WO2018029752A1 - 光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法 - Google Patents
光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法 Download PDFInfo
- Publication number
- WO2018029752A1 WO2018029752A1 PCT/JP2016/073308 JP2016073308W WO2018029752A1 WO 2018029752 A1 WO2018029752 A1 WO 2018029752A1 JP 2016073308 W JP2016073308 W JP 2016073308W WO 2018029752 A1 WO2018029752 A1 WO 2018029752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical signal
- pbn
- node
- transmission
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 400
- 230000005540 biological transmission Effects 0.000 title claims abstract description 291
- 230000008859 change Effects 0.000 title claims description 147
- 238000000034 method Methods 0.000 title claims description 17
- 238000012508 change request Methods 0.000 claims description 35
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 11
- 238000002834 transmittance Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 22
- 238000004891 communication Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- VLCQZHSMCYCDJL-UHFFFAOYSA-N tribenuron methyl Chemical compound COC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)N(C)C1=NC(C)=NC(OC)=N1 VLCQZHSMCYCDJL-UHFFFAOYSA-N 0.000 description 1
- 208000010119 wrinkly skin syndrome Diseases 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/572—Wavelength control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0267—Optical signaling or routing
- H04J14/0271—Impairment aware routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
Definitions
- the present invention relates to an optical repeater that relays wavelength-multiplexed optical signals, a network management apparatus, an optical transmission system, and a setting change method.
- the wavelength division multiplexing optical transmission system is also called a WDM (Wavelength Division Multiplexing) system.
- WDM Widelength Division Multiplexing
- the capacity of information transmitted / received by one terminal has increased with the improvement in performance of communication terminals such as smartphones and the expansion of communication between devices, and further increase in capacity of information communication has been demanded.
- there is an increasing demand for the realization of a network that can be optimized by changing the network configuration to meet the demand for the purpose of improving the reliability of communication paths and communication devices and realizing effective use of bandwidth.
- a multi-way WDM system compatible with the flexible grid defined in Non-Patent Document 1 has been put into practical use. In the multi-way WDM system corresponding to the flexible grid, the bandwidth of each wavelength can be changed.
- Non-Patent Document 2 describes a ROADM (Reconfigurable Optical Add / Drop Multiplexer) implemented with a wavelength selective switch (WSS: Wavelength Selective Switch) capable of controlling a path in wavelength units.
- WSS Wavelength Selective Switch
- the wavelength selective switch can arbitrarily change the relationship between the wavelength and the port, and can also arbitrarily change the transmission frequency band.
- ITU-T G. 694.1 “Wavelength-Selective Switches for ROADM Applications”, T.A.Strasser, Member, IEEE, and J.L.Wagener, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.16, NO.5, SEPTEMBER / OCTOBER 2010.
- the above-described wavelength selective switch is generally used. Since the wavelength selective switch assigns a port for each transmission frequency band, when a signal and its adjacent signal are specified as different ports, the signals are separated due to steep transmission spectrum characteristics between the signals. Is required. However, it is difficult to achieve ideal transmission spectrum characteristics, and band limitation occurs in which the spectral component of the signal is deleted near the end of the transmission frequency band. This phenomenon of bandwidth limitation is also called PBN (Pass-Band Narrowing). When PBN occurs, signal quality degradation such as an increase in signal error rate occurs. There is a possibility that the signal is subjected to PBN corresponding to the number of relay nodes that pass through, and signal quality degradation due to PBN accumulates.
- PBN Pass-Band Narrowing
- the present invention has been made in view of the above, and an object thereof is to obtain an optical repeater capable of improving communication quality while avoiding a decrease in transmission capacity.
- the present invention provides an optical transmission network including an optical transmission network formed by a plurality of optical relay devices and a network management device that manages the optical transmission network.
- the optical repeater includes an optical signal generation unit that can generate an optical signal having a specific wavelength, a wavelength selection switch that can switch a route in units of wavelengths, and a control unit that controls the optical signal generation unit.
- the control unit receives from the network management device information about the number of times of bandwidth limitation that is generated when the optical signal generated by the optical signal generation unit passes through another optical repeater, the received information Based on the above, the setting of the optical signal generator is changed to adjust the frequency of the optical signal.
- the optical repeater according to the present invention has an effect that communication quality can be improved while avoiding a decrease in transmission capacity of the optical transmission system.
- FIG. 1 is a diagram illustrating an example of an optical transmission system according to a first embodiment
- the figure for explaining the band limitation which occurs in the wavelength selective switch Diagram for explaining the bandwidth limitation that occurs when the wavelength selective switch setting is changed 1 is a diagram illustrating a configuration example of a network management device and an optical repeater configuring an optical transmission system according to a first embodiment
- the figure for demonstrating the optical signal and relay node from which the generation condition of PBN changes with a setting change 1 is a flowchart showing an operation example of a network management apparatus according to a first embodiment;
- FIG. FIG. 10 is a diagram illustrating an example of a transmission compensation reference table held by the transmission-side node according to the first embodiment.
- FIG. 3 is a diagram showing STEP [1] of the operation outline of the optical transmission system according to the first embodiment
- FIG. 3 is a diagram showing STEP [2] of the operation outline of the optical transmission system according to the first embodiment
- FIG. 3 is a diagram showing STEP [3] in the operation outline of the optical transmission system according to the first embodiment
- FIG. 4 is a diagram showing STEP [4] in the operation outline of the optical transmission system according to the first embodiment
- FIG. 5 is a diagram showing STEP [5] of the operation outline of the optical transmission system according to the first embodiment
- FIG. 3 is a diagram showing STEP [1] of the operation outline of the optical transmission system according to the first embodiment
- FIG. 3 is a diagram showing STEP [2] of the operation outline of the optical transmission system according to the first embodiment
- FIG. 3 is a diagram showing STEP [3] in the operation outline of the optical transmission system according to the first embodiment
- FIG. 4
- FIG. 1 is a diagram illustrating an example of a hardware configuration of each device configuring an optical transmission system according to a first embodiment; The figure which shows an example of the transmission side compensation which the transmission side node concerning Embodiment 2 implements. The figure which shows an example of the transmission side compensation which the transmission side node concerning Embodiment 3 implements.
- FIG. 1 is a diagram illustrating an example of an optical transmission system according to a first embodiment of the present invention.
- An optical transmission system 100 according to the first embodiment is a multi-way WDM system (multi-path wavelength division multiplexing transmission system) compatible with a flexible grid, and includes a network management device 1 and nodes 2 to 6 that are optical repeaters. ing.
- the nodes 2 to 6 include wavelength selective switches (WSS).
- WSS wavelength selective switches
- the number of nodes and the connection relationship between the nodes are examples, and are not limited to those shown in FIG. Nodes 2 to 6 are connected to one or more other nodes via an optical transmission path to form an optical transmission network.
- the node 2 is connected to the node 3, and the node 3 is connected to the node 2, the node 4, and the node 5.
- Node 4 is connected to nodes 3 and 6, and node 5 is connected to nodes 3 and 6.
- Node 6 is connected to nodes 4 and 5.
- the network management apparatus 1 and each of the nodes 2 to 6 are connected via a control communication line (not shown).
- the network management device 1 is a device that manages the optical transmission network, and has a function of changing the settings of the nodes 2 to 6 forming the optical transmission network.
- the nodes 2 to 6 output the input optical signal to a predetermined optical transmission line.
- the output destination for each optical signal is instructed from the network management device 1.
- FIG. 2 is a diagram for explaining the bandwidth limitation that occurs in the WSS.
- the WSS divides the input four optical signals into CH # 1 and # 2, and CH # 3 and # 4, and outputs them to two routes from different output ports.
- a signal near the end of the transmission frequency band of each output port is subjected to band limitation.
- the CH # 2 optical signal and the CH # 3 optical signal that are adjacent to each other before being relayed are subjected to band limitation.
- the high frequency side (HF: Higher Frequency) of the CH # 2 optical signal is band-limited
- the low frequency side (LF: Lower Frequency) of the CH # 3 optical signal is band-limited.
- FIG. 2 shows an example in which the CH # 2 optical signal and the CH # 3 optical signal are subjected to band limitation.
- the low frequency of the CH # 1 optical signal may be subject to band limitation.
- FIG. 3 is a diagram for explaining the bandwidth limitation that occurs when the WSS setting is changed.
- the optical transmission system when the optical signal of each frequency to which WSS is input is divided into two or more and output from different output ports, the lowest frequency side of the optical signals that are to be output from different output ports There is a possibility that the optical signal at the highest frequency and the optical signal at the highest frequency side are subjected to band limitation.
- the node and the optical signal in which band limitation occurs due to the influence of the setting change are specified. Then, the influence of the band limitation is reduced by changing the setting of the node transmitting the specified optical signal.
- FIG. 4 is a diagram of a configuration example of the network management device and the optical repeater that configure the optical transmission system according to the first embodiment.
- the optical transmission system 100 shown in FIG. 4 includes a network management device 10 corresponding to the network management device 1 shown in FIG. 1, and optical repeaters 20 and 30-1 to 30-1 corresponding to the nodes 2 to 6 shown in FIG. 30-n.
- n is an integer of 2 or more.
- the optical repeater 20 and the optical repeaters 30-1 to 30-n are the same device, but in FIG. 4, for convenience of explanation, different reference numerals are attached. This is because, in this embodiment, the optical repeater 20 operates as a transmission node that is a node that transmits an optical signal, and the optical repeaters 30-1 to 30-n receive the optical signal received from a certain route in the other direction. This is for explaining an example in the case of operating as a relay node for transferring to the optical repeater.
- the optical repeater 20 that is a transmission side node, only components necessary for transmitting an optical signal, that is, components necessary for operating as a transmission side node are described.
- the optical repeaters 30-1 to 30-n which are relay nodes, describe only components necessary for relaying optical signals, that is, components necessary for operating as a relay node.
- the optical repeater 20 may be referred to as a transmission-side node 20, and the optical repeaters 30-1 to 30-n may be referred to as repeater nodes 30-1 to 30-n.
- the relay node 30 When there is no need to distinguish between the relay nodes 30-1 to 30-n, these are collectively referred to as the relay node 30.
- the transmitting side node 20 and the relay nodes 30-1 to 30-n may be collectively referred to simply as “nodes”.
- the network management device 10 monitors and manages the state of the optical transmission network formed by the transmission side node 20 and the relay nodes 30-1 to 30-n, and controls the node setting of each node.
- the node setting is a setting relating to an optical signal relaying operation, such as which optical signal of which wavelength each node outputs to which output port. When considering the entire optical transmission system, it can be said that the setting is related to the transmission path of each transmitted optical signal.
- the relay node 30 is arranged at a relay point of the optical transmission network, and performs compensation for power loss and the like generated in the transmission path, signal path control, signal insertion and branching.
- the transmission side node 20 is a node to be subjected to transmission side compensation when changing the node setting among the nodes forming the optical transmission network.
- the transmission side compensation is processing for reducing PBN generated in the optical transmission network.
- a signal transmitted from the transmission side node 20 propagates through the transmission path, is relayed by several relay nodes 30, and is branched or received at the node located at the end on the transmission path.
- the network management device 10 includes a node setting change request receiving unit 11, a state change node calculating unit 12, a normal node control unit 13, a PBN generating node control unit 14, a PBN generating node notifying unit 15, and a PBN number calculating unit 16.
- the node setting change request receiving unit 11 receives a node setting change request from an external network administrator or the like.
- the node setting change is to change the parameter settings related to the relay operation of each node. For each node, the setting of which wavelength optical signal is output to which output port and which wavelength optical signal is selected. Change settings such as whether to receive at the input port.
- the node setting change request corresponds to an optical signal path change request in the optical transmission network.
- the node setting change request receiving unit 11 is a request receiving unit that receives an optical signal path change request in an optical transmission network.
- the state change node calculation unit 12 is a node where the occurrence state of PBN changes, specifically, a node that changes from a state where no PBN occurs due to a node setting change to a state where a PBN occurs, and a PBN that changes according to a node setting change. And a node that changes from a state in which PBN occurs to a state in which PBN does not occur.
- the state change node calculation unit 12 calculates, for each optical signal, a node whose PBN occurrence state has changed. That is, the state change node calculation unit 12 calculates which node among the nodes located on the transmission path of each optical signal changes based on the contents of the node setting change.
- the state change node calculation unit 12 is a band limit occurrence frequency calculation unit.
- the normal node control unit 13 issues a setting change command to a node in which no PBN has occurred.
- the PBN generation node control unit 14 issues a setting change command to the node where the PBN is generated.
- the relay node 30-1 is a normal node and the relay node 30-n is a PBN generation node, and the normal node control unit 13 issues a change command to the relay node 30-1.
- the PBN generation node control unit 14 issues a change command to the relay node 30-n.
- the normal node control unit 13 and the PBN generation node control unit 14 constitute a setting change unit.
- the PBN generation node number notification unit 15 notifies the transmission side node 20 of the number of PBN generation nodes indicating the calculation result of the state change node calculation unit 12.
- the PBN frequency calculation unit 16 calculates and holds the number of occurrences of PBN for each signal every time the setting of each node is changed.
- the PBN generation node number notifying unit 15 notifies the transmission side node 20 of the number of PBN generation nodes
- the PBN frequency calculation unit 16 notifies the transmission side node 20 of the number of occurrences of PBN for each signal held. .
- the PBN generation node number notifying unit 15 and the PBN number calculating unit 16 constitute an information transmitting unit.
- the node setting change request accepting unit 11 sets or changes the destination and path of each optical signal and sets each light for each node as a node setting change request from a network administrator or a maintenance business operator.
- Input information for signal insertion and branch setting or change is received.
- the received input information is passed to the state change node calculation unit 12 as node setting change information.
- the state change node calculation unit 12 calculates an optical signal and a relay node in which the occurrence status of the PBN changes with the setting change of each relay node based on the node setting change information received from the node setting change request reception unit 11.
- An optical signal and a relay node in which the PBN occurrence state changes with a setting change will be described with reference to FIG.
- FIG. 5 is a diagram for explaining an optical signal and a relay node in which a PBN occurrence state changes with a setting change. In the case shown in FIG. 5, specifically, in the relay node that relays each optical signal of CH # 1 to CH # 5 continuous on the frequency axis, the optical signals of CH # 1 to CH # 2 are the first ones.
- the settings are changed from the state where the optical signals of CH # 3 to # 5 are transmitted through the output port and the optical signals of CH # 3 to # 5 are transmitted through the second output port (the state shown in the upper part of FIG. 5), and CH # 1 to CH # 3
- the optical signal changes to a state (the state shown in the lower part of FIG. 5) in which the optical signals of CH # 4 to # 5 pass through the first output port and pass through the second output port.
- the optical signal of CH # 2 is not the optical signal closest to the end of the transmission frequency band
- the optical signal of CH # 4 becomes the optical signal closest to the end of the transmission frequency band.
