WO2018028639A1 - 花园吹风机 - Google Patents

花园吹风机 Download PDF

Info

Publication number
WO2018028639A1
WO2018028639A1 PCT/CN2017/096853 CN2017096853W WO2018028639A1 WO 2018028639 A1 WO2018028639 A1 WO 2018028639A1 CN 2017096853 W CN2017096853 W CN 2017096853W WO 2018028639 A1 WO2018028639 A1 WO 2018028639A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage fan
stage
fan
hair dryer
air inlet
Prior art date
Application number
PCT/CN2017/096853
Other languages
English (en)
French (fr)
Inventor
刘正伟
焦石平
刘家波
喻学锋
王家达
查霞红
赵凤丽
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610651822.5A external-priority patent/CN107724308A/zh
Priority claimed from CN201621294961.9U external-priority patent/CN206280276U/zh
Priority claimed from CN201710282926.8A external-priority patent/CN108797480A/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP17838769.2A priority Critical patent/EP3498920A4/en
Priority to CN201780002073.6A priority patent/CN108138455B/zh
Publication of WO2018028639A1 publication Critical patent/WO2018028639A1/zh
Priority to US16/270,372 priority patent/US11346352B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/08Pneumatically dislodging or taking-up undesirable matter or small objects; Drying by heat only or by streams of gas; Cleaning by projecting abrasive particles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/08Pneumatically dislodging or taking-up undesirable matter or small objects; Drying by heat only or by streams of gas; Cleaning by projecting abrasive particles
    • E01H1/0809Loosening or dislodging by blowing ; Drying by means of gas streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans

Definitions

  • the invention relates to a garden hair dryer, in particular to a fan and an air inlet passage of a garden hair dryer.
  • the hair dryer belongs to a conventional electric tool, which is mainly used for purging fallen leaves, road dust, accumulated water, snow, and for forest fire extinguishing.
  • the user has different demands on wind and air volume in different usage environments.
  • various wind power or air volume adjustment modes are also available, and the air volume is generally increased by connecting a plurality of fans of the same structure in series, or increasing the air inlet area to achieve an increase in air volume.
  • Chinese Patent No. CN205934814U discloses a hand-held axial flow hair dryer comprising an upper casing, an air outlet cylinder, a motor, a duct and a lower casing, wherein a motor is arranged in the middle of the upper casing for driving the fan to rotate.
  • the lower end of the motor is connected to the lower casing, and the upper casing and the lower casing are provided with a plurality of detachable ducts.
  • the fan in the duct is connected with the motor, and the side of the lower casing is provided with a plurality of convexities.
  • the upper end of the inner wall of the air outlet cylinder is provided with a plurality of L-shaped grooves corresponding to the bosses a for connecting the air outlet cylinders to the lower casing.
  • the hand-held axial flow hair dryer adopts multi-stage fan design, which can increase or decrease the number of fans according to different needs, corresponding to different air volume specifications, without the need to make new molds, greatly expanding the use scene, not only for purging Lawn litter, grass clippings and fallen leaves, as well as fallen leaves in parks and roads, and powerful winds can also be used for forest fire fighting, road cleaning and snow blowing.
  • the problem to be solved by the present invention is to provide a garden hair dryer whose air blowing efficiency can be effectively improved.
  • a garden hair dryer comprising:
  • the casing includes a main body portion at the rear end and a blow at the front end of the main body portion and extending in the axial direction a duct, the casing is further provided with an air inlet and an air outlet connected to an external environment;
  • a power unit coupled to the casing to power the garden hair dryer
  • a fan assembly driven by the power unit to rotate and generate an air flow
  • the fan assembly includes at least two stages of fans, the at least two stages of fans including a first stage fan and a second stage fan disposed in front and rear in the axial direction, and the garden hair dryer includes an air flow generated by at least the first stage fan
  • the first-stage fan is disposed away from the air outlet than the second-stage fan, and the cross-sectional area of the first-stage fan in the radial direction is smaller than the cross-sectional area of the second-stage fan in the radial direction.
  • the air inlet includes a first group of air inlets for introducing a gas flow into the blowing pipe, and when the garden hair dryer is in an operating state, airflow enters the blowing pipe from the first group of air inlets, and
  • the first air inlet passage is formed between the first group of air inlets and the first stage fan.
  • the first group of air inlets includes an axial air inlet formed in the main body portion and a radial air inlet ring circumferentially disposed on the main body portion.
  • the air inlet further includes a second group of air inlets for the airflow to enter the air blowing tube, and when the garden hair dryer is in an operating state, the airflow enters the air blowing tube from the second group of air inlets, And forming the second air inlet passage between the second group of air inlets and the second level fan.
  • the first group of air inlets are separated from the second group of air inlets in the axial direction.
  • the first group of air inlets and the second group of air inlets are both located at a rear side of the fan assembly.
  • At least a portion of the second air inlet passage is annularly disposed at a periphery of at least a portion of the first air inlet passage in a direction perpendicular to the axial direction.
  • the airflow entering the first air inlet passage is jointly driven by the first stage fan and the second stage fan, and the airflow entering the second air inlet passage is separately driven by the second stage fan. produce.
  • the casing further includes a first duct portion for introducing a gas flow into the blowing pipe, when When the garden hair dryer is in an operating state, the airflow entering by the first group of air inlets flows into the blowing pipe from the first duct portion.
  • the first stage fan is disposed in the first duct portion, and at least a partial portion of the first air inlet passage is formed in a cavity surrounded by the first duct portion.
  • the first duct portion includes a first interface portion penetrating in the axial direction and a second interface portion opposite to the first interface portion, the first interface portion being in communication with the first group of air inlets
  • the second interface portion is disposed between the first-stage fan and the second-stage fan, and a cross-sectional area of the second interface portion in a radial direction is smaller than a radial cross-section of the second-stage fan area.
  • the casing further includes a second duct portion for introducing a gas flow into the blowing pipe, and when the garden hair dryer is in an operating state, the airflow entering by the second group of air inlets is from the second The ducted portion flows into the blowing pipe.
  • the second stage fan is disposed in the second duct portion, and at least a partial portion of the second air inlet passage is formed on an inner wall of the second duct portion and the first duct portion. Between the outer walls.
  • the front end of the first duct portion is disposed in the axial gap with the second-stage fan.
  • At least a portion of the airflow entering the first air inlet passage and at least a portion of the airflow entering the second air inlet passage are collected between the first-stage fan and the second-stage fan, and The second stage fan is blown into the blowing pipe.
  • the first stage fan and the second stage fan both include a hub and a plurality of blades surrounding the circumference of the hub, the number of blades of the first stage fan, the outer diameter of the blade, and the rotation of the blade At least one of the inner diameters is different from the number of blades of the corresponding second stage fan, the rotational outer diameter of the blade, and the inner diameter of the blade.
  • the absolute value of the difference between the outer diameter of the rotation of the first stage fan and the outer diameter of the second stage fan ranges from 10 mm to 90 mm.
  • the absolute value of the difference between the inner diameter of the rotation of the blades of the first stage fan and the inner diameter of the rotation of the blades of the second stage fan is less than or equal to 50 mm.
  • the first stage fan has a hub ratio of 0.55 to 0.85
  • the second stage fan has a hub ratio of 0.5 to 0.8.
  • the number of blades of the first stage fan is the same as the number of blades of the second stage fan The difference is 1 to 9.
  • the garden hair dryer includes a first stage guide vane corresponding to the first stage fan and a second stage guide vane corresponding to the second stage fan, the first stage fan and the second stage
  • the fan has an air inlet side and an air outlet side, the first stage vane is located on the air outlet side of the first stage fan, and the second stage vane is located on the air outlet side of the second stage fan.
  • a preset gap exists between the first-stage fan and the first-stage vane and between the second-stage fan and the second-stage vane, and the preset gap is in the axial direction.
  • the upper size ranges from 3mm to 12mm.
  • the wind speed of the garden hair dryer is 50 to 150 mph, and the air volume of the garden hair dryer is 250 to 800 cfm.
  • the power device comprises a motor and a control circuit
  • the motor controls a rotational movement of the fan assembly
  • the motor has a rotational speed of 8000 rpm or more, and is less than or equal to 25000 rpm
  • the first stage The outer diameter of the fan is 40 mm to 80 mm
  • the outer diameter of the second stage fan is 70 mm to 130 mm.
  • the power device comprises a motor and a control circuit
  • the motor controls a rotational movement of the fan assembly
  • the rotation speed of the motor is greater than 25000 rpm, and is less than or equal to 100000 rpm
  • the first stage fan The outer diameter of the rotation is 20 mm to 50 mm
  • the outer diameter of the second stage fan is 30 mm to 70 mm.
  • the blowing pipe is axially disposed with a central axis
  • the motor drives the first-stage fan and the second-stage fan to rotate about a rotation axis
  • the stage fan is coaxially disposed and has a rotation axis that is rotated by a motor, and a central axis of the blowing pipe, a rotation axis of the motor, and a rotation axis of the first and second stage fans coincide.
  • the number of the first-stage fans is greater than or equal to one, and the number of the second-stage fans is greater than or equal to one.
  • the first stage fan and the second stage fan are both axial fans.
  • the at least two-stage fan comprises a third-stage fan, the number of blades of at least one of the first-stage fan, the second-stage fan and the third-stage fan or the rotating outer diameter of the blade or the blade
  • the inner diameter of the rotation is different from the other two fans.
  • the problem to be solved by the present invention is to provide a garden hair dryer capable of blowing efficiency. Get an effective boost.
  • a garden hair dryer that includes:
  • the casing includes a main body portion at the rear end and a blowing pipe extending at an axial end of the main body portion, and the casing is further provided with an air inlet and an air outlet connected to the external environment;
  • a power unit coupled to the casing to power the garden hair dryer
  • a fan assembly driven by the power unit to rotate and generate an air flow
  • the fan assembly includes at least two stages of fans, the power device drives the at least two stages of fans to rotate synchronously, and the at least two stages of fans include a first stage fan and a second stage fan disposed in front and rear in the axial direction,
  • the first stage fan and the second stage fan each include a hub and a plurality of blades surrounding the circumference of the hub, wherein the outer diameter of the blades of the first stage fan, the inner diameter of the blades, the number of blades, and the inclination of the blades At least one of the two is different from the second stage fan.
  • the first-stage fan is disposed away from the air outlet than the second-stage fan, and the first-stage fan and the second-stage fan are both axial fans.
  • the power device is capable of driving the first-stage fan and the second-stage fan to rotate, and at least part of the airflow generated by the rotation of the first-stage fan and the second-stage fan enters from the air inlet to
  • An independent single air inlet passage is formed in the blowing pipe and between the air inlet and the air outlet.
  • the ratio of the shaft power of the first stage fan to the shaft power of the second stage fan ranges from 1.05:1 to 2.5:1.
  • the blades of the first-stage fan rotate to form a first annular rotating surface
  • the blades of the second-stage fan rotate to form a second annular rotating surface
  • the cross-sectional area of the second annular rotating surface in the radial direction is smaller than The cross-sectional area of the first annular rotating surface in the radial direction.
  • a gap between a blade outer edge of the first-stage fan and an inner wall of the casing that houses the first-stage fan is greater than or equal to a blade outer edge of the second-stage fan and a second-stage fan.
  • the gap between the inner walls of the casing is greater than or equal to a blade outer edge of the second-stage fan and a second-stage fan.
  • the air inlet includes a first group of air inlets for introducing a gas flow into the blowing pipe, and when the garden hair dryer is in an operating state, airflow enters the blowing pipe from the first group of air inlets, and Forming the first air inlet passage between the first group of air inlets and the first stage fan Road.
  • the first group of air inlets includes an axial air inlet formed in the main body portion and a radial air inlet ring circumferentially disposed on the main body portion.
  • the air inlet further comprises a second group of air inlets for introducing a gas flow into the blowing pipe, and when the garden hair dryer is in an operating state, the airflow enters the blowing pipe from the second group of air inlets, And forming the second air inlet passage between the second group of air inlets and the second level fan.
  • At least a portion of the airflow entering the first air inlet passage and at least a portion of the airflow entering the second air inlet passage are collected between the first-stage fan and the second-stage fan, and The second stage fan is blown into the blowing pipe.
  • the first group of air inlets are separated from the second group of air inlets in the axial direction.
  • the blades of the first-stage fan rotate to form a first annular rotating surface
  • the blades of the second-stage fan rotate to form a second annular rotating surface
  • the cross-sectional area of the second annular rotating surface in the radial direction is greater than The cross-sectional area of the first annular rotating surface in the radial direction.
  • the first stage fan has a hub ratio of 0.55 to 0.85.
  • the second stage fan has a hub ratio of 0.5 to 0.8.
  • the inclination angle of the first stage fan is different from the inclination angle of the second stage fan.
  • the number of blades of the first stage fan is different from the number of blades of the second stage fan by 1 to 9.
  • the absolute value of the difference between the outer diameter of the rotation of the blades of the first stage fan and the outer diameter of the rotation of the blades of the second stage fan ranges from 10 mm to 90 mm.
  • the absolute value of the difference between the inner diameter of the rotation of the blades of the first stage fan and the inner diameter of the rotation of the blades of the second stage fan is less than or equal to 50 mm.
  • the garden hair dryer includes a first stage guide vane corresponding to the first stage fan and a second stage guide vane corresponding to the second stage fan, the first stage fan and the second stage
  • the fan has an air inlet side and an air outlet side, the first stage vane is located on the air outlet side of the first stage fan, and the second stage vane is located on the air outlet side of the second stage fan.
  • a preset gap exists between the first-stage fan and the first-stage vane and between the second-stage fan and the second-stage vane, and the preset gap is in the axial direction.
  • the size range on the top is 3mm ⁇ 12mm.
  • the power unit includes a motor and a control circuit, the motor controls a rotational movement of the fan assembly, and the power unit is detachably mounted to the casing.
  • the blowing pipe is axially disposed with a central axis
  • the first stage fan is coaxially disposed with the second stage fan and has a rotation axis that is rotated by a motor, and the motor is driven around a rotation axis.
  • the first stage fan and the second stage fan rotate, and a central axis of the blowing pipe, a rotation axis of the motor, and a rotation axis of the first and second stage fans overlap.
  • the structure of the first-stage fan of the present invention is different from the structure of the second-stage fan. Specifically, the number of blades of the first-stage fan and the first-stage fan, the rotational outer diameter of the blade, and the rotational inner diameter of the blade are At least one of the number of blades different from the corresponding second stage fan, the outer diameter of the blade, and the inner diameter of the blade.
  • This design allows for step-by-step pressurization through the fan assembly, which in turn increases the efficiency of the garden blower.
  • the garden hair dryer of the present invention by setting superimposed air inlet passages (first air inlet passage and second air inlet passage), and providing a fan in each air inlet passage, and superimposing design through multiple air ducts and multiple fans The wind speed and air volume of the garden hair dryer can be effectively improved.
  • FIG. 1 is an exploded view of a two-stage fan double inlet air passage garden hair dryer according to a first embodiment of the present invention
  • Figure 2 is a perspective assembled view of the garden hair dryer shown in Figure 1;
  • Figure 3 is a cross-sectional view of the garden hair dryer shown in Figure 2 in a direction perpendicular to the axial direction;
  • Figure 4 is a schematic view showing the flow direction of the airflow of the garden hair dryer shown in Figure 3;
  • Figure 5 is a schematic view of the right casing of the garden hair dryer shown in Figure 3;
  • Figure 6 is a schematic view showing a part of the structure of the garden hair dryer shown in Figure 1;
  • Figure 7 is a schematic view showing a partial structure of the garden hair dryer shown in Figure 1;
  • Figure 8 is a schematic view showing the wind pressure distribution of a garden hair dryer of a single-stage fan single air inlet passage
  • Figure 9 is a schematic view showing the wind pressure distribution of the garden hair dryer of the two-stage fan single air inlet passage
  • Fig. 10 is a schematic view showing the wind pressure distribution of the garden hair dryer of the two-stage fan double inlet passage shown in Fig. 1.
  • FIG. 11 is a cross-sectional structural view showing a two-stage fan single air inlet passage garden hair dryer according to a second embodiment of the present invention.
  • Figure 12 is a cross-sectional structural view showing a garden hair dryer according to a preferred embodiment of the second embodiment of the present invention.
  • Figure 13 is a first schematic view showing the arrangement of the guide vanes in the single inlet passage of the two-stage fan of the present invention
  • Figure 14 is a schematic view showing the second arrangement of the guide vanes in the single inlet passage of the two-stage fan of the present invention.
  • a garden hair dryer 100, 100' is a common garden tool for performing cleaning work.
  • the garden hair dryer 100, 100' mainly uses the air blowing function to concentrate the scattered leaves to achieve the purpose of cleaning.
  • the garden hair dryer can be understood as a single-air garden hair dryer, or a blower having both a blowing function and a suction function.
  • the garden blower 100, 100' extends as a whole in the direction indicated by arrow B in Fig. 1, defining that the direction is axial.
  • the garden hair dryer includes a casing 10, a power unit 20, and a fan assembly 30.
  • the casing 10 includes a main body portion 11 at the rear end, a blowing pipe 13 at the front end and extending in the axial direction, and an air inlet 14 and an air outlet 131 connecting the external environment and the inner cavity of the blowing pipe 13.
  • the casing 10 can play a protective role, and the fan assembly 30 and the power unit 20 are all mounted in the casing 10, which can ensure the safety of the operation when the user uses the garden hair dryer 100, and avoid touching the fan assembly 30 or other components.
  • the power unit 20 is coupled to the main body portion 11 to power the garden blower 100.
  • the power unit 20 includes a motor 2 that can drive the fan assembly 30 to rotate about an axis of rotation, the motor 2 being housed within the body portion 11.
  • the power unit 20 is detachably coupled to the cabinet 10 such that when the garden blower 100 is idle, the power unit 20 is detachable for use with other power tools, reducing waste of resources.
  • the blow pipe 13 extends in the axial direction substantially along a central axis X, and is hollow inside for providing air circulation for blowing air from the blow pipe 13 to the outside. It is defined that the blowing pipe 13 is located at the axial front end of the main body portion 11, and the other end opposite to the axial front end is understood to be an axial rear end.
  • the blow pipe 13 includes a connection port 133 at the axial rear end, and the air outlet 131 is located at the axial front end of the blow pipe 13.
  • the power unit 20 drives the fan assembly 30 to rotate to introduce an outside airflow into the blow pipe 13 and to blow outward from the air outlet 131 of the blow pipe 13.
  • the blow tube 13 can be a blow tube 13 having a complete blow function formed by a combination of multiple tubes.
  • the fan assembly 30 is housed in the casing 10 , and the fan assembly 30 includes at least two stages of fans.
  • the at least two stages of fans include a first stage fan 31 disposed in the axial direction.
  • the second stage fan 33 The first stage fan 31 is disposed coaxially with the second stage fan 33 and has an axis of rotation that is rotated by the motor 2.
  • the rotation axis of the motor 2, the central axis X of the blowing pipe 13, and the rotation axes of the first-stage and second-stage fans 31, 33 are three-folded, and the setting of the multi-stage fan is often carried out with respect to the single-stage fan.
  • the above three axes are designed to coincide, which will greatly reduce the noise of the whole machine, and the blowing efficiency is better.
  • the first stage fan 31 and the second stage fan 33 are both axial fans. Since the axial fan can generate a high wind speed, the blowing efficiency can be greatly improved without increasing the size of the fan.
  • the working effect of the garden hair dryer mainly depends on the blowing amount and the blowing speed of the garden hair dryer 1, the blowing amount of the garden hair dryer, the blowing speed mainly by the blowing effect of the fan assembly 30, and the casing 10 and the blowing.
  • the structure of the tube 13 is determined, and the blowing effect of the fan assembly 30 is mainly determined by the wind pressure and the air volume of at least two stages of the fan.
  • the air volume of the fan assembly 30 is the volume of air that the fan assembly discharges per unit time.
  • the wind pressure of the fan assembly 30 is the difference between the total pressure of the outlet airflow of the fan assembly 30 and the total pressure of the inlet airflow.
  • a single blower usually uses the same structure of the fan to act on the air to achieve high wind pressure.
  • the inventors have conducted research and tests and found that due to the same structure of each stage of the fan, the shaft power of the two-stage or multi-stage fan is close, and the supercharging of the inter-stage fan is relatively close, so the multi-stage fan of the same structure in the current single-blowing machine is similar. It does not play a very good boosting effect.
  • the single-stage fan its blowing efficiency has not reached a good expectation.
  • the single-stage or multi-stage single-blowing machine has a situation in which the wet leaves are blown or the blowing efficiency is low, which is not preferable. Hair dryer effect.
  • the structure of the first stage fan 31 is different from the structure of the second stage fan 33.
  • the first stage fan 31 and the second stage fan 33 each include a hub 32 and a plurality of blades 34 surrounding the circumference of the hub.
  • the rotational outer diameter of the blades of the first stage fan 31 is different from that of the second stage fan.
  • the number of stages of the fan is not limited to two stages. In this embodiment, only a two-stage fan is taken as an example for description.
  • the number of the first-stage fans 31 may be one or more than one, and the structures of the first-stage fans 31 may be identical or at least partially different.
  • the number of the second-stage fans 33 may be one or more than one, and the structures of the second-stage fans 33 may be identical or at least partially different.
  • the two-stage fan is taken as an example to describe in detail how to implement the structure of at least one fan in the multi-stage fan is different from other fans.
  • the rotational outer diameter of the blades of the first stage fan 31 is different from that of the second stage fan 33.
  • the blade of the fan has a wing-shaped inner chord, and the angle between the inner chord of the airfoil and the horizontal line (frontal line) is the inclination angle of the fan. That is, one or several or all of the above four unit quantities (ie, the rotational outer diameter of the blade, the inner diameter of the rotation, the number of blades, and the inclination of the blade) may be changed to realize that the structure of the first stage fan 31 is different from that of the first stage.
  • the structure of the secondary fan 33 is an example.
  • the absolute value of the difference between the rotational outer diameter of the blade of the first stage fan 31 and the rotational outer diameter of the blade of the second stage fan ranges from 10 mm to 90 mm.
  • the absolute value of the difference may be 10 mm, 15 mm, 20 mm, 25 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 80 mm, 90 mm.
  • the absolute value of the difference between the rotational outer diameter of the blade of the first stage fan 31 and the rotational outer diameter of the blade of the second stage fan 33 is 10 mm to 50 mm.
  • the outer diameter of the first-stage fan 31 is larger than that of the second-stage fan 33.
  • the outer diameter is rotated, and the absolute value of the difference between the rotational outer diameter of the blade of the first stage fan 31 and the rotational outer diameter of the blade of the second stage fan 33 is 30 mm, for example, the blade of the first stage fan 31
  • the outer diameter of the rotation was 110 mm, and the outer diameter of the blades of the second stage fan 33 was 80 mm.
  • the first-stage fan has a blade rotation outer diameter of 40 mm to 80 mm
  • the second-stage fan has a rotation outer diameter of 70 mm to 130 mm
  • the absolute value of the difference between the rotational outer diameter of the blade of the first stage fan 31 and the rotational outer diameter of the blade of the second stage fan 33 is 25 mm.
  • the rotating outer diameter of the blades of the first stage fan 31 may be 70 mm
  • the rotating outer diameter of the blades of the second stage fan 33 may be 95 mm.
  • the absolute value of the difference between the rotational inner diameter of the blade of the first stage fan 31 and the rotational inner diameter of the blade of the second stage fan 33 is 50 mm or less.
  • the absolute value of the difference may be 0 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm.
  • the absolute difference between the inner diameter of the rotation of the blades of the first stage fan 31 and the inner diameter of the blades of the second stage fan 33 is from 1 mm to 14 mm.
  • the inner diameter of the first-stage fan 31 is larger than the inner diameter of the second-stage fan 33, and the inner diameter of the blades of the first-stage fan 31 is the same as that of the second-stage fan.
  • the absolute value of the difference between the rotational inner diameters of the blades of 33 is 5 mm.
  • the inner diameter of the first stage fan 31 can be designed to be 50 mm, and the inner diameter of the second stage fan 33 can be designed to be 55 mm.
  • the first inner fan has a rotating inner diameter of 15 mm to 75 mm; and the second-stage fan has a rotating inner diameter of 30 mm to 100 mm.
  • the rotation inner diameter of the first stage fan 31 is smaller than the rotation inner diameter of the second stage fan 33, and the absolute value of the difference between the rotation inner diameter of the blades of the first stage fan 31 and the rotation inner diameter of the blades of the second stage fan 33 is 5 mm.
  • the inner diameter of the first stage fan 31 can be designed to be 50 mm
  • the inner diameter of the second stage fan 33 can be designed to be 55 mm.
  • the number of blades of the first stage fan 31 differs from the number of blades of the second stage fan 33 by one to nine.
  • the difference between the number of blades of the first stage fan 31 and the number of blades of the second stage fan 33 is exemplified by three.
  • the number of blades of the first-stage fan 31 is, for example, the number of blades of the first-stage fan 31 is larger than the number of blades of the second-stage fan 33.
  • the number of blades of the second stage fan 33 is eight.
  • the number of blades of the first stage fan 31 is nine, and the number of blades of the second stage fan 33 is twelve.
  • the inclination angle of the blades of the first stage fan 31 is different from that of the blades of the second stage fan 33.
  • inclination For example, the absolute value of the difference between the inclination angle of the blades of the first stage fan 31 and the inclination angle of the blades of the second stage fan 33 is 1 to 10 degrees.
  • the inclination angle of the blades of the first stage fan 31 is different from the inclination angle of the blades of the second stage fan 33 by 3 degrees.
  • the inclination angle of the blades of the first-stage fan 31 is taken as an example, the inclination angle of the blades of the first-stage fan 31 is larger than the inclination angle of the blades of the second-stage fan 33. At 30 degrees, the inclination of the blades of the second stage fan 33 is 27 degrees.
  • the inclination of the blades of the first stage fan 31 is 25 degrees, and the inclination of the blades of the second stage fan 33 is 28 degrees.
  • the first and second stage fans 31 and 33 have an air inlet side and an air outlet side, and intake air of the first and second stage fans 31 and 33 .
  • the side faces are the same and are disposed toward the air inlet 14.
  • the first and second stage fans 31 and 33 are arranged in such a manner that the air inlet side of the first stage fan 31 is disposed toward the air inlet port 14, and the air inlet side of the second stage fan 33 corresponds to the air outlet side of the first stage fan 31. .
  • the airflow After entering the casing 10 through the air inlet 14, the airflow enters the fan assembly 30 from the air inlet side, is boosted by the fan assembly 30, and is outputted from the air outlet side.
  • the air inlet sides of the first and second stage fans 31, 33 are oriented in the same direction, which can increase the working air volume and wind pressure of the garden hair dryer, so that the garden hair dryer can have high air volume and high wind speed when working, ensuring smooth airflow and avoiding airflow impact. To ensure the wind effect of the garden hair dryer.
  • the garden hair dryer also includes at least a primary guide vane 15.
  • the guide vanes 15 may be disposed on the air outlet side of the fan assembly 30 (as shown in FIG. 13), or may be disposed at one end of the air outlet side of each stage of the fan (as shown in FIGS. 11, 12, and 14).
  • the fans of each stage are rotated during operation to achieve the supercharging and increasing speed of the airflow; the vanes 15 are stationary, and the airflow outputted by the air outlet side guides the airflow through the vanes 15, reducing the airflow and the casing, etc.
  • the noise generated by the impact increases the comfort of the user.
  • the vane 15 can also avoid turbulence of the airflow, ensure smooth flow of the airflow, thereby ensuring smooth wind and ensuring a blowing effect.
  • the fan assembly 30 includes a two-stage fan.
  • the number of stages of the vanes 15 is one stage.
  • the first stage fan 31 and the second stage fan 33 are driven to rotate by the motor 2, and the guide vane 15 is not disposed between the air outlet side of the first stage fan 31 and the air inlet side of the second stage fan 33, only in the second stage fan.
  • Guide vanes 15 are provided on the air outlet side of 33.
  • the fan assembly 30 includes two stages of fans, and the number of stages of the vanes is also two stages.
  • Guide vane The number of stages is the same as the number of stages of the fan.
  • the air outlet side of the first stage fan 31 is correspondingly provided with a first stage guide vane 151
  • the air outlet side of the second stage fan 33 is correspondingly provided with a second stage guide vane 153.
  • the number of the first stage vanes 151 is different from the number of the second stage vanes 153 by one to nine.
  • the difference between the first stage vane 151 and the second stage vane 153 is exemplified by three.
  • the number of the first stage vanes 151 is three
  • the number of the second stage vanes 153 is six.
  • the number of first stage vanes 151 and the number of second stage vanes 153 may also be the same.
  • the garden hair dryer is further provided with a handle 16 for gripping, the handle being substantially in the reverse C-shape.
  • the two ends are respectively connected to the casing 10 to form a holding space.
  • the handle 16 can be integrally formed with the casing 10 or can be disposed separately from the casing 10.
  • the handle 16 is located above the garden hair dryer.
  • the handle is located above the motor 2, so that the handle 16 and the motor 2 can achieve a desired weight balance.
  • an operation switch 161 for opening and closing the garden blower is provided on the handle 16.
  • the operation switch 161 can be a push button structure, or can be set to other shapes such as a cylindrical button.
  • the operation switch 161 can be disposed above the handle 16. When the operator holds the handle 16, the operator's thumb can just touch. The operation switch 161 is turned on. The operation switch 161 can also be located inside the handle 16 to facilitate the action of pressing the operation switch when the operator grips the handle, thereby enabling quick start or shutdown of the machine.
  • the garden hair dryer 100 generates airflow by rotating a multi-stage fan.
  • the two-stage fan is taken as an example, that is, the first-stage fan 31 and the second-stage fan 33, wherein the first-stage fan 31 is disposed away from the air outlet 131 compared to the second-stage fan 33.
  • the garden blower 100 does not have only a single single air inlet passage, but has two air inlet passages that cooperate with the first and second stage fans 31, 33. The structure of this embodiment will be described in detail as follows.
  • the main body portion 11 and the blowing pipe 13 are provided separately, and of course, the main body portion 11 and the blowing pipe 13 may be integrally formed.
  • the main body portion 11 is assembled and assembled from two half-shells.
  • the main body portion 40 includes a left casing 111 and a right casing 113.
  • the left and right casings 111 and 113 are combined to form a housing portion 115 in which the motor 2 is housed, and a ring body portion 117 extending forward from the housing portion.
  • the cross-sectional area of the ring portion 117 in the radial direction is larger than the cross-sectional area of the accommodating portion 115 in the radial direction.
  • the air inlet 14 includes a first group of air inlets 141 and a second group of air inlets 143 for introducing airflow into the air duct 13.
  • the first group of air inlets 141 and the second group of air inlets 143 are all located on the rear side of the fan assembly 30. Specifically, the first group of air inlets 141 are located at the rear side of the first stage fan 31 and the second stage fan 33.
  • the second group of air inlets 143 are also located on the rear side of the first stage fan 31 and the second stage fan 33.
  • the arrangement of the plurality of sets of air inlets 14 ensures an increase in the amount of intake air.
  • the first group of air inlets 141 and the second group of air inlets 143 are disposed apart from each other in the axial direction.
  • the second group of air inlets 143 are located at the axial front end
  • the first group of air inlets 141 are located at the axial rear end.
  • the direction in which the first group of air inlets 141 are opened and the position of the opening are not singular.
  • the first group of air inlets 141 includes an axial air inlet 1411 formed in the main body portion 11 and a radial air inlet 1413 annularly disposed in the main body portion 11 in the circumferential direction.
  • the axial air inlet 1411 includes a first axial air inlet 1415 formed on the receiving portion 115 and a second axial air inlet 1417 formed on the ring portion 117.
  • the second axial air inlet 1417 is closer to the first stage fan 31 with respect to the first axial air inlet 1415.
  • the first axial air inlet 1415 is located directly behind the motor 2, so that the air flow entering the first axial air inlet 1415 is used not only for outward blowing to sweep the leaves, but also for direct cooling of the motor 2 as a cooling air flow.
  • the first axial air inlet 1415 herein can also be understood as a heat dissipation port.
  • the radial air inlet 1413 includes a first radial air inlet 1412 extending axially on the ring body portion 117 and a second radial air inlet 1414 extending radially on the ring body portion 117.
  • the garden blower 100 When the garden blower 100 is in the working state, at least part of the airflow generated by the first stage fan 31 and the second stage fan 33 is driven from the first group of air inlets 141 into the blowing pipe 13 and at the first group of air inlets. A first air inlet passage is formed between the 141 and the first stage fan 31.
  • the garden blower 100 When the garden blower 100 is in operation, at least a portion of the airflow generated by the second stage fan 33 alone is driven from the second set of air inlets 143 into the blow tube 13 and at the second set of air inlets 143 and second level fans.
  • a second air inlet passage is formed between 33.
  • At least a portion of the airflow entering the first air inlet passage and at least a portion of the airflow entering the second air inlet passage are collected between the first stage fan 31 and the second stage fan 33, and are blown from the second stage fan 33 Inside the blow tube.
  • the second air inlet passage is at least partially disposed at a periphery of at least a portion of the first air inlet passage in a direction perpendicular to the axial direction.
  • the garden hair dryer 100 further includes a first duct portion 17 capable of introducing a gas flow into the blowing pipe 13, and the first duct portion 17 is located at the axial air inlet 1411 and the second stage. Between the fans 33. When the garden hair dryer 100 is in working condition, it enters by the first group of air inlets 141. The airflow flows at least partially from the first duct portion 17 into the blow pipe 13.
  • the first stage fan 31 is disposed in the first duct portion 17, and at least a portion of the first air inlet passage is formed in the inner cavity surrounded by the first duct portion 17.
  • the first duct portion 17 in this embodiment is a tubular member which is substantially similar to the shape of a desk lamp.
  • the first duct portion 17 includes a first interface portion 171 that penetrates in the axial direction and a second interface portion 173 that faces the first interface portion 171 .
  • the first interface portion 171 is in communication with the first group of air inlets 141
  • the second interface portion 173 is disposed between the first stage fan 31 and the second stage fan 33
  • the second interface portion 173 has a smaller cross-sectional area in the radial direction.
  • the rear end of the first duct portion 17 is fixedly coupled to the main body portion 11. Specifically, as shown in FIGS. 1 and 3, a stopper projection 175 is provided on the upper and lower symmetry planes of the first duct portion 17 to restrict the first duct portion 17 from rotating in the circumferential direction with respect to the main body portion 11.
  • the garden hair dryer 100 further includes a second duct portion 18 for introducing a gas flow into the blowing pipe 13.
  • the second stage fan 33 is disposed in the second duct portion 18, and at least a portion of the second air inlet passage is formed between the inner wall of the second duct portion 18 and the outer wall of the first duct portion 17.
  • the second duct portion 18 includes a leading cone 181 disposed between the fan assembly 30 and the air outlet 131.
  • the cross-sectional area of the leading cone 181 in the direction perpendicular to the central axis line X gradually decreases from the axial rear end to the axial front end.
  • the leading cone 181 is an internal hollow structure.
  • the presence of the leading cone 181 causes the sectional area of the blowing pipe in the direction perpendicular to the central axis X to become smaller, thereby obtaining a higher-speed exhaust airflow.
  • the blowing pipe 13 is sleeved on the front end of the second duct portion 18 and is detachably connected to the second duct portion 18.
  • the second duct portion 18 is at least partially looped around the periphery of the first duct portion 17.
  • the first duct portion 17 and the second duct portion 18 are fixedly connected to each other by a bayonet pin as shown in FIGS. 6 and 7.
  • a hook pin 176 that is radially convex along the first duct portion 17 is provided at the front end of the first duct portion 17.
  • the second duct portion 18 is provided with a card slot 183 that cooperates with the bayonet 176, and the first duct portion 17 and the second duct portion are realized by the bayonet 176 being inserted into the card slot 183. 18 fixed. Further, the inside of the card slot 183 is provided with a boss 184 at the bayonet 176 and the boss 184 A screw hole 185 is respectively disposed on the upper portion, and a screw connection with the screw hole 185 is performed by a screw to realize a fastening connection between the first duct portion 17 and the second duct portion 18. The first duct portion 17 and the second duct portion 18 are connected between the blow pipe 13 and the main body portion 11.
  • the second duct portion 18 may not be provided as long as a second group of air inlets 143 for airflow into the second air inlet passage is formed between the air blowing pipe 13 and the first duct portion 17. That is, the airflow entering from the second group of air inlets 143 can directly flow into the blowing pipe 13.
  • the number of the ducted portions may not be limited to two, and the specific number may be adjusted according to the number of fan stages or the number of air inlet passages.
  • the first duct portion 17, the second duct portion 18, the main body portion 11, and the blow pipe 13 are provided separately. In other embodiments, at least two of the first duct portion 17, the second duct portion 18, the main body portion 11, and the air blowing tube 13 are integrally formed or integrally formed.
  • the garden blower 100 further includes a plurality of baffles 1431 that direct the flow of air entering the second set of air inlets 143.
  • the deflector 1431 is provided between the outer circumferential surface of the first duct portion 17 and the inner circumferential surface of the second duct portion 18 and is equidistantly spaced apart in the circumferential direction.
  • the arrangement of the deflector 1431 can guide the flow of the airflow into the second set of air inlets 143, that is, the airflow moves axially forward along the deflector 1431 in the second air inlet passage to the air duct.
  • the size of the first stage fan 31 and the second stage fan 33 are different for the blower 100 of the two-stage fan double inlet passage.
  • the cross-sectional area of the first-stage fan 31 in the radial direction is smaller than the cross-sectional area of the second-stage fan 33 in the radial direction.
  • the shaft power of the first stage fan 31 is smaller than the shaft power of the second stage fan 33.
  • the ratio of the shaft power of the first stage fan 31 to the shaft power of the second stage fan 33 is 1:2.5 to 1:1.05.
  • the rotational outer diameter of the second stage fan 33 is larger than the rotational outer diameter of the first stage fan 31.
  • the rotational outer diameter of the first-stage fan 31 is 40-80 mm, and the rotational outer diameter of the second-stage fan is 70 to 130 mm.
  • the rotational speed of the motor is greater than 25,000 rpm and is less than or equal to 100,000 rpm, it is preferable that the rotational outer diameter of the first-stage fan 31 is 20 to 50 mm, and the rotational outer diameter of the second-stage fan 33 is 30 to 70 mm.
  • the inner diameter of the rotation of the second stage fan 33 is larger than the inner diameter of the rotation of the first stage fan 31.
  • the blades of the first stage fan 31 rotate to form a first annular rotating surface
  • the blades of the second stage fan 33 rotate to form a second annular rotating surface.
  • the cross-sectional area of the first annular rotating surface in the radial direction is smaller than the cross-sectional area of the second annular rotating surface in the radial direction.
  • D 1 is the rotational outer diameter of the first-stage fan 31
  • D 2 is the diameter of the hub of the first-stage fan 33.
  • D 3 is the rotating outer diameter of the second-stage fan
  • D 4 is the diameter of the hub of the second-stage fan 33
  • the cross-sectional area of the second-stage fan 33 in the radial direction minus the cross-sectional area of the hub in the radial direction is the second-stage fan.
  • Sa is smaller than S b .
  • the total air inlet area formed by the first group of air inlets 141 and the second group of air inlets 143 is defined as the air inlet area.
  • the air outlet area of the air outlet 131 of the air blowing pipe 13 is defined as the air outlet area.
  • the air inlet area: Sa: air outlet area (2 ⁇ 2.7): 1: (0.85 ⁇ 1)
  • the air inlet area: Sb: air outlet area (2 ⁇ 2.7): 1: (0.85 ⁇ 1).
  • the axial flow garden blower 100 of the two-stage fan double duct has a higher blowing efficiency.
  • the hub ratio of the first stage fan 31 is 0.55 to 0.85.
  • the hub ratio of the second stage fan 33 is 0.5 to 0.8.
  • the hub ratio of the first stage fan 33 is greater than the hub ratio of the second stage fan 31, and the hub ratio of the first stage fan 31 is preferably 0.65, the second stage fan.
  • the hub ratio of 33 is preferably 0.55.
  • the root diameter of the blade 34 is the rotational inner diameter
  • the top diameter of the blade 34 is the rotational outer diameter.
  • the ratio of the diameter of the hub to the diameter of the top of the blade is the hub ratio well known to those skilled in the art.
  • the hub ratio of the first stage fan 31 and the second stage fan 33 is critical to the air volume and wind speed of the garden blower 100. For the axial flow garden blower 100, the hub ratio directly affects the air volume and speed to ensure the air blowing efficiency of the axial flow garden blower.
  • a drive shaft 19 is further disposed between the motor 2 and the first stage fan 31 and the second stage fan 33.
  • the motor 2 includes an output shaft 31 that outputs power, and the output shaft 31 rotates the first and second stage fans 31, 33 together with the drive shaft 19 about a rotation axis.
  • the first-stage fan 31 and the second-stage fan 33 in this embodiment are synchronized and operated at the same speed.
  • the first-stage fan 31 and the second-stage fan 33 may also operate at synchronous isochronous speed. Or run asynchronously at the same speed or asynchronously.
  • the output shaft 21 of the motor 2 can be connected to the transmission shaft 19 via the connecting sleeve 23, and the end of the connecting sleeve 23 is fixedly fixed by the collar 25.
  • a rear guide cone 27 is mounted on the connecting bushing 23; the drive shaft 19 extends through the first duct portion 17 into the second duct portion 18.
  • the principle is as follows: Take the two-stage fan double inlet channel as an example to illustrate. When the garden hair dryer 100 is in operation, the motor 2 drives the first stage fan 31 and the second stage fan 33 to rotate together to drive the external airflow to flow into the first duct portion 17 through the first group of air inlets 141.
  • a first air inlet passage is formed between the air inlet 141 and the first stage fan 31, a flow meter flowing into the first air inlet passage is Q1, and a wind pressure gauge formed in the first air inlet passage is P1; At least a portion of the airflow generated by the rotation of the second stage fan 33 enters the second duct portion 18 to form a second air inlet passage between the second group of air inlets 143 and the second stage fan 33, which will flow into the second
  • the flow meter in the air inlet passage is Q2, and the air pressure gauge in the second air inlet passage is P2; the air flow flowing into the first air inlet passage and the air flow flowing into the second air inlet passage are all sent to the blow pipe.
  • the wind speed of the garden hair dryer is 50 to 140 mph
  • the air volume of the garden hair dryer is 250 to 800 cfm.
  • the garden hair dryer 100 provided by the embodiment can ensure the air volume is significantly increased while taking into consideration the wind speed increase, and the wind speed and the air volume provided can make the garden hair dryer use under different working conditions, and each has a very good air blowing effect.
  • the increase in air volume and wind speed for the multi-stage fan, multi-duct axial flow garden blower provided by the embodiment will be hereinafter shown by comparison with the relevant parameters of the conventional axial flow garden blower.
  • FIG. 8 it is a schematic diagram of wind pressure distribution of a conventional single-stage fan and a single air duct axial-flow garden hair dryer
  • FIG. 9 is a schematic diagram of wind pressure distribution of a two-stage fan and a single air duct axial-flow garden hair dryer.
  • the two-stage fan structure here is the same;
  • FIG. 9 is only a simple fan stack compared to FIG.
  • Fig. 10 is a schematic view showing the wind pressure distribution of the axial-flow garden hair dryer of the two-stage fan and the double inlet passage of the present invention.
  • the unit of the vertical axis data in Fig. 10 is pa, which indicates the wind pressure generated at the air outlet of the blow pipe. It can be seen from the following table that the fan is superimposed in the air duct, and the pressure in the air duct is increased but the air volume is reduced.
  • the two-stage fan and the double-inlet air passage axial-flow garden hair dryer of the present invention on the one hand, have superimposed air inlet passages, and each of the air inlet passages is provided with a fan for introducing external airflow into each air inlet passage, and
  • the structure of the first stage fan 31 is different from that of the second stage fan 33, so that the amount of wind blown by the blow pipe 13 is clear
  • the wind pressure is also significantly increased, and the flow velocity of the airflow blown out from the air outlet 131 of the blowing pipe 13 is large, and the working effect of the garden hair dryer 100 is obviously improved.
  • the axial flow garden hair dryer 100 of the present invention can achieve the common improvement of the air volume and the wind speed, and the air blowing effect is very good.
  • the following table compares the specific parameters of the two-stage fan double inlet channel, the two-stage fan single inlet channel, and the single-stage fan single inlet channel.
  • the comparison of the three models in this table is the same as the motor 2 rotation speed. .
  • the present invention reduces the shaft power of the two-stage fan by reducing the size of the first-stage fan 31 and the second-stage fan 33, thereby reducing the power consumption of the motor 2 and the size of the whole machine also becomes More compact; and by designing the structure of the first stage fan 31 and the structure of the second stage fan 33 to be different, and by superimposing the design of the air inlet passage, even if the first stage fan 31 and the second stage fan are lowered Under the condition of 33 size, the air volume and wind pressure of the double fan double air duct will not decrease, and the scheme of the double fan double air duct is significantly improved in air volume and wind pressure compared with the single fan single air duct.
  • the garden hair dryer 100' also generates airflow by rotating a plurality of stages of fans.
  • the two-stage fan at least part of the airflow generated by the rotation of the first-stage fan 31 and the second-stage fan 33 enters into the blow pipe 13 from the air inlet 14 and is at the air inlet 14 and the air outlet 131.
  • Form an independent single inlet passage The difference between the second embodiment and the first embodiment is mainly that the air inlet passage in the second embodiment is a single air inlet passage. That is, the second embodiment provides a two-stage fan single inlet airflow axial garden hair dryer.
  • the structure of the two-stage fan is also designed to be different.
  • the airflow formed by the rotation of the fan may be due to It is difficult to achieve full flow into the blow pipe 13 for the loss, and therefore it is emphasized here that at least part of the air flow enters the blow pipe 13 from the air inlet 14.
  • the multi-stage fan structure is different, including several different situations, as follows: the shaft power of at least two-stage fan is gradually increased or gradually reduced in the axial direction or at least two The shaft power of the stage fan changes irregularly. All of the above can achieve step-by-step supercharging to achieve high wind pressure and high wind speed. The details will be described below.
  • the shaft power of at least two stages of fans gradually increases in the axial direction.
  • the incrementally increased shaft power can be set in an arithmetic progression, or it can be set in an irregular change.
  • the size of the first-stage fan 31 near the air inlet 14 is smaller than the size of the second-stage fan 33 near the air outlet 131.
  • the cross-sectional area of the first-stage fan 31 in the radial direction is smaller than the cross-sectional area of the second-stage fan 33 in the radial direction.
  • the shaft power of the first stage fan 31 is smaller than the shaft power of the second stage fan 33.
  • the ratio of the shaft power of the first stage fan 31 to the second stage fan 33 is 1:2.5 to 1:1.05. This enables the garden hair dryer 100' of the present application to achieve step-by-step supercharging to achieve high wind pressure and high wind speed.
  • the shaft power of at least two stages of the fan is gradually decreased in the axial direction.
  • the shaft power reduced step by step may be set in an arithmetic progression, or may be set in an irregular change.
  • the size of the first-stage fan 31 near the air inlet 14 is larger than the size of the second-stage fan 33 near the air outlet 131.
  • the shaft power of the first stage fan 31 is greater than the shaft power of the second stage fan 33.
  • the ratio of the shaft power of the first stage fan 31 to the second stage fan 33 is 1.05:1 to 2.5:1.
  • the blades of the first stage fan 31 rotate to form a first annular rotating surface
  • the blades of the second stage fan 33 rotate to form a second annular rotating surface.
  • the cross-sectional area of the first annular rotating surface in the radial direction is larger than the cross-sectional area of the second annular rotating surface in the radial direction.
  • D 1 is the diameter of the first-stage fan
  • D 2 is the diameter of the hub of the first-stage fan 33.
  • the cross-sectional area of the first-stage fan 31 in the radial direction minus the cross-sectional area of the hub in the radial direction is the first stage.
  • D 3 is the diameter of the second-stage fan
  • D 4 is the diameter of the hub of the second-stage fan 33
  • the cross-sectional area of the second-stage fan 33 in the radial direction minus the cross-sectional area of the hub in the radial direction is the ring of the second-stage fan 33
  • Sa' is larger than S b '.
  • the size of the fan of the multi-stage fan disposed near the air inlet 14 is relatively large, and the outer edge of the blade of the first-stage fan 31 and the machine accommodating the first-stage fan 33
  • the gap between the inner walls of the casing 10 is greater than or equal to the gap between the outer edge of the blade of the second stage fan 33 and the inner wall of the casing 10 accommodating the second stage fan 33, so that the airflow after being pressurized by the first stage fan 31 can be gentled.
  • Smoothly flowing into the second-stage fan 33 prevents the airflow from being pressurized by the first-stage fan 31, and the airflow expands between the first-stage fan 31 and the second-stage fan 33, causing airflow loss.
  • the fan assembly can not only output a high wind pressure airflow, but also reduce the airflow loss, and the garden hair dryer 100' has a higher blowing efficiency, especially for blowing some heavy or wet. Leaves, short working hours, easy for users to use.
  • the number of the fan assemblies 30 is at least three stages (not shown), at least two stages of the fan have different structures, thereby achieving step-by-step boosting, and the airflow smoothly accelerates the flow, thereby greatly reducing wind loss and power loss, and improving output. power.
  • at least three of the three-stage fans have the same shaft power and are larger or smaller than the shaft power of other fans.
  • the structure of the two-stage fan may be the same, and the power of the fan of the other stage is greater than or less than the shaft power of the two-stage fan.
  • the structure of the two-stage fan may be the same, or the structure of the three-stage fan may be the same.
  • the shaft power of the remaining fans may be greater than the shaft power of two or three of the fans, and the remaining fans.
  • the shaft power can also be less than the shaft power of two or three of the fans.
  • the setting is basically similar. In this way, the garden hair dryer 100 of the present application can be stepped up to achieve high wind pressure and high wind speed.
  • the garden hair dryer 100, 100' disclosed by the present invention can meet the needs of different working conditions.
  • the structure of the first stage fan 31 is different from the structure of the second stage fan 33.
  • the fan assembly 30 can not only output a high air pressure airflow, but also reduce the airflow loss, and the garden blower has more efficient air blowing. High, especially for blowing some heavy or wet leaves, short working hours, easy for users to use.
  • the garden hair dryer of the present invention also has a superimposed air inlet passage. (The first air inlet channel and the second air inlet channel), and a fan is arranged in each air inlet channel, and the wind speed and air volume of the garden hair dryer can be effectively improved by the super-multiple fan multi-fan superposition design.

Abstract

一种花园吹风机(100,100'),其包括:机壳(10),包括位于后端的主体部(11)及位于所述主体部(11)前端并沿轴向延伸的吹风管(13),所述机壳(10)还设有连通外界环境的进风口(14)及出风口(131);动力装置(20),连接于所述机壳(10)以为所述花园吹风机(100,100')提供动力;风扇组件(30),由所述动力装置(20)驱动旋转并产生气流;所述风扇组件(30)包括至少两级风扇,所述至少两级风扇包括在轴向上前后设置的第一级风扇(31)及第二级风扇(33),所述花园吹风机(100,100')包括供至少所述第一级风扇(31)产生的气流进入的第一进风通道及供至少所述第二级风扇(33)产生的气流进入的第二进风通道,进入所述第一进风通道内的气流和进入所述第二进风通道内的气流均汇入至所述吹风管(13)内并自所述出风口(131)向外界吹出。

Description

花园吹风机 技术领域
本发明涉及一种花园吹风机,尤其涉及花园吹风机的风扇及进风通道。
背景技术
随着城市绿化面积的不断扩大,公园、公路、公共场所的绿化带遍及各地,草坪修整工具也被广泛应用。其中吹风机属于一种常规电动工具,其主要用于吹扫落叶、路面灰尘、积水、积雪以及用于森林灭火。在吹风机的使用过程中,在不同的使用环境下用户对风力和风量有不同的需求。现有技术中也存在各种风力或风量的调节方式,一般通过将多级相同结构的风扇串接实现风力的增大,或者增大进风口面积实现风量的提升。
例如中国专利CN205934814U公开了一种手持轴流式吹风机,其包括上壳体、出风筒、马达、涵道和下壳体,其中所述上壳体中间设有马达,用于带动风扇转动,所述马达下端与下壳体连接,所述上壳体与下壳体之间设有若干可拆卸涵道,所述涵道内的风扇与马达连接,所述下壳体侧面四周设有若干凸台a,所述出风筒内壁上端设有若干与凸台a对应的L形凹槽,用于出风筒与下壳体连接。该手持轴流式吹风机,采用多级风扇设计,可以根据不同的需要增加或减少风扇的级数,来对应不同的风量规格,无需制作新的模具,大大拓展了使用场景,不仅适用于吹扫草坪垃圾、草屑和落叶,以及公园和道路上的落叶,另外强大的风力也可以用于森林灭火、路面清扫和吹雪作业。
上述专利文献中,由于每级风扇的叶片的结构、数量均一致,使得在使用时存在湿树叶吹不动、吹风效率低的情况,达不到最佳的吹风效果,影响用户使用。
发明内容
因此,本发明所要解决的问题在于提供一种花园吹风机,其吹风效率能得到有效的提升。
本发明解决现有技术问题所采用的技术方案是:
一种花园吹风机,其包括:
机壳,包括位于后端的主体部及位于所述主体部前端并沿轴向延伸的吹 风管,所述机壳还设有连通外界环境的进风口及出风口;
动力装置,连接于所述机壳以为所述花园吹风机提供动力;
风扇组件,由所述动力装置驱动旋转并产生气流;
所述风扇组件包括至少两级风扇,所述至少两级风扇包括在轴向上前后设置的第一级风扇及第二级风扇,所述花园吹风机包括供至少所述第一级风扇产生的气流进入的第一进风通道及供至少所述第二级风扇产生的气流进入的第二进风通道,进入所述第一进风通道内的气流和进入所述第二进风通道内的气流均汇入至所述吹风管内并自所述出风口向外界吹出。
优选的,所述第一级风扇相较于所述第二级风扇远离所述出风口设置,所述第一级风扇在径向上的截面积小于所述第二级风扇在径向上的截面积。
优选的,所述进风口包括将气流引入至所述吹风管内的第一组进风口,当所述花园吹风机处于工作状态下,气流自所述第一组进风口进入至所述吹风管内,并在所述第一组进风口与所述第一级风扇之间形成上述第一进风通道。
优选的,所述第一组进风口包括形成于所述主体部的轴向进风口及在周向上环设于所述主体部的径向进风口。
优选的,所述进风口还包括供气流进入至所述吹风管内的第二组进风口,当所述花园吹风机处于工作状态下,气流自所述第二组进风口进入至所述吹风管内,并在所述第二组进风口与所述第二级风扇之间形成上述第二进风通道。
优选的,所述第一组进风口与所述第二组进风口在轴向上前后分离设置。
优选的,所述第一组进风口与所述第二组进风口均位于所述风扇组件的后侧。
优选的,在与所述轴向相垂直的方向上,所述第二进风通道的至少部分区域环设于所述第一进风通道的至少部分区域的外围。
优选的,进入所述第一进风通道的气流由所述第一级风扇和所述第二级风扇共同驱动产生,进入所述第二进风通道的气流由所述第二级风扇单独驱动产生。
优选的,所述机壳还包括将气流导入至所述吹风管内的第一涵道部,当 所述花园吹风机处于工作状态下,由所述第一组进风口进入的气流自所述第一涵道部流入至所述吹风管内。
优选的,所述第一级风扇设置在所述第一涵道部内,所述第一进风通道的至少部分区域形成于所述第一涵道部围成的内腔中。
优选的,所述第一涵道部包括在轴向上贯通的第一接口部及与第一接口部相对的第二接口部,所述第一接口部与所述第一组进风口相连通,所述第二接口部设置在所述第一级风扇与所述第二级风扇之间,且所述第二接口部在径向上的截面积小于所述第二级风扇在径向上的截面积。
优选的,所述机壳还包括将气流导入至所述吹风管内的第二涵道部,当所述花园吹风机处于工作状态下,由所述第二组进风口进入的气流自所述第二涵道部流入至所述吹风管内。
优选的,所述第二级风扇设置在所述第二涵道部内,所述第二进风通道的至少部分区域形成于所述第二涵道部的内壁与所述第一涵道部的外壁之间。
优选的,所述第一涵道部的前端与所述第二级风扇在轴向上间隙设置。
优选的,进入所述第一进风通道的气流中的至少部分和进入所述第二进风通道的气流中的至少部分在所述第一级风扇与第二级风扇之间汇集,并自所述第二级风扇吹向所述吹风管内。
优选的,所述第一级风扇与所述第二级风扇均包括轮毂和若干围设在轮毂周向上的叶片,所述第一级风扇的叶片的数量、叶片的旋转外径、叶片的旋转内径中的至少一种不同于相应的所述第二级风扇的叶片的数量、叶片的旋转外径、叶片的旋转内径。
优选的,所述第一级风扇的旋转外径与所述第二级风扇的旋转外径之间的差值绝对值范围为10mm~90mm。
优选的,所述第一级风扇的叶片的旋转内径与所述第二级风扇的叶片的旋转内径的差值绝对值小于等于50mm。
优选的,所述第一级风扇的轮毂比为0.55~0.85,所述第二级风扇的轮毂比为0.5~0.8。
优选的,所述第一级风扇的叶片的数量与所述第二级风扇的叶片数量相 差1~9个。
优选的,所述花园吹风机包括对应于所述第一级风扇的第一级导叶及对应于所述第二级风扇的第二级导叶,所述第一级风扇与所述第二级风扇均具有进风侧及出风侧,所述第一级导叶位于所述第一级风扇的出风侧,所述第二级导叶位于所述第二级风扇的出风侧。
优选的,所述第一级风扇与所述第一级导叶之间及所述第二级风扇与所述第二级导叶之间均存在预设间隙,所述预设间隙在轴向上的尺寸范围为3mm~12mm。
优选的,当所述花园吹风机处于工作状态下,所述花园吹风机的风速为50~150mph,且所述花园吹风机的风量为250~800cfm。
优选的,所述动力装置包括马达及控制电路,所述马达控制所述风扇组件的旋转运动,所述马达的转速大于等于8000转/分,且小于等于25000转/分,所述第一级风扇的旋转外径为40mm~80mm,所述第二级风扇的旋转外径为70mm~130mm。
优选的,所述动力装置包括马达及控制电路,所述马达控制所述风扇组件的旋转运动,所述马达的转速大于25000转/分,且小于等于100000转/分,所述第一级风扇的旋转外径为20mm~50mm,所述第二级风扇的旋转外径为30mm~70mm。
优选的,所述吹风管在轴向上设有一中心轴线,所述马达绕一旋转轴线驱动所述第一级风扇与所述第二级风扇旋转,所述第一级风扇与所述第二级风扇同轴设置且具有通过马达带动旋转的转动轴线,所述吹风管的中心轴线、所述马达的旋转轴线及所述第一、第二级风扇的转动轴线三线重合。
优选的,所述第一级风扇的数量大于等于1个,所述第二级风扇的数量大于等于1个。
优选的,所述第一级风扇和所述第二级风扇均为轴流风扇。
优选的,所述至少两级风扇包括第三级风扇,所述第一级风扇、第二级风扇及第三级风扇中的至少一级风扇的叶片的数量或叶片的旋转外径或叶片的旋转内径与另外两级风扇不相同。
因此,本发明所要解决的问题在于提供一种花园吹风机,其吹风效率能 得到有效的提升。
本发明解决现有技术问题所采用的技术方案是:
一种花园吹风机,包括:
机壳,包括位于后端的主体部及位于所述主体部前端并沿轴向延伸的吹风管,所述机壳还设有连通外界环境的进风口及出风口;
动力装置,连接于所述机壳以为所述花园吹风机提供动力;
风扇组件,由所述动力装置驱动旋转并产生气流;
所述风扇组件包括至少两级风扇,所述动力装置带动所述至少两级风扇同步转动,所述至少两级风扇包括在轴向上前后设置的第一级风扇和第二级风扇,所述第一级风扇与所述第二级风扇均包括轮毂和围设在轮毂周向上的若干叶片,其中第一级风扇的叶片的旋转外径、叶片的旋转内径、叶片的数量、叶片的倾角中的至少一种与第二级风扇不同。
优选的,所述第一级风扇相较于所述第二级风扇远离所述出风口设置,且所述第一级风扇与所述第二级风扇均为轴流风扇。
优选的,所述动力装置能够驱动所述第一级风扇与所述第二级风扇进行转动,由所述第一级风扇及第二级风扇转动产生气流的至少部分自所述进风口进入至所述吹风管内,并在所述进风口与所述出风口之间形成独立的单进风通道。
优选的,所述第一级风扇的轴功率与所述第二级风扇的轴功率比值范围为1.05:1~2.5:1。
优选的,所述第一级风扇的叶片转动形成第一环形转动面,所述第二级风扇的叶片转动形成第二环形转动面,所述第二环形转动面在径向上的截面积小于所述第一环形转动面在径向上的截面积。
优选的,所述第一级风扇的叶片外缘与收容所述第一级风扇的机壳内壁之间的间隙大于等于所述第二级风扇的叶片外缘与收容所述第二级风扇的机壳内壁之间的间隙。
优选的,所述进风口包括将气流引入至所述吹风管内的第一组进风口,当所述花园吹风机处于工作状态下,气流自所述第一组进风口进入至所述吹风管内,并在所述第一组进风口与所述第一级风扇之间形成上述第一进风通 道。
优选的,所述第一组进风口包括形成于所述主体部的轴向进风口及在周向上环设于所述主体部的径向进风口。
优选的,所述进风口还包括将气流引入至所述吹风管内的第二组进风口,当所述花园吹风机处于工作状态下,气流自所述第二组进风口进入至所述吹风管内,并在所述第二组进风口与所述第二级风扇之间形成上述第二进风通道。
优选的,进入所述第一进风通道的气流中的至少部分和进入所述第二进风通道的气流中的至少部分在所述第一级风扇与第二级风扇之间汇集,并自所述第二级风扇吹向所述吹风管内。
优选的,所述第一组进风口与所述第二组进风口在轴向上前后分离设置。
优选的,所述第一级风扇的叶片转动形成第一环形转动面,所述第二级风扇的叶片转动形成第二环形转动面,所述第二环形转动面在径向上的截面积大于所述第一环形转动面在径向上的截面积。
优选的,所述第一级风扇的轮毂比为0.55~0.85。
优选的,所述第二级风扇的轮毂比为0.5~0.8。
优选的,所述第一级风扇的倾角与所述第二级风扇的倾角不相同。
优选的,所述第一级风扇的叶片的数量与所述第二级风扇的叶片数量相差1~9个。
优选的,所述第一级风扇的叶片的旋转外径与所述第二级风扇的叶片的旋转外径之间的差值绝对值范围为10mm~90mm。
优选的,所述第一级风扇的叶片的旋转内径与所述第二级风扇的叶片的旋转内径之间的差值绝对值小于等于50mm。
优选的,所述花园吹风机包括对应于所述第一级风扇的第一级导叶及对应于所述第二级风扇的第二级导叶,所述第一级风扇与所述第二级风扇均具有进风侧及出风侧,所述第一级导叶位于所述第一级风扇的出风侧,所述第二级导叶位于所述第二级风扇的出风侧。
优选的,所述第一级风扇与所述第一级导叶之间及所述第二级风扇与所述第二级导叶之间均存在预设间隙,所述预设间隙在轴向上的尺寸范围为 3mm~12mm。
优选的,所述动力装置包括马达及控制电路,所述马达控制所述风扇组件的旋转运动,所述动力装置与所述机壳可拆卸安装。
优选的,所述吹风管在轴向上设有一中心轴线,所述第一级风扇与所述第二级风扇同轴设置且具有通过马达带动旋转的转动轴线,所述马达绕一旋转轴线驱动所述第一级风扇与所述第二级风扇旋转,所述吹风管的中心轴线、所述马达的旋转轴线及所述第一、第二级风扇的转动轴线三线重合。
本发明技术方案,至少具有如下优点:
1.本发明第一级风扇的结构与第二级风扇的结构设计成不相同,具体的,第一级风扇与第一级风扇的叶片的数量、叶片的旋转外径、叶片的旋转内径中的至少一个不同于相应的第二级风扇的叶片的数量、叶片的旋转外径、叶片的旋转内径。如此设计,可通过风扇组件实现逐级增压,进而增加花园吹风机的出风效率。
2.本发明的花园吹风机,通过设置叠加的进风通道(第一进风通道和第二进风通道),并在每个进风通道内设置有风扇,通过多风道多风扇的叠加设计可实现花园吹风机的风速和风量都能得到有效地提升。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例的两级风扇双进风通道花园吹风机的爆炸图;
图2为图1所示的花园吹风机的立体组合图;
图3为图2所示的花园吹风机的在与轴向相垂直方向上的剖视图;
图4为图3所示的花园吹风机在工作状态下的气流流向示意图;
图5为图3所示的花园吹风机的右机壳的示意图;
图6为图1所示的花园吹风机的部分结构的示意图;
图7为图1所示的花园吹风机的部分结构的示意图;
图8为单级风扇单进风通道的花园吹风机的风压分布示意图;
图9为两级风扇单进风通道的花园吹风机的风压分布示意图;
图10为图1所示的两级风扇双进风通道的花园吹风机的风压分布示意图。
图11为本发明第二实施例的两级风扇单进风通道花园吹风机的剖视结构示意图;
图12为本发明第二实施例中的优选实施例的花园吹风机的剖视结构示意图;
图13为本发明两级风扇单进风通道中导叶的第一种排布示意图;
图14为本发明两级风扇单进风通道中导叶的第二种排布示意图。
具体实施方式
如图1至图14所示,为本发明揭示的花园吹风机100,100’的结构示意图,花园吹风机100,100’是一种常见的花园工具,用于执行清洁工作。花园吹风机100,100’主要利用吹风功能将散落的树叶集中起来,从而达到清洁的目的。在本发明中,花园吹风机可以理解为单吹风的花园吹风机,也可以为既具有吹风功能也具有吸风功能吹吸机。花园吹风机100,100’整体沿图1中箭头B所示的方向延伸,定义该方向为轴向。
如图1~4和图11~14所示,花园吹风机包括机壳10、动力装置20及风扇组件30。其中机壳10包括位于后端的主体部11、位于前端并在轴向上延伸的吹风管13及连通外界环境与吹风管13内腔的进风口14和出风口131。机壳10能够起到防护作用,风扇组件30及动力装置20均安装于机壳10中,这样能够保证用户使用花园吹风机100时的操作安全,避免触及风扇组件30或者其他零部件。
动力装置20连接于主体部11以为花园吹风机100提供动力。动力装置20包括可驱动风扇组件30绕一旋转轴线旋转的马达2,该马达2容置于该主体部11内。当然在其它实施方式中,动力装置20与机壳10可拆卸连接,以使得花园吹风机100闲置时,动力装置20可拆卸下来,用于其它电动工具,减少资源的浪费。
吹风管13大致沿一中心轴线X在轴向上延伸,其内部中空,用于提供空气流通,便于空气从吹风管13吹向外界。定义吹风管13位于主体部11的轴向前端,与该轴向前端相反的另一端即可理解为轴向后端。吹风管13包括位于轴向后端的连接口133,上述出风口131位于吹风管13的轴向前端。动力装置20驱动风扇组件30进行旋转以将外界气流引入至吹风管13内,并自吹风管13的出风口131向外吹出。在本发明中,吹风管13有且仅有一个。当然在其它实施例中,吹风管13可为多截管子组合形成的一个具有完整吹风功能的吹风管13。
如图1至图4、图11至14所示,风扇组件30收容于机壳10内,风扇组件30包括至少两级风扇,至少两级风扇包括在轴向上前后设置的第一级风扇31和第二级风扇33。该第一级风扇31与第二级风扇33同轴设置且具有通过马达2带动旋转的转动轴线。在本实施方式中,马达2的旋转轴线、吹风管13的中心轴线X及第一级、第二级风扇31、33的转动轴线三线重合,相对于单级风扇,多级风扇的设置常会带来较高噪音的设计限制,而将上述三个轴线设计成重合,会大大的降低整机的噪音,且吹风效率更好。进一步的,第一级风扇31和第二级风扇33均为轴流风扇。由于轴流风扇能够产生较高的风速,在没有增加风扇尺寸的前提下,吹风效率能得到极大提高。
根据本领域技术人员所了解的,花园吹风机的工作效果主要取决于花园吹风机1的吹风量和吹风速,花园吹风机的吹风量、吹风速主要由风扇组件30的吹风效果,以及机壳10和吹风管13的结构决定,而风扇组件30的吹风效果主要由至少两级风扇的风压和风量决定。风扇组件30的风量即风扇组件每单位时间排送的空气体积。风扇组件30的风压即为风扇组件30的出口气流全压与进口气流全压之差称为风压。
对于目前的双级或者多级的单吹机而言,单吹机通常采用结构相同的风扇来对空气进行作用达到高风压的目的。但是,发明人经过研究测试,发现由于每级风扇的结构相同,两级或多级风扇的轴功率接近,级间风扇的增压比较接近,因此目前的单吹机中结构相同的多级风扇不能起到很好的增压作用,与单级风扇相比,其吹风效率并未达到很好的预期。目前的双级或者多级的单吹机在使用时存在湿树叶吹不动或吹风效率低的情况,达不到较佳的 吹风效果。
在本发明中,如图1至图4、图11至图14所示,第一级风扇31的结构与第二级风扇33的结构设计为不相同。第一级风扇31与第二级风扇33均包括轮毂32和围设在轮毂周向上的若干叶片34。当花园吹风机100处于工作状态下,其中第一级风扇31的叶片的旋转外径、叶片的旋转内径、叶片的数量、叶片的倾角中的至少一种与第二级风扇不同。需要说明的是,风扇的级数不仅限于两级,在本实施例中仅以两级风扇为例来说明。进一步的,第一级风扇31的数量可以为1个,也可以大于1个,各个第一级风扇31的结构可完全相同也可至少部分不同。同样的,第二级风扇33的数量可以为1个,也可以大于1个,各个第二级风扇33的结构可完全相同也可至少部分不同。
如下以两级风扇为例进行详细的介绍通过哪些途径来实现多级风扇中至少一级风扇的结构不同于其它级风扇。
具体的,第一级风扇31的叶片的旋转外径、叶片的旋转内径、叶片的数量、叶片的倾角中的至少一种与第二级风扇33不同。需要说明的是,风扇的叶片具有翼形的内弦,翼形的内弦与水平线(额线)之间的夹角即为风扇的倾角。也就是说,可以改变上述四个单元量(即叶片的旋转外径、旋转内径、叶片的数量、叶片的倾角)中一个或几个或全部,来实现第一级风扇31的结构不同于第二级风扇33的结构。具体的,以下进行一一举例说明。
详细地说,第一级风扇31的叶片的旋转外径与第二级风扇的叶片的旋转外径之间差值的绝对值范围为10mm~90mm。差值绝对值可以为10mm、15mm、20mm、25mm、35mm、40mm、45mm、50mm、55mm、60mm、65mm、70mm、80mm、90mm。优选的,第一级风扇31的叶片的旋转外径与第二级风扇33的叶片的旋转外径之间差值的绝对值为10mm~50mm。
例如,对于单进风通道多级风扇花园吹风机100’(如图11~14所示,下述第二实施例会具体介绍),以第一级风扇31的旋转外径大于第二级风扇33的旋转外径,且第一级风扇31的叶片的旋转外径与第二级风扇33的叶片的旋转外径之间差值的绝对值为30mm为例来讲,第一级风扇31的叶片的旋转外径为110mm,第二级风扇33的叶片的旋转外径为80mm。
对于多级风扇多进风通道花园吹风机100(如图1~10所示,下述第一实 施例会具体介绍),其中第一级风扇的叶片旋转外径为40mm~80mm,第二级风扇的旋转外径为70mm~130mm。同样以第一级风扇31的叶片的旋转外径与第二级风扇33的叶片的旋转外径之间差值的绝对值为25mm为例来讲。第一级风扇31的叶片的旋转外径可为70mm,第二级风扇33的叶片的旋转外径可为95mm。
详细地说,第一级风扇31的叶片的旋转内径与第二级风扇33的叶片的旋转内径之间的差值绝对值为小于等于50mm。差值绝对值可以为0mm、5mm、10mm、15mm、20mm、25mm、30mm、35mm、40mm、45mm、50mm。优选的,第一级风扇31的叶片的旋转内径与第二级风扇33的叶片的旋转内径之间的差值绝对值为1mm~14mm。
例如,对于单进风通道多级风扇花园吹风机100’,以第一级风扇31的旋转内径大于第二级风扇33的旋转内径,且第一级风扇31的叶片的旋转内径与第二级风扇33的叶片的旋转内径之间差值的绝对值为5mm为例来讲,第一级风扇31的旋转内径可设计为50mm,第二级风扇33的旋转内径可设计为55mm。
对于多进风通道多级风扇花园吹风机100,其中第一级风扇的旋转内径为15mm~75mm;第二级风扇的旋转内径为30mm~100mm。以第一级风扇31的旋转内径小于第二级风扇33的旋转内径,且第一级风扇31的叶片的旋转内径与第二级风扇33的叶片的旋转内径之间差值的绝对值为5mm为例来讲。第一级风扇31的旋转内径可设计为50mm,第二级风扇33的旋转内径可设计为55mm。
详细地说,第一级风扇31的叶片的数量与第二级风扇33的叶片的数量相差1~9个。例如,以第一级风扇31的叶片的数量与第二级风扇33的叶片的数量相差3个为例。具体的,对于单进风通道多级风扇花园吹风机100’,以第一级风扇31的叶片的数量大于第二级风扇33的叶片的数量为例来讲,第一级风扇31的叶片的数量为11个,第二级风扇33的叶片的数量为8个。对于多进风通道多级风扇花园吹风机100,第一级风扇31的叶片的数量为9个,第二级风扇33的叶片的数量为12个。
详细地说,第一级风扇31的叶片的倾角不同于第二级风扇33的叶片的 倾角。例如,第一级风扇31的叶片的倾角与第二级风扇33的叶片的倾角之间的差值绝对值为1~10度。例如,以第一级风扇31的叶片的倾角与第二级风扇33的叶片的倾角相差3度为例。具体的,对于单进风通道多级风扇花园吹风机100’,以第一级风扇31的叶片的倾角大于第二级风扇33的叶片的倾角为例来讲,第一级风扇31的叶片的倾角为30度,第二级风扇33的叶片的倾角为27度。对于多进风通道多级风扇花园吹风机100,第一级风扇31的叶片的倾角为25度,第二级风扇33的叶片的倾角为28度。
如图1、图3、图4及图11~14所示,上述第一、第二级风扇31、33具有进风侧及出风侧,第一、第二级风扇31、33的进风侧朝向相同,且朝向进风口14设置。第一、第二级风扇31、33的排布方式为:第一级风扇31的进风侧朝向进风口14设置,第二级风扇33的进风侧对应第一级风扇31的出风侧。气流通过进风口14进入到机壳10中后,从进风侧进入风扇组件30中,经风扇组件30增压增速后在从出风侧输出。第一、第二级风扇31、33的进风侧朝向相同,能够增加花园吹风机的的工作风量和风压,使得花园吹风机工作时能够具有高风量及高风速,保证气流流动平稳,避免气流发生冲击,保证花园吹风机的出风效果。
花园吹风机还包括至少一级导叶15。其中该等导叶15可以设置风扇组件30的出风侧(如图13所示),也可设置在每级风扇的出风侧的一端(如图11、图12和图14所示)。各级风扇在工作时是转动的,以实现气流的增压增速;导叶15是静止不动的,由出风侧输出的气流通过导叶15引导气流流动,降低气流与机壳等之间因撞击产生的噪声,提高用户使用时的舒适度。同时导叶15还能够避免气流发生紊流,保证气流流动平稳,进而保证出风平稳,保证吹风效果。
具体的,对于导叶的一种设置方式如下进行说明,如图13所示,风扇组件30包括两级风扇。导叶15的级数为一级。第一级风扇31与第二级风扇33通过马达2驱动旋转,第一级风扇31的出风侧与第二级风扇33的进风侧之间未设置导叶15,仅在第二级风扇33的出风侧设置导叶15。
进一步的,对于导叶的另一种设置方式如下进行说明,如图11、图12和图14所示,风扇组件30包括两级风扇,导叶的级数也为两级。即导叶的 级数与风扇的级数一致。具体的,第一级风扇31的出风侧对应设有第一级导叶151,第二级风扇33的出风侧对应设有第二级导叶153。其中第一级导叶151的数量与第二级导叶153的数量相差1~9个。以第一级导叶151与第二级导叶153相差3个为例。例如,第一级导叶151的数量为3个,第二级导叶153的数量为6个。当然在其他实施方式中,第一级导叶151的数量与第二级导叶153的数量也可相同。
如图1至4、图11至14所示,花园吹风机还设有用于握持的手柄16,手柄大致呈反向C字型。其两端分别连接于机壳10上,从而形成握持空间。其中该手柄16可与机壳10一体设置,也可与机壳10分体设置。在操作花园吹风机的时候,手柄16位于花园吹风机的上方。具体的,手柄位于马达2的上方,如此可以使得手柄16与马达2达到较为理想的重量平衡。优选的,在手柄16上设有启闭花园吹风机的操作开关161。操作开关161可为推钮结构,也可以设置成柱形钮扣等其他形状,操作开关161可设置在手柄16的上方,当操作者握持手柄16时,操作者的大拇指正好可以触碰开启操作开关161。操作开关161也可位于手柄16内侧,以方便操作者的握持手柄时即可完成按压操作开关的动作,从而实现快速启动或者关闭机器。
作为本发明的第一实施例,如图1至图10所示,该花园吹风机100是通过多级风扇旋转产生气流。在该实施例中,以两级风扇为例进行说明,即第一级风扇31和第二级风扇33,其中第一级风扇31相较于第二级风扇33远离出风口131设置。在该实施例中,花园吹风机100并不是仅具有独立的单进风通道,其具有与第一级、第二级风扇31、33进行配合的两个进风通道。如下对该实施例的结构进行详细介绍。
如图1所示,主体部11与吹风管13为分体设置,当然,主体部11与吹风管13也可一体成型。主体部11为两个半壳体组装形成。具体的,主体部40包括左机壳111和右机壳113。左、右机壳111、113组合后形成有将马达2容置在其内的收容部115及自收容部向前延伸的环体部117。环体部117在径向上的截面积大于收容部115在径向上的截面积。
如图2、图5和图6所示,进风口14包括将气流引入至吹风管13内的第一组进风口141及第二组进风口143。第一组进风口141与第二组进风口 143均位于风扇组件30的后侧。具体的,第一组进风口141位于第一级风扇31和第二级风扇33的后侧。第二组进风口143也位于第一级风扇31与第二级风扇33的后侧。多组进风口14的设置保证了进风量的增加。第一组进风口141与第二组进风口143在轴向上前后分离设置。在本实施方式中,第二组进风口143位于轴向前端,第一组进风口141位于轴向后端。为了增加气流进入量,第一组进风口141开口的方向和开口位置并不是单一的。具体的,第一组进风口141包括形成于主体部11的轴向进风口1411及在周向上环设于主体部11的径向进风口1413。其中轴向进风口1411包括形成于收容部115上的第一轴向进风口1415及形成于环体部117上的第二轴向进风口1417。第二轴向进风口1417相对于第一轴向进风口1415更靠近第一级风扇31。第一轴向进风口1415位于马达2的正后方,因此进入第一轴向进风口1415的气流不仅用于向外吹出以清扫树叶,还可作为冷却气流对马达2进行直接冷却。换句话说,这里的第一轴向进风口1415还可理解为散热口。其中径向进风口1413包括位于环体部117上沿轴向延伸的第一径向进风口1412及位于环体部117上沿径向延伸的第二径向进风口1414。
当花园吹风机100处于工作状态下,由第一级风扇31和第二级风扇33共同驱动产生的气流中的至少部分自第一组进风口141进入至吹风管13内并在第一组进风口141与第一级风扇31之间形成第一进风通道。当花园吹风机100处于工作状态下,由第二级风扇33单独驱动产生的气流中的至少部分自第二组进风口143进入至吹风管13内并在第二组进风口143与第二级风扇33之间形成第二进风通道。进入第一进风通道的气流中的至少部分和进入第二进风通道的气流中的至少部分在第一级风扇31与第二级风扇33之间汇集,并自第二级风扇33吹向吹风管内。在与轴向相垂直的方向上,第二进风通道至少部分环设于第一进风通道的至少部分区域的外围。需要说明的是,在现实使用中,风扇转动形成的气流会因为损失很难实现全部流入至吹风管13内,因此,此处强调至少部分气流自进风口14进入之至吹风管13内。
如图1、图3和图4所示,花园吹风机100还包括能够将气流导入至吹风管13内的第一涵道部17,第一涵道部17位于轴向进风口1411与第二级风扇33之间。当花园吹风机100处于工作状态下,由第一组进风口141进入 的气流至少部分自第一涵道部17流入至吹风管13内。第一级风扇31设置在第一涵道部17内,至少部分第一进风通道形成于第一涵道部17围成的内腔中。如图3所示,在本实施例中的第一涵道部17,为筒状部件,大致类似于台灯的形状。具体的,第一涵道部17包括在轴向上贯通的第一接口部171及与第一接口部171相对的第二接口部173。该第一接口部171与第一组进风口141连通,第二接口部173设置在第一级风扇31与第二级风扇33之间,且第二接口部173在径向上的截面积小于第二级风扇33在径向上的截面积。即接口部的开口尺寸设置成前小后大,气流可在第一涵道部17内实现一定的增压。第一涵道部17的后端与主体部11固定连接。具体的,如图1和3所示,在第一涵道部17的上下对称面上设有限位凸起175以限制第一涵道部17相对于主体部11在周向上旋转。
如图1、图3所示,花园吹风机100还包括将气流导入至吹风管13内的第二涵道部18。当花园吹风机100处于工作状态下,由第二组进风口143进入的气流自第二涵道部18流入至吹风管13内。其中第二级风扇33设置在第二涵道部18内,至少部分第二进风通道形成于第二涵道部18的内壁与第一涵道部17的外壁之间。第二涵道部18包括设置在风扇组件30与出风口131之间的前导锥181。该前导锥181在垂直于中心轴线线X方向上的截面面积由轴向后端至轴向前端呈逐渐减小。为了减轻重量和节省材料,前导锥181为内部中空的结构。在本实施例中,前导锥181的存在使得吹风管在与中心轴线X相垂直方向上的截面面积变小,从而获得较高速的出风气流。吹风管13套接于第二涵道部18的前端,且与第二涵道部18为可拆卸连接。当花园吹风机100处于工作状态下,由第二级风扇33单独驱动产生的气流中的至少部分自第二组进风口143流入至第二涵道部18,再进入至吹风管13。第二涵道部18至少部分环设于第一涵道部17的外围。其中第一涵道部17和第二涵道部18之间通过如图6和7所示的卡销与卡槽相配接的形式固定连接。具体的,如图7所示,在第一涵道部17的前端设置有沿第一涵道部17径向凸起的卡销176。如图8所示,在第二涵道部18上设置有与卡销176配合的卡槽183,通过卡销176卡入到卡槽183内实现第一涵道部17与第二涵道部18的固定。进一步的,卡槽183内侧设置有凸台184,在卡销176和凸台184 上分别设置有螺孔185,通过一螺钉与螺孔185进行螺纹连接实现第一涵道部17与第二涵道部18之间的紧固连接。第一涵道部17和第二涵道部18连接在吹风管13与主体部11之间。当然在其它的实施例中,也可不设置第二涵道部18,只要在吹风管13与第一涵道部17之间形成有供气流进入第二进风通道内的第二组进风口143即可,从第二组进风口143进入的气流可直接流入至吹风管13内。进一步的,涵道部的数量也可以不限于两个,具体的数量可根据风扇级数或进风通道的数量作相应调整。在本实施例中,第一涵道部17、第二涵道部18、主体部11、吹风管13均为分体设置。而在其它实施例中,第一涵道部17、第二涵道部18、主体部11、吹风管13中的至少两个为一体成型或全部一体成型。
如图3、图4和图6所示,花园吹风机100还包括对第二组进风口143进入的气流进行导向的复数个导流板1431。导流板1431设置于第一涵道部17的外周面与第二涵道部18的内周面之间且在周向上等距离间隔设置。导流板1431的设置可将进入至第二组进风口143内的气流的流向进行导正,即使得气流沿着导流板1431在第二进风通道内沿轴向向前移动至吹风管13内,减少气流损失,增大出风量。
在本实施方式中,对于两级风扇双进风通道的吹风机100,第一级风扇31与第二级风扇33的尺寸不同。具体的,第一级风扇31在径向上的截面积小于第二级风扇33在径向上的截面积。第一级风扇31的轴功率小于第二级风扇33的轴功率。优选的,第一级风扇31的轴功率与第二级风扇33的轴功率的比值为1:2.5~1:1.05。
详细地说,第二级风扇33的旋转外径大于第一级风扇31的旋转外径。优选的,优选的,当马达2的转速大于等于12000转/分,且小于等于25000转/分时,第一级风扇31的旋转外径为40~80mm,第二级风扇的旋转外径为70~130mm。当马达的转速大于25000转/分,且小于等于100000转/分,第优选的,第一级风扇31的旋转外径为20~50mm,第二级风扇33的旋转外径为30~70mm。第二级风扇33的旋转内径大于第一级风扇31的旋转内径。第一级风扇31的叶片转动形成第一环形转动面,第二级风扇33的叶片转动形成第二环形转动面。第一环形转动面在径向上的截面积小于第二环形转动面 在径向上的截面积。例如,D1为第一级风扇31的旋转外径,D2为第一级风扇33轮毂的直径,第一级风扇31在径向上的截面积减去轮毂在径向上的截面积即为第一级风扇31环形转动面在径向上的截面积Sa,即Sa=π/4×(D1 2-D2 2)。D3为第二级风扇的旋转外径,D4为第二级风扇33轮毂的直径,第二级风扇33在径向上的截面积减去轮毂在径向上的截面积即为第二级风扇33环形转动面在径向上的截面积Sb,即Sb=π/4×(D3 2-D4 2)。在本实施方式中,Sa小于Sb
进一步的,将第一组进风口141与第二组进风口143形成的总进风面积定义为进风口面积。吹风管13的出风口131的出风面积定义为出风口面积。在本实施例中,优选的,进风口面积:Sa:出风口面积=(2~2.7):1:(0.85~1),同时进风口面积:Sb:出风口面积=(2~2.7):1:(0.85~1)。在此比例下,两级风扇双风道的轴流式花园吹风机100的吹风效率更高。
进一步的,第一级风扇31的轮毂比为0.55~0.85。第二级风扇33的轮毂比为0.5~0.8,优选的,第一级风扇33的轮毂比大于第二级风扇31的轮毂比,第一级风扇31的轮毂比优选为0.65,第二级风扇33的轮毂比优选为0.55。需要说明的是:叶片34的根部直径即为旋转内径,叶片34的顶部直径即为旋转外径。轮毂直径与叶片的顶部直径之比即为本领域技术人员所熟知的轮毂比。在该实施例中,第一级风扇31、第二级风扇33的轮毂比大小对花园吹风机100的风量及风速均至关重要。对于轴流花园吹风机100而言,轮毂比直接影响风量和速度的匹配,从而保证轴流花园吹风机的吹风效率。
如图1、图3和图4所示,马达2与第一级风扇31和第二级风扇33之间还设有一根传动轴19。马达2包括输出动力的输出轴31,该输出轴31绕一旋转轴线通过传动轴19带动第一、第二级风扇31、33一同旋转。且本实施例中的第一级风扇31和第二级风扇33为同步同速运行,但作为替代的实施方式,第一级风扇31与第二级风扇33之间也可为同步异速运行或者同速异步运行或者异步异速运行。进一步的,马达2的输出轴21可通过连接轴套23连接传动轴19,连接轴套23的端部通过卡圈25固定限位。连接轴套23上安装有后导锥27;传动轴19穿过第一涵道部17伸入到第二涵道部18内。对于多级风扇多风道的花园吹风机100,其风速与风量均能得到有效提升的 原理如下:以两级风扇双进风通道为例来说明。其花园吹风机100工作时,马达2带动第一级风扇31和第二级风扇33共同转动驱动外部气流通过第一组进风口141流入至第一涵道部17内,此时,在第一组进风口141与第一级风扇31之间形成第一进风通道,将流入至第一进风通道内的流量计为Q1,气流在第一进风通道内形成的风压计为P1;由第二级风扇33旋转产生的气流中的至少部分进入至第二涵道部18内以在第二组进风口143与第二级风扇33之间形成第二进风通道,将流入至第二进风通道内的流量计为Q2,气流在第二进风通道内的风压计为P2;流入第一进风通道内的气流和流入第二进风通道内的气流均汇入至吹风管13内,即在吹风管13内形成混合流道,最终在吹风管13的出风口131形成强烈的喷射气流。因此,在本实施方式中,流入至吹风管13内的风量Q=Q1+Q2,风量得到显著的提升;流入至吹风管13内的气流产生的风压P=P1+P2,且由于前导锥28的设置,最终气流在吹风管13前端产生的风压必然更大,因此,从吹风管19的出风口191吹出的气流的流速得到明显的增加。优选的,当花园吹风机100处于工作状态下,花园吹风机的风速为50~140mph,且所述花园吹风机的风量为250~800cfm。本实施例提供的花园吹风机100,在兼顾风速提升的同时还能保证风量显著增加,其提供的风速与风量可以使得该花园吹风机在不同工况下使用,均具有非常好的吹风效果。具体的,对于实施例提供的多级风扇、多风道的轴流式花园吹风机在风量和风速的提升会在下文中通过与常规轴流式花园吹风机的相关参数对比展现。
如图8所示,为常规的单级风扇、单风道的轴流式花园吹风机的风压分布示意图,图9为两级风扇、单风道的轴流式花园吹风机的风压分布示意图,这里的两级风扇结构相同;图9相比于图8仅为单纯的风扇叠加。
图10为本发明的两级风扇、双进风通道的轴流式花园吹风机的风压分布示意图。图10中竖轴数据的单位为pa,其表示吹风管出风口处产生的风压。由下表可知:单纯的在风道内将风扇进行叠加,风道内压力增大但风量却降低了。而本发明的两级风扇、双进风通道的轴流式花园吹风机,一方面,叠加的进风通道,每个进风通道内都设有将外界气流引入各进风通道内的风扇,且第一级风扇31与第二级风扇33的结构不同,使得吹风管13吹出的风量明 显增加;另一方面,在不改变吹风管13管径的条件下,风压也明显增加,进而吹风管13出风口131的吹出去的气流的流速大,花园吹风机100的工作效果得到明显提升。因相较于现有技术,本发明的轴流式花园吹风机100可兼顾风量和风速的共同提升,吹风效果非常好。
如下表为两级风扇双进风通道、两级风扇单进风通道及单级风扇单进风通道的具体参数的比较,此表中三种机型的比较是在马达2转速相同的情况下。通过下表可知:本发明通过减小第一级风扇31与第二级风扇33的尺寸,使得两级风扇的轴功率减小,从而减小马达2的功率消耗且整机尺寸也会变得更紧凑;而又通过将第一级风扇31的结构与第二级风扇33的结构设计成不相同,且通过叠加进风通道的设计,使得即使在降低第一级风扇31与第二级风扇33尺寸的条件下,双风扇双风道的风量和风压也不会减小,且相对于单风扇单风道,双风扇双风道的方案在风量和风压上均得到显著的提升。
Figure PCTCN2017096853-appb-000001
作为本发明的第二实施例,如图11~14所示,该花园吹风机100’也是通过多级风扇旋转产生气流。此处,以两级风扇来说明,由第一级风扇31及第二级风扇33转动产生的气流的至少部分自进风口14进入至吹风管13内,并在进风口14与出风口131之间形成独立的单进风通道。第二实施例与第一实施例的差异主要在于:第二实施例中的进风通道为单进风通道。即第二实施例提供的是两级风扇单进风通道轴流式花园吹风机,当然两级风扇的结构还是设计为不相同。需要说明的是,在现实使用中,风扇转动形成的气流会因 为损失很难实现全部流入至吹风管13内,因此,此处强调至少部分气流自进风口14进入之至吹风管13内。
对于单进风通道多级风扇的花园吹风机100’,多级风扇结构不同,包括几种不同的情况,具体如下:至少两级风扇的轴功率沿轴向方向上逐渐增加或者逐渐缩小或者至少两级风扇的轴功率呈不规则变化。以上都能够实现逐级增压,达到高风压与高风速的目的。以下进行具体说明。
如图11所示,当花园吹风机处于工作状态下,至少两级风扇的轴功率沿轴向方向逐渐增加。并且逐级增加的轴功率可呈等差数列设置的,也可以是呈不规则变化设置的。以本实施方式的两级风扇为例即可以理解为,靠近进风口14处的第一级风扇31的尺寸要小于靠近出风口131处的第二级风扇33的尺寸。具体的,第一级风扇31在径向上的截面积小于第二级风扇33在径向上的截面积。第一级风扇31的轴功率小于第二级风扇33的轴功率。第一级风扇31与第二级风扇33的轴功率的比值为1:2.5~1:1.05。这样能使本申请的花园吹风机100’实现逐级增压,达到高风压与高风速的目的。
或者,如图12所示,作为本发明第二实施例中的优选实施例,当花园吹风机100’处于工作状态下,至少两级风扇的轴功率沿轴向方向逐渐减小。并且逐级减小的轴功率可呈等差数列设置的,也可以是呈不规则变化设置的。以本实施方式的两级风扇为例即可以理解为,靠近进风口14处的第一级风扇31的尺寸要大于靠近出风口131处的第二级风扇33的尺寸。第一级风扇31的轴功率大于第二级风扇33的轴功率。第一级风扇31与第二级风扇33的轴功率的比值为1.05:1~2.5:1。
至少两级风扇的轴功率沿轴向方向逐渐减小的实施方式中,第一级风扇31的叶片转动形成第一环形转动面,第二级风扇33的叶片转动形成第二环形转动面。第一环形转动面在径向上的截面积大于第二环形转动面在径向上的截面积。例如,D1为第一级风扇31的直径,D2为第一级风扇33轮毂的直径,第一级风扇31在径向上的截面积减去轮毂在径向上的截面积即为第一级风扇31环形转动面在径向上的截面积Sa’,即Sa’=π/4×(D1 2-D2 2)。D3为第二级风扇的直径,D4为第二级风扇33轮毂的直径,第二级风扇33在径向上的截面积减去轮毂在径向上的截面积即为第二级风扇33环形转动面在径向上 的截面积Sb’,即Sb’=π/4×(D3 2-D4 2)。在本实施方式中,Sa’大于Sb’。如此设计,当气流通过进风口14进入机壳后,并逐级与第一级风扇31和第二级风扇33接触,将风压逐级叠加,实现一级一级加速增压。并且对于单通道多级风扇的花园吹风机100’,多级风扇设置成靠近进风口14处的风扇的尺寸相对较大,且第一级风扇31的叶片外缘与收容第一级风扇33的机壳10内壁之间的间隙大于等于第二级风扇33的叶片外缘与收容第二级风扇33的机壳10内壁之间的间隙,可使得被第一级风扇31增压后的气流能够平缓顺畅的流入至第二级风扇33,避免出现气流被第一级风扇31增压后,气流在第一级风扇31与第二级风扇33之间出现气流膨胀,带来气流损失。因此,在该实施方式中,花园吹风机100’在吹风时,风扇组件不仅能够输出高风压的气流,气流损失也较小,花园吹风机100’吹风效率更高,尤其对于吹一些厚重的或者湿树叶,完成工时短,便于用户使用。
或者,当风扇组件30的数量为至少三级时(未图示),其中至少两级风扇的结构不同,进而实现逐级增压,气流平稳加速流动,大大降低风损及功率损耗,提高输出功率。详细的说,至少三级风扇中的其中几级风扇的轴功率相同,且大于或者小于其他级风扇的轴功率。举例来说,当风扇组件的数量为三级时,可以其中两级风扇的结构相同,另一级风扇的轴功率大于或者小于其中两级风扇的轴功率。当风扇组件的数量为四级时,可以其中两级风扇的结构相同,也可以其中三级风扇的结构相同,其余风扇的轴功率可以大于其中两级或其中三级风扇的轴功率,其余风扇的轴功率也可以小于其中两级或其中三级风扇的轴功率。当风扇组件的数量为五级甚至更多时,其设置方式基本类似。这样都能够使本申请的花园吹风机100实现逐级增压,达到高风压与高风速的目的。
通过上述实施例的介绍,本发明揭示的花园吹风机100,100’能满足不同工况的需求。通过第一级风扇31的结构与第二级风扇33的结构设计成不相同,花园吹风机在吹风时,风扇组件30不仅能够输出高风压的气流,气流损失也较小,花园吹风机吹风效率更高,尤其对于吹一些厚重的或者湿树叶,完成工时短,便于用户使用。另外,当需要清扫的面积较大时则需要较大的风量才能提高工作效率,本发明的花园吹风机,还通过设置叠加的进风通道 (第一进风通道和第二进风通道),并在每个进风通道内设置有风扇,通过多风道多风扇的叠加设计可实现花园吹风机的风速和风量都能得到有效地提升。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (52)

  1. 一种花园吹风机,其包括:
    机壳,包括位于后端的主体部及位于所述主体部前端并沿轴向延伸的吹风管,所述机壳还设有连通外界环境的进风口及出风口;
    动力装置,连接于所述机壳以为所述花园吹风机提供动力;
    风扇组件,由所述动力装置驱动旋转并产生气流;
    其特征在于,
    所述风扇组件包括至少两级风扇,所述至少两级风扇包括在轴向上前后设置的第一级风扇及第二级风扇,所述花园吹风机包括供至少所述第一级风扇产生的气流进入的第一进风通道及供至少所述第二级风扇产生的气流进入的第二进风通道,进入所述第一进风通道内的气流和进入所述第二进风通道内的气流均汇入至所述吹风管内并自所述出风口向外界吹出。
  2. 根据权利要求1所述的花园吹风机,其特征在于,所述第一级风扇相较于所述第二级风扇远离所述出风口设置,所述第一级风扇在径向上的截面积小于所述第二级风扇在径向上的截面积。
  3. 根据权利要求1所述的花园吹风机,其特征在于,所述进风口包括将气流引入至所述吹风管内的第一组进风口,当所述花园吹风机处于工作状态下,气流自所述第一组进风口进入至所述吹风管内,并在所述第一组进风口与所述第一级风扇之间形成上述第一进风通道。
  4. 根据权利要求3所述的花园吹风机,其特征在于,所述第一组进风口包括形成于所述主体部的轴向进风口及在周向上环设于所述主体部的径向进风口。
  5. 根据权利要求3所述的花园吹风机,其特征在于,所述进风口还包括供气流进入至所述吹风管内的第二组进风口,当所述花园吹风机处于工作状态下,气流自所述第二组进风口进入至所述吹风管内,并在所述第二组进风口与所述第二级风扇之间形成上述第二进风通道。
  6. 根据权利要求5所述的花园吹风机,其特征在于,所述第一组进风口与所述第二组进风口在轴向上前后分离设置。
  7. 根据权利要求6所述的花园吹风机,其特征在于,所述第一组进风口与所 述第二组进风口均位于所述风扇组件的后侧。
  8. 根据权利要求1所述的花园吹风机,其特征在于,在与所述轴向相垂直的方向上,所述第二进风通道的至少部分区域环设于所述第一进风通道的至少部分区域的外围。
  9. 根据权利要求1所述的花园吹风机,其特征在于,进入所述第一进风通道的气流由所述第一级风扇和所述第二级风扇共同驱动产生,进入所述第二进风通道的气流由所述第二级风扇单独驱动产生。
  10. 根据权利要求5所述的花园吹风机,其特征在于,所述机壳还包括将气流导入至所述吹风管内的第一涵道部,当所述花园吹风机处于工作状态下,由所述第一组进风口进入的气流自所述第一涵道部流入至所述吹风管内。
  11. 根据权利要求10所述的花园吹风机,其特征在于,所述第一级风扇设置在所述第一涵道部内,所述第一进风通道的至少部分区域形成于所述第一涵道部围成的内腔中。
  12. 根据权利要求10所述的花园吹风机,其特征在于,所述第一涵道部包括在轴向上贯通的第一接口部及与第一接口部相对的第二接口部,所述第一接口部与所述第一组进风口相连通,所述第二接口部设置在所述第一级风扇与所述第二级风扇之间,且所述第二接口部在径向上的截面积小于所述第二级风扇在径向上的截面积。
  13. 根据权利要求10所述的花园吹风机,其特征在于,所述机壳还包括将气流导入至所述吹风管内的第二涵道部,当所述花园吹风机处于工作状态下,由所述第二组进风口进入的气流自所述第二涵道部流入至所述吹风管内。
  14. 根据权利要求13所述的花园吹风机,其特征在于,所述第二级风扇设置在所述第二涵道部内,所述第二进风通道的至少部分区域形成于所述第二涵道部的内壁与所述第一涵道部的外壁之间。
  15. 根据权利要求13所述的花园吹风机,其特征在于,所述第一涵道部的前端与所述第二级风扇在轴向上间隙设置。
  16. 根据权利要求15所述的花园吹风机,其特征在于,进入所述第一进风通道的气流中的至少部分和进入所述第二进风通道的气流中的至少部分在所述第一级风扇与第二级风扇之间汇集,并自所述第二级风扇吹向所述吹风管内。
  17. 根据权利要求1所述的花园吹风机,其特征在于,所述第一级风扇与所述第二级风扇均包括轮毂和若干围设在轮毂周向上的叶片,所述第一级风扇的叶片的数量、叶片的旋转外径、叶片的旋转内径中的至少一种不同于相应的所述第二级风扇的叶片的数量、叶片的旋转外径、叶片的旋转内径。
  18. 根据权利要求17所述的花园吹风机,其特征在于,所述第一级风扇的旋转外径与所述第二级风扇的旋转外径之间的差值绝对值范围为10mm~90mm。
  19. 根据权利要求17所述的花园吹风机,其特征在于,所述第一级风扇的叶片的旋转内径与所述第二级风扇的叶片的旋转内径的差值绝对值小于等于50mm。
  20. 根据权利要求17所述的花园吹风机,其特征在于,所述第一级风扇的轮毂比为0.55~0.85,所述第二级风扇的轮毂比为0.5~0.8。
  21. 根据权利要求17所述的花园吹风机,其特征在于,所述第一级风扇的叶片的数量与所述第二级风扇的叶片数量相差1~9个。
  22. 根据权利要求1所述的花园吹风机,其特征在于,所述花园吹风机包括对应于所述第一级风扇的第一级导叶及对应于所述第二级风扇的第二级导叶,所述第一级风扇与所述第二级风扇均具有进风侧及出风侧,所述第一级导叶位于所述第一级风扇的出风侧,所述第二级导叶位于所述第二级风扇的出风侧。
  23. 根据权利要求22所述的花园吹风机,其特征在于,所述第一级风扇与所述第一级导叶之间及所述第二级风扇与所述第二级导叶之间均存在预设间隙,所述预设间隙在轴向上的尺寸范围为3mm~12mm。
  24. 根据权利要求1所述的花园吹风机,其特征在于,当所述花园吹风机处于工作状态下,所述花园吹风机的风速为50~150mph,且所述花园吹风机的风量为250~800cfm。
  25. 根据权利要求1所述的花园吹风机,其特征在于,所述动力装置包括马达及控制电路,所述马达控制所述风扇组件的旋转运动,所述马达的转速大于等于8000转/分,且小于等于25000转/分,所述第一级风扇的旋转外径为40mm~80mm,所述第二级风扇的旋转外径为70mm~130mm。
  26. 根据权利要求1所述的花园吹风机,其特征在于,所述动力装置包括马达及控制电路,所述马达控制所述风扇组件的旋转运动,所述马达的转速大于25000转/分,且小于等于100000转/分,所述第一级风扇的旋转外径为20mm~50mm,所述第二级风扇的旋转外径为30mm~70mm。
  27. 根据权利要求25或26所述的花园吹风机,其特征在于,所述吹风管在轴向上设有一中心轴线,所述马达绕一旋转轴线驱动所述第一级风扇与所述第二级风扇旋转,所述第一级风扇与所述第二级风扇同轴设置且具有通过马达带动旋转的转动轴线,所述吹风管的中心轴线、所述马达的旋转轴线及所述第一、第二级风扇的转动轴线三线重合。
  28. 根据权利要求1所述的花园吹风机,其特征在于,所述第一级风扇的数量大于等于1个,所述第二级风扇的数量大于等于1个。
  29. 根据权利要求1所述的花园吹风机,其特征在于,所述第一级风扇和所述第二级风扇均为轴流风扇。
  30. 根据权利要求1所述的花园吹风机,其特征在于,所述至少两级风扇包括第三级风扇,所述第一级风扇、第二级风扇及第三级风扇中的至少一级风扇的叶片的数量或叶片的旋转外径或叶片的旋转内径与另外两级风扇不相同。
  31. 一种花园吹风机,包括:
    机壳,包括位于后端的主体部及位于所述主体部前端并沿轴向延伸的吹风管,所述机壳还设有连通外界环境的进风口及出风口;
    动力装置,连接于所述机壳以为所述花园吹风机提供动力;
    风扇组件,由所述动力装置驱动旋转并产生气流;
    其特征在于,
    所述风扇组件包括至少两级风扇,所述动力装置带动所述至少两级风扇同步转动,所述至少两级风扇包括在轴向上前后设置的第一级风扇和第二级风扇,所述第一级风扇与所述第二级风扇均包括轮毂和围设在轮毂周向上的若干叶片,其中第一级风扇的叶片的旋转外径、叶片的旋转内径、叶片的数量、叶片的倾角中的至少一种与第二级风扇不同。
  32. 根据权利要求31所述的花园吹风机,其特征在于,所述第一级风扇相较 于所述第二级风扇远离所述出风口设置,且所述第一级风扇与所述第二级风扇均为轴流风扇。
  33. 根据权利要求32所述的花园吹风机,其特征在于,所述动力装置能够驱动所述第一级风扇与所述第二级风扇进行转动,由所述第一级风扇及第二级风扇转动产生气流的至少部分自所述进风口进入至所述吹风管内,并在所述进风口与所述出风口之间形成独立的单进风通道。
  34. 根据权利要求33所述的花园吹风机,其特征在于,所述第一级风扇的轴功率与所述第二级风扇的轴功率比值范围为1.05:1~2.5:1。
  35. 根据权利要求33所述的花园吹风机,其特征在于,所述第一级风扇的叶片转动形成第一环形转动面,所述第二级风扇的叶片转动形成第二环形转动面,所述第二环形转动面在径向上的截面积小于所述第一环形转动面在径向上的截面积。
  36. 根据权利要求33所述的花园吹风机,其特征在于,所述第一级风扇的叶片外缘与收容所述第一级风扇的机壳内壁之间的间隙大于等于所述第二级风扇的叶片外缘与收容所述第二级风扇的机壳内壁之间的间隙。
  37. 根据权利要求31所述的花园吹风机,其特征在于,所述进风口包括将气流引入至所述吹风管内的第一组进风口,当所述花园吹风机处于工作状态下,气流自所述第一组进风口进入至所述吹风管内,并在所述第一组进风口与所述第一级风扇之间形成上述第一进风通道。
  38. 根据权利要求37所述的花园吹风机,其特征在于,所述第一组进风口包括形成于所述主体部的轴向进风口及在周向上环设于所述主体部的径向进风口。
  39. 根据权利要求37所述的花园吹风机,其特征在于,所述进风口还包括将气流引入至所述吹风管内的第二组进风口,当所述花园吹风机处于工作状态下,气流自所述第二组进风口进入至所述吹风管内,并在所述第二组进风口与所述第二级风扇之间形成上述第二进风通道。
  40. 根据权利要求39所述的花园吹风机,其特征在于,进入所述第一进风通道的气流中的至少部分和进入所述第二进风通道的气流中的至少部分在所述第一级风扇与第二级风扇之间汇集,并自所述第二级风扇吹向所述吹风管内。
  41. 根据权利要求39所述的花园吹风机,其特征在于,所述第一组进风口与所述第二组进风口在轴向上前后分离设置。
  42. 根据权利要求39所述的花园吹风机,其特征在于,所述第一级风扇的叶片转动形成第一环形转动面,所述第二级风扇的叶片转动形成第二环形转动面,所述第二环形转动面在径向上的截面积大于所述第一环形转动面在径向上的截面积。
  43. 根据权利要求39所述的花园吹风机,其特征在于,所述第一级风扇的轮毂比为0.55~0.85。
  44. 根据权利要求39所述的花园吹风机,其特征在于,所述第二级风扇的轮毂比为0.5~0.8。
  45. 根据权利要求31~44任意一项所述的花园吹风机,其特征在于,所述第一级风扇的倾角与所述第二级风扇的倾角不相同。
  46. 根据权利要求31~44任意一项所述的花园吹风机,其特征在于,所述第一级风扇的叶片的数量与所述第二级风扇的叶片数量相差1~9个。
  47. 根据权利要求31~44任意一项所述的花园吹风机,其特征在于,所述第一级风扇的叶片的旋转外径与所述第二级风扇的叶片的旋转外径之间的差值绝对值范围为10mm~90mm。
  48. 根据权利要求31~44任意一项所述的花园吹风机,其特征在于,所述第一级风扇的叶片的旋转内径与所述第二级风扇的叶片的旋转内径之间的差值绝对值小于等于50mm。
  49. 根据权利要求31~44任意一项所述的花园吹风机,其特征在于,所述花园吹风机包括对应于所述第一级风扇的第一级导叶及对应于所述第二级风扇的第二级导叶,所述第一级风扇与所述第二级风扇均具有进风侧及出风侧,所述第一级导叶位于所述第一级风扇的出风侧,所述第二级导叶位于所述第二级风扇的出风侧。
  50. 根据权利要求49所述的花园吹风机,其特征在于,所述第一级风扇与所述第一级导叶之间及所述第二级风扇与所述第二级导叶之间均存在预设间隙,所述预设间隙在轴向上的尺寸范围为3mm~12mm。
  51. 根据权利要求31所述的花园吹风机,其特征在于,所述动力装置包括马 达及控制电路,所述马达控制所述风扇组件的旋转运动,所述动力装置与所述机壳可拆卸安装。
  52. 根据权利要求51所述的花园吹风机,其特征在于,所述吹风管在轴向上设有一中心轴线,所述第一级风扇与所述第二级风扇同轴设置且具有通过马达带动旋转的转动轴线,所述马达绕一旋转轴线驱动所述第一级风扇与所述第二级风扇旋转,所述吹风管的中心轴线、所述马达的旋转轴线及所述第一、第二级风扇的转动轴线三线重合。
PCT/CN2017/096853 2016-08-10 2017-08-10 花园吹风机 WO2018028639A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17838769.2A EP3498920A4 (en) 2016-08-10 2017-08-10 GARDEN BLOWER
CN201780002073.6A CN108138455B (zh) 2016-08-10 2017-08-10 花园吹风机
US16/270,372 US11346352B2 (en) 2016-08-10 2019-02-07 Garden blower

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610651822.5A CN107724308A (zh) 2016-08-10 2016-08-10 吹风机
CN201610651822.5 2016-08-10
CN201621294961.9 2016-11-29
CN201621294961.9U CN206280276U (zh) 2016-11-29 2016-11-29 手持式鼓风装置
CN201710282926.8A CN108797480A (zh) 2017-04-26 2017-04-26 一种吹风机
CN201710282926.8 2017-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/270,372 Continuation US11346352B2 (en) 2016-08-10 2019-02-07 Garden blower

Publications (1)

Publication Number Publication Date
WO2018028639A1 true WO2018028639A1 (zh) 2018-02-15

Family

ID=61161732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096853 WO2018028639A1 (zh) 2016-08-10 2017-08-10 花园吹风机

Country Status (3)

Country Link
US (1) US11346352B2 (zh)
EP (1) EP3498920A4 (zh)
WO (1) WO2018028639A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108661925A (zh) * 2018-04-02 2018-10-16 广西玉柴机器股份有限公司 一种具有两级风扇的发动机风扇结构
EP3626972A1 (en) * 2018-09-21 2020-03-25 TTI (Macao Commercial Offshore) Limited Electric blower
CN111068206A (zh) * 2020-02-26 2020-04-28 山东华盛农业药械有限责任公司 大风量吹风管组合
US10966378B2 (en) 2018-05-01 2021-04-06 Randy Leon Kuckuck Debris removal apparatus, systems, and methods of using the same
WO2021093527A1 (zh) * 2019-11-11 2021-05-20 苏州宝时得电动工具有限公司 吹风机
USD929337S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929336S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929335S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929338S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929334S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929339S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD953268S1 (en) 2019-09-05 2022-05-31 Techtronic Cordless Gp Electrical interface
US20220196034A1 (en) * 2020-12-23 2022-06-23 Makita Corporation Blower
USD1012855S1 (en) 2019-09-05 2024-01-30 Techtronic Cordless Gp Battery pack
US11889794B2 (en) 2020-12-30 2024-02-06 Milwaukee Electric Tool Corporation Handheld blower

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110236280B (zh) * 2018-03-08 2023-12-12 南京泉峰科技有限公司 一种吹风机
CN114575297A (zh) * 2022-04-02 2022-06-03 重庆弘愿工具(集团)有限公司 园林吹风机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253614A (zh) * 1997-04-25 2000-05-17 声学设计股份有限公司 一种带有管道的轴流式吹风机
CN1971065A (zh) * 2005-09-14 2007-05-30 山洋电气株式会社 二重反转式轴流鼓风机
CN101120866A (zh) * 2006-08-10 2008-02-13 安德烈亚斯.斯蒂尔两合公司 手持式鼓风设备
US20120201668A1 (en) * 2011-02-08 2012-08-09 Brent Peterson Portable in-line fluid blower
JP2013113206A (ja) * 2011-11-29 2013-06-10 Toshiba Corp 電動送風機
CN105648962A (zh) * 2014-11-28 2016-06-08 苏州宝时得电动工具有限公司 吹吸装置
CN205999837U (zh) * 2016-08-10 2017-03-08 苏州宝时得电动工具有限公司 吹风机
CN206280276U (zh) * 2016-11-29 2017-06-27 苏州宝时得电动工具有限公司 手持式鼓风装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203164A (en) * 1990-06-06 1993-04-20 Paulson Allen E Method and apparatus for quieting a turbojet engine
US6626653B2 (en) * 2001-01-17 2003-09-30 Delta Electronics Inc. Backup heat-dissipating system
TWI327191B (en) * 2006-11-23 2010-07-11 Delta Electronics Inc Serial fan assembly and connection structure thereof
US20080138199A1 (en) * 2006-12-12 2008-06-12 Bor-Haw Chang Fan device capable of increasing air pressure and air supply
JP4871303B2 (ja) 2008-01-09 2012-02-08 山洋電気株式会社 二重反転式軸流送風機
DE102010046565A1 (de) * 2010-09-27 2012-03-29 Andreas Stihl Ag & Co. Kg Handgeführtes Blasgerät
TWM402427U (en) 2010-11-04 2011-04-21 Dae Automation Corp Intelligent wattmeter with wireless transmission
JP5983929B2 (ja) * 2012-08-20 2016-09-06 日立工機株式会社 携帯用ブロワ
CN103671163A (zh) * 2012-09-20 2014-03-26 英业达科技有限公司 风扇模块
CN106049326B (zh) * 2015-04-10 2018-09-07 苏州宝时得电动工具有限公司 吹吸装置
US20160324380A1 (en) * 2015-05-07 2016-11-10 Stanley Black & Decker Inc. Axial fan blower and vacuum
CN108431426B (zh) * 2015-06-12 2021-06-18 创科(澳门离岸商业服务)有限公司 轴流式风扇鼓风机
CN105221452A (zh) * 2015-09-29 2016-01-06 小米科技有限责任公司 空气净化器及其送风装置
US10514046B2 (en) * 2015-10-09 2019-12-24 Carrier Corporation Air management system for the outdoor unit of a residential air conditioner or heat pump
CN205934814U (zh) 2016-07-26 2017-02-08 宁波利豪机械有限公司 一种手持轴流式吹风机
CN108506236A (zh) * 2018-05-11 2018-09-07 宁波生久散热科技有限公司 增压型散热风扇及其使用方法
CN108953186B (zh) * 2018-07-09 2021-04-27 广东美的环境电器制造有限公司 风扇
JP7348748B2 (ja) * 2019-05-27 2023-09-21 株式会社マキタ ブロワ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253614A (zh) * 1997-04-25 2000-05-17 声学设计股份有限公司 一种带有管道的轴流式吹风机
CN1971065A (zh) * 2005-09-14 2007-05-30 山洋电气株式会社 二重反转式轴流鼓风机
CN101120866A (zh) * 2006-08-10 2008-02-13 安德烈亚斯.斯蒂尔两合公司 手持式鼓风设备
US20120201668A1 (en) * 2011-02-08 2012-08-09 Brent Peterson Portable in-line fluid blower
JP2013113206A (ja) * 2011-11-29 2013-06-10 Toshiba Corp 電動送風機
CN105648962A (zh) * 2014-11-28 2016-06-08 苏州宝时得电动工具有限公司 吹吸装置
CN205999837U (zh) * 2016-08-10 2017-03-08 苏州宝时得电动工具有限公司 吹风机
CN206280276U (zh) * 2016-11-29 2017-06-27 苏州宝时得电动工具有限公司 手持式鼓风装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3498920A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108661925A (zh) * 2018-04-02 2018-10-16 广西玉柴机器股份有限公司 一种具有两级风扇的发动机风扇结构
USD1017153S1 (en) 2018-05-01 2024-03-05 Randy Leon Kuckuck Blower
US10966378B2 (en) 2018-05-01 2021-04-06 Randy Leon Kuckuck Debris removal apparatus, systems, and methods of using the same
US11877541B2 (en) 2018-05-01 2024-01-23 Randy Leon Kuckuck Debris removal apparatus, systems, and methods of using the same
US11248620B2 (en) 2018-09-21 2022-02-15 Techtronic Cordless Gp Electric blower with an axial fan and motor for sweeping and cleaning
EP3626972A1 (en) * 2018-09-21 2020-03-25 TTI (Macao Commercial Offshore) Limited Electric blower
USD929337S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD1012855S1 (en) 2019-09-05 2024-01-30 Techtronic Cordless Gp Battery pack
USD929338S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929334S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929339S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929336S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD953268S1 (en) 2019-09-05 2022-05-31 Techtronic Cordless Gp Electrical interface
USD1013634S1 (en) 2019-09-05 2024-02-06 Techtronic Cordless Gp Battery pack
USD929335S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
WO2021093527A1 (zh) * 2019-11-11 2021-05-20 苏州宝时得电动工具有限公司 吹风机
CN111068206A (zh) * 2020-02-26 2020-04-28 山东华盛农业药械有限责任公司 大风量吹风管组合
US11795967B2 (en) * 2020-12-23 2023-10-24 Makita Corporation Blower
US20220196034A1 (en) * 2020-12-23 2022-06-23 Makita Corporation Blower
US11889794B2 (en) 2020-12-30 2024-02-06 Milwaukee Electric Tool Corporation Handheld blower

Also Published As

Publication number Publication date
US20190211830A1 (en) 2019-07-11
EP3498920A1 (en) 2019-06-19
EP3498920A4 (en) 2020-04-01
US11346352B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2018028639A1 (zh) 花园吹风机
US10091954B1 (en) Handheld blower
US10774487B2 (en) Handheld blower having engine cooling flow
CN105648959B (zh) 装配吹吸装置的方法
US10227988B2 (en) Blower and a blowing vacuum device
TWM416690U (en) Blade-free fan with flow guide structure
CN102901197B (zh) 一种空调内机出风结构
CN108797480A (zh) 一种吹风机
CN108138455B (zh) 花园吹风机
CN206815252U (zh) 一种吹风机
CN202851398U (zh) 一种吹吸风机
CN111520899A (zh) 旋流机构、新风模块和空气调节设备
CN209510681U (zh) 吹吸风机
CN207032127U (zh) 电动工具及其吹风管
CN209686307U (zh) 花园吹风机
CN104131998B (zh) 风机和扫路车
CN207235677U (zh) 吹风机
CN208023485U (zh) 吹吸机
CN217502025U (zh) 一种高通量园林轴流吹风机
WO2016082796A1 (zh) 吹风机和吹吸装置
WO2020125255A1 (zh) 吹吸风机
CN218712512U (zh) 吹风机
CN217421582U (zh) 一种轴流吹风机的涵道装置及轴流吹风机
CN220377189U (zh) 吹风机
CN212899034U (zh) 一种静音型吹吸风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838769

Country of ref document: EP

Effective date: 20190311