and evaporating the refrigerant.
  • the blower 5 forms a flow in which indoor air flows into the indoor unit 11 through the suction port, passes through the indoor heat exchanger 4, and flows out of the indoor unit 11 through the blowout port.
  • the indoor unit 11 functions as a heating device.
  • Control device 50 controls air conditioner 10.
  • the control device 50 includes an indoor temperature control unit 51, a wind direction control unit 52, a wind speed control unit 53, and a recording unit 54.
  • the room temperature control unit 51 controls the equipment that constitutes the refrigerant circuit, performs air conditioning, and adjusts the room temperature.
  • the wind direction control unit 52 controls the up and down wind direction plate 6 and the left and right wind direction plates 7 to adjust the blowing direction of air from the indoor unit 11.
  • the wind speed control unit 53 controls the rotational speed of the blower to adjust the wind speed of the air sent from the indoor unit 11.
  • the recording unit 54 records data necessary for the control device 50 to perform control.
  • the air conditioning apparatus 10 has an outside air temperature detection device 60 that serves as an outside air temperature detection device.
  • the outdoor temperature detection device 60 is a device that is installed in the outdoor unit 12 and detects the outdoor temperature as the outdoor temperature.
  • the remote controller 70 is an input device that transmits a signal including data relating to operation instructions such as operation or stop, set temperature, and air-conditioning operation mode input by the user. Moreover, it also becomes a device that receives a signal including data such as an operating state of the air conditioner 10 sent from the control device 50 and performs display.
  • the flow of the refrigerant in the cooling operation is indicated by solid line arrows in FIG.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 passes through the flow path switching device 13 and flows into the outdoor heat exchanger 2.
  • the refrigerant (liquid refrigerant) condensed and liquefied by passing through the outdoor heat exchanger 2 and exchanging heat with outdoor air flows into the expansion valve 3.
  • the refrigerant that has been decompressed by the expansion valve 3 and is in a gas-liquid two-phase state flows out of the outdoor unit 12.
  • the gas-liquid two-phase refrigerant that has flowed out of the outdoor unit 12 passes through the refrigerant pipe, flows into the indoor unit 11, and passes through the indoor heat exchanger 4.
  • the refrigerant gas refrigerant
  • evaporated and gasified by exchanging heat with the air in the indoor space flows out of the indoor unit 11.
  • the gas refrigerant flowing out of the indoor unit 11 passes through the refrigerant pipe and flows into the outdoor unit 12. Then, it passes through the flow path switching device 13 and is sucked into the compressor 1 again. As described above, the refrigerant of the air conditioner circulates to cool the room.
  • the heating operation will be described based on the refrigerant flow.
  • the flow of the refrigerant in the heating operation is indicated by a dotted arrow in FIG.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 passes through the flow path switching device 13 and flows out of the outdoor unit 12.
  • the gas refrigerant that has flowed out of the outdoor unit 12 passes through the refrigerant pipe and flows into the indoor unit 11. Then, while passing through the indoor heat exchanger 4, for example, the refrigerant condensed and liquefied by exchanging heat with air in the indoor space flows out from the indoor unit 11.
  • the refrigerant flowing out of the indoor unit 11 passes through the refrigerant pipe and flows into the outdoor unit 12. Then, the refrigerant that has been decompressed by the expansion valve 3 and is in a gas-liquid two-phase state flows into the outdoor heat exchanger 2. And the refrigerant
  • coolant gas refrigerant
  • FIG. 4 is a flowchart illustrating an operation related to the automatic heating operation of the air-conditioning apparatus 10 according to Embodiment 1 of the present invention. Based on FIG. 4, the operation
  • an instruction to set an automatic heating operation mode for monitoring the indoor temperature, the sensible temperature, etc., to be low is input to the remote controller 70.
  • the control apparatus 50 makes the air conditioning apparatus 10 the heating operation standby state (step S1). In the standby state, the blower 5 is not rotated.
  • the airflow direction control unit 52 may control the upper and lower airflow direction plates 6 to be in the position in the stopped state or to be in the position in the operating state. .
  • step S2 After entering the standby state, it is determined whether or not a predetermined first set time (for example, 30 minutes) has elapsed (step S2). If it is determined that the first set time has not elapsed, the standby state is maintained.
  • a predetermined first set time for example, 30 minutes
  • step S3 a blowing operation is performed (step S3).
  • the blower 5 is rotated.
  • the intake air temperature detection device 8 can detect the intake air temperature Tb.
  • the wind direction control unit 52 controls the upper and lower wind direction plates 6 to be in the same position as the operation state.
  • the up / down airflow direction plate 6 may be set to the position of the operation state.
  • step S4 It is determined whether or not a predetermined blowing time (for example, 3 minutes) has elapsed since the start of the blowing operation (step S4). If it is determined that the predetermined blowing time has not elapsed, the blowing state is continuously maintained. If it is determined that the predetermined ventilation time has elapsed, the floor temperature Ta detected by the infrared sensor 9 and the intake air temperature Tb detected by the intake air temperature detection device 8 are acquired (step S5).
  • a predetermined blowing time for example, 3 minutes
  • the control device 50 calculates the room temperature T, which is the determination temperature used for the determination related to the automatic heating operation, from the intake air temperature Tb and the floor temperature Ta (step S6).
  • the intake air temperature Tb detected by the intake air temperature detection device 8 is the temperature of the air in the upper part of the room.
  • a temperature difference may occur between the temperature in the upper part of the room and the temperature at the position where the user exists. Due to the difference in air density with temperature, the temperature of air in the lower part of the room is generally lower than the temperature of air in the upper part of the room. Therefore, by correcting the suction air temperature Tb based on the floor temperature Ta related to the detection by the infrared sensor 9, the room temperature T closer to the temperature of the nearby air where the user exists is calculated as the room temperature. .
  • a correction amount obtained by multiplying the difference (Ta ⁇ Tb) between the floor temperature Ta and the intake air temperature Tb by a weighting coefficient (for example, 0.5) is added to the intake air temperature Tb.
  • a weighting coefficient for example, 0.5
  • step S7 it is determined whether or not the room temperature T is lower than a heating operation start determination temperature Tx (for example, 12 ° C.) that is a predetermined first threshold temperature (step S7).
  • a heating operation start determination temperature Tx for example, 12 ° C.
