WO2018025890A1 - ペースト材料とガスとの混合装置及び方法 - Google Patents

ペースト材料とガスとの混合装置及び方法 Download PDF

Info

Publication number
WO2018025890A1
WO2018025890A1 PCT/JP2017/027971 JP2017027971W WO2018025890A1 WO 2018025890 A1 WO2018025890 A1 WO 2018025890A1 JP 2017027971 W JP2017027971 W JP 2017027971W WO 2018025890 A1 WO2018025890 A1 WO 2018025890A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste material
gas
mixing
cylinder
static mixer
Prior art date
Application number
PCT/JP2017/027971
Other languages
English (en)
French (fr)
Inventor
拓郎 大町
永田 裕之
Original Assignee
サンスター技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンスター技研株式会社 filed Critical サンスター技研株式会社
Priority to US16/323,104 priority Critical patent/US11298665B2/en
Priority to CN201780047897.5A priority patent/CN109562335B/zh
Priority to DE112017003933.9T priority patent/DE112017003933T8/de
Publication of WO2018025890A1 publication Critical patent/WO2018025890A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/501Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use
    • B01F33/5011Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use portable during use, e.g. hand-held
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7174Feed mechanisms characterised by the means for feeding the components to the mixer using pistons, plungers or syringes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • B01F35/717613Piston pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/75425Discharge mechanisms characterised by the means for discharging the components from the mixer using pistons or plungers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7544Discharge mechanisms characterised by the means for discharging the components from the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field

Definitions

  • the present invention relates to an apparatus for mixing paste material and gas for the purpose of foaming the paste material and the like.
  • a technology for producing a foamable gasket or the like by mixing a paste material and a gas is known.
  • the paste material includes so-called high viscosity materials.
  • a high-viscosity material foaming device disclosed in Patent Document 1 below is made of a material supply pipe 2 that circulates a high-viscosity material discharged from a material supply pump 1 and a high-viscosity material that flows through the material supply pipe 2
  • a gas supply line 3 for mixing gas from a predetermined position of the supply line 2 and first and second pumps as material circulation means provided upstream and downstream of the gas mixing position of the material supply line 2 4, 5, a first static mixer 6 as a first dispersion pipe provided downstream of the second pump 5, and a second static mixer 6 provided downstream of the first static mixer 6
  • a second static mixer 7 serving as a dispersion pipe and a material discharge pipe 8 provided on the downstream side of the second static mixer 7 are provided.
  • Patent Document 1 describes the use of the first and second static mixers 6 and 7, but for the material supply line 2 in which the gas is mixed with the high viscosity material at the gas mixing position, It is not described how the first and second static mixers 6 and 7 are configured to improve the mixing efficiency.
  • the present invention has been made in view of the above points, and an object thereof is to improve stirring efficiency in a paste material and gas mixing apparatus and method using a static mixer.
  • the paste material and gas mixing apparatus of the present invention includes a mixing unit that mixes paste material and gas using a piston pump, and a paste material and gas mixed in the mixing unit.
  • a static mixer connected to the mixing section for stirring the mixture, the static mixer comprising one or more stirring sections through which the mixture passes, the stirring section being a mixture passing through the stirring section
  • the static mixer has a ratio of the volume of the piston pump and the volume of at least one of the stirring sections of the static mixer of 1: 0.2 to 1: 5.
  • at least one of the agitation sections is adapted to agitate the mixture of paste material and gas by shearing force. It is one of the second aspect having the configuration for dividing the flow into 5 or more streams.
  • a piston pump includes a cylinder, a conduit through which a paste material can flow, and a discharge port formed at an end of the cylinder for communicating the cylinder, and for filling the cylinder with gas.
  • the cylinder includes a cylinder space having a predetermined volume when the piston is in the first position, and the static mixer is connected to the pipe line.
  • the series of steps from the step of closing the discharge valve to the step of opening the discharge valve is repeated every time a predetermined amount of paste material flows.
  • the foaming ratio of the paste material is controlled by adjusting at least one of the predetermined amount of paste material, the predetermined volume of the cylinder space, and the predetermined pressure of gas.
  • the discharge port is provided on the side wall of the pipeline so as to face the flow of the paste material, and the discharge valve extends from a position of the side wall of the pipeline facing the discharge port and is seated on the discharge port.
  • a possible valve body is provided.
  • a piston pump includes a cylinder and a piston that reciprocates in the cylinder to perform a suction process and a discharge process, and the cylinder is a discharge provided at a stroke end of the discharge process.
  • the internal volume of the cylinder defined by
  • a mixing unit using a piston pump supplies gas to the piston pump in an inhalation step, supplies the paste material after the inhalation step, and the piston pump after completion of the supply of the paste material
  • Each process of discharging the gas and the paste material to a pipe line is performed by performing the discharge process.
  • the stirring section of the static mixer includes a stationary stirring means.
  • the stirring means has an action of dividing, converting, and inverting the flow of the mixture.
  • the stirring means has a spiral shape.
  • the stirring means may be a plurality of baffle plates arranged alternately in the static mixer so as to resist the flow of the mixture.
  • the stirring means includes five or more flow paths, and each of the flow paths is arranged in parallel with the flow of the mixture.
  • the stirring means is a single baffle plate disposed inside the static mixer so as to resist the flow of the mixture, and the baffle plate has a plurality of flows through which the mixture flows. Through-holes may be formed.
  • the inside of the static mixer may be formed in a honeycomb shape, or a plurality of pipes may be arranged in parallel inside the mixer.
  • a pipe having a predetermined length is provided at least between the mixing unit and the static mixer and between the static mixer and the discharge means for discharging the mixture.
  • the paste material and gas are mixed for each batch, and a static mixer is disposed in the flow path of the mixture to stir the mixed paste material and gas mixture.
  • the step of disposing the static mixer comprises one or more stirring sections through which the mixture passes, the stirring section having a shape for stirring the flow of the mixture passing through the stirring section Disposing a static mixer, the static mixer further comprising: a volume of the mixture per batch; and a volume of a first stirring section through which the mixture passes at least first of the stirring sections of the static mixer.
  • the first aspect in which the ratio is in the range of 1: 0.2 to 1: 5 and the mixture of paste material and gas Characterized in that for stirring by the force either of the second aspect of dividing the flow of the mixture to 5 or more streams.
  • the step of mixing the paste material and gas for each batch is a step of using a piston pump and a discharge valve
  • the piston pump includes a cylinder, a conduit through which the paste material can flow, A discharge port formed at an end of the cylinder for communicating with the cylinder; a suction port formed in the cylinder for filling the cylinder with a gas; and a first position and a second position within the cylinder.
  • a piston that slides between positions, the discharge valve is used to open and close the discharge port, and the cylinder is a cylinder of a predetermined volume when the piston is in the first position.
  • a space is formed, and the static mixer is connected to the pipe line.
  • the step of mixing the paste material and the gas for each batch closes the discharge valve, moves the piston to the first position to form the predetermined volume of the cylinder space, and The cylinder space is filled with a gas of a predetermined pressure, the gas is compressed by moving the piston toward the second position, and the discharge valve is opened, whereby the paste material flowing through the pipe line is formed.
  • a series of steps from the step of closing the discharge valve to the step of opening the discharge valve is repeated each time a predetermined amount of paste material flows, and each step of mixing compressed gas is performed, and the discharge port is
  • the step of closing the discharge port is provided on the side wall of the pipeline so as to face the flow of the high-viscosity material, from the position of the side wall of the pipeline facing the discharge port, Extending the valve body off valve is a step for seating on the discharge port of the valve body.
  • a flow sensor that measures the flow rate of the paste material may be provided, and the piston pump may be controlled to operate for one cycle each time a predetermined amount of flow is detected by the flow sensor.
  • a constant flow cylinder may be used to synchronize the cycle of the constant flow cylinder and the cycle of the piston pump.
  • the step of mixing the paste material and the gas for each batch is a step of using a piston pump, and the piston pump reciprocates within the cylinder in order to perform a suction step and a discharge step with the cylinder.
  • a piston that moves, and the cylinder includes a discharge control valve, a gas supply control valve, and a paste material supply control valve provided at a stroke end of the discharge process.
  • the volume of the mixture per batch is the internal volume of the cylinder defined by the piston when located at the stroke end of the inhalation process.
  • the gas is supplied to the piston pump in the suction step, and the paste material is supplied after the suction step, After the supply of the paste material is completed, each step of performing a discharge process of the piston pump to discharge the gas and the paste material to a pipe line is performed.
  • the step of disposing the static mixer includes a step of disposing a static mixer having stationary stirring means in the stirring section of the static mixer.
  • the step of disposing the static mixer having the stationary stirring means includes a step of dividing, converting, and inverting the flow of the mixture.
  • the step of arranging the static mixer having the stationary stirring means uses a stirring means having a spiral shape.
  • the stirring means may be a plurality of baffle plates arranged alternately in the static mixer so as to resist the flow of the mixture.
  • the stirring means includes five or more flow paths, and each of the flow paths is arranged in parallel with the flow of the mixture.
  • the stirring means is a single baffle plate disposed inside the static mixer so as to resist the flow of the mixture, and the baffle plate has a plurality of flows through which the mixture flows. Through-holes may be formed.
  • the inside of the static mixer may be formed in a honeycomb shape, or a plurality of pipes may be arranged in parallel inside the mixer.
  • FIG. 1 It is a circuit diagram of a mixing device of paste material and gas concerning a 1st embodiment of the present invention. It is a figure which shows the structure of the 1st example of the 1st aspect of the static mixer used by this invention, Comprising: It is a sectional side view of a static mixer. It is a figure which shows the structure of the 1st example of the 1st aspect of the static mixer used by this invention, Comprising: It is a perspective view of the stirring element formed in the stirring section. It is sectional drawing (state where the piston rose to the 1st position) of the gas mixing apparatus which concerns on 1st Embodiment.
  • FIG. 4 is a cross-sectional view of the gas mixing device according to the first embodiment (a state in which a suction valve is opened in the gas mixing device of FIG. 3), and is a diagram illustrating a process of sucking gas into a piston pump.
  • FIG. 3 is a cross-sectional view of the gas mixing device according to the first embodiment (with the gas mixing device of FIG. 3, the suction valve is closed, the piston is lowered to the second position, and the discharge valve is opened); It is a figure explaining the process in which the compressed gas produced
  • FIG. 8A It is a cross-sectional view of the 2nd aspect of the static mixer used by this invention.
  • the “paste material” in the present specification is a fluid material having a viscosity that allows the mixed gas to be finely dispersed by the shearing force generated in the paste material.
  • FIG. 1 is a circuit diagram for explaining a paste material and gas mixing apparatus 1 according to an embodiment of the present invention.
  • the paste material and gas mixing apparatus 1 of this embodiment includes a mixing unit 2 that mixes paste material and gas, and a mixture of paste material and gas mixed in the mixing unit 2. And a static mixer 3 connected to the mixing unit 2.
  • the mixing unit 2 includes a piston pump 10 for discharging gas to a pipe space (formed as a path for the paste material formed by the pipe 47) through which the paste material flows, and from the piston pump 10 to the pipe 47. And at least a discharge valve 30 for controlling the gas supply.
  • a gas discharge pipe extending from the discharge valve 30 is connected to a pipe line 47 at a mixing position 48 of the gas and the paste material.
  • the mixing unit 2 preferably includes a drive unit 15 that drives the piston pump 10 and a suction valve 20 that controls the gas supply to the piston pump 10, and FIG. An example is shown.
  • the mixing device 1 is provided with a gas compressor 43 connected to the piston pump 10 via the pipe line 33 and the suction valve 20 in order to supply gas to the piston pump 10 of the mixing unit 2. Furthermore, in order to supply the paste material to the mixing unit 2, the mixing device 1 is fed from the tank 40 that stores the paste material, the pumping pump 41 that pumps the paste material stored in the tank 40, and the pumping pump 41. And a conduit 50 for guiding the paste material to the conduit 47.
  • the mixing device 1 discharges the paste 52 mixed with gas sent from the pipeline 47 and the paste 52 mixed with gas sent from the pipeline 52. And a nozzle 46 attached to the tip of the pipe line 52.
  • the static mixer 3 is connected between the pipe line 47 and the pipe line 52, and the mixture of the gas and the paste material mixed in the mixing unit 2 flows through the pipe line 47, passes through the static mixer 3, Flow through line 52. It reaches the nozzle 46.
  • the pipes 50, 47, and 52 may be configured as separate pipes, and may be connected using welding or a flange so that the paste material flows through these pipes in this order.
  • the pipes 50, 47, 52 may be configured as an integral pipe from the beginning.
  • the static mixer 3 is integrally connected between the pipe 47 and the pipe 52.
  • a known pail can or drum can may be used, but is not limited thereto.
  • paste materials stored in the tank 40 such as polyurethane, modified silicon, epoxy, silicone, acrylic, vulcanized rubber, plastisol such as PVC and acrylic, and mixtures thereof, as well as grease.
  • Edible creams and beauty creams are not limited to these.
  • the pumping pump 41 may be any type as long as it can pump the paste material.
  • a piston pump or a plunger pump for a pail can or a drum can, for example, an air motor type double action pump or a rotary pump such as a gear pump or a screw pump that does not generate pulsation at the time of pumping can be used.
  • the present invention is not limited to this.
  • a constant flow pump may be incorporated in the pressure feed pump 41 so that the paste material can be pressure fed at a constant flow rate.
  • Pressure for pumping the paste material will depend on the viscosity of the paste material is preferably 20 ⁇ 300kg / cm 2, more preferably 50 ⁇ 200kg / cm 2. This is because, if the pressure for pumping is lower than 50 kg / cm 2, when the paste material is foamed, because there is a fear that the bubbles becomes rough, becomes lower than 20 kg / cm 2, with its tendency becomes more pronounced This is because the size of the bubbles may not be uniform. In addition, when the pressure is higher than 200 kg / cm 2 , the equipment becomes expensive to ensure the pressurization performance and pressure resistance performance of each component of the apparatus. When the pressure is higher than 300 kg / cm 2 , the tendency is more prominent. This is because it becomes prominent.
  • the discharge pressure of the paste material is 3-20 MPa, preferably 5-12 MPa, more preferably 6-10 MPa, using the pressure value measured immediately before the nozzle 46 (immediately before discharge).
  • a flow meter may be provided between the pumping pump 41 and the discharge valve 30 of the piston pump 10.
  • a flow meter or a constant flow device may be provided between the discharge valve 30 and the nozzle 46.
  • the gas compressor 43 can be configured as a compressor that supplies a relatively low pressure gas such as 0 to 1 MPa or 0 to 0.5 MPa.
  • a relatively low pressure gas such as 0 to 1 MPa or 0 to 0.5 MPa.
  • various gases such as air (atmospheric pressure air, low pressure air, compressed air), carbon dioxide gas, nitrogen gas, oxygen, argon, krypton, and the like can be employed.
  • the gas compressor 43 can also be used. Instead, an air intake port for taking in air in the atmosphere is provided, and the air intake is provided. You may make it supply the air of the atmospheric pressure introduce
  • an air filter that filters air and removes dust and the like may be provided between the air intake port and the intake valve 20.
  • a configuration including a gas tank and an adjustment valve as a pressure adjustment mechanism for adjusting the gas pressure can be used instead of the gas compressor 43 and the air intake port.
  • the pressure of gas can also be made into the positive pressure pressurized from atmospheric pressure, or the negative pressure lower than atmospheric pressure according to the manufacturing conditions at that time.
  • the nozzle 46 is for applying a paste material mixed with gas to a workpiece, and can discharge the paste material arbitrarily.
  • the nozzle 46 can be used in any method, and may be, for example, either a hand-held nozzle or a nozzle attached to the tip of a manipulator.
  • a measuring device may be arranged between the mixing unit 2 (one unit or two or more units described above) and the nozzle 46, and the paste material may be quantitatively provided to the nozzle 46 by this measuring device.
  • two or more measuring cylinders may be arranged, and the paste material continuously gas-mixed may be provided to the nozzle 46 by alternately operating these measuring cylinders.
  • the mixing unit 2 may include a control unit (not shown) that controls each component of the mixing unit 2.
  • the control unit is composed of a CPU, a memory, or a relay, a timer, etc., and is connected to the drive unit 15, the suction valve 20, the discharge valve 30, the pressure feed pump 41, the flow meter, the nozzle 46, etc. Then, the mixing apparatus 1 of paste material and gas is operated.
  • the control unit performs control such as driving the piston pump 10 for one cycle every time a predetermined amount of paste material flows based on the above-described flow meter signal for detecting the flow rate of the paste material.
  • the gas is mixed by the piston pump 10, and the paste material that flows through the pipes 47 and 52 and reaches the nozzle 46 is dispersed and stirred in the paste material as it flows through the pipe.
  • the static mixer 3 described above is provided.
  • the static mixer 3 has an outer cylinder 4 having an inlet port 6 and an outlet port 7, and an agitation part 5 formed in a hollow portion inside the outer cylinder 4.
  • the inlet port 6 is connected to the conduit 47 in FIG. 1, and the outlet port 7 is connected to the conduit 52 in FIG.
  • the mixture of the paste material and the gas that has flowed from the pipe 47 flows in from the inlet port 6, flows through the stirring unit 5, and flows out from the outlet port 7 as shown by the arrow in FIG. 2A.
  • the stirring unit 5 is divided into, for example, six stirring sections 5a, 5b, 5c, 5d, 5e, and 5f, and each of the stirring sections has a shape for stirring the flow of the mixture that passes through the stirring section. .
  • the stirring sections 5a to 5f may be formed so that stationary stirring elements 8a and 8b are alternately arranged as shown in FIG. 2B.
  • the stirring element 8a has a spiral shape that is twisted 180 degrees to the left, and includes an inlet edge 11a, a first twisted surface 12a, a second twisted surface 13a, and an outlet edge 14a.
  • the stirring element 8b has a spiral shape that is twisted 180 degrees to the right, and includes an inlet edge 11a, a first twisted surface 12a, a second twisted surface 13a, and an outlet edge 14a. Yes.
  • the inlet edge 11b of the stirring element 8b is connected to the outlet edge 14a of the stirring element 8a so as to intersect.
  • the outlet edge 14b of the stirring element 8b is coupled so that the inlet edge of the stirring element formed in the same manner as the stirring element 8a intersects.
  • the stirring elements 8a and 8b shown in FIG. 2B are paired, and a plurality of stirring elements are sequentially coupled.
  • one stirring element is arranged or coupled to the inner wall.
  • the flow of the mixture flowing into the stirring section 5a of the static mixer 3 is divided into two flows by the inlet edge 11a of the stirring element 8a, and each of the divided flows includes the first twisted surface 12a and the second twisted. Along the surface 13a, it is converted from the central part to the peripheral part, from the peripheral part to the central part, and reaches the exit edge 14a.
  • the two flows exiting from the outlet edge 14a are further divided into two flows by the agitating element 8b twisted in opposite directions and converted, and the reversal action of the flow is generated by the twisted surfaces in different directions. In this way, the flow of the mixture is stirred and mixed while passing through the stirring sections 5a to 5f.
  • the ratio of the volume (output amount) of the piston pump 10 to at least one volume of the stirring sections 5a to 5f of the static mixer 3 is 1: 0.2 to 1 : 5, and more preferably in the range of 1: 0.5 to 1: 3.
  • the ratio of the volume of the mixture for each batch flowing through the pipe 47 to the volume of at least one of the stirring sections 5a to 5f of the static mixer 3 is 1: It is configured to be in the range of 0.2 to 1: 5, more preferably in the range of 1: 0.5 to 1: 3.
  • the paste material It is possible to mix the gas very efficiently.
  • the stirring sections have the same size (the same inner diameter and length), but the present invention is not limited to this, and the stirring efficiency can be increased by changing the size. is there.
  • the inner diameter of the agitation section can be reduced as it approaches the outlet port 7.
  • the static mixer 3a includes a plurality of baffle plates 60a, 60b,... 60g arranged in the stirring unit 5 through which the flow of the mixture passes.
  • each of the baffle plates 60 is arranged alternately against the flow of the mixture.
  • the baffle plates 60a to 60g have a rectangular parallelepiped shape as illustrated.
  • each of the baffle plates 60 extends from the top surface to the bottom surface of the inner wall of the mixer.
  • the flow is turned and divided.
  • the flow collides with the baffle plates 60b and 60c and is further divided, but one divided flow toward the inner wall is reversed at the inner wall and then mixed with the mixture near the rear side of the baffle plate 60a together with the other divided flow. Is done.
  • the mixed mixture again passes between the baffle plates 60b and 60c.
  • the mixture is divided by the flow being turned by the baffle plate 60d.
  • the divided flows collide with the baffle plates 60e and 60f, are turned and mixed again, and pass between the baffle plates 60e and 60f. .
  • the mixture is mixed again before the output port 7 and flows out of the static mixer 3a.
  • the static mixer 3a the division, turning, and reversal actions are repeated on the mixture, and the bubbles are sheared in the paste material.
  • the portion from the input port 6 to the baffle plate 60a corresponds to the stirring section 5a
  • the portion from the baffle plate 60a to the baffle plates 60b and 60c corresponds to the stirring section 5b.
  • One baffle plate corresponds to the next stirring section
  • the baffle plate 60g to the output port 7 correspond to the stirring section 5f.
  • the ratio of the volume (output amount) of the piston pump 10 to at least one volume of the stirring sections 5a to 5f of the static mixer 3a is 1: 0.2 to It is configured to be in the range of 1: 5, and more preferably in the range of 1: 0.5 to 1: 3.
  • the ratio of the volume of the mixture per batch flowing through the line 47 to the volume of at least one of the stirring sections 5a to 5f of the static mixer 3a is in the range of 1: 0.2 to 1: 5. Yes, and more preferably, it may be configured in the range of 1: 0.5 to 1: 3.
  • the static mixer 3 b includes a single baffle plate 61 disposed in the stirring unit 5 to resist the flow of the mixture.
  • the baffle plate 61 has a plurality of through holes 62 through which the mixture flows.
  • the through holes 62 are formed in 5 or more, preferably 10 or more. That is, the flow of the mixture that has reached the baffle plate 61 is divided into five or more flows.
  • the peripheral end of one baffle plate 61 is coupled to the inner wall of the mixer over the entire circumference.
  • the flow of the mixture that has passed through the static mixer 3b is changed by a baffle plate and is divided into five or more flows by five or more through holes arranged in parallel.
  • the shearing force generated at this time efficiently stirs the gas in the paste material, thereby promoting the mixing of the paste material and the gas.
  • the single baffle plate 61 has been described as an example. However, if five or more flow paths are provided and each of the flow paths is arranged in parallel to the flow of the mixture, the static mixer of the present invention. It is contained in the 2nd aspect.
  • the inside of the static mixer 3b may be formed in a honeycomb shape, or a plurality of pipes may be arranged in parallel inside the mixer.
  • the stirring unit 5 of the static mixer 3b through which the flow of the mixture can pass can be understood as one stirring section.
  • the ratio of the volume (output amount) of the piston pump 10 to the volume of the stirring section of the static mixer 3b is in the range of 1: 0.2 to 1: 5, more preferably 1 : 0.5 to 1: 3.
  • the ratio of the volume of the mixture per batch flowing through the line 47 to the volume of the stirring section 5 of the static mixer 3b is in the range of 1: 0.2 to 1: 5, more preferably 1 : It may be configured to be in the range of 0.5 to 1: 3.
  • the inner diameter of the stirring unit 5 of the static mixer is increased as it advances in the axial direction from the input port 6, reaches the maximum inner diameter at the center of the static mixer, and thereafter the output port Decrease until 7.
  • the stirring unit 5 of the static mixer of the second aspect may have the same inner diameter from the input port 6 to the output port 7, or the inner diameter is axially different from the example shown in FIG. (For example, the inner diameter increases or decreases from the input port 6 to the output port 7).
  • the static mixer used in the present invention is not limited to the above example, and can be arbitrarily changed. It is also possible to connect a plurality of static mixers 3, 3a, 3b, or use a combination of different types of static mixers (for example, a combination of the first mode and the second mode). is there.
  • the piston pump 10 includes a cylinder 11 and an internal space of the cylinder 11 along the axial direction by a drive unit 15 in a first position (for example, top dead center) and a second position (for example, bottom).
  • a piston 12 configured to be slidable between the dead center
  • a gas inlet 13 provided on a side wall of the cylinder 11
  • a gas outlet 14 is formed in the vicinity of the paste material passage that is the end of the internal space.
  • the cylinder 11 forms a cylinder space of a predetermined volume defined by the piston 12 when the piston 12 is in the first position (top dead center).
  • the piston 12 has a clearance between the tip end of the piston 12 and the inside of the end of the cylinder 11 where the discharge port 14 is formed at the operation end of the compression stroke of the piston 12 (second position (bottom dead center) of the piston 12). It is preferable to match.
  • “fit without gap” means that the tip of the piston 12 has a shape complementary to the inside of the end of the cylinder 11 in which the discharge port 14 is formed. When it is at (bottom dead center), it means that the front end of the piston 12 can be almost completely matched with the inside of the end of the cylinder 11. As a result, there is no dead space in the cylinder, and the amount of gas can be controlled more accurately.
  • “matching without a gap” includes a fitting method in which the “gap” is substantially zero.
  • the tip of the piston 12 has a shape complementary to the inside of the end of the cylinder 11 in which the discharge port 14 is formed, and the piston 12 is at the second position (bottom dead center), the tip of the piston 12
  • the distance between the cylinder 11 and the inside of the end of the cylinder 11 is 0, or the distance is very small, meaning that it is 2 mm or less, preferably 1 mm or less, more preferably 0.5 mm or less. .
  • the suction port 13 is provided on the cylinder 11 side wall of the piston pump 10.
  • the suction port 13 is provided in the vicinity of the operation end of the suction stroke of the piston 12.
  • the piston 12 is opened by the intake valve 20 and gas is introduced into the internal space of the cylinder 11 therefrom.
  • the discharge port 14 is opened by the discharge valve 30 and mixes the compressed gas into the paste material in the pipe 47.
  • the pipe 47 is formed integrally with the components of the piston pump 10 in the vicinity of the piston pump 10, but a portion connected to other components such as the front and rear of the piston pump 10 is a known pipe.
  • a pressure hose or the like is employed.
  • the suction valve 20 is provided on the side wall of the cylinder 11 of the piston pump 10 and opens and closes the suction port 13 of the piston pump 10.
  • a needle valve is employed as an example of the suction valve 20.
  • the needle valve 20 includes a needle shaft 21, a gas introduction port 22, and a drive unit 23.
  • the needle shaft 21 preferably extends along a direction orthogonal to the axis of the cylinder 11 and slides along the direction.
  • the gas inlet 22 is for introducing the gas supplied from the gas compressor 43 into the needle valve 20, and may be provided on the side surface of the housing of the needle valve 20.
  • the drive unit 23 moves the needle shaft 21 forward or backward along its length direction.
  • the needle shaft 21 can move forward until the tip of the needle shaft 21 fits in the suction port 13 and closes the suction port (moves to the left in the figure).
  • the suction port 13 is opened, and the cylinder 11 and the gas introduction port 22 communicate with each other.
  • a known air cylinder or electric motor can be used as the drive unit 23, but is not limited thereto.
  • the needle valve 20 may be provided with a valve guide 21a for guiding the needle shaft 21 at the distal end on the suction port 13 side.
  • the discharge valve 30 is provided at the tip of the cylinder 11 of the piston pump 10 and opens and closes the discharge port 14 of the piston pump 10.
  • a needle valve is employed as an example of the discharge valve 30.
  • the needle valve 30 is provided at a position facing the discharge port 14 of the piston pump 10 across a pipe space 47 a formed by the pipe 47, and includes a needle shaft 31 and a drive unit 36.
  • the needle shaft 31 is provided coaxially with the shaft of the cylinder 11 so that the tip of the needle shaft 31 passes through the duct space 47a and fits into the discharge port 14.
  • the drive unit 36 moves the needle shaft 31 forward or backward.
  • the needle shaft 31 can move forward until the tip of the needle shaft 31 fits in the discharge port 14 and closes the discharge port (moves upward in the figure).
  • a known air cylinder or electric motor can be used as the drive unit 36, but is not limited thereto.
  • the needle valve 30 may be provided with a valve guide for guiding the needle shaft 31 in the conduit 47.
  • a valve guide includes a cylindrical main body, a vertical hole that penetrates the needle shaft 31 so as to be movable up and down, a horizontal hole that communicates with the pipe space 47a and into which the paste material is transferred. You may comprise.
  • the tip of the needle shafts 21 and 31 is schematically illustrated in the drawing, various shapes such as a conical shape, a truncated cone, and a hemispherical shape can be used in order to improve airtightness.
  • the suction valve and the discharge valve are not limited to the needle valve, and any valve can be used as long as it can open and close the suction port 13 and the discharge port 14.
  • a piston valve in which the piston is not needle-shaped, a check valve, or a mechanism for opening and closing the suction port may be employed.
  • FIG. 4 is a diagram for explaining a step of causing the piston pump 10 to suck gas
  • FIG. 5 is a diagram for explaining a step of mixing the compressed gas generated by the piston pump 10 into the paste material.
  • the paste material is pumped downstream from the tank 40 containing the paste material through the conduit 47 by the pumping pump 41. 3 to 4, it is assumed that the paste material is transferred from the left to the right in the pipe 47 as indicated by the arrow a1.
  • the piston pump 10 is operated in conjunction with a pressure pump 41 provided with a metering device.
  • the piston pump 10 is operated by counting the suction (capacity is determined) of the pumping pump 41 whose displacement for one stroke is known.
  • the piston pump 10 is operated in conjunction with a constant flow device and a discharge gun with a constant flow rate installed separately from the pressure pump 41 and the piston pump 10 (changing the gas capacity of the cylinder can be done by changing the gas pressure (Adjustment and piston stroke) (4) A booster pump or a cylinder-driven discharge gun installed separately from the pressure pump 41 and the piston pump 10 is used to operate the piston pump 10 according to the amount of use. (5) Based on the measured value of the flow meter, the timing when the paste material is transferred by a predetermined amount is determined, and the piston pump 10 is operated according to the timing.
  • the mixing unit 2 is controlled such that one cycle of the piston pump 10 is executed every time a predetermined amount of paste material (arrow a1 in the figure) flows. It should be noted that one cycle of the piston pump 10 and the amount of paste material that has flowed maintain a certain relationship as to which timing of each operation of the piston pump 10 corresponds to the timing at which a predetermined amount of paste material has flowed. As long as it is possible, it can be arbitrarily changed. Hereinafter, one cycle of the piston pump 10 will be described.
  • the piston 12 moves from the second position to the first position until the operation end of the suction stroke. To do. At this time, a cylinder space having a predetermined volume is formed in the cylinder 11, but the inside of the cylinder 11 is evacuated because the suction valve 20 and the discharge valve 30 are closed.
  • the needle shaft 21 is retracted (moved to the right in the figure) by the drive unit 23 of the suction valve 20. Then, the suction port 13 is opened, the cylinder 11 and the gas introduction port 22 communicate with each other, and the gas before compression flows into the cylinder space of a predetermined volume in the cylinder 11 (arrow a2 in the figure).
  • the needle shaft 21 is moved forward (moved to the left in the drawing) and the intake valve 20 is closed, the cylinder 11 is filled with gas and is in a sealed state. That is, the intake valve 20 is opened for a predetermined time, and the intake valve 20 is closed when a predetermined amount of gas is accumulated in the cylinder 11. Next, the operation of the piston 12 is stopped until a predetermined amount of paste material flows.
  • the piston 12 is moved to the compression stroke side, and the gas filled in the cylinder 11 is compressed. That is, the piston is lowered from the first position to the second position.
  • the discharge valve 30 is opened. That is, the needle shaft 31 is moved backward (moved downward in the drawing) by the drive unit 36 of the discharge valve 30 to open the discharge port 14.
  • the compressed gas is mixed into the paste material pumped through the pipe 47 and the piston 12 reaches the operation end (bottom dead center) of the compression stroke.
  • the needle shaft 31 is moved forward (moved upward in the figure) and the discharge valve 30 is closed, one cycle of gas mixing into the paste material is completed.
  • the vicinity of the operation end of the piston 12 is preferably a piston position where the gas is compressed to 1/5 to 1/100, preferably a piston position where the gas is compressed to 1/10 to 1/30.
  • the pressure of the material when the pressure of the material is higher than the pressure of the gas, the material flows backward from the discharge port 14 and flows into the cylinder, and the material and the gas are mixed in the gas cylinder. If the pressure of the material is too much higher than the gas pressure, the material may be altered by shearing force caused by the discharge port 14 having a relatively small diameter and the inflow speed of the material. Further, when the gas pressure is too larger than the material pressure, the material does not flow into the cylinder, so that the mixing property of the gas and the material may be deteriorated. Accordingly, by appropriately adjusting the gas pressure and the material pressure, it is possible to improve the mixing property within a range that does not prevent the deterioration of the material.
  • the paste material mixed with gas is agitated while flowing through the pipes 47 and 52, whereby bubbles of the mixed gas are refined and dispersed in the paste material.
  • the paste material in which fine bubbles are dispersed is discharged from the nozzle 46 and applied to a workpiece or the like.
  • the paste material that has been at a high pressure is placed in an atmospheric pressure environment.
  • the gas bubbles mixed in the paste material expand and foam with a foaming ratio corresponding to the amount of the mixed gas.
  • the paste material and gas mixing apparatus and the paste material and gas mixing method using the paste material and gas mixing apparatus of the present embodiment are mixed for each predetermined flow rate of the paste material.
  • the gas mixing ratio into the paste material that is, the foaming ratio of the paste material can be freely changed by changing the operation timing of the piston pump. For example, assuming that the volume of the cylinder space 11a is 50 ml and the gas introduced into the cylinder 11 is atmospheric pressure, if the piston pump is operated for one cycle every time 50 ml of the paste material is transferred, the expansion ratio Is approximately doubled.
  • the expansion ratio is about 1.5 times. If the piston pump is operated for one cycle every time 25 ml of the paste material is transferred, the expansion ratio is obtained. Will be about 3 times. It goes without saying that the expansion ratio can also be changed by changing the pressure of the gas introduced into the cylinder 11 or changing the volume of the cylinder space 11a. In order to change the volume of the cylinder space 11a, the operation of the piston 12 can be changed, for example, to change the first position of the piston 12.
  • a means for changing the expansion ratio there is one of the following means, or a combination of two or more.
  • the gas and paste material are put together in one piston pump and compressed, if the expansion ratio is to be made lower than two times, the gas filled in the piston pump is reduced to a negative pressure lower than atmospheric pressure.
  • the port for supplying or discharging the paste material can be increased in order not to increase the dead space of the piston pump.
  • a shearing force is applied when passing through the port, and the paste material may be altered.
  • the gas in the cylinder 11 can be compressed in advance to reduce the pressure difference between the paste material and the gas. It is possible to reduce the backflow of the paste material, and there is no such concern.
  • the backflow prevention of the paste material due to the compression of the gas is preferably performed within a range in which the mixing property of the gas and the material is maintained well.
  • the pump for pumping the paste material and the piston pump for compressing the gas are independent of each other, the operation of the piston pump does not affect the transfer of the paste material.
  • the paste material mixed with the gas can be continuously fed even if only one set of the pressure pump and the piston pump are provided, and the buffer tank is not provided. You can also stop.
  • the pump for pumping the paste material and the piston pump for compressing the gas are independent from each other, and the amount of gas mixing can be controlled simply by increasing or decreasing the number of operations of the piston pump. Even if the flow rate of the material or the size of the pressure pump changes, it can be handled to some extent with a piston pump of the same volume.
  • the paste material is pumped from the beginning at a predetermined pressure, so there is only one pump to pump the paste material, and the configuration is simple. It will be a thing.
  • the compression before supplying the piston pump without changing the operation timing of the piston pump.
  • the foaming ratio of the paste material can be changed by adjusting the gas pressure. For example, when the volume of the cylinder space 11a is 50 ml and the pressure of the gas before compression supplied to the cylinder space 11a is 1 atm, if the piston pump is operated for one cycle every time 50 ml of the paste material is transferred, the expansion ratio is The expansion ratio is about 3 times by setting the pressure of the gas before compression supplied to the piston pump to 2 atmospheres, and the expansion ratio is about 1.5 times by setting the pressure to 0.5 atmospheres. can do.
  • the method of adjusting the gas mixing ratio to the paste material by changing the operation timing of the piston pump for each predetermined flow rate of the paste material, and adjusting the pressure of the gas before compression supplied to the piston pump
  • a wide range of gas can be mixed into the paste material with the same volume piston pump, and various pumping capacities with one piston pump A wide range of pumps can be used.
  • the mixing unit 2a of the mixing apparatus 1a of the second embodiment includes a piston pump 45A.
  • the piston pump 45A includes a cylinder 451, a piston 452 that slides tightly in the cylinder 451, and three valves 50A, 51A, and 52A provided in the cylinder 451.
  • the valves 50A, 51A, 52A are so-called needle valves.
  • the needle valve 50A is a valve for controlling the supply of gas supplied through the pipe line 33 into the cylinder 451, and is provided in the vicinity of the stroke end (near bottom dead center) of the discharge process. .
  • the needle valve 51A is a valve for controlling the supply of the paste material supplied through the pipe line 50 into the cylinder 451, and is provided in the vicinity of the stroke end (near top dead center) of the suction process. It has been.
  • the needle valve 52A is a valve for controlling the discharge of the mixture of the paste material and the gas, and is provided at the stroke end of the discharge process in the piston pump 45A.
  • the needle valve 50A for gas supply control may be disposed in the vicinity of the stroke end (near top dead center) in the suction process.
  • needle valves 50A, 51A, 52A have substantially the same structure, and the needle 453 is driven by a pneumatic cylinder (not shown) to move in the axial direction (air drive system), and the tip of the needle 453 is the cylinder 451.
  • the opening 454 provided on the inner peripheral surface or the end surface is opened and closed.
  • a port 455 communicating with the valve chamber of the pneumatic cylinder is provided in the valve body.
  • a cylinder drive system such as an automobile engine using a camshaft or the like.
  • the tip of the needle 453 is flush with the inner peripheral surface or end surface of the cylinder 451, and the dead space between the piston 452 is substantially zero. . Therefore, when the needle valves 50A, 51A, 52A are closed, a part of the gas or paste material supplied into the cylinder 451 enters and stays in the valve chambers of the needle valves 50A, 51A, 52A. If the needle valve 52A is opened and the discharge process is performed, all of the gas and paste material supplied into the cylinder 451 are discharged. The discharged gas and paste material are discharged from the nozzle 46 through the pipe 47, the static mixer 3 and the pipe 52.
  • a control device (not shown) supplies gas into the cylinder 451 of the piston pump 45A in the suction process, supplies a paste material after the suction process, and performs a discharge process after the supply of the paste material is completed to supply the gas and the paste material.
  • Each component is controlled so that it discharges to the pipe line 47.
  • the volume (discharge capacity) of the piston pump 45A is determined by the diameter and stroke (movement distance) of the piston 452.
  • the volume of the piston pump 45A is the volume inside the cylinder 451 defined by the piston when located at the stroke end of the suction process.
  • the diameter of the piston 452 is 16 mm
  • the stroke is 125 mm
  • the volume is 25 cc.
  • the ratio of the volume (discharge capacity) of the piston pump 45A to at least one volume of the stirring sections 5a to 5f of the static mixer 3 is 1: 0.2 to 1: 5. And more preferably in the range of 1: 0.5 to 1: 3.
  • the paste material It is possible to mix the gas very efficiently.
  • the mixing unit 2b of the mixing device 1b of the third embodiment includes four piston pumps 45A, 45B, 45C, and 45D.
  • the piston pumps 45B, 45C, and 45D are configured in the same manner as the piston pump 45D according to the second embodiment described above.
  • the gas supply pipe 33 is branched into four pipes in the mixing section 2b and connected to the piston pumps 45A to 45D via the gas supply control valves 50A to 50D, respectively.
  • the paste material supply pipe 50 is also branched into four pipes in the mixing section 2b and connected to the piston pumps 45A to 45D via the paste material supply control valves 51A to 51D, respectively. .
  • the piston pumps 45A to 45D introduce the paste material pumped from the tank 40 and the gas fed from the gas compressor 43 in a batch manner.
  • Each pipe line is extended from a discharge port (not shown) of the piston pumps 45A to 45D via discharge control valves 52A to 52D.
  • These four pipe lines are a mixture of paste material and gas.
  • a single pipe 47 for discharge is collected. That is, in this embodiment, it is possible to provide a manifold structure in which material suction, gas suction, and mixture discharge pipes are combined into one and branched to each piston pump. By adopting such a manifold structure, it is possible to reduce the size, facilitate the piping connection, and simplify the mixing and discharging apparatus. Further, if each piston pump can be replaced independently, overhaul of the piston pump or the like can be easily performed, and both downsizing and maintainability can be achieved. Further, if a piston pump is newly attached to or removed from the manifold-structured piping system, the number of stages corresponding to the required continuous maximum discharge amount can be easily selected.
  • the static mixer 3 is connected to the pipe line 47.
  • a control device (not shown) supplies gas into the cylinders 451 of the piston pumps 45A to 45D in the suction process, supplies a paste material after the suction process, and performs a discharge process after the supply of the paste material is completed. Each component is controlled so that the material is discharged into the pipe 47.
  • the discharge processes of the piston pumps 45A to 45D are controlled with a time difference so that continuous quantitative discharge is possible.
  • each component is controlled so that the discharge process of another piston pump is started in the vicinity of the time point when the discharge process of any piston pump ends.
  • the discharge processes of the piston pumps 45A to 45D may be controlled so as to overlap in time.
  • each component is controlled so that the discharge processes of the piston pumps 45A to 45 are performed simultaneously.
  • piston pumps 45A to 45D may be divided into two groups each composed of two piston pumps, and the same set of piston pumps may be controlled simultaneously, and the different sets of piston pumps may be controlled with a time difference. Is possible. It should be noted that how the piston pumps are grouped can be arbitrarily and suitably changed.
  • the ratio of the total volume of the piston pumps 45A to 45D (the sum of the discharge capacities of the four piston pumps) and the volume of at least one of the stirring sections 5a to 5f of the static mixer 3 is It is configured to be in the range of 1: 0.2 to 1: 5, more preferably in the range of 1: 0.5 to 1: 3.
  • the ratio of the total volume of the piston pumps 45A to 45D and the volume of the at least one stirring section of the static mixer is in the range as described above. It is possible to mix the gas very efficiently.
  • piston pumps In the third embodiment, four piston pumps are shown. However, the present embodiment is not limited to this example, and the case where the number of piston pumps is 2, 3, 5 or more is also conceivable.
  • mixing device for paste material and gas and the mixing method for paste material and gas are examples of the present invention, and the configuration thereof can be changed as appropriate without departing from the spirit of the invention.
  • the pipe 47 is one of the constituent elements
  • the cylinder space 11a extends to the inside of the side wall of the pipe 47
  • the discharge port is close to the pipe space 47a. 14 is provided.
  • the discharge port 14 can be provided close to the pipe space 47 a, it is not necessary to form the cylinder space 11 a up to the inside of the side wall of the pipe 47.
  • the side wall of the pipe line 47 is very thin, and even if the discharge port 14 is provided outside the pipe line 47, the discharge port 14 can be disposed very close to the pipe space 47a. (Only the hole for the discharge port 14 is formed in the conduit 47).
  • the pipe line 47 can be excluded from the constituent requirements of the mixing unit 2 of the present invention. That is, the mixing unit 2 of the present invention can be provided in a form in which the pipe 47 (or part of the pipe) does not exist.
  • the present invention is not limited to the disclosed positional relationship between the cylinder 11 and the pipe line 47 (positional relation in which the length direction of the cylinder 11 is orthogonal to the pipe line 47).
  • a mode of being arranged obliquely or parallel to 47 is also conceivable.
  • needle valves are used as the suction valve 20 and the discharge valve 30, but any type of valve, for example, a gate type valve, can be used as long as the cylinder space and the pipe space can be opened and closed. Etc. can also be used.
  • the operation timing is not limited to the disclosed example, and each constituent element can be operated at an arbitrary timing as long as a gas having a predetermined volume and a predetermined pressure can be mixed in a predetermined amount of paste material.
  • the suction valve 20 is used as a constituent element for opening and closing the suction port 13 of the mixing unit 2.
  • the suction valve 20 is changed as long as the cylinder space 11 a can be filled with gas. It can be omitted.
  • a mode in which a gas having a predetermined pressure is introduced from a gas supply unit (not shown) into the cylinder space 11a via a suction port without a valve is also conceivable.
  • the mixing method of the paste material and gas of the present invention is executed by the mixing apparatus 1 including the mixing unit 2 disclosed as the embodiment of the present invention.
  • the example using the disclosed mixing apparatus 1 is not limited.
  • the means for opening and closing the suction port 13 and the discharge port 14 can be an opening / closing configuration other than the disclosed suction valve 20 and discharge valve 30.
  • the positional relationship between the cylinder 11 and the pipe line 47 can be arbitrarily and suitably changed as described above.
  • Discharge valve needle valve
  • 31 Needle shaft
  • 36 Needle Drive unit
  • 40 Tank
  • 41 Pressure pump
  • 42 Flow meter
  • 43 Air intake
  • 44 Air filter
  • 45 Mixer 46 .. Nozzle

Abstract

スタティックミキサーを使用したペースト材料及びガスの混合装置及び方法において、撹拌効率を向上させる。 ペースト材料とガスとの混合装置1は、ピストンポンプ10を用いてペースト材料とガスとを混合する混合部2と、混合部2で混合されたペースト材料とガスとの混合物を撹拌するため混合部2に接続されたスタティックミキサー3と、を備える。スタティックミキサー3は、混合物が通過する1つ又は複数の撹拌区分を備え、該撹拌区分は、該撹拌区分を通過する混合物の流れを撹拌する形状を有する。ピストンポンプ10の容積と、スタティックミキサー3の撹拌区分のうち少なくとも1つの容積との比率は、1:0.2~1:5の範囲にある。

Description

ペースト材料とガスとの混合装置及び方法
 本発明は、ペースト材料を発泡させる等の目的で、ペースト材料とガスとを混合する装置及びに関する。
 従来、ペースト材料とガスとを混合することによって発泡性ガスケット等を製造する技術が知られている。かかる技術においては、ペースト材料の中に微細なガスの泡を均等に分散させて両者を十分に混合することが重要となる。そこで、ペースト材料中へのガスの分散をより効率的に行うため、ペースト材料とガスとを混合した後、スタティックミキサーを使用する技術が知られている。なお、ペースト材料の中には、所謂、高粘度材料も含まれている。
 例えば下記特許文献1に開示された高粘度材料発泡装置は、材料供給ポンプ1から吐出された高粘度材料を流通する材料供給管路2と、材料供給管路2を流通する高粘度材料に材料供給管路2の所定位置からガスを混入させるガス供給管路3と、材料供給管路2のガス混入位置の上流側及び下流側に設けられた材料流通手段としての第1及び第2のポンプ4、5と、第2のポンプ5の下流側に設けられた第1の分散用管路としての第1のスタティックミキサー6と、第1のスタティックミキサー6の下流側に設けられた第2の分散用管路としての第2のスタティックミキサー7と、第2のスタティックミキサー7の下流側に設けられた材料吐出管路8と、を備えている。
特開2006-289276号公報
 しかし、特許文献1には、第1及び第2のスタティックミキサー6、7の使用は記載されているが、ガスがガス混入位置で高粘度材料に混合される材料供給管路2に対して、第1及び第2のスタティックミキサー6、7をどのように構成すれば、混合効率が向上できるかが記載されていない。
 スタティックミキサーを使用した実験によれば、必ずしも高粘度材料中に効率的にガスを混入できるものではないことが示された。実験結果は、ガスの気泡が大きくなって硬化後の発泡体のセルが不均一となったり、ガスの混入量にばらつきが生じて硬化後の発泡体の発泡倍率がばらつくことを示しおり、撹拌効率が不十分であることを示唆している。
 本発明は、上記の点に鑑みなされたもので、スタティックミキサーを使用したペースト材料及びガスの混合装置並びに方法において、撹拌効率を向上させることを目的とする。
 上記課題を解決するため、本発明のペースト材料とガスとの混合装置は、ピストンポンプを用いてペースト材料とガスとを混合する混合部と、該混合部で混合されたペースト材料とガスとの混合物を撹拌するため前記混合部に接続されたスタティックミキサーと、を備え、該スタティックミキサーは、混合物が通過する1つ又は複数の撹拌区分を備え、該撹拌区分は、該撹拌区分を通過する混合物の流れを撹拌する形状を有し、さらに前記スタティックミキサーは、前記ピストンポンプの容積と、前記スタティックミキサーの前記撹拌区分のうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にある第1の態様、並びに、前記撹拌区分の少なくとも1つが、ペースト材料とガスとの混合物を剪断力により撹拌するため該混合物の流れを5以上の流れに分割する構成を有する第2の態様のうちいずれかである。
 一態様に係るピストンポンプは、シリンダと、ペースト材料が流れることが可能な管路と該シリンダとを連通させるため前記シリンダの端部に形成された吐出口と、前記シリンダにガスを充填するため該シリンダに形成された吸入口と、前記シリンダの内部で第1の位置及び第2の位置の間で摺動されるピストンとを備え、前記混合部は、前記吐出口を開閉する吐出弁を備え、前記シリンダは、前記ピストンが前記第1の位置にあるとき、所定体積のシリンダ空間を形成し、前記スタティックミキサーは、前記管路に接続されている。
 前記吐出弁を閉じる工程から前記吐出弁を開放する工程までの一連の工程は、ペースト材料が所定量流れる毎に、繰り返される。
 ペースト材料の前記所定量、前記シリンダ空間の前記所定体積、及び、ガスの前記所定圧力のうち少なくともいずれかを調整することによって、前記ペースト材料の発泡倍率を制御することを特徴とする。
 前記吐出口は、前記管路の側壁においてペースト材料の流れに面するように設けられ、前記吐出弁は、前記吐出口と対向する、前記管路の側壁の位置から延びて前記吐出口に着座可能な弁体を備えることを特徴とする。
 別の態様に係るピストンポンプは、シリンダと、吸入工程と吐出工程を行うために前記シリンダ内を往復移動するピストンと、を有し、前記シリンダは、吐出工程のストローク端部に設けられた吐出制御用の弁と、ガスの供給制御用の弁と、ペースト材料の供給制御用の弁と、を備え、前記ピストンポンプの容積は、吸入工程のストローク端部に位置しているときの前記ピストンによって画定された前記シリンダの内部の容積である。
 別の態様に係るピストンポンプを用いた混合部は、吸入工程において前記ピストンポンプにガスを供給し、前記吸入工程の後で前記ペースト材料を供給し、前記ペースト材料の供給の終了後に前記ピストンポンプの吐出工程を行って前記ガス及び前記ペースト材料を管路に吐出する、各工程を実行する。
 前記スタティックミキサーの前記撹拌区分は、静止型の撹拌手段を備える。好ましくは、前記スタティックミキサーの前記第1の態様において、撹拌手段は、混合物の流れを分割し、転換し、反転する作用を有する。例えば、前記撹拌手段は、らせん形状を有する。或いは、前記撹拌手段は、前記混合物の流れに抗するように前記スタティックミキサーの内部に交互に配列された複数の邪魔板であってもよい。
 スタティックミキサーの好ましい第2の態様では、前記撹拌手段が、5以上の流路を備え、該流路の各々は、前記混合物の流れに対して並列に配列されている。例えば、第2の態様において、撹拌手段は、混合物の流れに抗するようにスタティックミキサーの内部に配置された1枚の邪魔板であり、該邪魔板には、混合物の流れが各々通過する複数の貫通孔が形成されていてもよい。別の例では、スタティックミキサーの内部をハチの巣状に形成したり、ミキサーの内部に複数の配管を並列に配置するようにしてもよい。
 分散効率を向上させるため、前記混合部と前記スタティックミキサーとの間、及び、前記スタティックミキサーと混合物を吐出する吐出手段との間の少なくともいずれかに、所定長さの配管を備える。
 本発明のペースト材料とガスとの混合方法は、バッチ毎にペースト材料とガスとを混合し、混合されたペースト材料とガスとの混合物を撹拌するため該混合物の流れ経路にスタティックミキサーを配置する、各工程を備え、前記スタティックミキサーを配置する工程は、前記混合物が通過する1つ又は複数の撹拌区分を備え、該撹拌区分は、該撹拌区分を通過する混合物の流れを撹拌する形状を有するスタティックミキサーを配置する工程であり、さらに前記スタティックミキサーは、前記バッチ毎の前記混合物の容積と、前記スタティックミキサーの前記撹拌区分のうち少なくとも最初に前記混合物が通過する第一の撹拌区分の容積との比率が、1:0.2~1:5の範囲にある第1の態様、並びに、ペースト材料とガスとの混合物を剪断力により撹拌するため該混合物の流れを5以上の流れに分割する第2の態様のいずれかであることを特徴とする。
 一態様では、前記バッチ毎にペースト材料とガスとを混合する工程は、ピストンポンプ及び吐出弁を用いる工程であり、前記ピストンポンプは、シリンダと、ペースト材料が流れることが可能な管路と該シリンダとを連通させるため前記シリンダの端部に形成された吐出口と、前記シリンダにガスを充填するため該シリンダに形成された吸入口と、前記シリンダの内部で第1の位置及び第2の位置の間で摺動されるピストンとを備えており、前記吐出弁は、前記吐出口を開閉するため用いられ、前記シリンダは、前記ピストンが前記第1の位置にあるとき、所定体積のシリンダ空間を形成し、前記スタティックミキサーは、前記管路に接続されている。
 好ましくは、前記バッチ毎にペースト材料とガスとを混合する工程は、前記吐出弁を閉じ、前記ピストンを前記第1の位置に移動させて前記所定体積のシリンダ空間を形成し、前記吸入口から所定圧力のガスを前記シリンダ空間に充填し、前記ピストンを前記第2の位置に向かって移動させることによって前記ガスを圧縮し、前記吐出弁を開放することによって、前記管路を流れるペースト材料に圧縮されたガスを混入させる、各工程を備え、前記吐出弁を閉じる工程から前記吐出弁を開放する工程までの一連の工程は、ペースト材料が所定量流れる毎に、繰り返され、前記吐出口は、前記管路の側壁において高粘度材料の流れに面するように設けられ、前記吐出口を閉じる工程は、前記吐出口と対向する、前記管路の側壁の位置から前記吐出弁の弁体を延ばし、該弁体を前記吐出口に着座させる工程である。例えば、ペースト材料の流量を測定する流量センサーを設け、流量センサーで所定量の流れを検出する毎に、ピストンポンプが1サイクル動作するように制御するようにしてもよい。これに加えて、或いは、これとは別に、ペースト材料を管路に送出する際に、定流量シリンダを用い、当該定流量シリンダのサイクルとピストンポンプのサイクルとを同期させるようにしてもよい。
 別の態様では、前記バッチ毎にペースト材料とガスとを混合する工程は、ピストンポンプを用いる工程であり、前記ピストンポンプは、シリンダと、吸入工程と吐出工程を行うために前記シリンダ内を往復移動するピストンと、を有し、前記シリンダは、吐出工程のストローク端部に設けられた吐出制御用の弁と、ガスの供給制御用の弁と、ペースト材料の供給制御用の弁と、を備え、前記バッチ毎の前記混合物の容積は、吸入工程のストローク端部に位置しているときの前記ピストンによって画定された前記シリンダの内部の容積である。
 好ましくは、前記バッチ毎にペースト材料とガスとを混合する工程は、吸入工程において前記ピストンポンプにガスを供給し、前記吸入工程の後で前記ペースト材料を供給し、
 前記ペースト材料の供給の終了後に前記ピストンポンプの吐出工程を行って前記ガス及び前記ペースト材料を管路に吐出する、各工程を実行する。
 好ましくは、前記スタティックミキサーを配置する工程は、前記スタティックミキサーの前記撹拌区分に静止型の撹拌手段を有するスタティックミキサーを配置する工程を備える。
 さらに好ましくは、スタティックミキサーの第1の態様において、前記静止型の撹拌手段を有するスタティックミキサーを配置する工程は、前記混合物の流れを分割し、転換し、反転する工程を備える。例えば、前記静止型の撹拌手段を有するスタティックミキサーを配置する工程は、らせん形状を有する撹拌手段を用いる。或いは、前記撹拌手段は、前記混合物の流れに抗するように前記スタティックミキサーの内部に交互に配列された複数の邪魔板であってもよい。
 スタティックミキサーの好ましい第2の態様では、前記撹拌手段が、5以上の流路を備え、該流路の各々は、前記混合物の流れに対して並列に配列されている。例えば、第2の態様において、撹拌手段は、混合物の流れに抗するようにスタティックミキサーの内部に配置された1枚の邪魔板であり、該邪魔板には、混合物の流れが各々通過する複数の貫通孔が形成されていてもよい。別の例では、スタティックミキサーの内部をハチの巣状に形成したり、ミキサーの内部に複数の配管を並列に配置するようにしてもよい。
本発明の第1の実施形態に係るペースト材料とガスとの混合装置の回路図である。 本発明で用いられるスタティックミキサーの第1の態様の第1の例の構成を示す図であって、スタティックミキサーの側断面図である。 本発明で用いられるスタティックミキサーの第1の態様の第1の例の構成を示す図であって、撹拌区分に形成された撹拌エレメントの斜視図である。 第1の実施形態に係るガス混入装置の断面図(ピストンが第1の位置まで上昇した状態)である。 第1の実施形態に係るガス混入装置の断面図(図3のガス混入装置で吸入弁が開放された状態)であって、ピストンポンプにガスを吸入させる工程を説明する図である。 第1の実施形態に係るガス混入装置の断面図(図3のガス混入装置で、吸入弁が閉じ、ピストンが第2の位置まで下降し、吐出弁が開放された)であって、ピストンポンプで生成した圧縮ガスをペースト材料へ混入させる工程を説明する図である。 本発明の第2の実施形態に係る、ペースト材料とガスとの混合装置の回路図であり、一部の構成要件が断側面図である。 第3の実施形態に係る、ペースト材料とガスとの混合装置の回路図である。 本発明で用いられるスタティックミキサーの第1の態様の第2の例の構成を示す図であって、複数の邪魔版を備えるスタティックミキサーの横断面図である。 本発明で用いられるスタティックミキサーの第1の態様の第2の例の構成を示す図であって、図8Aと同じスタティックミキサーの縦断面図である。 本発明で用いられるスタティックミキサーの第2の態様の横断面図である。
 以下、本発明の、ペースト材料とガスとの混合装置の実施の形態について、添付図面を参照しながら詳細に説明する。なお、本明細書でいう「ペースト材料」は、混入されたガスが当該ペースト材料中に発生した剪断力により微分散することが可能となる粘度を有する流動材料である。
 図1は本発明の一実施形態に係るペースト材料とガスとの混合装置1を説明するための回路図である。
 図1に示すように、本実施形態のペースト材料とガスとの混合装置1は、ペースト材料とガスとを混合する混合部2と、該混合部2で混合されたペースト材料とガスとの混合物を撹拌するため混合部2に接続されたスタティックミキサー3とを備える。
 混合部2は、ペースト材料が流れる管路空間(管路47によって形成されたペースト材料の通路として形成される)にガスを吐出するためのピストンポンプ10と、ピストンポンプ10から管路47へのガス供給を制御する吐出弁30とを少なくとも備える。吐出弁30から延びるガス吐出配管は、ガスとペースト材料との混合位置48で、管路47に接続される。
 さらに、混合部2は、ピストンポンプ10を駆動させる駆動部15と、ピストンポンプ10へのガス供給を制御する吸入弁20と、を備えるのが好ましく、図1では、これらの構成も備えた実施例を示している。
 また、混合装置1は、混合部2のピストンポンプ10にガスを供給するためピストンポンプ10に、管路33、吸入弁20を介して接続されたガスコンプレッサ43を備えている。さらに、混合装置1は、混合部2にペースト材料を供給するため、ペースト材料を貯蔵するタンク40と、該タンク40に貯蔵されたペースト材料を圧送する圧送ポンプ41と、圧送ポンプ41から圧送されたペースト材料を管路47に導く管路50と、を備えている。
 さらに混合装置1は、管路47から送られてきた、ガスが混入されたペースト材料が流れる管路52と、管路52から送られてきた、ガスが混入されたペースト材料を吐出するために管路52の先端に取り付けられたノズル46と、を備えている。スタティックミキサー3は、管路47と管路52との間に接続されており、混合部2で混合されたガスとペースト材料との混合物は、管路47を流れ、スタティックミキサー3を通過し、管路52を流れて。ノズル46に至る。合流位置48からスタティックミキサー3までの管路の長さ及び管路52の少なくともいずれかを所定の長さにすることによって、ガスの気泡の微分散する効果を向上させることができる。
 管路50、47、52は、別々の管路として構成され、この順にこれら管路内をペースト材料が流れるように、溶接若しくはフランジ等を用いて接続されたものであってもよい。勿論、管路50、47、52は、最初から一体の管路として構成されたものであってもよく、この場合、スタティックミキサー3は、管路47と管路52との間を一体接続される。
 タンク40として、例えば、公知のペール缶やドラム缶等を用いてもよいが、これに限定されるものではない。また、タンク40内に貯蔵されるペースト材料としては様々なものがあり、例えば、ポリウレタン、変成シリコン、エポキシ、シリコーン、アクリル、加硫ゴム、PVCやアクリル等のプラスチゾルなどおよびこれらの混合物さらにはグリス、食用クリーム、美容クリーム等があるが、これらに限定されるものではない。
 圧送ポンプ41は、ペースト材料を圧送できるものであればどの様なものでも構わない。圧送ポンプ41として、ペール缶やドラム缶用のピストンポンプやプランジャーポンプとして例えばエアモーター式のダブルアクションポンプなどや圧送時の脈動が発生しないギヤポンプやネジポンプ等の回転型ポンプを採用することもできるが、これに限定されるものではない。また、圧送ポンプ41に、定流量ポンプを組み込み、ペースト材料を一定流量で圧送できるようにしてもよい。
 このペースト材料を圧送する圧力は、ペースト材料の粘度にもよるが、20~300kg/cmが好ましく、50~200kg/cmがより好ましい。これは、圧送する圧力が50kg/cmより低くなると、ペースト材料が発泡した際、その気泡が粗くなる恐れがあるからであり、20kg/cmより低くなると、その傾向がより顕著になるとともに、気泡の大きさが均一でなくなる恐れがあるからである。また、圧力が200kg/cmより高くなると、装置の各構成部品の加圧性能及び耐圧性能を確保するために設備が高額となるからであり、300kg/cmより高くなると、その傾向がより顕著になるからである。
 ペースト材料の吐出圧力は、ノズル46の直前(吐出直前)で測定された圧力値を用いると3-20MPa、好ましくは、5-12MPa、より好ましくは、6-10MPaである。
 圧送されてくるペースト材料の流量を計測するため、圧送ポンプ41とピストンポンプ10の吐出弁30との間に流量計が設けられていてもよい。吐出弁30とノズル46の間に流量計や定流量装置が設けられてもよい。
 ガスコンプレッサ43は、例えば0~1MPa若しくは0~0.5MPaなどの比較的低圧のガスを供給するコンプレッサとして構成することができる。ガスの種類としては、空気(大気圧の空気、低圧空気、圧縮空気)、炭酸ガス、窒素ガス、酸素、アルゴン、クリプトン等の様々な気体を採用することができる。また、ペースト材料に供給するガスを大気中の空気とした場合には、ガスコンプレッサ43も用いることができるが、その代わりに、大気中の空気を取り入れるための空気取入れ口を設け、該空気取入れ口から導入された大気圧の空気をピストンポンプ10に供給するようにしてもよい。この場合、空気を濾過し、粉塵等を除去する空気フィルタを空気取入れ口と吸入弁20との間に設けてもよい。さらに、ガスコンプレッサ43や空気取入れ口の代わりに、ガスタンク、及びガス圧力を調整する圧力調整機構としての調整弁等を備える構成を用いることができる。また、ガスの圧力も、そのときの製造条件に応じて、大気圧より加圧した正圧又は大気圧より圧力が低い負圧とすることができる。
 低圧ガスを使用することにより、耐圧安全性を考慮した設計が不要となる。例えば、構成部品(配管やバルブ等)を低強度の材質で作ったり肉厚を薄くしたりすることが可能となる。さらには、ガス流量の制御を容易にし、ガス注入の信頼性や取り扱いの安全性を向上させることができる。これによってガス混入システム全体の軽量化、小型化を図ることができる。勿論、本発明は、使用目的や状況に応じて高圧ガスを取り扱う態様を含んでおり、低圧ガスの使用に限定されるものではない。
 ノズル46は、ガスが混入されたペースト材料を、ワークに対して塗布等するためのもので、ペースト材料を任意に吐出させることができる。ノズル46は、任意の方法で使用することが可能であり、例えば、ハンドヘルド式のノズルでも、マニピュレータの先端に取り付けられたノズルのいずれでもよい。
 ノズル46へのガス-ペースト材料の混合物の供給方法として、1台の混合部2から吐出された混合物をノズル46に供給する形態は勿論のこと、2台以上の混合部2を配置し、それらを並列若しくは交互に運転することによって、混合物の供給量を増加させたり、或いは、連続的な混合物の供給を可能にすることができる。
 また、混合部2(1台若しくは上記した2台以上)とノズル46との間に、計量装置を配置し、この計量装置により定量的にペースト材料をノズル46に提供してもよい。また、2つ以上の計量シリンダを配置し、これらの計量シリンダの交互運転で、連続的にガス混入されたペースト材料をノズル46に提供してもよい。
 さらに、混合部2は、混合部2の各構成要素を制御する図示しない制御部を備えていてもよい。制御部は、CPU、メモリ、又はリレー、タイマー等から構成され、駆動部15、吸入弁20、吐出弁30、圧送ポンプ41、流量計、ノズル46等と接続され、これらの構成要素と協動して、ペースト材料とガスとの混合装置1を動作させる。例えば、制御部は、ペースト材料の流量を検出する上記した流量計の信号に基づいて、ペースト材料が所定量流れる毎に、ピストンポンプ10を1サイクル駆動するなどの制御を行う。
 ピストンポンプ10によって、ガスが混入され管路47、52を流れてノズル46に至るペースト材料は、管路内を流れるうちに、ペースト材料内をガスが分散撹拌される。このガスの分散撹拌効果を増加させるために、前述したスタティックミキサー3が設けられている。
(スタティックミキサー:第1の態様の第1例)
 次に図2A及び図2Bを用いてスタティックミキサー3の第1の態様の第1の例を説明する。
 図2Aに示されるように、スタティックミキサー3は、入口ポート6及び出口ポート7を有する外側筒4と、該外側筒4の内部の空洞部に形成された撹拌部5とを有する。入口ポート6は、図1の管路47に接続され、出口ポート7は、図1の管路52に接続される。管路47から流れてきたペースト材料とガスとの混合物は、図2Aの矢印に示すように、入口ポート6から流入し、撹拌部5を通って流れ、出口ポート7から流出する。
 撹拌部5は、例えば6つの撹拌区分5a、5b、5c、5d、5e、5fに分かれており、撹拌区分の各々は、該撹拌区分を通過する混合物の流れを撹拌する形状を有している。
 撹拌区分5a~5fは、混合物の撹拌効率を向上させるため、図2Bに示すような、静止型の撹拌エレメント8a、8bが交互に配列するように形成されていてもよい。撹拌エレメント8aは、左方向に180度捻じられた、らせん形状を有しており、入口エッジ11a、第1の捻じり面12a、第2の捻じり面13a及び出口エッジ14aを備えている。また、撹拌エレメント8bは、右方向に180度捻じられた、らせん形状を有しており、入口エッジ11a、第1の捻じり面12a、第2の捻じり面13a及び出口エッジ14aを備えている。撹拌エレメント8aの出口エッジ14aには、撹拌エレメント8bの入口エッジ11bが交差するように結合されている。そして、撹拌エレメント8bの出口エッジ14bには、撹拌エレメント8aと同様に形成された撹拌エレメントの入口エッジが交差するように結合される。このように図2Bに示された撹拌エレメント8a、8bが対となり、複数の撹拌エレメントが順次結合される。撹拌区分5a~5fの各々の空間には、一つの撹拌エレメントが配置若しくは内壁に結合されている。
 スタティックミキサー3の撹拌区分5aに流入した混合物の流れは、撹拌エレメント8aの入口エッジ11aによって、2つの流れに分割され、それぞれの分割流れは、第1の捻じり面12a、第2の捻じり面13aに沿って、中心部から周辺部へ、周辺部から中心部へと転換され、出口エッジ14aに至る。出口エッジ14aから出た2つの流れは、反対方向に捻じられた撹拌エレメント8bによってさらに2つの流れに分割され、転換されると共に、異なる方向の捻じり面により流れの反転作用が発生する。このようにして混合物の流れは、撹拌区分5a~5fを通過するうちに、撹拌され、混合されていく。
 さらに、本発明の第1の実施形態は、ピストンポンプ10の容積(出力量)と、スタティックミキサー3の撹拌区分5a~5fのうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されている。
 また、本発明の第1の実施形態の変形例は、管路47を流れるバッチ毎の混合物の容積と、スタティックミキサー3の撹拌区分5a~5fのうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されている。
 第1の実施形態によれば、上記のように、ピストンポンプ10の容積(出力量)とスタティックミキサーの少なくとも1つの撹拌区分の容積との比率を上記の通りの範囲とすることによって、ペースト材料中にきわめて効率的にガスを混合することが可能となる。
 図2Aの例では、スタティックミキサー3の撹拌区分の数が6個の例を示したが、本発明は、これに限定されず、撹拌区分の数が1の場合を含む、任意の数が考えられる。また、図2Aの例では、撹拌区分は、サイズが同じ(内径及び長さが同一)であったが、本発明はこれに限定されず、サイズを変えることによって撹拌効率を高めることも可能である。例えば、撹拌区分の内径を出口ポート7に近づくにつれて小さくすることも可能である。
(スタティックミキサー:第1の態様の第2の例)
図2Bの例では、撹拌エレメントがらせん形の例を示したが、スタティックミキサーの第1の態様は、これに限定されず、各撹拌区分に複数の邪魔板を配置することも可能である。このようなスタティックミキサーを第2の例として、図8A及び図8Bを用いて説明する。
 図8A、図8Bに示すように、スタティックミキサー3aは、混合物の流れが通過する撹拌部5に配置された複数の邪魔板60a、60b,....60gを備える。図8Aの横断面図から良く理解できるように、該邪魔板60の各々は、混合物の流れに抗して交互に配列されている。邪魔板60a~60gは、図示のように直方体の形状をなしている。また、図8Bの縦断面図から良く理解できるように、該邪魔板60の各々は、ミキサー内壁の頂面から底面に亘って延在している。
 スタティックミキサー3aでは、入力ポート6から流入してきた混合物は、最初の邪魔板60aに衝突したとき流れが転回されて分割される。該流れは、邪魔板60b、60cに衝突しさらに分割されるが、内壁に向かった一方の分割流れは内壁で反転された後、他方の分割流れと共に邪魔板60aの後側付近の混合物に混合される。再び混合された混合物は、邪魔板60b、60cの間を通過する。次に、混合物は、邪魔板60dによって流れが転回されて分割され、該分割流れは、各々邪魔板60e、60fに衝突して転回され、再び混合され、邪魔板60e、60fの間を通過する。最終的に、混合物は、邪魔板60dによって流れが転回されて分割され、内壁によって反転された後、出力ポート7の前で再び混合され、スタティックミキサー3aから流出する。このように、スタティックミキサー3aでは、混合物に対して、分割、転回、反転の各作用が繰り返され、ペースト材料中で気泡をせん断させる。
 図8Bに示すように、入力ポート6から邪魔板60aまでが撹拌区分5aに相当し、邪魔板60aから邪魔板60b、60cまでが攪拌区分5bに相当し、同様に長さ方向に隣接する2つの邪魔板が次の撹拌区分に相当し、最後に、邪魔板60gから出力ポート7までが攪拌区分5fに相当する。
 第1の態様の第2の例においても、ピストンポンプ10の容積(出力量)と、スタティックミキサー3aの上記撹拌区分5a~5fのうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されている。
 さらなる変形例として、管路47を流れるバッチ毎の混合物の容積と、スタティックミキサー3aの撹拌区分5a~5fのうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されていてもよい。
(スタティックミキサー:第2の態様)
 スタティックミキサーの第1の態様では、混合物の流れが直列に並べられた撹拌区分を順次通過することを示したが、混合物の流れが並列の流れに分割されることによっても撹拌作用をもたらすことが可能である。これをスタティックミキサーの第2態様として図9を用いて説明する。
 図9に示すように、スタティックミキサー3bは、混合物の流れに抗するように撹拌部5に配置された1枚の邪魔板61を備える。該邪魔板61には、混合物の流れが各々通過する複数の貫通孔62が形成されている。貫通孔62は、5以上、好ましくは10以上形成される。すなわち、邪魔板61に到達した混合物の流れは、5以上の流れに分割される。なお、1枚の邪魔板61の周端部は、全周に亘ってミキサーの内壁と結合している。
 スタティックミキサー3bを通過した混合物の流れは、邪魔板によって流れが変えられると共に、並列に配列された5以上の貫通孔によって、5以上の流れに分割される。このとき発生する、剪断力によって、ペースト材料中にガスが効率的に撹拌され、ペースト材料とガスとの混合を促進させることが可能となる。
 上記では1枚の邪魔板61を例にして説明したが、5以上の流路を備え、流路の各々が混合物の流れに対して並列に配列されているのであれば、本発明のスタティックミキサーの第2の態様に含まれる。例えば、スタティックミキサー3bの内部をハチの巣状に形成したり、ミキサーの内部に複数の配管を並列に配置するようにしてもよい。
 第2の態様では、混合物の流れが通過することができる、スタティックミキサー3bの撹拌部5を1つの攪拌区分として理解することができる。
 従って、第2の態様では、ピストンポンプ10の容積(出力量)と、スタティックミキサー3bの攪拌区分の容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されている。
 さらなる変形例として、管路47を流れるバッチ毎の混合物の容積と、スタティックミキサー3bの攪拌区分5の容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されていてもよい。
 なお、第2の態様では、スタティックミキサーの撹拌部5の内径は、入力ポート6から軸方向に進むにつれて拡大されていき、スタティックミキサーの中央部で最大の内径に達し、それ以後は、出力ポート7に至るまで減少する。勿論、第2の態様のスタティックミキサーの撹拌部5は、入力ポート6から出力ポート7まで同じ内径を有していてもよく、或いは、図8に示す例とは異なる仕方で内径が軸方向に沿って変わるようにしてもよい(例えば、入力ポート6から出力ポート7まで内径が増大或いは減少する)。
 上記がスタティックミキサーの例であるが、本発明で使用するスタティックミキサーは上記例に限定されるものではなく、任意好適に変更可能である。また、複数のスタティックミキサー3、3a、3bを接続して用いることや、異なる種類のスタティックミキサーの組合せ(例えば、第1の態様と第2の態様のいずれかとの組み合わせ)を用いることも可能である。
(ピストンポンプの構成)
 次に図3を用いてピストンポンプ10の詳細な構成について説明する。
 図3に示すように、ピストンポンプ10は、シリンダ11と、シリンダ11の内部空間をその軸方向に沿って駆動部15により第1の位置(例えば上死点)及び第2の位置(例えば下死点)の間で摺動可能に構成されたピストン12と、シリンダ11の側壁に設けられたガスの吸入口13と、ガスの吐出口14と、を備える。シリンダ11の内部空間は、管路47の外周部の内部にまで延びており、当該内部空間の終端であるペースト材料の通路付近に、吐出口14が形成されている。シリンダ11は、ピストン12が第1の位置(上死点)にあるとき、ピストン12によって画定された所定体積のシリンダ空間を形成する。
 ピストン12は、ピストン12の圧縮行程の動作終端(ピストン12の第2の位置(下死点))において、ピストン12の先端と吐出口14が形成されたシリンダ11の端部の内側とが隙間なく適合するのが好ましい。ここで、「隙間なく適合」とは、ピストン12の先端が、吐出口14が形成されたシリンダ11の端部の内側と相補的な形状を有しているため、ピストン12が第2の位置(下死点)にあるとき、ピストン12の先端がシリンダ11の端部内側とほぼ完全に適合可能であることを意味している。これによって、シリンダ内にデッドスペースが無くなり、ガス量をより正確に制御することができる。或いは、「隙間なく適合」には、当該「隙間」が事実上ゼロであるような適合の仕方も含まれている。例えば、ピストン12の先端が吐出口14が形成されたシリンダ11の端部の内側と相補的な形状を有し、ピストン12が第2の位置(下死点)にあるとき、ピストン12の先端とシリンダ11の端部内側との間の距離が、0であるか、或いは当該距離が非常に小さく、2mm以下、好ましくは1mm以下、より好ましくは0.5mm以下となることを意味している。
 吸入口13は、ピストンポンプ10のシリンダ11側壁に設けられている。好ましくは、吸入口13は、ピストン12の吸入行程の動作終端近傍に設けられるのがよい。ピストン12が吸入行程の動作終端(第1の位置(例えば上死点))又はその近傍にあるとき、上記の吸入弁20によって開かれ、ここからシリンダ11の内部空間にガスが導入される。吐出口14は、ピストン12が圧縮行程を開始し動作終端(下死点)近傍に到達したとき、上記の吐出弁30によって開かれ、圧縮ガスを管路47内のペースト材料内へ混入する。なお、管路47は、ピストンポンプ10の近傍では、ピストンポンプ10の構成部品と一体に形成されているが、ピストンポンプ10の前後等、他の構成要素と接続される部分は、公知の配管、耐圧ホース等が採用される。
 吸入弁20は、図3にも示すように、ピストンポンプ10のシリンダ11の側壁に設けられ、ピストンポンプ10の吸入口13を開閉する。本実施形態のペースト材料とガスとの混合装置1では、吸入弁20に一例としてニードル弁を採用している。ニードル弁20は、ニードル軸21と、ガス導入口22と、駆動部23とを備える。ニードル軸21は、シリンダ11の軸に直交する方向に沿って延在するのが好ましく、当該方向に沿って摺動する。ガス導入口22は、ガスコンプレッサ43から供給されるガスを、ニードル弁20に導入するためのもので、ニードル弁20の筐体の側面に設けられていてもよい。
 駆動部23は、ニードル軸21をその長さ方向に沿って前進又は後退させる。ニードル軸21は、その先端が吸入口13に嵌って該吸入口を閉じるまで前進することができる(図では左側に移動)。ニードル軸21が吸入口13に嵌った位置から後退(図では右側に移動)したとき吸入口13が開かれシリンダ11とガス導入口22とが連通する。駆動部23として、公知の空気シリンダや電動モータを用いることができるが、これに限定されるものではない。また、ニードル弁20には、吸入口13側の先端部に、ニードル軸21を案内するための弁ガイド21aが設けられていてもよい。
 吐出弁30は、ピストンポンプ10のシリンダ11先端に設けられ、ピストンポンプ10の吐出口14を開閉する。本実施形態のペースト材料とガスとの混合装置1では、吐出弁30に一例としてニードル弁を採用している。ニードル弁30は、管路47によって形成された管路空間47aを挟んで、ピストンポンプ10の吐出口14と対向する位置に設けられ、ニードル軸31と、駆動部36とを備える。ニードル軸31は、その先端が管路空間47a内を通過して吐出口14に嵌まるようシリンダ11の軸と同軸上に設けられている。
 駆動部36は、ニードル軸31を前進又は後退させる。ニードル軸31は、その先端が吐出口14に嵌って該吐出口を閉じるまで前進することができる(図では上側に移動)。このとき、ニードル軸31が吐出口14に嵌った位置から後退(図では下側に移動)したときは吐出口14が開かれシリンダ11と管路47とが連通する。駆動部36として、公知の空気シリンダや電動モータを用いることができるが、これに限定されるものではない。また、ニードル弁30には、管路47内に、ニードル軸31を案内するための弁ガイドが設けられていてもよい。このような弁ガイドは、円柱状の本体と、ニードル軸31をその中で上下に移動可能に貫通させる縦孔と、管路空間47aと連通しその内部をペースト材料が移送される横孔とを備えて構成してもよい。
 なお、ニードル軸21、31の先端は、図では模式的に表しているが、気密性を向上させるために、円錐形、円錐台や半球状等の様々な形状にすることができる。また、吸入弁や吐出弁として、ニードル弁に限定されず、吸入口13、吐出口14を開閉することが可能な弁であれば任意構成の弁を用いることができる。例えば、ピストンがニードル状ではないピストンバルブ、チェック弁、或いは、吸入口を開閉する機構を採用することもできる。
(第1の実施形態の作用)
 次に、以上説明した各構成要素の機能を踏まえて、本実施形態のペースト材料とガスとの混合装置1の動作を図1~図5を参照して説明する。図1、図3は既に説明した通りである。図4はピストンポンプ10にガスを吸入させる工程を説明する図、図5はピストンポンプ10で生成した圧縮ガスをペースト材料へ混入させる工程を説明する図である。
 先ず、ペースト材料が入ったタンク40から、圧送ポンプ41によって、ペースト材料を、管路47を通じて下流側に圧送する。なお、図3~4においては、ペースト材料は、管路47内を矢印a1に示すように、左から右に向かって移送されているものとする。
 なお、ペースト材料が所定の量、移送されたことを監視、判断するため、本実施形態では、例えば、以下の方法のうち一つが採用される。
(1)定量装置を備えた圧送ポンプ41と連動しピストンポンプ10を作動させる。
(2)1ストロークの容量が既知な圧送ポンプ41のサクション(容量が決まっている)をカウントして、ピストンポンプ10を作動させる。
(3)圧送ポンプ41やピストンポンプ10とは別に設置した定流量装置や定流量付き吐出ガンと連動して、ピストンポンプ10を作動させる(シリンダのガス容量の変更は、ガスの圧力の変更・調整やピストンのストロークによって実施する)。
(4)圧送ポンプ41やピストンポンプ10とは別に設置したブースターポンプやシリンダ駆動式の吐出ガンを用い、使用量に応じてピストンポンプ10を作動させる。
(5)流量計の測定値に基づいて、ペースト材料が所定の量、移送されたタイミングを判断し、当該タイミングに従ってピストンポンプ10を作動させる。
 混合部2は、ペースト材料(図中矢印a1)が所定の量流れる毎にピストンポンプ10の1サイクルが実行されるように制御される。なお、ペースト材料が所定の量流れたタイミングをピストンポンプ10の各動作のいずれの時点に対応させるかは、ピストンポンプ10の1サイクルと流れたペースト材料の量とが一定の関係を維持することができる限り、任意好適に変更可能である。以下、ピストンポンプ10の1サイクルを説明する。
 図3に示すように、ピストンポンプ10に接続された吸入弁20と吐出弁30が閉じられた状態で、ピストン12が吸入行程の動作終端まで、すなわち第2の位置から第1の位置まで移動する。このとき、シリンダ11内に所定体積のシリンダ空間が形成されるが、吸入弁20と吐出弁30が閉じられているため、シリンダ11内は真空となる。
 次に、図4に示すように、吸入弁20の駆動部23によってニードル軸21が後退(図では右側に移動。)される。すると、吸入口13が開かれ、シリンダ11とガス導入口22とが連通し、シリンダ11内の所定体積のシリンダ空間に圧縮前のガスが流入する(図中矢印a2)。そして、ニードル軸21を前進(図では左側に移動。)させ吸入弁20を閉じると、シリンダ11内にはガスが充填され、密閉された状態となる。すなわち、吸入弁20が所定時間に亘って開放され、所定量のガスがシリンダ11内に蓄積された時点で吸入弁20が閉じられる。次に、ペースト材料が所定量流れるまでピストン12の動作が停止される。
 次に、ピストン12を圧縮行程側に移動させ、シリンダ11内に充填されたガスを圧縮する。すなわち、ピストンを第1の位置から第2の位置まで下降させる。ピストン12が圧縮行程の動作終端(下死点)近傍に達したときに、吐出弁30を開放する。すなわち、吐出弁30の駆動部36によってニードル軸31を後退(図では下側に移動。)させ吐出口14を開く。すると、図5に示すように、圧縮されたガスが管路47内を圧送されるペースト材料の中に混入されるとともに、ピストン12は圧縮行程の動作終端(下死点)に達する。次にニードル軸31を前進(図では上方向に移動。)させ、吐出弁30を閉じるとペースト材料へのガス混入の1サイクルが終了する。
 なお、上記ピストン12の動作終端近傍とは、好ましくは、ガスを1/5~1/100に圧縮したピストン位置、好ましくは1/10~1/30に圧縮したピストン位置である。このときガスの圧力よりも材料の圧力が高い場合には、材料が吐出口14から逆流しシリンダ内に流入し、ガスシリンダ内で材料とガスが混合される。もし、材料の圧力がガス圧よりも大きすぎると比較的小さな口径の吐出口14と材料の流入速度とによってもたらされる、剪断力により材料が変質する場合がある。また、ガス圧が材料圧よりも大きすぎる場合には、材料がシリンダ内に流入しないため、ガスと材料の混合性が悪化する場合がある。従って、ガス圧と材料圧とを適度に調整することによって、材料の変質を防止しない範囲で混合性を高めることができる。
 そして、再びペースト材料が所定の量移送されると、上記の動作を繰り返すのである。なお、管路47内を圧送されているペースト材料は、既に述べたように高圧のため、混入された空気もその圧力に応じて圧縮され、その体積が縮小されている。このため、空気をペースト材料へ混入させても、ペースト材料の流量に影響を与えることが殆どなく、脈動等を生じることもない。
 次に、ガスが混入されたペースト材料は管路47、52を流れる間に、撹拌されていき、これによって混入されたガスの気泡が微細化され、ペースト材料内を分散する。微細な気泡が分散したペースト材料は、ノズル46から吐出されてワーク等に塗布される。ペースト材料がノズル46から吐出されると、それまで高圧であったペースト材料は、大気圧環境下におかれる。すると、ペースト材料に混入されたガスの気泡が膨張し、混入されたガスの量に応じた発泡倍率で発泡する。なお、ペースト材料中への気泡の分散を促進させるために、必要に応じてミキサーを用いてもよい。
 以上説明したように、本実施形態のペースト材料とガスとの混合装置及びペースト材料とガスとの混合装置を使用したペースト材料とガスとの混合方法によれば、ペースト材料の所定の流量毎にピストンポンプを動作させるため、ピストンポンプの動作タイミングを変更することによりペースト材料へのガス混入比率、すなわちペースト材料の発泡倍率を自由に変更することができる。例えば、シリンダ空間11aの容積が50mlであり、シリンダ11に導入されたガスが大気圧であると仮定した場合、ペースト材料が50ml移送される毎にピストンポンプを1サイクル動作させれば、発泡倍率は約2倍となる。同様に、ペースト材料が100ml移送される毎にピストンポンプを1サイクル動作させれば発泡倍率は約1.5倍、ペースト材料が25ml移送される毎にピストンポンプを1サイクル動作させれば発泡倍率は約3倍となる。シリンダ11に導入されたガスの圧力を変更させたり、シリンダ空間11aの容積を変更させることによっても上記発泡倍率は変更可能であることはいうまでもない。シリンダ空間11aの容積を変更するため、例えばピストン12の第1の位置を変更するように、ピストン12の動作を変更することができる。
 すなわち、本発明の実施例において、発泡倍率を変更する手段として、次の手段のうちいずれか1つ、或いは、2つ以上の組み合わせがある。
(1)ピストンポンプ1サイクル当たりのペースト材料の供給量の変更(ピストンポンプの1サイクルの速度及びペースト材料の供給量のいずれかを変えるか或いは両方を変える)
(2)シリンダ空間11aに導入されるガスの圧力の変更
(3)シリンダ空間11aの容積の変更(例えばピストン12の第1の位置の変更)
 特に、従来の一つのピストンポンプ内にガスとペースト材料を一緒に入れて圧縮する方法では、発泡倍率を2倍より低くしようとすると、ピストンポンプ内に充填するガスを大気圧より圧力の低い負圧とする必要があり、負圧タンク等を付加するためその構成が複雑となっていた。また、発泡倍率を2倍より高くしようとすると、予めピストンポンプに充填するガスの圧力を高める必要があり、上記同様に圧力タンク等が必要となるとともに、ガスの圧力が高くなると、後から充填するペースト材料がピストンポンプ内に規定量充填できなくなり、発泡倍率の誤差が生じていた。一方、本実施形態のペースト材料とガスとの混合装置では、ピストンポンプの動作回数を増減するのみで、発泡倍率を簡単に変更できるばかりでなく、負圧タンクや圧力タンク等が不要となり、装置の構成を簡素なものとすることができる。
 同様に、従来の一つのピストンポンプ内にガスとペースト材料を一緒に入れて圧縮する方法では、ピストンポンプのデッドスペースを増やさないために、ペースト材料を供給又は吐出するポートを大きくすることができず、ペースト材料の種類によってはポートの通過時に剪断力がかかり、ペースト材料が変質する恐れがあった。一方、本実施形態のペースト材料とガスとの混合装置では、シリンダ11内のガスを予め圧縮して、ペースト材料とガスとの圧力差を小さくすることが可能であり、その場合、シリンダ内にペースト材料が逆流することを少なくすることができ、そのような心配がない。なお、上述した通り、ガスの圧縮によるペースト材料の逆流防止は、ガスと材料との混合性を良好に維持する範囲で行われるのが好ましい。
 また、ペースト材料を圧送する圧送ポンプと、ガスを圧縮するピストンポンプとは、互いに独立した構成となっているため、ピストンポンプの動作がペースト材料の移送に影響しない。これにより、一組の圧送ポンプとピストンポンプしか備えず、かつ、バッファタンクを設けない構成であっても、ガスが混入されたペースト材料を連続的に送ることができ、さらに、任意のタイミングで止めることもできる。
 同様に、ペースト材料を圧送する圧送ポンプと、ガスを圧縮するピストンポンプとは、互いに独立した構成となっており、ピストンポンプの動作回数を増減するだけでガスの混入量を制御できるため、ペースト材料の流量や圧送ポンプの大きさが変わっても、ある程度までは同じ容積のピストンポンプで対応することができる。
 また、従来のようにペースト材料を多段階に圧送するのではなく、最初からペースト材料を所定の圧力で圧送しているため、ペースト材料を圧送する圧送ポンプが一つですみ、構成が簡素なものとなる。
 また、ペースト材料へ混入するガスとして大気圧の空気以外を用い、ガスタンク、及び調整弁等を備える他の実施形態においては、ピストンポンプの動作タイミングを変更せずとも、ピストンポンプに供給する圧縮前のガスの圧力を調整することで、ペースト材料の発泡倍率を変更することができる。例えば、シリンダ空間11aの容積が50mlで、シリンダ空間11aに供給する圧縮前のガスの圧力が1気圧の場合、ペースト材料が50ml移送される毎にピストンポンプを1サイクル動作させれば発泡倍率は約2倍となるが、ピストンポンプに供給する圧縮前のガスの圧力を2気圧とすることで発泡倍率は約3倍となり、0.5気圧とすることで発泡倍率を約1.5倍とすることができる。
 さらに、上述のペースト材料の所定の流量毎にピストンポンプの動作タイミングを変更することによってペースト材料へのガス混入比率を調整する方式と、ピストンポンプに供給する圧縮前のガスの圧力を調整することによってペースト材料へのガス混入比率を調整する方式とを併用させることで、同じ容積のピストンポンプで広範囲の量のガスをペースト材料に混入させることができ、一つのピストンポンプで様々な容量の圧送ポンプに幅広く対応させることができる。
(第2の実施形態)
 次に第2の実施形態を図6を用いて説明する。なお、第1の実施形態と同様の構成要件については、同様の符号を附して詳細な説明を省略する。
 図6に示すように、第2の実施形態の混合装置1aの混合部2aは、ピストンポンプ45Aを備えている。ピストンポンプ45Aは、シリンダ451、シリンダ451内を密に摺動するピストン452、及びシリンダ451に設けられた3つの弁50A、51A、52Aを含んで構成されている。なお、本実施形態では、弁50A、51A、52Aを、いわゆるニードル弁とする。
 ニードル弁50Aは、管路33を通って供給されたガスのシリンダ451内への供給を制御するための弁であり、吐出工程のストローク端部(下死点付近)の近傍に設けられている。また、ニードル弁51Aは、管路50を通って供給されたペースト材料のシリンダ451内への供給を制御するための弁であり、吸入工程のストローク端部(上死点付近)の近傍に設けられている。ニードル弁52Aは、ペースト材料とガスの混合物の吐出を制御するための弁であり、ピストンポンプ45Aにおける吐出工程のストローク端部に設けられている。なお、ガス供給制御用のニードル弁50Aは、吸入工程のストローク端部(上死点付近)の近傍に配置されていてもよい。
 これらのニードル弁50A、51A、52Aは、互いにほぼ同一の構造であり、ニードル453が図示しない空気圧シリンダにより駆動されて軸方向に移動し(エア駆動方式)、ニードル453の先端部がシリンダ451の内周面又は端面に設けられた開口部454を開閉する。弁本体には上記空気圧シリンダの弁室内に連通するポート455が設けられている。なお、エア駆動方式以外に、カムシャフト等を用いて自動車エンジンのようなシリンダ駆動方式を採用して動作させることも可能である。
 ニードル弁50A、51A、52Aが閉じた状態において、ニードル453の先端部はシリンダー451の内周面又は端面と面一であり、ピストン452との間のデッドスペースは実質的に零となっている。従って、ニードル弁50A、51A、52Aが閉じた状態においては、シリンダ451の内部に供給されたガス又はペースト材料の一部がそれらニードル弁50A、51A、52Aの弁室などに入り込んで滞留することがなく、ニードル弁52Aが開いて吐出工程が行われると、シリンダ451の内部に供給されたガス及びペースト材料の全部が吐出される。吐出されたガス及びペースト材料は、管路47、スタティックミキサー3及び管路52を通ってノズル46から吐出される。
 図示しない制御装置は、ピストンポンプ45Aのシリンダ451内に、吸入工程においてガスを供給し、吸入工程の後にペースト材料を供給し、ペースト材料の供給の終了後に吐出工程を行ってガス及びペースト材料を管路47に吐出するように、各構成要件を制御する。
 ピストンポンプ45Aの容積(吐出容量)は、ピストン452の直径とストローク(移動距離)によって定まる。換言すれば、ピストンポンプ45Aの容積は、吸入工程のストローク端部に位置しているときのピストンによって画定されたシリンダ451の内部の容積である。本実施形態の一例において、ピストン452の直径は16mm、ストロークは125mmであり、容積は25ccである。
 本発明の第2の実施形態は、ピストンポンプ45Aの容積(吐出容量)と、スタティックミキサー3の撹拌区分5a~5fのうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されている。
 第2の実施形態によれば、上記のように、ピストンポンプ10の容積(吐出容量)とスタティックミキサーの少なくとも1つの撹拌区分の容積との比率を上記の通りの範囲とすることによって、ペースト材料中にきわめて効率的にガスを混合することが可能となる。
(第3の実施形態)
 次に第3の実施形態を図7を用いて説明する。なお、第1及び第2の実施形態と同様の構成要件については、同様の符号を附して詳細な説明を省略する。
 図7に示すように、第3の実施形態の混合装置1bの混合部2bは、4つのピストンポンプ45A、45B,45C、45Dを備えている。ピストンポンプ45B,45C、45Dは、上述した第2の実施形態に係るピストンポンプ45Dと同様に構成されている。
 ガス供給用の管路33は、混合部2bにおいて、4本の管路に分岐され、ガス供給制御用の弁50A~50Dを介してそれぞれピストンポンプ45A~45Dに接続されている。また、ペースト材料供給用の管路50も、混合部2bにおいて、4本の管路に分岐され、ペースト材料供給制御用の弁51A~51Dを介してそれぞれピストンポンプ45A~45Dに接続されている。これによりピストンポンプ45A~45Dは、タンク40から圧送されるペースト材料と、ガスコンプレッサ43から送出されるガスと、をそれぞれバッチ式に導入する。
 そして、ピストンポンプ45A~45Dの図示しない吐出口から吐出制御用の弁52A~52Dを介して、各々の管路が延設されており、これら4本の管路は、ペースト材料とガスの混合物吐出用の1本の管路47にまとめられる。すなわち、本実施形態では、材料吸引、ガス吸引、混合物吐出の管路を1本にまとめ、それらを各ピストンポンプに各々分岐させるマニホールド構造とすることができる。このようなマニホールド構造を採用することによって、小型化、配管接続の容易化、混合吐出装置のシンプル化を図ることができる。また、各ピストンポンプを独立に交換可能なようにすれば、ピストンポンプなどのオーバーホールを容易に行うことができ、小型化とメンテナンス性を両立させることができる。さらに、マニホールド構造の配管系に、新たにピストンポンプを取り付けたり或いは取り外し可能なように構成すれば、必要連続最大吐出量に応じた段数を容易に選択できる。管路47には、スタティックミキサー3が接続されている。
 図示しない制御装置は、ピストンポンプ45A~45Dのシリンダ451内に、吸入工程においてガスを供給し、吸入工程の後にペースト材料を供給し、ペースト材料の供給の終了後に吐出工程を行ってガス及びペースト材料を管路47に吐出するように、各構成要件を制御する。
 連続定量吐出が可能となるようにピストンポンプ45A~45Dの各々の吐出工程は時間差を設けて制御される。例えば、いずれかのピストンポンプの吐出工程が終了する時点付近で他のピストンポンプの吐出工程を開始するように各構成要件が制御される。
 また、1サイクル当たりの吐出量を増加させる場合には、ピストンポンプ45A~45Dの各々の吐出工程は時間的に重複するように制御されてもよい。例えば、ピストンポンプ45A~45の吐出工程を同時に行うように各構成要件が制御される。
 また、ピストンポンプ45A~45Dをそれぞれ2つのピストンポンプからなる2つの組に分け、同じ組のピストンポンプは同時に制御され、異なる組のピストンポンプは、時間差を設けて制御されるようにすることも可能である。なお、ピストンポンプをどのように組分けするかは、任意好適に変更可能である。
 本発明の第3の実施形態は、ピストンポンプ45A~45Dの総容積(4つのピストンポンプ吐出容量の総和)と、スタティックミキサー3の撹拌区分5a~5fのうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にあり、より好ましくは1:0.5~1:3の範囲にあるように構成されている。
 第3の実施形態によれば、上記のように、ピストンポンプ45A~45Dの総容積とスタティックミキサーの少なくとも1つの撹拌区分の容積との比率を上記の通りの範囲とすることによって、ペースト材料中にきわめて効率的にガスを混合することが可能となる。
 第3の実施形態では、ピストンポンプが4つの例を示したが、本実施形態は、これに限定されず、ピストンポンプの数が2、3、5以上の場合も同様に考えられる。
 なお、上述のペースト材料とガスとの混合装置及びペースト材料とガスとの混合方法は、本発明の例示であり、発明の趣旨を逸脱しない範囲においてその構成を適宜変更することができる。
 例えば、図3等に示す混合部2では、管路47を構成要件の一つとし、管路47の側壁の内部にまでシリンダ空間11aが延在し、管路空間47aに近接して吐出口14が設けられている。しかし、管路空間47aに近接して吐出口14を設けることができれば、管路47の側壁の内部にまでシリンダ空間11aを形成する必要はない。このような状況として、管路47の側壁が非常に薄く、吐出口14を管路47の外側に設けたとしても、管路空間47aに非常に近接して吐出口14を配置できるような場合(管路47に、吐出口14用の孔のみが形成される)が考えられる。このような場合には、本発明の混合部2の構成要件から、管路47を除外することが可能となる。すなわち、本発明の混合部2を、管路47(或いは管路の一部分)が存在しない態様で提供することができる。
 また、本発明は、開示されているシリンダ11と管路47との位置関係(管路47に対してシリンダ11の長さ方向が直交する位置関係)に限定されず、例えばシリンダ11が管路47に対して斜めや平行に配置された態様も考えられる。
 また、上記実施例では、吸入弁20、吐出弁30として、ニードル弁を用いていたが、シリンダ空間の開閉及び管路空間の開閉を行うことができれば、任意形式の弁、例えばゲート式の弁などを用いることもできる。
 動作タイミングに関しても、開示された例に限られず、所定体積で所定圧力のガスを所定量のペースト材料に混入させることができれば、任意のタイミングで各構成要件を動作させることが可能となる。
 さらに、上記例では、混合部2の吸入口13を開閉する構成要件として、吸入弁20を用いていたが、本発明において、シリンダ空間11aにガスを充填することができる限り、吸入弁20を省略することもできる。例えば、図示しないガス供給手段から所定圧力のガスを弁無しで吸入口を介してシリンダ空間11aに導入する態様も考えられる。
 さらに、上記例では、本発明のペースト材料とガスとの混合方法は、本発明の実施例として開示された、混合部2を含む混合装置1によって実行されているが、本発明の方法は、開示された混合装置1を使用する例には限定されるものではない。例えば、吸入口13や吐出口14を開閉する手段は、開示された吸入弁20や吐出弁30以外の開閉構成でも可能である。また、シリンダ11と管路47との位置関係も上述の通り任意好適に変更可能である。
1、1a、1b・・ペースト材料とガスとの混合装置 2、2a、2b・・混合部、3、3a、3b・・スタティックミキサー、5・・撹拌部、5a、5b、5c、5d、5e、5f・・撹拌区分、6・・入口ポート、7・・出口ポート、8a、8b・・らせん形状の撹拌エレメント(第1の態様)、10・・ピストンポンプ、11・・シリンダ、11a・・シリンダ空間、12・・ピストン、13・・吸入口、14・・吐出口、15・・駆動部、20・・吸入弁(ニードル弁)、21・・ニードル軸、22・・ガス導入口、23・・駆動部、30・・吐出弁(ニードル弁)、31・・ニードル軸、36・・駆動部、40・・タンク、41・・圧送ポンプ、42・・流量計、43・・空気取入れ口、44・・空気フィルタ、45・・ミキサー、46・・ノズル、47・・管路、47a・・管路空間、52・・管路、60a、60b、60c、60d、60e、60f・・邪魔板(第1の態様)、61・・邪魔板(第2の態様)、62・・貫通孔

Claims (23)

  1.  ペースト材料とガスとの混合装置であって、
     ピストンポンプを用いてペースト材料とガスとを混合する混合部と、
     前記混合部で混合されたペースト材料とガスとの混合物を撹拌するため前記混合部に接続されたスタティックミキサーと、
    を備え、
     前記スタティックミキサーは、前記混合物が通過する1つ又は複数の撹拌区分を備え、該撹拌区分は、該撹拌区分を通過する混合物の流れを撹拌する形状を有し、
    さらに前記スタティックミキサーは、
     前記ピストンポンプの容積と、前記スタティックミキサーの前記撹拌区分のうち少なくとも1つの容積との比率が、1:0.2~1:5の範囲にある第1の態様、並びに、
     前記撹拌区分の少なくとも1つが、ペースト材料とガスとの混合物を剪断力により撹拌するため該混合物の流れを5以上の流れに分割する構成を有する第2の態様、
    のうちいずれかであることを特徴とする、ペースト材料とガスとの混合装置。
  2.  前記ピストンポンプは、
     シリンダと、ペースト材料が流れることが可能な管路と該シリンダとを連通させるため前記シリンダの端部に形成された吐出口と、前記シリンダにガスを充填するため該シリンダに形成された吸入口と、前記シリンダの内部で第1の位置及び第2の位置の間で摺動されるピストンとを備え、
     前記混合部は、前記吐出口を開閉する吐出弁を備え、
     前記シリンダは、前記ピストンが前記第1の位置にあるとき、所定体積のシリンダ空間を形成し、
     前記スタティックミキサーは、前記管路に接続されている、請求項1に記載のペースト材料とガスとの混合装置。
  3.  前記吐出弁を閉じる工程から前記吐出弁を開放する工程までの一連の工程は、ペースト材料が所定量流れる毎に、繰り返されることを特徴とする、請求項2に記載のペースト材料とガスとの混合装置。
  4.  ペースト材料の前記所定量、前記シリンダ空間の前記所定体積、及び、ガスの前記所定圧力のうち少なくともいずれかを調整することによって、前記ペースト材料の発泡倍率を制御することを特徴とする、請求項3に記載のペースト材料とガスとの混合装置。
  5.  前記吐出口は、前記管路の側壁においてペースト材料の流れに面するように設けられ、
     前記吐出弁は、前記吐出口と対向する、前記管路の側壁の位置から延びて前記吐出口に着座可能な弁体を備えることを特徴とする請求項2乃至4のいずれか1項に記載のペースト材料とガスとの混合装置。
  6.  前記ピストンポンプは、
     シリンダと、吸入工程と吐出工程を行うために前記シリンダ内を往復移動するピストンと、を有し、
     前記シリンダは、吐出工程のストローク端部に設けられた吐出制御用の弁と、ガスの供給制御用の弁と、ペースト材料の供給制御用の弁と、を備え、
     前記ピストンポンプの容積は、吸入工程のストローク端部に位置しているときの前記ピストンによって画定された前記シリンダの内部の容積である、請求項1に記載のペースト材料とガスとの混合装置。
  7.  前記混合部は、
     吸入工程において前記ピストンポンプにガスを供給し、
     前記吸入工程の後で前記ペースト材料を供給し、
     前記ペースト材料の供給の終了後に前記ピストンポンプの吐出工程を行って前記ガス及び前記ペースト材料を管路に吐出する、各工程を実行する、請求項7に記載のペースト材料とガスとの混合装置。
  8.  前記スタティックミキサーの前記撹拌区分は、静止型の撹拌手段を備える、請求項1乃至7のいずれか1項に記載のペースト材料とガスとの混合装置。
  9.  前記スタティックミキサーの前記第1の態様において、前記撹拌手段は、混合物の流れを分割し、転換し、反転する作用を有する、請求項8に記載のペースト材料とガスとの混合装置。
  10.  前記撹拌手段は、らせん形状を有する、請求項9に記載のペースト材料とガスとの混合装置。
  11.  前記撹拌手段は、前記混合物の流れに抗するように前記スタティックミキサーの内部に交互に配列された複数の邪魔板である、請求項9に記載のペースト材料とガスとの混合装置。
  12.  前記スタティックミキサーの前記第2の態様において、
     前記撹拌手段は、5以上の流路を備え、該流路の各々は、前記混合物の流れに対して並列に配列されている、請求項8に記載のペースト材料とガスとの混合装置。
  13.  前記混合部と前記スタティックミキサーとの間、及び、前記スタティックミキサーと混合物を吐出する吐出手段との間の少なくともいずれかに、所定長さの配管を備える、請求項1乃至12のいずれか1項に記載のペースト材料とガスとの混合装置。
  14.  ペースト材料とガスとの混合方法であって、
     バッチ毎にペースト材料とガスとを混合し、
     混合されたペースト材料とガスとの混合物を撹拌するため該混合物の流れ経路にスタティックミキサーを配置する、各工程を備え、
     前記スタティックミキサーを配置する工程は、
     前記混合物が通過する1つ又は複数の撹拌区分を備え、該撹拌区分は、該撹拌区分を通過する混合物の流れを撹拌する形状を有するスタティックミキサーを配置する工程であり、
    さらに前記スタティックミキサーは、
     前記バッチ毎の前記混合物の容積と、前記スタティックミキサーの前記撹拌区分のうち少なくとも最初に前記混合物が通過する第一の撹拌区分の容積との比率が、1:0.2~1:5の範囲にある第1の態様、並びに、
     ペースト材料とガスとの混合物を剪断力により撹拌するため該混合物の流れを5以上の流れに分割する第2の態様、
    のいずれかであることを特徴とする、ペースト材料とガスとの混合方法。
  15.  前記バッチ毎にペースト材料とガスとを混合する工程は、ピストンポンプ及び吐出弁を用いる工程であり、
     前記ピストンポンプは、シリンダと、ペースト材料が流れることが可能な管路と該シリンダとを連通させるため前記シリンダの端部に形成された吐出口と、前記シリンダにガスを充填するため該シリンダに形成された吸入口と、前記シリンダの内部で第1の位置及び第2の位置の間で摺動されるピストンとを備えており、
     前記吐出弁は、前記吐出口を開閉するため用いられ、
     前記シリンダは、前記ピストンが前記第1の位置にあるとき、所定体積のシリンダ空間を形成し、
     前記スタティックミキサーは、前記管路に接続されている、請求項14に記載のペースト材料とガスとの混合方法。
  16.  前記バッチ毎にペースト材料とガスとを混合する工程は、
     前記吐出弁を閉じ、
     前記ピストンを前記第1の位置に移動させて前記所定体積のシリンダ空間を形成し、
     前記吸入口から所定圧力のガスを前記シリンダ空間に充填し、
     前記ピストンを前記第2の位置に向かって移動させることによって前記ガスを圧縮し、
     前記吐出弁を開放することによって、前記管路を流れるペースト材料に圧縮されたガスを混入させる、各工程を備え、
     前記吐出弁を閉じる工程から前記吐出弁を開放する工程までの一連の工程は、ペースト材料が所定量流れる毎に、繰り返され、
     前記吐出口は、前記管路の側壁において高粘度材料の流れに面するように設けられ、
     前記吐出弁を閉じる工程は、前記吐出口と対向する、前記管路の側壁の位置から前記吐出弁の弁体を延ばし、該弁体を前記吐出口に着座させる工程である、請求項15に記載のペースト材料とガスとの混合装置。
  17.  前記バッチ毎にペースト材料とガスとを混合する工程は、ピストンポンプを用いる工程であり、
     前記ピストンポンプは、シリンダと、吸入工程と吐出工程を行うために前記シリンダ内を往復移動するピストンと、を有し、前記シリンダは、吐出工程のストローク端部に設けられた吐出制御用の弁と、ガスの供給制御用の弁と、ペースト材料の供給制御用の弁と、を備え、
     前記バッチ毎の前記混合物の容積は、吸入工程のストローク端部に位置しているときの前記ピストンによって画定された前記シリンダの内部の容積である、請求項14に記載のペースト材料とガスとの混合方法。
  18.  前記バッチ毎にペースト材料とガスとを混合する工程は、
     吸入工程において前記ピストンポンプにガスを供給し、
     前記吸入工程の後で前記ペースト材料を供給し、
     前記ペースト材料の供給の終了後に前記ピストンポンプの吐出工程を行って前記ガス及び前記ペースト材料を管路に吐出する、各工程を実行する、請求項17に記載のペースト材料とガスとの混合方法。
  19.  前記スタティックミキサーを配置する工程は、前記撹拌区分に静止型の撹拌手段を有するスタティックミキサーを配置する工程を備える、請求項14乃至18のいずれか1項に記載のペースト材料とガスとの混合方法。
  20.  前記静止型の撹拌手段を有するスタティックミキサーを配置する工程は、前記スタティックミキサーの前記第1の態様を用いて、前記混合物の流れを分割し、転換し、反転する工程を備える、請求項19に記載のペースト材料とガスとの混合方法。
  21.  前記静止型の撹拌手段を有するスタティックミキサーを配置する工程は、らせん形状を有する撹拌手段を用いる、請求項20に記載のペースト材料とガスとの混合方法。
  22.  前記撹拌手段は、前記混合物の流れに抗するように前記スタティックミキサーの内部に交互に配列された複数の邪魔板である、請求項20に記載のペースト材料とガスとの混合方法。
  23.  前記スタティックミキサーの前記第2の態様において、
     前記撹拌手段は、5以上の流路を備え、該流路の各々は、前記混合物の流れに対して並列に配列されている、請求項19に記載のペースト材料とガスとの混合方法。
PCT/JP2017/027971 2016-08-05 2017-08-02 ペースト材料とガスとの混合装置及び方法 WO2018025890A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/323,104 US11298665B2 (en) 2016-08-05 2017-08-02 Apparatus and method for mixing paste material with gas
CN201780047897.5A CN109562335B (zh) 2016-08-05 2017-08-02 糊状材料和气体的混合装置及方法
DE112017003933.9T DE112017003933T8 (de) 2016-08-05 2017-08-02 Vorrichtung und Verfahren zum Mischen von Pastenmaterial mit Gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016154868A JP6748511B2 (ja) 2016-08-05 2016-08-05 ペースト材料とガスとの混合装置及び方法
JP2016-154868 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018025890A1 true WO2018025890A1 (ja) 2018-02-08

Family

ID=61072737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027971 WO2018025890A1 (ja) 2016-08-05 2017-08-02 ペースト材料とガスとの混合装置及び方法

Country Status (5)

Country Link
US (1) US11298665B2 (ja)
JP (1) JP6748511B2 (ja)
CN (1) CN109562335B (ja)
DE (1) DE112017003933T8 (ja)
WO (1) WO2018025890A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171624A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148705B (zh) * 2019-05-29 2021-04-23 珠海冠宇电池股份有限公司 一种改善极片烘裂的方法及装置
CN114929371A (zh) * 2019-12-27 2022-08-19 新时代技研株式会社 气体供给系统、机械发泡系统以及对气体进行供给的方法
CN114471241B (zh) * 2022-03-03 2023-04-25 贵州理能新能源有限公司 一种锂电池电芯浆料搅拌设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198152A (ja) * 1992-12-28 1994-07-19 Taiyo Techno Kk 流動性材料にガスを混入させる方法
JPH0994450A (ja) * 1995-09-29 1997-04-08 Taiyo Techno Kk 流動性材料にガスを混入させる方法及び装置
JPH10506572A (ja) * 1994-09-27 1998-06-30 ノードソン コーポレーション 閉セル発泡体の生産方法及び装置
JPH11128709A (ja) * 1997-10-27 1999-05-18 Sunstar Eng Inc 高粘度材料とガスの混合吐出装置及びピストンポンプ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043715A (en) * 1975-06-02 1977-08-23 Ex-Cell-O Corporation Pumped injection of gas for making foamed plastic
JP3445463B2 (ja) * 1997-04-01 2003-09-08 サンスター技研株式会社 高粘度材料の発泡方法及び装置
JP3482309B2 (ja) * 1995-12-01 2003-12-22 サンスター技研株式会社 高粘度材料の発泡方法及び装置
JP3212533B2 (ja) * 1997-04-01 2001-09-25 サンスター技研株式会社 高粘度材料へのガスの混入方法及び装置
ATE246583T1 (de) * 1999-08-31 2003-08-15 Engel Maschb Gmbh Einrichtung zur beimischung von gas zu einer kunststoffschmelze
US6602063B1 (en) * 2000-07-21 2003-08-05 Trexel, Inc. Discontinuous blowing agent delivery system and method
JP2003171471A (ja) * 2001-12-10 2003-06-20 Fuji Photo Film Co Ltd セルロースアセテートドープの調製方法
JP2004008846A (ja) * 2002-06-04 2004-01-15 Sunstar Eng Inc ペースト材料の発泡塗布工法
JP4731940B2 (ja) * 2005-02-14 2011-07-27 サンスター技研株式会社 発泡方法及びその装置
JP4725169B2 (ja) * 2005-04-12 2011-07-13 横浜ゴム株式会社 高粘度材料の気泡混入方法及びその装置
US8926623B2 (en) * 2007-01-12 2015-01-06 Warsaw Orthopedic, Inc. System and method for forming porous bone filling material
PL3013545T3 (pl) * 2013-09-16 2019-03-29 Dow Global Technologies Llc Urządzenie mieszające i odnośny sposób dla preparatu dwuskładnikowej pianki poliuretanowej

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198152A (ja) * 1992-12-28 1994-07-19 Taiyo Techno Kk 流動性材料にガスを混入させる方法
JPH10506572A (ja) * 1994-09-27 1998-06-30 ノードソン コーポレーション 閉セル発泡体の生産方法及び装置
JPH0994450A (ja) * 1995-09-29 1997-04-08 Taiyo Techno Kk 流動性材料にガスを混入させる方法及び装置
JPH11128709A (ja) * 1997-10-27 1999-05-18 Sunstar Eng Inc 高粘度材料とガスの混合吐出装置及びピストンポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171624A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置

Also Published As

Publication number Publication date
CN109562335B (zh) 2022-04-12
JP6748511B2 (ja) 2020-09-02
DE112017003933T8 (de) 2019-07-25
CN109562335A (zh) 2019-04-02
US20190184355A1 (en) 2019-06-20
US11298665B2 (en) 2022-04-12
DE112017003933T5 (de) 2019-04-25
JP2018020303A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2018025890A1 (ja) ペースト材料とガスとの混合装置及び方法
WO2016125900A1 (ja) 高粘度材料へのガス混入方法及びガス混入装置
KR101249429B1 (ko) 고점도 재료에의 가스혼입방법, 고점도 재료에의 가스혼입공급장치, 발포방법 및 그 장치
US6538040B1 (en) Method and apparatus for mixing a high-viscosity material into a gas
US7828474B2 (en) Shot pump and variable-speed-type two-liquid metering and mixing apparatus
JP2018020303A5 (ja)
JP3177037B2 (ja) 流動性材料にガスを混入させる方法
US7338980B2 (en) Method and apparatus for mixing a high-viscosity material into a gas
JP3212533B2 (ja) 高粘度材料へのガスの混入方法及び装置
EP0974391A1 (en) Method and apparatus for mixing gas into high-viscosity material
JP3701181B2 (ja) 多液混合圧送装置
JPH0994450A (ja) 流動性材料にガスを混入させる方法及び装置
US20010046181A1 (en) Multiple component mixing and dispensing system
JP3445463B2 (ja) 高粘度材料の発泡方法及び装置
CN109420577B (zh) 用于湿固化聚合物材料的计量和施加系统
CN216181782U (zh) 一种微发泡注射熔体混合装置
EP4257231A1 (en) Foaming device, and foaming method
JPS582813B2 (ja) ポリウレタンフオ−ムノ セイゾウホウホウ
JP2023155807A (ja) 液体供給装置および液体吐出装置
CN114179240A (zh) 一种微发泡注射熔体混合装置
JP2000024583A (ja) 3液混合方法
JPH0679153A (ja) 液状樹脂混合吐出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836993

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17836993

Country of ref document: EP

Kind code of ref document: A1