WO2018023321A1 - 一种含有锂离子导电聚合物涂层正极片的制备方法 - Google Patents

一种含有锂离子导电聚合物涂层正极片的制备方法 Download PDF

Info

Publication number
WO2018023321A1
WO2018023321A1 PCT/CN2016/092654 CN2016092654W WO2018023321A1 WO 2018023321 A1 WO2018023321 A1 WO 2018023321A1 CN 2016092654 W CN2016092654 W CN 2016092654W WO 2018023321 A1 WO2018023321 A1 WO 2018023321A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode sheet
lithium ion
lithium
conductive polymer
Prior art date
Application number
PCT/CN2016/092654
Other languages
English (en)
French (fr)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/092654 priority Critical patent/WO2018023321A1/zh
Publication of WO2018023321A1 publication Critical patent/WO2018023321A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention belongs to the technical field of lithium ion supercapacitors, and relates to a method for preparing a positive electrode sheet of a lithium ion supercapacitor.
  • the battery negative electrode generally uses a carbon material such as graphite
  • the positive electrode uses a lithium-containing metal oxide such as lithium cobaltate or lithium manganate.
  • the charged negative electrode supplies lithium ions to the positive electrode, and the lithium ion of the positive electrode of the discharge positive electrode returns to the negative electrode, so it is called a "rocking chair type battery".
  • This battery is characterized by high safety and high cycle life compared to lithium batteries using metallic lithium.
  • Lithium-ion capacitors generally use carbon materials such as graphite and hard carbon for the anode material, and activated carbon materials with double-layer characteristics for the cathode material, and the lithium anode is pre-diffused to the anode material, so that the potential of the anode is greatly reduced, thereby improving Energy Density.
  • a lithium ion capacitor is disclosed in the special ljCN200580001498.2.
  • the positive current collector and the negative current collector used in the lithium ion capacitor have holes penetrating the front and back surfaces, and the electrode layer is formed by the positive electrode active material and the negative electrode active material respectively. Electrochemical contact is made to the negative electrode, and lithium ions are carried in the negative electrode in advance.
  • a pretreatment method for a negative electrode for an electrochemical capacitor is disclosed in the Japanese Patent Publication No. Hei. No. 1,200, 406, 9.6, a lithium layer is formed on a substrate by a vapor phase method or a liquid phase method, and then the lithium layer is transferred to an electrode layer of a negative electrode.
  • These pre-excessive methods involve complex processes and require special handling of the raw materials, which makes the manufacturing process difficult.
  • the technical problem to be solved by the present invention is to provide a method for preparing a positive electrode sheet for a lithium ion supercapacitor.
  • the positive electrode sheet prepared by the method can provide a lithium source in a lithium ion capacitor, thereby eliminating the need for complicated pre-processing of the negative electrode.
  • Lithium-intercalation or the addition of lithium wafers to lithium-ion capacitors simplifies the preparation of lithium-ion capacitors The process reduces the cost of the process.
  • the lithium ion supercapacitor positive electrode sheet provided by the invention is prepared by: dissolving a lithium ion conductive polymer material with an organic alcohol or a ketone solvent to form a colloidal solution having a mass concentration of 30-70%, and then coating The positive electrode sheet containing the active material is coated on the positive electrode sheet containing the active material, and the lithium ion conductive polymer coated positive electrode sheet is obtained.
  • the lithium ion conductive polymer material comprises one or more of the following polymers: lithium polyacrylate, lithium polymethacrylate, lithium polyethylene glycol, and a number average molecular weight of 20,000 to 50,000.