  • the air conditioner 10 is caused to start the heating operation (step S8). If it is determined that the room temperature T is not lower than the start determination temperature Tx, for example, the blowing operation is stopped, and the process waits until the first set time elapses again (step S2).
  • the air conditioner 10 performs an operation of increasing the room temperature T so that the user does not develop hypothermia.
  • the control device 50 turns on a display unit (not shown) having an LED or the like provided in the indoor unit 11 for a certain period of time, and confirms that the room is in a low temperature state. You may make it notify. Moreover, you may make it display the message to the effect of being a low temperature on the display part (not shown) which displays the operation state of indoor units 11, such as the remote controller 70.
  • a ringing device such as a buzzer provided in the indoor unit 11 or the remote controller may be operated for a certain period of time to notify the low temperature state.
  • the set wind speed strength and wind direction are set.
  • the wind direction control unit 52 and the wind speed control unit 53 perform control so as to be in the direction of the control plate. For this reason, heating operation can be performed with the reliable operation content with a track record when a user sets automatic heating operation mode.
  • the present invention is not limited to this. For example, if there is a more effective control for increasing the indoor temperature, such as controlling the wind speed to be strong, the control may be performed.
  • the room temperature control unit 51 calculates the room temperature T from the acquired floor temperature Ta and the intake air temperature Tb even during the heating operation. Then, it is determined whether or not the calculated room temperature T exceeds a predetermined operation cancellation determination temperature Ty (for example, 14 ° C.) (step S9). If it determines with having exceeded, heating operation will be stopped (step S10) and it will return to a standby state (step S1). If it determines with not exceeding, heating operation will be continued. The above processing is continued until the user cancels the automatic heating operation mode.
  • a predetermined operation cancellation determination temperature Ty for example, 14 ° C.
  • the control device 50 determines the start and release of the automatic heating operation based on the temperature close to the temperature that the user feels as the room temperature. Therefore, the possibility of falling into hypothermia more effectively can be reduced and user protection can be achieved.
  • Embodiment 2 it is determined whether or not to end the heating operation on the condition of the room temperature T.
  • the air conditioner 10 according to the second embodiment further determines whether or not to end the heating operation by adding the outside air temperature as a condition.
  • the outside air temperature a temperature related to detection by the outside air temperature detection device 60 is used.
  • FIG. 5 is a flowchart illustrating an operation related to the automatic heating operation of the air-conditioning apparatus 10 according to Embodiment 2 of the present invention. Based on FIG. 5, the operation
  • the same processing as described in the first embodiment is performed.
  • the room temperature control unit 51 determines whether or not the calculated room temperature T exceeds a predetermined operation cancellation determination temperature Ty even during the heating operation (step S9). If it determines with not exceeding, heating operation will be continued.
  • the room temperature control unit 51 determines that the room temperature T is higher than the operation release determination temperature Ty
  • the room temperature control unit 51 acquires the outside temperature Tout detected by the outside temperature detection device 60 (step S20). Then, it is determined whether or not the outside air temperature Tout is higher than a preset operation cancellation outside air determination temperature Tyout (step S21). If it determines with having exceeded, heating operation will be stopped (step S10) and it will return to a standby state (step S1). If it determines with not exceeding, heating operation will be continued.
  • the indoor temperature control unit 51 not only determines whether the room temperature T is higher than the operation release determination temperature Ty, but also the outside air temperature Tout is Since the heating operation is terminated on the condition that it is higher than the operation cancellation outside air determination temperature Tyout, for example, even if the heating operation is stopped, the outside air temperature is low, and the indoor temperature immediately decreases again. It is possible to prevent the heating operation from being started. For this reason, the possibility of falling into hypothermia more effectively can be reduced, and a heating operation capable of protecting the user can be executed.
  • Embodiment 3 FIG.
  • the air conditioner 10 of Embodiment 3 determines whether or not the most recent operation related to the user's instruction was a heating operation, and determines whether or not the air conditioner 10 performs an automatic heating operation. is there. Here, it is assumed that the data of the operation mode instructed by the user is recorded in the recording unit 54.
  • FIG. 6 is a flowchart illustrating an operation related to the automatic heating operation of the air-conditioning apparatus 10 according to Embodiment 3 of the present invention. Based on FIG. 6, the operation
  • the same processing as described in the first embodiment is performed.
  • Control device 50 places air conditioner 10 in a standby state for heating operation (step S1). Then, it is determined whether or not the most recent operation mode related to the user's instruction was the heating operation (step S30). If it determines with it being heating operation, it will determine whether 1st setting time passed similarly to Embodiment 1 (step S2), and subsequent processing will be continued.
  • step S30 If it is determined in step S30 that the most recent operation instructed by the user was not the heating operation, the process in the automatic heating operation mode is terminated. For this reason, in the air conditioning apparatus 10 of Embodiment 3, for example, in the summer when the cooling operation is performed, the automatic heating operation mode is set, and the possibility of executing the air blowing operation and the heating operation can be eliminated. . For this reason, for example, it is not necessary to perform a blowing operation every predetermined time, and wasteful power consumption of the air conditioner 10 can be prevented.
  • the operation performed last time is the automatic heating operation, it is determined that the operation mode performed most recently instructed is the heating operation. You may use the operation mode performed last time for determination of the latest operation mode.
  • Embodiment 4 In the first embodiment, it is determined whether or not to end the heating operation on the condition of the room temperature T.
  • the air conditioner 10 of Embodiment 4 determines whether or not to end the heating operation on the condition of the room temperature T during the thermo-off.
  • FIG. 7 is a view illustrating a flowchart for explaining the operation related to the automatic heating operation of the air-conditioning apparatus 10 according to Embodiment 4 of the present invention. Based on FIG. 7, the operation
  • the same processing as described in the first embodiment is performed.
  • the indoor temperature control part 51 will determine whether it is a thermo-off state, if the air conditioning apparatus 10 starts heating operation (step S8) (step S40). If it determines with it not being a thermo-off state, heating operation will be continued.
  • the room temperature control unit 51 further determines whether or not the room temperature T has risen above a predetermined temperature (step S41). When it is determined that the room temperature T has risen above the predetermined temperature, the heating operation is stopped (step S10), and the process returns to the standby state (step S1). If it is determined that the room temperature T has not risen above the predetermined temperature, the heating operation is continued.