- the optical signals of CH # 2 and CH # 4 correspond to “optical signals in which the occurrence of PBN changes”.
- the CH # 3 optical signal is the optical signal closest to the low-frequency end of the transmission frequency band of the second output port before the setting change, but after the setting change, the first output port The optical signal closest to the end of the transmission frequency band on the high frequency side. That is, with the setting change, the PBN is canceled on the low frequency side of the CH # 3 optical signal, and the PBN is generated on the high frequency side.
- the optical signal of CH # 3 also corresponds to “an optical signal in which the occurrence of PBN changes”.
- a relay node that causes a change in the PBN occurrence status in at least one of the optical signals to be relayed due to the setting change that is, a relay node that causes the change as shown in FIG.
- a relay node that causes the change as shown in FIG. Corresponds to “relay node whose situation changes”.
- the state change node calculation unit 12 further does not correspond to the PBN generation node where the PBN is newly generated, the PBN cancellation node where the PBN is newly canceled, and the PBN generation node and the PBN cancellation node, but the node setting change And the setting change target node that is the target of the calculation, and the correlation is performed in signal units. That is, the state change node calculation unit 12 determines, for each optical signal, which of the PBN generation node, the PBN elimination node, and the setting change target node corresponds to each node located on the transmission path.
- the state change node calculation unit 12 changes the PBN occurrence status on both the LF side and the HF side. calculate.
- the setting change target node for example, a node that relays the optical signals of CH # 1 to CH # 3 transmits the optical signals of CH # 1 to CH # 3 through the first output port. This corresponds to a node that changes the optical signals of # 1 to CH # 3 to a setting that transmits the second output port.
- the output destination ports of the optical signals of CH # 1 to CH # 3 are changed, but before and after the setting change, the optical signals of CH # 1 and CH # 3 close to both ends of the transmission frequency band are used.
- the situation in which PBN occurs more specifically, the situation in which PBN occurs on the low frequency side of the CH # 1 optical signal and the high frequency side of the CH # 3 optical signal does not change, and even if a new PBN occurs No PBN has been resolved.
- the optical signal and the relay node information that the PBN occurrence status changes calculated by the state change node calculation unit 12 are sent to the normal node control unit 13, the PBN generation node control unit 14, and the PBN generation node number notification unit 15.
- the normal node control unit 13 When the normal node control unit 13 receives from the state change node calculation unit 12 the optical signal and the relay node information whose PBN occurrence state changes, the normal node control unit 13 generates a control command for the relay nodes other than the PBN generation node based on the received information. To the corresponding relay node.
- the PBN generation node control unit 14 receives from the state change node calculation unit 12 the optical signal and the relay node information in which the PBN generation state changes, the PBN generation node control unit 14 generates a control command for the PBN generation node based on the received information. To the relay node.
- the PBN generation node number notifying unit 15 When the PBN generation node number notifying unit 15 receives from the state change node calculation unit 12 the optical signal and the relay node information in which the PBN generation state changes, the PBN generation node number notification unit 15 transmits the received information to the transmission side node 20.
- the PBN occurrence node number notifying unit 15 may transmit the information received from the state change node calculating unit 12 as it is to each transmitting side node 20, or may analyze the received information and be necessary for each transmitting side node 20. You may make it transmit to each transmission side node 20, after classifying into information. For example, the PBN generation node number notifying unit 15 may extract information on the optical signal of CH # 1 from the received information and transmit the information to the transmitting side node 20 that transmits the optical signal of CH # 1. .
- the PBN frequency calculation unit 16 calculates the number of PBNs currently received by each optical signal transmitted through the optical transmission network in units of optical signals by dividing them into LF and HF. That is, the PBN frequency calculation unit 16 calculates the number of times PBN is generated on the LF side and the number of times PBN is generated on the HF side for each optical signal.
- the PBN count calculator 16 receives the update completion notification from the relay node when the node setting is changed, and the number of occurrences of PBN on the LF side (hereinafter referred to as PBN occurrence count (LF)) and the HF side.
- PBN occurrence count LF
- the number of occurrences of PBN (hereinafter referred to as the number of occurrences of PBN (HF)) and an optical signal are calculated, and the calculated number of occurrences of PBN (LF) and the number of occurrences of PBN (HF) for each optical signal are the latest PBN occurrences. Hold as a count.
- the number of PBN occurrences (LF) of each optical signal is the number of PBN actually generated on the LF side of the corresponding optical signal, that is, the number of PBNs on the LF side that the optical signal is actually received on the transmission path. Show.
- the number of PBN occurrences (HF) of each optical signal is the number of PBN actually generated on the HF side of the corresponding optical signal, that is, the number of PBN on the HF side that the optical signal is actually received on the transmission path. Show. In the following description, the number of occurrences of PBN (LF) and the number of occurrences of PBN (HF) may be collectively referred to as “number of occurrences of PBN (LF / HF)”.
- the transmission-side node 20 includes a transmission-side compensation control unit 21, a transmission-side compensation update completion notification unit 22, an optical transmission device 23, and a transmission-side wavelength selective switch (WSS) 24.
- the transmission side node 20 generates an optical signal having a specific frequency and sends it to the optical transmission line.
- the transmission-side compensation control unit 21 is a control unit that controls the optical transmission device 23 and the transmission-side wavelength selection switch 24, and based on information received from the network management device 10, the optical transmission device 23 and the transmission-side wavelength selection switch 24. Of the optical signal transmitted from the transmission side node 20 is compensated.
- the information received from the network management device 10 by the transmission-side compensation control unit 21 is information on the number of PBN generated when an optical signal passes through another optical repeater, and this information includes the number of PBN occurrences (LF / HF).
- the transmission side compensation update completion notifying unit 22 performs network management that the transmission side compensation is completed when the transmission side compensation is completed by the transmission side compensation control unit 21 controlling at least one of the optical transmission device 23 and the transmission side WSS 24. The device 10 is notified.
- the optical transmission device 23 is a device for generating an optical signal and sending it to a network, and includes a light source 25 capable of generating light of a specific wavelength.
- the light source 25 can adjust the carrier frequency, and is realized by, for example, a laser diode (LD).
- the optical transmission device 23 is an optical signal generation unit capable of generating an optical signal having a specific wavelength.
- a plurality of optical transmission devices are installed in each node, and a plurality of optical signals having different carrier frequencies generated by the transmission devices are transmitted to the network.
- the transmission side node 20 includes a plurality of optical transmission devices 23.
- the optical signal generated by each of the plurality of optical transmission devices 23 passes through the transmission side WSS 24 and is transmitted to each route.
- the transmission-side WSS 24 sends the optical signal generated by the optical transmission device 23 to a route determined for each optical signal.
- the relay node 30 includes a node setting change control unit 31, a node setting change completion notification unit 32, and a relay node side wavelength selective switch (WSS) 33.
- the relay node 30 receives a WDM optical signal, which is an optical signal in a wavelength-multiplexed state, from another relay node 30 or the transmission side node 20 and relays the received WDM optical signal to the other relay node 30.
- the relay node 30 performs an insertion process that is a process of adding an optical signal to the WDM optical signal and a branch that is a process of extracting a part or all of the optical signal from the WDM optical signal.
- One or both of the treatments can be performed.
- the relay node side WSS 33 switches the path of the optical signal passing through the relay node 30, inserts the optical signal into the optical signal passing through the relay node 30, and part of the optical signal included in the optical signal passing through the relay node 30. Or used to branch everything.
- one or more relay node side WSSs 33 are used depending on the route to which the relay node 30 is connected and the function realized by the relay node 30.
- the node setting change control unit 31 changes the setting of the relay node side WSS 33 based on the node setting change command received from the network management apparatus 10.
- the node setting change completion notification unit 32 notifies the network management apparatus 10 that the setting change on the relay node 30 side has been completed.
- the transmission side node 20 updates the setting for the transmission side compensation in advance, and the signal by the PBN is updated.
- the operation for reducing the quality deterioration will be described with reference to FIGS.
- FIG. 6 is a flowchart of an operation example of the network management apparatus 10 according to the first embodiment. As shown in FIG. 6, the operation executed by the network management apparatus 10 is always a loop flow, and the process between the loop start and the loop end is repeated.
- the network management device 10 checks whether or not a notification of completion of node setting change has been received from the managed relay node (step S1). Since the network management device 10 has not issued a node setting change command to any of the transmission side node 20 and each relay node 30 immediately after the operation is started, the determination result in step S1 is “No”. Become. If the node setting change completion notification has not been received (step S1: No), the network management apparatus 10 checks whether there is a node setting change request that occurs when switching the optical signal path or the like (step S3). ). In step S3, the node setting change request receiving unit 11 confirms whether or not a node setting change request has been received from a network administrator or the like. When there is no node setting change request (step S3: No), the process returns to step S1.
- step S4 the network management device 10 calculates an optical signal and a relay node in which the PBN occurrence state changes (step S4).
- step S4 the state change node calculation unit 12 calculates the above-described optical signal and relay node in which the PBN occurrence state changes in accordance with the setting change of each node.
- the state change node calculation unit 12 specifies the PBN occurrence status for each of the LF side and the HF side of each optical signal, and the number of relay nodes in which the PBN occurs Is calculated.
- the number of PBN generation nodes on the LF side is the number of PBN generation nodes (LF), and the number of PBN generation nodes on the HF side is the number of PBN generation nodes (HF).
- the number of PBN generation nodes (LF) of each optical signal is the number of PBN newly generated on the LF side of the corresponding optical signal, that is, the node setting change has not occurred but is completed at the present time. Accordingly, the number of PBN generated on the LF side is shown.
- the number of PBN generation nodes (HF) of each optical signal is the number of PBN newly generated on the HF side of the corresponding optical signal, that is, the node setting change has not occurred but is completed at the present time.
- the number of PBN generated on the HF side is shown.
- the number of PBN generation nodes (LF) and the number of PBN generation nodes (HF) may be collectively referred to as “number of PBN generation nodes (LF / HF)”.
- step S5 the network management device 10 transmits a node setting change command to all nodes other than the PBN generation node (step S5).
- This step S5 is executed by the normal node control unit 13.
- the normal node control unit 13 receives node setting change information indicating the contents of the node setting change request received from the network administrator or the like from the state change node calculation unit 12, and issues a node setting change command based on the node setting change information. Generate.
- the network management device 10 transmits the number of PBN generation nodes (LF / HF) and the number of PBN generations (LF / HF) to the transmission side node of the optical signal generated by PBN (step S6).
- the number of PBN generation nodes (LF / HF) transmitted in step S6 is the number of PBN generation nodes (LF) and the number of PBN generation nodes (HF) calculated by the state change node calculation unit 12 in step S4.
- the PBN occurrence count (LF / HF) transmitted in step S6 is the PBN occurrence count (LF / HF) for each optical signal calculated and held by the PBN count calculation unit 16.
- step S6 the PBN generation node number notifying unit 15 transmits the PBN generation node number (LF / HF), and the PBN number calculation unit 16 transmits the PBN generation number (LF / HF).
- the transmission side node receives the number of PBN generation nodes (LF / HF) and the number of PBN generations (LF / HF) transmitted by the network management device 10 in step S6, the transmission side node performs transmission side compensation based on the received information. Change the settings for In addition, when the setting change for the transmission side compensation is completed, the transmission side node notifies the network management apparatus 10 to that effect.
- the network management device 10 performs transmission side compensation from all the transmission side nodes as transmission destinations of the number of PBN generation nodes (LF / HF) and the number of PBN generations (LF / HF) in step S6. It is confirmed whether or not a notification indicating that the setting has been changed, that is, the update has been completed is received (step S7). In this step S7, the network management apparatus 10 confirms whether or not the notification that the setting update for the transmission side compensation has been completed has been performed from all of the target transmission side nodes within a certain period of time.
- step S7: No If there is a transmission-side node that has not received a notification that the setting update for transmission-side compensation has been completed even after the time has elapsed (step S7: No), the process returns to step S1. Thereby, the node setting change of the PBN generation node is not performed until the notification is received.
- the notification that the setting update for the transmission side compensation has been completed is completed within a predetermined time from all the target transmission side nodes (step S7: Yes)
- the network management device 10 performs the transmission side compensation.
- the node setting update command is transmitted to the PBN generation node of the optical signal transmitted from the transmitting side node that has completed the setting update (step S8). This step S8 is executed by the PBN generation node control unit 14.
- Step S8 After executing Step S8, the process returns to Step S1. Thereafter, when the node setting change completion notification is received from the partner PBN generation node that has transmitted the node setting change command in step S8 (step S1: Yes), the network management apparatus 10 performs the PBN generation node in units of optical signals. The number (LF / HF) and the number of PBN occurrences (LF / HF) are updated, and the update result is transmitted to the corresponding transmitting side node (step S2). That is, the network management apparatus 10 updates the number of PBN generation nodes (LF / HF) and the number of PBN generations (LF / HF) of each optical signal, and the number of PBN generation nodes (LF / HF) of each optical signal after the update.
- step S2 the network management apparatus 10 updates the number of PBN generation nodes (LF / HF) and the number of PBN generations (LF / HF) of each optical signal, and the number of PBN generation nodes (LF / HF) of each optical
- the corresponding transmission side node is a transmission side node that transmits an optical signal in which the number of PBN generation nodes (LF / HF) and the number of PBN generations (LF / HF) are updated.
- the state change node calculation unit 12 updates the held number of PBN generation nodes (LF / HF)
- the PBN number calculation unit 16 updates the held number of PBN generations (LF / HF). Update.
- the PBN generation node number notifying unit 15 transmits the updated number of PBN generation nodes (LF / HF) to the corresponding transmitting side node, and the PBN number calculation unit 16 indicates the updated number of PBN generations (LF / HF). Send to the corresponding sender node.
- FIG. 7 is a flowchart of an operation example of the transmission side node 20 according to the first embodiment.
- transmission side compensation is performed using the PBN occurrence count (LF / HF) received and held in the past from the network management device 10 (step S21). .
- the transmission side node 20 compares the number of PBN occurrences (LF / HF) with a transmission compensation reference table, and performs transmission side compensation by adjusting the frequency of the optical signal to be transmitted.
- FIG. 8 is a diagram illustrating an example of a transmission compensation reference table.
- the transmission compensation reference table shown in FIG. 8 includes the number of PBN occurrences and the corresponding adjustment amount.
- the number of PBN occurrences corresponds to the addition result of the number of PBN occurrences and the number of PBN occurrence nodes, but since the node setting has not changed and the PBN occurrence node is 0 at the time of executing step S21, PBN The number of occurrences (LF / HF) corresponds to the number of PBN occurrences.
- the adjustment amount is an adjustment amount related to the frequency of the optical signal to be adjusted.
- the transmission side compensation control unit 21 instructs the optical transmission device 23 to change the oscillation frequency of the light source 25 and adjusts the frequency of the optical signal to be transmitted.
- the transmission-side compensation control unit 21 compares the PBN occurrence frequency (LF) and the PBN occurrence frequency (HF) with the transmission compensation reference table, adjusts the frequency of the optical signal to be transmitted, and performs transmission-side compensation. Do. That is, the transmission-side compensation control unit 21 performs transmission-side compensation based on the PBN occurrence count (LF) and transmission-side compensation based on the PBN occurrence count (HF).
- FIG. 9 is a diagram of an example of transmission side compensation performed by the transmission side node according to the first embodiment.
- FIG. 9 shows a PBN on the low frequency side (LF side) generated in the relay node 30 on the transmission path when the transmission side node 20 generates and transmits the optical signal of CH # 1 and the optical signal of CH # 2. The example which compensates for is shown.
- FIG. 9 shows an operation example when the transmission side compensation is not performed in the upper stage and an operation example when the transmission side compensation is performed in the lower stage.
- the state of the optical signal of CH # 1 and the optical signal of CH # 2 transmitted from the transmission side node is on the left side
- the optical signal of CH # 1 passing through the relay node in the middle of the transmission path and
- the state of the optical signal of CH # 2 is shown in the center
- the state of the optical signal of CH # 1 and the optical signal of CH # 2 when the receiving side node receives are shown on the right side.
- the transmission side node 20 performs transmission side compensation by shifting the frequency of the optical signal of CH # 1 to the high frequency side.
- the transmission side compensation is not performed, as shown in the upper part of FIG. 9, when the optical signal of CH # 1 passes through the relay node, PBN is generated on the low frequency side.
- PBN can be reduced by performing transmission-side compensation and adjusting the frequency of the optical signal of CH # 1 to the high frequency side.
- the optical signal is shifted to the high frequency side in order to compensate for the PBN generated on the low frequency side.
- the signal is shifted to the low frequency side by an adjustment amount corresponding to the number of PBN occurrences (HF).
- the transmission side node 20 starts communication with the reception side node, that is, the last node located on the optical signal transmission path (step S22).
- the transmission side node 20 confirms whether or not the number of PBN occurrences (LF / HF) and the number of PBN occurrence nodes (LF / HF) are received from the network management device 10 (step S23).
- step S23 it is confirmed whether or not the number of PBN occurrences (LF / HF) and the number of PBN occurrence nodes (LF / HF) transmitted from the network management apparatus 10 in step S6 shown in FIG. 6 have been received.
- This step S23 is executed by the transmission-side compensation control unit 21.
- Step S23 When the transmission side compensation control unit 21 does not receive the number of PBN occurrences (LF / HF) and the number of PBN generation nodes (LF / HF) from the network management device 10 (Step S23: No), Step S23 is repeated.
- the transmission side compensation control unit 21 receives the number of received PBN occurrence nodes (LF / HF) and the number of PBN occurrences (LF / HF) are added, and the transmission side compensation setting is updated based on the addition result (step S24).
- the transmission side compensation control unit 21 adds the number of PBN generation nodes (LF) and the number of PBN generations (LF) to obtain the number of LF side PBN generations, and also calculates the number of PBN generation nodes (HF).
- the number of PBN occurrences (HF) is added to determine the number of HF side PBN occurrences, and transmission side compensation is performed using these addition results (number of LF side PBN occurrences, number of HF side PBN occurrences).
- the transmission side compensation control unit 21 adds the number of PBN generation nodes (LF) and the number of PBN generations (LF) for each optical signal.
- the transmission side compensation control unit 21 calculates the number of LF side PBN occurrences and the number of HF side PBN occurrences of this signal. To perform transmission side compensation. That is, the transmission side compensation control unit 21 compares the number of LF side PBN occurrences and the number of HF side PBN occurrences with the transmission compensation reference table, and determines the adjustment direction and adjustment amount of the frequency of the optical signal.
- the adjustment direction is the direction from the LF side to the HF side when the number of LF side PBN occurrences is larger than the number of HF side PBN occurrences, and the opposite direction is the opposite direction.
- the number of LF side PBN generations and the number of HF side PBN generations are the same, it is not necessary to adjust.
- the number of PBN occurrences (LF / HF) and the number of PBN generation nodes (LF / HF) are received from the network management apparatus 10, and the transmission side compensation control unit 21 adds them.
- the management apparatus 10 may perform addition processing and transmit the addition result (the number of LF side PBN occurrences and the number of HF side PBN occurrences) to the transmission side compensation control unit 21 of the transmission side node 20.
- the transmission side node 20 confirms whether or not the update of the transmission side compensation has been completed (step S25). If the update has not been completed (step S25: No), the process returns to step 23. When the update is completed (step S25: Yes), the transmission side node 20 notifies the network management device 10 of the completion of update of the transmission side compensation setting (step S26), and returns to step S23.
- FIGS. 10 to 14 are diagrams illustrating an example of an operation outline of the optical transmission system according to the first embodiment.
- the examples shown in FIGS. 10 to 14 show a state in which a signal is transmitted from a transmission side node and passes through relay nodes #A to #E.
- “operator input” means that a network administrator, a maintenance company, or the like inputs a signal destination or the like to change the setting of the transmission path of each optical signal in the optical transmission network.
- LF low frequency
- FIG. 10 shows the operation of STEP [1]
- FIG. 11 shows the operation of STEP [2] following STEP [1]
- FIG. 12 shows the operation of STEP [3] following STEP [2]
- FIG. Shows the operation of STEP [4] following STEP [3]
- FIG. 14 shows the operation of STEP [5] following STEP [4].
- the PBN occurrence state before the operator input is performed in STEP [1] shown in FIG. 10 is that the PBN is generated on the LF side of the relay node #A, and the LF side of the other relay nodes #B to #E. In this state, no PBN is generated. The number of PBN occurrences (LF) at this time is “1”. If there is an operator input in this state, the network management apparatus calculates how the PBN occurrence status changes in accordance with the operator input. In the example shown in the figure, the network management apparatus changes the occurrence status of the PBN of the optical signal of CH # 1, and the PBN at the relay node #A is eliminated, while the PBN is generated at the relay nodes #C and #D. Calculate that. As a result, the number of PBN generation nodes (LF) becomes “+2”.
- the network management device transmits a node setting change command for a relay node other than the PBN generation node.
- the network management apparatus transmits a node setting change command to the relay nodes #A and #B to instruct the node setting change, and further, the number of occurrences of PBN to the transmitting side node 1 (LF) and the number of PBN generation nodes (LF) are notified.
- the relay node #E corresponds to a node that does not correspond to the PBN generation node but does not need to change the node setting, and a node setting change command is not transmitted from the network management apparatus.
- the relay nodes #A and #B When the relay nodes #A and #B receive the node setting change command, they change the node setting. When this is completed, the PBN on the LF side generated in the relay node #A is eliminated. As a result, the PBN occurrence status is such that no PBN is generated on the LF side of the relay nodes #A to #E.
- the relay nodes #C and #D are relay nodes (PBN generation nodes) where a new PBN is generated, but since the node setting change of the relay nodes #C and #D has not been completed at this time, the relay nodes No PBN is generated on the LF side of #C and #D.
- the relay nodes #A and #B transmit a node setting change completion notification to the network management device.
- the transmission side node upon receiving notification of the PBN occurrence count (LF) and the PBN occurrence node count (LF), the transmission side node performs transmission side compensation based on the PBN occurrence count (LF) and the PBN occurrence node count (LF).
- the transmission side node shifts the frequency of the optical signal of CH # 1 to the high frequency side by 0.6 GHz.
- the transmission side node transmits an update completion notification of the transmission side compensation to the network management device.
- the network management apparatus 10 receives the node setting change completion notification from all of the relay nodes other than the PBN generation node, and sets the PBN occurrence count (LF) to “ Update to "0". This is because the PBN that has occurred in the relay node #A due to the completion of the node setting change is eliminated. Thereafter, upon receiving a notification of completion of transmission side compensation update from the transmission side node, the network management device 10 transmits a node setting change command to the relay nodes #C and #D that are PBN generation nodes.
- LF PBN occurrence count
- Relay nodes #C and #D change the node setting upon receiving a node setting change command.
- relay nodes #C and #D Upon completion of this, relay nodes #C and #D generate PBN on the LF side of the optical signal of CH # 1.
- the PBN occurrence status is such that no PBN is generated on the LF side of the relay nodes #A, #B and #E, and PBN is generated on the LF side of the relay nodes #C and #D.
- the relay nodes #C and #D transmit a node setting change completion notification to the network management device.
- the network management apparatus 10 calculates how the occurrence of PBN changes in accordance with operator input, as in STEP [1] above. In the illustrated example, the network management apparatus calculates that the PBN occurrence state of the optical signal of CH # 1 changes, and that PBN is also generated at the relay node #E in addition to the relay nodes #C and #D. . As a result, the number of PBN generation nodes (LF) becomes “+3”.
- the network management apparatus 10 when the network management apparatus 10 receives a node setting change completion notification from the relay nodes #C and #D, the network management apparatus 10 sets the number of PBN generation nodes (LF) to “+1”. And the number of occurrences of PBN (LF) is updated to “+2”. Furthermore, the network management device 10 notifies the transmission side node of the number of PBN occurrences (LF) and the number of PBN occurrence nodes (LF). Upon receiving this notification, the transmission side node performs transmission side compensation based on the number of PBN occurrences (LF) and the number of PBN generation nodes (LF).
- the transmission side node shifts the frequency of the optical signal of CH # 1 from the default position, that is, from the frequency when the transmission side compensation is not performed, to 0.9 GHz.
- the transmission side node transmits an update completion notification of the transmission side compensation to the network management apparatus 10.
- a process for transmitting a setting change command to the relay node, a new PBN occurrence location and a cancellation location, that is, a relay node in which a PBN is newly generated and a relay node in which the PBN is eliminated are set as the LF side for each optical signal. Calculation is performed separately for the HF side, and each optical signal is generated and transmitted using the calculation results (number of PBN generation nodes (LF / HF) and number of PBN generations (LF / HF)) as information used in transmission side compensation.
- FIG. 15 is a diagram for explaining the effect of the optical transmission system according to the first embodiment.
- FIG. 15 is a diagram illustrating an example of a penalty that is the degradation amount of the signal quality of CH # 1 when the transmission-side compensation illustrated in FIG. 9 is performed.
- the signal quality penalty with respect to the oscillation frequency (relative value) of the light source 25 is shown as a relative value. Penalties are taken into account those caused by interference from adjacent signals and those caused by PBN at the relay node.
- the oscillation frequency of the light source 25 is moved in the positive direction, that is, on the high frequency side, a penalty due to interference from adjacent signals becomes main.
- the oscillation frequency of the light source 25 is moved in the negative direction, that is, on the low frequency side, the penalty due to PBN becomes main.
- the number of occurrences of PBN (LF) is 1, and the oscillation frequency of the light source 25 is set in the vicinity of the optimum value of -1 GHz according to this. It is understood that when the node setting is changed in this state and the LF side PBN increases to 3, the penalty due to the PBN increases greatly.
- the transmission side compensation is performed before the node setting is changed, an excessive penalty is generated by adjusting the oscillation frequency of the light source 25 to around -0.5 GHz before the PBN occurrence frequency (LF) increases. Can be prevented.
- the network management apparatus 10 calculates the number of PBN occurrences (LF / HF) and the number of PBN occurrence nodes (LF / HF) and notifies the transmission side node.
- the transmission side node calculates the number of PBN generations (LF / HF) and the number of PBN generation nodes (LF / HF) of the optical signal transmitted by itself, and sets the transmission side compensation according to the calculation result. Also good.
- the network management apparatus 10 receives an operation for instructing a change in node setting from a network administrator or the like, the network management apparatus 10 transmits node setting change information indicating the received instruction content to each transmitting side node.
- FIG. 16 is a diagram illustrating an example of a hardware configuration of each device that configures the optical transmission system 100.
- the network management device 10 includes a processor 201 such as a CPU (Central Processing Unit) and a system LSI (Large Scale Integration), a memory 202 including a RAM (Random Access Memory), a ROM (Read Only Memory), and an input / output. It can be realized by the interface 203 and the communication interface 204.
- the processor 201, the memory 202, the input / output interface 203, and the communication interface 204 are connected to the bus 200, and can exchange data and control information with each other via the bus 200.
- the memory 202 stores various data and programs.
- the input / output interface 203 is used to read input information such as signal path switching, insertion and branching settings.
- the communication interface 204 is used for receiving information from each optical repeater and transmitting a control signal to each optical repeater via the control signal line 230.
- the network management apparatus 10 is realized by the processor 201 executing a program stored in the memory 202 for operating as the network management apparatus 10.
- the optical repeaters 20 and 30 are a processor 211, a memory 212, an input / output interface 213, and a communication interface, which are devices similar to the processor 201, the memory 202, the input / output interface 203, and the communication interface 204 that constitute the network management apparatus 10.
- 214, an insertion WSS 215 used for signal insertion, a branch WSS 217 used for signal branching, a relay WSS 216 used for relay and path switching, and an optical transmission device 218 that transmits a signal. is there.
- These devices are connected to the bus 210, and can exchange data and control information with each other via the bus 210.
- the input / output interface 213 is used for transmission / reception of control signals to / from the insertion WSS 215, branching WSS 217 and relay WSS 216 and transmission / reception of control signals to the optical transmission device 218.
- the communication interface 214 is used for transmission and reception of control signals with the network management apparatus 10 via the control signal line 230.
- the optical repeaters 20 and 30 are realized by the processor 211 executing a program stored in the memory 212 and operating as the optical repeater 20 or 30.
- FIG. 2 The configuration of the optical transmission system according to the second embodiment is the same as that of the optical transmission system 100 according to the first embodiment.
- the configurations of the network management apparatus and the optical repeater according to the second embodiment are the same as those of the network management apparatus 10 and the optical repeaters 20 and 30 according to the first embodiment, respectively. In the present embodiment, differences from the first embodiment will be described.
- the optical transmission system according to the present embodiment is different from the optical transmission system according to the first embodiment in transmission-side compensation performed by the optical repeater 20 that is a transmission-side node.
- FIG. 17 is a diagram illustrating an example of transmission-side compensation performed when the optical repeater according to the second embodiment is a transmission-side node.
- the transmission side node 20 performs transmission side compensation using the transmission side WSS 24.
- the transmission side compensation control unit 21 which is a control unit, transmits the transmission side WSS 24 based on the number of PBN generation nodes (LF / HF) and the number of PBN generations (LF / HF). Change the frequency band setting.
- the transmission-side compensation control unit 21 of the transmission-side node 20 adds the number of PBN generation nodes (LF) and the number of PBN generations (LF) for each optical signal to obtain the number of LF-side PBN generations.
- the HF side PBN occurrence number is obtained by adding the number (HF) and the PBN occurrence number (HF), and the LF side PBN occurrence number and the HF side PBN occurrence number are respectively compared with the transmission compensation reference table, and the transmission side WSS 24 is obtained.