  • the gel solution has a mass concentration of 30-70%.
  • organic alcohol or ketone solvent comprises one or more of the following: ethanol, propanol, acetone, hexanediol.
  • the present invention provides a lithium ion supercapacitor preparation process as follows:
  • Activated carbon or graphene cathode material, conductive agent, and binder are added to NMP in a mass ratio of 90:5:5 to form a slurry, which is then coated on a positive current collector aluminum foil, and baked. After getting dry, get the positive electrode
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery core by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the process for preparing a lithium ion supercapacitor using the positive electrode material of the present invention is a general lithium ion battery preparation process, which greatly simplifies the preparation process of the lithium ion supercapacitor.
  • a positive electrode sheet having a coating of a lithium ion conductive polymer material prepared by the present invention is used as a lithium ion supercapacitor
  • the positive electrode sheet has a lithium ion conductive polymer material coating to provide a lithium source, and the lithium ion ion stripping polymer is inserted into the graphite negative electrode during the first charging, thereby lowering the anode potential, so that the lithium metal sheet or the complex is not required in the anode. Pre-intercalated lithium process.
  • the present invention has the following beneficial effects: (1)
  • the positive electrode sheet having a coating of a lithium ion conductive polymer material is a positive electrode of a lithium ion super capacitor, so that the negative electrode does not need to be added with a lithium sheet or a complicated pre-intercalation lithium process, which simplifies The preparation process reduces costs.
  • FIG. 1 is a schematic view showing the structure of a positive electrode sheet of a lithium ion supercapacitor of the present invention.
  • a positive electrode current collector a positive active material sheet, and a lithium ion conductive polymer material coating are used.
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery core by laminating according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the ⁇ 3 ⁇ 4 colloidal solution was then coated on the positive electrode sheet 2 containing the active material, and the solvent was dried to obtain a positive electrode sheet 3 containing a lithium ion conductive polymer coating.
  • the negative electrode sheet, the separator and the positive electrode sheet are passed through the lamination according to the usual preparation process of the lithium ion battery.
  • the battery is composed of a battery, and then an electrolyte is injected into the battery case.
  • the injected electrolyte is a 1 mol/L LiPF 6 DOL-DME solution (a volume ratio of DOL to DME is 1:1), and sealed to obtain a lithium ion supercapacitor.
  • the activated carbon material, the conductive agent Ketchen Black, and the binder PVDF are added to the NMP in a mass ratio of 90:5:5 to be mixed into a slurry, and then coated on the positive electrode current collector 1 aluminum foil. After drying, a positive electrode sheet was obtained.
  • a 45% colloidal solution was then applied to the positive electrode sheet 2 containing the active material, and the solvent was dried to obtain a positive electrode sheet 3 containing a lithium ion conductive polymer coating.
  • the battery is composed of a battery, and then an electrolyte is injected into the battery case.
  • the injected electrolyte is a 1 mol/L LiPF 6 DOL-DME solution (a volume ratio of DOL to DME is 1:1), and sealed to obtain a lithium ion supercapacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种含有锂离子导电聚合物涂层正极片的制备方法,包括将具有锂离子导电聚合物材料用有机醇类或者酮类溶剂溶解,形成胶状溶液,然后涂覆在含有活性材料正极片上(2),烘干溶剂后得到含有锂离子导电聚合物涂层正极片(3)。该方法具有如下有益效果:具有锂离子导电聚合物材料涂层的正极片为锂离子超级电容器的正极使负极不需要再加入锂片或者复杂的预嵌锂工艺,简化了制备工艺,降低了成本。