  • the heating operation is stopped when it is determined that the room temperature T has risen after the thermo-off, and therefore the heating operation is stopped.
  • the heating operation is stopped again because the temperature in the room is immediately lowered. For this reason, the possibility of falling into hypothermia more effectively can be reduced, and a heating operation capable of protecting the user can be executed.
  • Embodiment 5 FIG.
  • the air conditioner 10 according to Embodiment 5 includes a human body detection device that detects a person in the room.
  • the infrared sensor 9 is also used as a human body detection device. Based on the temperature detected by the infrared sensor 9, it can be determined whether there is a person in the room. For example, if a temperature close to body temperature is detected among the temperatures detected by the infrared sensor 9, it can be determined that there is a person.
  • FIG. 8 is a flowchart illustrating an operation related to the automatic heating operation of the air-conditioning apparatus 10 according to Embodiment 5 of the present invention. Based on FIG. 8, the operation
  • the same processing as described in the first embodiment is performed.
  • the control device 50 places the air conditioner 10 in a standby state for heating operation (step S1). Then, the temperature detected by the infrared sensor 9 is acquired, and it is determined from the temperature detected by the infrared sensor 9 whether there is a person in the room (step S50). If it is determined that there is a person, it is determined whether or not the first set time has elapsed (step S2), and the subsequent processing is continued as in the first embodiment.
  • step S50 If it is determined in step S50 that there is no person, the human body presence determination process based on the temperature detected by the infrared sensor 9 is continued. For this reason, when there is no person, the automatic heating operation for preventing hypothermia can be omitted, and the possibility of performing the air blowing operation and the heating operation can be eliminated. For this reason, for example, it is not necessary to perform a wasteful air blowing operation every predetermined time, and wasteful power consumption of the air conditioner 10 can be prevented.
  • the infrared sensor 9 is used as a human body detection device, but a human body detection device may be installed separately from the infrared sensor 9. Further, the method for detecting the human body is not limited to the method using infrared rays.
  • the air conditioner 10 constituting the refrigerant circuit constitutes a refrigerant circuit
  • the indoor heat exchanger 4 serves as a condenser to perform automatic heating operation to protect the user.
  • the present invention is not limited to this.
  • automatic heating operation may be performed by controlling not only the indoor heat exchanger 4 that is a condenser but also a heating device such as a heater.
  • the room temperature T is calculated as the determination temperature and the determination related to the automatic heating operation is performed.
  • the present invention is not limited to this. For example, based on the intake air temperature Tb and the radiant heat from the floor surface obtained based on the floor temperature Ta, the user's sensible temperature is calculated as a determination temperature, and determinations such as start and release of automatic heating operation are performed. You may do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

この発明に係る空気調和装置は、室内の空気を加熱して送り出して暖房運転を行う加熱装置と、室内の床温度を検出する床温度検出装置と、加熱装置に流入する空気の温度となる吸い込み空気温度を検出する吸い込み空気温度検出装置と、床温度および吸い込み空気温度により判定用温度を算出し、判定用温度が、あらかじめ定められた開始判定温度より低いと判定すると、加熱装置に暖房運転をさせる制御装置とを備えるものである。

Description

空気調和装置
 この発明は、暖房運転を行うことができる空気調和装置に関するものである。特に、自動暖房運転に係る制御に関するものである。
 空調対象空間である室内に設置された空気調和装置において、検出した室内温度、室内相対湿度および壁面温度により、暖房運転を行って壁面温度を上昇させ、壁面での結露を防止する機能を有する空気調和装置がある(たとえば、特許文献1参照)。
特開平10-339496号公報
 たとえば、室内の結露を防止するためには、露点温度を算出し、壁面などの結露する箇所が露点温度よりも低くならないように空気調和を行う必要がある。一方、たとえば、室内温度が低温であるために、室内にいる利用者が低体温症に陥ることを防止するためには、利用者が低体温症とならない温度以上に室内の温度などを保持する必要がある。
 低体温症の防止など、利用者の保護をはかるには、利用者の指示がなくても、暖房運転が必要な状況を空気調和装置が判定して暖房運転を開始し、また、暖房運転の終了を判定する必要がある。
 この発明は、前述したような課題を解決するため、利用者保護の暖房運転を行うことができる空気調和装置を提供することを目的とする。
 この発明に係る空気調和装置は、室内の空気を加熱して送り出して暖房運転を行う加熱装置と、室内の床温度を検出する床温度検出装置と、加熱装置に流入する空気の温度となる吸い込み空気温度を検出する吸い込み空気温度検出装置と、床温度および吸い込み空気温度により判定用温度を算出し、判定用温度が、あらかじめ定められた開始判定温度より低いと判定すると、加熱装置に暖房運転をさせる制御装置とを備えるものである。
 この発明に係る空気調和装置によれば、床温度と吸い込み空気温度とにより演算して算出した判定用温度により、加熱装置の暖房運転開始を制御するようにしたので、利用者付近の室内の温度、体感温度などを、たとえば、低体温症を起こさないように維持することができ、利用者の保護をはかる暖房運転を自動的に行うことができる。
この発明の実施の形態1に係る空気調和装置10における室内機11の外観を示す図である。 この発明の実施の形態1に係る赤外線センサ9を説明する図である。 この発明の実施の形態1に係る空気調和装置10の構成を示す図である。 この発明の実施の形態1に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。 この発明の実施の形態2に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。 この発明の実施の形態3に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。 この発明の実施の形態4に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。 この発明の実施の形態5に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。
実施の形態1.
