WO2016125900A1 - 高粘度材料へのガス混入方法及びガス混入装置 - Google Patents

高粘度材料へのガス混入方法及びガス混入装置 Download PDF

Info

Publication number
WO2016125900A1
WO2016125900A1 PCT/JP2016/053531 JP2016053531W WO2016125900A1 WO 2016125900 A1 WO2016125900 A1 WO 2016125900A1 JP 2016053531 W JP2016053531 W JP 2016053531W WO 2016125900 A1 WO2016125900 A1 WO 2016125900A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
viscosity material
cylinder
piston
discharge port
Prior art date
Application number
PCT/JP2016/053531
Other languages
English (en)
French (fr)
Inventor
高義 中西
俊文 山下
拓郎 大町
永田 裕之
Original Assignee
サンスター技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンスター技研株式会社 filed Critical サンスター技研株式会社
Priority to CN201680004256.7A priority Critical patent/CN107107005B/zh
Priority to US15/534,760 priority patent/US10710034B2/en
Priority to EP16723239.6A priority patent/EP3075442B1/en
Priority to JP2016573437A priority patent/JP6654579B2/ja
Priority to PL16723239T priority patent/PL3075442T3/pl
Priority to EP18208758.5A priority patent/EP3473334B1/en
Publication of WO2016125900A1 publication Critical patent/WO2016125900A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3143Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit characterised by the specific design of the injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/715Feeding the components in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7174Feed mechanisms characterised by the means for feeding the components to the mixer using pistons, plungers or syringes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/882Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise using measuring chambers, e.g. volumetric pumps, for feeding the substances
    • B01F35/8822Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise using measuring chambers, e.g. volumetric pumps, for feeding the substances using measuring chambers of the piston or plunger type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0018Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam
    • B05B7/0025Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam with a compressed gas supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7404Mixing devices specially adapted for foamable substances
    • B29B7/7409Mixing devices specially adapted for foamable substances with supply of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7404Mixing devices specially adapted for foamable substances
    • B29B7/7409Mixing devices specially adapted for foamable substances with supply of gas
    • B29B7/7419Mixing devices specially adapted for foamable substances with supply of gas with static or injector mixer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7615Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components
    • B29B7/7626Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components using measuring chambers of piston or plunger type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7631Parts; Accessories
    • B29B7/7636Construction of the feed orifices, bores, ports
    • B29B7/7642Adjustable feed orifices, e.g. for controlling the rate of feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • B05B7/262Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device a liquid and a gas being brought together before entering the discharge device
    • B05B7/267Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device a liquid and a gas being brought together before entering the discharge device the liquid and the gas being both under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous

Definitions

  • the present invention relates to a method and apparatus for mixing a gas into a high viscosity material for the purpose of foaming the high viscosity material.
  • a plurality of methods or apparatuses have been disclosed for the purpose of producing a foamable gasket or the like in which gas is mixed into a pressurized high-viscosity material and then foamed by applying it in an atmospheric environment.
  • a piston pump is used in which a piston reciprocates in a cylinder to perform a suction stroke and a discharge stroke. Gas is supplied into the cylinder during the suction stroke of the piston pump.
  • the suction stroke is completed and the cylinder is filled with the gas with the adjusted pressure, and then the high-viscosity material is supplied into the cylinder, and after the supply of the high-viscosity material is finished, the piston pump A method of mixing gas into a high-viscosity material is disclosed in which the discharge stroke is performed and gas and high-viscosity material are discharged into a pipeline in the discharge stroke.
  • Japanese Patent Application Laid-Open No. 09-94450 discloses a step of alternately feeding a fluid material and a gas at a relatively low pressure of about 1 to 5 kg / cm 2 through the same route, and a high pressure in the middle of the route.
  • a method of mixing a gas into a fluid material characterized by comprising pressurizing the fluid material and gas to a high pressure of about 100 to 400 kg / cm 2 by a pump.
  • Patent Document 1 in order to mix a gas into a high-viscosity material, a gas suction process, a high-viscosity material supply process, and a gas and high-viscosity material discharge process are performed in three processes. Is required, and there is a problem that the operation cycle time becomes long.
  • a valve mechanism for supplying a high-viscosity material or a fluid material to the piston pump in order to supply a high-viscosity material or a fluid material into the piston pump, a valve mechanism for supplying a high-viscosity material or a fluid material to the piston pump. Furthermore, a mechanism for determining whether or not the prescribed amount of the high-viscosity material or flowable material has been accurately supplied to the piston pump is required. Furthermore, in order to supply a high-viscosity material or fluid material and gas to the same piston pump, if the expansion ratio of the high-viscosity material or fluid material is set to a magnification other than two times, the gas is in a negative pressure state or A mechanism for supplying under pressure has been essential.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method and an apparatus that allow gas to be mixed into a high-viscosity material by a simple method and configuration.
  • the gas mixing method of the high viscosity material closes the discharge port provided so as to communicate the pipe line through which the high viscosity material can flow and the cylinder.
  • a cylinder space of a predetermined volume is formed in the cylinder by moving an internal piston away from the discharge port, a gas of a predetermined pressure is filled in the cylinder space, and the piston is placed in the discharge port. It is characterized by comprising each step of compressing the gas by moving in the direction and mixing the compressed gas into the high-viscosity material flowing through the pipeline by opening the discharge port. .
  • a discharge port for communicating a cylinder with a pipe line by opening a discharge port for communicating a cylinder with a pipe line, a gas having a predetermined pressure stored in a cylinder space of a predetermined volume is discharged from the discharge port, and the gas is supplied to the pipe line. Can be mixed into the high-viscosity material that has flowed through.
  • a series of steps from the step of closing the discharge port to the step of opening the discharge port is repeated every time a predetermined amount of high-viscosity material flows.
  • the amount of gas mixed into the high-viscosity material and the amount of the high-viscosity material can be accurately controlled, so that the foaming ratio of the high-viscosity material can be accurately maintained. Further, it becomes possible to continuously supply the high-viscosity material mixed with gas to the subsequent process.
  • “every high-viscosity material flows to a predetermined amount” includes “every high-viscosity material flows a predetermined amount in the pipe space”, even if gas flows into the pipe space. This includes the case where a predetermined amount of high-viscosity material is discharged or flowing in the pipe communicating with the pipe space, even if it is not flowing or a certain amount is not flowing.
  • the foaming ratio of the high-viscosity material is adjusted by adjusting at least one of the predetermined amount of the high-viscosity material, the predetermined volume of the cylinder space, and the predetermined pressure of gas. It becomes possible to control easily and accurately.
  • the tip of the piston fits inside the end of the cylinder where the discharge port is formed without any gap. It is characterized by that. According to this aspect, since the dead space in the cylinder can be made substantially zero, it is possible to more accurately measure the gas mixed into the high-viscosity material.
  • the discharge port is provided on the side wall of the pipeline so as to face the flow of the high-viscosity material, and the step of closing the discharge port faces the discharge port.
  • the valve body can be extended from the position of the side wall, and the valve body can be seated on the discharge port.
  • the step of providing a suction port on the side wall of the cylinder forming the cylinder space and filling the cylinder space with a gas having a predetermined pressure includes introducing the gas from the suction port and then introducing the cylinder space into the suction port. This is a step of seating the valve body from the outside.
  • the gas mixing device of the present invention includes a cylinder, a conduit through which a high-viscosity material can flow, and a gas formed at an end of the cylinder to communicate the cylinder.
  • a piston pump comprising: a discharge port; a suction port formed in the cylinder for filling the cylinder with a gas; and a piston slid between a first position and a second position inside the cylinder.
  • a discharge valve that opens and closes the discharge port, and the cylinder forms a cylinder space of a predetermined volume when the piston is in the first position.
  • the high-viscosity material can be pumped by a pump different from the piston pump that compresses the gas, and the piston pump can be used only for mixing the gas into the high-viscosity material. it can. Similarly, since another pump is used for pumping the high-viscosity material, the high-viscosity material can be continuously supplied. Furthermore, it is possible to reduce the number of valve mechanisms provided in the piston pump that require high accuracy, and to simplify the structure.
  • the discharge valve is closed, the piston is moved to the first position to form the cylinder space having the predetermined volume, and gas having a predetermined pressure is supplied from the suction port to the cylinder space.
  • the gas is compressed by moving the piston toward the second position, and the discharge valve is opened to mix the compressed gas into the high-viscosity material flowing through the pipe space. It is controlled to execute each process.
  • a series of steps from the step of closing the discharge valve to the step of opening the discharge valve is repeated every time a predetermined amount of high-viscosity material flows.
  • the piston pump compresses only gas
  • the foaming ratio of the high-viscosity material is set over a wide range by changing the number of operations of the piston pump within a predetermined time (each predetermined flow rate of the high-viscosity material). can do.
  • the foaming ratio of the high-viscosity material can be controlled by adjusting at least one of the predetermined amount of the high-viscosity material, a predetermined volume of the cylinder space, and the predetermined pressure of the gas.
  • the piston When adjusting the predetermined volume of the cylinder space in order to control the expansion ratio of the high-viscosity material, for example, the piston may be controlled so as to change the first position.
  • the tip of the piston when the piston is in the second position, is matched with the inside of the end of the cylinder.
  • the tip of the piston has a shape complementary to the inside of the end of the cylinder in which the discharge port is formed. According to this aspect, since the dead space in the cylinder of the piston pump can be made substantially zero, more accurate metering of the gas mixed into the high-viscosity material becomes possible.
  • the discharge port is provided so as to face a flow of a high-viscosity material on a side wall of the pipeline, and the discharge valve is opposed to the discharge port.
  • the suction port is provided on a side wall of the cylinder forming the cylinder space, and the suction valve extends from the outside of the cylinder space and can be seated on the suction port. May be provided.
  • the valve body is a needle.
  • the discharge port is provided inside the pipeline so as to face the pipeline space, and at least a part of the cylinder space communicating with the discharge port includes the pipe It can be configured to be formed in the road.
  • the same operational effects as the above-described gas mixing method into the high-viscosity material of the present invention are obtained. be able to.
  • FIG. 5 is a cross-sectional view of the gas mixing device according to the present embodiment (a state in which a suction valve is opened in the gas mixing device of FIG. 2), and is a diagram illustrating a process of sucking gas into a piston pump.
  • FIG. 2 is a cross-sectional view of the gas mixing device according to the present embodiment (with the gas mixing device of FIG. 2, the intake valve is closed, the piston is lowered to the second position, and the discharge valve is opened); It is a figure explaining the process of mixing the compressed gas which was made into a high-viscosity material.
  • FIG. 1 is a circuit diagram for explaining a gas mixing device 1 for a high-viscosity material according to an embodiment of the present invention
  • FIG. 2 is a view for explaining a piston pump 10 provided in the gas mixing device 1.
  • the gas mixing device 1 for high viscosity material is configured to gas in a pipe space (formed as a passage of high viscosity material formed by the pipe 47) through which the high viscosity material flows. At least, and a discharge valve 30 that controls gas supply from the piston pump 10 to the pipe 47. Furthermore, the gas mixing device 1 preferably includes a drive unit 15 that drives the piston pump 10 and a suction valve 20 that controls the gas supply to the piston pump 10, and these configurations are also provided in FIG. An example is shown.
  • the gas mixing apparatus 1 can be incorporated in the gas mixing system 2 as an example shown in FIG.
  • the gas mixing system 2 includes a tank 40 that stores a high-viscosity material, a pumping pump 41 that pumps the high-viscosity material stored in the tank 40, and a high-viscosity pumped from the pumping pump 41.
  • a pipe 50 that guides the material to the pipe 47, a gas compressor 43 that supplies gas to the piston pump 10 via the suction valve 20, and a high-viscosity material mixed with gas sent from the pipe 47 flows.
  • a pipe 52 and a nozzle 46 attached to the tip of the gun for discharging the high-viscosity material mixed with gas sent from the pipe 52 are provided.
  • the pipes 50, 47, and 52 may be configured as separate pipes, and may be connected using welding or a flange so that a high-viscosity material flows through these pipes in this order.
  • the pipes 50, 47 and 52 may be configured as an integral pipe from the beginning.
  • a known pail can or drum can may be used, but is not limited thereto.
  • high-viscosity materials stored in the tank 40 such as polyurethane, modified silicon, epoxy, silicone, acrylic, vulcanized rubber, plastisol such as PVC and acrylic, and mixtures thereof. Examples include, but are not limited to, grease, edible cream, and beauty cream.
  • the pumping pump 41 may be anything as long as it can pump a high viscosity material.
  • a piston pump or a plunger pump for a pail can or a drum can, for example, an air motor type double action pump or a rotary pump such as a gear pump or a screw pump that does not generate pulsation at the time of pumping can be used.
  • the present invention is not limited to this.
  • a constant flow pump may be incorporated in the pressure feed pump 41 so that a high viscosity material can be pressure fed at a constant flow rate.
  • Pressure to pump the high-viscosity material will depend on the viscosity of high viscosity material, preferably 20 ⁇ 300kg / cm 2, more preferably 50 ⁇ 200kg / cm 2. This is because, when the pressure to be pumped is lower than 50 kg / cm 2 , the bubbles may become rough when the high-viscosity material is foamed, and when the pressure is lower than 20 kg / cm 2 , the tendency becomes more prominent. At the same time, the size of the bubbles may not be uniform. In addition, when the pressure is higher than 200 kg / cm 2 , the equipment becomes expensive to ensure the pressurization performance and pressure resistance performance of each component of the apparatus. When the pressure is higher than 300 kg / cm 2 , the tendency is more prominent. This is because it becomes prominent.
  • the discharge pressure of the high-viscosity material is 3-20 MPa, preferably 5-12 MPa, more preferably 6-10 MPa when the pressure value measured immediately before the nozzle 46 (immediately before discharge) is used.
  • a flow meter may be provided between the pumping pump 41 and the discharge valve 30 of the piston pump 10.
  • a flow meter or a bottom flow device may be provided between the discharge valve 30 and the nozzle 46.
  • the gas compressor 43 can be configured as a compressor that supplies a relatively low pressure gas such as 0 to 1 MPa or 0 to 0.5 MPa.
  • a relatively low pressure gas such as 0 to 1 MPa or 0 to 0.5 MPa.
  • various gases such as air (atmospheric pressure air, low pressure air, compressed air), carbon dioxide gas, nitrogen gas, oxygen, argon, krypton, and the like can be employed.
  • the gas compressor 43 can also be used. Instead, an air intake for taking in air in the atmosphere is provided, and the air Atmospheric pressure air introduced from the intake 43 may be supplied to the piston pump 10.
  • an air filter that filters air and removes dust and the like may be provided between the air intake port and the intake valve 20.
  • the gas compressor 43 and the air intake port a configuration including a gas tank and an adjustment valve as a pressure adjustment mechanism for adjusting the gas pressure can be used.
  • the pressure of gas can also be made into the positive pressure pressurized from atmospheric pressure, or the negative pressure lower than atmospheric pressure according to the manufacturing conditions at that time.
  • the nozzle 46 is for applying a high-viscosity material mixed with gas to the workpiece, and can discharge the high-viscosity material arbitrarily.
  • the nozzle 46 can be used in any method, and may be, for example, either a hand-held nozzle or a nozzle attached to the tip of a manipulator.
  • the gas-high viscosity material mixture As a method of supplying the gas-high viscosity material mixture to the nozzle 46, not only a mode in which the mixture discharged from one gas mixing device 1 is supplied to the nozzle 46, but also two or more gas mixing devices 1 are arranged. However, by operating them in parallel or alternately, the supply amount of the mixture can be increased, or a continuous mixture can be supplied.
  • a metering device may be arranged between the gas mixing device 1 (one or two or more) and the nozzle 46, and the metering device may quantitatively provide the high-viscosity material to the nozzle 46.
  • two or more measuring cylinders may be arranged, and the high-viscosity material in which gas is continuously mixed may be provided to the nozzle 46 by alternately operating these measuring cylinders.
  • a mixer may be provided in the path of the pipe 47 after the gas is mixed into the high viscosity material by the piston pump 10 or in the pipe 52.
  • a known mixer such as a static mixer or a dynamic mixer in which a plurality of spiral elements are provided in series inside a pipe may be employed.
  • the gas mixing device 1 may include a control unit (not shown) that controls each component of the gas mixing device 1.
  • the control unit includes a CPU, a memory, or a relay, a timer, and the like, and is connected to the drive unit 15, the suction valve 20, the discharge valve 30, the pressure feed pump 41, the flow meter, the nozzle 46, and the like, and cooperates with these components. Then, the gas mixing apparatus 1 for the high viscosity material is operated.
  • the control unit performs control such as driving the cylinder pump 1 for one cycle every time a predetermined amount of high-viscosity material flows, based on a signal from the above-described flow meter that detects the flow rate of the high-viscosity material.
  • the piston pump 10 includes a cylinder 11 and an internal space of the cylinder 11 along the axial direction by a drive unit 15 in a first position (for example, top dead center) and a second position (for example, bottom).
  • a piston 12 configured to be slidable between the dead center
  • a gas inlet 13 provided on a side wall of the cylinder 11
  • a gas outlet 14 is formed in the vicinity of the high-viscosity material passage that is the end of the internal space.
  • the cylinder 11 forms a cylinder space of a predetermined volume defined by the piston 12 when the piston 12 is in the first position (top dead center).
  • the piston 12 has a clearance between the tip end of the piston 12 and the inside of the end of the cylinder 11 where the discharge port 14 is formed at the operation end of the compression stroke of the piston 12 (second position (bottom dead center) of the piston 12). It is preferable to match.
  • “fit without gap” means that the tip of the piston 12 has a shape complementary to the inside of the end of the cylinder 11 in which the discharge port 14 is formed. When it is at (bottom dead center), it means that the front end of the piston 12 can be almost completely matched with the inside of the end of the cylinder 11. As a result, there is no dead space in the cylinder, and the amount of gas can be controlled more accurately.
  • “matching without a gap” includes a fitting method in which the “gap” is substantially zero.
  • the tip of the piston 12 has a shape complementary to the inside of the end of the cylinder 11 in which the discharge port 14 is formed, and the piston 12 is at the second position (bottom dead center), the tip of the piston 12
  • the distance between the cylinder 11 and the inside of the end of the cylinder 11 is 0, or the distance is very small, meaning that it is 2 mm or less, preferably 1 mm or less, more preferably 0.5 mm or less. .
  • the suction port 13 is provided on the cylinder 11 side wall of the piston pump 10.
  • the suction port 13 is provided in the vicinity of the operation end of the suction stroke of the piston 12.
  • first position for example, top dead center
  • the piston 12 is opened by the intake valve 20 and gas is introduced into the internal space of the cylinder 11 therefrom.
  • the discharge port 14 is opened by the discharge valve 30 when the piston 12 starts the compression stroke and reaches the vicinity of the operation end (bottom dead center), and the compressed gas is mixed into the high-viscosity material in the pipe 47.
  • the pipe 47 is formed integrally with the components of the piston pump 10 in the vicinity of the piston pump 10, but a portion connected to other components such as the front and rear of the piston pump 10 is a known pipe. A pressure hose or the like is employed.
  • the suction valve 20 is provided on the side wall of the cylinder 11 of the piston pump 10 and opens and closes the suction port 13 of the piston pump 10.
  • a needle valve is employed as an example of the suction valve 20.
  • the needle valve 20 includes a needle shaft 21, a gas introduction port 22, and a drive unit 23.
  • the needle shaft 21 preferably extends along a direction orthogonal to the axis of the cylinder 11 and slides along the direction.
  • the gas inlet 22 is for introducing the gas supplied from the gas compressor 43 into the needle valve 20, and may be provided on the side surface of the housing of the needle valve 20.
  • the drive unit 23 moves the needle shaft 21 forward or backward along its length direction.
  • the needle shaft 21 can move forward until the tip of the needle shaft 21 fits in the suction port 13 and closes the suction port (moves to the left in the figure).
  • the suction port 13 is opened, and the cylinder 11 and the gas introduction port 22 communicate with each other.
  • a known air cylinder or electric motor can be used as the drive unit 23, but is not limited thereto.
  • the needle valve 20 may be provided with a valve guide 21a for guiding the needle shaft 21 at the distal end on the suction port 13 side.
  • the discharge valve 30 is provided at the tip of the cylinder 11 of the piston pump 10 and opens and closes the discharge port 14 of the piston pump 10.
  • a needle valve is adopted as the discharge valve 30 as an example.
  • the needle valve 30 is provided at a position facing the discharge port 14 of the piston pump 10 across a pipe space 47 a formed by the pipe 47, and includes a needle shaft 31 and a drive unit 36.
  • the needle shaft 31 is provided coaxially with the shaft of the cylinder 11 so that the tip of the needle shaft 31 passes through the duct space 47a and fits into the discharge port 14.
  • the drive unit 36 moves the needle shaft 31 forward or backward.
  • the needle shaft 31 can move forward until its tip fits into the discharge port 14 and closes the discharge port (moves upward in the figure). At this time, when the needle shaft 31 is retracted (moved downward in the drawing) from the position where the needle shaft 31 is fitted, the discharge port 14 is opened and the cylinder 11 and the pipe line 47 are communicated.
  • a known air cylinder or electric motor can be used as the drive unit 36, but is not limited thereto.
  • the needle valve 31 may be provided with a valve guide for guiding the needle shaft 31 in the conduit 47.
  • Such a valve guide has a cylindrical body, a vertical hole that penetrates the needle shaft 31 so as to be movable up and down, and a horizontal hole that communicates with the pipe space 47a and into which the high-viscosity material is transferred. You may comprise.
  • the tip of the needle shafts 21 and 31 is schematically illustrated in the drawing, various shapes such as a conical shape, a truncated cone, and a hemispherical shape can be used in order to improve airtightness.
  • the suction valve and the discharge valve are not limited to the needle valve, and any valve can be used as long as it can open and close the suction port 13 and the discharge port 14.
  • a piston valve in which the piston is not needle-shaped, a check valve, or a mechanism for opening and closing the suction port may be employed.
  • FIG. 3 is a diagram for explaining a step of causing the piston pump 10 to suck gas
  • FIG. 4 is a diagram for explaining a step of mixing the compressed gas generated by the piston pump 10 into the high viscosity material.
  • the high-viscosity material is pumped downstream from the tank 40 containing the high-viscosity material through the pipe 47 by the pumping pump 41.
  • the high-viscosity material is transferred from the left to the right in the pipe 47 as indicated by the arrow a1.
  • the piston pump 10 is operated in conjunction with a pressure pump 41 provided with a metering device.
  • the piston pump 10 is operated by counting the suction (capacity is determined) of the pumping pump 41 whose displacement for one stroke is known.
  • the piston pump 10 is operated in conjunction with a constant flow device and a discharge gun with a constant flow rate installed separately from the pressure pump 41 and the piston pump 10 (changing the gas capacity of the cylinder can be done by changing the gas pressure (Adjustment and piston stroke) (4) A booster pump or a cylinder-driven discharge gun installed separately from the pressure pump 41 and the piston pump 10 is used to operate the piston pump 10 according to the amount of use. (5) Based on the measured value of the flow meter, the timing when the high-viscosity material is transferred by a predetermined amount is determined, and the piston pump 10 is operated according to the timing.
  • the gas mixing device 1 is controlled so that one cycle of the piston pump 10 is executed every time a high-viscosity material (arrow a1 in the figure) flows by a predetermined amount. It should be noted that one cycle of the piston pump 10 and the amount of the high-viscosity material that has flowed maintain a certain relationship as to which timing of each operation of the piston pump 1 corresponds to the timing at which the high-viscosity material flows. As long as it can be done, it can be changed arbitrarily. Hereinafter, one cycle of the piston pump 10 will be described.
  • the piston 12 moves from the second position to the first position until the operation end of the suction stroke. To do. At this time, a cylinder space having a predetermined volume is formed in the cylinder 11, but the inside of the cylinder 11 is evacuated because the suction valve 20 and the discharge valve 30 are closed.
  • the needle shaft 21 is moved backward (moved to the right in the figure) by the drive unit 23 of the suction valve 20. Then, the suction port 13 is opened, the cylinder 11 and the gas introduction port 22 communicate with each other, and the gas before compression flows into the cylinder space of a predetermined volume in the cylinder 11 (arrow a2 in the figure).
  • the intake valve 20 is closed, the cylinder 11 is filled with gas and is in a sealed state. That is, the intake valve 20 is opened for a predetermined time, and the intake valve 20 is closed when a predetermined amount of gas is accumulated in the cylinder 11.
  • the operation of the piston 12 is stopped until a predetermined amount of high viscosity material flows.
  • the piston 12 is moved to the compression stroke side, and the gas filled in the cylinder 11 is compressed. That is, the piston is lowered from the first position to the second position.
  • the discharge valve 30 is opened. That is, the needle shaft 31 is moved backward (moved downward in the drawing) by the drive unit 36 of the discharge valve 30 to open the discharge port 14.
  • the compressed gas is mixed into the high-viscosity material pumped through the pipe 47, and the piston 12 reaches the operation end (bottom dead center) of the compression stroke.
  • the needle shaft 31 is moved forward (moved upward in the figure) and the discharge valve 30 is closed, one cycle of gas mixing into the high viscosity material is completed.
  • the vicinity of the operation end of the piston 12 is preferably a piston position where the gas is compressed to 1/5 to 1/100, preferably a piston position where the gas is compressed to 1/10 to 1/30.
  • the pressure of the material when the pressure of the material is higher than the pressure of the gas, the material flows backward from the gas outlet 14 and flows into the cylinder, and the material and the gas are mixed in the gas cylinder. If the pressure of the material is greater than the gas pressure, the material may be altered by shearing force caused by the discharge port 14 having a relatively small diameter and the inflow speed of the material. Further, when the gas pressure is too larger than the material pressure, the material does not flow into the cylinder, so that the mixing property of the gas and the material may be deteriorated. Therefore, by appropriately adjusting the gas pressure and the material pressure, the mixing property can be enhanced within a range in which the material does not change.
  • the above operation is repeated. Since the high-viscosity material being pumped through the pipe 47 is high pressure as described above, the mixed air is also compressed according to the pressure and the volume thereof is reduced. For this reason, even if air is mixed into the high-viscosity material, the flow rate of the high-viscosity material is hardly affected, and pulsation or the like does not occur.
  • the high-viscosity material mixed with gas is agitated while flowing through the pipes 47 and 52, whereby the bubbles of the mixed gas are refined and dispersed in the high-viscosity material.
  • the high-viscosity material in which fine bubbles are dispersed is discharged from the nozzle 46 and applied to a workpiece or the like.
  • the high-viscosity material that has been at a high pressure is put in an atmospheric pressure environment.
  • the gas bubbles mixed in the high-viscosity material expand and foam with a foaming ratio corresponding to the amount of the mixed gas.
  • the gas mixing device for the high viscosity material and the gas mixing method for the high viscosity material using the gas mixing device for the high viscosity material according to the present embodiment every predetermined flow rate of the high viscosity material. Since the piston pump is operated, the gas mixing ratio into the high viscosity material, that is, the foaming ratio of the high viscosity material can be freely changed by changing the operation timing of the piston pump. For example, assuming that the volume of the cylinder space 11a is 50 ml and the gas introduced into the cylinder 11 is atmospheric pressure, if the piston pump is operated for one cycle every time 50 ml of the high-viscosity material is transferred, foaming occurs. The magnification is about 2 times.
  • the expansion ratio is about 1.5 times, and if the piston pump is operated for one cycle every time 25 ml of high-viscosity material is transferred, The expansion ratio is about 3 times. It goes without saying that the expansion ratio can also be changed by changing the pressure of the gas introduced into the cylinder 11 or changing the volume of the cylinder space 11a. In order to change the volume of the cylinder space 11a, the operation of the piston 12 can be changed, for example, to change the first position of the piston 12.
  • the expansion ratio is made lower than twice, the gas filled in the piston pump has a pressure lower than atmospheric pressure. It is necessary to make the pressure negative, and the configuration is complicated because a negative pressure tank or the like is added.
  • the expansion ratio is to be increased more than twice, it is necessary to increase the pressure of the gas filled in the piston pump in advance, and a pressure tank or the like is required in the same manner as described above.
  • the high-viscosity material to be used cannot be filled into the piston pump in a specified amount, resulting in an error in the expansion ratio.
  • the foaming ratio be changed simply by increasing / decreasing the number of operations of the piston pump, but also a negative pressure tank, a pressure tank, etc. are not required.
  • the configuration can be simplified.
  • the port for supplying or discharging the high-viscosity material is increased.
  • a shearing force is applied when passing through the port, and the high-viscosity material may be altered.
  • the gas in the cylinder 11 can be compressed in advance to reduce the pressure difference between the high-viscosity material and the gas. Therefore, it is possible to reduce the backflow of the high-viscosity material, and there is no such concern. Note that, as described above, the backflow prevention of the high-viscosity material due to the compression of the gas is preferably performed within a range in which the mixing property of the gas and the material is maintained well.
  • the pump for pumping the high-viscosity material and the piston pump for compressing the gas are independent from each other, the operation of the piston pump does not affect the transfer of the high-viscosity material.
  • a high viscosity material mixed with gas can be continuously fed even if it has only one set of pressure pump and piston pump and no buffer tank is provided. You can also stop.
  • the pumping pump that pumps the high-viscosity resin and the piston pump that compresses the gas are independent from each other, and the amount of gas mixing can be controlled simply by increasing or decreasing the number of operations of the piston pump. Even if the flow rate of the high-viscosity material or the size of the pressure feed pump changes, it can be accommodated to some extent with a piston pump of the same volume.
  • high-viscosity materials are pumped from the beginning at a specified pressure, so there is only one pump that pumps high-viscosity materials. Becomes simple.
  • the compression supplied to the piston pump without changing the operation timing of the piston pump.
  • the foaming ratio of the high viscosity material can be changed by adjusting the pressure of the previous gas.
  • the expansion ratio Is approximately doubled, but by setting the pressure of the gas before compression supplied to the piston pump to 2 atm, the expansion ratio is about 3 times, and by setting the pressure to 0.5 atm, the expansion ratio is about 1.5 times It can be.
  • the method of adjusting the gas mixing ratio to the high-viscosity material by changing the operation timing of the piston pump for each predetermined flow rate of the high-viscosity material described above, and the pressure of the gas before compression supplied to the piston pump are adjusted.
  • a wide range of gas can be mixed into the high viscosity material with the piston pump of the same volume, and various with one piston pump It can be used for a wide range of pumps with a large capacity.
  • the pipe 47 is one of the constituent requirements
  • the cylinder space 11a extends to the inside of the side wall of the pipe 47
  • the discharge is performed close to the pipe space 47a.
  • An outlet 14 is provided.
  • the discharge port 14 can be provided close to the pipe space 47 a, it is not necessary to form the cylinder space 11 a up to the inside of the side wall of the pipe 47.
  • the side wall of the pipe line 47 is thin and the discharge port 14 can be arranged very close to the pipe space 47a even if the discharge port 14 is provided outside the pipe line 47. (Only the hole for the discharge port 14 is formed in the conduit 47).
  • the pipe line 47 can be excluded from the configuration requirements of the gas mixing device 1 of the present invention. That is, the gas mixing device 1 of the present invention can be provided in a mode in which the pipe 47 (or a part of the pipe) does not exist.
  • the present invention is not limited to the disclosed positional relationship between the cylinder 11 and the pipe line 47 (positional relation in which the length direction of the cylinder 11 is orthogonal to the pipe line 47).
  • a mode of being arranged obliquely or parallel to 47 is also conceivable.
  • needle valves are used as the suction valve 20 and the discharge valve 30, but any type of valve, for example, a gate type valve, can be used as long as the cylinder space and the pipe space can be opened and closed. Etc. can also be used.
  • each constituent element can be operated at an arbitrary timing as long as a gas having a predetermined volume and a predetermined pressure can be mixed in a predetermined amount of high-viscosity material.
  • the suction valve 20 is used as a constituent requirement for opening and closing the suction port 13 of the gas mixing device 1.
  • the suction valve 20 is provided as long as the cylinder space 11 a can be filled with gas. Can be omitted.
  • a mode in which a gas having a predetermined pressure is introduced from a gas supply unit (not shown) into the cylinder space 11a via a suction port without a valve is also conceivable.
  • the gas mixing method for the high viscosity material of the present invention is executed by the gas mixing apparatus system 2 including the gas mixing apparatus 1 disclosed as the embodiment of the present invention.
  • the method is not limited to examples using the disclosed gas mixing device 1 or system 2.
  • the means for opening and closing the suction port 13 and the discharge port 14 can be an opening / closing configuration other than the disclosed suction valve 20 and discharge valve 30.
  • the positional relationship between the cylinder 11 and the pipe line 47 can be arbitrarily and suitably changed as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Accessories For Mixers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 ガスが混入された高粘度材料を後工程に連続的かつ脈動がない状態で供給するとともに、様々な粘度の高粘度材料に対応することができ、さらに高粘度材料の発泡倍率を簡単に変更できること。 ガス混入装置1は、高粘度材料が流れることが可能な管路空間に近接して設けられたガスの吐出口14と、吐出口14を介して管路空間と連通可能なシリンダ11、該シリンダの内部に配置されたピストン12、及び、該ピストンをシリンダの内部で上死点及び下死点の間で移動させる駆動手段を備えるピストンポンプ10と、吐出口14を開閉する吐出弁30と、シリンダ空間へのガスの吸入口を開閉する吸入弁20と、を備え、シリンダ11は、ピストン12が上死点にあるとき所定体積のシリンダ空間を形成し、ピストン12が下死点に向かって移動されるときピストンの先端は吐出口に接近する。