Description

一种含有锂离子导电聚合物涂层正极片的制备方法 技术领域
[0001] 本发明属于锂离子超级电容器技术领域, 涉及一种锂离子超级电容器正极片的 制备方法。
背景技术
[0002] 近年来, 锂离子二次电池得到了很大的发展, 这种电池负极一般使用石墨等炭 素材料, 正极使用钴酸锂、 锰酸锂等含锂金属氧化物。 这种电池组装以后, 充 电吋负极向正极提供锂离子, 而在放电吋正极的锂离子又返回负极, 因此被称 为"摇椅式电池"。 与使用金属锂的锂电池相比, 这种电池具有高安全性和高循环 寿命的特点。
[0003] 但是, 由于正极材料在脱嵌锂的过程中容易发生结构的变形, 因此, 锂离子二 次电池的循环寿命仍受到制约。 因此近年来, 把锂离子二次电池和双层电容器 结合在一起的体系研究成为新的热点。
[0004] 锂离子电容器一般负极材料选用石墨、 硬碳等炭素材料, 正极材料选用双电层 特性的活性炭材料, 通过对负极材料进行锂离子的预惨杂, 使负极电位大幅度 下降, 从而提高能量密度。 专禾 ljCN200580001498.2中公幵了一种锂离子电容器 , 这种锂离子电容器使用的正极集流体和负极集流体均具有贯穿正反面的孔, 分别由正极活性物质和负极活性物质形成电极层, 通过对负极进行电化学接触 , 预先把锂离子承载在负极中。 专禾 ljCN200780024069.6中公幵了一种电化学电 容器用负极的预处理方法, 通过气相法或液相法在基板上形成锂层, 然后将该 锂层转印到负极的电极层。 这些预惨杂的方法涉及到的工艺比较复杂, 且对原 材料需要进行特殊处理, 给制造过程带来一定难度。
技术问题
[0005] 本发明要解决的技术问题是提供一种锂离子超级电容器正极片的制备方法, 该 方法制备的正极片可在锂离子电容器中提供锂源, 从而不需要再对负极进行复 杂的预嵌锂处理或者在锂离子电容器中添加锂片, 简化了锂离子电容器制备的 工艺过程, 降低了其工艺成本。
问题的解决方案
技术解决方案
[0006] 本发明提供的锂离子超级电容器正极片的制备方法为: 将具有锂离子导电聚合 物材料用有机醇类或者酮类溶剂溶解, 形成质量浓度为 30-70%胶状溶液, 然后 涂覆在含有活性材料正极片上, 烘干溶剂后得到含有锂离子导电聚合物涂层正 极片。
[0007] 进一步地, 所述锂离子导电聚合物材料包含以下一种或多种聚合物: 聚丙烯酸 锂、 聚甲基丙烯酸锂、 聚乙二醇锂, 数均分子量为 20000-50000。
[0008] 进一步地, 所述胶状溶液的质量浓度为 30-70%。
[0009] 进一步地, 所述有机醇类或者酮类溶剂包含以下一种或多种: 乙醇、 丙醇、 丙 酮、 己二醇。
[0010] 本发明提供一种锂离子超级电容器的制备工艺流程如下:
[0011] (1) 将活性炭或者石墨烯正极材料、 导电剂、 粘结剂按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在正极集流体铝箔上, 烘干后得到正极片
[0012] (2) 将具有锂离子导电聚合物材料用有机醇类或者酮类溶剂溶解, 形成质量 浓度为 30-70%胶状溶液, 然后涂覆在含有活性材料正极片上, 烘干溶剂后得到 含有锂离子导电聚合物涂层正极片。
[0013] (3) 将石墨或者硬炭负极材料、 导电剂、 粘结剂按照质量比 90:5:5的比例加入 到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极片。
[0014] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0015] 采用本发明正极材料制备锂离子超级电容器的工艺为通用的锂离子电池制备工 艺, 大大简化了锂离子超级电容器的制备工艺。
[0016] 本发明制备的具有锂离子导电聚合物材料涂层的正极片用作锂离子超级电容器 正极片吋, 具有锂离子导电聚合物材料涂层提供锂源, 在首次充电吋锂离子脱 出聚合物插入到石墨负极中, 从而拉低负极电位, 因此负极中不需要采用金属 锂片或者复杂的预嵌锂工艺。
发明的有益效果
有益效果
[0017] 本发明具有如下有益效果: (1) 具有锂离子导电聚合物材料涂层的正极片为 锂离子超级电容器的正极使负极不需要再加入锂片或者复杂的预嵌锂工艺, 简 化了制备工艺, 降低了成本。
对附图的简要说明
附图说明
[0018] 图 1是本发明锂离子超级电容器正极片结构示意图。
[0019] 图中, 1_正极集流体, 2_活性材料正极片, 3_具有锂离子导电聚合物材料 涂层。
本发明的实施方式
[0020] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
[0021] 实施例 1
[0022] (1) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0023] (2) 将数均分子量为 20000的聚丙烯酸锂用乙醇溶解, 形成质量浓度为 30%胶 状溶液, 然后涂覆在含有活性材料正极片 2上, 烘干溶剂后得到含有锂离子导电 聚合物涂层正极片 3。
[0024] (3) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0025] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0026]
[0027] 实施例 2
[0028] (1) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0029] (2) 将数均分子量为 50000的聚甲基丙烯酸锂用丙酮溶剂溶解, 形成质量浓度 为 70%胶状溶液, 然后涂覆在含有活性材料正极片 2上, 烘干溶剂后得到含有锂 离子导电聚合物涂层正极片 3。
[0030] (3) 将硬炭负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0031] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0032]
[0033]
[0034] 实施例 3
[0035] (1) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0036] (2) 将数均分子量为 30000的聚乙二醇锂用丙醇溶剂溶解, 形成质量浓度为 50
<¾胶状溶液, 然后涂覆在含有活性材料正极片 2上, 烘干溶剂后得到含有锂离子 导电聚合物涂层正极片 3。
[0037] (3) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0038] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0039]
[0040] 实施例 4
[0041] (1) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0042] (2) 将数均分子量为 40000的聚乙二醇锂用己二醇溶剂溶解, 形成质量浓度为
45%胶状溶液, 然后涂覆在含有活性材料正极片 2上, 烘干溶剂后得到含有锂离 子导电聚合物涂层正极片 3。
[0043] (3) 将硬炭负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0044] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0045]
[0046] 实施例 5
[0047] (1) 将活性炭材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例加 入到 NMP中混合成浆料, 然后涂覆在正极集流体 1铝箔上, 烘干后得到正极片。
[0048] (2) 将分子量为 35000的聚丙烯酸锂用乙醇溶剂溶解, 形成质量浓度为 60%胶 状溶液, 然后涂覆在含有活性材料正极片 2上, 烘干溶剂后得到含有锂离子导电 聚合物涂层正极片 3。
[0049] (3) 将石墨负极材料、 导电剂科琴黑、 粘结剂 PVDF按照质量比 90:5:5的比例 加入到 NMP中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极 片。
[0050] (4) 按照通常锂离子电池的制备工艺将负极片、 隔膜和正极片通过叠层的方 式组成电芯, 然后在电池壳内注入电解液, 注入的电解液为 lmol/L LiPF 6 的 DOL-DME溶液 (DOL和 DME的体积比为 1:1), 封口, 得到锂离子超级电容器
[0051] 其效果如表 1所示, 由表 1可知: 本发明制备的锂离子超级电容器能量密度达到 了 43.1-45.2 wh/kg, 达到了常用锂离子超级电容器的能量密度水平。
[0052]
[0053] 表 1
[] [表 1]
Figure imgf000007_0001
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
一种锂离子超级电容器正极片的制备方法, 其特征在于, 将具有锂离 子导电聚合物材料用有机醇类或者酮类溶剂溶解, 形成胶状溶液, 然 后涂覆在含有活性材料正极片上, 烘干溶剂后得到含有锂离子导电聚 合物涂层正极片。
如权利要求 1所述的方法, 其特征在于, 所述锂离子导电聚合物材料 包含以下一种或多种聚合物: 聚丙烯酸锂、 聚甲基丙烯酸锂、 聚乙二 醇锂。
如权利要求 1所述的方法, 其特征在于, 所述锂离子导电聚合物材料 其数均分子量为 20000-50000。
如权利要求 1所述的方法, 其特征在于, 所述胶状溶液的质量浓度为 3 0-70<¾。
如权利要求 1所述的方法, 其特征在于, 所述有机醇类或者酮类溶剂 包含以下一种或多种: 乙醇、 丙醇、 丙酮 T己二醇。
一种锂离子超级电容器的制备工艺, 其特征在于, 包括如下几个步骤 步骤 A:将活性炭或者石墨烯正极材料、 导电剂、 粘结剂加入到 NMP 中混合成浆料, 然后涂覆在正极集流体铝箔上, 烘干后得到正极片; 步骤 B:将具有锂离子导电聚合物材料用有机醇类或者酮类溶剂溶解, 形成质量胶状溶液, 然后涂覆在含有活性材料正极片上, 烘干溶剂后 得到含有锂离子导电聚合物涂层正极片;
步骤 C:将石墨或者硬炭负极材料、 导电剂、 粘结剂按照加入到 NMP 中混合成浆料, 然后涂覆在负极集流体铜箔箔上, 烘干后得到负极片 步骤 D:将负极片、 隔膜和正极片通过叠层的方式组成电芯, 然后在电 池壳内注入电解液, 封口, 得到锂离子超级电容器。
权利要求 6所述的制备工艺, 其特征在于, 所述步骤 A中, 活性炭或 [权利要求 8] 如权利要求 6所述的制备工艺, 其特征在于, 所述步骤 B中, 质量浓 度为 30-70%胶状溶液。
[权利要求 9] 如权利要求 6所述的制备工艺, 其特征在于, 所述步骤 C中, 石墨或 者硬炭负极材料、 导电剂、 粘结剂质量比为 90:5:5。
[权利要求 10] 如权利要求 6所述的制备工艺, 其特征在于, 所述步骤 D中, 电解液 为 lmol/L LiPF e^ DOL-DME溶液, DOL和 DME的体积比为 1:1。
PCT/CN2016/092654 2016-07-31 2016-07-31 一种含有锂离子导电聚合物涂层正极片的制备方法 WO2018023321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092654 WO2018023321A1 (zh) 2016-07-31 2016-07-31 一种含有锂离子导电聚合物涂层正极片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092654 WO2018023321A1 (zh) 2016-07-31 2016-07-31 一种含有锂离子导电聚合物涂层正极片的制备方法

Publications (1)

Publication Number Publication Date
WO2018023321A1 true WO2018023321A1 (zh) 2018-02-08

Family

ID=61074113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092654 WO2018023321A1 (zh) 2016-07-31 2016-07-31 一种含有锂离子导电聚合物涂层正极片的制备方法

Country Status (1)

Country Link
WO (1) WO2018023321A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354575A (zh) * 2020-04-30 2020-06-30 苏州北科纳米科技有限公司 一种多孔mxene泡沫复合材料制备方法
CN111403186A (zh) * 2020-04-30 2020-07-10 苏州北科纳米科技有限公司 一种基于熔盐法制备Mxene材料的方法
NO20190459A1 (en) * 2019-04-04 2020-10-05 Ipr Holding As Method for pre-lithiating a lithium-ion capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840787A (zh) * 2010-05-18 2010-09-22 东莞新能源科技有限公司 锂离子电容器正极片的制作方法以及使用该正极片的锂离子电容器
US20130202962A1 (en) * 2010-10-15 2013-08-08 The Yokohama Rubber Co., Ltd. Conductive polymer/porous carbon material composite and electrode material using same
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
CN103904291A (zh) * 2012-12-28 2014-07-02 华为技术有限公司 水系锂离子电池电极及其制备方法、水系锂离子电池
CN106098409A (zh) * 2016-07-31 2016-11-09 肖丽芳 一种含有锂离子导电聚合物涂层正极片的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840787A (zh) * 2010-05-18 2010-09-22 东莞新能源科技有限公司 锂离子电容器正极片的制作方法以及使用该正极片的锂离子电容器
US20130202962A1 (en) * 2010-10-15 2013-08-08 The Yokohama Rubber Co., Ltd. Conductive polymer/porous carbon material composite and electrode material using same
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
CN103904291A (zh) * 2012-12-28 2014-07-02 华为技术有限公司 水系锂离子电池电极及其制备方法、水系锂离子电池
CN106098409A (zh) * 2016-07-31 2016-11-09 肖丽芳 一种含有锂离子导电聚合物涂层正极片的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190459A1 (en) * 2019-04-04 2020-10-05 Ipr Holding As Method for pre-lithiating a lithium-ion capacitor
NO345255B1 (en) * 2019-04-04 2020-11-23 Ipr Holding As Method for pre-lithiating a lithium-ion capacitor
CN111354575A (zh) * 2020-04-30 2020-06-30 苏州北科纳米科技有限公司 一种多孔mxene泡沫复合材料制备方法
CN111403186A (zh) * 2020-04-30 2020-07-10 苏州北科纳米科技有限公司 一种基于熔盐法制备Mxene材料的方法

Similar Documents

Publication Publication Date Title
TWI611443B (zh) 電極用集電體、非水電解質蓄電池用正極電極、非水電解質蓄電池用負極電極、非水電解質蓄電池、非水電解質電雙層電容器用電極、非水電解質電雙層電容器、非水電解質混合式電容器用正極電極、非水電解質混合式電容器用負極電極及非水電解質混合式電容器
CN107093773B (zh) 电池
CN111785925B (zh) 极片及应用、含有该极片的低温升高安全性锂离子电池
KR101664244B1 (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
WO2012146046A1 (zh) 一种聚酰亚胺电容电池及其制作方法
CN104078246A (zh) 一种锂离子电池电容器
CN112259803B (zh) 一种锂离子叠芯及其应用
CN106169617A (zh) 一种空间用安全高功率锂离子蓄电池
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN113540416A (zh) 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
CN115714163B (zh) 预锂负极片及其制备方法、预锂电芯和锂离子电池
CN212907803U (zh) 一种高倍率充放电的锂离子电池
CN112290080A (zh) 一种可低温充电的锂离子电池
CN106098409A (zh) 一种含有锂离子导电聚合物涂层正极片的制备方法
WO2018023321A1 (zh) 一种含有锂离子导电聚合物涂层正极片的制备方法
CN113488611A (zh) 一种电极组件及二次电池
CN110600285B (zh) 一种锂离子电化学储能器件负极的无析锂预嵌锂方法
CN109817467B (zh) 一种复合正极材料及其制备方法以及一种化学电源及其制备方法
WO2023134234A1 (zh) 正极复合材料、其制备方法、正极以及锂离子二次电池
CN112670592A (zh) 一种极片与隔膜复合工艺及锂电芯制备工艺
CN109286045B (zh) 一种锂离子电池及其制作方法和用途
CN105406082A (zh) 一种高倍率锂离子电池正极复合极片及其制备方法
CN214428670U (zh) 一种可低温充电的锂离子电池
CN114079038A (zh) 一种高硫载量锂硫电池正极及其制备方法
WO2018023322A1 (zh) 一种含复合石墨烯涂层正极片的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910919

Country of ref document: EP

Kind code of ref document: A1