 以下、発明の実施の形態に係る空気調和装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、以下の説明において、図における上方を「上側」とし、下方を「下側」として説明する。さらに、理解を容易にするために、方向を表す用語(たとえば「右」、「左」、「前」、「後」など)を適宜用いるが、説明のためのものであって、これらの用語は本願に係る発明を限定するものではない。また、空気調和装置を正面(前面)側から見て上下となる方向を鉛直方向とし、左右となる方向を水平方向とする。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。そして、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1は、この発明の実施の形態1に係る空気調和装置10における室内機11の外観を示す図である。実施の形態1の室内機11は、壁面に設置される壁掛け型の室内機であるものとする。ただし、室内機11の型については限定するものではない。上下風向板6は、吹き出し口(図示せず)に設置され、鉛直方向(上下方向)における、室内機11内から送り出される空気の吹き出し方向を調整する。また、左右風向板7は、水平方向(左右方向)における、室内機11内から送り出される空気の吹き出し方向を調整する。吸い込み空気温度検出装置8は、室内機11内に流入する、室内における空気の温度を、吸い込み空気温度Tbとして検出する。
 図2は、この発明の実施の形態1に係る赤外線センサ9を説明する図である。実施の形態1の赤外線センサ9は、室内機11の下面側において、受光面が、水平面に対して下向き(たとえば、俯角約24.5度方向)となるような角度で取り付けられている。また、実施の形態1の赤外線センサ9は、金属缶100の内部に、たとえば、8個の受光素子(図示せず)が縦方向に一列に配列されている。そして、金属缶100には、赤外線を通過させて8個の受光素子に受光させる、レンズ製の窓(図示せず)が設けられている。各受光素子において、赤外線の光を受けることができる範囲を示す配光視野角200は、たとえば、縦方向が7度であり、横方向が8度である。ここでは、各受光素子の配光視野角200が、縦方向が7度および横方向が8度としているが、縦方向が7度および横方向が8度の配光視野角200に限定されるものではない。各受光素子の配光視野角200に応じて、受光素子の数は変化する場合がある。たとえば、1個の受光素子の縦方向の配光視野角200と受光素子の数との積が一定になるようにすることができる。
 そして、実施の形態1の赤外線センサ9は、少なくとも1つの受光素子の配光視野角200が、床面方向からの赤外線を受けることができる範囲に含まれている。このため、赤外線センサ9は、室内の床温度Taを検出することができる床温度検出装置として機能する。
 図3は、この発明の実施の形態1に係る空気調和装置10の構成を示す図である。図3に示すように、実施の形態1の空気調和装置10は、室外機12と室内機11とが冷媒配管により接続されている。具体的には、圧縮機1、流路切替装置13、室外熱交換器2、膨張弁3および室内熱交換器4が冷媒配管によって接続され、冷媒回路が構成されている。
 室外機12は、圧縮機1、流路切替装置13、室外熱交換器2および膨張弁3を有している。圧縮機1は、吸入した冷媒を圧縮して吐出する。たとえば、インバータ装置(図示せず)などにより、圧縮機モータの回転数を制御することで、圧縮機1の容量(単位時間あたりの冷媒を送り出す量)を変化させることができる。また、四方弁などの流路切替装置13は、たとえば、冷房運転時と暖房運転時とによって冷媒回路における冷媒の流れを切り換える弁である。
 室外熱交換器2は、冷媒と空気(室外の空気)との熱交換を行う。たとえば、暖房運転時においては、蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては、凝縮器として機能し、冷媒を凝縮して液化させる。ここでは、室外熱交換器2が凝縮器として機能するものとして説明するが、冷媒に放熱させる放熱器として機能するようにしてもよい。絞り装置、流量制御手段などの膨張弁3は冷媒を減圧して膨張させる。たとえば、電子式膨張弁などで構成した場合には、後述する制御装置50などの指示に基づいて、開度調整を行う。
 また、室内機11は、室内熱交換器4および送風機5を有している。室内熱交換器4は、たとえば空調対象となる室内の空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。ここでは、室内熱交換器4が凝縮器として機能するものとして説明するが、冷媒に放熱させる放熱器として機能するようにしてもよい。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。送風機5は、室内の空気が、吸い込み口から室内機11内に流入し、室内熱交換器4を通過して、吹き出し口から室内機11外に流出する流れを形成する。ここで、暖房運転時には、室内機11は加熱装置として機能する。
 制御装置50は、空気調和装置10の制御を行う。ここで、実施の形態1における制御装置50は、室内温度制御部51、風向制御部52、風速制御部53および記録部54を有している。室内温度制御部51は、冷媒回路を構成する機器を制御して、空気調和を行い、室内の温度を調整する。風向制御部52は、上下風向板6および左右風向板7を制御して、室内機11内から空気の吹き出し方向を調整する。風速制御部53は、送風機の回転数を制御して、室内機11から送り出す空気の風速を調整する。記録部54は、制御装置50が制御を行うために必要となるデータなどを記録する。
 また、空気調和装置10は、外気温度検出装置となる外気温度検出装置60を有している。外気温度検出装置60は、室外機12に設置され、室外の温度を外気温度として検出する装置である。リモートコントローラ70は、たとえば、利用者が入力した運転または停止、設定温度、冷暖房の運転モードなどの操作指示に係るデータを含む信号を送信する入力装置となる。また、制御装置50から送られる、空気調和装置10の運転状態などのデータを含む信号を受信し、表示などを行う装置にもなる。
 次に、実施の形態1の空気調和装置10の動作について、冷媒の流れに基づいて説明する。まず、冷房運転について説明する。冷房運転における冷媒の流れは、図3において、実線矢印で示されている。圧縮機1により圧縮されて吐出した高温、高圧のガス冷媒は、流路切替装置13を通過し、室外熱交換器2に流入する。そして、室外熱交換器2内を通過して、室外の空気と熱交換することで凝縮、液化した冷媒(液冷媒)は、膨張弁3へ流入する。膨張弁3で減圧されて気液二相状態となった冷媒は室外機12から流出する。
 室外機12を流出した気液二相冷媒は、冷媒配管を通過して室内機11に流入し、室内熱交換器4を通過する。そして、たとえば室内空間の空気と熱交換することで蒸発、ガス化した冷媒(ガス冷媒)は、室内機11から流出する。
