WO2018023322A1 - 一种含复合石墨烯涂层正极片的制备方法 - Google Patents

一种含复合石墨烯涂层正极片的制备方法 Download PDF

Info

Publication number
WO2018023322A1
WO2018023322A1 PCT/CN2016/092655 CN2016092655W WO2018023322A1 WO 2018023322 A1 WO2018023322 A1 WO 2018023322A1 CN 2016092655 W CN2016092655 W CN 2016092655W WO 2018023322 A1 WO2018023322 A1 WO 2018023322A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode sheet
lithium
graphene
lithium ion
Prior art date
Application number
PCT/CN2016/092655
Other languages
English (en)
French (fr)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/092655 priority Critical patent/WO2018023322A1/zh
Publication of WO2018023322A1 publication Critical patent/WO2018023322A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention belongs to the technical field of lithium ion supercapacitors, and relates to a method for preparing a positive electrode sheet of a lithium ion supercapacitor.
  • the battery negative electrode generally uses a carbon material such as graphite
  • the positive electrode uses a lithium-containing metal oxide such as lithium cobaltate or lithium manganate.
  • the charged negative electrode supplies lithium ions to the positive electrode, and the lithium ion of the positive electrode of the discharge positive electrode returns to the negative electrode, so it is called a "rocking chair type battery".
  • This battery is characterized by high safety and high cycle life compared to lithium batteries using metallic lithium.
  • Lithium-ion capacitors generally use carbon materials such as graphite and hard carbon for the anode material, and activated carbon materials with double-layer characteristics for the cathode material, and the lithium anode is pre-diffused to the anode material, so that the potential of the anode is greatly reduced, thereby improving Energy Density.
  • a lithium ion capacitor is disclosed in the special ljCN200580001498.2.
  • the positive current collector and the negative current collector used in the lithium ion capacitor have holes penetrating the front and back surfaces, and the electrode layer is formed by the positive electrode active material and the negative electrode active material respectively. Electrochemical contact is made to the negative electrode, and lithium ions are carried in the negative electrode in advance.
  • a pretreatment method for a negative electrode for an electrochemical capacitor is disclosed in the Japanese Patent Publication No. Hei. No. 1,200, 406, 9.6, a lithium layer is formed on a substrate by a vapor phase method or a liquid phase method, and then the lithium layer is transferred to an electrode layer of a negative electrode.
  • These pre-excessive methods involve complex processes and require special handling of the raw materials, which makes the manufacturing process difficult.
  • the technical problem to be solved by the present invention is to provide a method for preparing a positive electrode sheet for a lithium ion supercapacitor.
  • the positive electrode sheet prepared by the method can provide a lithium source in a lithium ion capacitor, thereby eliminating the need for complicated pre-processing of the negative electrode.
  • Lithium-intercalation or the addition of lithium wafers to lithium-ion capacitors simplifies the preparation of lithium-ion capacitors The process reduces the cost of the process.
  • the preparation method of the lithium ion supercapacitor positive electrode sheet provided by the invention is:
  • Step (1) The graphite oxide and Li 2 CO 3 are mixed at a mass ratio of 50-10:1, uniformly mixed, and then placed in a nitrogen-protected muffle furnace at 200-600 ° C for 1-6 h to obtain A graphene material containing an alcohol-based lithium.
  • Step (2) The graphene material containing a lithium alcohol, a conductive agent, and a binder are added to the NMP in a mass ratio of 80-90:5-10:5-10, and then mixed into a slurry, and then coated. On the positive electrode sheet containing the active material, after drying, a graphene-coated positive electrode sheet containing an alcohol-based lithium was obtained.
  • the step (1) is carried out in a muffle furnace at a reaction temperature of 200-600 ° C, and the reaction time is 1-6 hours;
  • the atmosphere in the muffle furnace is nitrogen
  • the mass ratio of the graphene material, the conductive agent and the binder containing the lithium alcohol in the step (2) is 80-90:5-10:5-10;
  • the present invention provides a lithium ion supercapacitor preparation process as follows:
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the process for preparing a lithium ion supercapacitor using the positive electrode material of the present invention is a general-purpose lithium ion battery preparation Art, greatly simplifying the preparation process of lithium ion supercapacitors.
  • the positive electrode sheet coated with the graphene material containing the alcohol lithium prepared by the invention is used as a positive electrode sheet of a lithium ion supercapacitor, and the graphene material coating containing the lithium alcohol provides a lithium source, and the lithium ion is charged for the first time.
  • the lithium alcohol is extracted into the graphite negative electrode to lower the negative electrode potential. Therefore, it is not necessary to use a lithium metal plate or a complicated pre-intercalation lithium process in the negative electrode; the same graphene can also serve as a positive active material in the positive electrode, thereby increasing the capacity of the positive electrode. .
  • the present invention has the following beneficial effects: (1)
  • the positive electrode sheet coated with the graphene material containing lithium alcohol is the positive electrode of the lithium ion super capacitor, so that the negative electrode does not need to be added with a lithium sheet or a complicated pre-lithium process, simplifying The preparation process reduces costs.
  • FIG. 1 is a schematic structural view of a positive electrode sheet of a lithium ion supercapacitor of the present invention.
  • a 1_ collector a 2-active material positive electrode sheet, and a graphene material-coated positive electrode sheet containing an alcohol-based lithium.
  • a ratio of 10:10 was added to the NMP and mixed into a slurry, which was then coated on a positive electrode sheet containing the active material, and dried to obtain a graphene material-coated positive electrode sheet 3 containing an alcohol-based lithium.
  • the graphite negative electrode material, the conductive agent Ketjen black, and the binder PVDF are added to the NMP in a mass ratio of 90:5:5 to be mixed into a slurry, and then coated on the negative electrode current collector copper foil foil. Above, after drying, a negative electrode sheet is obtained.
  • the negative electrode sheet, the separator and the positive electrode sheet are assembled into a cell according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 .
  • DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the negative electrode sheet, the separator and the positive electrode sheet are assembled into a battery cell by lamination according to a usual preparation process of a lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 .
  • DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the negative electrode sheet, the separator and the positive electrode sheet are assembled into a cell according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • Example 5 [0052] (1) The graphite oxide and the Li 2 CO 3 are mixed at a mass ratio of 40:1, uniformly mixed, and then placed in a nitrogen-protected muffle furnace at 500 ° C for 4 hours to obtain a graphene containing an alcohol-based lithium. material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种含复合石墨烯涂层正极片的制备方法,包括以下步骤:步骤(1)将氧化石墨和Li 2CO 3混合,混合均匀后放入气体保护的马弗炉内反应,得到含有醇基锂的石墨烯材料;步骤(2)将含有醇基锂的石墨烯材料、导电剂、粘结剂按照比例加入到NMP中混合成浆料,然后涂覆在含有活性材料正极片上,烘干后得到含有醇基锂的石墨烯涂层正极片。含有醇基锂的石墨烯材料涂层的正极片为锂离子超级电容器的正极使负极不需要再加入锂片或者复杂的预嵌锂工艺,简化了制备工艺,降低了成本。

Description

一种含复合石墨烯涂层正极片的制备方法 技术领域
[0001] 本发明属于锂离子超级电容器技术领域, 涉及一种锂离子超级电容器正极片的 制备方法。
背景技术
[0002] 近年来, 锂离子二次电池得到了很大的发展, 这种电池负极一般使用石墨等炭 素材料, 正极使用钴酸锂、 锰酸锂等含锂金属氧化物。 这种电池组装以后, 充 电吋负极向正极提供锂离子, 而在放电吋正极的锂离子又返回负极, 因此被称 为"摇椅式电池"。 与使用金属锂的锂电池相比, 这种电池具有高安全性和高循环 寿命的特点。
[0003] 但是, 由于正极材料在脱嵌锂的过程中容易发生结构的变形, 因此, 锂离子二 次电池的循环寿命仍受到制约。 因此近年来, 把锂离子二次电池和双层电容器 结合在一起的体系研究成为新的热点。
[0004] 锂离子电容器一般负极材料选用石墨、 硬碳等炭素材料, 正极材料选用双电层 特性的活性炭材料, 通过对负极材料进行锂离子的预惨杂, 使负极电位大幅度 下降, 从而提高能量密度。 专禾 ljCN200580001498.2中公幵了一种锂离子电容器 , 这种锂离子电容器使用的正极集流体和负极集流体均具有贯穿正反面的孔, 分别由正极活性物质和负极活性物质形成电极层, 通过对负极进行电化学接触 , 预先把锂离子承载在负极中。 专禾 ljCN200780024069.6中公幵了一种电化学电 容器用负极的预处理方法, 通过气相法或液相法在基板上形成锂层, 然后将该 锂层转印到负极的电极层。 这些预惨杂的方法涉及到的工艺比较复杂, 且对原 材料需要进行特殊处理, 给制造过程带来一定难度。
技术问题
[0005] 本发明要解决的技术问题是提供一种锂离子超级电容器正极片的制备方法, 该 方法制备的正极片可在锂离子电容器中提供锂源, 从而不需要再对负极进行复 杂的预嵌锂处理或者在锂离子电容器中添加锂片, 简化了锂离子电容器制备的 工艺过程, 降低了其工艺成本。
问题的解决方案
技术解决方案
[0006] 本发明提供的锂离子超级电容器正极片的制备方法为:
[0007] 步骤 (1) 将氧化石墨和 Li 2CO 3按质量比 50-10:1的比例混合, 混合均匀后放入 氮气保护的马弗炉内 200-600°C反应 l-6h, 得到含有醇基锂的石墨烯材料。
[0008] 步骤 (2) 将含有醇基锂的石墨烯材料、 导电剂、 粘结剂按照 80-90:5-10:5-10的 质量比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片上, 烘干 后得到含有醇基锂的石墨烯涂层正极片。
[0009] 进一步地
[0010] 进一步地 所述步骤 (1) 在马弗炉内的反应温度为 200-600°C, 反应吋间为 1-6 小吋;
[0011] 进一步地 所述步骤 (2) 中马弗炉内的气氛为氮气;
[0012] 进一步地 所述步骤 (2) 中含有醇基锂的石墨烯材料、 导电剂、 粘结剂的质 量比为 80-90:5-10:5-10;
[0013] 本发明提供一种锂离子超级电容器的制备工艺流程如下:
[0014] (1) 将活性炭或者石墨烯正极材料、 导电剂、 粘结剂按照 90:5:5的比例加入到 NMP中混合成浆料, 然后涂覆在正极集流体铝箔上, 烘干后得到正极片。
[0015] (2) 将含有醇基锂的石墨烯材料、 导电剂、 粘结剂按照 80-90:5-10:5-10的质量 比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片上, 烘干后得 到含有醇基锂的石墨烯材料涂层正极片。
[0016] (3) 将石墨或者硬炭负极材料、 导电剂、 粘结剂按照 90:5:5的比例加入到 NMP 中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极片。
[0017] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0018] 采用本发明正极材料制备锂离子超级电容器的工艺为通用的锂离子电池制备工 艺, 大大简化了锂离子超级电容器的制备工艺。
[0019] 本发明制备的含有醇基锂的石墨烯材料涂层的正极片用作锂离子超级电容器正 极片吋, 含有醇基锂的石墨烯材料涂层提供锂源, 在首次充电吋锂离子脱出醇 基锂插入到石墨负极中, 从而拉低负极电位, 因此负极中不需要采用金属锂片 或者复杂的预嵌锂工艺; 同吋石墨烯在正极也可以充当正极活性材料, 提高正 极的容量。
发明的有益效果
有益效果
[0020] 本发明具有如下有益效果: (1) 含有醇基锂的石墨烯材料涂层的正极片为锂 离子超级电容器的正极使负极不需要再加入锂片或者复杂的预嵌锂工艺, 简化 了制备工艺, 降低了成本。
对附图的简要说明
附图说明
[0021] 图 1是本发明锂离子超级电容器正极片结构示意图。
[0022] 图中, 1_集流体, 2_活性材料正极片, 3_含有醇基锂的石墨烯材料涂层正 极片。
本发明的实施方式
[0023] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
[0024] 实施例 1
[0025] (1) 将氧化石墨和 Li ^0 3按质量比 50:1的比例混合, 混合均匀后放入氮气保 护的马弗炉内 200°C反应 6h, 得到含有醇基锂的石墨烯材料。
[0026] (2) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0027] (3) 将含有醇基锂的石墨烯材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 80
: 10: 10的比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片上, 烘干后得到含有醇基锂的石墨烯材料涂层正极片 3。 [0028] (4) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0029] (5) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0030]
[0031] 实施例 2
[0032] (1) 将氧化石墨和 Li 2CO 3按质量比 10:1的比例混合, 混合均匀后放入氮气保 护的马弗炉内 600°C反应 lh, 得到含有醇基锂的石墨烯材料。
[0033] (2) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0034] (3) 将含有醇基锂的石墨烯材料、 导电剂科琴黑、 粘结剂 PVDF按照 90:5:5的 质量比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干 后得到含有醇基锂的石墨烯材料涂层正极片 3。
[0035] (4) 将硬炭负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0036] (5) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0037] 实施例 3
[0038] (1) 将氧化石墨和 Li 2CO 3按质量比 20:1的比例混合, 混合均匀后放入氮气保 护的马弗炉内 300°C反应 5h, 得到含有醇基锂的石墨烯材料。
[0039] (2) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。 [0040] (3) 将含有醇基锂的石墨烯材料、 导电剂科琴黑、 粘结剂 PVDF按照 85:7:8的 质量比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干 后得到含有醇基锂的石墨烯材料涂层正极片 3。
[0041] (4) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0042] (5) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0043]
[0044] 实施例 4
[0045] (1) 将氧化石墨和 Li ^0 3按质量比 30:1的比例混合, 混合均匀后放入氮气保 护的马弗炉内 400°C反应 2h, 得到含有醇基锂的石墨烯材料。
[0046] (2) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0047] (3) 将含有醇基锂的石墨烯材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 82
:9:9的质量比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上
, 烘干后得到含有醇基锂的石墨烯材料涂层正极片 3。
[0048] (4) 将硬炭负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0049] (5) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0050]
[0051] 实施例 5 [0052] (1) 将氧化石墨和 Li 2CO 3按质量比 40:1的比例混合, 混合均匀后放入氮气保 护的马弗炉内 500°C反应 4h, 得到含有醇基锂的石墨烯材料。
[0053] (2) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0054] (3) 将含有醇基锂的石墨烯材料、 导电剂科琴黑、 粘结剂 PVDF按照 88:6:6的 质量比例加入到 NMP中混合成浆料, 然后涂覆在含有活性材料正极片 2上, 烘干 后得到含有醇基锂的石墨烯材料涂层正极片 3。
[0055] (4) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0056] (5) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0057] 其效果如表 1所示, 由表 1可知: 本发明制备的锂离子超级电容器能量密度达到 了 44.8-47.1 wh/kg, 达到了常用锂离子超级电容器的能量密度水平。
[0058] 表 1
[] [表 1]
Figure imgf000007_0001
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种锂离子超级电容器正极片的制备方法, 其特征在于, 包括以下几 个步骤:
步骤 (1) 将氧化石墨和 Li 2C0 3混合, 混合均匀后放入气体保护的马 弗炉内反应, 得到含有醇基锂的石墨烯材料;
步骤 (2) 将含有醇基锂的石墨烯材料、 导电剂、 粘结剂加入到 NMP 中混合成浆料, 然后涂覆在含有活性材料正极片上, 烘干后得到含有 醇基锂的石墨烯涂层正极片。
[权利要求 2] —种锂离子超级电容器正极片的制备方法, 其特征在于, 所述步骤 (
1) 中氧化石墨和 Li 2CO 3按质量比 50-10:1的比例混合。
[权利要求 3] —种锂离子超级电容器正极片的制备方法, 其特征在于, 所述步骤 (
1) 在马弗炉内的反应温度为 200-600°C, 反应吋间为 1-6小吋。
[权利要求 4] 一种锂离子超级电容器正极片的制备方法, 其特征在于, 所述步骤 (
2) 中马弗炉内的气氛为氮气。
[权利要求 5] —种锂离子超级电容器的制备工艺, 其特征在于, 包括以下几个步骤 步骤 A:将活性炭或者石墨烯正极材料、 导电剂、 粘结剂加入到 NMP 中混合成浆料, 然后涂覆在正极集流体铝箔上, 烘干后得到正极片; 步骤 B:将含有醇基锂的石墨烯材料、 导电剂、 粘结剂加入到 NMP中 混合成浆料, 然后涂覆在含有活性材料正极片上, 烘干后得到含有醇 基锂的石墨烯材料涂层正极片;
步骤 C:将石墨或者硬炭负极材料、 导电剂、 粘结剂加入到 NMP中混 合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极片; 步骤 D:按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过 叠层的方式组成电芯, 然后在电池壳内注入电解液, 封口, 得到锂离 子超级电容器。
[权利要求 6] 如权利要求 5所述的制备工艺, 其特征在于, 所述步骤 A中, 活性炭 或者石墨烯正极材料、 导电剂、 粘结剂质量比 90:5:5; 所述步骤 C中 , 石墨或者硬炭负极材料、 导电剂、 粘结剂质量比 90:5:5。
[权利要求 7] 如权利要求 5所述的制备工艺, 其特征在于, 所述步骤 B和步骤 (2)
中, 含有醇基锂的石墨烯材料、 导电剂、 粘结剂按照质量比 80-90:5-1 0:5-10。
[权利要求 8] 如权利要求 5所述的制备工艺, 其特征在于, 所述步骤 C中, 所述电 解液为 lmol/L LiPF 6的 DOL-DME溶液, 其中, DOL和 DME的体积 比为 1:1。
PCT/CN2016/092655 2016-07-31 2016-07-31 一种含复合石墨烯涂层正极片的制备方法 WO2018023322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092655 WO2018023322A1 (zh) 2016-07-31 2016-07-31 一种含复合石墨烯涂层正极片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092655 WO2018023322A1 (zh) 2016-07-31 2016-07-31 一种含复合石墨烯涂层正极片的制备方法

Publications (1)

Publication Number Publication Date
WO2018023322A1 true WO2018023322A1 (zh) 2018-02-08

Family

ID=61072295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092655 WO2018023322A1 (zh) 2016-07-31 2016-07-31 一种含复合石墨烯涂层正极片的制备方法

Country Status (1)

Country Link
WO (1) WO2018023322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190459A1 (en) * 2019-04-04 2020-10-05 Ipr Holding As Method for pre-lithiating a lithium-ion capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910382A (en) * 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
CN102201275A (zh) * 2010-03-25 2011-09-28 海洋王照明科技股份有限公司 锂盐-石墨烯复合材料及其制备方法与应用
CN102683658A (zh) * 2012-05-21 2012-09-19 焦作聚能能源科技有限公司 一种锂离子电池用石墨/LiAlO2/石墨烯复合材料及其制备方法
CN103022459A (zh) * 2012-11-27 2013-04-03 中国科学院大连化学物理研究所 一种石墨烯/钛酸锂复合负极材料的制备方法
CN103367708A (zh) * 2012-03-29 2013-10-23 海洋王照明科技股份有限公司 电池正极及其制备方法、电池负极及其制备方法、电容电池
US20150044556A1 (en) * 2013-08-08 2015-02-12 Yanbo Wang Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910382A (en) * 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
CN102201275A (zh) * 2010-03-25 2011-09-28 海洋王照明科技股份有限公司 锂盐-石墨烯复合材料及其制备方法与应用
CN103367708A (zh) * 2012-03-29 2013-10-23 海洋王照明科技股份有限公司 电池正极及其制备方法、电池负极及其制备方法、电容电池
CN102683658A (zh) * 2012-05-21 2012-09-19 焦作聚能能源科技有限公司 一种锂离子电池用石墨/LiAlO2/石墨烯复合材料及其制备方法
CN103022459A (zh) * 2012-11-27 2013-04-03 中国科学院大连化学物理研究所 一种石墨烯/钛酸锂复合负极材料的制备方法
US20150044556A1 (en) * 2013-08-08 2015-02-12 Yanbo Wang Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190459A1 (en) * 2019-04-04 2020-10-05 Ipr Holding As Method for pre-lithiating a lithium-ion capacitor
NO345255B1 (en) * 2019-04-04 2020-11-23 Ipr Holding As Method for pre-lithiating a lithium-ion capacitor

Similar Documents

Publication Publication Date Title
CN104157920B (zh) 一种用于高能量密度锂离子电池的化成方法
CN110707287B (zh) 一种金属锂负极及其制备方法和锂电池
WO2017101214A1 (zh) 锂离子电容器及其化成方法
JP7269571B2 (ja) 全固体電池の製造方法
WO2020259436A1 (zh) 一种提高三元正极材料稳定性和加工性的方法
CN207993958U (zh) 一种石墨负极结构组合、锂电池电芯
CN112850796B (zh) 一种制备锂硫电池正极材料S/Fe3O4/MXene的方法
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN113540416A (zh) 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
CN102610790A (zh) 锂离子二次电池及其正极片
CN111883725A (zh) 一种锂离子电池补锂陶瓷隔膜及其制备方法
CN113451586A (zh) 一种二次电池的电极片、二次电池及其制备方法
CN111129573A (zh) 一种全固态锂金属电池的热处理方法
CN107785537B (zh) 一种新型锂离子电池正极极片、其用途及极片的修饰方法
CN113488611A (zh) 一种电极组件及二次电池
WO2018023321A1 (zh) 一种含有锂离子导电聚合物涂层正极片的制备方法
CN110600285B (zh) 一种锂离子电化学储能器件负极的无析锂预嵌锂方法
CN116454283A (zh) 一种钾离子电池正极添加剂及其制备方法与应用
CN116344742A (zh) 一种完全锂化的负极极片及其制备方法
WO2018023322A1 (zh) 一种含复合石墨烯涂层正极片的制备方法
CN215644574U (zh) 一种二次电池的电极片和二次电池
CN115275166A (zh) 一种长寿命石墨复合材料及其制备方法
WO2018023325A1 (zh) 一种含有醇基锂的石墨烯复合正极材料的制备方法
CN110048060B (zh) 氧化石墨烯负载柱五芳烃锂硫电池隔膜、制备方法及其应用
WO2018032322A1 (zh) 一种锂离子电容器正极片的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910920

Country of ref document: EP

Kind code of ref document: A1