- the spectral shape of the transmission frequency band is determined.
- the spectrum shape of the transmission frequency band of the transmission side WSS 24 can be arbitrarily controlled to some extent by setting the amount of attenuation given to the transmission side WSS 24 in units of frequency grids.
- the frequency grid is 12.5 GHz, for example. As shown in FIG.
- the attenuation amount is set so that the transmittance of the frequency grid corresponding to the frequency region where PBN occurs is higher than the transmittance of the surrounding frequency grid. As a result, the influence of PBN can be reduced. At this time, how much attenuation is given to each frequency grid varies depending on the number of LF side PBN generations and the number of HF side PBN generations.
- the transmission compensation reference table used for transmission side compensation by the transmission side compensation control unit 21 according to the present embodiment has a configuration including the number of PBN occurrences and the corresponding attenuation amount, that is, the transmission shown in FIG. What is necessary is just to make the adjustment amount of the reference table for compensation into attenuation amount.
- the hardware configuration of each device configuring the optical transmission system according to the present embodiment is the same as the hardware configuration of each device configuring the optical transmission system according to the first embodiment.
- the frequency domain (frequency grid) in which the signal receives PBN is compensated also referred to as pre-emphasis
- the spectrum shape of the transmission frequency band of the transmission side WSS 24 thereby reducing the degree of PBN generated at the relay node.
- the transmission side compensation described in the first embodiment that is, the control for adjusting the frequency of the optical signal by changing the oscillation frequency of the light source 25 is also performed. It may be.
- Embodiment 3 The configuration of the optical transmission system according to the third embodiment is the same as that of the optical transmission system 100 according to the first embodiment.
- the configurations of the network management device and the optical repeater according to the third embodiment are the same as those of the network management device 10 and the optical repeaters 20 and 30 according to the first embodiment, respectively. In the present embodiment, differences from the first embodiment will be described.
- the optical transmission system according to the present embodiment differs from the optical transmission systems according to the first and second embodiments in transmission-side compensation performed by the optical repeater 20 that is a transmission-side node.
- the frequency intervals of a plurality of optical signals output from the plurality of optical transmission devices 23 are adjusted in cooperation.
- the optical transmission device 23 may include a plurality of light sources and adjust the frequency intervals of the plurality of optical signals in a configuration that generates a plurality of optical signals.
- the transmission-side node 20 does not perform the transmission-side compensation by performing adjustment in units of optical signals, but subcarriers having different carrier frequencies output from a single optical transmission device 23 or a plurality of optical transmission devices 23.
- the frequency interval may be adjusted in association with each subcarrier.
- the transmission-side compensation control unit 21 of the transmission-side node 20 changes the setting of the light source 25 of the optical transmission device 23 to adjust the frequency interval between SC # 1 and SC # 2.
- a signal composed of subcarrier groups is called a super channel, and a report of application to a multi-way WDM system corresponding to a flexible grid has been made publicly known.
- the frequency interval is adjusted with an adjustment amount according to the number of LF side PBN occurrences and the number of HF side PBN occurrences.
- the transmission-side compensation control unit 21 uses the transmission compensation reference table to determine the frequency interval adjustment amount.
- the transmission compensation reference table to be used may be configured to include the number of PBN occurrences and the adjustment amount corresponding thereto.
- each device configuring the optical transmission system according to the present embodiment is the same as the hardware configuration of each device configuring the optical transmission system according to the first and second embodiments.
- the transmitting side node changes the setting of the frequency interval between optical signals or the frequency interval between subcarriers to thereby compensate for the transmitting side. By doing this, it is possible to reduce the influence of the PBN as a whole system while preventing an excessive penalty from occurring when the node setting of the PBN generation node is changed.
- the transmission side compensation described in the second embodiment that is, control for reducing the PBN by changing the setting of the transmission frequency band of the transmission side WSS 24 is also performed. You may do it.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
- 1,10 Network management device 2-6 nodes, 11 Node setting change request accepting unit, 12 State change node calculating unit, 13 Normal node control unit, 14 PBN generation node control unit, 15 PBN generation node number notification unit, 16 PBN Number calculation unit, 20 optical repeater (transmission side node), 30-1, 30-n optical repeater (relay node), 21 transmission side compensation control unit, 22 transmission side compensation update completion notification unit, 23 optical transmission unit, 24 transmission side wavelength selection switch (transmission side WSS), 25 light source (LD), 31 node setting change control unit, 32 node setting change completion notification unit, 33 relay node side wavelength selection switch (relay node side WSS), 100 optical transmission system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本発明は、複数の光中継装置により形成された光伝送ネットワーク、および光伝送ネットワークを管理するネットワーク管理装置を備えた光伝送システムの光中継装置(20)であって、特定波長の光信号を生成可能な光送信装置(23)と、波長単位での方路切り替えが可能な送信側波長選択スイッチ(24)と、光送信装置を制御する送信側補償制御部(21)と、を備え、送信側補償制御部は、光送信装置で生成される光信号が他の光中継装置を通過する際に発生する帯域制限の回数である帯域制限発生回数の情報をネットワーク管理装置から受信すると、受信した情報に基づき光送信装置の設定を変更して光信号の周波数を調整する。
Description
本発明は、波長多重された光信号を中継する光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法に関する。
情報通信の大容量化は、波長多重光伝送システムにより実現されてきた。波長多重光伝送システムはWDM(Wavelength Division Multiplexing)システムとも呼ばれる。近年では、スマートフォンをはじめとした通信端末の高性能化および機器間通信拡大に伴い1台の端末が送受信する情報の容量が増大してきており、情報通信の更なる大容量化が求められている。また、通信経路および通信装置に対する信頼性の向上と帯域の有効利用とを実現することを目的として、需要に合わせてネットワーク構成を変更して最適化することが可能なネットワークの実現に対する要求が高まっている。これらの要求に対応するため、非特許文献1で規定されているフレキシブルグリッド(Flexible Grid)に対応した多方路WDMシステムが実用化されている。フレキシブルグリッドに対応した多方路WDMシステムでは、各波長の帯域幅を変更することが可能である。
また、多方路WDMシステムでは、ネットワークの運用中に信号の宛先変更および経路切り替えなどを実施する機能が求められている。例えば、障害が発生すると、障害発生箇所を経由しないように信号の伝送経路を切り替える必要がある。ネットワークにおける中継地点としての中継ノードは、信号のパワー損失などの補償、経路制御、信号の挿入および分岐を行う。この中継ノードには、波長単位すなわち周波数単位で方路を制御する機能が必要である。例えば、非特許文献2には、波長単位で方路を制御可能な波長選択スイッチ(WSS:Wavelength Selective Switch)を備えて実現されたROADM(Reconfigurable Optical Add/Drop Multiplexer)が記載されている。波長選択スイッチは、波長とポートの関係を任意に変更でき、更に透過周波数帯域も任意に変更可能である。
ITU-T G.694.1
"Wavelength-Selective Switches for ROADM Applications",T.A.Strasser,Member,IEEE,and J.L.Wagener,IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,VOL.16,NO.5,SEPTEMBER/OCTOBER 2010.
フレキシブルグリッドに対応した多方路WDMシステムでは、一般的に、上記の波長選択スイッチを使用する。波長選択スイッチは透過周波数帯域ごとにポートを割り当てているため、ある信号とそれに隣接する信号とが別のポートに指定されている場合には、その信号間において急峻な透過スペクトル特性による信号の分離が必要となる。しかし、理想的な透過スペクトル特性とすることは難しく、透過周波数帯域の端部近傍において信号のスペクトル成分が削られてしまう帯域制限が発生する。この帯域制限が発生する現象はPBN(Pass-Band Narrowing)とも呼ばれる。PBNが発生すると、信号の誤り率が増加するなどの信号の品質劣化が生じる。信号は通過する中継ノードの数に応じた分だけPBNを受ける可能性があり、PBNによる信号の品質劣化は積み重なっていく。
PBNにより信号品質が劣化する問題の対策として、信号間にガードバンドを設けてPBNの影響を小さくすることが考えられる。しかし、ガードバンドを設けた場合、信号が存在しない周波数帯域が増大し、有限な周波数スペクトル資源を有効に使うことができなくなるため、最大伝送容量の低下または周波数利用効率の低下といった別の問題が生じる。