 室内機11から流出したガス冷媒は冷媒配管を通過して室外機12に流入する。そして、流路切替装置13を通過して再度圧縮機1に吸入される。以上のようにして空気調和装置の冷媒が循環し、室内の冷房を行う。
 次に、暖房運転について冷媒の流れに基づいて説明する。暖房運転における冷媒の流れは、図3において、点線矢印で示されている。圧縮機1により圧縮されて吐出した高温、高圧のガス冷媒は、流路切替装置13を通過して室外機12から流出する。室外機12を流出したガス冷媒は、冷媒配管を通過して室内機11に流入する。そして、室内熱交換器4を通過中に、たとえば室内空間の空気と熱交換することで凝縮、液化した冷媒は室内機11から流出する。
 室内機11から流出した冷媒は冷媒配管を通過して室外機12に流入する。そして、膨張弁3で減圧されて気液二相状態となった冷媒は室外熱交換器2に流入する。そして、室外熱交換器2内を通過して、室外の空気と熱交換することで蒸発し、ガス化した冷媒(ガス冷媒)は、流路切替装置13を通過して、再度、圧縮機1に吸入される。以上のようにして空気調和装置の冷媒が循環し、室内の暖房を行う。
 図4は、この発明の実施の形態1に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。図4に基づいて、実施の形態1に係る空気調和装置10の自動暖房運転に係る動作について説明する。
 たとえば、空気調和装置10の運転停止時において、低体温症を防止するため、室内の温度、体感温度などが低温にならないように監視する自動暖房運転モードの設定指示が、リモートコントローラ70に入力されると、制御装置50は、空気調和装置10を暖房運転の待機状態にする(ステップS1)。待機状態においては、送風機5は回転させない。ここで、送風機5を回転させないため、風向制御部52は、上下風向板6を、停止状態における位置とするように制御してもよいし、運転状態における位置とするように制御してもよい。
 そして、待機状態となってから、あらかじめ定められた第一設定時間(たとえば、30分)が経過したかどうかを判定する(ステップS2)。第一設定時間が経過していないと判定すると、待機状態を維持する。
 一方、ステップS2において、第一設定時間が経過したと判定すると、送風運転を行う(ステップS3)。送風運転では、送風機5を回転させる。このとき、室内機11内に室内の空気が流入することにより、吸い込み空気温度検出装置8が吸い込み空気温度Tbを検出することができる。送風運転では、送風機5を回転させるため、風向制御部52は、上下風向板6を運転状態と同じ位置となるように制御する。ここで、第一設定時間毎に送風運転が行われるので、たとえば、送風運転が終わって、待機状態になったとしても、上下風向板6を運転状態の位置としておくようにしてもよい。上下風向板6を運転状態の位置としておくことで、次の送風運転の際に、上下風向板6を動作させずに、待機状態から送風運転へ移行させることもできる。
 送風運転を開始してから、所定送風時間(たとえば3分)が経過したかどうかを判定する(ステップS4)。所定送風時間が経過していないと判定すると、送風状態を引き続き維持する。所定送風時間が経過したと判定すると、赤外線センサ9が検出する床温度Taと吸い込み空気温度検出装置8が検出する吸い込み空気温度Tbとを取得する(ステップS5)。
 制御装置50は、吸い込み空気温度Tbと床温度Taとにより、自動暖房運転に係る判定に利用する判定用温度となる室温Tを算出する(ステップS6)。たとえば、壁掛けタイプの室内機11は、通常、室内の上部に設置されているため、吸い込み空気温度検出装置8が検出する吸い込み空気温度Tbは、室内の上部における空気の温度となる。しかし、室内の上部における温度と利用者が存在する位置の温度では、温度差が発生することがある。温度による空気の密度の差により、一般的には、部屋の下部における空気の温度は、部屋の上部における空気の温度よりも低い。そこで、赤外線センサ9の検出に係る床温度Taにより、吸い込み空気温度Tbを補正することで、より利用者が存在する付近の空気の温度に近い室温Tを、室内の温度として算出するようにする。
 室温Tの算出する手順の一例として、床温度Taと吸い込み空気温度Tbとの差(Ta-Tb)に、重み付け係数(たとえば、0.5)を乗じた補正量を、吸い込み空気温度Tbに加算することにより、室温Tを算出する方法がある。たとえば、床温度Ta=8[℃]、吸い込み空気温度Tb=12[℃]のとき、次のように、室温T=10[℃]となる。
 T=Tb+(Ta-Tb)×0.5
  =12+(8-12)×0.5
  =10 [℃]
 次に、室温Tが、あらかじめ定められた第1閾値温度となる暖房運転の開始判定温度Tx(たとえば12℃)を下回っているかどうかを判定する(ステップS7)。室温Tが、開始判定温度Txを下回っていると判定すると、空気調和装置10に、暖房運転を開始させる(ステップS8)。室温Tが、開始判定温度Txを下回っていないと判定すると、たとえば、送風運転を停止して、あらためて第一設定時間が経過するまで待機する(ステップS2)。
 ステップS8の暖房運転においては、空気調和装置10は、利用者が低体温症にならないように室温Tを上昇させる運転を行う。ここで、制御装置50は、たとえば、暖房運転開始時に、室内機11に備えられた、LEDなどを有する表示部(図示せず)を一定時間点灯させ、室内が低温状態であることを利用者に通知させるようにしてもよい。また、リモートコントローラ70などの室内機11の運転状態を表示する表示部(図示せず)に低温状態である旨のメッセージを表示させるようにしてもよい。さらに、室内機11、リモートコントローラなどに備えられたブザーなどの鳴動装置を一定時間だけ動作させ、低温状態を報知させるようにしてもよい。
 ここで、暖房運転における、送風機5の風速の強さ並びに上下風向板6および左右風向板7の向きについては、たとえば、自動暖房運転が指示されたときに、設定された風速の強さおよび風向制御板の向きとなるように、風向制御部52および風速制御部53が制御を行う。このため、利用者が自動暖房運転モードを設定した際の、実績のある信頼性の高い動作内容で暖房運転を実行することができる。ただし、これに限定するものではない。たとえば、風速が強となるように制御するなど、室内の温度を上昇させるために、さらに効果の高い制御がある場合には、その制御を行うようにしてもよい。
 室内温度制御部51は、暖房運転中においても、取得した床温度Taと吸い込み空気温度Tbとにより室温Tを算出する。そして、算出した室温Tがあらかじめ定められた運転解除判定温度Ty(たとえば、14℃)を上回っているかどうかを判定する(ステップS9)。上回っていると判定すると、暖房運転を停止して(ステップS10)、待機状態に戻る(ステップS1)。上回っていないと判定すると、暖房運転を継続させる。以上の処理を、利用者が自動暖房運転モードを解除するまで続ける。
 以上のように、実施の形態1の空気調和装置10によれば、制御装置50が、利用者が室内の温度と感じる温度に近い温度に基づいて、自動暖房運転の開始および解除の判定を行うことができるので、より効果的に低体温症に陥る可能性を減らし、利用者保護をはかることができる。
 実施の形態2.
 実施の形態1では、室温Tを条件として、暖房運転を終了するかどうかを判定していた。実施の形態2の空気調和装置10は、さらに、外気温度を条件として加え、暖房運転を終了するかどうかを判定するものである。外気温度は、外気温度検出装置60の検出に係る温度を用いる。
 図5は、この発明の実施の形態2に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。図5に基づいて、実施の形態2に係る空気調和装置10の自動暖房運転に係る動作について説明する。ここで、図4と同じ番号を付しているステップについては、実施の形態1において説明したことと同様の処理を行う。
 室内温度制御部51は、暖房運転中においても、算出した室温Tがあらかじめ定められた運転解除判定温度Tyを上回っているかどうかを判定する(ステップS9)。上回っていないと判定すると、暖房運転を継続させる。
 一方、室内温度制御部51は、室温Tが運転解除判定温度Tyを上回っていると判定すると、外気温度検出装置60が検出した外気温度Toutを取得する(ステップS20)。そして、外気温度Toutが、あらかじめ設定された運転解除外気判定温度Tyoutを上回っているかどうかを判定する(ステップS21)。上回っていると判定すると、暖房運転を停止して(ステップS10)、待機状態に戻る(ステップS1)。上回っていないと判定すると、暖房運転を継続させる。
 以上のように、実施の形態2における空気調和装置10によれば、室内温度制御部51が、室温Tが、運転解除判定温度Tyを上回っているかどうかだけでなく、さらに、外気温度Toutが、運転解除外気判定温度Tyoutを上回っているかどうかを条件として、暖房運転を終了するようにしたので、たとえば、暖房運転を停止しても外気温度が低く、すぐに、室内の温度が低下して再び暖房運転が開始されることを防止することができる。このため、より効果的に低体温症に陥る可能性を減らし、利用者保護をはかることができる暖房運転を実行することができる。
 実施の形態3.
 実施の形態3の空気調和装置10は、利用者の指示に係る直近の運転が暖房運転であったかどうかを判定して、空気調和装置10が自動暖房運転の動作を行うかどうかを判定するものである。ここで、利用者に指示された運転モードのデータは、記録部54に記録されているものとする。
 図6は、この発明の実施の形態3に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。図6に基づいて、実施の形態3に係る空気調和装置10の自動暖房運転に係る動作について説明する。ここで、図4と同じ番号を付しているステップについては、実施の形態1において説明したことと同様の処理を行う。
 制御装置50は、空気調和装置10を暖房運転の待機状態にする(ステップS1)。そして、利用者の指示に係る直近の運転モードが暖房運転であったかどうかを判定する(ステップS30)。暖房運転であったと判定すると、実施の形態1と同様に、第一設定時間が経過したかどうかを判定し(ステップS2)、以降の処理を続ける。
 ステップS30において、利用者が指示した直近の運転が暖房運転でなかったと判定すると、自動暖房運転モードでの処理を終了する。このため、実施の形態3の空気調和装置10においては、たとえば、冷房運転が行われる夏季において、自動暖房運転モードが設定され、送風運転、暖房運転を実行してしまう可能性をなくすことができる。このため、たとえば、所定時間毎に送風運転を実行せずにすみ、空気調和装置10の無駄な電力消費を防ぐことができる。ここで、たとえば、前回行われた運転が自動暖房運転の場合でも、その際、直近に指示されて行われた運転モードが暖房運転であると判定していることから、利用者の指示に係る直近の運転モードの判定に、前回行われた運転モードを用いてもよい。
 実施の形態4.
 実施の形態1では、室温Tを条件として、暖房運転を終了するかどうかを判定していた。実施の形態4の空気調和装置10は、サーモオフ中の室温Tを条件として、暖房運転を終了するかどうかを判定するものである。
 図7は、この発明の実施の形態4に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。図7に基づいて、実施の形態4に係る空気調和装置10の自動暖房運転に係る動作について説明する。ここで、図4と同じ番号を付しているステップについては、実施の形態1において説明したことと同様の処理を行う。
 実施の形態4においては、室内温度制御部51は、空気調和装置10に、暖房運転を開始させると(ステップS8)、サーモオフ状態であるかどうかを判定する(ステップS40)。サーモオフ状態でないと判定すると、暖房運転を継続させる。
 一方、室内温度制御部51は、サーモオフ状態であると判定すると、さらに、あらかじめ定められた所定温度以上、室温Tが上昇したかどうかを判定する(ステップS41)。所定温度以上、室温Tが上昇したものと判定すると、暖房運転を停止して(ステップS10)、待機状態に戻る(ステップS1)。所定温度以上、室温Tが上昇していないと判定すると、暖房運転を継続させる。
 以上のように、実施の形態4の空気調和装置10によれば、サーモオフした後に、室温Tが上昇していると判定すると、暖房運転を停止するようにしたので、暖房運転を停止しても、すぐに室内の温度が低下して再び暖房運転が開始されることを防止することができる。このため、より効果的に低体温症に陥る可能性を減らし、利用者保護をはかることができる暖房運転を実行することができる。
 実施の形態5.
 実施の形態5における空気調和装置10は、室内にいる人を検出する人体検出装置を備えるものとする。ここで、実施の形態5では、赤外線センサ9を、人体検出装置として兼用するものとする。赤外線センサ9が検出した温度に基づいて、室内に人がいるかどうかを判定することができる。たとえば、赤外線センサ9が検出した温度のうち、体温に近い温度を検出すると、人がいるものと判定することができる。
 図8は、この発明の実施の形態5に係る空気調和装置10の自動暖房運転に係る動作を説明するフローチャートを示す図である。図8に基づいて、実施の形態5に係る空気調和装置10の自動暖房運転に係る動作について説明する。ここで、図4と同じ番号を付しているステップについては、実施の形態1において説明したことと同様の処理を行う。
 たとえば、低体温症を防止するための自動暖房運転モードの設定指示が入力されると、制御装置50は、空気調和装置10を暖房運転の待機状態にする(ステップS1)。そして、赤外線センサ9が検出した温度を取得し、赤外線センサ9が検出した温度から、室内に人がいるかどうかを判定する(ステップS50)。人がいると判定すると、実施の形態1と同様に、第一設定時間が経過したかどうかを判定し(ステップS2)、以降の処理を続ける。
 ステップS50において、人がいないと判定すると、赤外線センサ9が検出した温度に基づく人体存在の判定処理を続ける。このため、人がいない場合には、低体温症を防止するための自動暖房運転を行わなくてすみ、送風運転、暖房運転を実行してしまう可能性をなくすことができる。このため、たとえば、所定時間毎に無駄な送風運転を実行せずにすみ、空気調和装置10の無駄な電力消費を防ぐことができる。ここでは、赤外線センサ9を人体検出装置として用いたが、赤外線センサ9とは別に人体検出装置を設置してもよい。また、人体を検出する方法としては赤外線によるものに限定するものではない。
 実施の形態6.
