WO2018024009A1 - 架车机举升单元加载试验测控系统及方法 - Google Patents

架车机举升单元加载试验测控系统及方法 Download PDF

Info

Publication number
WO2018024009A1
WO2018024009A1 PCT/CN2017/084357 CN2017084357W WO2018024009A1 WO 2018024009 A1 WO2018024009 A1 WO 2018024009A1 CN 2017084357 W CN2017084357 W CN 2017084357W WO 2018024009 A1 WO2018024009 A1 WO 2018024009A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pressure
lifting unit
hydraulic cylinder
control
Prior art date
Application number
PCT/CN2017/084357
Other languages
English (en)
French (fr)
Inventor
丁辉
牛军
赵小磊
张参参
曹晓明
王明海
张增超
张锦标
王旭
Original Assignee
中车青岛四方车辆研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方车辆研究所有限公司 filed Critical 中车青岛四方车辆研究所有限公司
Priority to JP2018536721A priority Critical patent/JP6595719B2/ja
Priority to RU2018125261A priority patent/RU2690056C1/ru
Priority to EP17836193.7A priority patent/EP3372979B1/en
Priority to CN201780058503.6A priority patent/CN109937355B/zh
Priority to ES17836193T priority patent/ES2751903T3/es
Publication of WO2018024009A1 publication Critical patent/WO2018024009A1/zh
Priority to US16/003,091 priority patent/US10345197B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure

Definitions

  • the invention belongs to the field of testing, and in particular relates to the field of loading test and control of a lifting machine of a car.
  • the racking machine is a lifting device currently used for overhauling vehicles in the motor train section and the urban rail vehicle section.
  • the racking machine is a lifting device currently used for overhauling vehicles in the motor train section and the urban rail vehicle section, including a steel structure part and a lifting unit.
  • Part common car body lifting unit, bogie lifting unit, etc.
  • electrical control part wherein the car body lifting unit includes a middle support, a vertical support bar, a support head and a transmission part; At the top of the vertical support bar.
  • the bogie lifting unit comprises an intermediate support, a bending arm support rod, a beam and a transmission part; and the beam is horizontally disposed at the top end of the bending arm support rod.
  • the intermediate support and the transmission part are fixed in position, and the vertical support rod and the curved arm support rod are parallel to the drive screw and disposed perpendicular to the ground.
  • the motor drives the lead screw, and the vertical support rod and the curved arm support rod can be parallel to the position of the lead screw. Variety.
  • the vehicle can be used for lifting or unpacking vehicles. It can be replaced or replaced at the same time to meet the disassembly, assembly and maintenance of the vehicle.
  • the lifting unit needs to be loaded and tested before leaving the factory. At present, there is no equipment and method for loading and testing the lifting machine lifting unit before leaving the factory.
  • the present application provides a loading and unloading unit loading test and control system and method for a vehicle, which can perform a loading test on the lifting unit before the assembly of the vehicle equipment is completed, and verify the function of the lifting unit and Static strength, easy to test and cost-effective.
  • An embodiment of the present application provides a loading and unloading unit loading test and control system for a vehicle, which can be used for testing an assembled trolley lifting unit, including a base, and the base is provided with a lifting unit capable of being installed.
  • the bracket is provided with a loading unit for applying a loading force to the lifting unit to be tested; the loading unit is electrically connected with a control unit that can control the loading unit to apply pressure according to the set value.
  • the lifting unit in the present application includes a head and a vertical support column.
  • the bracket includes a first support column and a second support column, which are disposed on the base; a cross beam is disposed between the first support column and the second support column; Between a support column and a second support column, It is located below the beam; the loading unit is mounted on the beam and is located between the beam and the lifting unit to be tested.
  • one end of the lifting unit is connected to the vertical support column and the other end is a cantilever end, and the loading unit is located between the beam and the cantilever end.
  • the base may include a first platform and a second platform, the first platform being connected to the second platform by a second staircase; the second platform being located above the first platform and adjacent to the loading unit. Further, the lifting unit and the bracket are mounted on the first platform.
  • the bottom of the base may be provided with a support structure, and the support structure may be selected from a steel frame structure.
  • the bottom of the support structure is connected to the first platform by a first stair; the support structure is generally placed on the ground so that the operator can walk between the ground, the first platform and the second platform through the stairs.
  • the loading unit includes a hydraulic cylinder.
  • the fixed end of the hydraulic cylinder is mounted on the bracket, the piston end is adjacent to the lifting unit to be tested, and the bottom of the piston end of the hydraulic cylinder is provided with a detectable hydraulic cylinder loading pressure.
  • the pressure sensor is connected to the control unit to transmit the pressure signal sensed by the pressure sensor to the control unit.
  • the fixed end of the hydraulic cylinder is installed under the beam, and the piston end of the hydraulic cylinder and the joint disposed at the lower end of the piston end are located near the side of the lifting unit to be tested; the pressure sensor is located below the joint The joint between the joint and the pressure sensor is movably connected by a connecting member.
  • the connecting member is divided into a first connecting member and a second connecting member, preferably both of which are "L"-shaped structures; wherein the upper end of the first connecting member is fixed on the bottom of the piston end or the joint The lower end of the second connecting member is mounted on the pressure sensor; the first connecting member is provided with a first hole, and the second connecting member is provided with a second hole matched with the first hole, through the first hole and the second hole A fixing member is disposed in the hole to mount the first connecting member and the second connecting member together; wherein at least one of the first hole or the second hole is a vertical long hole.
  • two connectors are provided, and it is particularly preferred that the two connectors are arranged symmetrically with respect to the pressure sensor.
  • the lower end of the pressure sensor may also be provided with a sensor tip.
  • the lower end of the second connector is secured to the sensor tip.
  • the bottom end of the piston end or the lower end surface of the joint, the upper and lower end faces of the pressure sensor, the upper and lower end faces of the sensor tip, and the contact faces of the lifting unit to be tested are all arranged to match each other.
  • the control unit includes at least a pressure collecting module that can collect a pressure signal, a pressure output module that can output a pressure signal value, and a pressure control module that can control the loading pressure of the hydraulic cylinder; the modules are electrically connected to the control unit. .
  • the hydraulic cylinder is further provided with a displacement sensor for detecting a displacement signal of the hydraulic cylinder.
  • the upper end of the displacement sensor is mounted on the fixed end, and the lower end is mounted on the bottom of the piston end or on the joint.
  • the control unit includes at least a displacement acquisition module that can collect the displacement signal, and a displacement output module that can output the displacement signal value; these modules are electrically connected to the control unit.
  • control unit is electrically connected to the strain gauge attached to the lifting unit to be tested, the strain gauge is a three-dimensional strain flower distributed at an angle of 45°, and the control unit includes three-dimensional pressure capable of collecting the strain flower.
  • the value acquisition module can calculate the main stress value of the lifting unit according to the strain flower pressure value, and the control module that can output the main stress value in the calculation module, the acquisition module is electrically connected to the calculation module, and the calculation module is electrically connected. Module.
  • the strain gauge is disposed on the vertical support column of the lifting unit to be tested, and is close to the joint of the vertical support column and the support head; the three strain gauges constitute a strain flower, and the strain gauge includes the lateral direction. a first strain gauge disposed, a second strain gauge disposed vertically and a third strain gauge located between the lateral direction and the vertical direction, preferably at an angle of 45° with respect to the first two; wherein the first strain gauge is located at x
  • the axis points to the cantilever end of the head, the y-axis of the second strain gauge is directed to the direction of connection of the head and the vertical support column, and the u-axis of the third strain gauge is located between the x-axis and the y-axis.
  • a plurality of brackets are arranged side by side on the base, and each bracket is provided with a separate loading unit, and each loading unit is electrically connected to the control unit.
  • Yet another embodiment of the present application provides a loading and unloading unit loading test and control method for a racking machine, and using the above-mentioned racking machine lifting unit loading test and control system, comprising the following steps:
  • the control unit sends a control signal to the loading unit according to the rated pressure value
  • the hydraulic cylinder of the loading unit receives the control signal and applies the rated pressure value as the initial pressure to the lifting unit to be tested; the hydraulic cylinder continuously increases the pressure value to the preset multiple of the rated pressure value during the loading pressure during the pressure loading process.
  • the pressure sensor connected to the hydraulic cylinder feeds back the pressure signal applied by the hydraulic cylinder to the control unit in real time to detect the loading pressure value;
  • the control unit simultaneously adjusts the applied pressure value according to the feedback pressure to control the loading pressure.
  • the method further includes the following steps: when the hydraulic cylinder loads the pressure with the initial set pressure value, the displacement sensor senses the initial displacement value of the hydraulic cylinder and feeds back to the control unit; the hydraulic cylinder applies the pressure to the preset rated pressure.
  • the displacement sensor senses the second displacement value of the hydraulic cylinder and feeds back to the control unit, and the control unit calculates a difference between the second displacement value and the initial displacement value, and outputs the difference as the to-be-tested Detection of the deflection value of the liter unit.
  • the method further includes the following steps: the control unit collects the stress signal attached to the strain flower on the lifting unit to be tested, and the calculation module of the control unit calculates the principal stress value according to the preset formula to measure the lift The stress of the unit is tested.
  • the preset formula in the calculation module is:
  • ⁇ 1 E ⁇ ( ⁇ max + ⁇ min ⁇ v) / (1 - ⁇ 2 ) (4),
  • ⁇ 2 E ⁇ ( ⁇ min + ⁇ max ⁇ v) / (1 - ⁇ 2 ) (5);
  • the calculation module sequentially calculates the stress value according to the above preset formula, where E is the elastic modulus, ⁇ is the Poisson's ratio, ⁇ is the strain in all directions of the strain flower, ⁇ max is the calculated maximum strain, ⁇ min For the calculated minimum strain, ⁇ 0 is the angle between the maximum principal stress and the x-axis, ⁇ 1 is the stress value consistent with the ⁇ max direction, and ⁇ 2 is the stress value consistent with the ⁇ min direction.
  • the loading and unloading unit loading test and control system of the present application vehicle is provided with a bracket for mounting a vehicle body or a bogie, and a loading unit is mounted on the bracket, so that the assembled body or steering can be realized separately.
  • the frame is tested and controlled, and the test is convenient, simple and quick;
  • the test and control method for loading and unloading unit of the racking machine of the present application can perform stress test, lift deflection test and stress test on the loading unit, which reduces the detection difficulty and the detection cost, and improves the detection precision.
  • Figure 1 is a front perspective view of the loading test and control system
  • Figure 2 is an enlarged view of a portion A of Figure 1;
  • Figure 3 is an enlarged view of a portion B of Figure 1;
  • Figure 4 is a top exploded perspective view of the loading unit
  • Figure 5 is a bottom perspective exploded view of the loading unit
  • Figure 6 is a rear perspective view of the measurement and control system
  • Figure 7 is a partial enlarged view of Figure 6;
  • Figure 8 is a partial front perspective exploded perspective view of Embodiment 2;
  • Figure 9 is a partial front elevational view of Embodiment 2.
  • Figure 10 is a front elevational view of Embodiment 2.
  • Figure 11 is a C-C view of Figure 10
  • Figure 12 is a schematic view of the orientation of the strain gauge
  • Figure 13 is a flow chart of the measurement and control method
  • lifting unit 21, vertical support column; 22, support head; 221, cantilever end.
  • the height direction of the loading and unloading unit loading test and control system is the vertical direction after installation; the terms “upper”, “lower”, “front”, “rear” and the like are indicated. Orientation or positional relationship is based on the positional relationship shown in the drawings, and is merely for convenience of description of the present application and simplified description, and does not indicate or imply that the device or component referred to has a specific orientation, is constructed and operated in a specific orientation. Therefore, it should not be construed as limiting the application.
  • the loader lifting unit loading test and control system 1 of the present application can be used for testing the rack lifting unit 2, including the base 11.
  • the base 11 is provided with a bracket 12, and the bracket 12 is provided with useful a loading unit 13 for applying a loading force to the lifting unit to be tested;
  • the loading unit 13 is electrically connected with a control unit that can control the pressure applied by the loading unit 13 according to the set value, and the electrical connection relationship between the loading unit 13 and the control unit is Since the manner of connection can be understood in accordance with common general knowledge, the control unit is not shown in the drawings.
  • the carriage comprises a lifting unit 2, and the lifting unit 2 can be directly mounted on the base 11, or can be mounted on the bracket 12. When the latter is selected, since the bracket 12 is disposed on the base 11, it can pass through the bracket 12.
  • the holder simultaneously fixes the lifting unit 2 to the base 11.
  • the structure of the lifting unit 2 can be considered as prior art or common knowledge; the lifting unit 2 on the right side in FIG.
  • the lifting unit in the A part is a bogie lifting unit
  • the lifting unit on the left side 2 ie, the lifting unit in Part B
  • the lifting unit that can be tested in the present invention is not limited to these two types, and is not limited to a test system in which only two lifting units are provided.
  • One or more lifting units can be set according to actual needs.
  • the base 11 may include a first platform 111 and a second platform 112.
  • the first platform 111 may be connected to the second platform 112 through the second staircase 142; the second platform 112 is located on the first platform.
  • the lifting unit 2 and the bracket 12 are mounted on the first platform 111.
  • the bottom of the base 11 may be provided with a support structure 113, and the support structure 113 may be selected from a steel frame structure to support the entire load test and control system 1 safely and stably.
  • the bottom of the support structure 113 can be coupled to the first platform 111 by a first stair 141; the support structure 113 is generally placed on the ground such that an operator can walk between the ground, the first platform 111 and the second platform 112 through the stairs 14.
  • the bracket 12 may include a first support pillar 121 and a second support pillar 122.
  • a cross beam 123 is disposed between the first support pillar 121 and the second support pillar 122.
  • the lifting unit 2 to be tested is mounted on the base 11 or the bracket 12, and the head 22 of the lifting unit 2 is located between the first supporting column 121 and the second supporting column 122 and under the beam 123; the loading unit 13 is installed at The bottom end of the beam 123 is located between the beam 123 and the head 22; in particular, the loading unit 13 is located between the beam 123 and the cantilever end 221 of the head 22 (as shown in Figures 2, 3 and 7).
  • the loading unit 13 includes a hydraulic cylinder 131.
  • the fixed end 1311 of the hydraulic cylinder 131 ie, one end of the cylinder of the hydraulic cylinder
  • the piston end is adjacent to the lifting unit 2 to be tested, and the hydraulic cylinder 131
  • the bottom of the piston end is provided with a pressure sensor 133 that can detect the loading pressure of the hydraulic cylinder.
  • the pressure sensor 133 is coupled to the control unit to transmit a pressure signal sensed by the pressure sensor 133 to the control unit.
  • the loading unit 13 includes a hydraulic cylinder 131.
  • the fixed end 1311 of the hydraulic cylinder 131 is mounted under the beam 123.
  • the lower end of the piston end 1312 can also be provided with a joint 1313.
  • the joint 1313 can be a flat cylindrical shape and can be used for the hydraulic cylinder.
  • the pressure of 131 is evenly distributed, so the upper end of the joint 1313 can be fixed to the bottom of the piston end;
  • a pressure sensor 133 is disposed under the joint 1313.
  • the lower end of the pressure sensor 133 may also be provided with a sensor tip 134.
  • the third bolt 140 may be used to fix the pressure sensor 133 on the sensor tip 134; the sensor tip 134 and the test to be tested.
  • the contact of the liter unit 2 protects the pressure sensor 133 and reduces the wear caused by the pressure sensor 133 directly contacting the lifting unit 2 to be tested; meanwhile, the sensor tip 134 is disposed in a shape matching the lifting unit 2 to be tested, which is convenient. Transmission of force;
  • the loading unit 13 further includes a connector 135, wherein the connector 135 can be disposed two, and preferably it is symmetrically disposed with respect to the pressure sensor 133; each connector 135 is divided into a first connector 1351 and a second connector 1352, both The optional "L"-shaped steel plate; wherein the upper end of the first connecting member 1351 is fixed on the joint 1313, for example, fixed by the second bolt 139, and can be fixed to the piston end when the joint 1313 is not provided; the second connecting member The lower end of the 1352 is fixed on the sensor end 134.
  • the second connecting member 1352 can also be mounted on the pressure sensor 133; the first connecting member 1351 is provided with a first hole 136, and the second The connecting member 1352 is provided with a second hole 137 matched with the first hole 136.
  • the first connecting member 1351 and the second connecting member By providing a fixing member, such as the first bolt 138, in the first hole 136 and the second hole 137, the first connecting member 1351 and the second connecting member
  • the connecting members 1352 are mounted together; wherein at least one of the first holes 136 or the second holes 137 is a vertical long hole so that the pressure sensor 133 automatically hangs down when not under pressure, and does not contact the joint 1313;
  • fixing First bolt 138
  • the first hole 136 is a vertical long hole, so that the length of the connected connector 135 in the vertical direction is adjustable.
  • the bottom end of the piston end or the lower end surface of the joint 1313, the upper and lower end faces of the pressure sensor 133, the upper and lower end faces of the sensor tip 134, and the lifting unit 2 to be tested may be further The contact surfaces are each arranged to match the plane, so that the loading pressure of the hydraulic cylinder 131 can be more directly transmitted to the lifting unit 2 to be tested.
  • the control unit Since the pressure sensor 133 is electrically connected to the control unit, the control unit is not shown in the figure.
  • the pressure sensor 133 transmits the induced pressure signal to the control unit, and the control unit detects the pressure signal, and at the same time, the pressure value transmitted by the control unit according to the pressure signal.
  • the loading pressure of the hydraulic cylinder 131 is further controlled, thereby realizing the pressure detecting and loading test of the lifting unit to be tested by the control unit.
  • the control unit includes at least a pressure acquisition module that can collect a pressure signal, a pressure output module that can output a pressure signal value, and a pressure control module that can control the loading pressure of the hydraulic cylinder 131.
  • the modules are electrically connected to the control unit.
  • the hydraulic cylinder 131 is further provided with a displacement sensor 132, the upper end of which is disposed on the fixed end 1311, and the lower end is disposed on the joint 1313 (when there is no joint) It may be disposed at the piston end; for example, a first mounting member 1321 surrounding the fixed end may be disposed on the fixed end 1311 for fixing the upper end of the displacement sensor 132; and a second mounting member 1322 may be disposed on the joint 1313 for fixing
  • the lower end of the displacement sensor 132; the second mounting member 1322 may be a steel sheet, and is fixed to the joint 1313 by bolts or screws or the like.
  • the displacement sensor 132 is used to detect the displacement signal of the hydraulic cylinder 131, the displacement sensor 132 is preferably a wire drawing sensor; the displacement sensor 132 is electrically connected to the control unit to transmit the displacement signal sensed by the displacement sensor 132 to the control unit.
  • the control unit includes at least a displacement acquisition module that can acquire a displacement signal, and a displacement output module that can output a displacement signal value, and the modules are electrically connected to the control unit.
  • the control unit is electrically connected to the strain gauge attached to the lifting unit 2 to be tested, and the strain gauge is mounted on the vertical support column 21 of the lifting unit, and is close to the head 22
  • the joint with the vertical support column 21; the three strain gauges form a strain flower with an angle of 45°, as shown in Fig. 7, Fig. 11, and Fig.
  • the strain flowers are respectively mounted on the x-axis, the y-axis, and
  • the x-axis is at the u-axis direction of the 45° position, wherein the x-axis is the lateral direction of the lifting unit and points to the side of the cantilever end 221 of the head 21, the y-axis is the longitudinal direction of the lifting unit and points to the joint, and the u-axis is located Between the two; visible strain gauges can be attached to the left and right sides of the vertical support column 21 (relative to the front view of Figure 1).
  • the control unit comprises an acquisition module capable of collecting the three-axis pressure value of the strain flower, a calculation module for calculating the main stress value of the lifting unit according to the strain flower pressure value, and a control module capable of outputting the main stress value in the calculation module, the acquisition module
  • the calculation module is electrically connected, and the calculation module is electrically connected to the control module.
  • ⁇ 1 E ⁇ ( ⁇ max + ⁇ min ⁇ v)/(1- ⁇ 2 ) (4)
  • the calculation module sequentially calculates the principal stress value according to the above preset formula, where E is the elastic modulus, ⁇ is the Poisson's ratio, ⁇ is the strain in all directions of the strain flower, and ⁇ max is the calculated maximum strain.
  • ⁇ min is the calculated minimum strain
  • ⁇ 0 is the angle between the maximum principal strain and the x-axis (as shown in Figure 12)
  • ⁇ 1 is the principal stress value consistent with the ⁇ max direction
  • ⁇ 2 is the same as the ⁇ min direction.
  • the principal stress value is the principal stress value.
  • the value and direction of the principal strain are obtained from the above formula (1)(2)(3), and the values of the principal stresses ⁇ 1 and ⁇ 2 are calculated by the formula (4)(5) to provide a basis for judging the reliability of the structure.
  • the above strain acquisition and stress calculation process can be automatically completed by the program setting in the control unit, and the accuracy is higher.
  • strain flowers 1 to strain flowers n are sequentially connected to record the initial values; and the pressure is continuously applied to the preset rated load multiple pressure values.
  • strain strain 1 to strain flower n are sequentially connected, the strain values of the n parts to be detected are calculated and calculated.
  • a loading and unloading unit loading test and control method for a car machine wherein the measuring and controlling method uses the above-mentioned racking machine lifting unit loading test and control system, specifically comprising the following steps: the control unit sends a control signal to the loading according to the initial set pressure value
  • the hydraulic cylinder of the loading unit receives the control signal and applies an initial pressure to the lifting unit to be tested (S1, S2, S3); the hydraulic cylinder continuously increases the pressure value to a preset multiple of the preset pressure value during the loading pressure Pressure value (S6, S7, S8), during the pressure loading process, the pressure sensor on the hydraulic cylinder feeds back the pressure signal applied by the hydraulic cylinder to the control unit (S8) to detect the loading pressure value; the control unit simultaneously according to the feedback
  • the pressure adjustment applies a pressure value to control the loading pressure (S6, S7).
  • the measurement and control method of the present application can also detect the deflection of the lifting unit to be tested.
  • the specific detection method further includes the following steps: when the hydraulic cylinder loads the pressure with the initial set pressure value, the displacement sensor senses the initial displacement of the hydraulic cylinder. The value is fed back to the control unit, specifically the deflection detecting unit in the control unit.
  • the displacement value is recorded as A (S4); when the hydraulic cylinder applies pressure to a pressure value of a multiple of the preset rated pressure value, the displacement sensor senses The second displacement value of the hydraulic cylinder is fed back to the control unit (deflection detecting unit), and the displacement value is recorded as B (S9); the control unit calculates the difference between the second displacement value and the initial displacement value, and the difference is The output is used as the detection of the deflection value of the lifting unit to be tested, that is, the value obtained by the displacement value B-displacement value A is the deflection value of the lifting unit to be tested.
  • the application can simultaneously detect the stress of the lifting unit, and further comprises the following steps: the control unit collects the stress signal attached to the strain flower on the lifting unit to be tested, and the calculation module of the control unit calculates the main stress value according to the preset formula. Test the stress of the lifting unit to be tested.
  • the preset formula in the calculation module is:
  • ⁇ 1 E ⁇ ( ⁇ max + ⁇ min ⁇ v) / (1 - ⁇ 2 ) (4),
  • the calculation module sequentially calculates the principal stress value according to the above preset formula, wherein E is the elastic modulus, ⁇ is the Poisson's ratio, ⁇ is the stress value in all directions of the strain flower, and ⁇ is the main stress value.
  • the value and direction of the principal strain are obtained by the formula (1)(2)(3), and the values of the principal stresses ⁇ 1 and ⁇ 2 are calculated by the formula (4)(5) to judge the reliability of the lifting unit to be tested. Provide evidence.
  • the above strain collection and stress calculation processes are all automatically completed by the control unit.
  • a plurality of strain flowers may be sequentially connected, such as strain flowers 1 to strain flowers n to a plurality of stress transmitters (stress detecting units) disposed in the control unit, to separately record The initial value (S5); when the system continues to apply pressure to the preset value of the multiple of the preset load, the strain flower 1 to the strain flower n to the plurality of stress transmitters are sequentially connected, and the n parts to be detected are respectively recorded and calculated.
  • the strain value (S10) Stress transmitters are inexpensive and reusable, saving test costs.
  • the load test control system and method can be used to load pressure control and detection, lift column deflection detection, main part stress detection, reduce the detection difficulty and detection cost, and improve the detection accuracy.
  • the measurement and control system can also be provided with a touch screen, and the control unit is connected to the touch screen.
  • the control system issues an instruction, it can be operated through the touch screen to further control the control signal of the control unit.
  • the control system Through the touch screen, the pressure value, the deflection value and the magnitude of the stress value can be visually seen, which is more intuitive.
  • This embodiment is a supplementary description of Embodiment 4, and specifically referring to FIG. 13, a loading and unloading unit loading test and control method of the vehicle, specifically including the following steps:
  • the S1 control unit sends a pressure control signal to the loading unit
  • the S2 loading unit receives the control signal, and the hydraulic cylinder of the loading unit applies pressure to the lifting unit to be tested;
  • S3 detects whether the applied pressure reaches the initial set pressure value; if not, returns to S1; if it is reached, proceeds to the next step; this step can be realized by the pressure sensor real-time feedback of the pressure signal applied by the hydraulic cylinder to the control unit;
  • the steps of S1-S3 are set to reach the initial set pressure value, and if the pressure value given at the beginning is the initial set pressure value, the step of feedback can be simplified accordingly;
  • the S4 displacement sensor detects the initial displacement and feeds back to the deflection detection unit (located in the control unit);
  • S4 and S5 may be selected as a parallel step according to the specific settings of the device;
  • the S6 control unit sends a pressure control signal to the loading unit
  • the S7 loading unit receives the control signal, and the hydraulic cylinder of the loading unit applies pressure to the lifting unit to be tested;
  • S8 detects whether the applied pressure reaches a pressure value of a multiple of the rated pressure value; if not, returns to S6; if it is reached, proceeds to the next step; this step can also be realized by the pressure sensor real-time feedback of the pressure signal applied by the hydraulic cylinder to the control unit;
  • the S9 displacement sensor detects the changed displacement and feeds back to the deflection detection unit (located in the control unit);
  • the S10 strain flower transmits the changed strain to the stress detecting unit (located in the control unit);
  • S9 and S10 correspond to steps S4 and S5; that is, there is no S9 without S4, and no S10 without S5; S9 and S10 may also be in a side-by-side relationship;
  • S11 processes the collected pressure, deflection and strain data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

一种架车机举升单元加载试验测控系统及方法,测控系统用于测试举升单元,包括底座(11),底座(11)上设置有可安装待测举升单元(2)的支架(12),支架(12)上设置有用于向待测举升单元(2)施加加载力的加载单元(13);加载单元(13)电连接有可根据设定值控制加载单元(13)施加压力的控制单元。测控方法使用所述测控系统。在架车机设备加工组装完成前,测控系统对其举升单元(2)进行加载试验,验证举升单元(2)的功能和静强度,试验方便且节约成本。

Description

架车机举升单元加载试验测控系统及方法 技术领域
本发明属于试验领域,尤其涉及一种架车机举升单元加载试验测控领域。
背景技术
架车机是目前用于动车段及城轨车辆段检修车辆的举升设备,架车机是目前用于动车段及城轨车辆段检修车辆的举升设备,包括钢结构部分、举升单元部分(常见的有车体举升单元、转向架举升单元等)及电气控制部分;其中,车体举升单元包括中间支座,竖向支撑杆,托头和传动部分;托头垂直设置在竖向支撑杆的顶端。转向架举升单元包括中间支座,弯臂支撑杆,横梁和传动部分;横梁水平设置在弯臂支撑杆的顶端。中间支座与传动部分位置固定,竖向支撑杆和弯臂支撑杆平行与传动丝杠垂直于地面设置,通过电机驱动丝杠,竖向支撑杆和弯臂支撑杆可平行于丝杠发生位置变化。架车机可用于整列或解编的车辆举升,可对所有转向架同时更换或单个更换,可满足车辆的拆卸、装配及维修等工作。
因车辆较为昂贵,为保证架车机设备的安全可靠运行,其举升单元在出厂前需加载试验,目前国内外尚无针对架车机举升单元出厂前加载试验的设备及方法。
发明内容
为了解决以上问题,本申请提供了一种架车机举升单元加载试验测控系统及方法,可在架车机设备组装完成前,对其举升单元进行加载试验,验证举升单元的功能和静强度,试验方便、节约成本。
为了达到上述目的,本申请采用的技术方案为:
本申请的一种实施方式提供了一种架车机举升单元加载试验测控系统,可用于测试组装完成的架车机举升单元,包括底座,底座上设置有可安装待测举升单元的支架,支架上设置有用于向待测举升单元施加加载力的加载单元;加载单元电连接有可根据设定值控制加载单元施加压力的控制单元。
本申请的另一种实施方式提供了一种架车机举升单元加载试验测控系统,可用于测试举升单元,包括底座,底座上设置有支架和待测举升单元;支架上设置有用于向待测举升单元施加加载力的加载单元;加载单元电连接有可根据设定值控制加载单元施加压力的控制单元。本申请中的举升单元包括托头和竖向支撑柱。
作为一种优选的实施方式,所述支架包括第一支撑柱和第二支撑柱,二者设置于底座上;第一支撑柱与第二支撑柱之间设置横梁;待测举升单元位于第一支撑柱和第二支撑柱之间, 且位于横梁之下;加载单元安装在横梁上,且位于横梁和待测举升单元之间。尤其地,所述举升单元的托头一端与竖向支撑柱连接,另一端为悬臂端,所述加载单元位于横梁与悬臂端之间。
作为一种优选的实施方式,所述底座可包括第一平台和第二平台,第一平台通过第二楼梯连接至第二平台;第二平台位于第一平台的上方,且靠近加载单元。进一步地,所述举升单元和支架安装在第一平台上。
作为一种优选的实施方式,所述底座的底部可设置支撑结构,支撑结构可选择钢架结构。支撑结构的底部通过第一楼梯连接至第一平台;支撑结构一般安放在地面,如此,操作人员可通过楼梯在地面、第一平台和第二平台之间走动。
作为一种优选的实施方式,所述加载单元包括有液压缸,液压缸的固定端安装于支架上,活塞端靠近待测举升单元,液压缸的活塞端底部设置有可检测液压缸加载压力的压力传感器,压力传感器连接于控制单元,以将压力传感器感应到的压力信号传递至控制单元。
作为一种优选的实施方式,所述液压缸的固定端安装在横梁下方,液压缸的活塞端及设置于活塞端下端的接头的位置靠近待测举升单元一侧;压力传感器位于接头的下方,接头与压力传感器之间通过连接件可活动地连接。
作为一种优选的实施方式,所述连接件分为第一连接件和第二连接件,优选二者为“L”型结构;其中,第一连接件的上端固定在活塞端底部或接头上,第二连接件的下端安装在压力传感器上;第一连接件上开设有第一孔,第二连接件上开设有与第一孔相匹配的第二孔,通过在第一孔和第二孔中设置固定件,将第一连接件和第二连接件安装在一起;其中,所述第一孔或第二孔中至少有一个为竖向长孔。优选设置两个连接件,尤其优选两个连接件关于压力传感器对称设置。
作为一种优选的实施方式,压力传感器的下端还可设置传感器端头。优选地,将第二连接件的下端固定在传感器端头上。
作为一种优选的实施方式,所述活塞端底部或接头的下端面、压力传感器的上下端面、传感器端头的上下端面、以及待测举升单元的接触面均设置为相互匹配的平面。作为一种优选的实施方式,控制单元至少包括可采集压力信号的压力采集模块,可输出压力信号值的压力输出模块,以及可控制液压缸加载压力的压力控制模块;这些模块与控制单元电连接。
作为一种优选的实施方式,液压缸进一步设置有位移传感器,位移传感器用于检测液压缸的位移信号。所述位移传感器的上端安装在固定端上,下端安装在活塞端底部或接头上。此时,控制单元至少包括可采集位移信号的位移采集模块,以及可输出位移信号值的位移输出模块;这些模块与控制单元电连接。
作为一种优选的实施方式,控制单元电连接有可贴附于待测举升单元上的应变片,应变片为呈45°夹角分布的三维应变花,控制单元包括可采集应变花三维压力值的采集模块,可根据应变花压力值计算待测举升单元主应力值的计算模块,以及可将计算模块中主应力值输出的控制模块,采集模块电连接计算模块,计算模块电连接控制模块。
作为一种优选的实施方式,应变片设置于待测举升单元的竖向支撑柱上,且靠近竖向支撑柱与托头的连接处;三个应变片组成一个应变花,应变花包括横向设置的第一应变片,竖向设置的第二应变片和位于横向与竖向之间的第三应变片,优选与前二者的夹角为45°;其中,第一应变片所在的x轴指向托头的悬臂端,第二应变片所在的y轴指向托头与竖向支撑柱的连接方向,第三应变片所在的u轴位于x轴和y轴之间。
作为一种优选的实施方式,底座上并列设置有多个支架,每个支架上均设置有单独的加载单元,每个加载单元均电连接于控制单元。
本申请的再一种实施方式提供了一种架车机举升单元加载试验测控方法,使用上述架车机举升单元加载试验测控系统,包括以下步骤:
控制单元按照额定压力值发出控制信号至加载单元;
加载单元的液压缸接收控制信号,并以额定压力值作为初始压力施加至待测举升单元上;液压缸在加载压力过程中不断增加压力值至预设倍数的额定压力值,在压力加载过程中,液压缸相连的压力传感器实时反馈液压缸施加的压力信号至控制单元,以对加载压力值进行检测;
控制单元同时根据反馈压力调整施加压力值,以对加载压力进行控制。
作为一种优选的实施方式,进一步包括以下步骤:液压缸以初始设定压力值加载压力时,位移传感器感应到液压缸的初始位移值并反馈至控制单元;液压缸施加压力至预设额定压力值倍数的压力值时,位移传感器感应到液压缸的第二位移值并反馈至控制单元,控制单元计算第二位移值与初始位移值的差值,并将该差值输出以作为待测举升单元挠度值的检测。
作为一种优选的实施方式,进一步包括以下步骤:控制单元采集贴附于待测举升单元上应变花的应力信号,控制单元的计算模块根据预设公式计算主应力值,以对待测举升单元的应力进行测试。
作为一种优选的实施方式,在测试应力值的步骤中,计算模块中的预设公式为:
Figure PCTCN2017084357-appb-000001
Figure PCTCN2017084357-appb-000002
Figure PCTCN2017084357-appb-000003
σ1=E×(εmaxmin×v)/(1-ν2)      (4),
σ2=E×(εminmax×v)/(1-ν2)       (5);
计算模块按照上述预设公式顺次计算得出应力值,其中,E为弹性模量,ν为泊松比,ε为应变花各个方向上的应变,εmax为计算得到的最大应变,εmin为计算得到的最小应变,α0为最大主应力与x轴线的夹角,σ1为与εmax方向一致的应力值,σ2为与εmin方向一致的应力值。
与现有技术相比,本申请的优点和积极效果在于:
1、本申请架车机举升单元加载试验测控系统,其通过设置可安装车体或转向架的支架,并在支架上安装有加载单元,这样即可实现单独对组装好的车体或转向架进行测控,试验方便,简单快捷;
2、本申请架车机举升单元加载试验测控方法,其可对待加载单元进行压力测试、举升挠度测试以及应力测试,降低了检测难度及检测成本,提高了检测精度。
附图说明
图1为加载试验测控系统的前视立体图;
图2为图1中A部分的放大图;
图3为图1中B部分的放大图;
图4为加载单元的俯视爆炸立体图;
图5为加载单元的仰视爆炸立体图;
图6为测控系统的后视立体图;
图7为图6的局部放大图;
图8为实施例2的局部前视爆炸立体图;
图9为实施例2的局部前视图;
图10为实施例2的前视图;
图11为图10的C-C视图;
图12为应变片方位示意图;
图13为测控方法的流程图;
其中:
1、加载试验测控系统;11、底座;111、第一平台;112、第二平台;113、支撑结构;12、支架;121、第一支撑柱;122、第二支撑柱;123、横梁;13、加载单元;131、液压缸; 1311固定端;1312、活塞端;1313、接头;132、位移传感器;1321、第一安装件;1322、第二安装件;133、压力传感器;134、传感器端头;135、连接件;1351、第一连接件;1352、第二连接件;136、第一孔;137、第二孔;138、第一螺栓;139、第二螺栓;140、第三螺栓;14、楼梯;141、第一楼梯;142、第二楼梯;15、应变花;
2、举升单元;21、竖向支撑柱;22、托头;221、悬臂端。
具体实施方式
下面,通过示例性的实施方式对本申请进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
在本申请的描述中,需要说明的是,架车机举升单元加载试验测控系统的高度方向为安装后的竖向;术语“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
实施例1:
参见图1-图7,本申请的架车机举升单元加载试验测控系统1,可用于测试架车机举升单元2,包括底座11,底座11上设置有支架12,支架12上设置有用于向待测举升单元施加加载力的加载单元13;加载单元13电连接有可根据设定值控制加载单元13施加压力的控制单元,由于加载单元13与控制单元之间为电连接关系,由于连接方式可根据公知常识予以理解,因此图中并没有示出控制单元。
架车机包含举升单元2,举升单元2可直接安装在底座11上,也可安装在支架12上,当选择后者时,由于支架12设置在底座11上,因此可通过支架12的固定座同时将举升单元2固定在底座11上。图1中有两个举升单元2,每个举升单元2都包括竖向支撑柱21和托头22,托头22横向设置,其一端连接竖向支撑柱21,另一端为悬臂端221,举升单元2的结构可认为是现有技术或公知常识;图1中右侧的举升单元2(即A部分中的举升单元)为转向架举升单元,左侧的举升单元2(即B部分中的举升单元)为车体举升单元;但是本发明可试验的举升单元并不限于这两种类型,也并不限于仅设置两个举升单元的测试系统,可根据实际的需要设置一个或多个举升单元。
如图1和图6所示,所述底座11可包括第一平台111和第二平台112,第一平台111可通过第二楼梯142连接至第二平台112;第二平台112位于第一平台111的上方,且靠近加载单元13;如此,可以在第二平台112上维修加载单元13,或者设置加载单元13的零件。举升单元2和支架12安装在第一平台111上。
所述底座11的底部可设置支撑结构113,支撑结构113可选择钢架结构,以便安全且稳定地支撑整个加载试验测控系统1。支撑结构113的底部可通过第一楼梯141连接至第一平台111;支撑结构113一般安放在地面,如此,操作人员可通过楼梯14在地面、第一平台111和第二平台112之间走动。
所述支架12可包括第一支撑柱121和第二支撑柱122,第一支撑柱121与第二支撑柱122之间设置横梁123。待测举升单元2安装在底座11或支架12上,举升单元2的托头22位于第一支撑柱121和第二支撑柱122之间,且位于横梁123之下;加载单元13安装在横梁123底端,且位于横梁123和托头22之间;具体地讲,加载单元13位于横梁123和托头22的悬臂端221之间(如图2、图3和图7所示)。
结合图2-5,加载单元13包括有液压缸131,液压缸131的固定端1311(即液压缸的缸筒一端)安装于支架12上,活塞端靠近待测举升单元2,液压缸131的活塞端底部设置有可检测液压缸加载压力的压力传感器133。压力传感器133连接于控制单元,以将压力传感器133感应到的压力信号传递至控制单元。
具体地,加载单元13包括有液压缸131,液压缸131的固定端1311安装在横梁123下方,活塞端1312下端还可设置接头1313,接头1313可为扁平圆柱体状,可用于将来自液压缸131的压力分散均匀,因此接头1313上端可固接于活塞端底部;
接头1313下方设置压力传感器133,压力传感器133的下端还可设置传感器端头134,例如,可采用第三螺栓140将压力传感器133固定在传感器端头134上;传感器端头134与待测的举升单元2接触,可保护压力传感器133,并减少压力传感器133直接与待测举升单元2接触产生的磨损;同时,传感器端头134设置为与待测举升单元2相匹配的形状,便于力的传输;
加载单元13还包括连接件135,其中,连接件135可设置两个,且优选其关于压力传感器133对称设置;每个连接件135分为第一连接件1351和第二连接件1352,二者可选“L”型钢板;其中,第一连接件1351的上端固定在接头1313上,例如,采用第二螺栓139进行固定,当没有设置接头1313时,可固定在活塞端;第二连接件1352的下端固定在传感器端头134上,当没有设置传感器端头134时,也可将第二连接件1352安装在压力传感器133上;第一连接件1351上开设有第一孔136,第二连接件1352上开设有与第一孔136相匹配的第二孔137,通过在第一孔136和第二孔137中设置固定件,如第一螺栓138,将第一连接件1351和第二连接件1352安装在一起;其中,第一孔136或第二孔137中至少有一个为竖向长孔,以便在未受到压力时,压力传感器133自动下垂,不与接头1313接触;受到压力时,通过固定件(第一螺栓138)沿着长孔移动,使得接头132与压力传感器133贴合,传递压 力;如图2-5中,第一孔136为竖向长孔,使得连接后的连接件135在竖直方向上的长度是可调的。
此外,为了使压力传感器133更敏感的感受压力,还可以将所述活塞端底部或接头1313的下端面、压力传感器133的上下端面、传感器端头134的上下端面、以及待测举升单元2的接触面均设置为相互匹配的平面,如此可使液压缸131的加载压力能更直接的传递至待测举升单元2。
因压力传感器133与控制单元电性连接,图中未示出控制单元,压力传感器133将感应的压力信号传递至控制单元,控制单元检测该压力信号,同时,控制单元根据压力信号传递的压力值进一步控制液压缸131的加载压力,从而实现了控制单元对待测举升单元的压力检测与加载试验。综上,控制单元至少包括可采集压力信号的压力采集模块,可输出压力信号值的压力输出模块,以及可控制液压缸131加载压力的压力控制模块,上述模块均与控制单元电性连接。
实施例2:
在实施例1的基础上,参见图8-11,液压缸131上进一步设置有位移传感器132,所述位移传感器132的上端设置在固定端1311上,下端设置在接头1313上(当没有接头时,可设置在活塞端);例如,可在固定端1311上设置环绕固定端的第一安装件1321,用于固定位移传感器132的上端;可在接头1313上设置第二安装件1322,用于固定位移传感器132的下端;所述第二安装件1322可为钢片,通过螺栓或螺丝等固定在接头1313上。
由于所述位移传感器132用于检测液压缸131的位移信号,此处位移传感器132优选为拉线传感器;位移传感器132电性连接控制单元,以将位移传感器132感应到的位移信号传递至控制单元。综上,控制单元至少包括可采集位移信号的位移采集模块,以及可输出位移信号值的位移输出模块,上述模块均与控制单元电性连接。
实施例3:
在实施例1或2的基础上,控制单元电连接有可贴附于待测举升单元2上的应变片,应变片安装在举升单元的竖向支撑柱21上,且靠近托头22与竖向支撑柱21的连接处;三个应变片组成呈45°夹角分布的应变花,如图7、图11和图12所示,该应变花分别安装于x轴、y轴以及与x轴呈45°位置的u轴方向处,其中,x轴为举升单元的横向且指向托头21的悬臂端221一侧,y轴为举升单元的纵向且指向连接处,u轴位于二者之间;可见应变片可贴附在竖向支撑柱21的左右两侧(相对于图1主视方向而言)。控制单元包括可采集应变花三轴压力值的采集模块,可根据应变花压力值计算待测举升单元主应力值的计算模块,以及可将计算模块中主应力值输出的控制模块,采集模块电连接计算模块,计算模块电连接控制模块。
其中,上述中,计算模块计算待测举升单元主应力值的公式为:
Figure PCTCN2017084357-appb-000004
Figure PCTCN2017084357-appb-000005
Figure PCTCN2017084357-appb-000006
σ1=E×(εmaxmin×v)/(1-ν2)     (4)
σ2=E×(εminmax×v)/(1-ν2)      (5)
计算模块按照上述预设公式顺次计算得出主应力值,其中,E为弹性模量,ν为泊松比,ε为应变花各个方向上的应变,εmax为计算得到的最大的应变,εmin为计算得到的最小的应变,α0为最大主应变与x轴线的夹角(如图12所示),σ1为与εmax方向一致的主应力值,σ2为与εmin方向一致的主应力值。
由上述公式(1)(2)(3)求得主应变的数值和方向,再通过公式(4)(5)计算得主应力σ1和σ2的数值,为判断结构的可靠性提供依据。以上应变采集和应力计算过程均可通过控制单元中的程序设定自动完成,其精确度更高。
假设设置有n个应变花,当以初始设定压力值施加至待测举升单元上时,依次连接应变花1~应变花n分别记录初始值;继续施压到预设额定载荷倍数压力值时依次连接应变花1~应变花n分别记录并计算得出n个待检测部位此时的应变值。
实施例4
一种架车机举升单元加载试验测控方法,该测控方法使用上述任一的架车机举升单元加载试验测控系统,具体包括以下步骤:控制单元按照初始设定压力值发出控制信号至加载单元;加载单元的液压缸接收控制信号,并将初始压力施加至待测举升单元上(S1,S2,S3);液压缸在加载压力过程中不断增加压力值至预设额定压力值倍数的压力值(S6,S7,S8),在压力加载过程中,液压缸上的压力传感器实时反馈液压缸施加的压力信号至控制单元(S8),以对加载压力值进行检测;控制单元同时根据反馈压力调整施加压力值,以对加载压力进行控制(S6,S7)。
通过上述压力传感器的实时感应,以及控制单元对液压缸压力的PID调节,实现了待测举升单元加载压力的控制以及检测。
同时,本申请的测控方法还可针对待测举升单元的挠度进行检测,具体检测方法进一步包括以下步骤:液压缸以初始设定压力值加载压力时,位移传感器感应到液压缸的初始位移 值并反馈至控制单元,具体地指控制单元中的挠度检测单元,此时该位移值记为A(S4);液压缸施加压力至预设额定压力值倍数的压力值时,位移传感器感应到液压缸的第二位移值并反馈至控制单元(挠度检测单元),此时该位移值记为B(S9);控制单元计算第二位移值与初始位移值的差值,并将该差值输出以作为待测举升单元挠度值的检测,即位移值B-位移值A所得数值即得到待测举升单元的挠度值。
本申请同时可对待测举升单元的应力进行检测,进一步包括以下步骤:控制单元采集贴附于待测举升单元上应变花的应力信号,控制单元的计算模块根据预设公式计算主应力值,以对待测举升单元的应力进行测试。
在测试应力值的步骤中,计算模块中的预设公式为:
Figure PCTCN2017084357-appb-000007
Figure PCTCN2017084357-appb-000008
Figure PCTCN2017084357-appb-000009
σ1=E×(εmaxmin×v)/(1-ν2)     (4),
σ2=E×(εminmax×v)/(1-ν2)        (5),
计算模块按照上述预设公式顺次计算得出主应力值,其中,E为弹性模量,ν为泊松比,ε为应变花各个方向上的应力值,σ为主应力值。
即由公式(1)(2)(3)求得主应变的数值和方向,再通过公式(4)(5)计算得主应力σ1和σ2的数值,为判断待测举升单元的可靠性提供依据。以上应变采集和应力计算过程均通过控制单元自动完成。
具体的,系统施加到初始设定压力值时可依次连接多个应变花,如应变花1~应变花n到设置于控制单元中的多个应力变送器(应力检测单元),以分别记录初始值(S5);系统继续施压到预设额定载荷倍数的压力值时依次连接应变花1~应变花n到多个应力变送器,分别记录并计算得出n个待检测部位此时的应变值(S10)。应力变送器价格便宜可重复使用,节省测试成本。
上述中,通过本架车机举升单元加载试验测控系统及方法可进行加载压力控制及检测、举升柱挠度检测、主要部位应力检测,降低了检测难度及检测成本,提高了检测精度。
同时,在本申请中,该测控系统还可设置触摸屏,控制单元连接于触摸屏,当需要对测 控系统发出指令时,可通过触摸屏进行操作,以进一步控制控制单元的控制信号发出,通过触摸屏,也可直观的看到各压力数值、挠度数值以及应力数值的大小变化等,更直观。
实施例5
本实施例作为对实施例4的补充说明,具体地参考图13,一种架车机举升单元加载试验测控方法,具体包括以下步骤:
S1控制单元发出压力控制信号至加载单元;
S2加载单元接受控制信号,且加载单元的液压缸向待测举升单元施加压力;
S3检测施加的压力是否达到初始设定压力值;如果没有达到,返回S1;如果达到,进入下一步;本步骤可通过压力传感器实时反馈液压缸施加的压力信号至控制单元而实现;
其中,S1-S3的步骤是为了达到初始设定压力值而设置的,如果开始给出的压力值即为初始设定压力值,那么可以将反馈的步骤进行相应的简化;
S4位移传感器检测初始位移并反馈至挠度检测单元(位于控制单元中);
S5应变花传递初始应变至应力检测单元(位于控制单元中);
其中,S4与S5可根据装置的具体设置选择为并列的步骤;
S6控制单元发出压力控制信号至加载单元;
S7加载单元接受控制信号,且加载单元的液压缸向待测举升单元施加压力;
S8检测施加的压力是否达到额定压力值倍数的压力值;如果没有达到,返回S6;如果达到,进入下一步;本步骤也可通过压力传感器实时反馈液压缸施加的压力信号至控制单元而实现;
S9位移传感器检测变化后的位移并反馈至挠度检测单元(位于控制单元中);
S10应变花传递变化后的应变至应力检测单元(位于控制单元中);
其中,S9和S10与步骤S4和S5相对应;即,没有S4就没有S9,没有S5就没有S10;S9与S10也可为并列的关系;
S11对收集到的压力、挠度和应变数据进行处理。

Claims (15)

  1. 一种架车机举升单元加载试验测控系统,可用于测试组装完成的架车机举升单元(2),包括底座(11),其特征在于:
    底座(11)上设置有可安装待测举升单元的支架(12);
    支架(12)上设置有用于向待测举升单元(2)施加加载力的加载单元(13);
    加载单元(13)电连接有可根据设定值控制加载单元(13)施加压力的控制单元。
  2. 根据权利要求1所述的测控系统,其特征在于,所述待测举升单元(2)直接安装在底座(11)上而替代安装在支架(12)上,所述待测举升单元(2)包括托头(22)和竖向支撑柱(21)。
  3. 根据权利要求1或2所述的测控系统,其特征在于:所述支架(12)包括第一支撑柱(121)和第二支撑柱(122),二者设置于底座(11)上;第一支撑柱(121)与第二支撑柱(122)之间设置横梁(123);待测举升单元(2)位于第一支撑柱(121)和第二支撑柱(122)之间,且位于横梁(123)之下;加载单元(13)安装在横梁(123)上,且位于横梁(123)和待测举升单元(2)之间。
  4. 根据权利要求1或2所述的测控系统,其特征在于:所述加载单元(13)包括有液压缸(131),液压缸(131)的固定端(1311)安装于支架(12)上,活塞端(1312)靠近待测举升单元(2),液压缸(131)的活塞端底部设置有可检测液压缸(131)加载压力的压力传感器(133),压力传感器(133)连接于控制单元,以将压力传感器(133)感应到的压力信号传递至控制单元。
  5. 根据权利要求3所述的测控系统,其特征在于:所述加载单元(13)包括有液压缸(131),所述液压缸的固定端(1311)安装在横梁(123)下方,液压缸的活塞端(1312)及设置于活塞端下端的接头(132)靠近待测举升单元(2)一侧;压力传感器(133)设置于接头(132)的下方,压力传感器(133)连接于控制单元,以将压力传感器(133)感应到的压力信号传递至控制单元;接头(132)与压力传感器(133)之间通过连接件(135)可活动地连接。
  6. 根据权利要求5所述的测控系统,其特征在于:所述连接件(135)包括第一连接件(1351)和第二连接件(1352);其中,第一连接件(1351)的上端固定在活塞端底部或接头(132)上,第二连接件(1352)的下端安装在压力传感器(133)上;第一连接件(1351)上开设有第一孔(136),第二连接件(1352)上开设有与第一孔(136)相匹配的第二孔(137),通过在第一孔(136)和第二孔(137)中设置固定件,将第一连接件(1351)和第二连接件(1352)安装在一起;其中,所述第一孔(136)或第二孔(137)中至少有一个为竖向长孔。
  7. 根据权利要求6所述的测控系统,其特征在于:压力传感器(133)的下端设置传感器端头(134),第二连接件(1352)的下端安装在传感器端头(134)上。
  8. 根据权利要求4-7任一所述的测控系统,其特征在于:液压缸(131)上设置有位移传感器(132),位移传感器(132)用于检测液压缸(131)的位移信号。
  9. 根据权利要求8所述的测控系统,其特征在于:所述位移传感器(132)的上端安装在固定端(1311)上,下端安装在活塞端底部或接头(132)上;控制单元还包括可采集位移信号的位移采集模块,以及可输出位移信号值的位移输出模块;所述模块与控制单元电连接。
  10. 根据权利要求4-9任一所述的测控系统,其特征在于:控制单元电连接有可贴附于待测举升单元(2)上的应变片,应变片组成呈45°夹角分布的三维应变花(15),控制单元包括可采集应变花(15)三维压力值的采集模块,可根据应变花(15)压力值计算待测举升单元(2)主应力值的计算模块,以及可将计算模块中主应力值输出的控制模块,采集模块电连接计算模块,计算模块电连接控制模块。
  11. 根据权利要求10所述的测控系统,其特征在于:所述应变片设置于待测举升单元(2)的竖向支撑柱(21)上,且靠近竖向支撑柱(21)与托头(22)的连接处;三个应变片组成一个应变花(15),应变花(15)包括横向设置的第一应变片,竖向设置的第二应变片和位于横向与竖向之间的第三应变片;其中,第一应变片所在的x轴指向托头(22)的悬臂端(221),第二应变片所在的y轴指向托头(22)与竖向支撑柱(21)的连接方向,第三应变片所在的u轴位于x轴和y轴之间。
  12. 一种架车机举升单元加载试验测控方法,使用权利要求1-11中任一项所述的测控系统,其特征在于:包括以下步骤:
    控制单元按照初始设定压力值发出控制信号至加载单元(13);
    加载单元(13)的液压缸(131)接收控制信号,并以初始设定压力值作为初始压力施加至待测举升单元(2)上;
    液压缸(131)在加载压力过程中不断增加压力值至预设额定压力值倍数的压力值,在压力加载过程中,液压缸(131)上的压力传感器(133)实时反馈液压缸(131)施加的压力信号至控制单元,以对加载压力值进行检测;
    控制单元同时根据反馈压力调整施加压力值,以对加载压力进行控制。
  13. 根据权利要求12所述的测控方法,其特征在于:进一步包括以下步骤:液压缸(131)以初始设定压力值加载压力时,位移传感器(132)感应到液压缸(131)的初始位移值并反馈至控制单元;液压缸(131)施加压力至预设额定压力值倍数的压力值时,位移传感器(132)感应到液压缸(131)的第二位移值并反馈至控制单元,控制单元计算第二位移值与初始位移 值的差值,并将该差值输出以作为待测举升单元(2)挠度值的检测。
  14. 根据权利要求12或13所述的测控方法,其特征在于:进一步包括以下步骤:控制单元采集贴附于待测举升单元(2)上应变花(15)的应力信号,控制单元的计算模块根据预设公式计算主应力值,以对待测举升单元(2)的应力进行测试。
  15. 根据权利要求14所述的测控方法,其特征在于:在测试应力值的步骤中,计算模块中的预设公式为:
    Figure PCTCN2017084357-appb-100001
    Figure PCTCN2017084357-appb-100002
    Figure PCTCN2017084357-appb-100003
    σ1=E×(εmaxmin×v)/(1-ν2)         (4),
    σ2=E×(εminmax×v)/(1-ν2)         (5);
    计算模块按照上述预设公式顺次计算得出主应力值;其中,E为弹性模量,ν为泊松比,ε为应变花各个方向上的应变,σ为主应力值。
PCT/CN2017/084357 2017-03-30 2017-05-15 架车机举升单元加载试验测控系统及方法 WO2018024009A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018536721A JP6595719B2 (ja) 2017-03-30 2017-05-15 車両リフタリフトユニットの荷重試験観測制御システムおよび方法
RU2018125261A RU2690056C1 (ru) 2017-03-30 2017-05-15 Система и способ контроля для осуществления испытаний под нагрузкой подъемного устройства подъемника для транспортных средств
EP17836193.7A EP3372979B1 (en) 2017-03-30 2017-05-15 Control system and method for vehicle support machine lifting unit load testing
CN201780058503.6A CN109937355B (zh) 2017-03-30 2017-05-15 架车机举升单元加载试验测控系统及方法
ES17836193T ES2751903T3 (es) 2017-03-30 2017-05-15 Sistema y método de control de prueba de carga de unidad de elevación de máquina de soporte de vehículos
US16/003,091 US10345197B2 (en) 2017-03-30 2018-06-07 Loading test test-and-control system and method of vehicle lifter lifting unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710202439.6A CN106989941A (zh) 2017-03-30 2017-03-30 架车机举升单元加载试验测控系统及方法
CN201710202439.6 2017-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/003,091 Continuation US10345197B2 (en) 2017-03-30 2018-06-07 Loading test test-and-control system and method of vehicle lifter lifting unit

Publications (1)

Publication Number Publication Date
WO2018024009A1 true WO2018024009A1 (zh) 2018-02-08

Family

ID=59412308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084357 WO2018024009A1 (zh) 2017-03-30 2017-05-15 架车机举升单元加载试验测控系统及方法

Country Status (7)

Country Link
US (1) US10345197B2 (zh)
EP (1) EP3372979B1 (zh)
JP (1) JP6595719B2 (zh)
CN (2) CN106989941A (zh)
ES (1) ES2751903T3 (zh)
RU (1) RU2690056C1 (zh)
WO (1) WO2018024009A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383866A (zh) * 2021-12-29 2022-04-22 重庆零壹空间航天科技有限公司 车载升降杆综合测试平台

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389364B (zh) * 2017-06-12 2020-04-07 中国航空工业集团公司西安飞行自动控制研究所 一种惯性负载加载平台
CN108871818A (zh) * 2018-05-09 2018-11-23 河海大学常州校区 一种地坑固定式架车机强度的检测方法
CN109540010B (zh) * 2018-11-02 2020-08-14 北京卫星制造厂有限公司 一种高精度超高压液相模拟载荷累积误差测试平台
CN109471402B (zh) * 2018-11-13 2020-12-08 中车青岛四方车辆研究所有限公司 架车机电气柜测控系统及测试方法
CN110326847A (zh) * 2019-07-26 2019-10-15 河南民生智能医疗技术股份有限公司 一种压力测试仪
KR102068626B1 (ko) * 2019-10-28 2020-02-11 오윤재 실린더 내구성 테스트장치
CN110595685B (zh) * 2019-10-30 2024-05-28 南京溧航仿生产业研究院有限公司 一种对比式六维力传感器标定装置及标定方法
CN112213200A (zh) * 2020-10-14 2021-01-12 江苏省农业机械试验鉴定站 一种移动式防护装置强度试验装置及控制系统
CN112881172B (zh) * 2021-01-19 2021-11-23 西南交通大学 一种中应变率加载装置
CN113188923B (zh) * 2021-04-13 2023-03-28 广东海洋大学 主动液压伺服边界可调式梁柱结构弯、剪、压试验装置
CN113640159B (zh) * 2021-08-24 2023-11-10 安徽省汉博科技有限公司 一种用于家具节点连接处的疲劳强度测试装置
CN114211308A (zh) * 2021-12-29 2022-03-22 南通加合机械科技有限公司 一种数控回转工作台性能测试装置
CN114894624B (zh) * 2022-07-14 2022-11-01 浙大城市学院 基于海洋管线群锚作用的拉拔力测量试验装置及测量方法
CN115791144B (zh) * 2023-02-09 2023-04-28 四川名人居门窗有限公司 一种负载滚轮动平衡及疲劳测试系统及测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912916B1 (en) * 2004-06-05 2005-07-05 Innovations Industrielles Joubert Inc. Polyvalent test stand
CN102235943A (zh) * 2010-05-06 2011-11-09 中国商用飞机有限责任公司 一种加载试验装置
CN103424275A (zh) * 2013-07-22 2013-12-04 深圳市元征科技股份有限公司 自动检测举升机的方法及系统
JP2015096825A (ja) * 2013-11-15 2015-05-21 西部電機株式会社 荷重試験装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU106098A1 (ru) * 1956-05-10 1956-11-30 А.Н. Колесниченко Стенд дл испытани подъемных механизмов автомобилей-самосвалов
US4058178A (en) * 1971-09-13 1977-11-15 Tadano Ironworks Co., Ltd. Hydraulic cylinder unit
JPS4920159U (zh) 1972-05-20 1974-02-20
JPS5477188A (en) 1977-12-01 1979-06-20 Wako Seiki Kk Load tester for pantographhtype jack etc*
US4501139A (en) * 1983-08-26 1985-02-26 Mts Systems Corporation Test system for testing front wheel drive components of automobiles
JPS60117124A (ja) 1983-11-30 1985-06-24 Hazama Gumi Ltd 鉛直力加力装置
US5230392A (en) * 1992-04-16 1993-07-27 Remy Tremblay Load weighing apparatus
US5703333A (en) * 1996-01-23 1997-12-30 Wray-Tech Instruments, Inc. Surface mount torque loadcell
JP2000118970A (ja) 1998-10-08 2000-04-25 Banzai Kogyo Kk 油圧式ツインリフト装置
US6585079B1 (en) * 1999-12-14 2003-07-01 1994 Weyer Family Limited Partnership Work platform with rotary actuator
CN1258676C (zh) * 2001-12-30 2006-06-07 宝山钢铁股份有限公司 金属薄板抗凹性评估方法及装置
JP4183124B2 (ja) * 2002-08-21 2008-11-19 タカタ株式会社 シート荷重計測装置
ES2249169B1 (es) * 2004-09-02 2007-03-16 Dinacell Electronica, S.L. Celula de carga para ascensores y similares.
DE502006005752D1 (de) * 2005-10-11 2010-02-04 Walter Finkbeiner Gmbh Verfahren und vorrichtung zur überwachung eines hubsystems
US7591190B2 (en) * 2006-02-27 2009-09-22 American Fabricating, Llc Test stand
US10308487B2 (en) * 2014-01-17 2019-06-04 Tecsis Gmbh Measurement system for determining support force
CN203949747U (zh) * 2014-05-20 2014-11-19 浙江英科弹簧有限公司 弹簧拉力测试机的测试器安装支架
CN104215465B (zh) * 2014-08-07 2017-02-22 中国矿业大学 振动与加载多自由度转向架集成耦合模拟系统及方法
CN104309636B (zh) * 2014-08-18 2016-03-23 中车青岛四方车辆研究所有限公司 自调整式托头
CN105716887B (zh) * 2014-12-05 2018-08-21 天津航天瑞莱科技有限公司 一种液压静力加载试验控制方法
CN104568478B (zh) * 2015-01-07 2017-04-12 南车戚墅堰机车车辆工艺研究所有限公司 一种铁道机车驱动部件动态加载装置
US11073419B2 (en) * 2015-11-06 2021-07-27 Conweigh Innovation Pty Ltd Apparatus including a bracket connector for determining the weight of an object such as a shipping container
CN105347233A (zh) * 2015-11-24 2016-02-24 重庆红亿机械有限公司 架车机系统
CN106441968B (zh) * 2016-10-18 2020-01-10 南京林业大学 一种家具结构节点抗弯疲劳强度测试装置及测试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912916B1 (en) * 2004-06-05 2005-07-05 Innovations Industrielles Joubert Inc. Polyvalent test stand
CN102235943A (zh) * 2010-05-06 2011-11-09 中国商用飞机有限责任公司 一种加载试验装置
CN103424275A (zh) * 2013-07-22 2013-12-04 深圳市元征科技股份有限公司 自动检测举升机的方法及系统
JP2015096825A (ja) * 2013-11-15 2015-05-21 西部電機株式会社 荷重試験装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383866A (zh) * 2021-12-29 2022-04-22 重庆零壹空间航天科技有限公司 车载升降杆综合测试平台

Also Published As

Publication number Publication date
JP6595719B2 (ja) 2019-10-23
RU2690056C1 (ru) 2019-05-30
US20180292297A1 (en) 2018-10-11
CN109937355B (zh) 2020-11-24
EP3372979B1 (en) 2019-09-25
EP3372979A1 (en) 2018-09-12
CN106989941A (zh) 2017-07-28
EP3372979A4 (en) 2019-02-20
ES2751903T3 (es) 2020-04-02
CN109937355A (zh) 2019-06-25
US10345197B2 (en) 2019-07-09
JP2019512666A (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2018024009A1 (zh) 架车机举升单元加载试验测控系统及方法
US9376296B2 (en) Vehicle hoist
CN101281085B (zh) 乘用车白车身结构静刚度测试系统及其试验方法
JP4856696B2 (ja) 油圧ねじボルト締め付け装置および該装置により大型スクリューを締め付ける方法。
CN102435508B (zh) 白车身静刚度约束装置及静刚度检测方法
CN109723910B (zh) 支吊架量化安装检测调整工器具及使用其进行支吊架载荷测量的方法
EP2789997A1 (en) Load detecting device
CN106289745B (zh) 复合材料板簧高低温疲劳和侧倾性能测试台架
KR20040024310A (ko) 유압실린더 검사장치
CN116593288A (zh) 一种车辆车桥强度检测装置
CN102574486B (zh) 用于方便上车的上车辅助装置
KR101843041B1 (ko) 패스너의 체결부 변위량 측정장치
KR20170085733A (ko) 카메라 촬영을 이용한 휠얼라이먼트 측정방법
CN108303277A (zh) 控制臂总成迟滞检测装置及其检测方法
CN220230458U (zh) 长度检测装置
CN104964773A (zh) 一种汽车方向盘位置调节装置的测力设备
CN113503248B (zh) 油泵测试装置
CN214794191U (zh) 一种提高感应方向精度的抗压抗剪检测仪
CN217980789U (zh) 一种激光焊接支架的解锁检测机构
CN216695889U (zh) 一种钢筋强度检测仪
CN219869971U (zh) 一种异形电动转向管柱噪音检测机构
CN116394987B (zh) 一种轨道检测车
CN214749438U (zh) 一种受力检测系统
CN216593258U (zh) 一种车门防撞杆总成检具
CN105953933A (zh) 母线槽垂直温升检测装置及检测方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017836193

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018125261

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2018536721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE