WO2018029731A1 - タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法 - Google Patents

タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法 Download PDF

Info

Publication number
WO2018029731A1
WO2018029731A1 PCT/JP2016/003734 JP2016003734W WO2018029731A1 WO 2018029731 A1 WO2018029731 A1 WO 2018029731A1 JP 2016003734 W JP2016003734 W JP 2016003734W WO 2018029731 A1 WO2018029731 A1 WO 2018029731A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
mold
tread
sector
pair
Prior art date
Application number
PCT/JP2016/003734
Other languages
English (en)
French (fr)
Inventor
将明 小原
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to US16/321,573 priority Critical patent/US11318693B2/en
Priority to JP2018533298A priority patent/JP6738427B2/ja
Priority to PCT/JP2016/003734 priority patent/WO2018029731A1/ja
Priority to CN201680087971.1A priority patent/CN109689324B/zh
Publication of WO2018029731A1 publication Critical patent/WO2018029731A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/005Moulds or cores; Details thereof or accessories therefor characterised by the location of the parting line of the mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D30/0629Vulcanising moulds not integral with vulcanising presses with radially movable sectors

Definitions

  • the present invention relates to a tire vulcanizing mold, a tire vulcanizing apparatus including the tire vulcanizing mold, and a tire manufacturing method.
  • the tire is manufactured by preparing an unvulcanized green tire and vulcanizing the green tire while forming it into a predetermined shape using a tire vulcanizer.
  • a tire vulcanizing apparatus is known as a vulcanizing mold for molding a green tire into a predetermined shape, and includes a sector that forms a tread portion of a tire and a pair of upper and lower side plates that form a sidewall portion of the tire. It has been.
  • Various uneven patterns are formed on the outer surfaces of the tread part and the sidewall part.
  • a continuous uneven shape may be formed from the tread portion to the sidewall portion.
  • the present invention provides a tire vulcanization mold that can suppress misalignment in the circumferential direction between a sector and a side plate in a case where a mold parting line is arranged in a tread portion. With the goal.
  • the tire vulcanization mold according to the present invention is a tire vulcanization mold that vulcanizes and molds a tire.
  • a sector that is divided in the tire circumferential direction that molds a tread portion of the tire and an upper and lower portions that mold a sidewall portion of the tire.
  • a mold parting line formed by the sector and the pair of upper and lower side plates is located in the tread portion, and a distance from the tire equator to the mold parting line is It changes periodically in the tire circumferential direction.
  • the tread portion has a first land portion having a first tread end, and a second land portion having a second tread end located outside the first tread end in the tire width direction.
  • the mold parting line may include a first line portion extending along the first tread end and a second line portion extending along the second tread end.
  • each bent portion of the mold parting line may be formed in a curved shape.
  • the mold parting line may be set so as to pass through a bending point of a surface design in the tread portion. In that case, the bending point of the surface design may be the bending point of the ridge line along the lateral groove of the land portion located in the shoulder region of the tread portion.
  • the tire vulcanizing apparatus includes the tire vulcanizing mold, a segment that is fixed to the sector and moves the sector in a tire radial direction, and is fixed to the pair of upper and lower side plates and can slide the segment. And a pair of upper and lower mounting plates to be supported on.
  • the tire vulcanizing apparatus includes a pair of upper and lower sliding surfaces on which the segment slides the pair of upper and lower mounting plates, and the pair of upper and lower sliding surfaces has a tire width toward the outer side in the tire radial direction.
  • the sector is moved outward in the tire radial direction, the pair of upper and lower sliding surfaces slides on the pair of upper and lower mounting plates, and the mold is divided.
  • die dividing surface containing a line may be expanded. In that case, a mold dividing surface including the mold dividing line may be provided in parallel with the tire radial direction.
  • the tire manufacturing method according to the present invention includes a molding step of molding a green tire and a vulcanization step of vulcanizing and molding the green tire using the tire vulcanizer.
  • the distance between the sector and the side plate in the circumferential direction can be suppressed by periodically changing the distance from the tire equator to the mold dividing line in the tire circumferential direction.
  • Sectional view during tire vulcanization along line IV-IV in Fig. 2 2 is an enlarged view of the main part of FIG.
  • the figure explaining opening and closing operation of the tire vulcanizer The figure explaining opening and closing operation of the tire vulcanizer
  • the figure explaining opening and closing operation of the tire vulcanizer Fig. 8 is an enlarged view of the main part.
  • Fig. 8 is an enlarged view of the main part.
  • the tire vulcanizing apparatus includes a tire vulcanizing mold (hereinafter simply referred to as a vulcanizing mold) 10, a container 30 to which the vulcanizing mold 10 is attached, a vulcanizing mold 10 and a container.
  • the first elevating means 50 and the second elevating means 51 that move the 30 up and down, and the bladder 60 are provided.
  • the tire vulcanizing device vulcanizes an unvulcanized green tire set so that the tire axial direction is up and down while being molded into a predetermined shape by heating and pressing.
  • the vulcanization mold 10 includes a pair of upper and lower upper side plates 11 and 12, a plurality of sectors 13 divided in the circumferential direction, and a pair of upper and lower bead rings 14 and 15. It is a metal mold
  • a metal material such as aluminum, an aluminum alloy, or iron can be used.
  • the sector 13 is a mold for molding the tread portion 1 of the tire T.
  • the sector 13 is divided into a plurality (for example, nine) in the tire circumferential direction and is provided so as to be able to be expanded and contracted in the tire radial direction (tire radial direction). .
  • the sectors 13 adjacent in the tire circumferential direction gather close to each other to form an annular shape.
  • the upper side plate 11 is a mold for molding the sidewall portion 2 and the bead portion 3 disposed above the tire T.
  • the lower side plate 12 is a mold for molding the sidewall portion 2 and the bead portion 3 disposed below.
  • Bead rings 14 and 15 are provided on the inner side in the tire radial direction of the upper side plate 11 and the lower side plate 12, respectively. The bead rings 14 and 15 are configured such that the bead portion 3 of the tire T can be fitted therein.
  • the vulcanizing mold 10 includes a mold dividing line (parting line) for dividing the mold in the tire width direction, that is, a mold dividing line 16 a formed by the sector 13 and the upper side plate 11, and a sector 13. And a mold parting line 17 a formed by the lower side plate 12.
  • the mold parting lines 16a and 17a are located in the tread portion 1 of the tire T. Therefore, in the vulcanization mold 10, the sector 13 and the pair of upper and lower side plates 11 and 12 are tire widths on the tread surface. It is comprised so that it may be divided
  • a mold dividing surface including the mold dividing lines 16a and 17a that is, a mold dividing surface 16 which is a mating surface of the sector 13 and the upper side plate 11, and a mating surface of the sector 13 and the lower side plate 12.
  • Both of the mold dividing surfaces 17 extend outward from the mold dividing lines 16a and 17a in the tire radial direction, and in this example, are provided in parallel to the tire radial direction which is the moving direction of the sector 13.
  • the mold parting lines 16a and 17a are parting lines located at the inner ends of the mold parting surfaces 16 and 17, that is, the end parts facing the cavities.
  • the mold parting lines 16a and 17a are set so that the distance from the tire equator CL periodically changes in the tire circumferential direction in the shoulder region of the tread portion 1, as shown in FIG. Yes. More specifically, the mold parting lines 16a and 17a are formed by zigzag lines in a plan view extending in the tire circumferential direction while swinging in the tire width direction, and are configured by repeating a predetermined pattern in the tire circumferential direction.
  • the tread portion 1 includes a plurality of blocks defined by a main groove 4 that extends in the tire circumferential direction while being bent and a lateral groove 5 that intersects the main groove 4.
  • the tire circumferential direction is the direction indicated by the symbol CD in FIG.
  • the tire width direction is a direction indicated by reference numeral WD, the inner side in the tire width direction (that is, the center side) is the direction approaching the tire equator CL, and the outer side in the tire width direction is the direction away from the tire equator CL.
  • the tread portion 1 has a pair of central block rows 6a and 6a located in the center region including the tire equator CL, and a pair of shoulder block rows 6b and 6b located in the shoulder regions on both sides thereof.