Description

高粘度材料へのガス混入方法及びガス混入装置
 本発明は、高粘度材料を発泡させる等の目的で、高粘度材料にガスを混入させる方法及び装置に関する。
 従来、加圧した高粘度材料にガスを混入させた後、大気環境下で塗布することで発泡させる発泡性ガスケット等を製造する目的で、複数の方法又は装置が開示されている。例えば、特開平10-272344号公報には、ピストンがシリンダ内を往復移動して吸入行程と吐出行程を行うピストンポンプを用い、ピストンポンプの吸入行程においてシリンダ内にガスを供給し、ピストンが吸入端に達して吸入行程が終了しかつシリンダ内に調整された圧力のガスが充填された状態となった後で、シリンダ内に高粘度材料を供給し、高粘度材料の供給の終了後にピストンポンプの吐出行程を行い、吐出行程においてガス及び高粘度材料を管路に吐出する高粘度材料へのガスの混入方法が開示されている。
 また、特開平09-94450号公報には、同一の経路によって流動性材料とガスとを、1~5kg/cm程度の比較的低圧の圧力で交互に送り出す工程と、経路の途中において、高圧ポンプによって流動性材料及びガスを100~400kg/cm程度の高圧に加圧する工程と、を有することを特徴とする流動性材料にガスを混入させる方法が開示されている。
特開平10-272344号公報 特開平09-94450号公報
 しかし、特許文献1に開示されている技術では、高粘度材料へガスを混入させるのに、ガスの吸入行程、高粘度材料の供給行程、及びガスと高粘度材料の吐出行程と、3つの行程が必要となり、動作サイクルの時間が長くなるという課題があった。
 また、特許文献2に開示されている技術では、流動性材料に高粘度のものを使用すると、流動性材料とガスとを比較的低圧の圧力で交互に送り出す前半の工程において、経路内を圧送するのに長い時間を要してしまう恐れがあった。
 また、特許文献1及び特許文献2に開示されている技術では、ピストンポンプ内に高粘度材料又は流動性材料を供給するため、ピストンポンプに高粘度材料又は流動性材料を供給するための弁機構、さらに、高粘度材料又は流動性材料の規定量が正確にピストンポンプに供給されたか否かを判断する機構が必要であった。さらに、同じピストンポンプに高粘度材料又は流動性材料と、ガスとを供給するため、高粘度材料又は流動性材料の発泡倍率を2倍以外の倍率にしようとすると、ガスを負圧の状態又は加圧して供給するための機構が必須となっていた。
 本発明は、上記の点に鑑みなされたもので、簡単な方法及び構成によって、高粘度材料へのガス混入を可能とする方法及び装置を提供することを目的とする。
 上記課題を解決するため、本発明の高粘度材料へのガス混入方法は、高粘度材料が流れることが可能な管路とシリンダとを連通するように設けられた吐出口を閉じ、前記シリンダの内部に配置されたピストンを前記吐出口から離れるように移動させることにより所定体積のシリンダ空間を前記シリンダ内に形成し、前記シリンダ空間に所定圧力のガスを充填し、前記ピストンを前記吐出口に向かって移動させることによって前記ガスを圧縮し、前記吐出口を開放することによって、前記管路を流れる高粘度材料に圧縮されたガスを混入させる、各工程を備えることを特徴としたものである。
 本発明によれば、シリンダを管路に連通させるための吐出口を開放することによって、該吐出口から、所定体積のシリンダ空間に蓄えられた所定圧力のガスを吐出し、該ガスを管路を流れてきた高粘度材料に混入させることができる。
 本発明の好ましい態様は、前記吐出口を閉じる工程から前記吐出口を開放する工程までの一連の工程は、高粘度材料が所定量流れる毎に、繰り返されることを特徴とする。本態様によれば、高粘度材料に混入されるガスの量、及び、高粘度材料の量を正確に制御できるので、高粘度材料の発泡倍率を正確に維持することができる。また、ガスが混入された高粘度材料を後工程に連続的に供給することが可能となる。ここで、「高粘度材料が所定量に流れる毎」とは、「管路空間を高粘度材料が所定量流れる毎」を含むことは勿論のこと、たとえガスが管路空間内に高粘度材料流れていない状態や一定量が流れていない状態であっても、管路空間に連通する配管内で高粘度材料が所定量吐出されたり流れている場合なども含んでいる。
 本態様において、さらに好ましくは、高粘度材料の前記所定量、前記シリンダ空間の前記所定体積、及び、ガスの前記所定圧力のうち少なくともいずれかを調整することによって、前記高粘度材料の発泡倍率を簡単かつ正確に制御することが可能となる。
 本発明の別の好ましい態様では、前記ピストンが前記吐出口に向かって移動される動作終端で、前記ピストンの先端が、前記吐出口が形成された前記シリンダの端部の内側と隙間無く適合することを特徴とする。本態様によれば、シリンダ内のデッドスペースを実質的にゼロとすることができるので、高粘度材料に混入されるガスのさらに正確な計量が可能となる。
 本発明の方法において、例えば、前記吐出口は、前記管路の側壁において高粘度材料の流れに面するように設けられ、前記吐出口を閉じる工程は、前記吐出口と対向する、前記管路の側壁の位置から弁体を延ばし、該弁体を前記吐出口に着座させる工程とすることができる。
 また、前記シリンダ空間を形成する前記シリンダの側壁に、吸入口を設け、前記シリンダ空間に所定圧力のガスを充填する工程は、前記吸入口からガスを導入した後、前記吸入口に前記シリンダ空間外部から弁体を着座させる工程である、とすることができる。
 また、上記課題を解決するため、本発明のガス混入装置は、シリンダと、高粘度材料が流れることが可能な管路と該シリンダとを連通させるため前記シリンダの端部に形成されたガスの吐出口と、前記シリンダにガスを充填するため該シリンダに形成された吸入口と、前記シリンダの内部で第1の位置及び第2の位置の間で摺動されるピストンとを備える、ピストンポンプと、前記吐出口を開閉する吐出弁と、を備え、前記シリンダは、前記ピストンが前記第1の位置にあるとき、所定体積のシリンダ空間を形成することを特徴として構成したものである。
 本発明のガス混入装置によれば、高粘度材料を、ガスを圧縮するピストンポンプとは別のポンプによって圧送することができ、ガスを高粘度材料に混入させることのみにピストンポンプを用いることができる。また、同様に、高粘度材料の圧送には別のポンプを用いるため、連続的に高粘度材料を供給することができる。さらに、ピストンポンプに設けられる、高精度が要求される弁機構の数を減らすとともに、構造を簡単なものとすることができる。
 好ましい本発明のガス混入装置は、前記吐出弁を閉じ、前記ピストンを前記所第1の位置に移動させて前記所定体積のシリンダ空間を形成し、前記吸入口から所定圧力のガスを前記シリンダ空間に充填し、前記ピストンを前記第2の位置に向かって移動させることによって前記ガスを圧縮し、前記吐出弁を開放することによって、前記管路空間を流れる高粘度材料に圧縮されたガスを混入させる、各工程を実行するように制御される。
 好ましくは、前記吐出弁を閉じる工程から前記吐出弁を開放する工程までの一連の工程は、高粘度材料が所定量流れる毎に、繰り返されることを特徴とする。このようにピストンポンプは、ガスのみを圧縮するため、ピストンポンプの所定時間内(高粘度材料の所定の流量毎)の動作回数を変更することによって、高粘度材料の発泡倍率を、広範囲にわたって設定することができる。
 さらに、高粘度材料の前記所定量、シリンダ空間の所定体積、及び、ガスの前記所定圧力のうち少なくともいずれかを調整することによって、前記高粘度材料の発泡倍率を制御することができる。
 前記高粘度材料の発泡倍率を制御するため前記シリンダ空間の前記所定体積を調整する場合、例えば、前記第1の位置を変更するように前記ピストンを制御するようにしてもよい。
 さらに好ましい態様では、前記ピストンが前記第2の位置にあるとき、前記ピストンの先端は前記シリンダの前記端部の内側と適合することを特徴とする。この場合、前記ピストンの先端は前記吐出口が形成された前記シリンダの端部の内側と相補的な形状を有するのが好ましい。本態様によれば、ピストンポンプのシリンダ内のデッドスペースを実質的にゼロとすることができるので、高粘度材料に混入されるガスのさらに正確な計量が可能となる。
 本発明のガス混入装置は、例えば、前記吐出口は、前記管路の側壁において高粘度材料の流れに面するように設けられ、前記吐出弁は、前記吐出口と対向する、前記管路の側壁の位置から延びて前記吐出口に着座可能な弁体を備えていてもよい。
 本発明のガス混入装置は、例えば、前記吸入口は、前記シリンダ空間を形成する前記シリンダの側壁に設けられ、前記吸入弁は、前記シリンダ空間外部から延びて前記吸入口に着座可能な弁体を備えていてもよい。
 好ましい前記弁体は、ニードルであることを特徴とする。
 本発明のガス混入装置は、例えば、前記吐出口は、前記管路の内部に、前記管路空間に面して設けられ、前記吐出口と連通する前記シリンダ空間の少なくとも一部は、前記管路内に形成されているように構成することができる。
 これらの本発明の高粘度材料へのガス混入装置、及び高粘度材料へのガス混入装置の好ましい例によれば、上述した本発明の高粘度材料へのガス混入方法と同様の作用効果を得ることができる。
本発明の一実施形態に係る高粘度材料へのガス混入装置を備えるガス混入システムの回路図である。 本実施形態に係るガス混入装置の断面図(ピストンが第1の位置まで上昇した状態)である。 本実施形態に係るガス混入装置の断面図(図2のガス混入装置で吸入弁が開放された状態)であって、ピストンポンプにガスを吸入させる工程を説明する図である。 本実施形態に係るガス混入装置の断面図(図2のガス混入装置で、吸入弁が閉じ、ピストンが第2の位置まで下降し、吐出弁が開放された)であって、ピストンポンプで生成した圧縮ガスを高粘度材料へ混入させる工程を説明する図である。
 以下、本発明の、高粘度材料へのガス混入装置の実施の形態について、添付図面を参照しながら詳細に説明する。なお、本発明の高粘度材料へのガス混入方法は、本発明の高粘度材料へのガス混入装置を用いて実施される。
 図1は本発明の一実施形態に係る高粘度材料へのガス混入装置1を説明するための回路図、図2はガス混入装置1に備えられたピストンポンプ10を説明する図である。
 図1に示すように、本実施形態の高粘度材料へのガス混入装置1は、高粘度材料が流れる管路空間(管路47によって形成された高粘度材料の通路として形成される)にガスを吐出するためのピストンポンプ10と、ピストンポンプ10から管路47へのガス供給を制御する吐出弁30とを少なくとも備える。さらに、ガス混入装置1は、ピストンポンプ10を駆動させる駆動部15と、ピストンポンプ10へのガス供給を制御する吸入弁20と、を備えるのが好ましく、図1では、これらの構成も備えた実施例を示している。
 ガス混入装置1は、図1に示す一例としてのガス混入システム2に組み込むことができる。ガス混入システム2は、ガス混入装置1の他、高粘度材料を貯蔵するタンク40と、該タンク40に貯蔵された高粘度材料を圧送する圧送ポンプ41と、圧送ポンプ41から圧送された高粘度材料を管路47に導く管路50と、ガスを吸入弁20を介してピストンポンプ10に供給するガスコンプレッサ43と、管路47から送られてきた、ガスが混入された高粘度材料が流れる管路52と、管路52から送られてきた、ガスが混入された高粘度材料を吐出するためにガンの先端に取り付けられたノズル46と、を備えている。
 管路50、47、52は、別々の管路として構成され、この順にこれら管路内を高粘度材料が流れるように、溶接若しくはフランジ等を用いて接続されたものであってもよい。勿論、管路50、47、52は、最初から一体の管路として構成されたものであってもよい。
 タンク40として、例えば、公知のペール缶やドラム缶等を用いてもよいが、これに限定されるものではない。また、タンク40内に貯蔵される高粘度材料としては様々なものがあり、例えば、ポリウレタン、変成シリコン、エポキシ、シリコーン、アクリル、加硫ゴム、PVCやアクリル等のプラスチゾルなどおよびこれらの混合物さらにはグリス、食用クリーム、美容クリーム等があるが、これらに限定されるものではない。
 圧送ポンプ41は、高粘度材料を圧送できるものであればどの様なものでも構わない。圧送ポンプ41として、ペール缶やドラム缶用のピストンポンプやプランジャーポンプとして例えばエアモーター式のダブルアクションポンプなどや圧送時の脈動が発生しないギヤポンプやネジポンプ等の回転型ポンプを採用することもできるが、これに限定されるものではない。また、圧送ポンプ41に、定流量ポンプを組み込み、高粘度材料を一定流量で圧送できるようにしてもよい。
 この高粘度材料を圧送する圧力は、高粘度材料の粘度にもよるが、20~300kg/cmが好ましく、50~200kg/cmがより好ましい。これは、圧送する圧力が50kg/cmより低くなると、高粘度材料が発泡した際、その気泡が粗くなる恐れがあるからであり、20kg/cmより低くなると、その傾向がより顕著になるとともに、気泡の大きさが均一でなくなる恐れがあるからである。また、圧力が200kg/cmより高くなると、装置の各構成部品の加圧性能及び耐圧性能を確保するために設備が高額となるからであり、300kg/cmより高くなると、その傾向がより顕著になるからである。
 高粘度材料の吐出圧力は、ノズル46の直前(吐出直前)で測定された圧力値を用いると3-20MPa、好ましくは、5-12MPa、より好ましくは、6-10MPaである。
 圧送されてくる高粘度材料の流量を計測するため、圧送ポンプ41とピストンポンプ10の吐出弁30との間に流量計が設けられていてもよい。吐出弁30とノズル46の間に流量計や底流量装置が設けられてもよい。
 ガスコンプレッサ43は、例えば0~1MPa若しくは0~0.5MPaなどの比較的低圧のガスを供給するコンプレッサとして構成することができる。ガスの種類としては、空気(大気圧の空気、低圧空気、圧縮空気)、炭酸ガス、窒素ガス、酸素、アルゴン、クリプトン等の様々な気体を採用することができる。また、高粘度材料に供給するガスを大気中の空気とした場合には、ガスコンプレッサ43も用いることができるが、その代わりに、大気中の空気を取り入れるための空気取入れ口を設け、該空気取入れ口43から導入された大気圧の空気をピストンポンプ10に供給するようにしてもよい。この場合、空気を濾過し、粉塵等を除去する空気フィルタを空気取入れ口と吸入弁20との間に設けてもよい。さらに、ガスコンプレッサ43や空気取入れ口の代わりに、ガスタンク、及びガス圧力を調整する圧力調整機構としての調整弁等を備える構成を用いることができる。また、ガスの圧力も、そのときの製造条件に応じて、大気圧より加圧した正圧又は大気圧より圧力が低い負圧とすることができる。
 低圧ガスを使用することにより、耐圧安全性を考慮した設計が不要となる。例えば、構成部品(配管やバルブ等)を低強度の材質で作ったり肉厚を薄くしたりすることが可能となる。さらには、ガス流量の制御を容易にし、ガス注入の信頼性や取り扱いの安全性を向上させることができる。これによってガス混入システム全体の軽量化、小型化を図ることができる。勿論、本発明は、使用目的や状況に応じて高圧ガスを取り扱う態様を含んでおり、低圧ガスの使用に限定されるものではない。
 ノズル46は、ガスが混入された高粘度材料を、ワークに対して塗布等するためのもので、高粘度材料を任意に吐出させることができる。ノズル46は、任意の方法で使用することが可能であり、例えば、ハンドヘルド式のノズルでも、マニピュレータの先端に取り付けられたノズルのいずれでもよい。
 ノズル46へのガス-高粘度材料の混合物の供給方法として、1台のガス混入装置1から吐出された混合物をノズル46に供給する形態は勿論のこと、2台以上のガス混入装置1を配置し、それらを並列若しくは交互に運転することによって、混合物の供給量を増加させたり、或いは、連続的な混合物の供給を可能にすることができる。
 さらには、ガス混入装置1(1台若しくは上記した2台以上)とノズル46との間に、計量装置を配置し、この計量装置により定量的に高粘度材料をノズル46に提供してもよい。また、2つ以上の計量シリンダを配置し、これらの計量シリンダの交互運転で、連続的にガス混入された高粘度材料をノズル46に提供してもよい。
 ピストンポンプ10によって、ガスが混入され管路47、52を流れてノズル46に至る高粘度材料は、管路内を流れるうちに、高粘度材料内をガスが分散撹拌される。このガスの分散撹拌効果を増加させるために、高粘度材料へピストンポンプ10によってガスが混入された後の管路47の経路や、管路52に、ミキサーを設けてもよい。このミキサーとして、例えば、管の内部に螺旋状のエレメントを直列に複数設けた、スタティックミキサーや、ダイナミックミキサー等の公知のミキサーが採用されてもよい。
 さらに、ガス混入装置1は、ガス混入装置1の各構成要素を制御する図示しない制御部を備えていてもよい。制御部は、CPU、メモリ、又はリレー、タイマー等から構成され、駆動部15、吸入弁20、吐出弁30、圧送ポンプ41、流量計、ノズル46等と接続され、これらの構成要素と協動して、高粘度材料へのガス混入装置1を動作させる。例えば、制御部は、高粘度材料の流量を検出する上記した流量計の信号に基づいて、高粘度材料が所定量流れる毎に、シリンダポンプ1を1サイクル駆動するなどの制御を行う。
 次に図2を用いてピストンポンプ10の詳細な構成について説明する。
 図2に示すように、ピストンポンプ10は、シリンダ11と、シリンダ11の内部空間をその軸方向に沿って駆動部15により第1の位置(例えば上死点)及び第2の位置(例えば下死点)の間で摺動可能に構成されたピストン12と、シリンダ11の側壁に設けられたガスの吸入口13と、ガスの吐出口14と、を備える。シリンダ11の内部空間は、管路47の外周部の内部にまで延びており、当該内部空間の終端である高粘度材料の通路付近に、吐出口14が形成されている。シリンダ11は、ピストン12が第1の位置(上死点)にあるとき、ピストン12によって画定された所定体積のシリンダ空間を形成する。
 ピストン12は、ピストン12の圧縮行程の動作終端(ピストン12の第2の位置(下死点))において、ピストン12の先端と吐出口14が形成されたシリンダ11の端部の内側とが隙間なく適合するのが好ましい。ここで、「隙間なく適合」とは、ピストン12の先端が、吐出口14が形成されたシリンダ11の端部の内側と相補的な形状を有しているため、ピストン12が第2の位置(下死点)にあるとき、ピストン12の先端がシリンダ11の端部内側とほぼ完全に適合可能であることを意味している。これによって、シリンダ内にデッドスペースが無くなり、ガス量をより正確に制御することができる。或いは、「隙間なく適合」には、当該「隙間」が事実上ゼロであるような適合の仕方も含まれている。例えば、ピストン12の先端が吐出口14が形成されたシリンダ11の端部の内側と相補的な形状を有し、ピストン12が第2の位置(下死点)にあるとき、ピストン12の先端とシリンダ11の端部内側との間の距離が、0であるか、或いは当該距離が非常に小さく、2mm以下、好ましくは1mm以下、より好ましくは0.5mm以下となることを意味している。
 吸入口13は、ピストンポンプ10のシリンダ11側壁に設けられている。好ましくは、吸入口13は、ピストン12の吸入行程の動作終端近傍に設けられるのがよい。ピストン12が吸入行程の動作終端(第1の位置(例えば上死点))又はその近傍にあるとき、上記の吸入弁20によって開かれ、ここからシリンダ11の内部空間にガスが導入される。吐出口14は、ピストン12が圧縮行程を開始し動作終端(下死点)近傍に到達したとき、上記の吐出弁30によって開かれ、圧縮ガスを管路47内の高粘度材料内へ混入する。なお、管路47は、ピストンポンプ10の近傍では、ピストンポンプ10の構成部品と一体に形成されているが、ピストンポンプ10の前後等、他の構成要素と接続される部分は、公知の配管、耐圧ホース等が採用される。
 吸入弁20は、図2にも示すように、ピストンポンプ10のシリンダ11の側壁に設けられ、ピストンポンプ10の吸入口13を開閉する。本実施形態の高粘度材料へのガス混入装置1では、吸入弁20に一例としてニードル弁を採用している。ニードル弁20は、ニードル軸21と、ガス導入口22と、駆動部23とを備える。ニードル軸21は、シリンダ11の軸に直交する方向に沿って延在するのが好ましく、当該方向に沿って摺動する。ガス導入口22は、ガスコンプレッサ43から供給されるガスを、ニードル弁20に導入するためのもので、ニードル弁20の筐体の側面に設けられていてもよい。
 駆動部23は、ニードル軸21をその長さ方向に沿って前進又は後退させる。ニードル軸21は、その先端が吸入口13に嵌って該吸入口を閉じるまで前進することができる(図では左側に移動)。ニードル軸21が吸入口に嵌った位置から後退(図では右側に移動)したとき吸入口13が開かれシリンダ11とガス導入口22とが連通する。駆動部23として、公知の空気シリンダや電動モータを用いることができるが、これに限定されるものではない。また、ニードル弁20には、吸入口13側の先端部に、ニードル軸21を案内するための弁ガイド21aが設けられていてもよい。
 吐出弁30は、ピストンポンプ10のシリンダ11先端に設けられ、ピストンポンプ10の吐出口14を開閉する。本実施形態の高粘度材料へのガス混入装置1では、吐出弁30に一例としてニードル弁を採用している。ニードル弁30は、管路47によって形成された管路空間47aを挟んで、ピストンポンプ10の吐出口14と対向する位置に設けられ、ニードル軸31と、駆動部36とを備える。ニードル軸31は、その先端が管路空間47a内を通過して吐出口14に嵌まるようシリンダ11の軸と同軸上に設けられている。
 駆動部36は、ニードル軸31を前進又は後退させる。ニードル軸31は、その先端が吐出口14に嵌るって該吐出口を閉じるまで前進することができる(図では上側に移動)。このとき、ニードル軸31が吐出口14に嵌った位置から後退(図では下側に移動)したときは吐出口14が開かれシリンダ11と管路47とが連通する。駆動部36として、公知の空気シリンダや電動モータを用いることができるが、これに限定されるものではない。また、ニードル弁31には、管路47内に、ニードル軸31を案内するための弁ガイドが設けられていてもよい。このような弁ガイドは、円柱状の本体と、ニードル軸31をその中で上下に移動可能に貫通させる縦孔と、管路空間47aと連通しその内部を高粘度材料が移送される横孔とを備えて構成してもよい。
 なお、ニードル軸21、31の先端は、図では模式的に表しているが、気密性を向上させるために、円錐形、円錐台や半球状等の様々な形状にすることができる。また、吸入弁や吐出弁として、ニードル弁に限定されず、吸入口13、吐出口14を開閉することが可能な弁であれば任意構成の弁を用いることができる。例えば、ピストンがニードル状ではないピストンバルブ、チェック弁、或いは、吸入口を開閉する機構を採用することもできる。
 次に、以上説明した各構成要素の機能を踏まえて、本実施形態の高粘度材料へのガス混入装置1の動作を図1~図4を参照して説明する。図1、図2は既に説明した通りである。図3はピストンポンプ10にガスを吸入させる工程を説明する図、図4はピストンポンプ10で生成した圧縮ガスを高粘度材料へ混入させる工程を説明する図である。
 先ず、高粘度材料が入ったタンク40から、圧送ポンプ41によって、高粘度材料を、管路47を通じて下流側に圧送する。なお、図2~4においては、高粘度材料は、管路47内を矢印a1に示すように、左から右に向かって移送されているものとする。
 なお、高粘度材料が所定の量、移送されたことを監視、判断するため、本実施形態では、例えば、以下の方法のうち一つが採用される。
(1)定量装置を備えた圧送ポンプ41と連動しピストンポンプ10を作動させる。
(2)1ストロークの容量が既知な圧送ポンプ41のサクション(容量が決まっている)をカウントして、ピストンポンプ10を作動させる。
(3)圧送ポンプ41やピストンポンプ10とは別に設置した定流量装置や定流量付き吐出ガンと連動して、ピストンポンプ10を作動させる(シリンダのガス容量の変更は、ガスの圧力の変更・調整やピストンのストロークによって実施する)。
(4)圧送ポンプ41やピストンポンプ10とは別に設置したブースターポンプやシリンダ駆動式の吐出ガンを用い、使用量に応じてピストンポンプ10を作動させる。
(5)流量計の測定値に基づいて、高粘度材料が所定の量、移送されたタイミングを判断し、当該タイミングに従ってピストンポンプ10を作動させる。
 ガス混入装置1は、高粘度材料(図中矢印a1)が所定の量流れる毎にピストンポンプ10の1サイクルが実行されるように制御される。なお、高粘度材料が所定の量流れたタイミングをピストンポンプ1の各動作のいずれの時点に対応させるかは、ピストンポンプ10の1サイクルと流れた高粘度材料の量とが一定の関係を維持することができる限り、任意好適に変更可能である。以下、ピストンポンプ10の1サイクルを説明する。
 図2に示すように、ピストンポンプ10に接続された吸入弁20と吐出弁30が閉じられた状態で、ピストン12が吸入行程の動作終端まで、すなわち第2の位置から第1の位置まで移動する。このとき、シリンダ11内に所定体積のシリンダ空間が形成されるが、吸入弁20と吐出弁30が閉じられているため、シリンダ11内は真空となる。
 次に、図3に示すように、吸入弁20の駆動部23によってニードル軸21が後退(図では右側に移動。)される。すると、吸入口13が開かれ、シリンダ11とガス導入口22とが連通し、シリンダ11内の所定体積のシリンダ空間に圧縮前のガスが流入する(図中矢印a2)。そして、ニードル軸21を前進(図では左側に移動。)させ吸入弁20を閉じると、シリンダ11内にはガスが充填され、密閉された状態となる。すなわち、吸入弁20が所定時間に亘って開放され、所定量のガスがシリンダ11内に蓄積された時点で吸入弁20が閉じられる。次に、高粘度材料が所定量流れるまでピストン12の動作が停止される。
 次に、ピストン12を圧縮行程側に移動させ、シリンダ11内に充填されたガスを圧縮する。すなわち、ピストンを第1の位置から第2の位置まで下降させる。ピストン12が圧縮行程の動作終端(下死点)近傍に達したときに、吐出弁30を開放する。すなわち、吐出弁30の駆動部36によってニードル軸31を後退(図では下側に移動。)させ吐出口14を開く。すると、図4に示すように、圧縮されたガスが管路47内を圧送される高粘度材料の中に混入されるとともに、ピストン12は圧縮行程の動作終端(下死点)に達する。次にニードル軸31を前進(図では上方向に移動。)させ、吐出弁30を閉じると高粘度材料へのガス混入の1サイクルが終了する。
 なお、上記ピストン12の動作終端近傍とは、好ましくは、ガスを1/5~1/100に圧縮したピストン位置、好ましくは1/10~1/30に圧縮したピストン位置である。このときガスの圧力よりも材料の圧力が高い場合には、材料がガス流出口14から逆流しシリンダ内に流入し、ガスシリンダ内で材料とガスが混合される。もし、材料の圧力がガス圧よりも大きすぎると比較的小さな口径の吐出口14と材料の流入速度とによってもたらされる、せん断力により材料が変質する場合がある。また、ガス圧が材料圧よりも大きすぎる場合には、材料がシリンダ内に流入しないため、ガスと材料の混合性が悪化する場合がある。従って、ガス圧と材料圧とを適度に調整することによって、材料が変質しない範囲で混合性を高めることができる。
 そして、再び高粘度材料が所定の量移送されると、上記の動作を繰り返すのである。なお、管路47内を圧送されている高粘度材料は、既に述べたように高圧のため、混入された空気もその圧力に応じて圧縮され、その体積が縮小されている。このため、空気を高粘度材料へ混入させても、高粘度材料の流量に影響を与えることが殆どなく、脈動等を生じることもない。
 次に、ガスが混入された高粘度材料は管路47、52を流れる間に、撹拌されていき、これによって混入されたガスの気泡が微細化され、高粘度材料内を分散する。微細な気泡が分散した高粘度材料は、ノズル46から吐出されてワーク等に塗布される。高粘度材料がノズル46から吐出されると、それまで高圧であった高粘度材料は、大気圧環境下におかれる。すると、高粘度材料に混入されたガスの気泡が膨張し、混入されたガスの量に応じた発泡倍率で発泡する。なお、高粘度材料中への気泡の分散を促進させるために、必要に応じてミキサーを用いてもよい。
 以上説明したように、本実施形態の高粘度材料へのガス混入装置及び高粘度材料へのガス混入装置を使用した高粘度材料へのガス混入方法によれば、高粘度材料の所定の流量毎にピストンポンプを動作させるため、ピストンポンプの動作タイミングを変更することにより高粘度材料へのガス混入比率、すなわち高粘度材料の発泡倍率を自由に変更することができる。例えば、シリンダ空間11aの容積が50mlであり、シリンダ11に導入されたガスが大気圧であると仮定した場合、高粘度材料が50ml移送される毎にピストンポンプを1サイクル動作させれば、発泡倍率は約2倍となる。同様に、高粘度材料が100ml移送される毎にピストンポンプを1サイクル動作させれば発泡倍率は約1.5倍、高粘度材料が25ml移送される毎にピストンポンプを1サイクル動作させれば発泡倍率は約3倍となる。シリンダ11に導入されたガスの圧力を変更させたり、シリンダ空間11aの容積を変更させることによっても上記発泡倍率は変更可能であることはいうまでもない。シリンダ空間11aの容積を変更するため、例えばピストン12の第1の位置を変更するように、ピストン12の動作を変更することができる。
 すなわち、本発明の実施例において、発泡倍率を変更する手段として、次の手段のうちいずれか1つ、或いは、2つ以上の組み合わせがある。
(1)ピストンポンプ1サイクル当たりの高粘度材料の供給量の変更(ピストンポンプの1サイクルの速度及び高粘度材料の供給量のいずれかを変えるか或いは両方を変える)
(2)シリンダ空間11aに導入されるガスの圧力の変更
(3)シリンダ空間11aの容積の変更(例えばピストン12の第1の位置の変更)
 特に、従来の一つのピストンポンプ内にガスと高粘度材料を一緒に入れて圧縮する方法では、発泡倍率を2倍より低くしようとすると、ピストンポンプ内に充填するガスを大気圧より圧力の低い負圧とする必要があり、負圧タンク等を付加するためその構成が複雑となっていた。また、発泡倍率を2倍より高くしようとすると、予めピストンポンプに充填するガスの圧力を高める必要があり、上記同様に圧力タンク等が必要となるとともに、ガスの圧力が高くなると、後から充填する高粘度材料がピストンポンプ内に規定量充填できなくなり、発泡倍率の誤差が生じていた。一方、本実施形態の高粘度材料へのガス混入装置では、ピストンポンプの動作回数を増減するのみで、発泡倍率を簡単に変更できるばかりでなく、負圧タンクや圧力タンク等が不要となり、装置の構成を簡素なものとすることができる。
 同様に、従来の一つのピストンポンプ内にガスと高粘度材料を一緒に入れて圧縮する方法では、ピストンポンプのデッドスペースを増やさないために、高粘度材料を供給又は吐出するポートを大きくすることができず、高粘度材料の種類によってはポートの通過時に剪断力がかかり、高粘度材料が変質する恐れがあった。一方、本実施形態の高粘度材料へのガス混入装置では、シリンダ11内のガスを予め圧縮して、高粘度材料とガスとの圧力差を小さくすることが可能であり、その場合、シリンダ内に高粘度材料が逆流することを少なくすることができ、そのような心配がない。なお、上述した通り、ガスの圧縮による高粘度材料の逆流防止は、ガスと材料との混合性を良好に維持する範囲で行われるのが好ましい。
 また、高粘度材料を圧送する圧送ポンプと、ガスを圧縮するピストンポンプとは、互いに独立した構成となっているため、ピストンポンプの動作が高粘度材料の移送に影響しない。これにより、一組の圧送ポンプとピストンポンプしか備えず、かつ、バッファタンクを設けない構成であっても、ガスが混入された高粘度材料を連続的に送ることができ、さらに、任意のタイミングで止めることもできる。
 同様に、高粘度樹脂を圧送する圧送ポンプと、ガスを圧縮するピストンポンプとは、互いに独立した構成となっており、ピストンポンプの動作回数を増減するだけでガスの混入量を制御できるため、高粘度材料の流量や圧送ポンプの大きさが変わっても、ある程度までは同じ容積のピストンポンプで対応することができる。
 また、従来のように高粘度材料を多段階に圧送するのではなく、最初から高粘度材料を所定の圧力で圧送しているため、高粘度材料を圧送する圧送ポンプが一つですみ、構成が簡素なものとなる。
 また、高粘度材料へ混入するガスとして大気圧の空気以外を用い、ガスタンク、及び調整弁等を備える他の実施形態においては、ピストンポンプの動作タイミングを変更せずとも、ピストンポンプに供給する圧縮前のガスの圧力を調整することで、高粘度材料の発泡倍率を変更することができる。例えば、シリンダ空間11aの容積が50mlで、シリンダ空間11aに供給する圧縮前のガスの圧力が1気圧の場合、高粘度材料が50ml移送される毎にピストンポンプを1サイクル動作させれば発泡倍率は約2倍となるが、ピストンポンプに供給する圧縮前のガスの圧力を2気圧とすることで発泡倍率は約3倍となり、0.5気圧とすることで発泡倍率を約1.5倍とすることができる。
 さらに、上述の高粘度材料の所定の流量毎にピストンポンプの動作タイミングを変更することによって高粘度材料へのガス混入比率を調整する方式と、ピストンポンプに供給する圧縮前のガスの圧力を調整することによって高粘度材料へのガス混入比率を調整する方式とを併用させることで、同じ容積のピストンポンプで広範囲の量のガスを高粘度材料に混入させることができ、一つのピストンポンプで様々な容量の圧送ポンプに幅広く対応させることができる。
 なお、上述の高粘度材料へのガス混入装置及び高粘度材料へのガス混入方法は、本発明の例示であり、発明の趣旨を逸脱しない範囲においてその構成を適宜変更することができる。
 例えば、図2等に示すガス混入装置1では、管路47を構成要件の一つとし、管路47の側壁の内部にまでシリンダ空間11aが延在し、管路空間47aに近接して吐出口14が設けられている。しかし、管路空間47aに近接して吐出口14が設けることができれば、管路47の側壁の内部にまでシリンダ空間11aを形成する必要はない。このような状況として、管路47の側壁が非情に薄く、吐出口14を管路47の外側に設けたとしても、管路空間47aに非常に近接して吐出口14を配置できるような場合(管路47に、吐出口14用の孔のみが形成される)が考えられる。このような場合には、本発明のガス混入装置1の構成要件から、管路47を除外することが可能となる。すなわち、本発明のガス混入装置1を、管路47(或いは管路の一部分)が存在しない態様で提供することができる。
 また、本発明は、開示されているシリンダ11と管路47との位置関係(管路47に対してシリンダ11の長さ方向が直交する位置関係)に限定されず、例えばシリンダ11が管路47に対して斜めや平行に配置された態様も考えられる。
 また、上記実施例では、吸入弁20、吐出弁30として、ニードル弁を用いていたが、シリンダ空間の開閉及び管路空間の開閉を行うことができれば、任意形式の弁、例えばゲート式の弁などを用いることもできる。
 動作タイミングに関しても、開示された例に限られず、所定体積で所定圧力のガスを所定量の高粘度材料に混入させることができれば、任意のタイミングで各構成要件を動作させることが可能となる。
 さらに、上記例では、ガス混入装置1の吸入口13を開閉する構成要件として、吸入弁20を用いていたが、本発明において、シリンダ空間11aにガスを充填することができる限り、吸入弁20を省略することもできる。例えば、図示しないガス供給手段から所定圧力のガスを弁無しで吸入口を介してシリンダ空間11aに導入する態様も考えられる。
 さらに、上記例では、本発明の高粘度材料へのガス混入方法は、本発明の実施例として開示された、ガス混入装置1を含むガス混入装置システム2によって実行されているが、本発明の方法は、開示されたガス混入装置1やシステム2を使用する例には限定されるものではない。例えば、吸入口13や吐出口14を開閉する手段は、開示された吸入弁20や吐出弁30以外の開閉構成でも可能である。また、シリンダ11と管路47との位置関係も上述の通り任意好適に変更可能である。
1・・高粘度材料へのガス混入装置
10・・ピストンポンプ、11・・シリンダ、11a・・シリンダ空間、12・・ピストン、13・・吸入口、14・・吐出口、15・・駆動部
20・・吸入弁(ニードル弁)、21・・ニードル軸、22・・ガス導入口、23・・駆動部、
30・・吐出弁(ニードル弁)、31・・ニードル軸、36・・駆動部、
40・・タンク、41・・圧送ポンプ、42・・流量計、43・・空気取入れ口、44・・空気フィルタ、45・・ミキサー、46・・ノズル、47・・管路、47a・・管路空間

Claims (15)

  1.  高粘度材料へのガス混入方法であって、
     高粘度材料が流れることが可能な管路とシリンダとを連通するように設けられた吐出口を閉じ、
     前記シリンダの内部に配置されたピストンを前記吐出口から離れるように移動させることにより所定体積のシリンダ空間を前記シリンダ内に形成し、
     前記シリンダ空間に所定圧力のガスを充填し、
     前記ピストンを前記吐出口に向かって移動させることによって前記ガスを圧縮し、
     前記吐出口を開放することによって、前記管路を流れる高粘度材料に圧縮されたガスを混入させる、各工程を備えることを特徴とする、方法。
  2.  前記吐出口を閉じる工程から前記吐出口を開放する工程までの一連の工程は、高粘度材料が所定量流れる毎に、繰り返されることを特徴とする、請求項1に記載の高粘度材料へのガス混入方法。
  3.  高粘度材料の前記所定量、前記シリンダ空間の前記所定体積、及び、ガスの前記所定圧力のうち少なくともいずれかを調整することによって、前記高粘度材料の発泡倍率を制御することを特徴とする請求項2に記載の高粘度材料へのガス混入方法。
  4.  前記ピストンが前記吐出口に向かって移動される動作終端で、前記ピストンの先端が、前記吐出口が形成された前記シリンダの端部の内側と隙間無く適合することを特徴とする請求項1乃至3のいずれか1項に記載の高粘度材料へのガス混入方法。
  5.  前記吐出口は、前記管路の側壁において高粘度材料の流れに面するように設けられ、
     前記吐出口を閉じる工程は、前記吐出口と対向する、前記管路の側壁の位置から弁体を延ばし、該弁体を前記吐出口に着座させる工程である、請求項1乃至3のいずれか1項に記載の高粘度材料へのガス混入方法。
  6.  前記シリンダ空間を形成する前記シリンダの側壁に、吸入口を設け、
     前記シリンダ空間に所定圧力のガスを充填する工程は、前記吸入口からガスを導入した後、前記吸入口に前記シリンダ空間外部から弁体を着座させる工程である、
     請求項1乃至3のいずれか1項に記載の高粘度材料へのガス混入方法。
  7.  ガス混入装置であって、
     シリンダと、高粘度材料が流れることが可能な管路と該シリンダとを連通させるため前記シリンダの端部に形成された吐出口と、前記シリンダにガスを充填するため該シリンダに形成された吸入口と、前記シリンダの内部で第1の位置及び第2の位置の間で摺動されるピストンとを備える、ピストンポンプと、
     前記吐出口を開閉する吐出弁と、
     を備え、
     前記シリンダは、前記ピストンが前記第1の位置にあるとき、所定体積のシリンダ空間を形成する、
     ことを特徴とする、ガス混入装置。
  8.  前記ガス混入装置は、
     前記吐出弁を閉じ、
     前記ピストンを前記第1の位置に移動させて前記所定体積のシリンダ空間を形成し、
     前記吸入口から所定圧力のガスを前記シリンダ空間に充填し
     前記ピストンを前記第2の位置に向かって移動させることによって前記ガスを圧縮し、
     前記吐出弁を開放することによって、前記管路を流れる高粘度材料に圧縮されたガスを混入させる、各工程を実行するように制御される、請求項7に記載の高粘度材料へのガス混入装置。
  9.  前記吐出弁を閉じる工程から前記吐出弁を開放する工程までの一連の工程は、高粘度材料が所定量流れる毎に、繰り返されることを特徴とする、請求項8に記載の高粘度材料へのガス混入装置。
  10.  高粘度材料の前記所定量、前記シリンダ空間の前記所定体積、及び、ガスの前記所定圧力のうち少なくともいずれかを調整することによって、前記高粘度材料の発泡倍率を制御することを特徴とする、請求項9に記載のガス混入装置。
  11.  前記ピストンが前記第2の位置にあるとき、前記ピストンの先端は前記シリンダの前記端部の内側と適合することを特徴とする請求項7乃至10のいずれか1項に記載の高粘度材料へのガス混入装置。
  12.  前記ピストンの先端は前記吐出口が形成された前記シリンダの端部の内側と相補的な形状を有する、請求項11に記載の高粘度材料へのガス混入装置。
  13.  前記吐出口は、前記管路の側壁において高粘度材料の流れに面するように設けられ、
     前記吐出弁は、前記吐出口と対向する、前記管路の側壁の位置から延びて前記吐出口に着座可能な弁体を備えることを特徴とする請求項7乃至11のいずれか1項に記載の高粘度材料へのガス混入装置。
  14.  前記吸入口を開閉する吸入弁を更に備え、
     前記吸入口は、前記シリンダ空間を形成する前記シリンダの側壁に設けられ、
     前記吸入弁は、前記シリンダ空間外部から延びて前記吸入口に着座可能な弁体を備えることを特徴とする請求項7乃至11のいずれか1項に記載の高粘度材料へのガス混入装置。
  15.  前記弁体は、ニードルであることを特徴とする、請求項13又は14に記載の高粘度材料へのガス混入装置。
PCT/JP2016/053531 2015-02-05 2016-02-05 高粘度材料へのガス混入方法及びガス混入装置 WO2016125900A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680004256.7A CN107107005B (zh) 2015-02-05 2016-02-05 向高粘度材料混入气体的方法以及气体混入装置
US15/534,760 US10710034B2 (en) 2015-02-05 2016-02-05 Method for mixing gas into high-viscosity material and apparatus for the same
EP16723239.6A EP3075442B1 (en) 2015-02-05 2016-02-05 Method and device for mixing gas into high-viscosity material
JP2016573437A JP6654579B2 (ja) 2015-02-05 2016-02-05 高粘度材料へのガス混入方法及びガス混入装置
PL16723239T PL3075442T3 (pl) 2015-02-05 2016-02-05 Sposób i urządzenie do mieszania gazu z materiałem o wysokiej lepkości
EP18208758.5A EP3473334B1 (en) 2015-02-05 2016-02-05 Method for mixing gas into high-viscosity material and apparatus for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-020912 2015-02-05
JP2015020912 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125900A1 true WO2016125900A1 (ja) 2016-08-11

Family

ID=56564233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053531 WO2016125900A1 (ja) 2015-02-05 2016-02-05 高粘度材料へのガス混入方法及びガス混入装置

Country Status (6)

Country Link
US (1) US10710034B2 (ja)
EP (2) EP3075442B1 (ja)
JP (1) JP6654579B2 (ja)
CN (1) CN107107005B (ja)
PL (1) PL3075442T3 (ja)
WO (1) WO2016125900A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431645B1 (ja) * 2016-12-26 2018-11-28 サンスター技研株式会社 硬化性組成物
CN109420577A (zh) * 2017-08-30 2019-03-05 瓦格纳国际公司 用于湿固化聚合物材料的计量和施加系统
JP2019521009A (ja) * 2016-08-11 2019-07-25 セラコン ゲーエムベーハーCeracon Gmbh 粘稠材料発泡装置及び粘稠材料を発泡させる方法
WO2021131055A1 (ja) * 2019-12-27 2021-07-01 サンスター技研株式会社 ガスとペースト材料との混合物を吐出するためのディスペンサー及びノズル、並びに、機械発泡装置
WO2021131054A1 (ja) * 2019-12-27 2021-07-01 サンスター技研株式会社 ガス供給システム、機械発泡システム及びガスを供給する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3338881A1 (de) * 2016-12-23 2018-06-27 Bühler AG Planetwalzenmischer, produktionsanlage und verfahren
CN107597001B (zh) * 2017-10-11 2024-03-22 广州纯水健康科技有限公司 一种活塞式的高压水气混合装置、混合方法及其应用
CN110450336B (zh) * 2019-09-16 2023-09-15 长虹美菱股份有限公司 一种冰箱发泡设备及发泡方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198152A (ja) * 1992-12-28 1994-07-19 Taiyo Techno Kk 流動性材料にガスを混入させる方法
JPH0796154A (ja) * 1992-12-18 1995-04-11 Union Carbide Chem & Plast Technol Corp 圧縮流体と固体ポリマーを含む溶剤含有組成物とを混合する方法
JPH0994450A (ja) 1995-09-29 1997-04-08 Taiyo Techno Kk 流動性材料にガスを混入させる方法及び装置
JPH10272344A (ja) 1997-04-01 1998-10-13 Sunstar Eng Inc 高粘度材料へのガスの混入方法及び装置並びにそれに用いられるピストンポンプ
JPH10337459A (ja) * 1997-06-06 1998-12-22 Taiyo Techno Kk 流動体の混合方法及び装置
JPH11128709A (ja) * 1997-10-27 1999-05-18 Sunstar Eng Inc 高粘度材料とガスの混合吐出装置及びピストンポンプ
JP2004008846A (ja) * 2002-06-04 2004-01-15 Sunstar Eng Inc ペースト材料の発泡塗布工法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043715A (en) * 1975-06-02 1977-08-23 Ex-Cell-O Corporation Pumped injection of gas for making foamed plastic
US5480589A (en) 1994-09-27 1996-01-02 Nordson Corporation Method and apparatus for producing closed cell foam
JP3851895B2 (ja) * 1995-12-01 2006-11-29 サンスター技研株式会社 高粘度材料の発泡方法及び装置
JP3445463B2 (ja) * 1997-04-01 2003-09-08 サンスター技研株式会社 高粘度材料の発泡方法及び装置
JP3482309B2 (ja) * 1995-12-01 2003-12-22 サンスター技研株式会社 高粘度材料の発泡方法及び装置
US7338980B2 (en) * 1995-12-01 2008-03-04 Sunstar Giken Kabushiki Kaisha Method and apparatus for mixing a high-viscosity material into a gas
ATE246583T1 (de) * 1999-08-31 2003-08-15 Engel Maschb Gmbh Einrichtung zur beimischung von gas zu einer kunststoffschmelze
US6602063B1 (en) * 2000-07-21 2003-08-05 Trexel, Inc. Discontinuous blowing agent delivery system and method
JP4725169B2 (ja) 2005-04-12 2011-07-13 横浜ゴム株式会社 高粘度材料の気泡混入方法及びその装置
US20130208561A1 (en) * 2012-02-10 2013-08-15 Fortrans Inc. Inline infusion device and method for introduction of a gas into a flowing media

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796154A (ja) * 1992-12-18 1995-04-11 Union Carbide Chem & Plast Technol Corp 圧縮流体と固体ポリマーを含む溶剤含有組成物とを混合する方法
JPH06198152A (ja) * 1992-12-28 1994-07-19 Taiyo Techno Kk 流動性材料にガスを混入させる方法
JPH0994450A (ja) 1995-09-29 1997-04-08 Taiyo Techno Kk 流動性材料にガスを混入させる方法及び装置
JPH10272344A (ja) 1997-04-01 1998-10-13 Sunstar Eng Inc 高粘度材料へのガスの混入方法及び装置並びにそれに用いられるピストンポンプ
JPH10337459A (ja) * 1997-06-06 1998-12-22 Taiyo Techno Kk 流動体の混合方法及び装置
JPH11128709A (ja) * 1997-10-27 1999-05-18 Sunstar Eng Inc 高粘度材料とガスの混合吐出装置及びピストンポンプ
JP2004008846A (ja) * 2002-06-04 2004-01-15 Sunstar Eng Inc ペースト材料の発泡塗布工法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521009A (ja) * 2016-08-11 2019-07-25 セラコン ゲーエムベーハーCeracon Gmbh 粘稠材料発泡装置及び粘稠材料を発泡させる方法
US10618198B2 (en) 2016-08-11 2020-04-14 Ceracon Gmbh Device and method for foaming a viscous material
JP6431645B1 (ja) * 2016-12-26 2018-11-28 サンスター技研株式会社 硬化性組成物
CN110023362A (zh) * 2016-12-26 2019-07-16 盛势达技研株式会社 可固化组合物
US10864536B2 (en) 2017-08-30 2020-12-15 Wagner International Ag Metering and application system for a moisture-curing polymer material
EP3450024A1 (de) * 2017-08-30 2019-03-06 Wagner International Ag Dosier- und applikationsanlage für ein feuchtigkeitshärtendes polymermaterial
CN109420577A (zh) * 2017-08-30 2019-03-05 瓦格纳国际公司 用于湿固化聚合物材料的计量和施加系统
CN109420577B (zh) * 2017-08-30 2022-02-18 瓦格纳国际公司 用于湿固化聚合物材料的计量和施加系统
WO2021131055A1 (ja) * 2019-12-27 2021-07-01 サンスター技研株式会社 ガスとペースト材料との混合物を吐出するためのディスペンサー及びノズル、並びに、機械発泡装置
WO2021131054A1 (ja) * 2019-12-27 2021-07-01 サンスター技研株式会社 ガス供給システム、機械発泡システム及びガスを供給する方法
JPWO2021131054A1 (ja) * 2019-12-27 2021-07-01
JPWO2021131055A1 (ja) * 2019-12-27 2021-07-01
JP7278419B2 (ja) 2019-12-27 2023-05-19 サンスター技研株式会社 ガスとペースト材料との混合物を吐出するためのディスペンサー及びノズル、並びに、機械発泡装置

Also Published As

Publication number Publication date
PL3075442T3 (pl) 2022-01-03
EP3473334A1 (en) 2019-04-24
JP6654579B2 (ja) 2020-02-26
EP3075442A4 (en) 2017-10-25
EP3075442B1 (en) 2021-08-11
CN107107005A (zh) 2017-08-29
EP3473334B1 (en) 2022-01-05
US20180264421A1 (en) 2018-09-20
CN107107005B (zh) 2020-11-03
EP3075442A1 (en) 2016-10-05
US10710034B2 (en) 2020-07-14
JPWO2016125900A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2016125900A1 (ja) 高粘度材料へのガス混入方法及びガス混入装置
WO2018025890A1 (ja) ペースト材料とガスとの混合装置及び方法
US20070292290A1 (en) Liquid color injection pressure booster pump and pumping methods
JP4731940B2 (ja) 発泡方法及びその装置
CN107980081B (zh) 用于制造由至少一种气体和至少一种液态的塑料组分构成的混合物的装置
CN107848144B (zh) 具有间歇提供的液态塑料组分的设备
CN112476819A (zh) 一种比例可调的多流体配料混合系统
US10864536B2 (en) Metering and application system for a moisture-curing polymer material
EP0974391B1 (en) Method and apparatus for mixing gas into high-viscosity material
US7338980B2 (en) Method and apparatus for mixing a high-viscosity material into a gas
JPH10272344A (ja) 高粘度材料へのガスの混入方法及び装置並びにそれに用いられるピストンポンプ
EP3887031B1 (en) Plural material dispensing system
WO2021131055A1 (ja) ガスとペースト材料との混合物を吐出するためのディスペンサー及びノズル、並びに、機械発泡装置
JP3445463B2 (ja) 高粘度材料の発泡方法及び装置
CN206903821U (zh) 溶液配送装置及具有其的循环流体回路系统
CN219388081U (zh) 一种组合式计量泵
JP7051412B2 (ja) プランジャポンプ
WO2023127327A1 (ja) 送液ポンプ
JP2915372B2 (ja) 液体の定量供給システム
JP4526925B2 (ja) 液状シリコーンゴムの発泡射出成形法
CN109268228A (zh) 溶液配送装置及具有其的循环流体回路系统

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016723239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016723239

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16723239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15534760

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016573437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE