WO2018028416A1 - 用于网络控制端和网络节点的电子设备和方法 - Google Patents

用于网络控制端和网络节点的电子设备和方法 Download PDF

Info

Publication number
WO2018028416A1
WO2018028416A1 PCT/CN2017/093806 CN2017093806W WO2018028416A1 WO 2018028416 A1 WO2018028416 A1 WO 2018028416A1 CN 2017093806 W CN2017093806 W CN 2017093806W WO 2018028416 A1 WO2018028416 A1 WO 2018028416A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
drx
relay
electronic device
remote
Prior art date
Application number
PCT/CN2017/093806
Other languages
English (en)
French (fr)
Inventor
许晓东
肖韵秋
郭欣
张诗晴
张轶
Original Assignee
索尼公司
许晓东
肖韵秋
郭欣
张诗晴
张轶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 许晓东, 肖韵秋, 郭欣, 张诗晴, 张轶 filed Critical 索尼公司
Priority to CN202211121632.4A priority Critical patent/CN115361729A/zh
Priority to EP17838546.4A priority patent/EP3500028B1/en
Priority to US16/313,903 priority patent/US10708861B2/en
Priority to JP2019505427A priority patent/JP7246302B2/ja
Priority to CN201780033434.3A priority patent/CN109196939B/zh
Priority to KR1020197002745A priority patent/KR102423403B1/ko
Publication of WO2018028416A1 publication Critical patent/WO2018028416A1/zh
Priority to US16/885,309 priority patent/US20200296668A1/en
Priority to US17/670,518 priority patent/US20220167268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular to relay wireless communications, and more particularly to an electronic device for a network control terminal and a method for the same, an electronic for a network node A device and a method for the electronic device.
  • FIG. 1 shows a two-way relay scenario in which a remote UE transmits uplink and downlink data through a relay UE, that is, a remote UE does not directly communicate with an eNB, and both uplink and downlink transmissions are completed by a relay UE.
  • 2 illustrates a one-way relay scenario in which a remote UE transmits uplink data only through a relay UE, and downlink data is still directly received from the eNB through the Uu link.
  • an electronic device for a network control terminal comprising: processing circuitry configured to: for a relay link between a relay network node and a remote network node, a relay network node And/or the remote network node configures the discontinuous reception SL-DRX; and generates control signaling including the configuration of the SL-DRX for indicating the relay network node and/or the remote network node.
  • an electronic device for a network node comprising: processing circuitry configured to: for a relay link between the network node and one or more other network nodes, The network node and/or one or more other network nodes configure discontinuous reception of SL-DRX; and the SL-DRX based configuration performs relay transmission between the network node and one or more other network nodes.
  • a method for an electronic device of a network control terminal comprising: a relay network node and a remote network node, a relay network node and/or a remote network
  • the node configures the discontinuous reception of the SL-DRX; and generates control signaling including the configuration of the SL-DRX for indicating the relay network node and/or the remote network node.
  • a method for an electronic device of a network node comprising: for a relay link between the network node and one or more other network nodes, being a network node and/or One or more other network nodes configure discontinuous reception of SL-DRX; and SL-DRX based configuration for relay transmission between the network node and one or more other network nodes.
  • the electronic device and method according to an embodiment of the present application can reduce the power consumption of a network node that performs relay communication by employing discontinuous reception (DRX) on the relay link.
  • DRX discontinuous reception
  • FIG. 1 is a schematic diagram showing a two-way relay scenario
  • FIG. 2 is a schematic diagram showing a one-way relay scenario
  • FIG. 3 is a functional block diagram showing an electronic device for a network control terminal according to an embodiment of the present application.
  • FIG. 4 is a diagram showing an example of a relationship between respective timers of a SL-DRX configuration
  • FIG. 5 is a schematic diagram showing a manner of configuring a SL-DRX
  • FIG. 6 is a functional block diagram showing an electronic device for a network node in accordance with one embodiment of the present application.
  • FIG. 7 is a schematic diagram showing the flow of information in the case of centralized scheduling of the network control terminal
  • FIG. 8 is a schematic diagram showing a flow of information for coordinating DRX and SL-DRX by a network control terminal
  • FIG. 9 is a schematic diagram showing an information flow of coordination based on a SL-DRX sleep indicator
  • FIG. 10 is a schematic diagram showing an information flow of a relay network node receiving based on a “first come, first received” principle
  • Figure 11 is a diagram showing a subframe configuration on a general link and a relay link in the case where SL-DRX wakes up before DRX;
  • FIG. 12 is a schematic diagram showing an information flow of a relay network node receiving based on a "first come, first receive" principle in the case of employing DRX and SL-DRX;
  • Figure 13 is a diagram showing an example of an information flow of a remote network node utilizing the help of a relay network node for conflict resolution;
  • FIG. 14 is a diagram showing an example of division and allocation of SLDRX-onDurationTimer
  • Figure 15 is a diagram showing a flow of information in a one-to-many relay scenario
  • FIG. 16 shows an electronic device for a network control terminal according to an embodiment of the present application. Flow chart of the prepared method
  • FIG. 17 shows a flow chart of a method for an electronic device of a network node in accordance with one embodiment of the present application
  • FIG. 18 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 19 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 20 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 21 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 22 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • a smartphone can act as a relay device for wearable devices to reduce the energy consumption of the wearable device. Since the transmission data stream is usually bursty, that is, there is data transmission only for a certain period of time, the device as the receiving end can stop detecting when there is no data transmission, thereby achieving the purpose of power saving, which is called discontinuous reception. (DRX). Especially when the wearable device has a low demand for transmitting and receiving data, the application of DRX is more significant for reducing equipment energy consumption and reducing commercial cost. In the present application, DRX is for a relay link and is therefore referred to as Sidelink-DRX (SL-DRX) to distinguish it from DRX in LTE (the UE performs discontinuous reception of data from the eNB).
  • SL-DRX Sidelink-DRX
  • FIG. 3 shows a functional block diagram of an electronic device 100 for a network control terminal, the electronic device 100 comprising: a determining unit 101 configured for a relay network node and a remote network node, according to an embodiment of the present application a relay link configuring a discontinuous reception SL-DRX for the relay network node and/or the remote network node; and a generating unit 102 configured to generate a control signaling including the configuration of the SL-DRX for indicating the relay Network node and/or remote network node.
  • the determining unit 101 and the generating unit 102 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the network control terminal refers to an entity in the communication system for implementing functions such as setting, control, and communication resource allocation of communication activities, such as a base station in a cellular communication system, and a C-RAN (Cloud-RAN/Centralized-RAN) structure.
  • a baseband cloud device (which may not have a cell concept), such as any BBU in a BBU pool that is in high-speed communication with each other under the C-RAN architecture.
  • a network node refers to an entity in a communication system that uses communication resources to achieve its communication purposes, such as various user equipment (such as mobile terminals with cellular communication capabilities, smart vehicles, smart wearable devices, etc.) or network infrastructure such as small cell base stations. Wait.
  • the technical solution of the present application can be applied to various relay scenarios, including but not limited to those shown in FIG. 1 and FIG. 2, wherein the eNBs in FIG. 1 and FIG. 2 are an example of a network control terminal, and are relayed.
  • the UE and the remote UE are examples of relay network nodes and remote network nodes, respectively.
  • different settings may exist for the location of the remote network node.
  • the remote network node may be located within the coverage of the network control terminal or may be located outside the coverage area.
  • the PSCCH Physical sidelink control
  • DRX is configured for the relay network node and the remote network node for the relay link, which is called SL-DRX.
  • the PSCCH is detected by intermittently stopping to achieve power saving.
  • the determining unit 101 may determine that the relay network node and/or the remote network node detect the active time of the PSCCH and not detect the sleep time of the PSCCH.
  • SL-DRX is independent of the conventional DRX, that is, intermittently stopping the reception of a PDCCH (physical downlink control channel) on the downlink of the network node and the network control end.
  • PDCCH physical downlink control channel
  • the configuration of the SL-DRX is performed by the electronic device 100 of the network control terminal.
  • the electronic device 100 and in particular the determining unit 101, can configure SL-DRX for both the relay network node and the remote network node.
  • the electronic device 100 may configure only the SL-DRX of the relay network node, and the relay network node configures the SL-DRX of the remote network node.
  • the electronic device 100 may also configure only the SL-DRX of the remote network node.
  • the configuration of the SL-DRX may include a timer: SLDRX-onDurationTimer, used to indicate the number of consecutive PSCCH subframes of the PSCCH detected after the network node wakes up from the sleep state; and the SLDRX-InactivityTimer is used to indicate the network node.
  • the maximum number of PSCCH subframes waiting to be successfully decoded for the PSCCH SLDRX-Cycle for indicating the number of subframes included in one SL-DRX cycle
  • SLDRX-StartOffset for indicating the subframe position at the beginning of each SL-DRX cycle.
  • FIG. 4 shows a diagram of an example of the relationship between the above respective timers.
  • the gray-filled box corresponds to the SLDRX-onDurationTimer.
  • the SLDRX-InactivityTimer is represented by a dot-filled box in the figure, which represents the maximum PSCCH of the network node waiting to successfully decode a PSCCH. The number of subframes. Therefore, when the network node successfully decodes an initial PSCCH, This timer needs to be reset. When the SLDRX-InactivityTimer times out, the network node re-enters a SL-DRX cycle, which starts the SLDRX-onDurationTimer.
  • the blank box in Figure 4 represents the sleep time of the SL-DRX.
  • SLDRX-Cycle is the number of sub-frames included in a SL-DRX cycle, including the sleep time of SLDRX-onDurationTimer and SL-DRX.
  • the entire time period SLDRX-ActiveTime that the network node wakes up is shown in FIG. 4, which can be seen to include SLDRX-onDurationTimer and SLDRX-InactivityTimer and continuous reception time.
  • the slash box indicates the continuous reception time period of the SL-DRX.
  • the SFN is the system frame number and the period is 1024.
  • One frame contains 10 subframes.
  • the SLDRX start subframe position is calculated here, so multiply the SFN by 10.
  • SLDRX-StartOffset is used to determine the subframe position at the beginning of each SL-DRX cycle.
  • the generating unit 102 generates control signaling including the above-described SL-DRX configuration to instruct the corresponding relay network node and/or remote network node to perform SL-DRX configuration.
  • the control signaling may be, for example, Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the electronic device 100 may further include: a transceiver unit 103 configured to transmit control signaling to the relay network node and/or the remote network node.
  • the transceiver unit 103 can transmit by RRC signaling.
  • the transceiver unit 103 being configured to transmit control signaling of the SL-DRX configuration comprising the relay network node and the remote network node to the relay network node, wherein the remote network
  • the SL-DRX configuration of the node is forwarded by the relay network node.
  • This forwarding can be implemented, for example, by RRC signaling or broadcast signaling.
  • transceiver unit 103 can be configured to relay network nodes and remotely, respectively The network node sends control signaling containing the respective SL-DRX configuration.
  • the configuration manner of the SL-DRX is not limited thereto.
  • the relay network node may perform SL-DRX configuration for the remote network node or the mutual configuration of the SL-DRX by the relay network node and the remote network node.
  • FIG. 5 shows a schematic diagram of a SL-DRX configuration manner, where mode 1 is a manner in which the network control end sends a SL-DRX configuration to a relay network node and a remote network node, respectively.
  • the mode 3 is that the relay network node and the remote network node mutually configure the SL- The way of DRX. Note that these modes are merely exemplary and are not limited thereto.
  • the electronic device 100 can reduce the power consumption of the relay network node and/or the remote network node by configuring the SL-DRX of the relay link.
  • FIG. 6 shows a block diagram of a structure of an electronic device 200 for a network node, the electronic device 200 comprising: a determining unit 201 configured for the network node and one or more other network nodes, in accordance with an embodiment of the present application. a relay link between the network node and/or one or more other network nodes configured with discontinuous reception SL-DRX; and a SL-DRX based configuration between the network node and one or more other network nodes Relay transmission.
  • the network node in this embodiment may be a relay network node or a remote network node.
  • a relay network node there may be a case where there is a relay link between the relay network node and a plurality of remote network nodes, that is, a one-to-many relay.
  • the determining unit 201 can determine the configuration of the SL-DRX based on control signaling from the network control terminal. For example, the determining unit 201 can determine the network node and/or one Or a plurality of other network nodes detect the active time of the PSCCH and the sleep time of not detecting the PSCCH.
  • the configuration of the SL-DRX may include, for example, an SLDRX-onDurationTimer, which is used to indicate the number of consecutive PSCCH subframes of the PSCCH after the network node wakes up from the sleep state; and the SLDRX-InactivityTimer is used to indicate that the network node waits for the PSCCH to be successfully decoded.
  • SLDRX-Cycle is used to indicate the number of subframes included in one SL-DRX cycle
  • SLDRX-StartOffset is used to indicate the subframe position at the beginning of each SL-DRX cycle.
  • the configuration regarding the SL-DRX has been described in detail in the first embodiment and will not be repeated here.
  • the network node is a relay network node
  • control signaling from the network control end includes configuration of the SL-DRX of the network node and one or more other network nodes (ie, remote network nodes of the network node) .
  • the determining unit 201 can determine the configuration of the SL-DRX of the network node and its remote network node.
  • the determining unit 201 determines only the configuration of the SL-DRX of the network node according to the control signaling.
  • the determining unit 201 can also determine the configuration of the SL-DRX of its remote network node in other ways. For example, the determining unit 201 determines the configuration of the SL-DRX of one or more other network nodes based on the data to be transmitted by the network node. This is because the SL-DRX configuration at the receiving end depends on the amount of data to be sent by the sender. Of course, the determining unit 201 may also determine the configuration of the SL-DRX of the remote network node according to other factors, and is not limited thereto.
  • the network node is a remote network node.
  • the determining unit 201 can also determine the configuration of the SL-DRX of the relay network node based on the data to be transmitted by the network node.
  • the electronic device 200 may further include: a transceiver unit 203 configured to transmit control signaling including the configuration of the SL-DRX of the other network node to the corresponding network node.
  • a transceiver unit 203 configured to transmit control signaling including the configuration of the SL-DRX of the other network node to the corresponding network node.
  • the relay network node forwards the configuration of the SL-DRX received from the network control end to the remote network node or the configuration of the SL-DRX determined by the transmitting relay network node (for example, corresponding to mode 2 in FIG. 5).
  • the remote network node sends its determined configuration of SL-DRX to the relay network node (e.g., corresponding to mode 3 in Figure 5).
  • the transceiver unit 203 can transmit by using RRC signaling or broadcast signaling.
  • RRC signaling or broadcast signaling.
  • broadcast signaling helps to reduce signaling overhead.
  • the transceiver unit 203 may be further configured to send control information indicating that other network nodes enter the SL-DRX sleep state to other network nodes or receive the control information from other network nodes.
  • the control information may be used to instruct other network nodes to enter the SL-DRX sleep state.
  • other network nodes after receiving the control information, other network nodes enter a new SL-DRX Cycle and go to sleep after the SLDRX-onDurationTimer times out. Therefore, in addition to the case where the SLDRX-InactivityTimer described in the first embodiment times out and enters a sleep state, this provides another way for the network node to enter a sleep state.
  • control information can be represented by a MAC PDU subheader carrying an LCID.
  • a command element SLDRX Command MAC CE may be added.
  • the LCID corresponding to the SLDRX Command MAC CE is represented on the SL-SCH as shown in Table 1 below. It can be seen that the SLDRX Command MAC CE has a fixed length of 5 bits.
  • the network node when the network node receives the SLDRX Command MAC CE with the value "11011", it can enter the SL-DRX sleep state, as shown in FIG.
  • the electronic device 200 can reduce the power consumption of the network node by performing SL-DRX of the relay link.
  • the length of the SLDRX-ActiveTime that the relay network node receives the data changes according to the scheduling decision and the success of the decoding, and when the remote network node sends data to the relay network node, It is not known how the downlink communication state of the relay network node and the network control terminal is. Therefore, in some communication systems, such as FDD, there may be a situation in which the relay network node receives data from the network control terminal simultaneously in the SLDRX-ActiveTime. In this way, data conflicts occur and the relay network node loses data on one of the links.
  • QoS quality of service
  • coordination is performed through centralized scheduling by the network console.
  • the determining unit 101 may be configured to allocate mutually orthogonal resources to the following two transmissions to avoid collision: the network control end to the relay network node's universal link downlink transmission; and the remote network node Relay link transmission to the relay network node.
  • the determining unit 101 may be configured to allocate mutually orthogonal resources to the following two transmissions to avoid collision: a downlink transmission of the universal link of the network control end to the remote network node; and the relay network node Relay link transmission to the remote network node.
  • the determining unit 101 can allocate orthogonal radio resources to the network control end and the remote network node for transmitting data to the relay network node.
  • Orthogonal resources are, for example, temporally separated, non-overlapping resources. In this way, the data received by the relay network node from the network control end and the remote network node is inherently independent in the time domain, thereby avoiding data collision.
  • the determining unit 101 can set the transmission order according to the priority of the universal link and the relay link, and according to the transmission The SL-DRX configuration of the relay network node or remote network node is updated in order.
  • a relay network node first receives data on one link with a higher priority regardless of the state of the other link.
  • both the transmission and reception priorities on the universal link are higher than the transmission or reception on the relay link.
  • the relay network node When there is a data transmission request on both the relay link and the universal link downlink, the relay network node first receives information from the universal link. The determining unit 101 can then update the SL-DRX configuration of the relay network node and schedule the remote network node to send data to the relay network node later.
  • a similar process can be performed for a situation where a collision occurs at a remote network node, at which point the determining unit updates the SL-DRX configuration of the remote network node and schedules the relay network node to send data to the remote network node later.
  • the relay network node when the priority of transmission or reception on the relay link is high, the relay network node will first receive information from the relay link, and the network control end is scheduled to be later to the relay network node. send data.
  • FIG. 7 is a schematic diagram showing the flow of information in the case of centralized scheduling of the network control end, wherein the collision avoidance at the relay network node is taken as an example, and the common link is shown in the two SL-DRX ActiveTimes respectively.
  • Priority and relay links have higher priority situations, where SL stands for relay link, Uu stands for universal link, UL stands for uplink, DL stands for downlink, SL-DRX sleeps with gray
  • the filled box indicates that SL-DRX ActiveTime is indicated by a blank box.
  • the network control terminal directly schedules orthogonal resources to the remote network node, which is the one-way relay scenario shown in FIG. 2 . In the two-way relay scenario shown in FIG.
  • the network control unit schedules orthogonal resources to the remote network node through the relay network node. It can be seen that the centralized scheduling of resources by the network control end makes the transmission resources of the uplink relay link and the downlink universal link orthogonal, which can effectively avoid or reduce the occurrence of conflicts and improve energy efficiency and service quality.
  • DRX can also be applied to the general downlink between the network control terminal and the network node, where the network node can be a relay network node or Is a remote network node.
  • the downlink data transmission from the network control end to the network node will only appear in the DRX ActiveTime. Since the DRX ActiveTime is affected by many factors, the SL-DRX ActiveTime and the DRX ActiveTime may overlap, and data collision occurs.
  • the determining unit 101 can be configured to allocate the receiving resources orthogonal to each other to the DRX and the SL-DRX, so that collisions can be avoided.
  • FIG. 8 shows a schematic diagram of the information flow of the network control end coordinating DRX and SL-DRX. It should be understood that the flow of information for remote network nodes is similar.
  • the determining unit 101 can allocate DRX and SL-DRX to receive time windows independent of each other in the time domain. As shown in the upper part of FIG. 8, SL-DRX ActiveTime and DRX ActiveTime are separated in the time domain, and collision can be completely avoided. .
  • the DRX and SL-DRX can be reconfigured to make the reception time windows of the two orthogonal, thus avoiding conflicts.
  • the receiving resources of the network node on the two links can be orthogonally opened in the time domain by means of the network control terminal scheduling resources, that is, receiving at different times, such as The lower half of Figure 8 is shown. among them, The signaling overhead of the mode in which the network control terminal schedules resources is small. Therefore, when the time windows overlap, the resource scheduling manner can be preferentially used to resolve the conflict.
  • centralized scheduling by the network control end to coordinate the transmission of the universal link and the relay link for the network node can effectively avoid conflicts and improve service quality and energy efficiency.
  • the universal link downlink transmission for the relay network node and the relay link transmission for the relay network node may be coordinated by the relay network node.
  • a relay network node can schedule resources to be used by remote network nodes to avoid collisions.
  • the determining unit 201 in the electronic device 200 for the network node may be configured to allocate a universal link to the network control end to the relay network node for the relay link transmission from the remote network node to the relay network node Downstream transmissions use resources that are orthogonal to resources to avoid collisions. Similar to the case of centralized scheduling of the network control end in the first scheme, similar resource scheduling is performed in the scheme, except that the main body of execution is the relay network node instead of the network control end, as indicated by the dotted arrow in FIG.
  • DRX can also be applied to the general downlink between the network control end and the network node.
  • the determining unit 201 may be configured to allocate the receiving resources to the SL-DRX that are orthogonal to each other with the DRX.
  • the determining unit 201 may assign to the SL-DRX a reception time window in the time domain that is independent of each other from the DRX.
  • the determining unit 201 can make the receiving resources of the relay network node on the two links orthogonally open in the time domain by scheduling resources, that is, receiving at different times. , as shown by the lower dotted arrow in Figure 8.
  • the relay network node acts as a "middleman" between the network control end and the remote network node, and can coordinate the transmission of the universal link and the relay link to avoid collision.
  • the scenario includes the following two situations: First, the remote network node is in the coverage of the network control end, and the transmission resource selected by the remote network node may be downlink transmission resource with the universal link. Source overlap, because resources in the resource pool of the transmitted resource may be orthogonal or non-orthogonal to the cellular resource; second, the remote network node is outside the coverage of the network control end and uses pre-configured transmission resources, at this time, network control The terminal does not know which resources are selected by the remote network node for transmission, so the transmission resource may also overlap with the general link downlink transmission resource.
  • the relay network node knows its SLDRX configuration and SLDRX ActiveTime.
  • the data sent by the network control terminal is unpredictable, so the relay network node can inform the network control terminal when it is in a sleep state on the relay link, each time the relay network node is sleeping on the relay link. In the state, the network console can send data or control information to it.
  • the determining unit 201 may be configured to generate an indication for indicating to the network control terminal that the relay link of the relay network node enters a sleep state, and is sent to the network control terminal, for example, by the transceiver unit 203.
  • the indication may be, for example, that the relay network node sends a SLDRX-sleep indicator to the network control end through the MAC layer in a subframe after the SLDRX-onDuration Timer, and the relay network node is about to enter sleep on the relay link. status.
  • the network control terminal determines that the relay network node will be able to receive the downlink transmission information of the universal link.
  • the determining unit 101 of the electronic device 100 for the network control terminal may be configured to schedule a general link downlink transmission from the network control end to the relay network node according to the SL-DRX sleep indicator from the relay network node, wherein The SL-DRX sleep indicator indicates that the relay link of the relay network node goes to sleep.
  • the network controller knows the configuration of the SL-DRX of the relay network node such as SLDRX-cycle and SLDRX-startoffset, and thus can calculate the wake-up time of the relay network node.
  • the network control terminal can send downlink data to the relay network node during the period before the wakeup.
  • the network console should stop sending downstream data and wait for the next SLDRX-sleep Indicator. If DRX is used between the network control end and the relay network node, the network control end can adjust the time at which the data is sent according to the SL-DRX sleep indicator to transmit data during the SLDRX sleep and DRX ActiveTime time.
  • FIG. 9 shows a schematic diagram of an information flow based on the coordination of the SL-DRX sleep indicator, wherein the network control end transmits data to the relay network node during the sleep time of the SL-DRX after receiving the SLDRX-sleep Indicator. It can be seen that this method avoids data conflicts at the relay network node by adding signaling, and improves network energy efficiency.
  • the above-mentioned coordination based on the SL-DRX sleep indicator can be combined with the solution one, so that the network control terminal needs to schedule resources on each subframe, thereby improving service efficiency on the basis of reducing power consumption.
  • the relay network node performs random reception based on the "first come, first receive" principle, and resolves the conflict by specific settings.
  • the scheme is applicable not only to relay network nodes, but also to remote network nodes that may generate collisions between the general link downlink transmission and the relay link transmission. Therefore, in this scheme, a network node that transmits data to a network node in question through a relay link is referred to as another network node.
  • the network node receives data from the network console and one of the data from other network nodes in accordance with a time-first principle
  • the determining unit 201 is configured to start the timer at the start of reception, and when the duration of the timer exceeds a predetermined duration Stop receiving.
  • the network node receives data from the relay link or the universal link in chronological order. For example, a network node detects on a universal link or detects on SLDRX ActiveTime, assuming that the network node first receives data on one of the links, the network node remains received on it until the information on the link is received. , as shown in (1) to (3) in FIG. If the network node first receives data on the general link downlink, but the SLDRX-onDurationTimer is initiated during reception, the network node maintains reception on the universal link and regardless of the data transmission on the relay link, as shown in Figure 10. (4) to (7).
  • the timer SLConflict-Timer can be maintained on the network node side in consideration of the fairness of the network control end and other network nodes and QoS. If the duration of the SLConflict-Timer exceeds the predetermined duration, the network node may have missed too many other links. transfer data. At this time, the network node can stop the current reception and detect another link, as in (10) to (12) in FIG.
  • FIG. 10 is a diagram showing the flow of information that the relay node receives by the first-come, first-served principle.
  • the network node first receives the data (6) from the network control end during the SLDRX-onDurationTimer period when the SL should be received, and the network node keeps receiving on the universal link and starts the SLConflict-Timer to start timing. Regardless of whether there is data transmission on the trunk link. Therefore, the meaning of SLConflict-Timer at this time is equivalent to the cumulative sleep duration on the relay link.
  • the SLDRX-onDurationTimer directly jumps out of the timing state without taking any action.
  • the data from the universal link is received until the next SLDRX-onDurationTimer, and the timing is restarted.
  • the timer length can be an integer multiple of the SL-DRX cycle.
  • the network node can stop receiving data from the network console and preferentially process the data on the relay link. It can be seen that in the case of SLConflict-Timer timeout, the network node will preferentially receive data from other network nodes, even if the network controller still has data to send, the network node will miss the data.
  • the determining unit 201 may be configured to generate an adjustment indication of adjusting the configuration of the DRX or the SL-DRX in case the DRX overlaps with the reception time window of the SL-DRX, to instruct the network control terminal or other network node to adjust the DRX or SL-DRX configuration.
  • the network node knows the configuration and wake-up time of the DRX and SL-DRX (ie, the receiving time window). If the receiving time window overlaps, the network node can notify the status of the two network links of the other network node and the network control end, and select One side delays reception, such as informing the network controller or other network node to adjust the configuration of the discontinuous reception on that side.
  • SL-DRX wakes up before DRX, and the network node should keep receiving on the relay link until SLDRX-onDurationTimer or SLDRX-InactivityTimer times out. If during this time DRX-onDurationTimer is enabled Then, the network node should inform the network control end to adjust the DRX configuration for itself to avoid recurrence of the next DRX cycle. This can be generated by the determining unit 201 to adjust the DRX configuration and the sending unit 203 sends it to the network control terminal. achieve.
  • the sending unit 203 may send an adjustment indication DRX-Adjust Indicator to the network control end through the MAC layer on the subframe after the SLDRX-onDuartionTimer ends.
  • the determining unit 101 of the electronic device 100 for the network control terminal can adjust the DRX configuration of the network node according to the adjustment indication.
  • the network controller updates the DRX-startoffset of the network node, that is, shifts the start time of the DRX cycle back later to ensure that the time windows of the next DRX and SL-DRX do not overlap.
  • Figure 11 shows a schematic diagram of a subframe configuration on a general link and a relay link in this case, wherein the upper half shows the subframe configuration of the intermediate link and the lower half shows the general link. Subframe configuration. In Figure 11, the start time of the DRX cycle is shifted by three subframes.
  • the determining unit 201 may be further configured to calculate an adjustment amount to instruct the network control terminal to adjust the configuration of the DRX according to the adjustment amount.
  • the adjustment amount is the length of the backward movement time.
  • the adjustment amount can also be a preset value. Accordingly, the upper half of FIG. 12 shows an example of the information flow of the situation, in which the box filled with diagonal lines represents the adjusted ActiveTime of the DRX, and it can be seen that the ActiveTime of the DRX falls on the sleep of the SLDRX. In time, you can avoid conflicts.
  • DRX may wake up prior to SL-DRX, and the network node should remain received on the universal link until the DRX-onDurationTimer or DRX-InactivityTimer times out. If the SL-DRX onDurationTimer is started during this period, the network node should notify the network control end so that the network control end adjusts the SL-DRX configuration for the network node, which can generate an indication for adjusting the SL-DRX configuration by the determining unit 201 and send the unit 203 sends it to the network console to implement.
  • the sending unit 203 may send an adjustment indication SLDRX-Adjust Indicator to the network control end through the MAC layer on the subframe after the end of the DRX-onDuartionTimer.
  • the determining unit 101 of the electronic device 100 for the network control terminal can adjust the SL-DRX configuration of the network node according to the adjustment indication.
  • the network control end updates the SLDRX-startoffset for the network node, that is, shifts the start time of the SL-DRX cycle by a period of time to ensure that the time windows of the next DRX and SL-DRX do not overlap.
  • the length of the shift time may be determined by the determining unit 201 and provided to the network control terminal, or may be a preset value.
  • the lower half of Fig. 12 shows an example of the information flow of the situation.
  • the box filled with slashes represents the adjusted ActiveTime of the SL-DRX. It can be seen that the SL-DRX's ActiveTime falls on the DRX. During the sleep time, conflicts can be avoided.
  • the transmitting unit 203 transmits the adjustment indication to the other network nodes, so that the adjustment of the SL-DRX configuration of the network node is performed by the other network nodes.
  • the amount of adjustment may be determined by the determining unit 201 and provided to other network nodes, or may be a preset value.
  • the determining unit 201 of the electronic device 200 for relaying the network node may be configured to generate a relay chain for indicating the remote network node to the network control terminal after the relay network node completes the data transmission to the remote network node An indication that the road has entered a sleep state.
  • the network control terminal can send data to the remote network node during the following period.
  • the network control end or the relay network node can also update the SL-DRX configuration of the remote network node such as SLDRX-StartOffset.
  • the determining unit 101 of the electronic device 100 for the network control terminal may be configured to schedule the network control terminal to the remote network node according to the SL-DRX remote sleep indicator from the relay network node (such as represented by the SLDRX-remoteSleepIndicator)
  • the determining unit 101 may be further configured to generate a UuDRX remote sleep indicator after the network control terminal completes data transmission to the remote network node (for example, UuDRX- The remoteSleepIndicator indicates) that the DRX for instructing the remote network node to enter the sleep time to the relay network node. In this way, the relay network node can send data to the remote network node during the following period.
  • the determining unit 201 can be configured to update the SL-DRX configuration of the remote network node in accordance with the UuDRX remote sleep indicator from the network console, wherein the UuDRX remote sleep indicator indicates that the DRX of the remote network node has entered sleep time.
  • the SL-DRX of the remote network node is controlled by the network control terminal, the SL-DRX configuration of the remote network node is updated by the determining unit 101.
  • Figure 13 shows a schematic diagram of the information flow of the scheme.
  • the remote network node is configured with DRX and SL-DRX.
  • the relay network node After transmitting the data, the relay network node sends the SLDRX-remoteSleepIndicator to the network control end, and then the network control terminal updates the SL-DRX configuration of the remote network node and sends the configuration to the remote network node.
  • Data it can be seen that DRX's new ActiveTime falls within the sleep time of SL-DRX, thus avoiding conflicts.
  • the UuDRX-remoteSleepIndicator is sent to the relay network node, and the relay network node updates the SL-DRX configuration of the remote network node according to the indicator, and in the subsequent SL-DRX ActiveTime internally sends data to the remote network node.
  • the updated SL-DRX ActiveTime falls within the sleep time of the DRX, thereby avoiding collisions.
  • a scenario in which one relay network node connects to a plurality of remote network nodes will be considered.
  • the relay network node can easily perform data transmission to a plurality of remote network nodes in a scheduled manner.
  • the relay network node cannot receive data from multiple remote network nodes at the same time. Therefore, you need to consider the issue of resolving data conflicts that may occur.
  • the determining unit 201 of the electronic device 200 for the network node is configured to assign a receiving order to each of the remote network nodes, respectively, and to the PSCCH of the respective remote network node at the subframe position determined according to the receiving order Test.
  • the relay network node performs PSCCH detection within the SLDRX-onDurationTimer.
  • the SLDRX-onDurationTimer can be divided into X parts, which are respectively assigned to each remote network node for detection of the PSCCH.
  • FIG. 14 shows an example in which the SLDRX-onDurationTimer is divided into two parts and assigned to the remote network node 1 and the remote network node 2, respectively, that is, the remote network node 1 is performed on the first subframe waking up by the SL-DRX.
  • the PSCCH detects that the PSCCH detection of the remote network node 2 is performed on the second subframe.
  • the relay network node can sort them according to the priority and delay tolerance of each remote network node, and give each remote network node a RemoteUEOrder.
  • Each remote network node can calculate its own SL-DRX onDurationTimer and SL-DRX startoffset according to its own RemoteUEOrder.
  • the determining unit 201 is further configured to reserve, for each remote network node, a PSCCH subframe for continuous reception. In this way, when the transmission data of some remote network nodes, such as wearable devices, is relatively stable, the relay network node can be effectively prevented from frequently switching in both the awake and sleep states.
  • the consecutive received PSCCH subframe lengths assigned to each remote network node may be set to different values according to the service characteristics of the corresponding remote network node, and may of course be set to the same value.
  • a fixed continuous receive PSCCH subframe length can be assigned to it.
  • the relay network node sequentially receives the PSCCHs from the remote network node 1 and the remote network node 2 within the SLDRX-onDurationTimer.
  • the remote network node 1 and the remote network node 2 can learn their own transmission time window according to their RemoteUEOrder and consecutively receiving PSCCH subframe lengths.
  • the relay network node first detects the PSCCH from the remote network node 1 in 6 consecutive received PSCCH subframes (but does not necessarily receive the PSCCH subframe, for example, in FIG. The remote network node 1 only sends 3 subframes, so the relay network node will only receive 3 subframes.).
  • the relay network node begins to detect the PSCCH from the remote network node 2.
  • a portion of the remote network nodes may be assigned a fixed continuous receive PSCCH subframe length, while other remote network nodes may be assigned a dynamically varying continuous receive PSCCH subframe length.
  • all remote network nodes may also be assigned dynamically varying consecutive received PSCCH subframe lengths.
  • the Remote UEOrder of the remote network node with the fixed receiving PSCCH subframe length may be set to the front, and still take FIG. 14 as an example. It is assumed that the continuous receiving PSCCH subframe length of the remote network node 1 is 6, and the remote network node 2 is continuous. The length of the received PSCCH subframe is dynamically changed. If there is still a remote network node 3, the determining unit 201 needs to determine the receiving subframe start position of the remote network node 3 by actually receiving the PSCCH subframe length according to the actual continuous connection of the remote network node 2. If there are more remote network nodes, the PSCCH subframe lengths are successively received according to the actual continuous reception of the remote network nodes to obtain their reception subframe start positions.
  • the determining unit 201 is configured to generate information for the receiving subframe start position of the next remote network node in the case where the number of consecutive received PSCCH subframes of the previous remote network node is dynamically changed to indicate the next one Remote network node.
  • the transmitting unit 203 transmits the information of the start position of the received subframe to the corresponding remote network node.
  • the determining unit 201 is further configured to periodically update the configuration of the SL-DRX of the relay network node.
  • the transmitting unit 203 can transmit the updated SL-DRX configuration to the remote network node of the relay network node.
  • the transmitting unit 203 can transmit by way of broadcast.
  • the transmitting unit 203 notifies them of the SLDRX-startoffset of the next SLDRX-onDurationTimer by broadcasting a TimerAdjustment Indicator to each remote network node.
  • each remote network node uses its RemoteUEOrder to calculate the SLDRX-onDurationTimer subframe position configured by the relay network node in the next SLDRX-Cycle.
  • 15 is a schematic diagram showing the information flow of the example, with blank boxes, boxes filled with diagonal lines, boxes filled with vertical lines, and boxes filled with dots representing SLDRX-onDurationTime, consecutive receiving PSCCHs of remote network nodes 1-3. frame.
  • each remote network node Since the number of consecutive received PSCCH subframes of the remote network node 2 is dynamically changed, it is necessary to transmit the information SLDRX-ReceptionIndicator of the reception subframe start position to the remote network node 3.
  • Each remote network node transmits data within a consecutive received PSCCH subframe allocated to itself, and after the SLDRX-Cycle ends, the relay network node broadcasts the updated SL-DRX configuration to each remote network node.
  • the relay network node In order to ensure the accuracy and real-time performance of SL-DRX, the relay network node needs to periodically update the SL-DRX timer with a plurality of remote network nodes.
  • the update period can be determined, for example, by the network console configuration or by the relay network node itself. By setting the cycle reasonably, a balance of service continuity and energy efficiency can be achieved.
  • the determining unit 201 may be configured to randomly select one of the plurality of remote network nodes or select the one with the highest priority if the relay network node simultaneously detects the PSCCH from the plurality of remote network nodes The network node receives its data.
  • the relay network node does not have any coordination.
  • the SLDRX-onDurationTimer of the relay network node when it first detects the PSCCH from a remote network node, the SLDRX-InactivityTimer is started and the continuous reception of the remote network node is maintained. If the relay network node receives PSCCHs from multiple remote network nodes at the same time, the relay network node randomly selects or selects one with the highest priority to receive and respond.
  • Remote network nodes that do not receive a response from the relay network node can only wait until the wake-up time of the next relay network node.
  • the relay network node should broadcast an updated SL-DRX configuration, the SL-DRX timer, to each remote network node.
  • the relay network node can avoid collisions occurring when receiving data on a plurality of relay links by coordination or random reception.
  • 16 shows a flowchart of a method for an electronic device of a network control terminal according to an embodiment of the present application, the method comprising: relaying for a relay link between a relay network node and a remote network node Network nodes and/or remote network nodes configure discontinuous reception SL-DRX (S11); and generating control signaling including the configuration of the SL-DRX for indicating the relay network node and/or the remote network node (S12).
  • the discontinuous reception SL may be configured for the relay network node and/or the remote network node by determining that the relay network node and/or the remote network node detects the active time of the PSCCH and does not detect the sleep time of the PSCCH. DRX.
  • the configuration of the SL-DRX includes: an SLDRX-onDurationTimer, which is used to indicate the number of consecutive PSCCH subframes of the PSCCH after the network node wakes up from the sleep state; and the SLDRX-InactivityTimer is used to indicate that the network node waits for the maximum successful decoding of the PSCCH.
  • the number of PSCCH subframes; SLDRX-Cycle is used to indicate the number of subframes included in one SL-DRX cycle; and SLDRX-StartOffset is used to indicate the subframe position at the beginning of each SL-DRX cycle.
  • the above method further comprises the step S13 of transmitting control signaling to the relay network node and/or the remote network node.
  • the transmission can be performed by RRC signaling.
  • control signaling of the SL-DRX configuration including the relay network node and the remote network node may be sent to the relay network node in step S13, wherein the SL-DRX configuration of the remote network node is forwarded by the relay network node.
  • the above method may further comprise the step of allocating mutually orthogonal resources to the following two transmissions to avoid collision: a universal link from the network control end to the relay network node Downlink transmission; and relay link transmission from the remote network node to the relay network node for universal link downlink transmission for network nodes; relay link transmission for network nodes.
  • mutually orthogonal resources may be allocated to the following two transmissions to avoid collision: the network control end transmits to the remote link of the remote network node; and the relay network node to the remote network node Relay link transmission.
  • the transmission order of the universal link and the relay link may also be set according to the priority of the general link and the relay link, and the SL-DRX configuration of the relay network node or the remote network node may be updated according to the transmission order.
  • the universal link downlink transmission from the network control end to the relay network node may be scheduled according to a SL-DRX sleep indicator from the relay network node, wherein the SL-DRX sleep indicator indicates the middle of the relay network node After the link goes to sleep.
  • remote sleep can be based on SL-DRX from a relay network node An indicator to schedule a universal link downlink transmission from the network control end to the remote network node, wherein the SL-DRX remote sleep indicator indicates that the relay link of the remote network node enters a sleep state.
  • DRX is employed between the network control end and the network node
  • reception resources orthogonal to each other For example, DRX and SL-DRX can be assigned receive time windows that are independent of each other in the time domain.
  • the configuration of the DRX or SL-DRX of the network node may also be adjusted according to the adjustment indication from the network node.
  • the UuDRX remote sleep indicator may be generated after the network control terminal completes the data transmission to the remote network node for indicating the DRX of the remote network node to the relay network node. Enter sleep time.
  • the configuration of the SL-DRX of the remote network node can be updated.
  • FIG. 17 shows a flow diagram of a method for an electronic device of a network node, the method comprising: for a relay link between the network node and one or more other network nodes, in accordance with an embodiment of the present application, Discontinuously receiving SL-DRX (S21) for network nodes and/or one or more other network nodes; and relay transmission between network nodes and one or more other network nodes based on SL-DRX-based configuration (S22 ).
  • S21 Discontinuously receiving SL-DRX
  • S22 relay transmission between network nodes and one or more other network nodes based on SL-DRX-based configuration
  • discontinuous reception may be configured for a network node and/or one or more other network nodes by determining that the network node and/or one or more other network nodes detect the active time of the PSCCH and not the sleep time of the PSCCH.
  • SL-DRX the configuration of the SL-DRX includes: an SLDRX-onDurationTimer, which is used to indicate the number of consecutive PSCCH subframes of the PSCCH after the network node wakes up from the sleep state; and the SLDRX-InactivityTimer is used to indicate that the network node waits for the maximum successful decoding of the PSCCH.
  • SLDRX-Cycle is used to indicate the number of subframes included in one SL-DRX cycle
  • SLDRX-StartOffset is used to indicate the subframe position at the beginning of each SL-DRX cycle.
  • the above method further includes step S13: transmitting control signaling including the configuration of the SL-DRX of the other network node to the corresponding network node.
  • the transmission may be performed, for example, by radio resource control RRC signaling or broadcast signaling.
  • control information indicating that other network nodes enter the SL-DRX sleep state may be sent to other network nodes or received from other network nodes.
  • the control information can be represented, for example, by a MAC PDU subheader carrying an LCID.
  • the configuration of the SL-DRX is determined in accordance with control signaling from the network control side in step S21.
  • the configuration of the SL-DRX of one or more other network nodes is determined in accordance with the data to be transmitted by the network node in step S21.
  • an adjustment instruction for adjusting the configuration of the DRX or the SL-DRX may be generated to indicate The network console or other network node adjusts the configuration of the DRX or SL-DRX.
  • the amount of adjustment can also be calculated to instruct the network console or other network node to adjust the configuration of the DRX or SL-DRX based on the amount of adjustment.
  • the network node can receive data from the network control end and one of the data from other network nodes according to the time priority principle, for example, the timer can be started at the start of reception, and the reception is stopped when the duration of the timer exceeds a predetermined duration to ensure that the reception is stopped. Fairness.
  • the universal link of the network control terminal to the relay network node may be allocated to the relay link transmission of the remote network node to the relay network node.
  • Downstream transmissions use resources that are orthogonal to resources to avoid collisions.
  • the SL-DRX may be allocated with the DRX and the DRX are orthogonal to each other. For example, the SL-DRX may be allocated a time window independent of the DRX in the time domain. .
  • An indication for indicating to the network control end that the relay link of the relay network node enters a sleep state may also be generated such that the network control end determines that data can be transmitted to the relay network node.
  • the SL-DRX configuration of the remote network node may be updated according to the UuDRX remote sleep indicator from the network control end, wherein the UuDRX remote sleep indicator indicates the remote network node DRX goes into sleep time.
  • an indication may also be generated for indicating to the network control terminal that the relay link of the remote network node enters a sleep state.
  • the receiving order may be assigned to each remote network node separately, and the PSCCH of the corresponding remote network node is detected at the subframe position determined according to the receiving order.
  • PSCCH subframes for continuous reception may be reserved for each remote network node.
  • the number of consecutive received PSCCH subframes at the previous remote network node is dynamically changing In the case of this, it is also possible to generate information on the start position of the receiving subframe for the next remote network node to indicate the next remote network node.
  • the configuration of the SL-DRX of the relay network node can also be periodically updated.
  • the relay network node simultaneously detects PSCCHs from multiple remote network nodes, one of the plurality of remote network nodes is randomly selected or one of the highest priority network nodes is selected to receive its data.
  • the electronic device and method according to the present application can effectively reduce the energy consumption of the device performing the relay communication and improve the data transmission efficiency by applying discontinuous reception on the relay link and adopting various coordination modes. .
  • the technology of the present disclosure can be applied to various products.
  • the above mentioned base stations can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of user equipments to be described below can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • the eNB 800 can include multiple antennas 810.
  • Multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 18 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or knife that is inserted into the slot of the base station device 820. sheet. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 18 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiving unit 103 described with reference to FIG. 3 can be implemented by the wireless communication interface 825. At least a portion of the functionality can also be implemented by controller 821.
  • the controller 821 can perform the configuration of the SL-DRX and the generation of the corresponding control signaling by performing the functions of the determining unit 101 and the generating unit 102.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 19 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 19 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 19 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiving unit 103 described with reference to FIG. 3 can be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 851.
  • the controller 851 can perform the configuration of the SL-DRX and the generation of the corresponding control signaling by performing the functions of the determining unit 101 and the generating unit 102.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915, one or more antennas 916, bus 917, battery 918, and auxiliary control 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 20, the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914
  • the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include BB processor 913 and RF circuit 914 of the wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 20 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 20 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiver unit 203 described with reference to FIG. 6 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can implement discontinuous reception on the relay link by performing the functions of the determining unit 201 and the relay transmission unit 202.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or a SoC, and controls the car navigation device 920. Navigation features and additional features.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 21 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 20 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 21 via feeders, which are partially shown as dashed lines in the figures. Battery 938 accumulates power supplied from the vehicle.
  • the transceiving unit 203 described with reference to FIG. 6 can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the processor 921 can implement discontinuous reception on the relay link by performing the functions of the determining unit 201 and the relay transmission unit 202.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2200 shown in FIG. 22), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 2201 executes various processes in accordance with a program stored in a read only memory (ROM) 2202 or a program loaded from a storage portion 2208 to a random access memory (RAM) 2203.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2201 executes various processes and the like is also stored as needed.
  • the CPU 2201, the ROM 2202, and the RAM 2203 are connected to each other via a bus 2204.
  • Input/output interface 2205 is also coupled to bus 2204.
  • the following components are connected to the input/output interface 2205: an input portion 2206 (including a keyboard, a mouse, etc.), an output portion 2207 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage section 2208 (including a hard disk or the like), the communication section 2209 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2209 performs communication processing via a network such as the Internet.
  • the driver 2210 can also be connected to the input/output interface 2205 as needed.
  • a removable medium 2211 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2210 as needed, so that the computer program read therefrom is installed into the storage portion 2208 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 2211.
  • such a storage medium is not limited to the removable medium 2211 shown in FIG. 22 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 2211 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2202, a hard disk included in the storage portion 2208, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于网络控制端的电子设备和用于该电子设备的方法,以及用于网络节点的电子设备和用于该电子设备的方法。用于网络控制端的电子设备包括:处理电路,被配置为:针对该网络节点和一个或多个其他网络节点之间的中继链路,为网络节点和/或一个或多个其他网络节点配置非连续接收SL-DRX;以及基于SL-DRX的配置进行网络节点和一个或多个其他网络节点之间的中继传输。

Description

用于网络控制端和网络节点的电子设备和方法
本申请要求于2016年8月11日提交中国专利局、申请号为201610657623.5、发明名称为“用于网络控制端和网络节点的电子设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及中继无线通信,更具体地涉及一种用于网络控制端的电子设备和用于该电子设备的方法、一种用于网络节点的电子设备和用于该电子设备的方法。
背景技术
近几年,使用LTE技术实现MTC(Machine Type Communication)设备连接和通信受到业界的关注。在很多场景中,这些低能耗的设备是可穿戴设备,并且和人们身边的智能手机距离较小。此时,使用智能手机作为可穿戴设备的中继设备即UE-to-Network通信方式,可以降低可穿戴设备的能耗。
在Release 14中主要研究两种中继场景,如图1和2所示,其中,Uu代表eNB与中继用户设备(UE)之间的通信链路,PC5代表中继UE与远程UE之间的通信链路,UL代表上行链路,DL代表下行链路。图1示出了双向中继场景,其中,远程UE通过中继UE传输上下行数据,即,远程UE不直接与eNB通信,上下行传输均通过中继UE完成。图2示出了单向中继场景,其中,远程UE仅通过中继UE传输上行数据,下行数据仍然通过Uu链路从eNB直接接收。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论 述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于网络控制端的电子设备,包括:处理电路,被配置为:针对中继网络节点和远程网络节点之间的中继链路,为中继网络节点和/或远程网络节点配置非连续接收SL-DRX;以及生成包含SL-DRX的配置的控制信令,以用于指示中继网络节点和/或远程网络节点。
根据本申请的另一个方面,提供了一种用于网络节点的电子设备,包括:处理电路,被配置为:针对该网络节点和一个或多个其他网络节点之间的中继链路,为网络节点和/或一个或多个其他网络节点配置非连续接收SL-DRX;以及基于SL-DRX的配置进行网络节点和一个或多个其他网络节点之间的中继传输。
根据本申请的一个方面,提供了一种用于网络控制端的电子设备的方法,包括:针对中继网络节点和远程网络节点之间的中继链路,为中继网络节点和/或远程网络节点配置非连续接收SL-DRX;以及生成包含SL-DRX的配置的控制信令,以用于指示中继网络节点和/或远程网络节点。
根据本申请的另一个方面,提供了一种用于网络节点的电子设备的方法,包括:针对该网络节点和一个或多个其他网络节点之间的中继链路,为网络节点和/或一个或多个其他网络节点配置非连续接收SL-DRX;以及基于SL-DRX的配置进行网络节点和一个或多个其他网络节点之间的中继传输。
依据本发明的其它方面,还提供了用于电子设备的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现这些方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法通过在中继链路上采用非连续接收(DRX),能够降低进行中继通信的网络节点的能耗。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了双向中继场景的示意图;
图2是示出了单向中继场景的示意图;
图3是示出了根据本申请的一个实施例的用于网络控制端的电子设备的功能模块框图;
图4是示出了SL-DRX配置的各个计时器之间的关系的示例的图;
图5是示出了SL-DRX配置方式的示意性图示;
图6是示出了根据本申请的一个实施例的用于网络节点的电子设备的功能模块框图;
图7示出了网络控制端集中调度情况下的信息流程的示意图;
图8示出了网络控制端协调DRX和SL-DRX的信息流程的示意图;
图9示出了基于SL-DRX睡眠指示符的协调的信息流程的示意图;
图10示出了中继网络节点基于“先到先接收”原则进行接收的信息流程的示意图;
图11示出了SL-DRX先于DRX醒来的情况下通用链路和中继链路上的子帧配置的示意图;
图12示出了在采用DRX和SL-DRX的情况下中继网络节点基于“先到先接收”原则进行接收的信息流程的示意图;
图13示出了远程网络节点利用中继网络节点的帮助来进行冲突解决的一个示例的信息流程的示意图;
图14示出了SLDRX-onDurationTimer的划分和分配的示例的图;
图15示出了一对多中继的场景中一种信息流程的示意图;
图16示出了根据本申请的一个实施例的用于网络控制端的电子设 备的方法的流程图;
图17示出了根据本申请的一个实施例的用于网络节点的电子设备的方法的流程图;
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图19是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图20是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图21是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图22是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,智能手机可以作为可穿戴设备的中继设备,来降低可穿戴设备的能耗。由于传输数据流通常是突发性的,即仅在某一段时间内有数据传输,因此作为接收端的设备可以在没有数据传输的时候停止检测,从而达到省电的目的,这称为非连续接收(DRX)。尤其在可穿戴设备具有较低的传输和接收数据量的需求时,应用DRX对于降低设备能耗、降低商业成本具有更加显著的意义。在本申请中,DRX是针对中继链路的,因此被称为Sidelink-DRX(SL-DRX),以与LTE中的DRX(UE对来自eNB的数据进行非连续接收)相区别。
图3示出了根据本申请的一个实施例的用于网络控制端的电子设备100的功能模块框图,电子设备100包括:确定单元101,被配置为针对中继网络节点和远程网络节点之间的中继链路,为中继网络节点和/或远程网络节点配置非连续接收SL-DRX;以及生成单元102,被配置为生成包含SL-DRX的配置的控制信令,以用于指示中继网络节点和/或远程网络节点。
其中,确定单元101和生成单元102例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
网络控制端指的是通信系统中用于实现通信活动的相关设置、控制、通信资源分配等功能的实体,比如蜂窝通信系统中的基站,C-RAN(Cloud-RAN/Centralized-RAN)结构下(可能不存在小区概念)的基带云设备,例如C-RAN架构下的彼此高速连通的BBU池中的任一BBU等。网络节点指的是通信系统中使用通信资源以实现其通信目的的实体,比如各种用户设备(诸如具有蜂窝通信能力的移动终端、智能车辆、智能穿戴设备等)或者网络基础设施比如小小区基站等。
本申请的技术方案可以应用于各种中继场景,包括但不限于图1和图2所示的那些中继场景,其中,图1和图2中的eNB是网络控制端的一个示例,中继UE和远程UE分别是中继网络节点和远程网络节点的示例。此外,关于远程网络节点的位置,也可以存在不同的设定,例如,远程网络节点可以位于网络控制端的覆盖范围内,也可以位于覆盖范围外。
在中继网络节点和远程网络节点之间建立了中继链路(sidelink)的情况下,二者进行中继通信时,将发送PSCCH(physical sidelink control  channel)给对方或接收来自对方的PSCCH。但是,如果中继网络节点和远程网络节点一直在中继链路上检测PSCCH,则会消耗过多的电量。因此,在本实施例中,针对中继链路为中继网络节点和远程网络节点配置DRX,这称为SL-DRX。从而,通过间歇性地停止检测PSCCH,以达到省电的目的。例如,确定单元101可以确定所述中继网络节点和/或所述远程网络节点检测PSCCH的活动时间以及不检测PSCCH的睡眠时间。
应该注意,SL-DRX与传统的DRX、即在网络节点与网络控制端的下行链路上间歇性地停止接收PDCCH(physical downlink control channel)是相互独立的。
在该实施例中,由网络控制端的电子设备100来进行SL-DRX的配置。例如,电子设备100、具体地为确定单元101可配置中继网络节点和远程网络节点两者的SL-DRX。或者,电子设备100可以仅配置中继网络节点的SL-DRX,而由中继网络节点来配置远程网络节点的SL-DRX。此外,在某一实施例中,电子设备100也可以仅配置远程网络节点的SL-DRX。
在一个示例中,SL-DRX的配置可以包括如下计时器:SLDRX-onDurationTimer,用于指示在网络节点从睡眠状态醒来后检测PSCCH的连续PSCCH子帧数;SLDRX-InactivityTimer,用于指示网络节点等待对PSCCH成功解码的最大PSCCH子帧数;SLDRX-Cycle,用于指示一个SL-DRX周期包含的子帧数;以及SLDRX-StartOffset,用于指示每个SL-DRX周期开始的子帧位置。
图4示出了上述各个计时器之间的关系的示例的图。其中,灰色填充的框对应于SLDRX-onDurationTimer,当网络节点从睡眠状态醒来后,在灰色部分所代表的连续PSCCH子帧内检测PSCCH,如果在SLDRX-onDurationTimer超时(图4的示例中为两个子帧)的情况下也没有成功解码一个PSCCH,则网络节点转入睡眠状态。
反之,如果成功解码一个PSCCH,则网络节点保持检测状态,同时启动计时器SLDRX-InactivityTimer开始计时,SLDRX-InactivityTimer在图中用点填充的框表示,其代表网络节点等待成功解码一个PSCCH的最大PSCCH子帧数。因此,当网络节点成功解码一个初传PSCCH时, 需要重置该计时器。而当SLDRX-InactivityTimer超时时,网络节点重新进入一个SL-DRX周期,即启动SLDRX-onDurationTimer。图4中的空白框代表SL-DRX的睡眠时间。SLDRX-Cycle为一个SL-DRX周期包含的子帧数,包括SLDRX-onDurationTimer和SL-DRX的睡眠时间两部分。
在图4中示出了网络节点醒来的整个时间段SLDRX-ActiveTime,可以看出,其包括SLDRX-onDurationTimer和SLDRX-InactivityTimer以及连续接收时间。其中,斜线框表示SL-DRX的连续接收时间段,当超过SLDRX-InactivityTimer未成功解码PSCCH子帧时,SLDRX-InactivityTimer超时。而在没有检测到PSCCH的情况下,SLDRX-onDurationTimer对应于醒来的活动时间,SLDRX-Cycle减去SLDRX-onDurationTimer即为睡眠时间。网络节点将以SLDRX-Cycle为周期循环。
此外,当前子帧是否满足SLDRX-StartOffset从而可以启动SLDRX-onDurationTimer的判断按照下式(1)来进行:
[(SFN*10)+当前子帧数]modulo(SLDRX-Cycle)=SLDRX-StartOffset
……(1)
其中,SFN是系统帧号,周期为1024。一个帧包含10个子帧。这里计算的是SLDRX起始子帧位置,所以要对SFN乘以10。
因此,SLDRX-StartOffset用于确定每个SL-DRX周期开始的子帧位置。
生成单元102生成包含上述SL-DRX配置的控制信令,以指示相应的中继网络节点和/或远程网络节点来进行SL-DRX配置。该控制信令例如可以为无线资源控制(Radio Resource Control,RRC)信令。
此外,如图3中的虚线框所示,电子设备100还可以包括:收发单元103,被配置为将控制信令发送给中继网络节点和/或远程网络节点。例如,收发单元103可以通过RRC信令来进行发送。
在一个示例中,例如在双向中继场景中并且确定单元101确定中继 网络节点和远程网络节点两者的SL-DRX配置,收发单元103被配置为将包含中继网络节点和远程网络节点的SL-DRX配置的控制信令发送给中继网络节点,其中,远程网络节点的SL-DRX配置由中继网络节点转发。该转发例如可以通过RRC信令或广播信令实现。
在另一个示例中,例如在单向中继场景中并且确定单元101确定中继网络节点和远程网络节点两者的SL-DRX配置,收发单元103可以被配置为分别向中继网络节点和远程网络节点发送包含各自的SL-DRX配置的控制信令。
应该理解,SL-DRX的配置方式不限于此,例如还可以由中继网络节点为远程网络节点进行SL-DRX配置或者由中继网络节点和远程网络节点互相配置SL-DRX。为了便于理解,图5示出了SL-DRX配置方式的示意性图示,其中,方式1为网络控制端分别向中继网络节点和远程网络节点发送SL-DRX配置的方式,方式2为中继网络节点向远程网络节点发送SL-DRX配置的方式(SL-DRX配置可以接收自网络控制端或由中继网络节点自行确定),方式3为中继网络节点和远程网络节点相互配置SL-DRX的方式。注意,这些方式仅是示例性的,并不限于此。
根据该实施例的电子设备100通过配置中继链路的SL-DRX,可以降低中继网络节点和/或远程网络节点的能耗。
<第二实施例>
图6示出了根据本申请的一个实施例的用于网络节点的电子设备200的结构框图,该电子设备200包括:确定单元201,被配置为针对该网络节点和一个或多个其他网络节点之间的中继链路,为网络节点和/或一个或多个其他网络节点配置非连续接收SL-DRX;以及基于SL-DRX的配置进行网络节点和一个或多个其他网络节点之间的中继传输。
本实施例中的网络节点可以为中继网络节点,也可以为远程网络节点。在中继网络节点的情形中,可能存在该中继网络节点与多个远程网络节点之间存在中继链路,即一对多中继的情形。
例如,确定单元201可以基于来自网络控制端的控制信令来确定SL-DRX的配置。例如,确定单元201可以确定所述网络节点和/或一个 或多个其他网络节点检测PSCCH的活动时间以及不检测PSCCH的睡眠时间。其中,SL-DRX的配置例如可以包括:SLDRX-onDurationTimer,用于指示在网络节点从睡眠状态醒来后检测PSCCH的连续PSCCH子帧数;SLDRX-InactivityTimer,用于指示网络节点等待对PSCCH成功解码的最大PSCCH子帧数;SLDRX-Cycle,用于指示一个SL-DRX周期包含的子帧数;以及SLDRX-StartOffset,用于指示每个SL-DRX周期开始的子帧位置。关于SL-DRX的配置已在第一实施例中进行了详细描述,在此不再重复。
在一个示例中,该网络节点为中继网络节点,来自网络控制端的控制信令包括该网络节点和一个或多个其他网络节点(即,该网络节点的远程网络节点)的SL-DRX的配置。在这种情况下,确定单元201可以确定该网络节点和其远程网络节点的SL-DRX的配置。
反之,如果控制信令中不包括远程网络节点的SL-DRX的配置,则确定单元201根据该控制信令仅确定该网络节点的SL-DRX的配置。
此外,确定单元201还可以采用其他方式来确定其远程网络节点的SL-DRX的配置。例如,确定单元201根据网络节点要发送的数据来确定一个或多个其他网络节点的SL-DRX的配置。这是因为接收端的SL-DRX配置取决于发送端要发送的数据量。当然,确定单元201也可以根据其他因素来确定远程网络节点的SL-DRX的配置,并不限于此。
在另一个示例中,比如在单向中继场景中,该网络节点为远程网络节点。在这种情况下,确定单元201也可以根据网络节点要发送的数据来确定中继网络节点的SL-DRX的配置。
如图6中的虚线框所示,电子设备200还可以包括:收发单元203,被配置为将包含其他网络节点的SL-DRX的配置的控制信令发送给相应的网络节点。例如,中继网络节点向远程网络节点转发接收自网络控制端的SL-DRX的配置或发送中继网路节点自行确定的SL-DRX的配置(例如,对应于图5中的方式2)。或者,远程网络节点向中继网络节点发送其确定的SL-DRX的配置(例如,对应于图5中的方式3)。
收发单元203可以通过RRC信令或者广播信令来进行发送。在一对多中继的场景中,使用广播信令有助于减小信令开销。
此外,收发单元203还可以被配置为向其他网络节点发送指示其他网络节点进入SL-DRX睡眠状态的控制信息或从其他网络节点接收该控制信息。例如,当网络节点要发送的数据量较小或者发送即将完成时,可以通过该控制信息来指示其他网络节点进入SL-DRX睡眠状态。例如,在接收到该控制信息后,其他网络节点进入新的SL-DRX Cycle并且在SLDRX-onDurationTimer超时后进入睡眠状态。因此,除了第一实施例中所述的SLDRX-InactivityTimer超时而进入睡眠状态的情形之外,这提供了网络节点进入睡眠状态的另一种途径。
例如,该控制信息可以通过携带LCID的MAC PDU子头来表示。具体地,可以新增一个命令元素SLDRX Command MAC CE,SLDRX Command MAC CE对应的LCID表征到SL-SCH上如下表1所示,可以看出,SLDRX Command MAC CE具有5比特的固定长度。
表1
索引 LCID值
11011 SL-DRX command
因此,当网络节点接收到值为“11011”的SLDRX Command MAC CE时,即可进入SL-DRX睡眠状态,如图4所示。
根据该实施例的电子设备200通过执行中继链路的SL-DRX,可以降低网络节点的能耗。
<第三实施例>
在中继链路上引入SL-DRX之后,中继网络节点接收数据的SLDRX-ActiveTime的长度随着调度决策和解码成功与否而变化,并且远程网络节点在向中继网络节点发送数据时,并不知道中继网络节点与网络控制端的下行通信状态如何,因此在一些通信制式中比如FDD中可能出现中继网络节点在SLDRX-ActiveTime内时同时接收到来自网络控制端的数据的情形。这样,会出现数据的冲突,中继网络节点会丢失其中一条链路的数据。对于能够接收来自网络控制端和中继网络节点的数据的远程网络节点,也存在类似的问题。因此,为了避免数据接收时发 生的冲突,保证高能效和服务质量(QoS)的平衡,本实施例提出了进行协调的方案。
下面将参照图3的电子设备100和图6的电子设备200对这些方案进行描述。
方案一
在一个示例中,通过网络控制端集中调度来进行协调。例如,确定单元101可以被配置为向如下两种传输分配相互正交的资源,以避免冲突:所述网络控制端到所述中继网络节点的通用链路下行传输;以及所述远程网络节点到所述中继网络节点的中继链路传输。或者,确定单元101可以被配置为向如下两种传输分配相互正交的资源,以避免冲突:所述网络控制端到所述远程网络节点的通用链路下行传输;以及所述中继网络节点到所述远程网络节点的中继链路传输。
例如,确定单元101可以为网络控制端和远程网络节点分配正交的无线资源以用于向该中继网络节点发送数据。正交的资源例如是时间上分开的、互不重叠的资源。这样,中继网络节点接收到的来自网络控制端和远程网络节点的数据在时域上本来就是独立的,从而可以避免数据冲突。
此外,某一实施例中,当中继链路和通用链路上的传输请求同时出现时,确定单元101可以根据通用链路和中继链路的优先级来设置其传输顺序,并且根据该传输顺序来更新中继网络节点或远程网络节点的SL-DRX配置。
例如,中继网络节点首先接收优先级较高的一条链路上的数据,同时不管另一条链路的状态。在一实施例中,通用链路上的发送和接收的优先级均高于中继链路上的发送或接收。当中继链路和通用链路下行链路上同时有数据传输请求时,中继网络节点首先接收来自通用链路的信息。然后,确定单元101可以更新该中继网络节点的SL-DRX配置,并调度远程网络节点迟一些再向中继网络节点发送数据。
对于远程网络节点处出现冲突的情况,可以进行类似的处理,此时确定单元更新该远程网络节点的SL-DRX配置,并调度中继网络节点迟一些再向远程网络节点发送数据。
另一方面,当中继链路上的发送或接收的优先级较高时,中继网络节点将首先接收来自中继链路的信息,并且网络控制端被调度为迟一些再向中继网络节点发送数据。
图7示出了网络控制端集中调度情况下的信息流程的示意图,其中以在中继网络节点处避免冲突为例,并且在两个SL-DRX ActiveTime中分别示出了通用链路具有较高优先级和中继链路具有较高优先级的情形,其中,SL代表中继链路,Uu代表通用链路,UL代表上行链路,DL代表下行链路,SL-DRX的睡眠时间用灰色填充的框表示,SL-DRX ActiveTime用空白框表示。其中,图7中所示为网络控制端直接向远程网络节点调度正交资源,这是图2所示的单向中继场景。在图1所示的双向中继场景下,网络控制单系通过中继网络节点向远程网络节点调度正交资源。可以看出,通过网络控制端对资源的集中调度,使得上行中继链路和下行通用链路的发送资源正交,可以有效地避免或减少冲突的发生,提高能效和服务质量。
如前所述,在中继链路上应用SL-DRX的同时,网络控制端与网络节点之间的通用下行链路上也可以应用DRX,这里的网络节点可以是中继网络节点,也可以是远程网络节点。在这种情况下,网络控制端向网络节点的下行数据传输只会出现在DRX ActiveTime中,由于DRX ActiveTime会受很多因素影响,因此SL-DRX ActiveTime和DRX ActiveTime可能会重叠,从而发生数据冲突。
在网络控制端集中调度的情况下,确定单元101可以被配置为向DRX和SL-DRX分配彼此正交的接收资源,这样可以避免冲突的发生。
仍以中继网络节点为例,图8示出了网络控制端协调DRX和SL-DRX的信息流程的示意图。应该理解,对于远程网络节点信息流程是类似的。例如,确定单元101可以向DRX和SL-DRX分配时域上彼此独立的接收时间窗,如图8的上半部分所示,SL-DRX ActiveTime和DRX ActiveTime在时域上分开,可以完全避免冲突。
其中,可以通过对DRX和SL-DRX重新配置来让两者的接收时间窗正交,从而避免冲突。此外,即使在两者的接收时间窗重叠的时候,也可以通过网络控制端调度资源的方式让网络节点在两段链路上的接收资源在时域上正交开,即不同时接收,如图8的下半部分所示。其中, 网络控制端调度资源的方式的信令开销较小,所以在时间窗有重叠时,可以优先利用资源调度方式解决冲突。
在该方案中,通过网络控制端进行集中调度来协调针对网络节点的通用链路和中继链路的传输,可以有效避免冲突,提高服务质量和能效。
方案二
在该示例中,可以由中继网络节点来协调针对中继网络节点的通用链路下行传输和针对中继网络节点的中继链路传输。例如,中继网络节点可以调度远程网络节点要使用的资源来避免冲突。
示例性地,用于网络节点的电子设备200中的确定单元201可以被配置为向远程网络节点到中继网络节点的中继链路传输分配与网络控制端到中继网络节点的通用链路下行传输所使用的资源相正交的资源,以避免冲突。与方案一中网络控制端集中调度的情况类似,该方案中执行类似的资源调度,只是执行的主体为中继网络节点而非网络控制端,如图7中的虚线箭头所示。
如前所述,在中继链路上应用SL-DRX的同时,网络控制端与网络节点之间的通用下行链路上也可以应用DRX。在这种情况下,确定单元201可以被配置为向SL-DRX分配与DRX彼此正交的接收资源。
例如,确定单元201可以向SL-DRX分配时域上与DRX彼此独立的接收时间窗。此外,即使在两者的接收时间窗重叠的时候,确定单元201也可以通过调度资源的方式让中继网络节点在两段链路上的接收资源在时域上正交开,即不同时接收,如图8中的下部虚线箭头所示。
方案三
在远程网络节点自主选择资源的场景中,中继网络节点作为网络控制端和远程网络节点的“中间人”,可以协调通用链路和中继链路的传输以避免冲突。
该场景包含如下两种情况:第一,远程网络节点处于网络控制端的覆盖范围内,远程网络节点选择的发送资源可能和通用链路下行传输资 源重叠,这是因为发送资源的资源池中的资源可能与蜂窝资源正交或非正交;第二,远程网络节点处于网络控制端的覆盖范围外并使用预先配置的发送资源,此时网络控制端不知道远程网络节点选择了哪些资源进行发送,因此发送资源也可能和通用链路下行传输资源重叠。
在该场景中,中继网络节点知道其SLDRX配置和SLDRX ActiveTime。但是,网络控制端发送的数据是无法预测的,因此中继网络节点可以通知网络控制端它什么时候在中继链路上是睡眠状态,每次中继网络节点在中继链路上处于睡眠状态时,网络控制端都可以向其发送数据或控制信息。
具体地,确定单元201可以被配置为生成用于向网络控制端指示中继网络节点的中继链路进入睡眠状态的指示,并且例如由收发单元203发送给网络控制端。该指示例如可以由中继网络节点在SLDRX-onDuration Timer后的一个子帧上,通过MAC层向网络控制端发送一个SLDRX-sleep Indicator通知其该中继网络节点在中继链路上即将进入睡眠状态。当网络控制端收到该指示后,即确定中继网络节点将能够接收通用链路下行传输的信息。
相应地,用于网络控制端的电子设备100的确定单元101可以被配置为根据来自中继网络节点的SL-DRX睡眠指示符来调度网络控制端到中继网络节点的通用链路下行传输,其中SL-DRX睡眠指示符表示中继网络节点的中继链路进入睡眠状态。
例如,网络控制端知道中继网络节点的SL-DRX的配置比如SLDRX-cycle和SLDRX-startoffset,因此能够计算出中继网络节点的唤醒时间。网络控制端可以在唤醒前的这段时间内向中继网络节点发送下行数据。当时间结束时,网络控制端应该停止发送下行数据,并等待下一个SLDRX-sleep Indicator。如果网络控制端与中继网络节点之间采用DRX,则网络控制端可以根据该SL-DRX睡眠指示符来调整其发送数据的时间,以使其在SLDRX睡眠并且DRX ActiveTime时间内发送数据。
图9示出了基于SL-DRX睡眠指示符的协调的信息流程的示意图,其中,网络控制端在接收到SLDRX-sleep Indicator之后,在SL-DRX的睡眠时间中向中继网络节点发送数据。可以看出,该方式通过新增的信令来避免中继网络节点处的数据冲突,提高了网络能效。
此外,还可以将上述基于SL-DRX睡眠指示符的协调与方案一结合使用,这样可以避免网络控制端需要在每一个子帧上调度资源,从而能够在降低功耗的基础上提高服务效率。
方案四
仍然针对方案三的场景,为了不添加额外的信令,在本方案四中中继网络节点基于“先到先接收”原则来进行随机接收,并且通过特定设置来解决冲突。
此外,该方案不仅适用于中继网络节点,还适用于可能产生通用链路下行传输和中继链路传输的冲突的远程网络节点。因此,在本方案中将通过中继链路向所讨论的网络节点发送数据的网络节点称为其他网络节点。
例如,网络节点按照时间优先原则接收来自网络控制端的数据和来自其他网络节点的数据之一,确定单元201被配置为在接收开始时启动计时器,并且在该计时器的持续时间超过预定时长时停止接收。
具体地,网络节点根据时间顺序接收来自中继链路或通用链路的数据。例如,网络节点在通用链路上检测或在SLDRX ActiveTime上检测,假设网络节点先在其中一条链路上接收到数据,则网络节点保持在其上的接收,直到接收完毕该链路上的信息,如图10中的(1)到(3)。如果网络节点先在通用链路下行链路上接收到数据,但是在接收过程中SLDRX-onDurationTimer启动,网络节点保持在通用链路上的接收并且不管中继链路上的数据传输,如图10中的(4)到(7)。
通过中继链路发送数据的其他网络节点可以进行重传。然而,存在下述情形:在下一个SLDRX-cycle内,网络控制端又先于SLDRX-onDurationTimer启动前向网络节点发送数据,从而导致网络节点会再次错过其对其他网络节点的接收时间窗,如图10中的(8)、(9)。当然,也存在中继链路的数据总是占据优先顺序的情形。
因此,考虑到网络控制端和其他网络节点的公平性以及QoS,可以在网络节点侧维持计时器SLConflict-Timer。如果SLConflict-Timer的持续时间超过了预定时长,说明网络节点可能错过了太多的另一链路的 传输数据。此时网络节点可以停止当前的接收,并且对另一条链路进行检测,如图10中的(10)到(12)。
图10示出了中继节点通过先到先接收原则来进行接收的信息流程的示意图。如图10所示,以网络节点在本来应该接收SL的SLDRX-onDurationTimer期间内先接收到了来自网络控制端的数据(6)为例,网络节点保持通用链路上的接收并启动SLConflict-Timer开始计时,而不管中继链路上是否有数据传输。因此,此时SLConflict-Timer的含义相当于中继链路上的累积睡眠时长。如果下一个SLDRX-onDurationTimer内,网络节点成功接收到来自中继链路上的数据,即网络控制端先于SLDRX-onDurationTimer的超时而结束数据传送,则SLDRX-onDurationTimer直接跳出计时状态,不采取任何行动。直到下一次SLDRX-onDurationTimer期间先接收了来自通用链路的数据,再重新开始计时。例如,该计时器长度可以为SL-DRX cycle的整数倍。
如图10所示,如果SLConflict-Timer超时,则网络节点可以停止接收来自网络控制端的数据,转而优先处理中继链路上的数据。可以看出,在SLConflict-Timer超时的情况下,网络节点将优先接收来自其他网络节点的数据,即使网络控制端仍有数据要发送,网络节点也将错过该数据。
在以上的描述中,网络控制端与网络节点之间的通用链路没有采用DRX,下面将描述该通用链路采用DRX的方案。
例如,确定单元201可以被配置为在DRX与SL-DRX的接收时间窗有重叠的情况下,生成调整DRX或SL-DRX的配置的调整指示,以指示网络控制端或其他网络节点调整DRX或SL-DRX的配置。
网络节点已知DRX和SL-DRX的配置和唤醒时间(即接收时间窗),如果接收时间窗有重叠,则网络节点可以通知其他网络节点和网络控制端两段链路上的状态,并且选择一侧延迟接收,例如通知网络控制端或其他网络节点调整该侧的非连续接收的配置。
作为一种情形,SL-DRX先于DRX醒来,则网络节点应该保持在中继链路上的接收,直到SLDRX-onDurationTimer或SLDRX-InactivityTimer超时。如果在此期间DRX-onDurationTimer启 动,则网络节点应该通知网络控制端为自己调整DRX配置以避免下个DRX周期再出现重叠情况,这可以通过确定单元201生成调整DRX配置的指示并且发送单元203将其发送给网络控制端来实现。
例如,发送单元203可以在SLDRX-onDuartionTimer结束后的子帧上,通过MAC层向网络控制端发送调整指示DRX-Adjust Indicator。
相应地,用于网络控制端的电子设备100的确定单元101可以根据该调整指示来调整网络节点的DRX配置。例如,网络控制端更新该网络节点的DRX-startoffset,即,将DRX cycle的开始时间后移一段时间,以保证下次DRX和SL-DRX的时间窗不会重叠。图11示出了该情形中通用链路和中继链路上的子帧配置的示意图,其中,上半部分示出了中间链路的子帧配置,下半部分示出了通用链路的子帧配置。在图11中,DRX cycle的开始时间后移了三个子帧。
此外,确定单元201还可以被配置为计算调整量,以指示网络控制端根据该调整量调整DRX的配置。在该示例中,该调整量即后移时间长度。当然,该调整量也可以为预先设定值。相应地,图12的上半部分示出了该情形的信息流程的示例,其中,用斜线填充的方框代表调整后的DRX的ActiveTime,可以看出,该DRX的ActiveTime落在SLDRX的睡眠时间内,从而可以避免冲突的发生。
作为另一种情形,DRX可能先于SL-DRX醒来,则网络节点应该保持在通用链路上的接收,直到DRX-onDurationTimer或DRX-InactivityTimer超时。如果在此期间SL-DRX onDurationTimer启动,则网络节点应该通知网络控制端,以使得网络控制端为网络节点调整SL-DRX配置,这可以通过确定单元201生成调整SL-DRX配置的指示并且发送单元203将其发送给网络控制端来实现。
例如,发送单元203可以在DRX-onDuartionTimer结束后的子帧上,通过MAC层向网络控制端发送调整指示SLDRX-Adjust Indicator。
相应地,用于网络控制端的电子设备100的确定单元101可以根据该调整指示来调整网络节点的SL-DRX配置。例如,网络控制端为网络节点更新SLDRX-startoffset,即,将SL-DRX cycle的开始时间后移一段时间,以保证下次DRX和SL-DRX的时间窗不会重叠。类似地,后 移时间长度可以由确定单元201确定并提供给网络控制端,也可以为预先设定值。图12的下半部分示出了该情形的信息流程的示例,类似地,用斜线填充的方框代表调整后的SL-DRX的ActiveTime,可以看出,该SL-DRX的ActiveTime落在DRX的睡眠时间内,从而可以避免冲突的发生。
此外,如果网络节点的SL-DRX由其他网络节点配置,则发送单元203将调整指示发送给其他网络节点,从而由其他网络节点来进行该网络节点的SL-DRX配置的调整。类似地,调整量可以由确定单元201确定并提供给其他网络节点,也可以是预先设定值。
方案五
在该方案中,将考虑在远程网络节点处发生通用链路下行传输和中继网络节点到远程网络节点的中继传输之间的冲突的场景,并且远程网络节点利用中继网络节点的帮助来进行冲突解决。因此,该方案实际上属于中继网络节点协调两种传输的范畴。
例如,用于中继网络节点的电子设备200的确定单元201可以被配置为在中继网络节点完成向远程网络节点的数据传输后,生成用于向网络控制端指示远程网络节点的中继链路进入睡眠状态的指示。这样,网络控制端可以在之后的这段时间内向远程网络节点发送数据。并且,网络控制端或中继网络节点还可以更新远程网络节点的SL-DRX配置比如SLDRX-StartOffset。
相应地,用于网络控制端的电子设备100的确定单元101可以被配置为根据来自中继网络节点的SL-DRX远程睡眠指示符(比如用SLDRX-remoteSleepIndicator表示)来调度网络控制端到远程网络节点的通用链路下行传输,其中SL-DRX远程睡眠指示符表示远程网络节点的中继链路进入睡眠状态。
此外,在网络控制端与远程网络节点之间采用DRX的情况下,确定单元101还可以被配置为在网络控制端完成向远程网络节点的数据传输后生成UuDRX远程睡眠指示符(比如用UuDRX-remoteSleepIndicator表示)以用于向中继网络节点指示远程网络节点的DRX进入睡眠时间。 这样,中继网络节点可以在之后的这段时间内向远程网络节点发送数据。
相应地,确定单元201可以被配置为根据来自网络控制端的UuDRX远程睡眠指示符来更新远程网络节点的SL-DRX配置,其中,UuDRX远程睡眠指示符指示远程网络节点的DRX进入睡眠时间。另一方面,如果远程网络节点的SL-DRX由网络控制端控制,则由确定单元101来对远程网络节点的SL-DRX配置进行更新。
图13示出了该方案的信息流程的示意图。其中,远程网络节点配置有DRX和SL-DRX,中继网络节点发送完数据后,向网络控制端发送SLDRX-remoteSleepIndicator,随后网络控制端更新远程网络节点的SL-DRX配置并且向远程网络节点发送数据,可以看出DRX的新的ActiveTime落在SL-DRX的睡眠时间内,从而可以避免冲突。此外,网络控制端向远程网络节点发送完数据后,向中继网络节点发送UuDRX-remoteSleepIndicator,中继网络节点根据该指示符来更新远程网络节点的SL-DRX配置,并且在随后的SL-DRX ActiveTime内向远程网络节点发送数据,类似地,更新后的SL-DRX ActiveTime落在DRX的睡眠时间内,从而可以避免冲突。
以上描述了用于通用链路下行传输和中继链路传输的各种协调方案,应该理解,这些仅是示例,进行协调的方式并不限于此。通过协调这两种传输,可以有效避免网络节点处的数据冲突,提高网络能效和QoS。
<第四实施例>
在该实施例中,将考虑一个中继网络节点连接多个远程网络节点的场景。对于中继链路的下行,中继网络节点可以容易地通过调度的方式来进行对多个远程网络节点的数据发送。对于中继链路的上行,由于中继网络节点不能同时接收来自多个远程网络节点的数据。因此,需要考虑解决可能发生的数据冲突的问题。
可以理解,当由网络控制端或中继网络节点集中调度远程网络节点要使用的资源时,上述问题可以容易地解决。因此,本实施例主要讨论 远程网络节点自主选择资源的情形。
在一个示例中,用于网络节点的电子设备200的确定单元201被配置为分别向每一个远程网络节点分配接收顺序,并且在根据该接收顺序确定的子帧位置处对相应远程网络节点的PSCCH进行检测。
如前所述,中继网络节点在SLDRX-onDurationTimer内进行PSCCH的检测。可以将SLDRX-onDurationTimer划分为X个部分,分别分配给每个远程网络节点用于PSCCH的检测。图14示出了将SLDRX-onDurationTimer划分为2个部分并且分别分配给远程网络节点1和远程网络节点2的示例,即在SL-DRX醒来的第一个子帧上进行远程网络节点1的PSCCH检测,在第二个子帧上进行远程网络节点2的PSCCH检测。
其中,中继网络节点可以根据每个远程网络节点的优先级和时延容忍程度对它们排序,并给予每个远程网络节点一个RemoteUEOrder。每一个远程网络节点可以根据自己的RemoteUEOrder计算出属于自己的SL-DRX onDurationTimer和SL-DRX startoffset。此外,确定单元201还被配置为为每一个远程网络节点预留进行连续接收的PSCCH子帧。这样,在一些远程网络节点比如可穿戴设备的发送数据相对稳定时,可以有效避免中继网络节点在唤醒和睡眠两种状态下频繁的切换。
分配给每个远程网络节点的连续接收PSCCH子帧长度可以根据相应远程网络节点的业务特性设为不同值,当然也可以设置为相同的值。对于发送数据量周期、稳定、可预测的远程网络节点比如一些可穿戴设备,可以为其分配固定的连续接收PSCCH子帧长度。如图14所示,中继网络节点在SLDRX-onDurationTimer内依次接收来自远程网络节点1和远程网络节点2的PSCCH。远程网络节点1和远程网络节点2可以根据其RemoteUEOrder和连续接收PSCCH子帧长度获知自己的传输时间窗。假设远程网络节点1的优先级更高,则中继网络节点先在6个连续接收PSCCH子帧中检测来自远程网络节点1的PSCCH(但是未必真正接收到PSCCH子帧,例如在图14中,远程网络节点1只发送了3个子帧,因此中继网络节点只会收到3个子帧。)。当中继网络节点对远程网络节点1的接收结束,并且对远程网络节点2的连续接收PSCCH子帧启动时,中继网络节点开始检测来自远程网络节点2的PSCCH。
此外,可以为一部分远程网络节点分配固定的连续接收PSCCH子帧长度,而为其他远程网络节点分配动态变化的连续接收PSCCH子帧长度。或者,也可以为全部远程网络节点分配动态变化的连续接收PSCCH子帧长度。
例如,可以将连续接收PSCCH子帧长度固定的远程网络节点的RemoteUEOrder设置得靠前,仍以图14为例,假设远程网络节点1的连续接收PSCCH子帧长度为6,远程网络节点2的连续接收PSCCH子帧长度是动态变化的。如果还存在远程网络节点3,则确定单元201需要通过根据远程网络节点2的实际连续接收PSCCH子帧长度来确定远程网络节点3的接收子帧开始位置。如果还存在更多个远程网络节点,则根据在前的远程网络节点的实际连续接收PSCCH子帧长度来依次顺延以获得其接收子帧开始位置。
因此,确定单元201被配置为在前一个远程网络节点的连续接收PSCCH子帧的数目是动态变化的情况下,生成针对下一个远程网络节点的接收子帧开始位置的信息,以指示该下一个远程网络节点。发送单元203将该接收子帧开始位置的信息发送给相应的远程网络节点。
此外,确定单元201还被配置为周期性地更新中继网络节点的SL-DRX的配置。例如,发送单元203可以向该中继网络节点的远程网络节点发送更新的SL-DRX配置。
示例性地,发送单元203可以通过广播的方式进行发送。例如,发送单元203通过向各个远程网络节点广播TimerAdjustment Indicator以通知它们下一个SLDRX-onDurationTimer的SLDRX-startoffset。这样每个远程网络节点使用其RemoteUEOrder可以计算出下一次SLDRX-Cycle中中继网络节点给自己配置的SLDRX-onDurationTimer子帧位置。图15示出了该示例的信息流程的示意图,分别用空白框、斜线填充的框、竖线填充的框和点填充的框代表SLDRX-onDurationTime、远程网络节点1-3的连续接收PSCCH子帧。由于远程网络节点2的连续接收PSCCH子帧数是动态变化的,因此需要向远程网络节点3发送其接收子帧开始位置的信息SLDRX-ReceptionIndicator。各个远程网络节点在分配给自己的连续接收PSCCH子帧内发送数据,SLDRX-Cycle结束后,中继网络节点向每一个远程网络节点广播更新的SL-DRX配置。
为了保证SL-DRX的准确性和实时性,中继网络节点需要周期性地与多个远程网络节点更新SL-DRX的计时器。更新的周期例如可以由网络控制端配置或中继网络节点自己确定。通过合理地设置该周期,可以实现服务连续性和能效的平衡。
在另一个示例中,确定单元201可以被配置为在中继网络节点同时检测到来自多个远程网络节点的PSCCH的情况下,随机选择多个远程网络节点之一或者选择优先级最高的一个远程网络节点来接收其数据。在该示例中,中继网络节点不起任何协调作用。在中继网络节点的SLDRX-onDurationTimer中,当它首先检测到来自某远程网络节点的PSCCH,则启动SLDRX-InactivityTimer并保持对该远程网络节点的持续接收。如果中继网络节点在同一时间收到来自多个远程网络节点的PSCCH,则中继网络节点随机选择或选择一个具有最高优先级的来接收和响应。那些没有得到中继网络节点的响应的远程网络节点只能等到下一次中继网络节点的唤醒时间。类似地,当SLDRX-Cycle结束后,中继网络节点应该向每一个远程网络节点广播更新的SL-DRX配置,即SL-DRX的计时器。
在该实施例中,中继网络节点通过协调或者随机接收,可以避免接收多条中继链路上的数据时发生的冲突。
<第五实施例>
在上文的实施方式中描述电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用电子设备的硬件和/或固件。
图16示出了根据本申请的一个实施例的用于网络控制端的电子设备的方法的流程图,该方法包括:针对中继网络节点和远程网络节点之间的中继链路,为中继网络节点和/或远程网络节点配置非连续接收 SL-DRX(S11);以及生成包含SL-DRX的配置的控制信令,以用于指示中继网络节点和/或远程网络节点(S12)。
例如,可以通过确定所述中继网络节点和/或所述远程网络节点检测PSCCH的活动时间以及不检测PSCCH的睡眠时间,来为中继网络节点和/或远程网络节点配置非连续接收SL-DRX。
例如,SL-DRX的配置包括:SLDRX-onDurationTimer,用于指示在网络节点从睡眠状态醒来后检测PSCCH的连续PSCCH子帧数;SLDRX-InactivityTimer,用于指示网络节点等待对PSCCH成功解码的最大PSCCH子帧数;SLDRX-Cycle,用于指示一个SL-DRX周期包含的子帧数;以及SLDRX-StartOffset,用于指示每个SL-DRX周期开始的子帧位置。
此外,如图16中的虚线框所示,上述方法还包括步骤S13:将控制信令发送给中继网络节点和/或远程网络节点。例如,可以通过RRC信令来进行所述发送。
例如,在步骤S13中可以将包含中继网络节点和远程网络节点的SL-DRX配置的控制信令发送给中继网络节点,其中,远程网络节点的SL-DRX配置由中继网络节点转发。
此外,虽然图16中未示出,但是上述方法还可以包括步骤:向如下两种传输分配相互正交的资源,以避免冲突:所述网络控制端到所述中继网络节点的通用链路下行传输;以及所述远程网络节点到所述中继网络节点的中继链路传输针对网络节点的通用链路下行传输;针对网络节点的中继链路传输。或者,可以向如下两种传输分配相互正交的资源,以避免冲突:所述网络控制端到所述远程网络节点的通用链路下行传输;以及所述中继网络节点到所述远程网络节点的中继链路传输。例如,还可以根据通用链路和中继链路的优先级来设置其传输顺序,并且根据该传输顺序来更新中继网络节点或远程网络节点的SL-DRX配置。
在一个示例中,可以根据来自中继网络节点的SL-DRX睡眠指示符来调度网络控制端到中继网络节点的通用链路下行传输,其中SL-DRX睡眠指示符表示中继网络节点的中继链路进入睡眠状态。
在另一个示例中,可以根据来自中继网络节点的SL-DRX远程睡眠 指示符来调度网络控制端到远程网络节点的通用链路下行传输,其中SL-DRX远程睡眠指示符表示远程网络节点的中继链路进入睡眠状态。
在网络控制端与网络节点之间采用DRX的情况下,可以为向DRX和SL-DRX分配彼此正交的接收资源。例如,可以向DRX和SL-DRX分配时域上彼此独立的接收时间窗。
在网络控制端与网络节点之间采用DRX的情况下,还可以根据来自网络节点的调整指示来调整网络节点的DRX或SL-DRX的配置。
在网络控制端与远程网络节点之间采用DRX的情况下,可以在网络控制端完成向远程网络节点的数据传输后生成UuDRX远程睡眠指示符以用于向中继网络节点指示远程网络节点的DRX进入睡眠时间。此外,还可以对远程网络节点的SL-DRX的配置进行更新。
图17示出了根据本申请的一个实施例的用于网络节点的电子设备的方法的流程图,该方法包括:针对该网络节点和一个或多个其他网络节点之间的中继链路,为网络节点和/或一个或多个其他网络节点配置非连续接收SL-DRX(S21);以及基于SL-DRX的配置进行网络节点和一个或多个其他网络节点之间的中继传输(S22)。
例如,可以通过确定所述网络节点和/或一个或多个其他网络节点检测PSCCH的活动时间以及不检测PSCCH的睡眠时间,来为网络节点和/或一个或多个其他网络节点配置非连续接收SL-DRX。例如,SL-DRX的配置包括:SLDRX-onDurationTimer,用于指示在网络节点从睡眠状态醒来后检测PSCCH的连续PSCCH子帧数;SLDRX-InactivityTimer,用于指示网络节点等待对PSCCH成功解码的最大PSCCH子帧数;SLDRX-Cycle,用于指示一个SL-DRX周期包含的子帧数;以及SLDRX-StartOffset,用于指示每个SL-DRX周期开始的子帧位置。
此外,如图17中的虚线框所示,上述方法还包括步骤S13:将包含其他网络节点的SL-DRX的配置的控制信令发送给相应的网络节点。例如可以通过无线资源控制RRC信令或广播信令来进行所述发送。
此外,还可以向其他网络节点发送指示其他网络节点进入SL-DRX睡眠状态的控制信息或从其他网络节点接收该控制信息。该控制信息例如可以通过携带LCID的MAC PDU子头来表示。
在一个示例中,在步骤S21中根据来自网络控制端的控制信令来确定SL-DRX的配置。
在另一个示例中,在步骤S21中根据网络节点要发送的数据来确定一个或多个其他网络节点的SL-DRX的配置。
在网络控制端与网络节点之间采用非连续接收DRX的情况下,在DRX与SL-DRX的接收时间窗有重叠的情况下,可以生成调整DRX或SL-DRX的配置的调整指示,以指示网络控制端或其他网络节点调整DRX或SL-DRX的配置。还可以计算调整量,以指示网络控制端或其他网络节点根据该调整量调整DRX或SL-DRX的配置。
网络节点可以按照时间优先原则接收来自网络控制端的数据和来自其他网络节点的数据之一,例如可以在接收开始时启动计时器,并且在该计时器的持续时间超过预定时长时停止接收,以保证公平性。
在网络节点为中继网络节点,其他网络节点为远程网络节点的情况下,可以向远程网络节点到中继网络节点的中继链路传输分配与网络控制端到中继网络节点的通用链路下行传输所使用的资源相正交的资源,以避免冲突。在网络控制端与中继网络节点之间采用DRX的情况下,可以向SL-DRX分配与DRX彼此正交的接收资源,例如可以向SL-DRX分配时域上与DRX彼此独立的接收时间窗。还可以生成用于向网络控制端指示中继网络节点的中继链路进入睡眠状态的指示,从而使得网络控制端确定可以向中继网络节点发送数据。在网络控制端与远程网络节点之间采用DRX的情况下,可以根据来自网络控制端的UuDRX远程睡眠指示符来更新远程网络节点的SL-DRX配置,其中,UuDRX远程睡眠指示符指示远程网络节点的DRX进入睡眠时间。在中继网络节点完成向远程网络节点的数据传输后,还可以生成用于向网络控制端指示远程网络节点的中继链路进入睡眠状态的指示。
在一对多中继的情形中,可以分别向每一个远程网络节点分配接收顺序,并且在根据该接收顺序确定的子帧位置处对相应远程网络节点的PSCCH进行检测。此外,还可以为每一个远程网络节点预留进行连续接收的PSCCH子帧。
在前一个远程网络节点的连续接收PSCCH子帧的数目是动态变化 的情况下,还可以生成针对下一个远程网络节点的接收子帧开始位置的信息,以指示下一个远程网络节点。
此外,为了保证准确性和实时性,还可以周期性地更新中继网络节点的SL-DRX的配置。
在另一个示例中,在中继网络节点同时检测到来自多个远程网络节点的PSCCH的情况下,随机选择多个远程网络节点之一或者选择优先级最高的一个远程网络节点来接收其数据。
注意,上述各个方法可以结合或单独使用,其细节在第一至第四实施例中已经进行了详细描述,在此不再重复。
综上所述,根据本申请的电子设备和方法通过在中继链路上应用非连续接收并且采用各种协调方式,可以有效地降低进行中继通信的设备的能耗,并提高数据传输效率。
<应用示例>
本公开内容的技术能够应用于各种产品。以上提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如17所示,eNB 800可以包括多个天线810。例如, 多个天线810可以与eNB 800使用的多个频带兼容。虽然图18示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀 片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图18所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图18所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图18示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图18所示的eNB 800中,参照图3所描述的收发单元103可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行确定单元101、生成单元102的功能来执行SL-DRX的配置以及相应控制信令的生成。
(第二应用示例)
图19是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图19所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图19示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图24描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864 之外,BB处理器856与参照图19描述的BB处理器826相同。如图19所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图19示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图19所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图19示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图19所示的eNB 830中,参照图3所描述的收发单元103可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以控制器851实现。例如,控制器851可以通过执行确定单元101、生成单元102的功能来执行SL-DRX的配置以及相应控制信令的生成。
[关于用户设备的应用示例]
(第一应用示例)
图20是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制 器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图20所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图20示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种 无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图20所示,智能电话900可以包括多个天线916。虽然图20示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图20所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图20所示的智能电话900中,参照图6所描述的收发单元203可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元201、中继传输单元202的功能来在中继链路上实现非连续接收。
(第二应用示例)
图21是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的 导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图21所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图21示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图21所示,汽车导航设备920可以包括多个天线937。虽然图20示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图21所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图21示出的汽车导航设备920中,参照图6所描述的收发单元203可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过通过执行确定单元201、中继传输单元202的功能来在中继链路上实现非连续接收。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图22所示的通用计算机2200)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图22中,中央处理单元(CPU)2201根据只读存储器(ROM)2202中存储的程序或从存储部分2208加载到随机存取存储器(RAM)2203的程序执行各种处理。在RAM 2203中,也根据需要存储当CPU2201执行各种处理等等时所需的数据。CPU 2201、ROM 2202和RAM2203经由总线2204彼此连接。输入/输出接口2205也连接到总线2204。
下述部件连接到输入/输出接口2205:输入部分2206(包括键盘、鼠标等等)、输出部分2207(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2208(包括硬盘等)、通信部分2209(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2209经由网络比如因特网执行通信处理。根据需要,驱动器2210也可连接到输入/输出接口2205。可移除介质2211比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2210上,使得从中读出的计算机程序根据需要被安装到存储部分2208中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2211安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图22所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2211。可移除介质2211的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2202、存储部分2208中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (41)

  1. 一种用于网络控制端的电子设备,包括:
    处理电路,被配置为:
    针对中继网络节点和远程网络节点之间的中继链路,为所述中继网络节点和/或所述远程网络节点配置非连续接收SL-DRX;以及
    生成包含所述SL-DRX的配置的控制信令,以用于指示所述中继网络节点和/或所述远程网络节点。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为通过确定所述中继网络节点和/或所述远程网络节点检测PSCCH的活动时间以及不检测PSCCH的睡眠时间来配置所述非连续接收SL-DRX。
  3. 根据权利要求1所述的电子设备,还包括:
    收发单元,被配置为将所述控制信令发送给所述中继网络节点和/或所述远程网络节点。
  4. 根据权利要求3所述的电子设备,其中,所述收发单元被配置为通过无线资源控制RRC信令来进行所述发送。
  5. 根据权利要求3所述的电子设备,其中所述收发单元被配置为将包含所述中继网络节点和所述远程网络节点的SL-DRX配置的所述控制信令发送给所述中继网络节点,其中,所述远程网络节点的SL-DRX配置由所述中继网络节点转发。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为向所述网络控制端到所述中继网络节点的通用链路下行传输与所述远程网络节点到所述中继网络节点的中继链路传输分配相互正交的资源;或者向所述网络控制端到所述远程网络节点的通用链路下行传输与所述中继网络节点到所述远程网络节点的中继链路传输分配相互正交的资源。
  7. 根据权利要求6所述的电子设备,其中,所述处理电路还被配置为根据通用链路和中继链路的优先级来设置其传输顺序,并且根据该传输顺序来更新所述中继网络节点或所述远程网络节点的SL-DRX配置。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为根据来自所述中继网络节点的SL-DRX睡眠指示符来调度所述网络控制端到所述中继网络节点的通用链路下行传输,其中所述SL-DRX睡眠指示符表示所述中继网络节点的中继链路进入睡眠状态。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为根据来自所述中继网络节点的SL-DRX远程睡眠指示符来调度所述网络控制端到所述远程网络节点的通用链路下行传输,其中所述SL-DRX远程睡眠指示符表示所述远程网络节点的中继链路进入睡眠状态。
  10. 根据权利要求1所述的电子设备,其中,在所述网络控制端与网络节点之间采用非连续接收DRX的情况下,所述处理电路被配置为向所述DRX和所述SL-DRX分配彼此正交的接收资源。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路被配置为向所述DRX和所述SL-DRX分配时域上彼此独立的接收时间窗。
  12. 根据权利要求1所述的电子设备,其中,在所述网络控制端与网络节点之间采用非连续接收DRX的情况下,所述处理电路还被配置为根据来自所述网络节点的调整指示来调整所述网络节点的DRX或SL-DRX的配置。
  13. 根据权利要求1所述的电子设备,其中,在所述网络控制端与所述远程网络节点之间采用非连续接收DRX的情况下,所述处理电路还被配置为在所述网络控制端完成向所述远程网络节点的数据传输后生成UuDRX远程睡眠指示符以用于向所述中继网络节点指示所述远程网络节点的DRX进入睡眠时间。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为对所述远程网络节点的SL-DRX的配置进行更新。
  15. 根据权利要求2所述的电子设备,其中,所述SL-DRX的配置包括:SLDRX-onDurationTimer,用于指示在网络节点从睡眠状态醒来后检测PSCCH的连续PSCCH子帧数;SLDRX-InactivityTimer,用于指示网络节点等待对PSCCH成功解码的最大PSCCH子帧数;SLDRX-Cycle,用于指示一个SL-DRX周期包含的子帧数;以及SLDRX-StartOffset,用于指示每个SL-DRX周期开始的子帧位置。
  16. 一种用于网络节点的电子设备,包括:
    处理电路,被配置为:
    针对该网络节点和一个或多个其他网络节点之间的中继链路,为所述网络节点和/或所述一个或多个其他网络节点配置非连续接收SL-DRX;以及
    基于所述SL-DRX的配置进行所述网络节点和所述一个或多个其他网络节点之间的中继传输。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为通过确定所述网络节点和/或所述一个或多个其他网络节点检测PSCCH的活动时间以及不检测PSCCH的睡眠时间来配置所述非连续接收SL-DRX。
  18. 根据权利要求16所述的电子设备,还包括:
    收发单元,被配置为将包含所述其他网络节点的SL-DRX的配置的控制信令发送给相应的网络节点。
  19. 根据权利要求18所述的电子设备,其中,所述收发单元被配置为通过无线资源控制RRC信令或广播信令来进行所述发送。
  20. 根据权利要求18所述的电子设备,其中,所述收发单元还被配置为向所述其他网络节点发送指示所述其他网络节点进入SL-DRX睡眠状态的控制信息或从所述其他网络节点接收该控制信息。
  21. 根据权利要求20所述的电子设备,其中,所述控制信息通过携带LCID的MAC PDU子头来表示。
  22. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为根据来自网络控制端的控制信令来确定所述SL-DRX的配置。
  23. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为根据所述网络节点要发送的数据来确定所述一个或多个其他网络节点的SL-DRX的配置。
  24. 根据权利要求16所述的电子设备,其中,在网络控制端与所述网络节点之间采用非连续接收DRX的情况下,所述处理电路还被配置为在DRX与SL-DRX的接收时间窗有重叠的情况下,生成调整DRX或 SL-DRX的配置的调整指示,以指示所述网络控制端或所述其他网络节点调整所述DRX或所述SL-DRX的配置。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路还被配置为计算调整量,以指示所述网络控制端或所述其他网络节点根据该调整量调整所述DRX或所述SL-DRX的配置。
  26. 根据权利要求16所述的电子设备,其中,所述网络节点按照时间优先原则接收来自网络控制端的数据和来自其他网络节点的数据之一,所述处理电路被配置为在接收开始时启动计时器,并且在该计时器的持续时间超过预定时长时停止接收。
  27. 根据权利要求16所述的电子设备,其中,所述网络节点为中继网络节点,所述其他网络节点为远程网络节点。
  28. 根据权利要求27所述的电子设备,其中,所述处理电路被配置为向所述远程网络节点到所述中继网络节点的中继链路传输分配与网络控制端到所述中继网络节点的通用链路下行传输所使用的资源相正交的资源,以避免冲突。
  29. 根据权利要求27所述的电子设备,其中,在网络控制端与所述中继网络节点之间采用非连续接收DRX的情况下,所述处理电路被配置为向所述SL-DRX分配与所述DRX彼此正交的接收资源。
  30. 根据权利要求29所述的电子设备,其中,所述处理电路被配置为向所述SL-DRX分配时域上与所述DRX彼此独立的接收时间窗。
  31. 根据权利要求27所述的电子设备,其中,所述处理电路被配置为生成用于向网络控制端指示中继网络节点的中继链路进入睡眠状态的指示。
  32. 根据权利要求27所述的电子设备,其中,在网络控制端与所述远程网络节点之间采用非连续接收DRX的情况下,所述处理电路被配置为根据来自网络控制端的UuDRX远程睡眠指示符来更新所述远程网络节点的SL-DRX配置,其中,UuDRX远程睡眠指示符指示所述远程网络节点的DRX进入睡眠时间。
  33. 根据权利要求27所述的电子设备,其中,所述处理电路被配置 为在所述中继网络节点完成向所述远程网络节点的数据传输后,生成用于向所述网络控制端指示所述远程网络节点的中继链路进入睡眠状态的指示。
  34. 根据权利要求27所述的电子设备,其中,所述处理电路被配置为分别向每一个远程网络节点分配接收顺序,并且在根据该接收顺序确定的子帧位置处对相应远程网络节点的PSCCH进行检测。
  35. 根据权利要求34所述的电子设备,其中,所述处理电路还被配置为为每一个远程网络节点预留进行连续接收的PSCCH子帧。
  36. 根据权利要求35所述的电子设备,其中,所述处理电路还被配置为在前一个远程网络节点的连续接收PSCCH子帧的数目是动态变化的情况下,生成针对下一个远程网络节点的接收子帧开始位置的信息,以指示所述下一个远程网络节点。
  37. 根据权利要求34所述的电子设备,其中,所述处理电路还被配置为周期性地更新所述中继网络节点的SL-DRX的配置。
  38. 根据权利要求27所述的电子设备,其中,所述处理电路被配置为在中继网络节点同时检测到来自多个远程网络节点的PSCCH的情况下,随机选择所述多个远程网络节点之一或者选择优先级最高的一个远程网络节点来接收其数据。
  39. 根据权利要求17所述的电子设备,所述SL-DRX的配置包括:SLDRX-onDurationTimer,用于指示在网络节点从睡眠状态醒来后检测PSCCH的连续PSCCH子帧数;SLDRX-InactivityTimer,用于指示网络节点等待对PSCCH成功解码的最大PSCCH子帧数;SLDRX-Cycle,用于指示一个SL-DRX周期包含的子帧数;以及SLDRX-StartOffset,用于指示每个SL-DRX周期开始的子帧位置。
  40. 一种用于网络控制端的电子设备的方法,包括:
    针对中继网络节点和远程网络节点之间的中继链路,为所述中继网络节点和/或所述远程网络节点配置非连续接收SL-DRX;以及
    生成包含所述SL-DRX的配置的控制信令,以用于指示所述中继网络节点和/或所述远程网络节点。
  41. 一种用于网络节点的电子设备的方法,包括:
    针对该网络节点和一个或多个其他网络节点之间的中继链路,为所述网络节点和/或所述一个或多个其他网络节点配置非连续接收SL-DRX;以及
    基于所述SL-DRX的配置进行所述网络节点和所述一个或多个其他网络节点之间的中继传输。
PCT/CN2017/093806 2016-08-11 2017-07-21 用于网络控制端和网络节点的电子设备和方法 WO2018028416A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202211121632.4A CN115361729A (zh) 2016-08-11 2017-07-21 用于网络控制端和网络节点的电子设备和方法
EP17838546.4A EP3500028B1 (en) 2016-08-11 2017-07-21 Electronic device and method used for network control terminal and network node
US16/313,903 US10708861B2 (en) 2016-08-11 2017-07-21 Electronic device and method used for network control terminal and network node
JP2019505427A JP7246302B2 (ja) 2016-08-11 2017-07-21 ネットワーク制御端末及びネットワークノードに用いられる電子装置及び方法
CN201780033434.3A CN109196939B (zh) 2016-08-11 2017-07-21 用于网络控制端和网络节点的电子设备和方法
KR1020197002745A KR102423403B1 (ko) 2016-08-11 2017-07-21 네트워크 제어 단말기 및 네트워크 노드에 사용되는 전자 디바이스 및 방법
US16/885,309 US20200296668A1 (en) 2016-08-11 2020-05-28 Electronic device and method used for network control terminal and network node
US17/670,518 US20220167268A1 (en) 2016-08-11 2022-02-14 Electronic device and method used for network control terminal and network node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610657623.5 2016-08-11
CN201610657623.5A CN108307486A (zh) 2016-08-11 2016-08-11 用于网络控制端和网络节点的电子设备和方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/313,903 A-371-Of-International US10708861B2 (en) 2016-08-11 2017-07-21 Electronic device and method used for network control terminal and network node
US16/885,309 Continuation US20200296668A1 (en) 2016-08-11 2020-05-28 Electronic device and method used for network control terminal and network node

Publications (1)

Publication Number Publication Date
WO2018028416A1 true WO2018028416A1 (zh) 2018-02-15

Family

ID=61162735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093806 WO2018028416A1 (zh) 2016-08-11 2017-07-21 用于网络控制端和网络节点的电子设备和方法

Country Status (6)

Country Link
US (3) US10708861B2 (zh)
EP (1) EP3500028B1 (zh)
JP (1) JP7246302B2 (zh)
KR (1) KR102423403B1 (zh)
CN (3) CN108307486A (zh)
WO (1) WO2018028416A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574443A (zh) * 2019-07-29 2019-12-13 北京小米移动软件有限公司 直连通信方法、装置及存储介质
CN111480391A (zh) * 2020-03-13 2020-07-31 北京小米移动软件有限公司 直连链路数据传输方法、装置及存储介质
WO2021138789A1 (en) * 2020-01-07 2021-07-15 Mediatek Inc. Methods and apparatus for sidelink drx operation
WO2021147011A1 (en) * 2020-01-22 2021-07-29 Lenovo (Beijing) Limited Method and apparatus for aligning sidelink drxconfiguration
WO2021155594A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 一种选取资源的方法及装置、终端设备
WO2021207892A1 (zh) * 2020-04-13 2021-10-21 北京小米移动软件有限公司 监听信道的方法、装置、用户设备及存储介质
WO2022077395A1 (zh) * 2020-10-15 2022-04-21 Oppo广东移动通信有限公司 侧行链路的传输方法和终端

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10849020B2 (en) * 2019-01-09 2020-11-24 Cisco Technology, Inc. Scheduling relay of traffic between access point(s) and client device(s)
WO2020256462A1 (ko) * 2019-06-19 2020-12-24 엘지전자 주식회사 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법
KR102364867B1 (ko) * 2019-06-25 2022-02-18 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드링크 통신을 구성하기 위한 방법 및 장치
US11540171B2 (en) * 2019-07-12 2022-12-27 Qualcomm Incorporated Assisting communications of small data payloads with relay nodes
EP3780891A1 (en) * 2019-08-01 2021-02-17 ASUSTek Computer Inc. Method and apparatus for providing power saving of monitoring for device-to-device communication in a wireless communication system
WO2021029672A1 (ko) * 2019-08-12 2021-02-18 엘지전자 주식회사 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법 및 장치
US11751141B2 (en) * 2019-08-15 2023-09-05 Qualcomm Incorporated Discontinuous reception operation for sidelink communication
CN115103424A (zh) * 2019-08-22 2022-09-23 维沃移动通信有限公司 边链路非连续发送、接收方法与装置及终端设备
CN111800894A (zh) * 2019-08-22 2020-10-20 维沃移动通信有限公司 sidelink的DRX配置方法和设备
CN111800764B (zh) * 2019-08-22 2022-05-13 维沃移动通信有限公司 边链路drx参数配置方法、装置及终端设备
WO2021060786A1 (ko) * 2019-09-27 2021-04-01 주식회사 케이티 사이드링크 통신을 제어하는 방법 및 그 장치
US20220418036A1 (en) * 2019-11-12 2022-12-29 Lg Electronics Inc. Sidelink drx-associated operation method for ue in wireless communication system
US20230014079A1 (en) * 2019-12-06 2023-01-19 Sierra Wireless, Inc. Method and apparatus for device to device communication for cellular devices
US11622411B2 (en) * 2019-12-13 2023-04-04 Qualcomm Incorporated Sidelink communication using a cellular discontinuous reception configuration
US11576225B2 (en) * 2019-12-16 2023-02-07 Qualcomm Incorporated Sidelink unicast connection states
US11671915B2 (en) * 2019-12-24 2023-06-06 Qualcomm Incorporated Coordinated sidelink power savings configurations
US11825412B2 (en) * 2019-12-24 2023-11-21 Qualcomm Incorporated Coordinated sidelink and access link power savings configurations
CN114731488A (zh) 2020-01-07 2022-07-08 Lg电子株式会社 终端在无线通信系统中发送和接收信号的方法
CN113099518B (zh) 2020-01-08 2022-08-09 华为技术有限公司 非连续接收drx参数配置方法和装置
CN113133096B (zh) * 2020-01-15 2023-03-28 大唐移动通信设备有限公司 一种信息确定方法、装置、设备及计算机可读存储介质
CN113225841A (zh) * 2020-01-21 2021-08-06 华硕电脑股份有限公司 无线通信系统中网络配置侧链路不连续接收的方法和设备
CN113225846A (zh) * 2020-01-21 2021-08-06 华为技术有限公司 一种通信方法及装置
US20230066041A1 (en) * 2020-01-21 2023-03-02 Lenovo (Beijing) Ltd. Method and apparatus for power saving on sidelink
CN115004780A (zh) * 2020-01-21 2022-09-02 鸿颖创新有限公司 用于侧链路分组交换操作的方法和用户设备
US20210227604A1 (en) * 2020-01-21 2021-07-22 Asustek Computer Inc. Method and apparatus for monitoring device-to-device sidelink control signal in a wireless communication system
KR102443862B1 (ko) * 2020-01-21 2022-09-16 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 주기적 송신에 관한 사이드링크 불연속 수신을 핸들링하기 위한 방법 및 장치
KR102436322B1 (ko) * 2020-01-21 2022-08-25 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드링크 불연속 수신을 구성하기 위한 방법 및 장치
WO2021147006A1 (en) * 2020-01-22 2021-07-29 Lenovo (Beijing) Limited Sidelink reception alignment
CN113259895B (zh) * 2020-02-07 2022-10-18 上海朗帛通信技术有限公司 用于不连续接收的方法和装置
CN113260024B (zh) * 2020-02-10 2022-08-26 大唐移动通信设备有限公司 一种非连续接收定时器管理方法及终端
CN113259911B (zh) * 2020-02-10 2022-12-13 大唐移动通信设备有限公司 一种信息配置方法、装置、设备及计算机可读存储介质
CN113260026B (zh) * 2020-02-10 2022-08-19 大唐移动通信设备有限公司 一种非连续接收处理方法、终端、装置以及介质
US20220232660A1 (en) * 2020-02-11 2022-07-21 Lg Electronics Inc. Method of operating a ue related to sidelink drx in a wireless communication system
US20230095483A1 (en) * 2020-02-11 2023-03-30 Lg Electronics Inc. Method for sidelink drx-related operation of ue in wireless communication system
US20230063472A1 (en) * 2020-02-12 2023-03-02 Idac Holdings, Inc. Methods for performing discontinuous reception on sidelink
CN114982355A (zh) 2020-02-13 2022-08-30 中兴通讯股份有限公司 用于侧链路通信的方法和设备
CN115039468A (zh) * 2020-02-13 2022-09-09 中兴通讯股份有限公司 用于侧链路通信的方法和设备
US11638323B2 (en) * 2020-02-14 2023-04-25 Qualcomm Incorporated Discontinuous reception command over sidelink
EP3866553A1 (en) * 2020-02-17 2021-08-18 Sony Group Corporation Communications devices and methods
CN116419289A (zh) * 2020-02-21 2023-07-11 维沃移动通信有限公司 非连续传输配置方法及用户设备
CN113382380A (zh) * 2020-03-10 2021-09-10 华为技术有限公司 一种侧行链路的通信方法和通信装置
US11589414B2 (en) * 2020-03-12 2023-02-21 Qualcomm Incorporated Layer 2 user equipment relay procedure
CN113395749B (zh) * 2020-03-13 2023-04-07 维沃移动通信有限公司 传输配置方法及电子设备
WO2021186732A1 (ja) * 2020-03-19 2021-09-23 株式会社Nttドコモ 端末及び通信方法
CN117354902A (zh) * 2020-03-20 2024-01-05 华为技术有限公司 反馈信息接收方法及装置
CN113453317B (zh) * 2020-03-25 2024-01-05 华为技术有限公司 一种侧行链路通信方法及装置
US11758481B2 (en) 2020-03-26 2023-09-12 Qualcomm Incorporated Independent sidelink (SL) discontinuous reception (DRX)
US20230156857A1 (en) * 2020-04-07 2023-05-18 Kt Corporation Method for controlling sidelink communication, and apparatus therefor
CN113497681B (zh) * 2020-04-07 2023-05-16 展讯通信(上海)有限公司 设置drx的活动态的方法、装置、用户设备及存储介质
EP4192125A1 (en) * 2020-04-07 2023-06-07 KT Corporation Method for controlling sidelink communication and device therefor
CN111556590B (zh) * 2020-04-13 2022-07-19 中国信息通信研究院 一种边链路非连续接收方法
WO2021230556A1 (ko) * 2020-05-15 2021-11-18 현대자동차주식회사 Drx에 기초한 사이드링크 통신을 위한 방법 및 장치
CN115516924A (zh) * 2020-05-17 2022-12-23 高通股份有限公司 用于无线通信系统中侧行链路通信的不连续接收
US11800591B2 (en) * 2020-06-12 2023-10-24 Qualcomm Incorporated Sidelink DRX and standalone sidelink beam failure detection and recovery
WO2021248450A1 (en) * 2020-06-12 2021-12-16 Lenovo (Beijing) Limited Method and apparatus for sidelink drx operation
WO2021253183A1 (zh) * 2020-06-15 2021-12-23 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
US11943832B2 (en) * 2020-06-22 2024-03-26 Samsung Electronics Co., Ltd. UE assistance information report for sidelink DRX
US20230262607A1 (en) * 2020-06-24 2023-08-17 Beijing Xiaomi Mobile Software Co., Ltd. State control method and communication device
US11997744B2 (en) * 2020-07-08 2024-05-28 Samsung Electronics Co., Ltd. Method and apparatus for sidelink DRX operations in a wireless communication system
KR20220006777A (ko) * 2020-07-09 2022-01-18 삼성전자주식회사 무선 통신 시스템에서 불연속 수신모드 단말의 sidelink 동작을 지원하기 위한 장치 및 방법
KR102658304B1 (ko) * 2020-07-13 2024-04-18 엘지전자 주식회사 자원 할당에 기반한 사이드링크 drx 동작
BR112023000507A2 (pt) * 2020-07-13 2023-01-31 Lenovo Singapore Pte Ltd Indicação de uma solicitação de recursos de enlace lateral
CN112512102A (zh) * 2020-07-14 2021-03-16 中兴通讯股份有限公司 节能、参数配置方法、装置、终端、基站及存储介质
US11778682B2 (en) 2020-07-14 2023-10-03 Lg Electronics Inc. Sidelink DRX operation based on multiple DRX configurations and prioritization
WO2022012740A1 (en) * 2020-07-14 2022-01-20 Huawei Technologies Co., Ltd. Management of sidelink drx timers
US20220022279A1 (en) * 2020-07-15 2022-01-20 Electronics And Telecommunications Research Institute Low power operation method of terminal supporting direct communication, and apparatus for the same
US20230292395A1 (en) * 2020-07-17 2023-09-14 Lenovo (Beijing) Limited Method and apparatus for aligning sidelink drx
EP4186327A1 (en) * 2020-07-21 2023-05-31 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for drx for xr services
US11903080B2 (en) 2020-07-24 2024-02-13 Samsung Electronics Co., Ltd. Method and apparatus for discontinuous reception operations of sidelink groupcast/broadcast
KR20220014763A (ko) * 2020-07-29 2022-02-07 삼성전자주식회사 무선 통신 시스템에서 사이드링크의 비연속적 수신을 지원하기 위한 방법 및 장치
JP2023536419A (ja) * 2020-07-29 2023-08-25 エルジー エレクトロニクス インコーポレイティド Nr v2xにおける省電力モード別drx動作を実行する方法及び装置
US20230319949A1 (en) * 2020-07-31 2023-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for sidelink transmission in case of discontinuous reception
US20230292344A1 (en) * 2020-07-31 2023-09-14 Lg Electronics Inc. Method and device for determining cbr value in nr v2x
CN114071666B (zh) * 2020-08-06 2023-11-21 大唐移动通信设备有限公司 信息处理方法、装置、设备及存储介质
KR20230042033A (ko) 2020-08-06 2023-03-27 지티이 코포레이션 차량 대 사물 간의 사이드링크 통신을 위한 시스템 및 방법
WO2022027593A1 (en) * 2020-08-07 2022-02-10 Mediatek Inc. On sidelink drx mechanism for power saving
WO2022027680A1 (zh) * 2020-08-07 2022-02-10 Oppo广东移动通信有限公司 无线通信方法和设备
CN114126093A (zh) * 2020-08-27 2022-03-01 维沃移动通信有限公司 副链路非连续接收的控制方法、装置、设备及可读存储介质
US20230380005A1 (en) * 2020-09-25 2023-11-23 Lg Electronics Inc. Operation method and device using non-activation period of sl drx configuration in nr v2x
WO2022061681A1 (en) 2020-09-25 2022-03-31 Apple Inc. Mechanisms for managing user equipment on sidelink communication
KR20230057402A (ko) * 2020-09-25 2023-04-28 엘지전자 주식회사 Sl drx를 위한 채널 센싱 및 자원 할당 방법 및 장치
CN112314047B (zh) * 2020-09-25 2023-10-31 北京小米移动软件有限公司 定时器的控制方法及装置、通信设备和存储介质
CN112153603A (zh) * 2020-09-29 2020-12-29 腾讯科技(深圳)有限公司 车辆通信方法、装置、计算机可读介质及电子设备
WO2022069475A2 (en) * 2020-09-30 2022-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signaling and information exchange for drx on sidelink communication
WO2022067733A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种配置非连续接收drx参数的方法、设备和通信系统
EP4228362A1 (en) * 2020-10-06 2023-08-16 LG Electronics Inc. Method and device for priority comparison-based sl drx operation in nr v2x
CN116584151A (zh) * 2020-10-06 2023-08-11 京瓷株式会社 通信控制方法
KR20230091098A (ko) * 2020-10-19 2023-06-22 엘지전자 주식회사 Nr v2x에서 sl lch 별 sl drx 설정을 구성하는 방법 및 장치
KR20230091096A (ko) * 2020-10-19 2023-06-22 엘지전자 주식회사 Nr v2x에서 sl drx 동작에 대한 웨이크-업을 수행하는 방법 및 장치
EP4236518A1 (en) * 2020-10-20 2023-08-30 LG Electronics Inc. Method and device for performing initial transmission and retransmission on basis of active time related to sl drx in nr v2x
US20230397292A1 (en) * 2020-10-20 2023-12-07 Lg Electronics Inc. Method and device for aligning sl drx active time in nr v2x
WO2022086116A1 (ko) * 2020-10-21 2022-04-28 엘지전자 주식회사 사이드링크 통신
WO2022082647A1 (en) * 2020-10-22 2022-04-28 Apple Inc. Sidelink drx optimizations for rrc_connected user equipment (ue)
EP3989646A1 (en) * 2020-10-22 2022-04-27 Nokia Technologies Oy Sidelink discontinuous reception communications
WO2022086280A1 (ko) * 2020-10-22 2022-04-28 엘지전자 주식회사 Nr v2x에서 sl drx 동작을 수행하는 방법 및 장치
EP4236598A4 (en) * 2020-10-22 2023-12-20 Fujitsu Limited METHOD AND APPARATUS FOR DISCONTINUOUS SIDELINK RECEPTION
EP4271101A1 (en) * 2020-12-24 2023-11-01 LG Electronics Inc. Method and apparatus for transmitting sl drx mac ce in nr v2x
US20240080937A1 (en) * 2020-12-31 2024-03-07 Lg Electronics Inc. Method for operating sl drx in consideration of mode 1 operation of transmission terminal in nr v2x
WO2022146106A1 (ko) * 2020-12-31 2022-07-07 엘지전자 주식회사 Nr v2x에서 단말 타입에 따른 sl drx 동작 방법 및 장치
KR20220101874A (ko) * 2021-01-12 2022-07-19 주식회사 아이티엘 무선 통신 시스템에서 drx 동작 방법 및 장치
CN116762463A (zh) * 2021-01-13 2023-09-15 高通股份有限公司 用于侧链路接口的中继适配层配置
CN114765840A (zh) * 2021-01-14 2022-07-19 华为技术有限公司 一种通信方法及装置
WO2022153233A1 (en) * 2021-01-14 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Controlling active time of a terminal device
CN112512124B (zh) * 2021-02-03 2021-07-09 之江实验室 一种确定侧行链路传输资源的方法
WO2022169252A1 (ko) * 2021-02-03 2022-08-11 현대자동차주식회사 자원 할당 모드 1을 지원하는 사이드링크 통신에서 sl drx 기반의 통신 방법
WO2022203580A1 (en) * 2021-03-24 2022-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user equipment and methods therein for managing communication over a side-link in a wireless communication network
JP2023536668A (ja) * 2021-03-26 2023-08-28 エルジー エレクトロニクス インコーポレイティド Nr v2xでsl harqフィードバックを送信する方法及び装置
CN115190651A (zh) * 2021-04-01 2022-10-14 维沃移动通信有限公司 侧链路非连续接收的实现方法、装置及终端
JP2024513196A (ja) * 2021-04-01 2024-03-22 コーニンクレッカ フィリップス エヌ ヴェ サイドリンク間欠受信手順
WO2022205449A1 (en) * 2021-04-02 2022-10-06 Nec Corporation Methods for communication, terminal devices, and computer readable media
CN113099348A (zh) 2021-04-09 2021-07-09 泰凌微电子(上海)股份有限公司 降噪方法、降噪装置和耳机
US11606836B2 (en) * 2021-05-07 2023-03-14 Qualcomm Incorporated Configuring discontinuous reception (DRX) parameters for sidelink communications
CN115968059A (zh) * 2021-05-31 2023-04-14 索尼集团公司 基站、电子设备、通信方法和存储介质
US11564208B1 (en) * 2021-07-30 2023-01-24 Asustek Computer Inc. Method and apparatus for radio resource allocation to support UE-to-network relaying in a wireless communication system
WO2023039791A1 (en) * 2021-09-16 2023-03-23 Qualcomm Incorporated Rrc timer for layer 2 ue-to-network relay
CN118104367A (zh) * 2021-10-12 2024-05-28 联想(新加坡)私人有限公司 中继数据量信息
US20230156853A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Procedure and signaling for sidelink drx alignment
WO2023195771A1 (ko) * 2022-04-05 2023-10-12 엘지전자 주식회사 Sl-u에서 sl drx를 고려한 cot 공유 동작 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841920A (zh) * 2009-03-17 2010-09-22 华为技术有限公司 一种无线中继系统和无线中继系统的通信方法
CN102378329A (zh) * 2010-08-16 2012-03-14 华为技术有限公司 实现非连续接收的方法和装置
WO2013131234A1 (en) * 2012-03-05 2013-09-12 Renesas Mobile Corporation Methods, apparatuses, and computer-readable storage media for relaying traffic in d2d communications
WO2015142066A1 (ko) * 2014-03-20 2015-09-24 엘지전자(주) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2015152581A1 (ko) * 2014-03-30 2015-10-08 엘지전자(주) 단말 간 통신을 지원하는 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105432A1 (zh) * 2009-03-20 2010-09-23 华为技术有限公司 一种通信方法、中继设备、终端设备及中继系统
KR20110020005A (ko) * 2009-08-21 2011-03-02 주식회사 팬택 무선통신시스템에서 데이터 송수신 방법
EP2437422A1 (en) * 2010-10-01 2012-04-04 Panasonic Corporation Search space for uplink and downlink grant in an OFDM-based mobile communication system
US9363753B2 (en) * 2011-07-19 2016-06-07 Qualcomm Incorporated Sleep mode for user equipment relays
CN104717714A (zh) * 2013-12-17 2015-06-17 中兴通讯股份有限公司 路由信息发送、接收的方法、装置及路由信息处理系统
WO2015199490A1 (ko) 2014-06-27 2015-12-30 엘지전자 주식회사 기기간 통신을 지원하는 무선 접속 시스템에서 효율적인 릴레이 전송 방법 및 장치
WO2016006859A1 (ko) 2014-07-07 2016-01-14 엘지전자 주식회사 기기간 통신을 지원하는 무선 접속 시스템에서 릴레이 단말의 d2d 신호 송수신 방법 및 장치
US10582552B2 (en) * 2014-08-22 2020-03-03 Lg Electronics Inc. Method for device-to-device communication in wireless communication system and apparatus therefor
US10326517B2 (en) * 2014-08-28 2019-06-18 Lg Electronics Inc. Method for relaying communication in wireless communication system and device for performing same
US10278207B2 (en) * 2014-10-21 2019-04-30 Lg Electronics Inc. Method for transmitting/receiving D2D signal in wireless communication system and apparatus therefor
US20170310415A1 (en) 2014-11-10 2017-10-26 Telefonaktiebolaget Lm Ericsson D2d operation approaches in cellular networks
US9794873B2 (en) 2014-11-14 2017-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Power saving in wireless transceiver device
KR102306804B1 (ko) * 2015-01-21 2021-09-30 삼성전자주식회사 전자 장치의 소모 전력 감소 방법 및 장치
WO2016163430A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 無線端末及び制御方法
WO2016182375A1 (ko) * 2015-05-12 2016-11-17 삼성전자 주식회사 D2d 통신을 지원하는 무선 통신 시스템에서 자원 할당 방법 및 장치
JP6757414B2 (ja) * 2016-02-01 2020-09-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) UEのeDRXの下でのセル検証のための方法および装置
JP6910310B2 (ja) * 2016-02-08 2021-07-28 京セラ株式会社 無線端末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841920A (zh) * 2009-03-17 2010-09-22 华为技术有限公司 一种无线中继系统和无线中继系统的通信方法
CN102378329A (zh) * 2010-08-16 2012-03-14 华为技术有限公司 实现非连续接收的方法和装置
WO2013131234A1 (en) * 2012-03-05 2013-09-12 Renesas Mobile Corporation Methods, apparatuses, and computer-readable storage media for relaying traffic in d2d communications
WO2015142066A1 (ko) * 2014-03-20 2015-09-24 엘지전자(주) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2015152581A1 (ko) * 2014-03-30 2015-10-08 엘지전자(주) 단말 간 통신을 지원하는 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3500028A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574443A (zh) * 2019-07-29 2019-12-13 北京小米移动软件有限公司 直连通信方法、装置及存储介质
WO2021016817A1 (zh) * 2019-07-29 2021-02-04 北京小米移动软件有限公司 直连通信方法、装置及存储介质
WO2021138789A1 (en) * 2020-01-07 2021-07-15 Mediatek Inc. Methods and apparatus for sidelink drx operation
US11877241B2 (en) 2020-01-07 2024-01-16 Mediatek Inc. Apparatuses and methods for discontinuous reception (DRX) support in sidelink communication
WO2021147011A1 (en) * 2020-01-22 2021-07-29 Lenovo (Beijing) Limited Method and apparatus for aligning sidelink drxconfiguration
WO2021155594A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 一种选取资源的方法及装置、终端设备
CN111480391A (zh) * 2020-03-13 2020-07-31 北京小米移动软件有限公司 直连链路数据传输方法、装置及存储介质
CN111480391B (zh) * 2020-03-13 2023-11-07 北京小米移动软件有限公司 直连链路数据传输方法、装置及存储介质
WO2021207892A1 (zh) * 2020-04-13 2021-10-21 北京小米移动软件有限公司 监听信道的方法、装置、用户设备及存储介质
WO2022077395A1 (zh) * 2020-10-15 2022-04-21 Oppo广东移动通信有限公司 侧行链路的传输方法和终端

Also Published As

Publication number Publication date
JP2019525607A (ja) 2019-09-05
CN109196939B (zh) 2022-10-14
US10708861B2 (en) 2020-07-07
EP3500028A4 (en) 2019-07-03
US20190174411A1 (en) 2019-06-06
EP3500028A1 (en) 2019-06-19
CN109196939A (zh) 2019-01-11
CN115361729A (zh) 2022-11-18
JP7246302B2 (ja) 2023-03-27
EP3500028B1 (en) 2021-03-24
KR102423403B1 (ko) 2022-07-22
KR20190039101A (ko) 2019-04-10
US20220167268A1 (en) 2022-05-26
US20200296668A1 (en) 2020-09-17
CN108307486A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2018028416A1 (zh) 用于网络控制端和网络节点的电子设备和方法
US11012840B2 (en) Wireless communication device and wireless communication method
TWI674019B (zh) 裝置及方法
US20210282188A1 (en) Electronic device for wireless communication system, method and storage medium
CA3012395A1 (en) Communication method and communications apparatus
RU2759800C2 (ru) Устройство связи, способ связи и программа
US20230345530A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
WO2020259363A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11690093B2 (en) Electronic device and method for wireless communication, and computer readable storage medium
US20230084999A1 (en) Nr sidelink discontinuous reception resource allocation
JP6265204B2 (ja) 通信制御装置、通信制御方法及び端末装置
WO2019154352A1 (zh) 电子装置、无线通信方法以及计算机可读介质
EP4175343A1 (en) Electronic device, wireless communication method and non-transitory computer-readable storage medium
CN104969606A (zh) 通信控制设备、通信控制方法以及终端设备
US20230284146A1 (en) Electronic device, wireless communication method, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002745

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019505427

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838546

Country of ref document: EP

Effective date: 20190311