本発明は、上記に鑑みてなされたものであって、伝送容量が低下するのを回避しつつ通信品質を向上させることが可能な光中継装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、複数の光中継装置により形成された光伝送ネットワーク、および光伝送ネットワークを管理するネットワーク管理装置を備えた光伝送システムの光中継装置である。光中継装置は、特定波長の光信号を生成可能な光信号生成部と、波長単位での方路切り替えが可能な波長選択スイッチと、光信号生成部を制御する制御部と、を備える。制御部は、光信号生成部で生成される光信号が他の光中継装置を通過する際に発生する帯域制限の回数である帯域制限発生回数の情報をネットワーク管理装置から受信すると、受信した情報に基づき光信号生成部の設定を変更して光信号の周波数を調整する。
本発明にかかる光中継装置は、光伝送システムの伝送容量が低下するのを回避しつつ通信品質を向上させることができるという効果を奏する。
以下に、本発明の実施の形態にかかる光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかる光伝送システムの一例を示す図である。実施の形態1にかかる光伝送システム100は、フレキシブルグリッドに対応した多方路WDMシステム(多方路波長多重伝送システム)であり、ネットワーク管理装置1と光中継装置であるノード2~6とにより構成されている。図1では記載を省略しているがノード2~6は波長選択スイッチ(WSS)を備えている。なお、ノードの数およびノード同士の接続関係は一例であり図1に示したものに限定されない。ノード2~6は、光伝送路を介して1台以上の他のノードと接続されて光伝送ネットワークを形成している。具体的には、ノード2はノード3と接続され、ノード3はノード2、ノード4およびノード5と接続されている。ノード4はノード3およびノード6と接続され、ノード5はノード3およびノード6と接続されている。ノード6はノード4およびノード5と接続されている。また、ネットワーク管理装置1とノード2~6のそれぞれとは図示を省略している制御用通信線を介して接続されている。
図1は、本発明の実施の形態1にかかる光伝送システムの一例を示す図である。実施の形態1にかかる光伝送システム100は、フレキシブルグリッドに対応した多方路WDMシステム(多方路波長多重伝送システム)であり、ネットワーク管理装置1と光中継装置であるノード2~6とにより構成されている。図1では記載を省略しているがノード2~6は波長選択スイッチ(WSS)を備えている。なお、ノードの数およびノード同士の接続関係は一例であり図1に示したものに限定されない。ノード2~6は、光伝送路を介して1台以上の他のノードと接続されて光伝送ネットワークを形成している。具体的には、ノード2はノード3と接続され、ノード3はノード2、ノード4およびノード5と接続されている。ノード4はノード3およびノード6と接続され、ノード5はノード3およびノード6と接続されている。ノード6はノード4およびノード5と接続されている。また、ネットワーク管理装置1とノード2~6のそれぞれとは図示を省略している制御用通信線を介して接続されている。
ネットワーク管理装置1は、光伝送ネットワークを管理する装置であり、光伝送ネットワークを形成しているノード2~6の設定を変更する機能を有する。ノード2~6は入力された光信号を予め決められた光伝送路へ出力する。光信号ごとの出力先はネットワーク管理装置1から指示される。
ここで、一般的な多方路WDMシステムに適用されている波長選択スイッチ(WSS)が光信号を処理する際に発生する帯域制限(PBN)について簡単に説明する。
図2は、WSSにおいて発生する帯域制限を説明するための図である。図2では、CH#1~#4の4つの光信号が多重された状態でWSSに入力し、WSSにおいて、4つの光信号が2つに分けられて2つの方路に中継される場合の例を示している。図2に示した例において、WSSは、入力された4つ光信号をCH#1および#2と、CH#3および#4とに分け、異なる出力ポートから2つの方路へ出力している。この場合、各出力ポートの透過周波数帯域の端部に近い信号は帯域制限を受ける。具体的には、中継される前は隣り合った状態にあるCH#2の光信号およびCH#3の光信号が帯域制限を受けることになる。CH#2の光信号は高周波側(HF:Higher Frequency)が帯域制限を受け、CH#3の光信号は低周波側(LF:Lower Frequency)が帯域制限を受けることになる。なお、図2ではCH#2の光信号およびCH#3の光信号が帯域制限を受ける例を示したが、出力ポートの設定によっては、これらに加えて、CH#1の光信号の低周波側、CH#4の光信号の高周波側が帯域制限を受ける場合もある。
また、多方路WDMシステムの場合、ネットワークの運用中に各光信号の経路を変更することが可能であるが、経路を変更した場合には帯域制限が発生するノードおよび光信号が変化する場合がある。例えば、図2に示したWSSの設定を変更し、入力された4つの光信号をCH#1とCH#2~CH#4とに分けて2つの方路へ中継するようにした場合には、帯域制限が発生する光信号が変化する。具体的には、経路変更前はCH#2の光信号の高周波側およびCH#3の光信号の低周波側において帯域制限が発生していたが、これらは経路変更後には発生しなくなり、代わりに、CH#1の光信号の高周波側およびCH#2の光信号の低周波側において帯域制限が発生するようになる(図3参照)。図3は、WSSの設定を変更した場合に発生する帯域制限を説明するための図である。
以上のように、WSSが入力された各周波数の光信号を2つ以上に分けて異なる出力ポートから出力する場合、異なる出力ポートから出力されることになった光信号のうち、最も低周波側の光信号および最も高周波側の光信号は帯域制限を受ける可能性がある。このような問題に対して、本実施の形態にかかる光伝送システムでは、光伝送ネットワークにおける経路設定が変更された場合、設定変更の影響を受けて帯域制限が発生するノードおよび光信号を特定し、特定した光信号を送信しているノードの設定を変更して帯域制限の影響を低減する。
図4は、実施の形態1にかかる光伝送システムを構成するネットワーク管理装置および光中継装置の構成例を示す図である。
図4に示した光伝送システム100は、図1に示したネットワーク管理装置1に対応するネットワーク管理装置10と、図1に示したノード2~6に対応する光中継装置20および30-1~30-nとを備える。nは2以上の整数とする。光中継装置20と光中継装置30-1~30-nとは同じ装置であるが、図4では、説明の便宜上、別の符号を付けている。これは、本実施の形態では光中継装置20が光信号を送信するノードである送信ノードとして動作し、光中継装置30-1~30-nが、ある方路から受けた光信号を他の光中継装置へ転送する中継ノードとして動作する場合の例を説明するためである。なお、送信側ノードである光中継装置20については、光信号の送信に必要な構成要素、すなわち送信側ノードとして動作するために必要な構成要素のみを記載している。また、中継ノードである光中継装置30-1~30-nは、光信号の中継に必要な構成要素、すなわち中継ノードとして動作するために必要な構成要素のみを記載している。以下の説明では、便宜上、光中継装置20を送信側ノード20と記載し、光中継装置30-1~30-nを中継ノード30-1~30-nと記載する場合がある。なお、中継ノード30-1~30-nを区別する必要が無い場合には、これらをまとめて中継ノード30と記載する。また、送信側ノード20および中継ノード30-1~30-nをまとめて単に「ノード」と記載する場合もある。
ネットワーク管理装置10は、送信側ノード20および中継ノード30-1~30-nにより形成された光伝送ネットワークの状態を監視および管理し、各ノードのノード設定を制御する。ノード設定とは、各ノードがどの波長の光信号をどの出力ポートへ出力するかなど、光信号の中継動作に関する設定である。光伝送システム全体で考えたときは、伝送される各光信号の伝送経路に関する設定ともいえる。中継ノード30は、光伝送ネットワークの中継地点に配置され、伝送路で生じるパワー損失などの補償、信号の経路制御、信号の挿入および分岐を行う。送信側ノード20は、光伝送ネットワークを形成しているノードのうち、ノード設定の変更の際に送信側補償を行う対象となるノードである。送信側補償とは、光伝送ネットワークにおいて発生するPBNを軽減するための処理である。送信側ノード20から送出される信号は、伝送路を伝搬し、いくつかの中継ノード30で中継され、伝送経路上の最後に位置しているノードにおいて分岐あるいは受信される。
ネットワーク管理装置10は、ノード設定変更要求受付部11、状態変化ノード算出部12、通常ノード制御部13、PBN発生ノード制御部14、PBN発生ノード通知部15およびPBN回数算出部16を備える。
ノード設定変更要求受付部11は、外部のネットワーク管理者などからノード設定変更の要求を受け付ける。ノード設定変更とは、各ノードの中継動作に関するパラメータ等の設定を変更することであり、ノードごとに、どの波長の光信号をどの出力ポートへ出力するのかの設定、どの波長の光信号をどの入力ポートで受信するのかの設定などを変更する。ノード設定変更の要求は、光伝送ネットワークにおける光信号の経路変更要求に相当する。ノード設定変更要求受付部11は、光伝送ネットワークにおける光信号の経路変更要求を受け付ける要求受付部である。
状態変化ノード算出部12は、PBNの発生状況が変化するノード、具体的には、ノード設定変更に伴いPBNが発生しない状態からPBNが発生する状態に変化するノードと、ノード設定変更に伴いPBNが発生する状態からPBNが発生しない状態に変化するノードとを算出する。状態変化ノード算出部12は、PBNの発生状況が変化したノードを光信号ごとに算出する。すなわち、状態変化ノード算出部12は、各光信号の伝送経路上に位置しているノードの中のどのノードでPBNの発生状況が変化するかを、ノード設定変更の内容に基づいて算出する。状態変化ノード算出部12は帯域制限発生回数算出部である。
通常ノード制御部13は、PBNが発生していないノードに対して設定変更の命令等を行う。PBN発生ノード制御部14は、PBNが発生しているノードに対して設定変更の命令等を行う。なお、図4に示した例では中継ノード30-1が通常ノード、中継ノード30-nがPBN発生ノードとなっており、中継ノード30-1に対しては通常ノード制御部13が変更命令を行い、中継ノード30-nに対してはPBN発生ノード制御部14が変更命令を行っている。通常ノード制御部13およびPBN発生ノード制御部14が設定変更部を構成する。
PBN発生ノード数通知部15は、状態変化ノード算出部12での算出結果を示すPBN発生ノード数を送信側ノード20へ通知する。PBN回数算出部16は、各ノードの設定が変更される毎に、信号単位でのPBNの発生回数を算出して保持する。PBN回数算出部16は、PBN発生ノード数通知部15がPBN発生ノード数を送信側ノード20へ通知する際に、保持している信号単位でのPBNの発生回数を送信側ノード20へ通知する。PBN発生ノード数通知部15およびPBN回数算出部16は情報送信部を構成する。
ネットワーク管理装置10の全体動作について説明する。ネットワーク管理装置10において、ノード設定変更要求受付部11は、ネットワークの管理者または保守事業者などから、ノード設定の変更要求として、各光信号の宛先および経路の設定または変更、ノードごとの各光信号の挿入および分岐の設定または変更、などを行うための入力情報を受け付ける。受け付けた入力情報はノード設定変更情報として状態変化ノード算出部12に渡される。
状態変化ノード算出部12は、ノード設定変更要求受付部11から受け取ったノード設定変更情報に基づいて、各中継ノードの設定変更に伴いPBNの発生状況が変化する光信号および中継ノードを算出する。設定変更に伴いPBNの発生状況が変化する光信号および中継ノードについて、図5を用いて説明する。図5は、設定変更に伴いPBNの発生状況が変化する光信号および中継ノードを説明するための図である。図5に示したケース、具体的には、周波数軸上で連続したCH#1~CH#5の各光信号を中継する中継ノードにおいて、CH#1~CH#2の光信号が第1の出力ポートを透過し、かつCH#3~#5の光信号が第2の出力ポートを透過する状態(図5の上段に示した状態)から設定変更が行われ、CH#1~CH#3の光信号が第1の出力ポートを透過し、かつCH#4~#5の光信号が第2の出力ポートを透過する状態(図5の下段に示した状態)に変化するケースについて考える。このケースでは、設定変更に伴い、CH#2の光信号は透過周波数帯域の端部に最も近い光信号ではなくなり、CH#4の光信号は透過周波数帯域の端部に最も近い光信号となる。すなわち、設定変更に伴い、CH#2の光信号ではPBNが解消され、CH#4の光信号ではPBNが発生するようになる。よって、CH#2およびCH#4の光信号は「PBNの発生状況が変化する光信号」に該当する。また、CH#3の光信号については、設定変更前は第2の出力ポートの透過周波数帯域の低周波側の端部に最も近い光信号であったが、設定変更後は第1の出力ポートの透過周波数帯域の高周波側の端部に最も近い光信号になる。すなわち、設定変更に伴い、CH#3の光信号の低周波側ではPBNが解消され、高周波側ではPBNが発生するようになる。このCH#3の光信号も「PBNの発生状況が変化する光信号」に該当する。また、設定変更により、中継する光信号の中の少なくとも1つにおいてPBNの発生状況に変化を生じさせる中継ノード、すなわち、図5に示したような変化を生じさせる中継ノードが、「PBNの発生状況が変化する中継ノード」に該当する。
状態変化ノード算出部12は、さらに、PBNが新たに発生するPBN発生ノードと、PBNが新たに解消されるPBN解消ノードと、PBN発生ノードおよびPBN解消ノードのどちらにも該当しないがノード設定変更の対象である設定変更対象ノードとを算出し、信号単位での関連付けを行う。すなわち、状態変化ノード算出部12は、光信号ごとに、その伝送経路上に位置している各ノードが、PBN発生ノード、PBN解消ノードおよび設定変更対象ノードのどれに該当するのかを求める。ここで、PBNは信号の低周波(LF)側および高周波(HF)側のいずれでも発生しうるため、状態変化ノード算出部12は、LF側およびHF側の両方について、PBN発生状況の変化を算出する。なお、設定変更対象ノードとしては、例えば、CH#1~CH#3の光信号を中継するノードが、CH#1~CH#3の光信号を第1の出力ポートを透過させる設定から、CH#1~CH#3の光信号を第2の出力ポートを透過させる設定に変更するノードが該当する。この例では、CH#1~CH#3の光信号の出力先のポートを変更しているが、設定変更の前後では、透過周波数帯域の両端に近いCH#1およびCH#3の光信号でPBNが発生する状況、より詳細には、CH#1の光信号の低周波側およびCH#3の光信号の高周波側でPBNが発生する状況に変化はなく、PBNが新たに発生してもいないしPBNが解消されてもいない。状態変化ノード算出部12が算出した、PBN発生状況が変化する光信号および中継ノードの情報は、通常ノード制御部13、PBN発生ノード制御部14およびPBN発生ノード数通知部15に送られる。
通常ノード制御部13は、PBN発生状況が変化する光信号および中継ノードの情報を状態変化ノード算出部12から受け取ると、受け取った情報に基づいて、PBN発生ノード以外の中継ノードに対する制御命令を生成し、該当する中継ノードへ送信する。PBN発生ノード制御部14は、PBN発生状況が変化する光信号および中継ノードの情報を状態変化ノード算出部12から受け取ると、受け取った情報に基づいて、PBN発生ノードに対する制御命令を生成し、該当する中継ノードへ送信する。PBN発生ノード数通知部15は、PBN発生状況が変化する光信号および中継ノードの情報を状態変化ノード算出部12から受け取ると、受け取った情報を送信側ノード20へ送信する。PBN発生ノード数通知部15は、状態変化ノード算出部12から受け取った情報をそのまま、各送信側ノード20へ送信してもよいし、受け取った情報を解析して送信側ノード20毎に必要な情報に分類したうえで、各送信側ノード20へ送信するようにしてもよい。PBN発生ノード数通知部15は、例えば、受け取った情報の中からCH#1の光信号に関する情報を抽出し、CH#1の光信号を送信する送信側ノード20へ送信するようにしてもよい。
PBN回数算出部16は、光伝送ネットワーク内を伝送される各光信号が現時点で受けているPBNの回数を、LFとHFとに分けて、光信号単位で算出する。すなわち、PBN回数算出部16は、各光信号について、LF側でPBNが発生している回数とHF側でPBNが発生している回数とを算出する。PBN回数算出部16は、ノード設定変更の際に、中継ノードから更新完了通知を受信するごとに、LF側でPBNが発生している回数(以下、PBN発生回数(LF))とHF側でPBNが発生している回数(以下、PBN発生回数(HF))と光信号ごとに算出し、算出した、光信号ごとのPBN発生回数(LF)およびPBN発生回数(HF)を最新のPBN発生回数として保持する。各光信号のPBN発生回数(LF)は、対応する光信号のLF側で実際に発生しているPBNの数、すなわち光信号が伝送経路上で実際に受けているLF側のPBNの回数を示す。各光信号のPBN発生回数(HF)は、対応する光信号のHF側で実際に発生しているPBNの数、すなわち光信号が伝送経路上で実際に受けているHF側のPBNの回数を示す。なお、以下の説明ではPBN発生回数(LF)とPBN発生回数(HF)とをまとめて「PBN発生回数(LF/HF)」と称する場合がある。
送信側ノード20は、送信側補償制御部21、送信側補償更新完了通知部22、光送信装置23および送信側波長選択スイッチ(WSS)24を備える。送信側ノード20は、特定周波数の光信号を生成して光伝送路に送出する。
送信側補償制御部21は、光送信装置23および送信側波長選択スイッチ24を制御する制御部であり、ネットワーク管理装置10から受信した情報に基づいて、光送信装置23および送信側波長選択スイッチ24の少なくとも一方を制御し、送信側ノード20が送信する光信号の送信側補償を行う。送信側補償制御部21がネットワーク管理装置10から受信する情報は、光信号が他の光中継装置を通過する際に発生するPBNの回数の情報であり、この情報にはPBN発生回数(LF/HF)が含まれる。
送信側補償更新完了通知部22は、送信側補償制御部21が光送信装置23および送信側WSS24の少なくとも一方を制御することによる送信側補償が完了すると、送信側補償が完了したことをネットワーク管理装置10に通知する。
光送信装置23は、光信号を生成してネットワークへ送出するための装置であり、特定波長の光を生成可能な光源25を内部に含む。光源25は、搬送波周波数を調整可能であり、例えばレーザーダイオード(LD:Laser Diode)で実現される。光送信装置23は、特定波長の光信号を生成可能な光信号生成部である。WDMシステムでは、一般に複数の光送信装置が各ノードに設置され、各送信装置で生成された、異なる搬送周波数の複数の光信号がネットワークに送出される。図4では記載を省略しているが、送信側ノード20は光送信装置23を複数備えているものとする。複数の光送信装置23の各々で生成された光信号は送信側WSS24を通過し、それぞれの方路に送出される。
送信側WSS24は、光送信装置23で生成された光信号を、光信号ごとに決められた方路に送出する。
中継ノード30は、ノード設定変更制御部31、ノード設定変更完了通知部32および中継ノード側波長選択スイッチ(WSS)33を備える。中継ノード30は、波長多重された状態の光信号であるWDM光信号を他の中継ノード30または送信側ノード20から受け取り、受け取ったWDM光信号を他の中継ノード30へ中継する。中継ノード30は、WDM光信号を中継する際に、WDM光信号に対して光信号を加える処理である挿入処理、および、WDM光信号から一部または全ての光信号を抽出する処理である分岐処理、の一方または双方を実施することが可能である。
中継ノード側WSS33は、中継ノード30を通過する光信号の経路切替、中継ノード30を通過する光信号に対する光信号の挿入、中継ノード30を通過する光信号に含まれている光信号の一部または全てを分岐させるために用いられる。ここで、中継ノード側WSS33は、中継ノード30が接続される方路および中継ノード30が実現する機能に応じて、1つあるいは複数個用いられる。ノード設定変更制御部31は、ネットワーク管理装置10から受信したノード設定変更命令をもとに、中継ノード側WSS33の設定を変更する。ノード設定変更完了通知部32は、ノード設定変更制御部31による中継ノード側WSS33の設定変更が完了すると、中継ノード30側の設定変更が完了したことをネットワーク管理装置10に通知する。
つづいて、本発明の動作、具体的には、光信号の経路切替などに伴いPBNが新たに発生する前に、送信側ノード20があらかじめ送信側補償のための設定を更新し、PBNによる信号品質劣化を低減する動作について、図6~図14を用いて説明する。
図6は、実施の形態1にかかるネットワーク管理装置10の動作例を示すフローチャートである。図6に示したように、ネットワーク管理装置10が実行する動作は常時ループのフローとなっており、ループ開始とループ終了の間の処理を繰り返す。
ネットワーク管理装置10は、動作を開始後、管理する中継ノードからノード設定変更完了の通知を受信したか否かを確認する(ステップS1)。なお、ネットワーク管理装置10は、動作を開始直後は送信側ノード20および各中継ノード30のいずれに対してもノード設定の変更命令を出していないため、ステップS1での判定結果は「No」となる。ノード設定変更完了の通知を受信していない場合(ステップS1:No)、ネットワーク管理装置10は、光信号の経路切替などを行う場合に生じるノード設定の変更要求があるかを確認する(ステップS3)。ステップS3では、ノード設定変更要求受付部11が、ネットワーク管理者などからノード設定変更の要求を受け付けたか否かを確認する。ノード設定の変更要求がない場合(ステップS3:No)、ステップS1に戻る。
ノード設定の変更要求がある場合(ステップS3:Yes)、ネットワーク管理装置10は、PBNの発生状況が変化する光信号および中継ノードを算出する(ステップS4)。ステップS4では、状態変化ノード算出部12が、上述した、各ノードの設定変更に伴いPBNの発生状況が変化する光信号および中継ノードを算出する。PBNの発生状況が変化する光信号の算出において、状態変化ノード算出部12は、各光信号のLF側およびHF側のそれぞれについて、PBNの発生状況を特定し、PBNが発生する中継ノードの数を示すPBN発生ノード数を算出する。LF側のPBN発生ノード数をPBN発生ノード数(LF)、HF側のPBN発生ノード数をPBN発生ノード数(HF)とする。各光信号のPBN発生ノード数(LF)は、ノード設定の変更を行うと対応する光信号のLF側で新たに発生するPBNの数、すなわち、現時点では発生していないがノード設定の変更完了に伴いLF側で発生するPBNの数を示す。各光信号のPBN発生ノード数(HF)は、ノード設定の変更を行うと対応する光信号のHF側で新たに発生するPBNの数、すなわち、現時点では発生していないがノード設定の変更完了に伴いHF側で発生するPBNの数を示す。以下の説明では、PBN発生ノード数(LF)とPBN発生ノード数(HF)とをまとめて「PBN発生ノード数(LF/HF)」と称する場合がある。
ネットワーク管理装置10は、ステップS4に続いて、PBN発生ノード以外の全てのノードに対してノード設定の変更命令を送信する(ステップS5)。このステップS5は、通常ノード制御部13が実行する。通常ノード制御部13は、ネットワーク管理者などから受け付けたノード設定変更要求の内容を示すノード設定変更情報を状態変化ノード算出部12から受け取り、ノード設定変更情報に基づいて、ノード設定の変更命令を生成する。
ネットワーク管理装置10は、ステップS5に続いて、PBNが発生する光信号の送信側ノードに対して、PBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)を送信する(ステップS6)。ステップS6で送信するPBN発生ノード数(LF/HF)は、ステップS4で状態変化ノード算出部12が算出したPBN発生ノード数(LF)およびPBN発生ノード数(HF)である。また、ステップS6で送信するPBN発生回数(LF/HF)は、PBN回数算出部16が算出して保持している光信号ごとのPBN発生回数(LF/HF)である。このステップS6では、PBN発生ノード数通知部15がPBN発生ノード数(LF/HF)を送信し、PBN回数算出部16がPBN発生回数(LF/HF)を送信する。なお、送信側ノードは、ステップS6でネットワーク管理装置10が送信したPBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)を受信した場合、受信した情報に基づいて送信側補償のための設定変更を行う。また、送信側ノードは、送信側補償のための設定変更が完了すると、その旨を示す通知をネットワーク管理装置10に対して行う。
ネットワーク管理装置10は、ステップS6に続いて、ステップS6でPBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)の送信先とした全ての送信側ノードから送信側補償のための設定の変更すなわち更新が完了した旨の通知を受けたか否かを確認する(ステップS7)。このステップS7において、ネットワーク管理装置10は、対象の送信側ノードの全てから送信側補償のための設定の更新が完了した旨の通知が一定時間内に行われたかどうかを確認し、一定時間が経過しても送信側補償のための設定の更新が完了した旨の通知を未受信の送信側ノードがある場合(ステップS7:No)、ステップS1に戻る。これにより、通知を受信するまではPBN発生ノードのノード設定変更は実施されない。ネットワーク管理装置10は、対象の送信側ノードの全てから送信側補償のための設定の更新が完了した旨の通知が一定時間内に行われた場合(ステップS7:Yes)、送信側補償のための設定更新が完了した送信側ノードから送信される光信号のPBN発生ノードに対してノード設定の更新命令を送信する(ステップS8)。このステップS8は、PBN発生ノード制御部14が実行する。ステップS8を実行した後はステップS1に戻る。その後、ステップS8でノード設定の変更命令を送信した相手先のPBN発生ノードからノード設定変更完了の通知を受信した場合(ステップS1:Yes)、ネットワーク管理装置10は、光信号単位でPBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)を更新するとともに、更新結果を対応する送信側ノードに送信する(ステップS2)。すなわち、ネットワーク管理装置10は、各光信号のPBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)を更新し、更新後の各光信号のPBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)を対応する送信側ノードに送信する。対応する送信側ノードとは、PBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)が更新された光信号を送信する送信側ノードである。このステップS2では、状態変化ノード算出部12が、保持しているPBN発生ノード数(LF/HF)を更新し、PBN回数算出部16が、保持しているPBN発生回数(LF/HF)を更新する。また、PBN発生ノード数通知部15が更新後のPBN発生ノード数(LF/HF)を対応する送信側ノードに送信し、PBN回数算出部16が更新後のPBN発生回数(LF/HF)を対応する送信側ノードに送信する。
図7は、実施の形態1にかかる送信側ノード20の動作例を示すフローチャートである。
送信側ノード20は、動作を開始すると、まず、過去にネットワーク管理装置10から受信して保持しておいたPBN発生回数(LF/HF)を使用して送信側補償を実施する(ステップS21)。送信側ノード20は、PBN発生回数(LF/HF)を送信補償用参照テーブルと比較し、送信する光信号の周波数を調整することにより送信側補償を行う。図8は、送信補償用参照テーブルの一例を示す図である。図8に示した送信補償用参照テーブルは、PBN発生数とこれに対応する調整量とを含んでいる。なお、PBN発生数は、PBN発生回数とPBN発生ノード数の加算結果に相当するが、ステップS21を実行する時点ではノード設定の変更が発生しておらずPBN発生ノードが0であるため、PBN発生回数(LF/HF)がPBN発生数に相当する。調整量とは調整対象の光信号の周波数に関わる調整量である。送信側ノード20においては、送信側補償制御部21が光送信装置23に対して光源25の発振周波数の変更を指示し、送信する光信号の周波数を調整する。このとき、送信側補償制御部21は、PBN発生回数(LF)およびPBN発生回数(HF)のそれぞれを送信補償用参照テーブルと比較し、送信する光信号の周波数を調整して送信側補償を行う。すなわち、送信側補償制御部21は、PBN発生回数(LF)に基づく送信側補償とPBN発生回数(HF)に基づく送信側補償とを行う。
図9を用いて送信側補償の例を説明する。図9は、実施の形態1にかかる送信側ノードが実施する送信側補償の一例を示す図である。図9は、送信側ノード20がCH#1の光信号およびCH#2の光信号を生成して送信する場合に、伝送経路上の中継ノード30において発生する低周波側(LF側)のPBNを補償する例を示している。図9は、送信側補償を行わない場合の動作例を上段に示し、送信側補償を行った場合の動作例を下段に示している。また、上段および下段において、送信側ノードから送信されるCH#1の光信号およびCH#2の光信号の状態を左側、伝送経路の途中にある中継ノードを通過するCH#1の光信号およびCH#2の光信号の状態を中央、受信側ノードが受信するときのCH#1の光信号およびCH#2の光信号の状態を右側に示している。
図9に示した例では、送信側ノード20がCH#1の光信号の周波数を高周波側にシフトさせることにより送信側補償を行っている。送信側補償を行わない場合、図9上段に示したように、CH#1の光信号は、中継ノードを通過する際に、低周波側でPBNが発生する。これに対して、下段に示したように、送信側補償を行い、CH#1の光信号の周波数を高周波側へ調整することでPBNを軽減できる。
なお、図9の例では、低周波側に発生しているPBNを補償するために光信号を高周波側にシフトさせているが、高周波側に発生しているPBNを補償する場合には、光信号を、PBN発生回数(HF)に応じた調整量だけ低周波側にシフトさせる。
送信側ノード20は、ステップS21に続いて、受信側ノード、すなわち光信号の伝送経路上の最後に位置するノードとの間で通信を開始する(ステップS22)。
次に、送信側ノード20は、ネットワーク管理装置10からPBN発生回数(LF/HF)およびPBN発生ノード数(LF/HF)を受信したか否かを確認する(ステップS23)。ステップS23では、図6に示したステップS6でネットワーク管理装置10から送信されるPBN発生回数(LF/HF)およびPBN発生ノード数(LF/HF)を受信したか否かを確認する。このステップS23は送信側補償制御部21が実行する。
送信側補償制御部21は、ネットワーク管理装置10からPBN発生回数(LF/HF)およびPBN発生ノード数(LF/HF)を受信しない場合(ステップS23:No)、ステップS23を繰り返す。ネットワーク管理装置10からPBN発生回数(LF/HF)およびPBN発生ノード数(LF/HF)を受信した場合(ステップS23:Yes)、送信側補償制御部21は、受信したPBN発生ノード数(LF/HF)とPBN発生回数(LF/HF)を加算し、加算結果に基づいて送信側補償の設定を更新する(ステップS24)。具体的には、送信側補償制御部21は、PBN発生ノード数(LF)とPBN発生回数(LF)とを加算してLF側PBN発生数を求め、また、PBN発生ノード数(HF)とPBN発生回数(HF)とを加算してHF側PBN発生数を求め、これらの加算結果(LF側PBN発生数,HF側PBN発生数)を用いて送信側補償を行う。なお、送信側ノードが2つ以上の光信号の送信元である場合、送信側補償制御部21は、光信号ごとに、PBN発生ノード数(LF)とPBN発生回数(LF)との加算、および、PBN発生ノード数(HF)とPBN発生回数(HF)との加算を行う。また、ある1つの信号について、LF側およびHF側の双方でPBNが発生している場合、送信側補償制御部21は、この信号のLF側PBN発生数と、HF側PBN発生数と、を用いて送信側補償を行う。すなわち、送信側補償制御部21は、LF側PBN発生数およびHF側PBN発生数のそれぞれを送信補償用参照テーブルと比較して、光信号の周波数の調整方向および調整量を決定する。調整方向は、LF側PBN発生数がHF側PBN発生数よりも多い場合は、LF側からHF側への方向となり、逆の場合は逆方向となる。LF側PBN発生数とHF側PBN発生数が同じ場合は調整を行わなくてもよい。なお、ステップS24では、ネットワーク管理装置10からPBN発生回数(LF/HF)およびPBN発生ノード数(LF/HF)を受信し、これらを送信側補償制御部21が加算することとしたが、ネットワーク管理装置10が加算処理を行い、加算結果(LF側PBN発生数およびHF側PBN発生数)を送信側ノード20の送信側補償制御部21へ送信するようにしてもよい。
次に、送信側ノード20は、送信側補償の更新が完了したか否かを確認する(ステップS25)。更新が完了していない場合(ステップS25:No)、ステップ23に戻る。更新が完了した場合(ステップS25:Yes)、送信側ノード20は、ネットワーク管理装置10に送信側補償設定の更新完了を通知し(ステップS26)、ステップS23に戻る。
図10~図14は、実施の形態1にかかる光伝送システムの動作概要の一例を示す図である。図10~図14に示した例は、信号が送信側ノードから送出され、中継ノード#A~#Eを通過している様子を示している。図10~図14において、「オペレータ入力」とはネットワークの管理者、保守業者などが信号の宛先などを入力して光伝送ネットワークにおける各光信号の伝送経路の設定を変更することを意味する。また、図10~図14に示した例では、CH#1の光信号の低周波(LF)側に着目して、この光信号のLF側でのPBNの発生状況が変化するノードの数を算出し、送信側補償を行っている。LF側でのPBNの発生状況が変化するノードには、設定変更に伴い新たにLF側でPBNが発生するノードと、設定変更に伴いLF側でPBNが発生しなくなった(PBNが解消された)ノードと、が含まれる。
図10がSTEP[1]の動作を示し、図11がSTEP[1]に続くSTEP[2]の動作を示し、図12がSTEP[2]に続くSTEP[3]の動作を示し、図13がSTEP[3]に続くSTEP[4]の動作を示し、図14がSTEP[4]に続くSTEP[5]の動作を示している。
図10に示したSTEP[1]でオペレータ入力が行われる前のPBNの発生状況は、中継ノード#AのLF側でPBNが発生しており、その他の中継ノード#B~#EのLF側ではPBNが発生していない状態である。この時のPBN発生回数(LF)は「1」である。この状態でオペレータ入力があると、ネットワーク管理装置は、オペレータ入力に伴いPBNの発生状況がどのように変化するかを計算する。図示した例では、ネットワーク管理装置は、CH#1の光信号のPBNの発生状況が変化し、中継ノード#AでのPBNが解消され、一方、中継ノード#Cおよび#DにおいてPBNが発生することを算出する。この結果、PBN発生ノード数(LF)が「+2」となる。
ネットワーク管理装置は、次に、図11のSTEP[2]に示したように、PBN発生ノード以外の中継ノードを対象として、ノード設定の変更命令を送信する。具体的には、ネットワーク管理装置は、中継ノード#Aおよび#Bに対してノード設定の変更命令を送信し、ノード設定の変更を指示し、さらに、送信側ノード1に対して、PBN発生回数(LF)およびPBN発生ノード数(LF)を通知する。なお、中継ノード#Eは、PBN発生ノードには該当しないがノード設定を変更する必要ないものに該当し、ネットワーク管理装置からノード設定の変更命令が送信されない。
中継ノード#Aおよび#Bは、ノード設定の変更命令を受けるとノード設定の変更を行い、これが完了すると、中継ノード#Aで発生していたLF側のPBNが解消される。その結果、PBNの発生状況は、中継ノード#A~#EのLF側ではPBNが発生していない状態となる。なお、中継ノード#Cおよび#Dは新たにPBNが発生する中継ノード(PBN発生ノード)であるが、この時点では中継ノード#Cおよび#Dのノード設定変更が完了していないため、中継ノード#Cおよび#DのLF側でもPBNが発生していない。中継ノード#Aおよび#Bは、ノード設定の変更が完了すると、ノード設定の変更完了通知をネットワーク管理装置へ送信する。
また、送信側ノードは、PBN発生回数(LF)およびPBN発生ノード数(LF)の通知を受けると、PBN発生回数(LF)およびPBN発生ノード数(LF)に基づいて送信側補償を行う。図示した例では、送信側ノードはCH#1の光信号の周波数を高周波側に0.6GHzシフトさせている。送信側ノードは、送信側補償のための設定変更が終了すると、送信側補償の更新完了通知をネットワーク管理装置へ送信する。
ネットワーク管理装置10は、次に、図12のSTEP[3]に示したように、PBN発生ノード以外の中継ノードの全てからノード設定の変更完了通知を受けると、PBN発生回数(LF)を「0」に更新する。これは、ノード設定の変更完了により中継ノード#Aで発生していたPBNが解消されるためである。その後、ネットワーク管理装置10は、送信側ノードから送信側補償の更新完了通知を受けると、PBN発生ノードである中継ノード#Cおよび#Dに対して、ノード設定の変更命令を送信する。
中継ノード#Cおよび#Dは、ノード設定の変更命令を受けるとノード設定の変更を行い、これが完了すると、中継ノード#Cおよび#Dでは、CH#1の光信号のLF側でPBNが発生するようになる。その結果、PBNの発生状況は、中継ノード#A、#Bおよび#EのLF側ではPBNが発生していない状態、中継ノード#Cおよび#DのLF側ではPBNが発生している状態となる。中継ノード#Cおよび#Dは、ノード設定の変更が完了すると、ノード設定の変更完了通知をネットワーク管理装置へ送信する。
ここで、ネットワーク管理装置10がPBN発生ノードである中継ノード#Cおよび#Dに対してノード設定の変更命令を送信した後、これに対するノード設定の変更完了通知を受ける前に、オペレータ入力が再度行われるとする(図13のSTEP[4])。この場合、ネットワーク管理装置10は、上記のSTEP[1]と同様に、オペレータ入力に伴いPBNの発生状況がどのように変化するかを計算する。図示した例では、ネットワーク管理装置は、CH#1の光信号のPBNの発生状況が変化し、中継ノード#Cおよび#Dに加えて、中継ノード#EにおいてもPBNが発生することを算出する。この結果、PBN発生ノード数(LF)が「+3」となる。なお、この時点では、上記のSTEP[3]において中継ノード#Cおよび#Dに対して送信したノード設定の変更命令に対応する応答、具体的にはノード設定の変更完了通知を受けていない。そのため、PBN発生回数(LF)は更新されずに「0」のままとなる。
その後、ネットワーク管理装置10は、図14のSTEP[5]に示したように、中継ノード#Cおよび#Dからノード設定の変更完了通知を受けると、PBN発生ノード数(LF)を「+1」に更新するとともにPBN発生回数(LF)を「+2」に更新する。さらに、ネットワーク管理装置10は、送信側ノードに対して、PBN発生回数(LF)およびPBN発生ノード数(LF)を通知する。この通知を受けた送信側ノードは、PBN発生回数(LF)およびPBN発生ノード数(LF)に基づいて送信側補償を行う。図示した例では、送信側ノードはCH#1の光信号の周波数をデフォルト位置、すなわち送信側補償を行わない場合の周波数から高周波側に0.9GHzシフトさせている。送信側ノードは、送信側補償のための設定変更が終了すると、送信側補償の更新完了通知をネットワーク管理装置10へ送信する。
以上のように、ネットワーク管理装置は、オペレータ入力、具体的には、光伝送ネットワークの設定変更のためのノード設定変更情報が入力されると、入力された情報に基づいて、設定変更が必要な中継ノードに対する設定変更命令の送信を行う処理と、PBNの新規発生箇所および解消箇所、すなわち、PBNが新たに発生する中継ノードおよびPBNが解消される中継ノードを、光信号ごとに、LF側とHF側とに分けて算出し、算出結果(PBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF))を送信側補償で使用する情報として、各光信号を生成して送信する中継ノードである送信側ノードの各々へ送信する処理と、を行う。設定変更命令の送信は、まず、PBNが発生する中継ノードであるPBN発生ノードに該当しない中継ノードへの送信を実施し、PBN発生ノードへの送信は、送信側ノードが送信側補償のための設定変更を完了した後に実施する。
本実施の形態にかかる光伝送システム100の効果について、実施の形態1にかかる光伝送システムの効果を説明するための図である図15を参照しながら説明する。図15は、図9に示した送信側補償を実施する場合のCH#1の信号品質の劣化量であるペナルティの例を示す図である。図15では、光源25の発振周波数(相対値)に対する信号品質のペナルティを相対値で示している。ペナルティとしては、隣接信号からの混信に起因するものと中継ノードでのPBNに起因するものとを考慮している。光源25の発振周波数を正の方向すなわち高周波側に移動させると、隣接信号からの混信起因のペナルティが主となる。一方、光源25の発振周波数を負の方向すなわち低周波側に移動させると、PBN起因のペナルティが主となる。ノード設定変更前はPBN発生回数(LF)が1であり、これに合わせて光源25の発振周波数が最適値の-1GHz付近に設定されている。この状態でノード設定変更を行い、LF側PBNが3に増大した場合には、PBN起因のペナルティが大きく増加することがわかる。一方、送信側補償をノード設定変更前に行う場合には、PBN発生回数(LF)が増大する前に光源25の発振周波数を-0.5GHz付近に調整することで、過大なペナルティの発生を防ぐことができる。
なお、本実施の形態にかかる光伝送システムでは、ネットワーク管理装置10がPBN発生回数(LF/HF)およびPBN発生ノード数(LF/HF)を算出し、送信側ノードへ通知することとしたが、送信側ノードが、自身が送信する光信号のPBN発生回数(LF/HF)およびPBN発生ノード数(LF/HF)を算出し、算出結果に応じた送信側補償の設定を行うようにしてもよい。この場合、ネットワーク管理装置10は、ノード設定の変更を指示する操作をネットワーク管理者などから受け付けると、受け付けた指示内容を示すノード設定変更情報を各送信側ノードへ送信する。
次に、光伝送システム100を構成する各装置のハードウェア構成について説明する。図16は、光伝送システム100を構成する各装置のハードウェア構成の一例を示す図である。
ネットワーク管理装置10は、CPU(Central Processing Unit)、システムLSI(Large Scale Integration)などのプロセッサ201と、RAM(Random Access Memory)、ROM(Read Only Memory)などで構成されるメモリ202と、入出力インタフェース203と、通信インタフェース204とにより実現することが可能である。プロセッサ201、メモリ202、入出力インタフェース203および通信インタフェース204はバス200に接続され、バス200を介してデータおよび制御情報などの受け渡しを相互に行うことが可能である。メモリ202には、各種データおよびプログラムなどが格納される。入出力インタフェース203は、信号の経路切替、挿入および分岐の設定などの入力情報の読み込みに使用する。通信インタフェース204は、制御信号線路230を介して、各光中継装置からの情報の受信、および各光中継装置への制御信号の送信に使用する。ネットワーク管理装置10は、メモリ202に格納されている、ネットワーク管理装置10として動作するためのプログラムをプロセッサ201が実行することにより実現される。
光中継装置20および30は、ネットワーク管理装置10を構成しているプロセッサ201、メモリ202、入出力インタフェース203および通信インタフェース204と同様のデバイスであるプロセッサ211、メモリ212、入出力インタフェース213および通信インタフェース214と、信号の挿入に用いる挿入用WSS215と、信号の分岐に用いる分岐用WSS217と、中継および経路切替に用いる中継用WSS216と、信号を送出する光送信装置218とにより実現することが可能である。これらのデバイスはバス210に接続され、バス210を介してデータおよび制御情報などの受け渡しを相互に行うことが可能である。入出力インタフェース213は、挿入用WSS215、分岐用WSS217および中継用WSS216への制御信号の送受信、光送信装置218への制御信号の送受信に使用する。通信インタフェース214は、制御信号線路230を介して、ネットワーク管理装置10との制御信号の送受信に使用する。光中継装置20および30は、メモリ212に格納されている、光中継装置20または30として動作するためのプログラムをプロセッサ211が実行することにより実現される。
実施の形態2.
実施の形態2にかかる光伝送システムの構成は実施の形態1にかかる光伝送システム100と同様である。また、実施の形態2にかかるネットワーク管理装置および光中継装置の構成は、それぞれ、実施の形態1にかかるネットワーク管理装置10および光中継装置20,30と同様である。本実施の形態では、実施の形態1と異なる点について説明する。
実施の形態2にかかる光伝送システムの構成は実施の形態1にかかる光伝送システム100と同様である。また、実施の形態2にかかるネットワーク管理装置および光中継装置の構成は、それぞれ、実施の形態1にかかるネットワーク管理装置10および光中継装置20,30と同様である。本実施の形態では、実施の形態1と異なる点について説明する。
本実施の形態にかかる光伝送システムは、送信側ノードである光中継装置20が実施する送信側補償が実施の形態1にかかる光伝送システムと異なる。
図17は、実施の形態2にかかる光中継装置が送信側ノードである場合に実施する送信側補償の一例を示す図である。本実施の形態にかかる送信側ノード20は、送信側WSS24を使用して送信側補償を行う。具体的には、送信側ノード20において、制御部である送信側補償制御部21が、PBN発生ノード数(LF/HF)およびPBN発生回数(LF/HF)に基づいて、送信側WSS24の透過周波数帯域の設定を変更する。送信側ノード20の送信側補償制御部21は、光信号ごとに、PBN発生ノード数(LF)とPBN発生回数(LF)とを加算してLF側PBN発生数を求め、また、PBN発生ノード数(HF)とPBN発生回数(HF)とを加算してHF側PBN発生数を求め、LF側PBN発生数およびHF側PBN発生数のそれぞれを送信補償用参照テーブルと比較し、送信側WSS24の透過周波数帯域のスペクトル形状を決定する。送信側WSS24の透過周波数帯域のスペクトル形状は、送信側WSS24に周波数グリッド単位で与える減衰量を設定することである程度任意に制御できる。周波数グリッドは例えば12.5GHzである。図17に示すように、送信側WSS24として使用する波長選択スイッチでは、PBNが生じる周波数領域に対応する周波数グリッドの透過率が周囲の周波数グリッドの透過率よりも高くなるように減衰量を設定することにより、PBNの影響を低減できる。この際に、どれだけの減衰量を各周波数グリッドに与えるかは、LF側PBN発生数およびHF側PBN発生数に応じて変わる。本実施の形態にかかる送信側補償制御部21が送信側補償で使用する送信補償用参照テーブルは、PBN発生数とこれに対応する減衰量とを含んだ構成、すなわち、図8に示した送信補償用参照テーブルの調整量を減衰量とした構成とすればよい。
本実施の形態にかかる光伝送システムを構成する各装置のハードウェア構成は、実施の形態1にかかる光伝送システムを構成する各装置のハードウェア構成と同様である。
実施の形態2の効果について説明する。図17に示すように、信号がPBNを受ける周波数領域(周波数グリッド)を送信側WSS24の透過周波数帯域のスペクトル形状で補償(プリエンファシスともいう)することで、中継ノードで生じるPBNの度合いを低減でき、その結果、信号品質劣化を抑制できる。
なお、本実施の形態で説明した送信側補償に加えて、実施の形態1で説明した送信側補償、すなわち光源25の発振周波数を変更して光信号の周波数を調整する制御を併せて行うようにしてもよい。
実施の形態3.
実施の形態3にかかる光伝送システムの構成は実施の形態1にかかる光伝送システム100と同様である。また、実施の形態3にかかるネットワーク管理装置および光中継装置の構成は、それぞれ、実施の形態1にかかるネットワーク管理装置10および光中継装置20,30と同様である。本実施の形態では、実施の形態1と異なる点について説明する。
実施の形態3にかかる光伝送システムの構成は実施の形態1にかかる光伝送システム100と同様である。また、実施の形態3にかかるネットワーク管理装置および光中継装置の構成は、それぞれ、実施の形態1にかかるネットワーク管理装置10および光中継装置20,30と同様である。本実施の形態では、実施の形態1と異なる点について説明する。
本実施の形態にかかる光伝送システムは、送信側ノードである光中継装置20が実施する送信側補償が実施の形態1,2にかかる光伝送システムと異なる。
本実施の形態にかかる送信側ノード20が実施する送信側補償では、複数の光送信装置23から出力される複数の光信号の周波数間隔を連携して調整する。光送信装置23が複数の光源を備え、複数の光信号を生成する構成において複数の光信号の周波数間隔を調整してもよい。送信側ノード20は、光信号単位での調整を行って送信側補償を実施するのではなく、単一の光送信装置23あるいは複数の光送信装置23から出力される異なる搬送周波数をもつサブキャリア(SC:Subcarrier)群で構成される一つの信号において、サブキャリア単位で周波数間隔を連携して調整するようにしてもよい。送信側ノード20の送信側補償制御部21は、光送信装置23の光源25の設定を変更してSC#1とSC#2の周波数間隔を調整する。なお、サブキャリア群で構成される信号はスーパーチャネルと呼ばれ、フレキシブルグリッドに対応した多方路WDMシステムへの適用報告が公知としてなされている。例えば、図18に示したように、SC#1の低周波側でPBNが生じる場合に、SC#1とSC#2の周波数間隔を狭くすることで、PBNの影響を低減することができる。周波数間隔の調整は、LF側PBN発生数およびHF側PBN発生数に応じた調整量で行う。実施の形態1,2と同様に、送信側補償制御部21は、送信補償用参照テーブルを使用して、周波数間隔の調整量を決定する。使用する送信補償用参照テーブルは、PBN発生数とこれに対応する調整量とを含んだ構成とすればよい。
本実施の形態にかかる光伝送システムを構成する各装置のハードウェア構成は、実施の形態1,2にかかる光伝送システムを構成する各装置のハードウェア構成と同様である。
実施の形態3の効果について説明する。実施の形態3にかかる光伝送システムでは、実施の形態1と同様の効果を得ることができる。すなわち、PBNが新たに発生するノード(PBN発生ノード)の設定変更を行う前に、送信側ノードが光信号同士の周波数間隔、または、サブキャリア同士の周波数間隔の設定を変更して送信側補償を行うことにより、PBN発生ノードのノード設定変更時に過大なペナルティが発生するのを防止しつつ、システム全体としてPBNの影響を低減できる。
なお、本実施の形態で説明した送信側補償に加えて、実施の形態2で説明した送信側補償、すなわち送信側WSS24の透過周波数帯域の設定を変更してPBNを低減させる制御を併せて行うようにしてもよい。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,10 ネットワーク管理装置、2~6 ノード、11 ノード設定変更要求受付部、12 状態変化ノード算出部、13 通常ノード制御部、14 PBN発生ノード制御部、15 PBN発生ノード数通知部、16 PBN回数算出部、20 光中継装置(送信側ノード)、30-1,30-n 光中継装置(中継ノード)、 21 送信側補償制御部、22 送信側補償更新完了通知部、23 光送信装置、24 送信側波長選択スイッチ(送信側WSS)、25 光源(LD)、31 ノード設定変更制御部、32 ノード設定変更完了通知部、33 中継ノード側波長選択スイッチ(中継ノード側WSS)、100 光伝送システム。
Claims (10)
- 複数の光中継装置により形成された光伝送ネットワーク、および前記光伝送ネットワークを管理するネットワーク管理装置を備えた光伝送システムの前記光中継装置であって、
特定波長の光信号を生成可能な光信号生成部と、
波長単位での方路切り替えが可能な波長選択スイッチと、
前記光信号生成部を制御する制御部と、
を備え、
前記制御部は、前記光信号生成部で生成される光信号が他の光中継装置を通過する際に発生する帯域制限の回数である帯域制限発生回数の情報を前記ネットワーク管理装置から受信すると、受信した情報に基づき前記光信号生成部の設定を変更して前記光信号の周波数を調整する、
ことを特徴とする光中継装置。 - 前記光信号生成部を複数備え、
前記制御部は、前記複数の光信号生成部の中の2つ以上の光信号生成部の設定を前記受信した情報に基づいて変更する、
ことを特徴とする請求項1に記載の光中継装置。 - 前記帯域制限発生回数は、対応する光信号の低周波側で発生する帯域制限の回数および高周波側で発生する帯域制限の回数を含み、
前記制御部は、前記光信号生成部で生成される光信号の低周波側で発生する帯域制限の回数に基づいて前記光信号生成部の設定を変更する処理と、前記光信号生成部で生成される光信号の高周波側で発生する帯域制限の回数に基づいて前記光信号生成部の設定を変更する処理とを実行する、
ことを特徴とする請求項1または2に記載の光中継装置。 - 複数の光中継装置により形成された光伝送ネットワーク、および前記光伝送ネットワークを管理するネットワーク管理装置を備えた光伝送システムの前記光中継装置であって、
特定波長の光信号を生成可能な光信号生成部と、
波長単位での方路切り替えが可能な波長選択スイッチと、
前記波長選択スイッチを制御する制御部と、
を備え、
前記制御部は、前記光信号生成部で生成される光信号が他の光中継装置を通過する際に発生する帯域制限の回数である帯域制限発生回数の情報を前記ネットワーク管理装置から受信すると、受信した情報に基づき前記波長選択スイッチの透過周波数帯域の設定を変更して前記光信号の透過率を調整する、
ことを特徴とする光中継装置。 - 前記光伝送システムをフレキシブルグリッドに対応した多方路波長多重伝送システムとすることを特徴とする請求項1から4のいずれか一つに記載の光中継装置。
- 特定波長の光信号の生成が可能な複数の光中継装置により形成された光伝送ネットワーク、および前記光伝送ネットワークを管理するネットワーク管理装置を備えた光伝送システムの前記ネットワーク管理装置であって、
前記光伝送ネットワークにおける光信号の経路変更要求を受け付ける要求受付部と、
前記経路変更要求に基づく設定変更の指示を前記光中継装置に対して行う設定変更部と、
前記光信号が前記光中継装置を通過する際に発生する帯域制限の回数を前記経路変更要求に基づいて算出する帯域制限発生回数算出部と、
前記帯域制限発生回数算出部が算出した前記帯域制限の回数を示す情報を、前記複数の光中継装置のうち、前記帯域制限の回数を示す情報に対応する光信号を生成する光中継装置へ送信する情報送信部と、
を備えることを特徴とするネットワーク管理装置。 - 前記設定変更部は、前記要求受付部が前記経路変更要求を受け付けると、前記経路変更要求に基づく設定変更を実施しても前記帯域制限が発生しない光中継装置に対して設定変更を指示し、前記情報送信部が送信した情報に基づく設定変更の完了通知が当該情報を受信した光中継装置からなされた後に、前記経路変更要求に基づく設定変更を実施すると前記帯域制限が発生する光中継装置に対して設定変更を指示する、
ことを特徴とする請求項6に記載のネットワーク管理装置。 - 光伝送ネットワークを形成する複数の光中継装置と、
前記光伝送ネットワークを管理するネットワーク管理装置と、
を備え、
前記ネットワーク管理装置は、
前記光伝送ネットワークにおける光信号の経路変更要求を受け付ける要求受付部と、
前記経路変更要求に基づく設定変更の指示を前記光中継装置に対して行う設定変更部と、
前記光信号が前記光中継装置を通過する際に発生する帯域制限の回数を前記経路変更要求に基づいて算出する帯域制限発生回数算出部と、
前記帯域制限発生回数算出部が算出した前記帯域制限の回数を示す帯域制限発生回数情報を、前記複数の光中継装置のうち、前記帯域制限発生回数情報に対応する光信号を生成する光中継装置へ送信する情報送信部と、
を備え、
前記光中継装置は、
特定波長の光信号を生成可能な光信号生成部と、
波長単位での方路切り替えが可能な波長選択スイッチと、
前記情報送信部から前記帯域制限発生回数情報を受信すると、受信した帯域制限発生回数情報に基づき前記光信号生成部の設定を変更して前記光信号の周波数を調整する制御部と、
を備えることを特徴とする光伝送システム。 - 前記設定変更部は、前記要求受付部が前記経路変更要求を受け付けると、前記経路変更要求に基づく設定変更を実施しても前記帯域制限が発生しない光中継装置に対して設定変更を指示し、前記情報送信部が送信した帯域制限発生回数情報に基づく設定変更が当該帯域制限発生回数情報を受信した光中継装置で行われた後に、前記経路変更要求に基づく設定変更を実施すると前記帯域制限が発生する光中継装置に対して設定変更を指示する、
ことを特徴とする請求項8に記載の光伝送システム。 - 複数の光中継装置により形成された光伝送ネットワーク、および前記光伝送ネットワークを管理するネットワーク管理装置を備えた光伝送システムにおいて前記光中継装置の設定を変更するための設定変更方法であって、
前記ネットワーク管理装置が、前記光伝送ネットワークにおける光信号の経路変更要求を受け付ける要求受付ステップと、
前記ネットワーク管理装置が、前記光信号が前記光中継装置を通過する際に発生する帯域制限の回数を前記経路変更要求に基づいて算出する帯域制限発生回数算出ステップと、
前記ネットワーク管理装置が、前記経路変更要求に基づく設定変更を実施しても前記帯域制限が発生しない光中継装置に対して、前記経路変更要求に基づく設定変更を指示する第1の指示ステップと、
前記ネットワーク管理装置が、前記帯域制限発生回数算出ステップで算出した前記帯域制限の回数を示す帯域制限発生回数情報を、前記複数の光中継装置のうち、前記帯域制限発生回数情報に対応する光信号を生成する光中継装置へ送信する情報送信ステップと、
前記複数の光中継装置のうち、前記帯域制限発生回数情報を受信した光中継装置が、生成する光信号の周波数を前記帯域制限発生回数情報に基づいて調整し、調整が完了すると調整完了を前記ネットワーク管理装置に通知する調整ステップと、
前記ネットワーク管理装置が、前記調整完了の通知を受けた後に、前記経路変更要求に基づく設定変更を実施すると前記帯域制限が発生する光中継装置に対して、前記経路変更要求に基づく設定変更を指示する第2の指示ステップと、
を含むことを特徴とする設定変更方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16912636.4A EP3487094A4 (en) | 2016-08-08 | 2016-08-08 | OPTICAL RELAY DEVICE, NETWORK MANAGEMENT DEVICE, OPTICAL TRANSMISSION SYSTEM AND ADJUSTMENT MODIFICATION METHOD |
CN201680088291.1A CN109565347A (zh) | 2016-08-08 | 2016-08-08 | 光中继装置、网络管理装置、光传输系统和设定变更方法 |
US16/320,052 US20190245621A1 (en) | 2016-08-08 | 2016-08-08 | Optical relay, network management apparatus, optical transmission system, and setting changing method |
JP2016570366A JP6099855B1 (ja) | 2016-08-08 | 2016-08-08 | 光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法 |
PCT/JP2016/073308 WO2018029752A1 (ja) | 2016-08-08 | 2016-08-08 | 光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/073308 WO2018029752A1 (ja) | 2016-08-08 | 2016-08-08 | 光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018029752A1 true WO2018029752A1 (ja) | 2018-02-15 |
Family
ID=58363134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073308 WO2018029752A1 (ja) | 2016-08-08 | 2016-08-08 | 光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190245621A1 (ja) |
EP (1) | EP3487094A4 (ja) |
JP (1) | JP6099855B1 (ja) |
CN (1) | CN109565347A (ja) |
WO (1) | WO2018029752A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021176766A1 (ja) * | 2020-03-02 | 2021-09-10 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012109711A (ja) * | 2010-11-16 | 2012-06-07 | Mitsubishi Electric Corp | 光伝送システム |
JP2013106328A (ja) * | 2011-11-16 | 2013-05-30 | Fujitsu Ltd | 光伝送システム、光伝送装置、信号調整プログラム及び信号調整方法 |
US20130142516A1 (en) * | 2011-12-02 | 2013-06-06 | At&T Intellectual Property I, L.P. | Apparatus and method for distributed compensation of narrow optical filtering effects in an optical network |
JP2014220575A (ja) * | 2013-05-01 | 2014-11-20 | 富士通株式会社 | 光伝送装置、光伝送システム、及び光伝送方法 |
JP2016100743A (ja) * | 2014-11-21 | 2016-05-30 | 富士通株式会社 | 光伝送装置および波長校正方法 |
JP2016131273A (ja) * | 2015-01-13 | 2016-07-21 | 富士通株式会社 | 光伝送システム、波長制御方法、及び、ノード |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6339663B1 (en) * | 2000-12-22 | 2002-01-15 | Seneca Networks, Inc. | Bidirectional WDM optical communication system with bidirectional optical service channels |
JP2003134160A (ja) * | 2001-10-25 | 2003-05-09 | Matsushita Electric Ind Co Ltd | 帯域保証システム、中継装置、及び、ネットワーク管理サーバ |
US7277634B2 (en) * | 2002-04-17 | 2007-10-02 | Intel Corporation | Method and apparatus of a semiconductor-based fast intelligent NxN photonic switch module with an optical buffer for WDM networks |
JP2005141099A (ja) * | 2003-11-07 | 2005-06-02 | Nec Corp | ラマン増幅中継器及びこれを用いた光伝送システム |
JP4929664B2 (ja) * | 2005-03-14 | 2012-05-09 | 富士通株式会社 | 光増幅器の制御装置、光増幅器の制御方法、光伝送装置、光増幅器、帯域単位利得等化器を用いた光増幅器及び帯域単位利得等化器を用いた波長多重伝送システム |
JP4662267B2 (ja) * | 2005-12-05 | 2011-03-30 | Kddi株式会社 | 全光ネットワークにおける波長サービス提供装置 |
JP4571933B2 (ja) * | 2006-12-28 | 2010-10-27 | 富士通株式会社 | 光伝送装置および光伝送方法 |
CN102307087B (zh) * | 2011-07-05 | 2013-10-30 | 清华大学 | 原子时信号传输系统及传输方法 |
JP5862388B2 (ja) * | 2012-03-16 | 2016-02-16 | 富士通株式会社 | 測定装置、ネットワーク設計装置、伝送システム、ネットワーク管理装置 |
EP3033846B1 (en) * | 2013-08-16 | 2019-10-23 | Telefonaktiebolaget LM Ericsson (publ) | A method and apparatus for superchannel tuning |
EP3113391B1 (en) * | 2014-02-28 | 2019-03-20 | Japan Science and Technology Agency | Optical network |
JP6481423B2 (ja) * | 2015-03-03 | 2019-03-13 | 富士通株式会社 | 光伝送装置及び波長制御方法 |
JP6563067B1 (ja) * | 2018-04-18 | 2019-08-21 | 三菱電機株式会社 | 船舶の方位制御装置および方位制御方法 |
-
2016
- 2016-08-08 WO PCT/JP2016/073308 patent/WO2018029752A1/ja unknown
- 2016-08-08 CN CN201680088291.1A patent/CN109565347A/zh active Pending
- 2016-08-08 EP EP16912636.4A patent/EP3487094A4/en not_active Withdrawn
- 2016-08-08 JP JP2016570366A patent/JP6099855B1/ja active Active
- 2016-08-08 US US16/320,052 patent/US20190245621A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012109711A (ja) * | 2010-11-16 | 2012-06-07 | Mitsubishi Electric Corp | 光伝送システム |
JP2013106328A (ja) * | 2011-11-16 | 2013-05-30 | Fujitsu Ltd | 光伝送システム、光伝送装置、信号調整プログラム及び信号調整方法 |
US20130142516A1 (en) * | 2011-12-02 | 2013-06-06 | At&T Intellectual Property I, L.P. | Apparatus and method for distributed compensation of narrow optical filtering effects in an optical network |
JP2014220575A (ja) * | 2013-05-01 | 2014-11-20 | 富士通株式会社 | 光伝送装置、光伝送システム、及び光伝送方法 |
JP2016100743A (ja) * | 2014-11-21 | 2016-05-30 | 富士通株式会社 | 光伝送装置および波長校正方法 |
JP2016131273A (ja) * | 2015-01-13 | 2016-07-21 | 富士通株式会社 | 光伝送システム、波長制御方法、及び、ノード |
Non-Patent Citations (1)
Title |
---|
See also references of EP3487094A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021176766A1 (ja) * | 2020-03-02 | 2021-09-10 | ||
JP7138811B2 (ja) | 2020-03-02 | 2022-09-16 | 三菱電機株式会社 | 光送受信器、送信信号決定方法及び光通信システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018029752A1 (ja) | 2018-08-09 |
US20190245621A1 (en) | 2019-08-08 |
CN109565347A (zh) | 2019-04-02 |
EP3487094A1 (en) | 2019-05-22 |
EP3487094A4 (en) | 2019-08-07 |
JP6099855B1 (ja) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8818191B2 (en) | Wavelength reallocation method and node device | |
US10707958B2 (en) | Method and apparatus for determining a maximum transmission capacity within an optical network | |
US8260141B2 (en) | Method to transform a dynamic analog optical network to a digital representation | |
WO2015129194A1 (ja) | 光ネットワーク制御装置および光ネットワーク制御方法 | |
CN107408981B (zh) | 光学复用和解复用设备以及控制光学复用和解复用设备的方法 | |
JP6140697B2 (ja) | 分岐された光学ネットワークにおける障害回復のための方法およびシステム | |
CN109565346B (zh) | 控制频谱占用的方法和系统 | |
US9467244B2 (en) | Transmission apparatus and transmission system | |
JP6288246B2 (ja) | 光中継装置、光通信システム、光中継方法 | |
JP2016220128A (ja) | 光伝送装置 | |
JP6390308B2 (ja) | 光伝送装置および光伝送制御方法 | |
JP6747580B2 (ja) | 光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法 | |
JP6099855B1 (ja) | 光中継装置、ネットワーク管理装置、光伝送システムおよび設定変更方法 | |
Nooruzzaman et al. | Resource savings in submarine networks using agility of filterless architectures | |
CN111466089A (zh) | 海底光学传送装置和海底光学通信系统 | |
US8849113B2 (en) | Wavelength selective switch and optical transmission apparatus | |
WO2017159519A1 (ja) | 光制御装置及び光分岐装置 | |
Nooruzzaman et al. | Resource savings in gridless coherent submarine networks with filterless architectures | |
US8355631B2 (en) | Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems | |
US9185474B2 (en) | Wavelength path switching method, optical communication system, optical communication device, optical repeater, and network management device | |
Muñoz et al. | SDN-enabled scaling up/down of SDM super-channels exploiting spatial modes with adaptive MIMO equalization and modulation format assignment | |
JP5853823B2 (ja) | ネットワークの制御方法 | |
JP2018050155A (ja) | 光伝送装置及びその設定方法 | |
WO2015145984A1 (ja) | 光送信装置、光通信システム、光送信方法及び記憶媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016570366 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16912636 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016912636 Country of ref document: EP Effective date: 20190218 |