 実施の形態1~実施の形態5では、冷媒回路を構成する空気調和装置10は冷媒回路を構成し、室内熱交換器4が凝縮器となって、自動暖房運転を行って、利用者の保護をはかるようにしたが、これに限定するものではない。たとえば、室内を加熱することができれば、凝縮器である室内熱交換器4だけでなく、ヒータなどの加熱装置を制御して自動暖房運転を行うようにしてもよい。
 また、実施の形態1~実施の形態5では、判定用温度として室温Tを算出し、自動暖房運転に係る判定を行うようにしたが、これに限定するものではない。たとえば、吸い込み空気温度Tbと床温度Taに基づいて得られる床面からの放射熱とにより、利用者の体感温度を、判定用温度として算出し、自動暖房運転の開始、解除などの判定を行うようにしてもよい。
 1 圧縮機、2 室外熱交換器、3 膨張弁、4 室内熱交換器、5 送風機、6 上下風向板、7 左右風向板、8 吸い込み空気温度検出装置、9 赤外線センサ、10 空気調和装置、11 室内機、12 室外機、13 流路切替装置、50 制御装置、51 室内温度制御部、52 風向制御部、53 風速制御部、54 記録部、60 外気温度検出装置、70 リモートコントローラ、100 金属缶、200 配光視野角。

Claims (9)

  1.  室内の空気を加熱して送り出して暖房運転を行う加熱装置と、
     前記室内の床温度を検出する床温度検出装置と、
     前記加熱装置に流入する前記空気の温度となる吸い込み空気温度を検出する吸い込み空気温度検出装置と、
     前記床温度および前記吸い込み空気温度により判定用温度を算出し、該判定用温度が、あらかじめ定められた開始判定温度より低いと判定すると、前記加熱装置に前記暖房運転をさせる制御装置と
    を備える空気調和装置。
  2.  前回行われた運転を記録する記録装置をさらに備え、
     前記制御装置は、前記判定用温度が前記開始判定温度より低く、さらに、前記記録装置に記録された前記前回行われた運転が暖房運転であると判定すると、前記加熱装置に前記暖房運転をさせる請求項1に記載の空気調和装置。
  3.  前記室内にいる人を検出する人体検出装置をさらに備え、
     前記制御装置は、前記判定用温度が前記開始判定温度より低く、さらに、前記人体検出装置が前記人を検出したと判定すると、前記加熱装置に前記暖房運転をさせる請求項1に記載の空気調和装置。
  4.  前記制御装置は、前記暖房運転開始後の前記判定用温度が、あらかじめ定められた運転解除判定温度より高くなったものと判定すると、前記暖房運転を停止させる請求項1~請求項3のいずれか一項に記載の空気調和装置。
  5.  室外の温度である外気温度を検出する外気温度検出装置をさらに備え、
     前記制御装置は、前記暖房運転開始後の前記判定用温度が、前記運転解除判定温度より高く、さらに、前記外気温度が、あらかじめ定められた運転解除外気判定温度より高いものと判定すると、前記暖房運転を停止させる請求項4に記載の空気調和装置。
  6.  前記制御装置は、暖房運転開始後のサーモオフ中における前記判定用温度が、第1温度上昇したものと判定すると、前記暖房運転を停止させる請求項1~請求項3のいずれか一項に記載の空気調和装置。
  7.  前記判定用温度は、室内の温度である請求項1~請求項6のいずれか一項に記載の空気調和装置。
  8.  前記判定用温度は、体感温度である請求項1~請求項6のいずれか一項に記載の空気調和装置。
  9.  前記加熱装置は、圧縮機、凝縮器、減圧装置および蒸発器が配管接続して構成される冷媒回路の、少なくとも前記凝縮器を有する請求項1~請求項8のいずれか一項に記載の空気調和装置。
PCT/JP2016/073434 2016-08-09 2016-08-09 空気調和装置 WO2018029783A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/300,222 US10837670B2 (en) 2016-08-09 2016-08-09 Air-conditioning apparatus
EP16900771.3A EP3309470A4 (en) 2016-08-09 2016-08-09 Air conditioning device
JP2018533340A JPWO2018029783A1 (ja) 2016-08-09 2016-08-09 空気調和装置
CN201680088293.0A CN109564021A (zh) 2016-08-09 2016-08-09 空调装置
PCT/JP2016/073434 WO2018029783A1 (ja) 2016-08-09 2016-08-09 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073434 WO2018029783A1 (ja) 2016-08-09 2016-08-09 空気調和装置

Publications (1)

Publication Number Publication Date
WO2018029783A1 true WO2018029783A1 (ja) 2018-02-15

Family

ID=61161817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073434 WO2018029783A1 (ja) 2016-08-09 2016-08-09 空気調和装置

Country Status (5)

Country Link
US (1) US10837670B2 (ja)
EP (1) EP3309470A4 (ja)
JP (1) JPWO2018029783A1 (ja)
CN (1) CN109564021A (ja)
WO (1) WO2018029783A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184135A (ja) * 2018-04-06 2019-10-24 積水ハウス株式会社 小型空気調和機の制御装置、この小型空気調和機を備える住宅、および、小型空気調和機の制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880159B (zh) * 2021-02-23 2022-07-05 青岛海尔空调器有限总公司 一种下出风新风空调的控制方法和下出风新风空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255841A (ja) * 1990-03-05 1991-11-14 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH09189456A (ja) * 1996-01-10 1997-07-22 Sharp Corp 空気調和機
JPH10339496A (ja) 1997-06-06 1998-12-22 Daikin Ind Ltd 空気調和装置
JP2011208857A (ja) * 2010-03-29 2011-10-20 Daikin Industries Ltd 空調制御システム
JP2014126302A (ja) * 2012-12-27 2014-07-07 Mitsubishi Electric Corp 空気調和システム、空気調和方法及びプログラム
JP2015064119A (ja) * 2013-09-24 2015-04-09 ダイキン工業株式会社 空調システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333316A (en) * 1980-10-14 1982-06-08 General Electric Company Automatic control apparatus for a heat pump system
US4381549A (en) * 1980-10-14 1983-04-26 Trane Cac, Inc. Automatic fault diagnostic apparatus for a heat pump air conditioning system
AU567636B2 (en) * 1985-05-31 1987-11-26 Toshiba, Kabushiki Kaisha Air conditioner with temperature control
NO934439D0 (no) * 1993-12-06 1993-12-06 Aet Arbeidsmiljoe Og Energitek Anordning ved takmontert ventilasjonsanlegg
JP3118376B2 (ja) * 1994-08-19 2000-12-18 三洋電機株式会社 空気調和機
JPH08105644A (ja) * 1994-10-05 1996-04-23 Sanyo Electric Co Ltd 空気調和機
KR0175625B1 (ko) * 1996-08-02 1999-03-20 김광호 공기조화기의 루버구동제어장치 및 방법
US6681848B2 (en) * 2001-09-21 2004-01-27 Robert Louis Breeden Method and apparatus for operating a thermostat to provide an automatic changeover
JP3807305B2 (ja) * 2001-12-28 2006-08-09 ダイキン工業株式会社 空気調和機
JP2008510122A (ja) * 2004-08-11 2008-04-03 ローレンス ケーツ 冷媒サイクルシステムの監視方法及び監視装置
ATE416349T1 (de) * 2005-01-06 2008-12-15 Halton Oy Automatisches verschiebungsbelüftungssystem mit erhitzungsmodus
JP5111445B2 (ja) * 2008-09-10 2013-01-09 三菱電機株式会社 空気調和機
JP5312055B2 (ja) * 2009-01-07 2013-10-09 三菱電機株式会社 空気調和システム
JP5317883B2 (ja) 2009-08-06 2013-10-16 三菱電機株式会社 空気調和機
ES2822108T3 (es) * 2009-09-28 2021-04-29 Daikin Ind Ltd Dispositivo de control
JP2011174693A (ja) 2010-01-26 2011-09-08 Daikin Industries Ltd 空気調和装置の天井設置型室内ユニット
AU2011211125B2 (en) 2010-01-26 2013-09-19 Daikin Industries, Ltd. Ceiling-mounted indoor unit for air conditioning apparatus
JP5289392B2 (ja) * 2010-07-16 2013-09-11 三菱電機株式会社 空気調和機
JP5404548B2 (ja) * 2010-07-26 2014-02-05 三菱電機株式会社 空気調和機
JP5585556B2 (ja) 2011-08-30 2014-09-10 三菱電機株式会社 空気調和機
JP5931192B2 (ja) * 2012-06-21 2016-06-08 三菱電機株式会社 空気調和システムおよび空気調和システムの制御方法
US8600561B1 (en) * 2012-09-30 2013-12-03 Nest Labs, Inc. Radiant heating controls and methods for an environmental control system
JP6080721B2 (ja) 2013-07-31 2017-02-15 三菱電機株式会社 空気調和機
US10151505B2 (en) * 2013-12-19 2018-12-11 Mitsubishi Electric Corporation Air-conditioning apparatus
CN105805882B (zh) * 2014-12-30 2019-06-07 Tcl空调器(中山)有限公司 空调器控制方法和装置
JP6085345B2 (ja) 2015-09-07 2017-02-22 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和システム及び空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255841A (ja) * 1990-03-05 1991-11-14 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH09189456A (ja) * 1996-01-10 1997-07-22 Sharp Corp 空気調和機
JPH10339496A (ja) 1997-06-06 1998-12-22 Daikin Ind Ltd 空気調和装置
JP2011208857A (ja) * 2010-03-29 2011-10-20 Daikin Industries Ltd 空調制御システム
JP2014126302A (ja) * 2012-12-27 2014-07-07 Mitsubishi Electric Corp 空気調和システム、空気調和方法及びプログラム
JP2015064119A (ja) * 2013-09-24 2015-04-09 ダイキン工業株式会社 空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309470A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184135A (ja) * 2018-04-06 2019-10-24 積水ハウス株式会社 小型空気調和機の制御装置、この小型空気調和機を備える住宅、および、小型空気調和機の制御方法

Also Published As

Publication number Publication date
EP3309470A1 (en) 2018-04-18
US10837670B2 (en) 2020-11-17
CN109564021A (zh) 2019-04-02
US20190154291A1 (en) 2019-05-23
JPWO2018029783A1 (ja) 2019-03-28
EP3309470A4 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP2018189365A5 (ja)
KR101502096B1 (ko) 공기 조화기의 제어 방법
GB2516336A (en) Air-conditioning apparatus
US20160245569A1 (en) Air-conditioning apparatus
JP6986377B2 (ja) 空気調和機
JP4173880B2 (ja) 空気調和システムの除湿制御方法
JP2010133589A (ja) 空気調和機
JP2008064439A (ja) 空気調和装置
JP6072561B2 (ja) 空気調和システム
TW571060B (en) Air conditioner
JP2007155261A (ja) 空気調和機
JP2008281247A (ja) 空気調和機の運転制御方法
JP6138585B2 (ja) 空気調和機
JP5804689B2 (ja) 空気調和機
CN107023935B (zh) 空调系统及其停机控制方法
JP6094561B2 (ja) 空気調和機
WO2018029783A1 (ja) 空気調和装置
WO2011083517A1 (ja) ラジエータ
JPH10339500A (ja) 空気調和機
JP2009014321A (ja) 空気調和機
JP6557101B2 (ja) 空気調和機
KR20120050325A (ko) 에어컨 이슬 생성 방지 방법
JP2005043007A (ja) 多室形空気調和機の制御方法
JP2006226568A (ja) 空気調和機
JP3206245B2 (ja) 空気調和機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE