WO2018023323A1 - 一种含Li 2MoO 3涂层正极片的制备方法 - Google Patents

一种含Li 2MoO 3涂层正极片的制备方法 Download PDF

Info

Publication number
WO2018023323A1
WO2018023323A1 PCT/CN2016/092656 CN2016092656W WO2018023323A1 WO 2018023323 A1 WO2018023323 A1 WO 2018023323A1 CN 2016092656 W CN2016092656 W CN 2016092656W WO 2018023323 A1 WO2018023323 A1 WO 2018023323A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
moo
electrode sheet
conductive agent
reaction
Prior art date
Application number
PCT/CN2016/092656
Other languages
English (en)
French (fr)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/092656 priority Critical patent/WO2018023323A1/zh
Publication of WO2018023323A1 publication Critical patent/WO2018023323A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention belongs to the technical field of lithium ion supercapacitors, and relates to a method for preparing a positive electrode sheet of a lithium ion supercapacitor.
  • the battery negative electrode generally uses a carbon material such as graphite
  • the positive electrode uses a lithium-containing metal oxide such as lithium cobaltate or lithium manganate.
  • the charged negative electrode supplies lithium ions to the positive electrode, and the lithium ion of the positive electrode of the discharge positive electrode returns to the negative electrode, so it is called a "rocking chair type battery".
  • This battery is characterized by high safety and high cycle life compared to lithium batteries using metallic lithium.
  • Lithium-ion capacitors generally use carbon materials such as graphite and hard carbon for the anode material, and activated carbon materials with double-layer characteristics for the cathode material, and the lithium anode is pre-diffused to the anode material, so that the potential of the anode is greatly reduced, thereby improving Energy Density.
  • a lithium ion capacitor is disclosed in the special ljCN200580001498.2.
  • the positive current collector and the negative current collector used in the lithium ion capacitor have holes penetrating the front and back surfaces, and the electrode layer is formed by the positive electrode active material and the negative electrode active material respectively. Electrochemical contact is made to the negative electrode, and lithium ions are carried in the negative electrode in advance.
  • a pretreatment method for a negative electrode for an electrochemical capacitor is disclosed in the Japanese Patent Publication No. Hei. No. 1,200, 406, 9.6, a lithium layer is formed on a substrate by a vapor phase method or a liquid phase method, and then the lithium layer is transferred to an electrode layer of a negative electrode.
  • These pre-excessive methods involve complex processes and require special handling of the raw materials, which makes the manufacturing process difficult.
  • the technical problem to be solved by the present invention is to provide a method for preparing a positive electrode sheet for a lithium ion supercapacitor.
  • the positive electrode sheet prepared by the method can provide a lithium source in a lithium ion capacitor, thereby eliminating the need for complicated pre-processing of the negative electrode.
  • Lithium-intercalation or the addition of lithium wafers to lithium-ion capacitors simplifies the preparation of lithium-ion capacitors The process reduces the cost of the process.
  • the preparation method of the lithium ion supercapacitor positive electrode sheet provided by the invention is:
  • Step (1) Mixing Li 2 CO 3 and MoO 3 in a ratio of 1-2:1, mixing uniformly, and placing in a muffle furnace at 500-700 ° C for 3-8 small inches, the reaction After completion, a Li 2 MoO 4 material was obtained.
  • Step (2) The Li 2 Mo0 4 material is placed in a muffle furnace protected by a hydrogen-nitrogen mixed gas atmosphere containing a volume concentration of 5% hydrogen at 500-900 ° C for 5-10 hours, and the reaction is completed. Li 2 MoO 3 material.
  • Step (3) The Li 2 MoO 3 material, the conductive agent, and the binder are added to the NMP in a mass ratio of 80-90:5-10:5-10 to be mixed into a slurry, and then coated to contain an activity. On the positive electrode sheet of the material, after drying, a positive electrode sheet containing L i 2 MoO 3 coating was obtained.
  • the present invention provides a lithium ion supercapacitor preparation process as follows:
  • Activated carbon or graphene cathode material, conductive agent, and binder are added to NMP in a ratio of 90:5:5 to form a slurry, which is then coated on a positive current collector aluminum foil, and dried. A positive electrode sheet was obtained.
  • the material, the conductive agent and the binder are added to the NMP in a mass ratio of 80-90:5-10:5-10 to be mixed into a slurry, and then coated on the positive electrode sheet containing the active material, and dried to obtain Li 2 Mo0. 3 coated positive electrode sheets.
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery core by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the process for preparing a lithium ion supercapacitor using the positive electrode material of the present invention is a general lithium ion battery preparation process, which greatly simplifies the preparation process of the lithium ion supercapacitor.
  • Li 2 Mo0 3 provides a lithium source material, extrusion material Li 2 Mo0 3 inches in the first charge lithium ions inserted into the graphite anode, whereby the anode potential down,
  • negative electrode sheet need not be employed metallic lithium or lithium complex pre-process; electrochemically inert material are formed Li 2 x MoO 3 with the material after removal of the lithium ion Li 2 MoO 3 inches material, does not affect the normal use of the battery.
  • the present invention has the following beneficial effects: (1)
  • the positive electrode sheet containing the Li 2 MoO 3 coating is the positive electrode of the lithium ion supercapacitor, so that the negative electrode does not need to be added with a lithium sheet or a complicated pre-intercalation lithium process, which simplifies the preparation process.
  • FIG. 1 is a schematic view showing the structure of a positive electrode sheet of a lithium ion supercapacitor of the present invention.
  • a cathode current collector a 2-active material positive electrode sheet, and a 3-Li 2 MoO 3 coating layer.
  • the mixture was mixed at a molar ratio of 1:1, uniformly mixed, and placed in a muffle furnace at 500 ° C for 3 hours, and after the reaction was completed, Li 2 MoO 4 was obtained.
  • the mixture was mixed at a molar ratio of 2:1, uniformly mixed, and placed in a muffle furnace at 700 ° C for 8 hours, and after the reaction was completed, Li 2 MoO 4 was obtained.
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • Li 2 C0 3 and Mo0 3 The mixture was mixed at a molar ratio of 1.3:1, uniformly mixed, and placed in a muffle furnace at 600 ° C for 7 hours, and after the reaction was completed, Li 2 MoO 4 was obtained.
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 .
  • DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the mixture was mixed at a molar ratio of 1.5:1, uniformly mixed, and placed in a muffle furnace at 650 ° C for 5 hours, and after the reaction was completed, Li 2 MoO 4 was obtained.
  • Li 2 MoO 3 coated 3 positive electrode sheet Li 2 MoO 3 coated 3 positive electrode sheet.
  • the hard carbon anode material, the conductive agent Ketjen black, and the binder PVDF are added to the NMP in a mass ratio of 90:5:5 to be mixed into a slurry, and then coated on the negative electrode current collector copper foil. On, after drying, get the negative electrode
  • the negative electrode sheet, the separator and the positive electrode sheet are assembled into a battery core by laminating according to a usual preparation process of a lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 .
  • DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the mixture was mixed at a molar ratio of 1.7:1, uniformly mixed, and placed in a muffle furnace at 600 ° C for 6 hours, and after completion of the reaction, Li 2 MoO 4 was obtained.
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

一种含Li 2MoO 3涂层正极片的制备方法。包括以下几个步骤:步骤(1)将Li 2CO 3和MoO 3混合,混合均匀后放入马弗炉内反应,反应结束后得到Li 2MoO 4材料;步骤(2)将得到Li 2MoO 4放入氢氮混合气气氛保护的马弗炉内反应,反应结束后得到Li 2MoO 3材料;步骤(3)将Li 2MoO 3材料、导电剂、粘结剂加入到NMP中混合成浆料,然后涂覆在含有活性材料正极片上,烘干后得到含有Li 2MoO 3涂层正极片。该制备方法具有如下有益效果:(1)含有Li 2MoO 3涂层的正极片为锂离子超级电容器的正极使负极不需要再加入锂片或者复杂的预嵌锂工艺,简化了制备工艺,降低了成本。

Description

说明书 发明名称:一种含 Li 2MoO 3涂层正极片的制备方法 技术领域
[0001] 本发明属于锂离子超级电容器技术领域, 涉及一种锂离子超级电容器正极片的 制备方法。
背景技术
[0002] 近年来, 锂离子二次电池得到了很大的发展, 这种电池负极一般使用石墨等炭 素材料, 正极使用钴酸锂、 锰酸锂等含锂金属氧化物。 这种电池组装以后, 充 电吋负极向正极提供锂离子, 而在放电吋正极的锂离子又返回负极, 因此被称 为"摇椅式电池"。 与使用金属锂的锂电池相比, 这种电池具有高安全性和高循环 寿命的特点。
[0003] 但是, 由于正极材料在脱嵌锂的过程中容易发生结构的变形, 因此, 锂离子二 次电池的循环寿命仍受到制约。 因此近年来, 把锂离子二次电池和双层电容器 结合在一起的体系研究成为新的热点。
[0004] 锂离子电容器一般负极材料选用石墨、 硬碳等炭素材料, 正极材料选用双电层 特性的活性炭材料, 通过对负极材料进行锂离子的预惨杂, 使负极电位大幅度 下降, 从而提高能量密度。 专禾 ljCN200580001498.2中公幵了一种锂离子电容器 , 这种锂离子电容器使用的正极集流体和负极集流体均具有贯穿正反面的孔, 分别由正极活性物质和负极活性物质形成电极层, 通过对负极进行电化学接触 , 预先把锂离子承载在负极中。 专禾 ljCN200780024069.6中公幵了一种电化学电 容器用负极的预处理方法, 通过气相法或液相法在基板上形成锂层, 然后将该 锂层转印到负极的电极层。 这些预惨杂的方法涉及到的工艺比较复杂, 且对原 材料需要进行特殊处理, 给制造过程带来一定难度。
技术问题
[0005] 本发明要解决的技术问题是提供一种锂离子超级电容器正极片的制备方法, 该 方法制备的正极片可在锂离子电容器中提供锂源, 从而不需要再对负极进行复 杂的预嵌锂处理或者在锂离子电容器中添加锂片, 简化了锂离子电容器制备的 工艺过程, 降低了其工艺成本。
问题的解决方案
技术解决方案
[0006] 本发明提供的锂离子超级电容器正极片的制备方法为:
[0007] 步骤 (1) 将 Li 2CO 3和 MoO 3按摩尔比 1-2:1的比例混合, 混合均匀后放入马弗 炉内 500-700°C反应 3-8小曰寸, 反应结束后得到 Li 2MoO 4材料。
[0008] 步骤 (2) 将得到 Li 2Mo0 4材料放入含体积浓度 5%氢气的氢氮混合气气氛保护 的马弗炉内 500-900°C反应 5-10小吋, 反应结束后得到 Li 2MoO 3材料。
[0009] 步骤 (3) 将 Li 2Mo0 3材料、 导电剂、 粘结剂按照 80-90:5-10:5-10的质量比例加 入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片上, 烘干后得到含有 L i 2MoO 3涂层正极片。
[0010] 本发明提供一种锂离子超级电容器的制备工艺流程如下:
[0011] (1) 将活性炭或者石墨烯正极材料、 导电剂、 粘结剂按照 90:5:5的比例加入到 NMP中混合成浆料, 然后涂覆在正极集流体铝箔上, 烘干后得到正极片。
[0012] (2) 将 Li 2Mo0 3
材料、 导电剂、 粘结剂按照 80-90:5-10:5-10的质量比例加入到 NMP中混合成浆料 , 然后涂覆在含有活性材料正极片上, 烘干后得到含有 Li 2Mo0 3涂层正极片。
[0013] (3) 将石墨或者硬炭负极材料、 导电剂、 粘结剂按照质量比 90:5:5的比例加入 到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极片。
[0014] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0015] 采用本发明正极材料制备锂离子超级电容器的工艺为通用的锂离子电池制备工 艺, 大大简化了锂离子超级电容器的制备工艺。
[0016] 本发明制备的含有 Li 2Mo0 3
涂层的正极片用作锂离子超级电容器正极材料吋, Li 2Mo0 3材料提供锂源, 在 首次充电吋锂离子脱出 Li 2Mo0 3材料插入到石墨负极中, 从而拉低负极电位, 因此负极中不需要采用金属锂片或者复杂的预嵌锂工艺; 同吋 Li 2MoO 3材料脱 去锂离子后形成 Li 2 xMoO 3材料为电化学惰性材料, 不影响电池的正常使用。 发明的有益效果
有益效果
[0017] 本发明具有如下有益效果: (1) 含有 Li 2Mo0 3涂层的正极片为锂离子超级电 容器的正极使负极不需要再加入锂片或者复杂的预嵌锂工艺, 简化了制备工艺
, 降低了成本。
对附图的简要说明
附图说明
[0018] 图 1是本发明锂离子超级电容器正极片结构示意图。
[0019] 图中, 1一正极集流体, 2—活性材料正极片, 3— Li 2Mo0 3涂层。
本发明的实施方式
[0020] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
[0021] 实施例 1
[0022] (1) 将 Li 2CO 3和 MoO 3
按摩尔比 1:1的比例混合, 混合均匀后放入马弗炉内 500°C反应 3小吋, 反应结束 后得到 Li 2MoO 4
[0023] (2) 将得到 Li 2MoO 4放入含体积浓度为 5%氢气的氢氮混合气气氛保护的马弗 炉内 500°C反应 5小吋, 反应结束后得到 Li 2MoO 3材料。
[0024] (3) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0025] (4) 将 Li 2Mo0 3材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 80: 10: 10的质 量比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干后 得到含有 Li 2MoO 3涂层 3正极片。
[0026] (5) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔上, 烘干后得到负极片 [0027] (6) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0028]
[0029] 实施例 2
[0030] (1) 将 Li 2C0 3和 Mo0 3
按摩尔比 2:1的比例混合, 混合均匀后放入马弗炉内 700°C反应 8小吋, 反应结束 后得到 Li 2MoO 4。
[0031] (2) 将得到 Li 2MoO 4放入含体积浓度为 5%氢气的氢氮混合气气氛保护的马弗 炉内 900°C反应 10小吋, 反应结束后得到 Li 2MoO 3材料。
[0032] (3) 将活性炭材料、 导电剂、 粘结剂按照质量比 90:5:5的比例加入到 NMP中混 合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0033] (4) 将 Li 2Mo0 3材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的质量 比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干后得 到含有 Li 2MoO 3涂层 3正极片。
[0034] (5) 将硬炭负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0035] (6) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0036]
[0037]
[0038] 实施例 3
[0039] (1) 将 Li 2C0 3和 Mo0 3 按摩尔比 1.3:1的比例混合, 混合均匀后放入马弗炉内 600°C反应 7小吋, 反应结 束后得到 Li 2MoO 4
[0040] (2) 将得到 Li 2MoO 4放入含体积浓度 5%氢气的氢氮混合气气氛保护的马弗炉 内 700°C反应 8小吋, 反应结束后得到 Li 2MoO 3材料。
[0041] (3) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0042] (4) 将 Li 2Mo0 3材料、 导电剂科琴黑、 粘结剂 PVDF按照 85:7:8的质量比例加 入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干后得到含有
Li 2MoO 3涂层 3正极片。
[0043] (5) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔上, 烘干后得到负极片
[0044] (6) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0045]
[0046] 实施例 4
[0047] (1) 将 Li 2C0 3和 Mo0 3
按摩尔比 1.5:1的比例混合, 混合均匀后放入马弗炉内 650°C反应 5小吋, 反应结 束后得到 Li 2MoO 4
[0048] (2) 将得到 Li 2MoO 4放入含体积浓度为 5%氢气的氢氮混合气气氛保护的马弗 炉内 600°C反应 8小吋, 反应结束后得到 Li 2MoO 3材料。
[0049] (3) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照 90:5:5的比例加入到 NM
P中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0050] (4) 将 Li 2Mo0 3材料、 导电剂科琴黑、 粘结剂 PVDF按照 82:9:9的质量比例加 入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干后得到含有
Li 2MoO 3涂层 3正极片。 [0051] (5) 将硬炭负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔上, 烘干后得到负极片
[0052] (6) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0053]
[0054] 实施例 5
[0055] (1) 将 Li 2C0 3和 Mo0 3
按摩尔比 1.7:1的比例混合, 混合均匀后放入马弗炉内 600°C反应 6小吋, 反应结 束后得到 Li 2MoO 4
[0056] (2) 将得到 Li 2MoO 4放入含体积浓度为 5%氢气的氢氮混合气气氛保护的马弗 炉内 800°C反应 6小吋, 反应结束后得到 Li 2MoO 3材料。
[0057] (3) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0058] (4) 将 Li 2Mo0 3材料、 导电剂科琴黑、 粘结剂 PVDF按照 88:6:6的质量比例加 入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干后得到含有
Li 2MoO 3涂层 3正极片。
[0059] (5) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔上, 烘干后得到负极片
[0060] (6) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0061] 其效果如表 1所示, 由表 1可知: 本发明制备的锂离子超级电容器能量密度达到 了 34.6-37.1 wh/kg, 达到了常用锂离子超级电容器的能量密度水平。 [0062]
[0063]
Figure imgf000009_0001
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种锂离子超级电容器正极片的制备方法, 其特征在于, 包括以下几 个步骤:
步骤 (1) 将Li 2C0 3和M00 3混合, 混合均匀后放入马弗炉内反应, 反应结束后得到 Li 2MoO 4材料;
步骤 (2) 将得到 Li 2Mo0 4材料放入氢氮混合气气氛保护的马弗炉内 反应, 反应结束后得到 Li 2MoO 3材料;
步骤 (3) 将 Li 2Mo0 3材料、 导电剂、 粘结剂加入到 NMP中混合成浆 料, 然后涂覆在含有活性材料正极片上, 烘干后得到含有 Li 2MoO 3涂 层正极片。
[权利要求 2] 如权利要求 1所述的方法, 其特征在于, 所述步骤 (1) 中 Li 2C0 3 和 MoO 3的量按摩尔比 1-2: 1的比例混合。
[权利要求 3] 如权利要求 1所述的方法, 其特征在于, 所述步骤 (1) 在马弗炉内的 反应温度为 500-700°C, 反应吋间为 3-8小吋。
[权利要求 4] 如权利要求 1所述的方法, 其特征在于, 所述步骤 (2) 中马弗炉内的 气氛为含 5%氢气的氢氮混合气。
[权利要求 5] 如权利要求 1所述的方法, 其特征在于, 所述步骤 (2) 在马弗炉内的 反应温度为 500-900°C, 反应吋间为 5-10小吋。
[权利要求 6] 如权利要求 1所述的方法, 其特征在于, 所述步骤 (3) 中 Li 2Mo0 3材 料、 导电剂、 粘结剂的质量比为 80-90:5-10:5-10。
[权利要求 7] —种锂离子超级电容器的制备工艺, 其特征在于, 包括以下几个步骤 步骤 A:将活性炭或者石墨烯正极材料、 导电剂和粘结剂加入到 NMP 中混合成浆料, 然后涂覆在正极集流体铝箔上, 烘干后得到正极片; 步骤 B:将如权利要求 1所制备的 Li 2Mo0 3材料、 导电剂、 粘结剂加入 到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片上, 烘干后 得到含有 Li 2MoO 3涂层正极片;
步骤 C:将石墨或者硬炭负极材料、 导电剂、 粘结剂加入到 NMP中混 合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极片; 步骤 D:将负极片、 隔膜和正极片通过叠层的方式组成电芯, 然后在电 池壳内注入电解液, 封口, 得到锂离子超级电容器。
[权利要求 8] 如权利要求 7所述的制备工艺, 其特征在于, 所述步骤 A中, 石墨烯 复合 Li 2Mo0 3 料、 导电剂、 粘结剂的质量比为 90:5:5。
[权利要求 9] 如权利要求 7所述的制备工艺, 其特征在于, 所述步骤 B中, 石墨或 者硬炭负极材料、 导电剂、 粘结剂的质量比为 90:5:5。
[权利要求 10] 如权利要求 7所述的制备工艺, 其特征在于, 所述步骤 C中, 所述电 解液为 lmol/L LiPF 6的 DOL-DME溶液, 其中, DOL和 DME的体积 比为 1:1。
PCT/CN2016/092656 2016-07-31 2016-07-31 一种含Li 2MoO 3涂层正极片的制备方法 WO2018023323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092656 WO2018023323A1 (zh) 2016-07-31 2016-07-31 一种含Li 2MoO 3涂层正极片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092656 WO2018023323A1 (zh) 2016-07-31 2016-07-31 一种含Li 2MoO 3涂层正极片的制备方法

Publications (1)

Publication Number Publication Date
WO2018023323A1 true WO2018023323A1 (zh) 2018-02-08

Family

ID=61072224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092656 WO2018023323A1 (zh) 2016-07-31 2016-07-31 一种含Li 2MoO 3涂层正极片的制备方法

Country Status (1)

Country Link
WO (1) WO2018023323A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201275A (zh) * 2010-03-25 2011-09-28 海洋王照明科技股份有限公司 锂盐-石墨烯复合材料及其制备方法与应用
WO2013018607A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 非水電解質二次電池
CN103367708A (zh) * 2012-03-29 2013-10-23 海洋王照明科技股份有限公司 电池正极及其制备方法、电池负极及其制备方法、电容电池
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
CN104241642A (zh) * 2013-06-17 2014-12-24 华南理工大学 锂离子电池的钼酸锂负极材料及其制备方法
CN104577088A (zh) * 2013-10-16 2015-04-29 中国科学院物理研究所 二次电池电极材料钼酸锂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201275A (zh) * 2010-03-25 2011-09-28 海洋王照明科技股份有限公司 锂盐-石墨烯复合材料及其制备方法与应用
WO2013018607A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 非水電解質二次電池
CN103367708A (zh) * 2012-03-29 2013-10-23 海洋王照明科技股份有限公司 电池正极及其制备方法、电池负极及其制备方法、电容电池
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
CN104241642A (zh) * 2013-06-17 2014-12-24 华南理工大学 锂离子电池的钼酸锂负极材料及其制备方法
CN104577088A (zh) * 2013-10-16 2015-04-29 中国科学院物理研究所 二次电池电极材料钼酸锂

Similar Documents

Publication Publication Date Title
CN109167020B (zh) 一种具有高能量密度的多孔锂离子极片及其制备方法及锂离子电池
US20130143126A1 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
CN110707287B (zh) 一种金属锂负极及其制备方法和锂电池
WO2012146046A1 (zh) 一种聚酰亚胺电容电池及其制作方法
EP4156319A1 (en) High-load electrode, preparation method therefor, and lithium ion battery thereof
WO2020259436A1 (zh) 一种提高三元正极材料稳定性和加工性的方法
CN207993958U (zh) 一种石墨负极结构组合、锂电池电芯
CN112850796B (zh) 一种制备锂硫电池正极材料S/Fe3O4/MXene的方法
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
WO2018023321A1 (zh) 一种含有锂离子导电聚合物涂层正极片的制备方法
CN110600285B (zh) 一种锂离子电化学储能器件负极的无析锂预嵌锂方法
CN112952292A (zh) 一种可用于金属锂电池和金属钠电池的复合隔膜及其制备方法以及应用
CN108365167A (zh) 一种石墨负极结构组合及其制备方法、锂电池电芯
CN219534609U (zh) 一种卷绕电芯和二次电池
CN116454283A (zh) 一种钾离子电池正极添加剂及其制备方法与应用
CN116470003A (zh) 一种预锂化负极极片及锂离子电池
CN115275166A (zh) 一种长寿命石墨复合材料及其制备方法
WO2018023325A1 (zh) 一种含有醇基锂的石墨烯复合正极材料的制备方法
WO2018023322A1 (zh) 一种含复合石墨烯涂层正极片的制备方法
CN106098408A (zh) 一种锂离子超级电容器石墨烯复合正极材料的制备方法
WO2018023323A1 (zh) 一种含Li 2MoO 3涂层正极片的制备方法
CN106206046A (zh) 一种石墨烯复合Li2MoO3正极材料的制备方法
WO2018023326A1 (zh) 一种锂离子超级电容器石墨烯复合正极材料的制备方法
CN112467225B (zh) 一种高倍率电池的制备方法
WO2018032322A1 (zh) 一种锂离子电容器正极片的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910921

Country of ref document: EP

Kind code of ref document: A1