WO2018025867A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2018025867A1
WO2018025867A1 PCT/JP2017/027913 JP2017027913W WO2018025867A1 WO 2018025867 A1 WO2018025867 A1 WO 2018025867A1 JP 2017027913 W JP2017027913 W JP 2017027913W WO 2018025867 A1 WO2018025867 A1 WO 2018025867A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
negative electrode
electrode layer
binder
Prior art date
Application number
PCT/JP2017/027913
Other languages
English (en)
French (fr)
Inventor
中村 知広
貴之 弘瀬
耕二郎 田丸
泰有 秋山
素宜 奥村
卓郎 菊池
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Publication of WO2018025867A1 publication Critical patent/WO2018025867A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a power storage device.
  • a bipolar battery including a bipolar electrode in which a positive electrode is formed on one surface of a current collector plate and a negative electrode is formed on the other surface is known (see Patent Document 1).
  • a bipolar battery a plurality of bipolar electrodes are stacked in series across a separator holding an electrolyte layer.
  • a positive electrode active material is coated on one surface of a metal foil, and a negative electrode active material is coated on the other surface.
  • a binder is used to adhere an active material to a current collector plate such as a foil.
  • An object of one aspect of the present invention is to provide a power storage device that can reduce the amount of a binder used when manufacturing a bipolar electrode.
  • a power storage device includes a plurality of bipolar transistors each having a positive electrode layer provided on one surface of a current collector plate and a negative electrode layer provided on the other surface opposite to the one surface.
  • a current collector plate having a second surface with a rough surface, a first active material and a first binder forming one of the positive electrode layer and the negative electrode layer, and forming the other of the positive electrode layer and the negative electrode layer.
  • a second active material and a second binder having an average particle size larger than that of the first active material, and the first active material and the first binder are coated on the first surface, A second active material and a second binder are coated on the second surface.
  • a first active material having a relatively small average particle diameter is disposed on a first surface having a relatively smooth surface roughness, and an average is formed on a second surface having a relatively rough surface roughness.
  • a second active material having a relatively large particle size is disposed. For this reason, each active material becomes easy to enter deeply into the unevenness formed on each of the first surface and the second surface. For this reason, the adhesiveness of a 1st surface and a 1st active material and the adhesiveness of a 2nd surface and a 2nd active material can be improved.
  • the adhesion between the current collector and the active material is relatively high, the amount of the first binder and the second binder can be reduced as compared with the case where the adhesion is relatively low. Can reduce the amount of the binder used when manufacturing the bipolar electrode.
  • the first active material may be an active material that forms a positive electrode layer
  • the second active material may be an active material that forms a negative electrode layer.
  • the binder amount can be reduced when the average particle diameter of the active material forming the positive electrode layer is smaller than the average particle diameter of the active material forming the negative electrode layer.
  • the power storage device further includes a pair of termination electrodes sandwiching a plurality of bipolar electrodes, and one of the pair of termination electrodes is coated on a current collector having a third surface and a third surface.
  • a third active material and a third binder, and the other of the pair of termination electrodes includes a current collector having a fourth surface having a surface roughness rougher than that of the third surface;
  • a fourth active material and a fourth binder which are coated on the fourth surface and have an average particle diameter larger than that of the third active material may be included.
  • a third active material having a relatively small average particle diameter is disposed on a third surface having a relatively smooth surface roughness, and an average is formed on a fourth surface having a relatively rough surface roughness.
  • a fourth active material having a relatively large particle size is disposed. For this reason, each active material becomes easy to enter deeply into the unevenness formed on each of the third surface and the fourth surface. For this reason, the adhesiveness of a 3rd surface and a 3rd active material and the adhesiveness of a 4th surface and a 4th active material can be improved.
  • the amount of the third binder and the fourth binder can be reduced as compared with the case where the adhesion is relatively low. Can reduce the amount of the binder used when manufacturing the bipolar electrode.
  • the third active material may be an active material that forms a positive electrode layer
  • the fourth active material may be an active material that forms a negative electrode layer.
  • the power storage device may be configured as a nickel hydride secondary battery.
  • the binder amount can be reduced when the active material forming the positive electrode layer and the active material forming the negative electrode layer are active materials as a nickel metal hydride secondary battery.
  • the amount of binder used when manufacturing a bipolar electrode can be reduced.
  • FIG. 1 is a cross-sectional view schematically showing a power storage device according to an embodiment.
  • FIG. 2 is a cross-sectional view of the bipolar electrode of FIG.
  • FIG. 3 is a cross-sectional view of the positive electrode termination electrode and the negative electrode termination electrode of FIG.
  • 1 to 3 show an XYZ orthogonal coordinate system.
  • the power storage device 10 includes a plurality of bipolar electrodes 12, a positive electrode termination electrode 112, a negative electrode termination electrode 212, a positive electrode plate 40, a negative electrode plate 50, and an insulating case 30.
  • the plurality of bipolar electrodes 12 are stacked in series via the separator 14.
  • Each of the plurality of bipolar electrodes 12 includes a current collector plate 16 having a first surface 16a and a second surface 16b opposite to the first surface 16a, and a positive electrode layer 18 provided on the first surface 16a. And a negative electrode layer 20 provided on the second surface 16b.
  • the positive electrode layer 18 and the negative electrode layer 20 extend along a plane (for example, an XY plane) that intersects the stacking direction of the plurality of bipolar electrodes 12 (hereinafter also referred to as the Z-axis direction).
  • the separator 14 is disposed between the bipolar electrodes 12 adjacent to each other, between the positive electrode termination electrode 112 and the bipolar electrode 12, and between the bipolar electrode 12 and the negative electrode termination electrode 212.
  • the separator 14 is formed in a sheet shape.
  • the separator 14 is a porous film or a nonwoven fabric, for example.
  • the separator 14 can permeate the electrolytic solution.
  • the material of the separator 14 include polyolefin such as polyethylene or polypropylene, polyimide, or nonwoven fabric.
  • an alkaline solution such as an aqueous potassium hydroxide solution can be used.
  • the current collector plate 16 is a metal foil such as a nickel foil. As shown in FIG. 2, the current collector plate 16 has a thickness T1 of, for example, 10 ⁇ m to 100 ⁇ m.
  • the second surface 16 b of the current collector plate 16 has a rougher surface than the first surface 16 a of the current collector plate 16.
  • the surface roughness mentioned here is the maximum height Rz defined in JIS B 0601-2001.
  • the maximum height Rz of the first surface 16a can be 1 ⁇ m to 5 ⁇ m
  • the maximum height Rz of the second surface 16b can be 5 ⁇ m to 20 ⁇ m.
  • the current collector plate 16 having the maximum height Rz different between the first surface 16a and the second surface 16b was processed to the surface roughness having such a relationship (which is inevitably necessary in manufacturing).
  • a product may also be used (including the case where it is formed in a relationship), or surface treatment may be intentionally performed by a method such as etching.
  • the positive electrode layer 18 includes a positive electrode active material (first active material) 60 and a binder (first binder) 80A.
  • the positive electrode active material 60 is, for example, nickel hydroxide (Ni (OH) 2 ) particles.
  • the average particle diameter of the positive electrode active material 60 is smaller than the average particle diameter of a negative electrode active material (second active material) 70 described later.
  • the average particle diameter here is the median diameter (D50), and as specified in JIS Z8901, the number or mass larger than a certain particle diameter is the number or mass of all powders in the particle size distribution of the powder. The particle diameter when occupying 50%.
  • the average particle diameter of the positive electrode active material 60 is, for example, 15 ⁇ m.
  • the binder 80A include acrylic resin and carboxymethylcellulose.
  • the positive electrode layer 18 may contain a conductive additive such as metallic cobalt or a cobalt compound, and an overcharge additive such as Y 2 O 3 or WO 3 .
  • a conductive additive such as metallic cobalt or a cobalt compound
  • an overcharge additive such as Y 2 O 3 or WO 3 .
  • the average particle size of the binder 80 ⁇ / b> A is not limited to the relationship with the negative electrode active material 70.
  • the negative electrode layer 20 includes a negative electrode active material 70 and a binder (second binder) 80B.
  • the negative electrode active material 70 is, for example, hydrogen storage alloy particles.
  • the average particle diameter of the negative electrode active material 70 is larger than the average particle diameter of the positive electrode active material 60 described above.
  • the average particle diameter of the negative electrode active material 70 is, for example, 20 ⁇ m.
  • the binder 80B include an acrylic resin and carboxymethyl cellulose.
  • the negative electrode layer 20 may contain a conductive aid such as carbon black or ketjen black.
  • the positive electrode termination electrode 112 is arranged at one end of the plurality of bipolar electrodes 12 in the Z-axis direction. That is, the positive electrode termination electrode 112 is disposed on the outermost side of the plurality of bipolar electrodes 12 in the Z-axis direction.
  • the positive electrode termination electrode 112 includes a current collector 116 having a third surface 116a and a positive electrode layer 118 provided on the third surface 116a.
  • the positive electrode layer 118 extends along the XY plane.
  • the current collector 116 is thicker than the current collector plate 16 in the Z-axis direction.
  • the positive electrode layer 118 has the same configuration as the positive electrode layer 18 in the bipolar electrode 12. In other words, the positive electrode active material (third active material) 60 and the binder (third binder) 80A are coated on the third surface 116a.
  • the negative terminal electrode 212 is disposed at the other end of the plurality of bipolar electrodes 12 in the Z-axis direction. That is, the negative electrode termination electrode 212 is disposed on the outermost side of the plurality of bipolar electrodes 12 in the Z-axis direction.
  • the negative electrode termination electrode 212 includes a current collector 216 having a fourth surface 216a and a negative electrode layer 220 provided on the fourth surface 216a.
  • the negative electrode layer 220 extends along the XY plane.
  • the current collector 216 is thicker than the current collector plate 16 in the Z-axis direction.
  • the negative electrode layer 220 has the same configuration as the negative electrode layer 20 in the bipolar electrode 12. That is, the negative electrode active material (fourth active material) 70 and the binder (fourth binder) 80B are coated on the fourth surface 216a.
  • the thickness T2 of the current collector 116 is, for example, 5 mm to 30 mm.
  • the third surface 116 a of the current collector 116 has a smoother surface roughness than the fourth surface 216 a of the current collector 216.
  • a thickness T3 of the current collector 216 is, for example, 5 mm to 30 mm.
  • the fourth surface 216 a of the current collector 216 is rougher than the third surface 116 a of the current collector 116.
  • the surface roughness is the maximum height Rz defined in JIS B 0601-2001, as described above.
  • the maximum height Rz of the third surface 116a can be set to 1 ⁇ m to 5 ⁇ m
  • the maximum height Rz of the fourth surface 216a can be set to 5 ⁇ m to 20 ⁇ m.
  • the current collectors 116 and 216 having different maximum heights Rz between the third surface 116a and the fourth surface 216a were processed to have such a surface roughness (necessary for manufacturing).
  • the product may be combined) or may be intentionally subjected to surface treatment by a method such as etching.
  • the insulating case 30 supports a plurality of bipolar electrodes 12.
  • the end of the current collector plate 16 of each bipolar electrode 12 is embedded in the insulating case 30.
  • the insulating case 30 supports the positive electrode termination electrode 112 and the negative electrode termination electrode 212.
  • the end of the current collector 116 of the positive electrode termination electrode 112 and the end of the current collector 216 of the negative electrode termination electrode 212 are embedded in the insulating case 30.
  • the insulating case 30 is a resin case made of, for example, PP, PPS, or modified PPE.
  • the insulating case 30 may be a cylindrical member that can accommodate the plurality of bipolar electrodes 12 and the plurality of separators 14.
  • the insulating case 30 is filled with an electrolytic solution.
  • the positive electrode plate 40 and the negative electrode plate 50 sandwich the laminated body 25 including a plurality of bipolar electrodes 12, a positive electrode termination electrode 112, and a negative electrode termination electrode 212 in the Z-axis direction.
  • the insulating case 30 is also sandwiched.
  • An extraction part 49 is connected to the positive electrode plate 40.
  • An extraction part 59 is connected to the negative electrode plate 50.
  • the power storage device 10 can charge and discharge the power storage device 10 via the extraction unit 49 and the extraction unit 59.
  • the through hole 46 for penetrating the bolt B extending in the Z-axis direction is provided in the positive electrode plate 40.
  • the negative electrode plate 50 is provided with a through hole 56 for penetrating a bolt B extending in the Z-axis direction.
  • the through holes 46 and 56 are disposed outside the insulating case 30 when viewed from the Z-axis direction.
  • the bolt B is inserted from the positive electrode plate 40 toward the negative electrode plate 50.
  • a nut N is screwed to the tip of the bolt B.
  • the positive electrode plate 40 and the negative electrode plate 50 apply a restraining load to the plurality of bipolar electrodes 12, the plurality of separators 14, the positive electrode termination electrode 112, the negative electrode termination electrode 212, and the insulating case 30.
  • the inside of the insulating case 30 is sealed.
  • the first surface 16a having a relatively small maximum height Rz defined in JIS B 0601-2001 is defined in JIS Z8901 and defined in D50.
  • a relatively small positive electrode active material 60 is disposed, and a negative electrode active material 70 having a relatively large D50 is disposed on the second surface 16b having a relatively large maximum height Rz.
  • each active material becomes easy to enter deeply into the unevenness formed on each of the first surface 16a and the second surface 16b.
  • the adhesiveness of the 1st surface 16a and the positive electrode active material 60 and the adhesiveness of the 2nd surface 16b and the negative electrode active material 70 can be improved.
  • the amount of the binders 80A and 80B can be reduced as compared with the case where the adhesion is relatively low. .
  • the power storage device 10 having the above-described configuration can reduce the amount of the binder used when the bipolar electrode 12 is manufactured.
  • the positive electrode active material 60 having a relatively small D50 is disposed on the third surface 116 a having the relatively small maximum height Rz in the positive electrode termination electrode 112 and the negative electrode termination electrode 212.
  • a negative electrode active material 70 having a relatively large D50 is disposed on the fourth surface 216a having a relatively large thickness Rz.
  • each active material (the positive electrode active material 60 and the negative electrode active material 70) becomes easy to enter deeply into the unevenness formed on each of the third surface 116a and the fourth surface 216a.
  • the adhesiveness of the 3rd surface 116a and the positive electrode active material 60 and the adhesiveness of the 4th surface 216a and the negative electrode active material 70 can be improved.
  • the peel strength between the positive electrode active material 60 and the third surface 116a and the negative electrode active material 70 and the fourth surface 216a is increased, and the positive electrode active material 60 and the negative electrode active material 70 are detached from the current collector plate 16, respectively. It becomes difficult to release.
  • the amount of the binders 80A and 80B is smaller than when the adhesion is relatively low. Thereby, the power storage device 10 having the above configuration can reduce the amount of binder used when the positive electrode termination electrode 112 and the negative electrode termination electrode 212 are manufactured.
  • the negative electrode active material 70 having a D50 (average particle diameter) larger than the D50 of the positive electrode active material 60 has been described, but one aspect of the present invention is not limited thereto.
  • FIG. the positive electrode active material 60 is arranged on the current collecting plate 16 on the second surface 16b side where the maximum height Rz is relatively large (surface roughness is rough), and the negative electrode active material 70 has the maximum height.
  • Rz may be disposed on the first surface 16a side with relatively small Rz (smooth surface roughness).
  • the positive electrode active material 60 is disposed on the fourth surface 216 a having a relatively large maximum height Rz (surface roughness is rough), and the negative electrode active material 70 has a maximum height It suffices if it is disposed on the third surface 116a having a relatively small thickness Rz (smooth surface roughness).
  • the positive electrode active material is, for example, a composite oxide, metallic lithium, sulfur or the like.
  • the negative electrode active material include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiO x (0.5 ⁇ x ⁇ 1.5 ) And the like, and boron-added carbon.
  • DESCRIPTION OF SYMBOLS 10 Power storage device, 12 ... Bipolar electrode, 14 ... Separator, 16 ... Current collector plate, 16a ... First surface, 16b ... Second surface, 18 ... Positive electrode layer, 20 ... Negative electrode layer, 60 ... Positive electrode active material ( First active material / third active material), 70 ... Negative electrode active material (second active material / fourth active material), 80A ... Binder (first binder / third binder), 80B ... Binder (Second binder / fourth binder), 112 ... positive electrode termination electrode, 116 ... current collector, 116a ... third surface, 118 ... positive electrode layer, 212 ... negative electrode termination electrode, 216 ... current collector, 216a ... Fourth surface, 220 ... negative electrode layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

蓄電装置(10)は、集電板(16)の一方の面に設けられた正極層(18)と、一方の面とは反対側の他方の面に設けられた負極層(20)と、を有する複数のバイポーラ電極(12)がセパレータ(14)を介して積層された、蓄電装置であって、複数のバイポーラ電極のそれぞれは、第一の面(16a)と、第一の面とは反対側の面であって、第一の面よりも表面粗さが粗い第二の面(16b)と、を有する集電板と、正極層を形成する正極活物質(60)及びバインダ(80A)と、負極層を形成すると共に、正極活物質よりも平均粒子径が大きい負極活物質(70)及びバインダ(80B)と、を備え、第一の面に正極活物質及びバインダ(80A)が塗工され、第二の面に負極活物質及びバインダ(80B)が塗工されている。

Description

蓄電装置
 本発明の一側面は、蓄電装置に関する。
 集電板の一方の面に正極が形成され、他方の面に負極が形成されたバイポーラ電極を備えるバイポーラ電池が知られている(特許文献1参照)。このバイポーラ電池では、電解質層が保持されたセパレータを挟んで複数のバイポーラ電極が直列に積層されている。
特開2011-151016号公報
 上記バイポーラ電極では、金属からなる箔の一方の面に正極活物質を塗工し、他方の面に負極活物質が塗工されている。バイポーラ電極を製造する際、箔等の集電板に対し活物質を接着させるためにバインダが用いられる。
 本発明の一側面は、バイポーラ電極を製造する際に用いられるバインダ量を低減できる蓄電装置を提供することを目的とする。
 本発明の一側面に係る蓄電装置は、集電板の一方の面に設けられた正極層と、一方の面とは反対側の他方の面に設けられた負極層と、を有する複数のバイポーラ電極がセパレータを介して積層された、蓄電装置であって、複数のバイポーラ電極のそれぞれは、第一の面と、第一の面とは反対側の面であって、第一の面よりも表面粗さが粗い第二の面と、を有する集電板と、正極層及び負極層の一方を形成する第一の活物質及び第一のバインダと、正極層及び負極層の他方を形成すると共に、第一の活物質よりも平均粒子径が大きい第二の活物質及び第二のバインダと、を備え、第一の面に第一の活物質及び第一のバインダが塗工され、第二の面に第二の活物質及び第二のバインダが塗工されている。
 上記蓄電装置では、表面粗さが相対的に滑らかな第一の面に平均粒子径が相対的に小さな第一の活物質が配置され、表面粗さが相対的に粗い第二の面に平均粒子径が相対的に大きな第二の活物質が配置されている。このため、第一の面及び第二の面のそれぞれに形成された凹凸に、それぞれの活物質が深く入り易くなる。このため、第一の面と第一の活物質との密着性、及び第二の面と第二の活物質との密着性を高めることができる。集電板と活物質との密着性が相対的に高い場合、当該密着性が相対的に低い場合と比べて第一のバインダ及び第二のバインダの量が少なく済むので、上記構成の蓄電装置は、バイポーラ電極を製造する際に用いられるバインダ量を低減できる。
 本発明の一側面に係る蓄電装置では、第一の活物質は、正極層を形成する活物質であり、第二の活物質は、負極層を形成する活物質であってもよい。この構成では、正極層を形成する活物質の平均粒子径が負極層を形成する活物質の平均粒子径よりも小さい場合に、バインダ量を低減できる。
 本発明の一側面に係る蓄電装置は、複数のバイポーラ電極を挟む一対の終端電極を更に備え、一対の終端電極の一方は、第三の面を有する集電体と、第三の面に塗工された第三の活物質及び第三のバインダと、を有し、一対の終端電極の他方は、第三の面よりも表面粗さが粗い第四の面を有する集電体と、第四の面に塗工され、第三の活物質よりも平均粒子径が大きい第四の活物質及び第四のバインダと、を有していてもよい。
 上記蓄電装置では、表面粗さが相対的に滑らかな第三の面に平均粒子径が相対的に小さな第三の活物質が配置され、表面粗さが相対的に粗い第四の面に平均粒子径が相対的に大きな第四の活物質が配置されている。このため、第三の面及び第四の面のそれぞれに形成された凹凸に、それぞれの活物質が深く入り易くなる。このため、第三の面と第三の活物質との密着性、及び第四の面と第四の活物質との密着性を高めることができる。集電板と活物質との密着性が相対的に高い場合、当該密着性が相対的に低い場合と比べて第三のバインダ及び第四のバインダの量が少なく済むので、上記構成の蓄電装置は、バイポーラ電極を製造する際に用いられるバインダ量を低減できる。
 本発明の一側面に係る蓄電装置では、第三の活物質は、正極層を形成する活物質であり、第四の活物質は、負極層を形成する活物質であってもよい。この構成では、正極層を形成する活物質の平均粒子径が負極層を形成する活物質の平均粒子径よりも小さい場合に、第三のバインダ及び第四のバインダの量を低減できる。
 本発明の一側面に係る蓄電装置は、ニッケル水素二次電池として構成してもよい。この構成のニッケル水素二次電池では、上記のとおり、正極層を形成する活物質及び負極層を形成する活物質がニッケル水素二次電池としての活物質の場合に、バインダ量を低減できる。
 本発明の一側面によれば、バイポーラ電極を製造する際に用いられるバインダ量を低減できる。
図1は、一実施形態に係る蓄電装置を模式的に示す断面図である。 図2は、図1のバイポーラ電極の断面図である。 図3は、図1の正極終端電極及び負極終端電極の断面図である。
 以下、添付図面を参照しながら一実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図1~図3には、XYZ直交座標系が示される。
 図1に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の車両に搭載されるニッケル水素二次電池である。蓄電装置10は、複数のバイポーラ電極12と、正極終端電極112と、負極終端電極212と、正極プレート40と、負極プレート50と、絶縁ケース30と、を備える。
 複数のバイポーラ電極12は、セパレータ14を介して直列に積層される。複数のバイポーラ電極12のそれぞれは、第一の面16a及び第一の面16aとは反対側の第二の面16bを有する集電板16と、第一の面16aに設けられた正極層18と、第二の面16bに設けられた負極層20とを有している。正極層18及び負極層20は、複数のバイポーラ電極12の積層方向(以下、Z軸方向ともいう)に交差する平面(例えばXY平面)に沿って延在している。
 セパレータ14は、互いに隣接するバイポーラ電極12の間、正極終端電極112とバイポーラ電極12との間、及びバイポーラ電極12と負極終端電極212との間に配置されている。例えば、セパレータ14は、シート状に形成されている。セパレータ14は例えば多孔膜又は不織布である。セパレータ14は電解液を透過させ得る。セパレータ14の材料の例には、ポリエチレン若しくはポリプロピレン等のポリオレフィン、ポリイミド、又は不織布等が挙げられる。電解液としては、例えば水酸化カリウム水溶液等のアルカリ溶液が使用され得る。
 集電板16は、例えばニッケル箔等の金属箔である。図2に示されるように、集電板16の厚みT1は、例えば10μm~100μmである。集電板16における第二の面16bは、集電板16における第一の面16aよりも表面粗さが粗い。ここでいう、表面粗さは、JIS B 0601-2001に規定される最大高さRzである。例えば、第一の面16aの最大高さRzを1μm~5μmとし、第二の面16bの最大高さRzを5μm~20μmとすることができる。このような第一の面16aと第二の面16bとの間で最大高さRzが異なる集電板16は、このような関係の表面粗さに加工された(製造上、必然的に当該関係に形成される場合も含む)製品を用いてもよいし、エッチング等の方法によって意図的に表面処理を施してもよい。
 正極層18は、正極活物質(第一の活物質)60及びバインダ(第一のバインダ)80Aを含む。正極活物質60は、例えば水酸化ニッケル(Ni(OH))の粒子である。正極活物質60の平均粒子径は、後述する負極活物質(第二の活物質)70よりも平均粒子径が小さい。ここでいう平均粒子径は、メジアン径(D50)であり、JIS Z8901に規定されているように、粉体の粒径分布において、ある粒子径より大きい個数又は質量が全粉体の個数又は質量の50%を占めるときの粒子径をいう。正極活物質60の平均粒子径は、例えば15μmである。バインダ80Aの例には、アクリル樹脂、及びカルボキシメチルセルロースが含まれる。また、正極層18には、金属コバルト、又はコバルト化合物等の導電助剤、Y、WO等の過充電添加剤が含まれてもよい。バインダ80Aの平均粒子径は、負極活物質70との関係を問わない。
 負極層20は、負極活物質70及びバインダ(第二のバインダ)80Bを含む。負極活物質70は、例えば水素吸蔵合金の粒子である。負極活物質70の平均粒子径は、前述した正極活物質60の平均粒子径よりも大きい。負極活物質70の平均粒子径は、例えば20μmである。バインダ80Bの例には、アクリル樹脂、及びカルボキシメチルセルロース等が含まれる。また、負極層20には、カーボンブラック、又はケッチェンブラック等の導電助剤が含まれてもよい。
 図1及び図3に示されるように、正極終端電極112は、複数のバイポーラ電極12のZ軸方向における一方側の端部に配置される。すなわち、正極終端電極112は、Z軸方向において、複数のバイポーラ電極12の最も外側に配置される。正極終端電極112は、第三の面116aを有する集電体116と、第三の面116aに設けられた正極層118と、を有している。正極層118は、XY平面に沿って延在している。集電体116は、Z軸方向において集電板16よりも厚い。正極層118は、バイポーラ電極12における正極層18と同じ構成である。すなわち、第三の面116aには、正極活物質(第三の活物質)60及びバインダ(第三のバインダ)80Aが塗工されている。
 負極終端電極212は、複数のバイポーラ電極12のZ軸方向における他方側の端部に配置される。すなわち、負極終端電極212は、Z軸方向において、複数のバイポーラ電極12の最も外側に配置される。負極終端電極212は、第四の面216aを有する集電体216と、第四の面216aに設けられた負極層220と、を有している。負極層220は、XY平面に沿って延在している。集電体216は、Z軸方向において集電板16よりも厚い。負極層220は、バイポーラ電極12における負極層20と同じ構成である。すなわち、第四の面216aには、負極活物質(第四の活物質)70及びバインダ(第四のバインダ)80Bが塗工されている。
 集電体116の厚みT2は、例えば5mm~30mmである。集電体116における第三の面116aは、集電体216における第四の面216aよりも表面粗さが滑らかである。集電体216の厚みT3は、例えば5mm~30mmである。集電体216における第四の面216aは、集電体116における第三の面116aよりも表面粗さが粗い。ここでいう、表面粗さは、上記と同様に、JIS B 0601-2001に規定される最大高さRzである。例えば、第三の面116aの最大高さRzを1μm~5μmとし、第四の面216aの最大高さRzを5μm~20μmとすることができる。このような第三の面116aと第四の面216aとの間で最大高さRzが異なる集電体116,216は、このような関係の表面粗さに加工された(製造上、必然的に当該関係に形成される場合も含む)製品を組み合わせてもよいし、エッチング等の方法によって意図的に表面処理を施してもよい。
 図1に示されるように、絶縁ケース30は、複数のバイポーラ電極12を支持する。例えば、各バイポーラ電極12の集電板16の端部が絶縁ケース30内に埋設される。また、絶縁ケース30は、正極終端電極112及び負極終端電極212を支持する。例えば、正極終端電極112の集電体116の端部及び負極終端電極212の集電体216の端部が絶縁ケース30内に埋設される。絶縁ケース30は、例えば、PP,PPS又は変性PPEからなる樹脂ケースである。絶縁ケース30は、複数のバイポーラ電極12及び複数のセパレータ14を収容し得る筒状部材であってもよい。絶縁ケース30内には電解液が充填される。
 正極プレート40及び負極プレート50は、Z軸方向において、複数のバイポーラ電極12と、正極終端電極112と、負極終端電極212とを含んで構成される積層体25を挟持する。また、第一実施形態の正極プレート40及び負極プレート50では、積層体25に加え、絶縁ケース30も挟持する。正極プレート40には取出部49が接続される。負極プレート50には取出部59が接続される。蓄電装置10は、取出部49及び取出部59を介して蓄電装置10の充放電を行うことができる。
 正極プレート40には、Z軸方向に延びるボルトBを貫通するための貫通孔46が設けられる。負極プレート50には、Z軸方向に延びるボルトBを貫通するための貫通孔56が設けられる。貫通孔46,56は、Z軸方向から見て絶縁ケース30の外側に配置される。ボルトBは正極プレート40から負極プレート50に向かって挿通される。ボルトBの先端にはナットNが螺合される。これにより、正極プレート40及び負極プレート50は、複数のバイポーラ電極12、複数のセパレータ14、正極終端電極112、負極終端電極212及び絶縁ケース30に対して、拘束荷重を付加する。その結果、絶縁ケース30内は密封される。
 次に、上記実施形態の蓄電装置10の作用効果について説明する。上記蓄電装置10では、図2に示されるように、バイポーラ電極12において、JIS B 0601-2001に規定される最大高さRzが相対的に小さい第一の面16aに、JIS Z8901に規定されD50が相対的に小さな正極活物質60が配置され、最大高さRzが相対的に大きい第二の面16bにD50が相対的に大きな負極活物質70が配置されている。このため、第一の面16a及び第二の面16bのそれぞれに形成された凹凸に、それぞれの活物質(正極活物質60及び負極活物質70)が深く入り易くなる。このため、第一の面16aと正極活物質60との密着性、及び第二の面16bと負極活物質70との密着性を高めることができる。集電板16と活物質(正極活物質60及び負極活物質70)との密着性が相対的に高い場合、当該密着性が相対的に低い場合と比べてバインダ80A,80Bの量が少なく済む。これにより、上記構成の蓄電装置10は、バイポーラ電極12を製造する際に用いられるバインダ量を低減できる。
 また、上記蓄電装置10では、正極終端電極112及び負極終端電極212において、最大高さRzが相対的に小さい第三の面116aにD50が相対的に小さな正極活物質60が配置され、最大高さRzが相対的に大きい第四の面216aにD50が相対的に大きな負極活物質70が配置されている。このため、第三の面116a及び第四の面216aのそれぞれに形成された凹凸に、それぞれの活物質(正極活物質60及び負極活物質70)が深く入り易くなる。このため、第三の面116aと正極活物質60との密着性、及び第四の面216aと負極活物質70との密着性を高めることができる。したがって、正極活物質60と第三の面116a、及び負極活物質70と第四の面216aとの剥離強度が高くなり、正極活物質60、及び負極活物質70がそれぞれ集電板16より脱離しにくくなる。また、集電体と活物質との密着性が相対的に高い場合、当該密着性が相対的に低い場合と比べてバインダ80A,80Bの量が少なく済む。これにより、上記構成の蓄電装置10は、正極終端電極112及び負極終端電極212を製造する際に用いられるバインダ量を低減できる。
 以上、一実施形態について詳細に説明されたが、本発明の一側面は上記実施形態に限定されない。
 上記実施形態では、D50(平均粒子径)が正極活物質60のD50よりも大きな負極活物質70を用いる例を挙げて説明したが、本発明の一側面はこれに限定されない。例えば、D50(平均粒子径)が負極活物質70のD50よりも大きな正極活物質60を用いてもよい。この場合、正極活物質60は、集電板16において、最大高さRzが相対的に大きな(表面粗さが粗い)第二の面16b側に配置され、負極活物質70は、最大高さRzが相対的に小さな(表面粗さが滑らかな)第一の面16a側に配置されればよい。また、集電体116,216においては、正極活物質60は、最大高さRzが相対的に大きな(表面粗さが粗い)第四の面216aに配置され、負極活物質70は、最大高さRzが相対的に小さな(表面粗さが滑らかな)第三の面116aに配置されればよい。
 また、上記実施形態又は変形例では、蓄電装置10がニッケル水素二次電池の例を挙げて説明したが、リチウムイオン二次電池であってもよい。この場合、正極活物質は、例えば複合酸化物、金属リチウム、硫黄等である。負極活物質は、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiO(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等である。
 10…蓄電装置、12…バイポーラ電極、14…セパレータ、16…集電板、16a…第一の面、16b…第二の面、18…正極層、20…負極層、60…正極活物質(第一の活物質・第三の活物質)、70…負極活物質(第二の活物質・第四の活物質)、80A…バインダ(第一のバインダ・第三のバインダ)、80B…バインダ(第二のバインダ・第四のバインダ)、112…正極終端電極、116…集電体、116a…第三の面、118…正極層、212…負極終端電極、216…集電体、216a…第四の面、220…負極層。

Claims (5)

  1.  集電板の一方の面に設けられた正極層と、前記一方の面とは反対側の他方の面に設けられた負極層と、を有する複数のバイポーラ電極がセパレータを介して積層された、蓄電装置であって、
     前記複数のバイポーラ電極のそれぞれは、
      第一の面と、前記第一の面とは反対側の面であって、前記第一の面よりも表面粗さが粗い第二の面と、を有する集電板と、
      前記正極層及び前記負極層の一方を形成する第一の活物質及び第一のバインダと、前記正極層及び前記負極層の他方を形成すると共に、前記第一の活物質よりも平均粒子径が大きい第二の活物質及び第二のバインダと、を備え、
     前記第一の面に前記第一の活物質及び前記第一のバインダが塗工され、前記第二の面に前記第二の活物質及び前記第二のバインダが塗工されている、蓄電装置。
  2.  前記第一の活物質は、前記正極層を形成する活物質であり、前記第二の活物質は、前記負極層を形成する活物質である、請求項1に記載の蓄電装置。
  3.  前記複数のバイポーラ電極を挟む一対の終端電極を更に備え、
     前記一対の終端電極の一方は、第三の面を有する集電体と、前記第三の面に塗工された第三の活物質及び第三のバインダと、を有し、
     前記一対の終端電極の他方は、前記第三の面よりも表面粗さが粗い第四の面を有する集電体と、前記第四の面に塗工され、前記第三の活物質よりも平均粒子径が大きい第四の活物質及び第四のバインダと、を有している、請求項1又は2記載の蓄電装置。
  4.  前記第三の活物質は、前記正極層を形成する活物質であり、前記第四の活物質は、前記負極層を形成する活物質である、請求項3に記載の蓄電装置。
  5.  ニッケル水素二次電池である、請求項1~4の何れか一項記載の蓄電装置。
PCT/JP2017/027913 2016-08-03 2017-08-01 蓄電装置 WO2018025867A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152867A JP2019164883A (ja) 2016-08-03 2016-08-03 蓄電装置
JP2016-152867 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025867A1 true WO2018025867A1 (ja) 2018-02-08

Family

ID=61073728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027913 WO2018025867A1 (ja) 2016-08-03 2017-08-01 蓄電装置

Country Status (2)

Country Link
JP (1) JP2019164883A (ja)
WO (1) WO2018025867A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870582B2 (ja) * 2016-11-30 2021-05-12 株式会社豊田自動織機 ニッケル水素蓄電池用バイポーラ電極及びニッケル水素蓄電池
JP6907576B2 (ja) * 2017-02-15 2021-07-21 株式会社豊田自動織機 二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314567A (ja) * 1993-04-30 1994-11-08 Yuasa Corp アルカリ蓄電池用電極及びこれを用いたアルカリ蓄電池
JP2001093520A (ja) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd 水素吸蔵合金電極及びその製造方法
JP2015173068A (ja) * 2014-03-12 2015-10-01 株式会社Gsユアサ アルカリ蓄電池用の水酸化ニッケル水酸化ニッケルおよびアルカリ蓄電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314567A (ja) * 1993-04-30 1994-11-08 Yuasa Corp アルカリ蓄電池用電極及びこれを用いたアルカリ蓄電池
JP2001093520A (ja) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd 水素吸蔵合金電極及びその製造方法
JP2015173068A (ja) * 2014-03-12 2015-10-01 株式会社Gsユアサ アルカリ蓄電池用の水酸化ニッケル水酸化ニッケルおよびアルカリ蓄電池

Also Published As

Publication number Publication date
JP2019164883A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP6662793B2 (ja) 非水電解質二次電池
JP5359562B2 (ja) 双極型電池用集電体
WO2014050988A1 (ja) リチウムイオン二次電池及びその製造方法
JP6575557B2 (ja) 全固体電池及び全固体電池の製造方法
CN110301061B (zh) 镍氢电池
WO2018150723A1 (ja) 蓄電モジュール
KR102350322B1 (ko) 전고체 2차전지
KR20200027999A (ko) 코인형 전지 및 그 제조방법
JP2010016043A (ja) 蓄電デバイス
JP2018049793A (ja) 蓄電装置
JP2017041439A (ja) 電池
JP2016207576A (ja) 非水電解液二次電池
WO2018025867A1 (ja) 蓄電装置
US11101493B2 (en) Secondary battery and electrode member thereof
JP2015215988A (ja) 角形電池
JP6665074B2 (ja) アルカリ二次電池の極板及びアルカリ二次電池
JP6816437B2 (ja) 蓄電装置
JP2018018666A (ja) 蓄電装置及び蓄電装置の製造方法
TW201817066A (zh) 鋰離子二次電池及其製造方法
US20230016169A1 (en) All-solid-state battery and manufacturing method for all-solid-state battery
KR20180022706A (ko) 리튬 셀용 규소 단일체 흑연 애노드
WO2018025868A1 (ja) 蓄電装置
WO2018147019A1 (ja) ニッケル水素電池
CN113994502A (zh) 蓄电元件以及蓄电元件的制造方法
JP2018181705A (ja) 二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17836970

Country of ref document: EP

Kind code of ref document: A1