  • the shoulder region is a region located at an end portion in the tire width direction in the tread portion, and is a region including the tire contact end sandwiched between the main groove and the tire contact end.
  • the shoulder block row 6b includes a first land portion (block) 7 having a first tread end 7a and a second land located on the outer side in the tire width direction from the first tread end 7a. And a second land portion (block) 8 having a tread end 8a.
  • the shoulder block row 6b is formed by alternately providing the first land portions 7 and the second land portions 8 extending outward in the tire width direction from the first land portions 7 in the tire circumferential direction.
  • the tread ends of these land portions are the ground contact ends on the outer sides in the tire width direction in the respective land portions.
  • the mold dividing lines 16a and 17a are formed on the first line portions 16a1 and 17a1 extending along the first tread end 7a and the second tread end 8a. Second line portions 16a2 and 17a2 extending along the line.
  • “extending along the tread end” means extending in the vicinity of the tread end in parallel to the tread end.
  • first line portions 16a1 and 17a1 are linear in the first land portion 7 and extend inward in the tire width direction from the first tread end 7a in parallel to the tire circumferential direction in a plan view shown in FIG. And is set so as to cross the first land portion 7.
  • the first line portions 16a1 and 17a1 are located in the vicinity of the first tread end 7a, and the distance D1 between them (see FIG. 5) is not particularly limited, but may be, for example, 10 mm or less.
  • the second line portions 16a2 and 17a2 are linear portions in the second land portion 8 that extend inward in the tire width direction from the second tread end 8a in parallel to the tire circumferential direction, as viewed in a plan view shown in FIG.
  • the second land portion 8 is set to be crossed.
  • the second line portions 16a2 and 17a2 are located in the vicinity of the second tread end 8a, and the distance D2 between them (see FIG. 5) is, for example, 10 mm or less, and is set substantially equal to the distance D1. It is preferable.
  • the second line portions 16 a 2 and 17 a 2 that cross the second land portion 8 are located on the outer side in the tire width direction than the first line portions 16 a 1 and 17 a 1 that cross the first land portion 7.
  • the lateral groove 5 between the first land portion 7 and the second land portion 8 is inclined with respect to the tire circumferential direction so as to smoothly connect the first line portions 16a1, 17a1 and the second line portions 16a2, 17a2.
  • Straight line portions 16a3 and 17a3 are provided in a plan view extending in a straight line.
  • the first line portions 16a1 and 17a1, the second line portions 16a2 and 17a2, and the inclined portions 16a3 and 17a3 constitute mold dividing lines 16a and 17a. Therefore, the mold parting lines 16a and 17a have a zigzag shape in which the distance from the tire equator CL changes periodically in the tire circumferential direction.
  • the mold parting lines 16 a and 17 a are also set so as to pass through the bending points of the surface design in the shoulder region of the tread portion 1.
  • the surface design is a shape of a tread surface (that is, a ground contact surface) also called a tread pattern, for example, a shape represented by a ridgeline or a sipe of a land portion such as a block or a rib provided in the tread portion. is there.
  • the bending point may be an intersection between straight lines, an intersection between curves, or an intersection between a straight line and a curve.
  • the mold parting lines 16 a and 17 a are set so as to pass through the bending point 8 c of the ridge line 8 b of the second land portion 8.
  • the ridge line 8b is a ridge line 8b along the horizontal groove 5 that divides the land portion 8 among the ridge lines of the second land portion 8, and the bending point 8c of the ridge line 8b on the tread surface (that is, the ground contact surface) is at the mold dividing position.
  • the bending point 8c is an intersection of the curved portion 8d and the straight portion 8e of the ridge line 8b.
  • the ridge line is a line generated at the intersection of the side surface of the land portion (block) and the upper surface (tread surface).
  • each of the bent portions of the mold parting lines 16a and 17a having a plurality of bent portions and extending in the tire circumferential direction is formed in a curved shape.
  • the linear second line portion 17a2 and the linear inclined line portion 17a3 are connected via an arc-shaped bent portion 17a4 in plan view.
  • the other bent portions that is, the bent portions connecting the first line portions 16a1 and 17a1 and the inclined line portion 17a3 and the bent portions connecting the second line portion 16a2 and the inclined line portion 16a3 are similarly circular. It is formed in an arc shape.
  • the curvature radius R of the curved bent portion is not particularly limited, and may be about 2 to 20 mm, for example.
  • the vulcanization mold 10 includes a main groove molding rib (not shown) for molding the main groove 4 in the tread portion 1 and a horizontal groove molding for forming the horizontal groove 5.
  • Ribs 18 are provided (see FIGS. 3 and 4).
  • the transverse groove forming rib 18 provided across the sector 13 and the upper side plate 11 is divided by a mold parting line 16a.
  • the rib 18 for horizontal groove molding provided ranging from the sector 13 to the lower side plate 12 is divided by a mold parting line 17a.
  • the transverse groove forming rib 18 includes a first rib portion 18 a provided in the sector 13 and a second rib portion 18 b provided in the side plates 11 and 12, and the first rib portion 18 a and the second rib are provided. It is configured by joining the part 18b at the mold parting lines 16a and 17a.
  • the container 30 supports a plurality of segments 31 that hold the sector 13, a jacket ring 32 that moves the segment 31 in the tire radial direction, the upper side plate 11 and the upper bead ring 14, and is disposed above the segment 31. And an upper mounting plate 33 that supports the lower side plate 12 and the lower bead ring 15 and is disposed below the segment 31.
  • the segment 31 is provided for each of the divided sectors 13 outside the sector 13 in the tire radial direction, and each segment 31 is fixed to the corresponding sector 13 by a bolt 35.
  • the upper surface of the segment 31 is provided with an upper sliding surface 36 that is inclined so as to be directed toward the center in the tire width direction (that is, downward) toward the outer side in the tire radial direction.
  • the upper sliding surface 36 slides on an upper slide 37 provided on the upper mounting plate 33.
  • a lower sliding surface 38 is provided on the lower surface of the segment 31 so as to be inclined toward the center in the tire width direction (that is, upward) toward the outer side in the tire radial direction.
  • the lower sliding surface 38 slides on a lower slide 39 provided on the lower mounting plate 34.
  • the inclination angle of the upper sliding surface 36 and the lower sliding surface 38 is not particularly limited, but is preferably 5 ° or more and 10 ° or less with respect to the tire radial direction.
  • the upper sliding surface 36 and the lower sliding surface 38 provided in the segment 31 are preferably flat surfaces that do not bend, and are slid in surface contact with the upper slide 37 and the lower slide 39. Move.
  • the segment 31 has an inclined surface 40 in which the side surface opposite to the side surface to which the sector 13 is attached (the tire radial direction outer side) is inclined downward in the tire radial direction toward the lower side.
  • the jacket ring 32 is an annular member provided on the radially outer side of the plurality of segments 31.
  • the inner peripheral surface of the jacket ring 32 is inclined along an inclined surface 40 provided outside the segment 31 in the tire radial direction, and is attached to the inclined surface 40 in a slidable state.
  • the jacket ring 32 moves up and down relatively with respect to the segment 31 to move the segment 31 in the tire radial direction while sliding on the inclined surface 40.
  • the sector 13 is configured to be able to expand and contract in the tire radial direction.
  • the upper side plate 11 and the upper slide 37 are fixed to the lower surface of the upper mounting plate 33.
  • the upper slide 37 is disposed on the outer side in the tire radial direction of the upper side plate 11 and at a position facing the upper sliding surface 36 provided on the upper surface of the segment 31 so that the segment 31 can slide in the tire radial direction. To support.
  • the lower side plate 12 and the lower slide 39 are fixed to the upper surface of the lower mounting plate 34.
  • the lower slide 39 is disposed on the outer side in the tire radial direction of the lower side plate 12 and at a position facing the lower sliding surface 38 provided on the lower surface of the segment 31, and slides the segment 31 in the tire radial direction. Support movably.
  • the first elevating means 50 moves the upper mounting plate 33 up and down relatively with respect to the lower mounting plate 34.
  • the second elevating means 51 moves the jacket ring 32 up and down separately from the segment 31 supported by the upper mounting plate 33.
  • the bladder 60 is formed of a toroidal rubber elastic body having a toroidal shape in which the axial center portion bulges outward, and is disposed on the inner surface side of the green tire to generate pressurized gas (for example, steam or nitrogen gas).
  • the green tire is inflated by supply and pressurized from the inside.
  • the bladder 60 has an upper end portion and a lower end portion, which are both ends in the axial direction, supported by an expansion / contraction support portion 61.
  • the expansion / contraction support part 61 includes an upper clamp ring 62 that fixes the upper end of the bladder 60, a lower clamp ring 63 that fixes the lower end of the bladder 60, and an extendable extension / contraction shaft part 64.
  • a method for manufacturing a pneumatic tire using the tire vulcanizer having the above-described configuration will be described.
  • a green tire is molded by a known method, and the green tire is vulcanized and molded using the tire vulcanizer.
  • 6 to 8 are diagrams for explaining the opening / closing operation of the tire vulcanizing apparatus, in which the green tire and the bladder 60 are omitted.
  • FIG. 6 shows the mold open state, where the sector 13 and the upper side plate 11 are spaced apart from each other with respect to the fixed lower side plate 12.
  • the green tire is mounted on the lower side plate 12, and then the container 30 is lowered.
  • the first elevating means 50 is lowered, and the upper side plate 11 and the sector 13 provided on the upper mounting plate 33 are lowered, that is, moved toward the lower side plate 12.
  • the segment 31 has a lower sliding surface 38 that slides on the lower slide 39 of the lower mounting plate 34, and an upper sliding surface 36 that slides on the upper slide 37 of the upper mounting plate 33.
  • the upper sliding surface 36 and the lower sliding surface 38 are inclined so that the outer side in the tire radial direction is toward the center in the tire width direction. Therefore, when the sector 13 moves inward in the tire radial direction together with the segment 31, the upper side plate 11 is lowered due to the inclination of the upper sliding surface 36, and the sector 13 is lowered due to the inclination of the lower sliding surface 38.
  • the vulcanization mold 10 is brought into a closed state as shown in FIG. 1, and a pressurized gas is supplied into the bladder 60 to be expanded so that a green is formed between the vulcanization mold 10 and the bladder 60.
  • the tire T is vulcanized and molded by pressurizing and heating the tire and maintaining this state for a predetermined time.
  • the vulcanizing mold 10 After vulcanizing the green tire, the vulcanizing mold 10 is opened, and the vulcanized tire T is taken out from the tire vulcanizer. In order to change the vulcanization mold 10 from the mold closed state to the mold open state, an operation opposite to the above mold closing operation may be performed.
  • the jacket ring 32 is raised by the second lifting means 51 to move the sector 13 held by the segment 31 outward in the tire radial direction.
  • the upper sliding surface 36 pushes the upper mounting plate 33 upward and moves on the upper slide 37 of the upper mounting plate 33 in the tire radial direction. Slide outward.
  • the lower sliding surface 38 slides outward in the tire radial direction while rising on the lower slide 39 of the lower mounting plate 34.
  • the first elevating means 50 is raised so that the upper side plate 11 and the sector 13 are moved relative to the lower side plate 12 as shown in FIG. 6. Move away. Then, the vulcanized tire T is taken out from the tire vulcanizing apparatus in the mold open state.
  • the mold dividing lines 16a and 17a between the sector 13 and the side plates 11 and 12 are zigzag in the tire circumferential direction.
  • the plates 11 and 12 can be positioned in the tire circumferential direction. That is, since the position shift in the tire circumferential direction can be suppressed, the appearance of the tread portion 1 through which the mold parting lines 16a and 17a pass can be improved, and the tire performance can be ensured.
  • the mold parting line is provided in a zigzag shape, there is a sipe in the land portion of the shoulder region, and even if the sipe position in the tire width direction differs between adjacent land portions, each land is avoided while avoiding the sipe.
  • a mold dividing line can be set in the part.
  • the sipe depth is different in the tire width direction, it is possible to set a mold dividing line in each land portion while avoiding a deep sipe position.
  • a blade for molding a sipe in the tread portion is provided on the side plate, the blade is difficult to come off particularly in the case of a deep sipe, which may cause damage or the like. According to this embodiment, these problems can also be solved.
  • the mold parting lines 16a and 17a are Since the first line portions 16a1 and 17a1 along the first block end 7a and the second line portions 16a2 and 17a2 along the second block end 8a are included, the rubber temporarily protrudes from the mold parting line portions 16a and 17a. Even so, the protruding rubber can be made to feel part of the surface design, and the appearance can be improved.
  • bent portions 17a4 of the mold parting lines 16a and 17a are formed in a curved shape, the workability can be improved and the positioning accuracy in the tire circumferential direction can be improved.
  • the mold dividing lines 16a and 17a between the sector 13 and the side plates 11 and 12 are set so as to pass through the bending point 8c of the surface design of the tread portion 1, the mold dividing line 16a near the bending point 8c is temporarily assumed. , 17a, the protruding rubber passing through the bending point 8c can be felt as a part of the surface design.
  • the mold parting line is set so as to pass through the bending points of the surface design, it does not necessarily have to be set so as to pass through all the bending points, and may be set so as to pass through at least one bending point.
  • the upper sliding surface 36 and the lower sliding surface 38 that slide with respect to the upper mounting plate 33 and the lower mounting plate 34 are located at the center in the tire width direction toward the outer side in the tire radial direction. It is inclined to head. For this reason, when the segment 31 starts to move outward in the radial direction, the interval between the mold dividing surfaces 16 and 17 formed by the sector 13 and the upper side plate 11 and the lower side plate 12 increases. Therefore, even if the opening and closing of the tire vulcanizing apparatus is repeated, the mold dividing surfaces 16 and 17 do not rub against each other, and the distance between the mold dividing surfaces 16 and 17 can be maintained at an appropriate value. Can be improved. In addition, immediately after the segment 31 starts moving radially outward, the upper side plate 11 moves in a direction away from the vulcanized tire T, so that the tire T can be easily removed.
  • the upper sliding surface 36 and the lower sliding surface 38 provided on the segment 31 slide in a surface contact state with respect to the upper slide 37 and the lower slide 39. If it is flat, the segment 31 can be moved with high positional accuracy without rattling, and the positional deviation of the sector 13 in the mold-closed state can be suppressed.
  • die division surfaces 16 and 17 were provided in parallel with the tire radial direction, you may incline and incline with respect to a tire radial direction. That is, the mold dividing surfaces 16 and 17 may be provided so as to be inclined toward the outer side in the tire width direction toward the outer side in the tire radial direction. Even in this case, the tire can be easily removed from the mold by the inclination of the upper sliding surface 36 and the lower sliding surface 38. Further, even if the sliding surfaces 36 and 38 are worn due to repeated mold opening and closing, and the distance between the upper side plate 11 and the lower side plate 12 is reduced, the segment 31 moves in the tire radial direction. Accordingly, the mold can be closed because the distance between the upper side plate 11 and the lower side plate 12 is gradually narrowed, so that early rubbing of the mold dividing surfaces 16 and 17 can be suppressed and durability can be improved. Can do.
  • the shoulder region has two tread end positions, but it may have three or more tread end positions. That is, for example, together with the first land portion 7 having the first tread end 7a and the second land portion 8 having the second tread end 8a, the first and second tread ends are in the tire width direction.
  • a third land portion having a third tread edge at a different position may be included.
  • the mold parting line preferably includes a third line portion extending along the third tread end.
  • the mold parting line may be set so as to overlap one of the tread ends. Further, in the above embodiment, the mold dividing line is set parallel to the tire circumferential direction at the land portion and inclined at the lateral groove, but conversely, the mold dividing line is set parallel to the tire circumferential direction at the lateral groove, It may be inclined at the portion, and may be set inclined at the land portion or the lateral groove, and various shapes can be adopted.
  • examples of the tire according to the present embodiment include pneumatic tires for various vehicles such as tires for passenger cars, heavy duty tires such as trucks, buses, and light trucks (for example, SUV cars and pickup trucks).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

実施形態に係るタイヤ加硫金型は、タイヤのトレッド部1を成型するタイヤ周方向に分割されたセクタ13と、タイヤのサイドウォール部2を成型する上下一対のサイドプレート11,12と、を備えたものである。セクタ13と上下一対のサイドプレート11,12とで形成される金型分割線16a,17aが、トレッド部1に位置しており、タイヤ赤道CLから金型分割線16a,17aまでの距離がタイヤ周方向において周期的に変化している。

Description

タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
 本発明は、タイヤ加硫金型、該タイヤ加硫金型を含むタイヤ加硫装置、及びタイヤの製造方法に関する。
 タイヤは、未加硫のグリーンタイヤを作製し、タイヤ加硫装置を用いてグリーンタイヤを所定形状に成型しつつ加硫することにより製造される。
 タイヤ加硫装置は、グリーンタイヤを所定形状に成型する加硫金型として、タイヤのトレッド部を形成するセクタと、タイヤのサイドウォール部を形成する上下一対のサイドプレートとを備えたものが知られている。
 このタイヤ加硫装置では、上側のサイドプレート及びセクタを下側のサイドプレートから離隔させた型開き状態において、下側のサイドプレートにグリーンタイヤをセットした後、上側のサイドプレートを下降するとともにセクタをタイヤ径方向内方へ移動させることにより、下側のサイドプレートに上側のサイドプレート及びセクタを近接させて型閉め状態となる。なお、セクタは周方向で複数に分割されており、型開き状態では放射状に離間し、型閉め状態では互いに寄り集まって環状をなす。
 トレッド部やサイドウォール部の外表面には、種々の凹凸形状のパターンが形成されている。タイヤの意匠性を向上させるため、トレッド部からサイドウォール部にかけて連続する凹凸形状を形成することがある。このようなパターンを形成する場合、セクタとサイドプレートとで形成される金型分割線をサイドウォール部に配置すると、金型分割線においてはみ出したゴムが外観上目立つ位置に発生するおそれがある。
 一方、セクタとサイドプレートとで形成される金型分割線をトレッド部に配置する技術が知られている(特許文献1,2参照)。この場合、目立ちやすいサイドウォール部でのはみ出しゴムの発生は抑制することができる。
特開2001-96538号公報 特開2000-87936号公報
 しかしながら、金型分割線をトレッド部に配置した場合において、セクタとサイドプレートとが周方向で位置ずれすると、外観性のみならず、タイヤ性能にも影響を与えるおそれがある。
 本発明は、以上の点に鑑み、金型分割線をトレッド部に配置したものにおいて、セクタとサイドプレートとの周方向での位置ずれを抑制することができるタイヤ加硫金型を提供することを目的とする。
 本発明に係るタイヤ加硫金型は、タイヤを加硫成型するタイヤ加硫金型において、タイヤのトレッド部を成型するタイヤ周方向に分割されたセクタと、タイヤのサイドウォール部を成型する上下一対のサイドプレートと、を備え、前記セクタと上下一対の前記サイドプレートとで形成される金型分割線が、前記トレッド部に位置しており、タイヤ赤道から前記金型分割線までの距離がタイヤ周方向において周期的に変化しているものである。
 一実施形態において、前記トレッド部が、第1のトレッド端を持つ第1陸部と、前記第1のトレッド端よりもタイヤ幅方向外側に位置する第2のトレッド端を持つ第2陸部と、を含み、前記金型分割線が、前記第1のトレッド端に沿って延びる第1線部分と、前記第2のトレッド端に沿って延びる第2線部分とを含んでもよい。他の実施形態において、前記金型分割線の各屈曲部が湾曲状に形成されてもよい。他の実施形態において、前記金型分割線が、前記トレッド部における表面意匠の屈曲点を通るように設定されてもよい。その場合、前記表面意匠の屈曲点は、前記トレッド部のショルダー領域に位置する陸部の横溝に沿う稜線の屈曲点でもよい。
 本発明に係るタイヤ加硫装置は、前記タイヤ加硫金型と、前記セクタに固定されタイヤ径方向に前記セクタを移動させるセグメントと、上下一対の前記サイドプレートに固定され前記セグメントを摺動可能に支持する上下一対の取付プレートと、を備えるものである。
 タイヤ加硫装置は、一実施形態において、前記セグメントが、上下一対の前記取付プレートを摺動する上下一対の摺動面を備え、上下一対の前記摺動面が、タイヤ径方向外側ほどタイヤ幅方向中央部に向かうように傾斜し、前記セグメントは、前記セクタをタイヤ径方向外方へ移動させると、上下一対の前記摺動面が上下一対の前記取付プレートを摺動し、前記金型分割線を含む金型分割面の間隔を広げるものであってもよい。その場合、前記金型分割線を含む金型分割面が、タイヤ径方向と平行に設けられてもよい。
 本発明に係るタイヤの製造方法は、グリーンタイヤを成形する成形工程と、上記のタイヤ加硫装置を用いてグリーンタイヤを加硫成型する加硫工程と、を含むものである。
 本実施形態であると、タイヤ赤道から金型分割線までの距離をタイヤ周方向において周期的に変化させたことにより、セクタとサイドプレートとの周方向での位置ずれを抑制することができる。
一実施形態に係るタイヤ加硫装置の加硫時における状態を示す半断面図 同実施形態に係るトレッドパターンを示す平面図 図2のIII-III線におけるタイヤ加硫時の断面図 図2のIV-IV線におけるタイヤ加硫時の断面図 図2の要部拡大図 同タイヤ加硫装置の開閉動作を説明する図 同タイヤ加硫装置の開閉動作を説明する図 同タイヤ加硫装置の開閉動作を説明する図 図8の要部拡大図 図8の要部拡大図
 以下、本発明の実施形態について、図面を参照して説明する。
 タイヤ加硫装置は、図1に示すように、タイヤ加硫金型(以下、単に加硫金型という)10と、加硫金型10が取り付けられるコンテナ30と、加硫金型10やコンテナ30を上下動させる第1昇降手段50及び第2昇降手段51と、ブラダー60とを備える。タイヤ加硫装置は、タイヤ軸方向が上下になるようにセットされた未加硫のグリーンタイヤを加熱及び加圧により、所定形状に成型しつつ加硫する。
 加硫金型10は、上下一対の上側サイドプレート11及び下側サイドプレート12と、周方向に分割された複数のセクタ13と、上下一対のビードリング14,15とを備え、タイヤTの外表面(意匠面)を形成する金型である。加硫金型10の材料としては、アルミニウムやアルミニウム合金や鉄などの金属材料を用いることができる。
 セクタ13は、タイヤTのトレッド部1を成型する金型であり、タイヤ周方向に複数(例えば、9個)に分割され、タイヤ放射方向(タイヤ径方向)に拡縮変位可能に設けられている。各セクタ13を型閉め位置に配置した型閉め状態では、タイヤ周方向に隣合うセクタ13が、互いに寄り集まって環状をなしている。
 上側サイドプレート11は、タイヤTの上方に配置されたサイドウォール部2及びビード部3を成型する金型である。下側サイドプレート12は、下方に配置されたサイドウォール部2及びビード部3を成型する金型である。上側サイドプレート11及び下側サイドプレート12のタイヤ径方向内側にはそれぞれビードリング14,15が設けられている。ビードリング14,15は、タイヤTのビード部3が嵌合可能に構成されている。
 加硫金型10は、タイヤ幅方向に金型を分割する合わせ型の分割線(パーティングライン)、つまり、セクタ13と上側サイドプレート11とで形成される金型分割線16aと、セクタ13と下側サイドプレート12とで形成される金型分割線17aを備える。金型分割線16a,17aは、タイヤTのトレッド部1に位置しており、そのため、この加硫金型10では、セクタ13と上下一対のサイドプレート11,12とがトレッド面にてタイヤ幅方向に分割されるように構成されている。
 金型分割線16a,17aを含む金型分割面、つまり、セクタ13と上側サイドプレート11との合わせ面である金型分割面16と、セクタ13と下側サイドプレート12との合わせ面である金型分割面17は、ともに、金型分割線16a,17aからタイヤ径方向外方に延び、この例ではセクタ13の移動方向であるタイヤ径方向に対して平行に設けられている。なお、金型分割線16a,17aは、金型分割面16,17の内側端部、すなわちキャビティに面する端部に位置する分割線である。
 金型分割線16a,17aは、本実施形態では、図2に示すように、トレッド部1のショルダー領域において、タイヤ赤道CLからの距離がタイヤ周方向において周期的に変化するように設定されている。より詳細には、金型分割線16a,17aは、タイヤ幅方向に振れながらタイヤ周方向に延びる平面視ジグザグ状の線からなり、所定のパターンをタイヤ周方向に繰り返すことで構成されている。
 金型分割線16a,17aの配置構成について、図2~5に基づき説明する。
 図2に示すように、トレッド部1は、屈曲しながらタイヤ周方向に延びる主溝4と該主溝4に交差する横溝5とにより区画された複数のブロックを備える。なお、タイヤ周方向は、図2において符号CDで示す方向である。タイヤ幅方向は、符号WDで示す方向であり、タイヤ幅方向内側(即ち、中央部側)とはタイヤ赤道CLに近づく方向であり、タイヤ幅方向外側とはタイヤ赤道CLから離れる方向である。
 トレッド部1は、タイヤ赤道CLを含むセンター領域に位置する一対の中央ブロック列6a,6aと、その両側のショルダー領域に位置する一対のショルダーブロック列6b,6bとを有する。ショルダー領域とは、トレッド部におけるタイヤ幅方向端部に位置する領域であり、主溝とタイヤ接地端とに挟まれた、当該タイヤ接地端を含む領域である。
 図2~4に示すように、ショルダーブロック列6bは、第1のトレッド端7aを持つ第1陸部(ブロック)7と、第1のトレッド端7aよりもタイヤ幅方向外側に位置する第2のトレッド端8aを持つ第2陸部(ブロック)8とで構成されている。この例では、ショルダーブロック列6bは、第1陸部7と、該第1陸部7よりもタイヤ幅方向外側に延在した第2陸部8とを、タイヤ周方向に交互に設けてなる。ここで、これら陸部のトレッド端とは、各陸部におけるタイヤ幅方向外側の接地端のことである。
 このようなトレッドパターンを持つものにおいて、本実施形態では、金型分割線16a,17aが、第1のトレッド端7aに沿って延びる第1線部分16a1,17a1と、第2のトレッド端8aに沿って延びる第2線部分16a2,17a2とを含む。ここで、「トレッド端に沿って延びる」とは、トレッド端の近傍においてトレッド端に平行に延びることをいう。
 詳細には、第1線部分16a1,17a1は、第1陸部7において、第1のトレッド端7aよりもタイヤ幅方向内側をタイヤ周方向に平行に延びる、図2に示す平面視で直線状の部分であり、第1陸部7を横断するように設定されている。第1線部分16a1,17a1は第1のトレッド端7aの近傍に位置しており、両者間の距離D1(図5参照)は特に限定されないが、例えば10mm以下でもよい。
 第2線部分16a2,17a2は、第2陸部8において、第2のトレッド端8aよりもタイヤ幅方向内側をタイヤ周方向に平行に延びる、図2に示す平面視で直線状の部分であり、第2陸部8を横断するように設定されている。第2線部分16a2,17a2は第2のトレッド端8aの近傍に位置しており、両者間の距離D2(図5参照)は、例えば10mm以下であり、上記距離D1と略同等に設定されることが好ましい。
 第2陸部8を横断する第2線部分16a2,17a2は、第1陸部7を横断する第1線部分16a1,17a1よりもタイヤ幅方向外側に位置している。第1陸部7と第2陸部8との間の横溝5には、第1線部分16a1,17a1と第2線部分16a2,17a2をなめらかにつなぐように、タイヤ周方向に対して傾斜して延びる平面視で直線状の傾斜線部分16a3,17a3が設けられている。これら第1線部分16a1,17a1、第2線部分16a2,17a2、及び傾斜部分16a3,17a3で、金型分割線16a,17aが構成されている。そのため、金型分割線16a,17aは、タイヤ赤道CLからの距離がタイヤ周方向において周期的に変化するジグザグ状をなしている。
 金型分割線16a,17aは、また、トレッド部1のショルダー領域における表面意匠の屈曲点を通るように設定されている。表面意匠とは、トレッドパターンとも称されるトレッド面(即ち、接地面)の形状であり、例えば、トレッド部に設けられたブロックやリブなどの陸部の稜線やサイプなどにより表される形状である。また、その屈曲点は、直線同士の交点でもよく、曲線同士の交点でもよく、直線と曲線の交点でもよい。
 詳細には、金型分割線16a,17aは、第2陸部8の稜線8bの屈曲点8cを通るように設定されている。稜線8bは、第2陸部8の稜線のうち当該陸部8を区画する横溝5に沿う稜線8bであり、トレッド面(即ち、接地面)における稜線8bの屈曲点8cが金型分割位置に設定されている。図5に示すように、屈曲点8cは、稜線8bの曲線部8dと直線部8eとの交点である。ここで、稜線とは、陸部(ブロック)の側面と上面(トレッド面)とが交わったところに生じる線である。
 本実施形態では、また、複数の屈曲部を有してタイヤ周方向に延びる金型分割線16a,17aの各屈曲部が湾曲状に形成されている。詳細には、図5中に一部拡大して示すように、直線状の第2線部分17a2と直線状の傾斜線部分17a3とが、平面視で円弧状の屈曲部17a4を介して接続されている。他の屈曲部、すなわち、第1線部分16a1,17a1と傾斜線部分17a3とを接続する屈曲部、及び、第2線部分16a2と傾斜線部分16a3とを接続する屈曲部についても、同様に円弧状に形成されている。かかる湾曲状の屈曲部の曲率半径Rは特に限定されず、例えば2~20mm程度でもよい。
 上記のトレッドパターンを成型するため、加硫金型10には、トレッド部1に主溝4を成型するための主溝成型用リブ(不図示)と、横溝5を形成するための横溝成型用リブ18とが設けられている(図3及び図4参照)。セクタ13から上側サイドプレート11に跨がって設けられた横溝成型用リブ18は、金型分割線16aにより分割されている。また、セクタ13から下側サイドプレート12に跨がって設けられた横溝成型用リブ18は、金型分割線17aにより分割されている。そのため、横溝成型用リブ18は、セクタ13に設けられた第1リブ部18aと、サイドプレート11,12に設けられた第2リブ部18bとからなり、これら第1リブ部18aと第2リブ部18bを金型分割線16a,17aにおいて接合することで構成されている。
 コンテナ30は、セクタ13を保持する複数のセグメント31と、セグメント31をタイヤ径方向に移動させるジャケットリング32と、上側サイドプレート11及び上側のビードリング14を支持するとともにセグメント31の上側に配置された上側取付プレート33と、下側サイドプレート12及び下側のビードリング15を支持するとともにセグメント31の下側に配置された下側取付プレート34とを備える。
 セグメント31は、セクタ13のタイヤ径方向外側において、分割されたセクタ13ごとに設けられており、各セグメント31はボルト35によって対応するセクタ13に固定されている。
 セグメント31の上面には、タイヤ径方向外側ほどタイヤ幅方向中央部(つまり、下方へ)に向かうように傾斜する上側摺動面36が設けられている。上側摺動面36は、上側取付プレート33に設けられた上側スライド37を摺動する。セグメント31の下面には、タイヤ径方向外側ほどタイヤ幅方向中央部(つまり、上方へ)に向かうように傾斜する下側摺動面38が設けられている。下側摺動面38は下側取付プレート34に設けられた下側スライド39を摺動する。
 上側摺動面36及び下側摺動面38の傾斜角度は、特に制限が無いが、タイヤ径方向に対して5°以上10°以下であることが好ましい。また、セグメント31に設けられた上側摺動面36及び下側摺動面38は、好ましくは、湾曲することのない平面からなり、上側スライド37及び下側スライド39に対して面接触状態で摺動する。
 セグメント31は、セクタ13が取り付けられた側面と反対側(タイヤ径方向外側)の側面が、下方に向かってタイヤ径方向外方に傾斜する傾斜面40をなしている。
 ジャケットリング32は、複数のセグメント31の径方向外側に設けられた環状の部材である。ジャケットリング32の内周面は、セグメント31のタイヤ径方向外側に設けられた傾斜面40に沿って傾斜しており、傾斜面40に摺動可能な状態で取り付けられている。ジャケットリング32は、セグメント31に対して相対的に上下動することで、傾斜面40を摺動しながらセグメント31をタイヤ径方向に移動させる。これにより、セクタ13がタイヤ径方向に拡縮変位可能に構成されている。
 上側取付プレート33の下面には、上側サイドプレート11と上側スライド37が固定されている。上側スライド37は、上側サイドプレート11のタイヤ径方向外側であって、セグメント31の上面に設けられた上側摺動面36と対向する位置に配置され、セグメント31をタイヤ径方向に摺動可能に支持する。
 下側取付プレート34の上面には、下側サイドプレート12と下側スライド39が固定されている。下側スライド39は、下側サイドプレート12のタイヤ径方向外側であって、セグメント31の下面に設けられた下側摺動面38と対向する位置に配置され、セグメント31をタイヤ径方向に摺動可能に支持する。
 第1昇降手段50は、下側取付プレート34に対して上側取付プレート33を相対的に上下動させる。第2昇降手段51は、上側取付プレート33に支持されたセグメント31と別個にジャケットリング32を上下動させる。
 ブラダー60は、軸方向中央部が外側に膨出したトロイダル状をなした拡縮可能なゴム弾性体からなり、グリーンタイヤの内面側に配置されて加圧気体(例えば、蒸気や窒素ガス等)の供給によって膨らみグリーンタイヤを内側から加圧する。ブラダー60は、その軸方向両端部である上端部と下端部が伸縮支持部61により支持されている。伸縮支持部61は、ブラダー60の上端部を固定する上側クランプリング62と、ブラダー60の下端部を固定する下側クランプリング63と、伸縮可能な伸縮軸部64とを備えてなる。
 以上のような構成を備えたタイヤ加硫装置を用いた、空気入りタイヤの製造方法について説明する。製造に際しては、公知の方法によりグリーンタイヤを成形し、上記タイヤ加硫装置を用いてグリーンタイヤを加硫成型する。
 図6~8は、上記タイヤ加硫装置の開閉動作を説明する図であり、いずれもグリーンタイヤ及びブラダー60は省略している。
 加硫工程において、グリーンタイヤは、型開き状態のタイヤ加硫装置の加硫金型10に装着されるとともに、グリーンタイヤの内面側にブラダー60が装着される。図6は型開き状態を示したものであり、固定された下側サイドプレート12に対して、セクタ13及び上側サイドプレート11が上方に離間した位置にある。この状態で下側サイドプレート12にグリーンタイヤを装着してから、コンテナ30を下降させる。詳細には、第1昇降手段50を下降させて、上側取付プレート33に設けられた上側サイドプレート11及びセクタ13を下降させ、すなわち下側サイドプレート12に向かって移動させる。
 図7に示すようにセグメント31が下側取付プレート34に当接すると、次は、図8に示すように第2昇降手段51によりジャケットリング32を下降させることにより、セグメント31に保持されたセクタ13をタイヤ径方向内方に移動させる。
 その際、セグメント31は、下側摺動面38が下側取付プレート34の下側スライド39を摺動し、上側摺動面36が上側取付プレート33の上側スライド37を摺動して、タイヤ径方向内方へ移動する。上側摺動面36及び下側摺動面38は、タイヤ径方向外側ほどタイヤ幅方向中央部に向かうように傾斜している。そのため、セグメント31とともにセクタ13がタイヤ径方向内方へ移動すると、上側摺動面36の傾斜によって上側サイドプレート11が下降し、下側摺動面38の傾斜によってセクタ13が下降する。
 そのため、セグメント31がタイヤ径方向内方に移動するに従って上側サイドプレート11と下側サイドプレート12の距離は近くなり、図1に示す型閉め状態となったときにはじめて、セクタ13と上下のサイドプレート11,12とで形成される金型分割面16,17の間隔がなくなる。すなわち、セクタ13がタイヤ径方向内方に移動している途中の段階では、図9に示すように、セクタ13と上側サイドプレート11との金型分割面16には隙間があり、また、図10に示すように、セクタ13と下側サイドプレート12との金型分割面17にも隙間がある。セクタ13が完全に縮径された段階で、これら金型分割面16,17の隙間がなくなる。
 このようにして加硫金型10を図1に示す型閉め状態にするとともに、ブラダー60内に加圧気体を供給して膨張させることにより、加硫金型10とブラダー60との間でグリーンタイヤを加圧及び加熱し、この状態を所定時間維持することにより、タイヤTの加硫成型が行われる。
 グリーンタイヤを加硫した後、加硫金型10を型開き状態にして、加硫済みのタイヤTをタイヤ加硫装置から取り出す取り出し工程を行う。加硫金型10を型閉め状態から型開き状態にするには、上記の型閉め動作と逆の動作を行えばよい。
 詳細には、まず、第2昇降手段51によりジャケットリング32を上昇させることにより、セグメント31に保持されたセクタ13をタイヤ径方向外方に移動させる。その際、図8に示すようにセグメント31がタイヤ径方向外方へ移動すると、上側摺動面36は、上側取付プレート33を上方へ押し上げながら上側取付プレート33の上側スライド37上をタイヤ径方向外方へ摺動する。また、下側摺動面38は、下側取付プレート34の下側スライド39上をせり上がりながらタイヤ径方向外方へ摺動する。
 上側摺動面36により上方へ押し上げられた上側取付プレート33は、セグメント31に対して上方へ移動するため、セグメント31が径方向外方へ移動を開始すると、図9に示すように、上側サイドプレート11もセグメント31に対して上方へ移動し、セクタ13と上側サイドプレート11とで形成される金型分割面16の間隔が広がる。
 また、下側摺動面38では、セグメント31が径方向外方へ移動を開始すると、図10に示すように、固定された下側取付プレート34に対してセグメント31が上方へ移動し、セクタ13と下側サイドプレート12とで形成される金型分割面17の間隔が広がる。
 そして、図7に示すようにセクタ13の拡径が完了した後、第1昇降手段50を上昇させて、図6に示すように上側サイドプレート11及びセクタ13を下側サイドプレート12に対して離間移動させる。そして、型開き状態になったタイヤ加硫装置から加硫済みのタイヤTを取り出す。
 本実施形態によれば、セクタ13とサイドプレート11,12との金型分割線16a,17aをタイヤ周方向にジグザグ状にしたので、両者のジグザグ形状を嵌合させることで、セクタ13とサイドプレート11,12とをタイヤ周方向で位置決めすることができる。すなわちタイヤ周方向での位置ずれを抑制することができるので、金型分割線16a,17aが通るトレッド部1の外観性を向上し、またタイヤ性能を確保することができる。
 また、金型分割線をジグザグ状に設ける構成であると、仮にショルダー領域の陸部にサイプがあり、隣接する陸部間でタイヤ幅方向におけるサイプ位置が異なるときでも、サイプを避けながら各陸部に金型分割線を設定することができる。あるいはまた、タイヤ幅方向でサイプの深さが異なるときに、サイプの深い位置を避けながら各陸部に金型分割線を設定することができる。一般に、トレッド部にサイプを成型するためのブレードをサイドプレートに設けると、特に深いサイプの場合には、ブレードが抜けにくく、破損等の要因になるおそれがある。本実施形態によれば、これらの問題も解消することができる。
 また、第1のブロック端7aと第2のブロック端8bを有することによりタイヤ赤道CLからタイヤ接地端までの距離がタイヤ周方向で周期的に変化する意匠において、金型分割線16a,17aが、第1のブロック端7aに沿う第1線部分16a1,17a1と、第2のブロック端8aに沿う第2線部分16a2,17a2を含むので、仮に金型分割線部分16a,17aからゴムがはみ出したとしても、はみ出しゴムを表面意匠の一部と感じさせることができ、外観性を向上することができる。
 また、金型分割線16a,17aの各屈曲部17a4が湾曲状に形成されているので、加工性を向上させて、タイヤ周方向での位置決め精度を高めることができる。
 また、セクタ13とサイドプレート11,12との金型分割線16a,17aを、トレッド部1の表面意匠の屈曲点8cを通るように設定したので、仮に屈曲点8c付近の金型分割線16a,17aからゴムがはみ出したとしても、屈曲点8cを通るはみ出しゴムを表面意匠の一部と感じることができる。なお、金型分割線を表面意匠の屈曲点を通るように設定する場合、必ずしも全ての屈曲点を通るように設定しなくてもよく、少なくとも1つの屈曲点を通るように設定すればよい。
 本実施形態によれば、また、上側取付プレート33及び下側取付プレート34に対して摺動する上側摺動面36及び下側摺動面38が、タイヤ径方向外側ほどタイヤ幅方向中央部に向かうように傾斜している。そのため、セグメント31が径方向外方へ移動を開始すると、セクタ13と上側サイドプレート11及び下側サイドプレート12で形成される金型分割面16、17の間隔が広がる。そのため、タイヤ加硫装置の開閉を繰り返しても、金型分割面16,17が擦れ合うことがなく金型分割面16,17の間隔を適正値に維持することができ、タイヤ加硫装置の耐久性を向上させることができる。しかも、セグメント31が径方向外方へ移動を開始した直後に上側サイドプレート11が加硫成型後のタイヤTから離れる方向へ移動するため、タイヤTを脱型しやすくなる。
 また、本実施形態のタイヤ加硫装置において、セグメント31に設けられた上側摺動面36及び下側摺動面38が、上側スライド37及び下側スライド39に対して面接触状態で摺動する平面であると、セグメント31ががたつくこと無く位置精度良く移動させることができ、型閉め状態におけるセクタ13の位置ずれを抑えることができる。
 なお、上記実施形態では、金型分割面16,17をタイヤ径方向に対して平行に設けたが、タイヤ径方向に対して斜めに傾斜させて設けてもよい。すなわち、金型分割面16,17は、タイヤ径方向外側ほどタイヤ幅方向外側に向かうように傾斜させて設けてもよい。その場合でも、上側摺動面36及び下側摺動面38の傾斜により、タイヤを脱型しやすくなる。また、仮に型開き及び型閉めの繰り返しにより摺動面36,38で摩滅が生じて上側サイドプレート11と下側サイドプレート12との間隔が狭まったとしても、セグメント31のタイヤ径方向への移動に伴って上側サイドプレート11と下側サイドプレート12の間隔を漸次狭めなから型閉めすることができるので、金型分割面16,17の早期の擦れ合いを抑制でき、耐久性を向上することができる。
 上記実施形態では、ショルダー領域が2つのトレッド端位置を有する場合について説明したが、3つ以上のトレッド端位置を持つものであってもよい。すなわち、例えば、第1のトレッド端7aを持つ第1陸部7と、第2のトレッド端8aを持つ第2陸部8とともに、これら第1及び第2のトレッド端とはタイヤ幅方向での位置が異なる第3のトレッド端を持つ第3陸部を含んでもよい。この場合、金型分割線は、第3のトレッド端に沿って延びる第3線部分を含むことが好ましい。
 また、金型分割線は、いずれかのトレッド端に重なるように設定してもよい。更に、上記実施形態では、金型分割線を、陸部でタイヤ周方向に平行に設定し、横溝で傾斜させたが、これとは逆に、横溝でタイヤ周方向に平行に設定し、陸部で傾斜させてもよく、更に、陸部でも横溝でも傾斜させて設定してもよく、種々の形状を採用することができる。
 なお、本実施形態に係るタイヤとしては、乗用車用タイヤ、トラック、バス、ライトトラック(例えば、SUV車やピックアップトラック)などの重荷重用タイヤなど、各種車両用の空気入りタイヤが挙げられる。
 以上の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。
1…トレッド部、2…サイドウォール部、3…ビード部、5…横溝、7…第1陸部、7a…第1のトレッド端、8…第2陸部、8a…第2のトレッド端、8b…稜線、8c…屈曲点、10…加硫金型、11…上側サイドプレート、12…下側サイドプレート、13…セクタ、16,17…金型分割面、16a,17a…金型分割線、16a1,17a1…第1線部分、16a2,17a2…第2屈曲線、17a4…屈曲部、31…セグメント、33…上側取付プレート、34…下側取付プレート、36…上側摺動面、38…下側摺動面

Claims (9)

  1.  タイヤを加硫成型するタイヤ加硫金型において、
     タイヤのトレッド部を成型するタイヤ周方向に分割されたセクタと、
     タイヤのサイドウォール部を成型する上下一対のサイドプレートと、を備え、
     前記セクタと上下一対の前記サイドプレートとで形成される金型分割線が、前記トレッド部に位置しており、タイヤ赤道から前記金型分割線までの距離がタイヤ周方向において周期的に変化している、タイヤ加硫金型。
  2.  前記トレッド部が、第1のトレッド端を持つ第1陸部と、前記第1のトレッド端よりもタイヤ幅方向外側に位置する第2のトレッド端を持つ第2陸部と、を含み、前記金型分割線が、前記第1のトレッド端に沿って延びる第1線部分と、前記第2のトレッド端に沿って延びる第2線部分とを含む、請求項1に記載のタイヤ加硫金型。
  3.  前記金型分割線の各屈曲部が湾曲状に形成された、請求項1又は2に記載のタイヤ加硫金型。
  4.  前記金型分割線が、前記トレッド部における表面意匠の屈曲点を通るように設定された、請求項1~3のいずれか1項に記載のタイヤ加硫金型。
  5.  前記表面意匠の屈曲点が、前記トレッド部のショルダー領域に位置する陸部の横溝に沿う稜線の屈曲点である、請求項4に記載のタイヤ加硫金型。
  6.  請求項1~5のいずれか1項に記載のタイヤ加硫金型と、
     前記セクタに固定されタイヤ径方向に前記セクタを移動させるセグメントと、
     上下一対の前記サイドプレートに固定され前記セグメントを摺動可能に支持する上下一対の取付プレートと、を備えるタイヤ加硫装置。
  7.  前記セグメントは、上下一対の前記取付プレートを摺動する上下一対の摺動面を備え、
     上下一対の前記摺動面は、タイヤ径方向外側ほどタイヤ幅方向中央部に向かうように傾斜し、
     前記セグメントは、前記セクタをタイヤ径方向外方へ移動させると、上下一対の前記摺動面が上下一対の前記取付プレートを摺動し、前記金型分割線を含む金型分割面の間隔を広げる、請求項6に記載のタイヤ加硫装置。
  8.  前記金型分割線を含む金型分割面が、タイヤ径方向と平行に設けられた、請求項7に記載のタイヤ加硫装置。
  9.  グリーンタイヤを成形する成形工程と、請求項6~8のいずれか1項に記載のタイヤ加硫装置を用いてグリーンタイヤを加硫成型する加硫工程と、を含むタイヤの製造方法。
PCT/JP2016/003734 2016-08-12 2016-08-12 タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法 WO2018029731A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/321,573 US11318693B2 (en) 2016-08-12 2016-08-12 Tire vulcanization mold, tire vulcanization device, and tire production method
JP2018533298A JP6738427B2 (ja) 2016-08-12 2016-08-12 タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
PCT/JP2016/003734 WO2018029731A1 (ja) 2016-08-12 2016-08-12 タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
CN201680087971.1A CN109689324B (zh) 2016-08-12 2016-08-12 轮胎硫化模具、轮胎硫化装置以及轮胎的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/003734 WO2018029731A1 (ja) 2016-08-12 2016-08-12 タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法

Publications (1)

Publication Number Publication Date
WO2018029731A1 true WO2018029731A1 (ja) 2018-02-15

Family

ID=61162021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003734 WO2018029731A1 (ja) 2016-08-12 2016-08-12 タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法

Country Status (4)

Country Link
US (1) US11318693B2 (ja)
JP (1) JP6738427B2 (ja)
CN (1) CN109689324B (ja)
WO (1) WO2018029731A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100664A1 (fr) * 2001-06-07 2002-12-19 Bridgestone Corporation Pneu pour service hors-route
JP2008194946A (ja) * 2007-02-13 2008-08-28 Toyo Tire & Rubber Co Ltd タイヤ加硫成形金型及びタイヤ製造方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250863A (ja) 1959-08-13
US3460197A (en) 1966-07-13 1969-08-12 Nrm Corp Sectional tire mold mechanism
US3464090A (en) 1967-09-26 1969-09-02 Nrm Corp Tire curing press
FR96422E (fr) * 1967-11-18 1972-06-30 Dunlop Co Ltd Perfectionnements aux moules pour bandages pneumatiques.
DE1805178A1 (de) * 1968-10-25 1970-05-14 Semperit Gummiwerke Gmbh Deuts Vulkanisierform fuer Fahrzeugluftreifen
US3682576A (en) 1971-02-10 1972-08-08 Eagle Picher Ind Inc Segmented mold
US3787155A (en) 1972-08-01 1974-01-22 K Zangl Segmented vulcanising tire mould
US4553918A (en) 1983-05-30 1985-11-19 Bridgestone Corporation Tire molding mold
FR2597783B1 (fr) 1986-04-25 1988-08-26 Michelin & Cie Moule rigide pour le moulage et la vulcanisation de pneumatiques
DE69020982T2 (de) 1989-02-15 1995-11-23 Sumitomo Rubber Ind Vulkanisierungsform.
US5190767A (en) * 1991-07-10 1993-03-02 The Goodyear Tire & Rubber Company Tire mold
JPH06218733A (ja) * 1993-01-25 1994-08-09 Sumitomo Rubber Ind Ltd タイヤの製造方法及び装置
JP3091363B2 (ja) 1994-03-31 2000-09-25 日本碍子株式会社 タイヤ成形用金型
JPH10119050A (ja) 1996-08-26 1998-05-12 Bridgestone Corp タイヤ加硫装置
FR2763892A1 (fr) 1997-05-30 1998-12-04 Michelin & Cie Sculpture et moule pour bande de roulement de pneumatique
JP3874507B2 (ja) 1997-10-09 2007-01-31 株式会社ブリヂストン タイヤ加硫装置
JPH11320566A (ja) 1998-03-12 1999-11-24 Bridgestone Corp タイヤの加硫成型用割りモ―ルド
JP2000084936A (ja) 1998-09-14 2000-03-28 Bridgestone Corp タイヤ加硫方法および装置
US6808377B1 (en) * 1999-10-01 2004-10-26 The Goodyear Tire & Rubber Company Segmented tire mold
JP2001096538A (ja) 1999-10-04 2001-04-10 Bridgestone Corp 大型タイヤの加硫方法および装置
US6955782B1 (en) 1999-11-24 2005-10-18 The Goodyear Tire & Rubber Company Method of molding a tire and mold therefor
JP2002067625A (ja) * 2000-09-04 2002-03-08 Bridgestone Corp 空気入りタイヤ及びその製造方法
JP4511018B2 (ja) 2000-12-07 2010-07-28 株式会社ブリヂストン 大型タイヤ加硫装置及び加硫方法
US6716013B2 (en) 2002-01-25 2004-04-06 Louis T. Fike Tear resistant shield for a tread segment of a segmented tire mold
US7459117B2 (en) 2003-04-17 2008-12-02 The Goodyear Tire & Rubber Company Method for curing tires using a self-locking tire mold
JP4329931B2 (ja) 2004-02-20 2009-09-09 株式会社ブリヂストン タイヤ加硫成型用金型及びその製造方法
US8016578B2 (en) 2006-11-27 2011-09-13 Pirelli Tyre S.P.A. Apparatus for vulcanization and moulding of vehicle tyres
JP4971887B2 (ja) 2007-06-28 2012-07-11 東洋ゴム工業株式会社 タイヤ加硫用コンテナ
JP5265212B2 (ja) * 2008-02-12 2013-08-14 株式会社ブリヂストン 重荷重用空気入りラジアルタイヤ
US7963756B2 (en) 2009-11-18 2011-06-21 The Goodyear Tire & Rubber Company Segmented tire mold
JP5631904B2 (ja) 2012-01-16 2014-11-26 住友ゴム工業株式会社 タイヤ用モールド
JP2014117924A (ja) 2012-12-19 2014-06-30 Bridgestone Corp タイヤ加硫用金型およびタイヤの製造方法
JP2015189349A (ja) 2014-03-28 2015-11-02 横浜ゴム株式会社 空気入りタイヤ
AU2015293479B9 (en) * 2014-07-23 2017-07-13 The Yokohama Rubber Co., Ltd. Heavy duty pneumatic tire
RU2633047C1 (ru) 2014-07-23 2017-10-11 Дзе Йокогама Раббер Ко., Лтд. Пневматическая шина для высоконагруженных машин
WO2018029727A1 (ja) * 2016-08-12 2018-02-15 東洋ゴム工業株式会社 タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
WO2018029726A1 (ja) * 2016-08-12 2018-02-15 東洋ゴム工業株式会社 タイヤ加硫装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100664A1 (fr) * 2001-06-07 2002-12-19 Bridgestone Corporation Pneu pour service hors-route
JP2008194946A (ja) * 2007-02-13 2008-08-28 Toyo Tire & Rubber Co Ltd タイヤ加硫成形金型及びタイヤ製造方法

Also Published As

Publication number Publication date
JP6738427B2 (ja) 2020-08-12
CN109689324A (zh) 2019-04-26
JPWO2018029731A1 (ja) 2019-06-06
US20210299987A1 (en) 2021-09-30
CN109689324B (zh) 2021-07-06
US11318693B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2018029728A1 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
CN102202877A (zh) 用于模制和硫化车辆轮胎的处理和设备
JP6605738B2 (ja) タイヤ加硫装置及びタイヤ加硫装置の組み立て方法
WO2018029726A1 (ja) タイヤ加硫装置
WO2018029727A1 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
JP6738426B2 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
JP4845638B2 (ja) タイヤ加硫成形型
JP6605737B2 (ja) タイヤ加硫装置及びタイヤの製造方法
WO2018029731A1 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
JP6701350B2 (ja) タイヤ加硫金型、タイヤ加硫装置及びタイヤの製造方法
US10870248B2 (en) Non-symmetrical tread ring parting line mold
CN109986817B (zh) 轮胎用模具以及轮胎的制造方法
JP7410702B2 (ja) タイヤ加硫用金型
JP2016179644A (ja) タイヤ加硫用コンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912615

Country of ref document: EP

Kind code of ref document: A1