WO2018021360A1 - マグネシウム-リチウム合金及びマグネシウム空気電池 - Google Patents

マグネシウム-リチウム合金及びマグネシウム空気電池 Download PDF

Info

Publication number
WO2018021360A1
WO2018021360A1 PCT/JP2017/026940 JP2017026940W WO2018021360A1 WO 2018021360 A1 WO2018021360 A1 WO 2018021360A1 JP 2017026940 W JP2017026940 W JP 2017026940W WO 2018021360 A1 WO2018021360 A1 WO 2018021360A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
magnesium
lithium alloy
less
negative electrode
Prior art date
Application number
PCT/JP2017/026940
Other languages
English (en)
French (fr)
Inventor
後藤 崇之
基史 松田
敦 作田
Original Assignee
株式会社三徳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三徳 filed Critical 株式会社三徳
Priority to JP2017558520A priority Critical patent/JP6290520B1/ja
Publication of WO2018021360A1 publication Critical patent/WO2018021360A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a magnesium-lithium alloy suitable for use in a negative electrode of an air battery, and a negative electrode and a magnesium air battery using the alloy.
  • Metal-air batteries have attracted interest in recent years due to their high theoretical energy density, and various metals have been tried. Magnesium is abundant in resources, inexpensive, and has low toxicity, so a magnesium air battery using magnesium or a magnesium alloy as a negative electrode is expected.
  • the conventional magnesium-air battery has a problem that polarization tends to occur and the Coulomb efficiency is low.
  • magnesium in the negative electrode is easily corroded, and this corrosion is considered to cause polarization. Therefore, great efforts have been made to develop new magnesium alloy negative electrode materials mainly for the purpose of reducing the corrosion rate and improving the reaction activity.
  • Patent Document 1 discloses an alloy containing magnesium, aluminum, and calcium as essential components, and a magnesium air battery using the alloy as a negative electrode.
  • the conventional magnesium-air battery although the corrosion rate of the negative electrode is improved to some extent, it is not sufficient, and as a result, the magnesium utilization efficiency is not high. Therefore, the conventional magnesium-air battery has a small discharge amount, and further improvement is desired.
  • An object of the present invention is to provide a magnesium-lithium alloy that can exhibit excellent discharge characteristics when used in a negative electrode of a magnesium-air battery.
  • Another object of the present invention is to provide a negative electrode capable of exhibiting excellent discharge characteristics when used in a magnesium-air battery.
  • a further object of the present invention is to provide a magnesium air battery exhibiting excellent discharge characteristics.
  • the present inventors have prepared a magnesium-lithium alloy by adding a specific element such as lithium to magnesium in a specific amount, and using the alloy for the negative electrode is excellent. It has been found that a magnesium-air battery exhibiting excellent discharge characteristics can be obtained, and the present invention has been completed.
  • the magnesium-lithium alloy for an air battery negative electrode of the present invention has a Li content of more than 10.50% by mass and 19.50% by mass or less, Al of 0% by mass to 15.00% by mass, 0% by mass to 5.00% by mass.
  • % Ca 0% to 3.00% Zn, 0% to 3.00% R, 0% to 2.00% Mn, 0% to 0. It consists of 10 mass% or less of Fe, 0 mass% or more and 0.10 mass% or less of Cu, 0 mass% or more of 0.10 mass% or less of Ni, and the balance Mg and impurities.
  • R represents one or more rare earth elements selected from the group consisting of Y, La, Ce, Nd, and Gd.
  • the air battery negative electrode of the present invention contains the magnesium-lithium alloy of the present invention, and the magnesium air battery of the present invention has the negative electrode.
  • the magnesium-air battery using the magnesium-lithium alloy of the present invention for the negative electrode can exhibit excellent discharge characteristics. Further, since the magnesium-lithium alloy of the present invention mainly has a ⁇ single phase structure, it is excellent in workability.
  • the magnesium-lithium alloy for an air battery negative electrode of the present invention contains Mg and Li as essential elements, and contains one or more optional elements selected from Al, Ca, Zn, R, Mn, Fe, Cu, and Ni. It may also contain a small amount of impurities.
  • the magnesium-lithium alloy for air battery negative electrode is simply referred to as “magnesium-lithium alloy”.
  • the mass ratio of Li to the entire magnesium-lithium alloy exceeds 10.50 mass% and is 19.50 mass% or less. Therefore, since this magnesium-lithium alloy has a ⁇ single phase structure and excellent workability, it can be easily processed into a negative electrode. That is, the magnesium-lithium alloy of the present invention can achieve both excellent workability and discharge characteristics. In addition, other phases (for example, Al intermetallic compound phase etc.) may precipitate in the ⁇ single phase structure. When the Li content exceeds 16.00% by mass, the corrosion resistance and strength of the magnesium-lithium alloy tend to decrease.
  • Al content ratio The mass ratio of Al to the whole magnesium-lithium alloy (Al content ratio) is 0 mass% or more and 15.00 mass% or less.
  • Al content ratio Even when the Al content exceeds 15.00% by mass, the production of the negative electrode becomes difficult.
  • the Al content ratio exceeds 1.50% by mass the workability may be lowered.
  • sufficient workability can be obtained even with such an Al content ratio.
  • the mass ratio (Ca content ratio) of Ca to the entire magnesium-lithium alloy is 0% by mass or more and 5.00% by mass or less. Since the preferable range of the Ca content depends on the content of other elements, it cannot be defined unconditionally. Usually, if the Ca content is too high, the workability of the magnesium-lithium alloy may be reduced. However, in the present invention, a high Ca content such as 0.60% by mass or 3.05% by mass is sufficient. Processability can be obtained.
  • the mass ratio (Zn content ratio) of Zn to the entire magnesium-lithium alloy is 0% by mass or more and 3.00% by mass or less. When Zn is added, the workability of the magnesium-lithium alloy may be further improved.
  • R is one or more rare earth elements selected from the group consisting of Y, La, Ce, Nd, and Gd.
  • R is known to easily form an intermetallic compound with Fe.
  • the mass ratio (R content ratio) of R to the entire magnesium-lithium alloy is 0% by mass or more and 3.00% by mass or less.
  • the preferable range of the R content depends on the content of other elements and cannot be defined unconditionally, the R content is 0% by mass to 1.00% by mass (particularly 0.001% by mass to 0.45% by mass). In many cases, excellent workability is obtained.
  • Mn forms a stable intermetallic compound with Fe and improves the corrosion resistance of the magnesium-lithium alloy.
  • the mass ratio (Mn content ratio) of Mn to the entire magnesium-lithium alloy is 0% by mass or more and 2.00% by mass or less.
  • the Mn content is 0.001% by mass to 0.50% by mass (particularly 0.30% by mass or less). In many cases, excellent corrosion resistance can be obtained.
  • the mass ratio (Fe content ratio) of Fe to the entire magnesium-lithium alloy is 0% by mass or more and 0.10% by mass or less.
  • the preferable range of the Fe content depends on the content of other elements, it cannot be defined unconditionally, but more excellent discharge characteristics are often obtained when the Fe content is 0% by mass or more and 0.05% by mass or less. .
  • the corrosion resistance of the magnesium-lithium alloy may be lowered and the discharge characteristics of the battery may be deteriorated.
  • Li, Al, Ca, Zn, R, And by appropriately adjusting the content ratio of Mn sufficient discharge characteristics can be achieved even if the Fe content ratio exceeds 0.005 mass% or 0.007 mass%.
  • the mass ratio of Cu to the entire magnesium-lithium alloy (Cu content ratio) is 0 mass% or more and 0.10 mass% or less.
  • the preferable range of the Cu content depends on the content of other elements and cannot be defined unconditionally, excellent discharge characteristics are often obtained when the Cu content is 0% by mass or more and 0.05% by mass or less. .
  • the corrosion resistance of the magnesium-lithium alloy may be lowered and the discharge characteristics of the battery may be deteriorated.
  • Li, Al, Ca, Zn, R, And by appropriately adjusting the content ratio of Mn sufficient discharge characteristics can be achieved even if the Cu content ratio exceeds 0.005 mass% or 0.007 mass%.
  • Ni content ratio The mass ratio of Ni to the entire magnesium-lithium alloy (Ni content ratio) is 0% by mass or more and 0.10% by mass or less. Although the preferable range of the Ni content depends on the content of other elements, it cannot be defined unconditionally. However, when the Ni content is 0% by mass or more and 0.05% by mass or less, excellent discharge characteristics are often obtained. . Usually, when the Ni content exceeds 0.005 mass%, the corrosion resistance of the magnesium-lithium alloy may be lowered and the discharge characteristics of the battery may be deteriorated. However, in the present invention, Li, Al, Ca, Zn, R, In addition, by appropriately adjusting the content ratio of Mn, sufficient discharge characteristics can be achieved even if the Ni content ratio exceeds 0.005 mass% or 0.007 mass%.
  • the balance other than the Li and optional elements is composed of Mg and impurities.
  • the “impurity” means an element mixed in the alloy, although not intentionally added to the magnesium-lithium alloy. That is, the “impurities” include elements that have been mixed in the alloy raw material and have not been removed in the alloy manufacturing process, and elements mixed in from the outside in the alloy manufacturing process. Although the above optional elements (especially Cu, Ni, and Fe) are not intentionally added, they may remain in the alloy, but in the present invention, these optional elements are not treated as impurities. That is, in the present invention, the impurity is one or more elements other than Mg, Li, Al, Ca, Zn, R, Mn, Cu, Ni, and Fe. Examples of impurities include Si and the like.
  • the magnesium-lithium alloy of the present invention preferably does not usually contain impurities, but may contain impurities in an amount that does not have a significant adverse effect on the properties of the alloy. That is, the mass ratio (impurity content ratio) of impurities to the entire magnesium-lithium alloy is preferably 0% by mass, but is acceptable if it is 0.1% by mass or less. When a general alloy raw material and alloy manufacturing method are used, the impurity content is usually 0.001% by mass or more and 0.5% by mass or less.
  • a magnesium air battery using magnesium or a magnesium alloy for the negative electrode has a problem that polarization easily occurs. Since corrosion of the negative electrode can cause polarization, many studies have been made on reducing the amount of corrosion of the negative electrode material as described in Non-Patent Document 1, for example.
  • the performance of the battery is improved by suppressing or delaying the formation of the resistance film with Li, R, or the like, or stabilizing the resistance film by adjusting the content ratio of Mn or the like.
  • the total content of R and Mn is preferably 0.001% by mass or more, more preferably 0.007% by mass or more.
  • the total content of R and Mn is preferably 0.50% by mass or less, more preferably 0.30% by mass or less.
  • the method for producing the magnesium-lithium alloy is not particularly limited as long as the alloy having the above composition and physical properties can be obtained.
  • a method including the step (a) of obtaining the alloy raw material melt by melting the raw materials of each element and the step (b) of obtaining an alloy ingot by cooling and solidifying the alloy raw material melt.
  • the magnesium-air battery of the present invention usually has a negative electrode, a positive electrode, and an electrolyte, and the negative electrode contains the magnesium-lithium alloy of the present invention.
  • the electrolyte may be used in the form of an electrolyte solution (electrolytic solution).
  • a magnesium air battery uses oxygen as a positive electrode active material and magnesium as a negative electrode active material. Magnesium in the negative electrode emits electrons to become magnesium ions and elutes into the electrolyte. On the other hand, in the positive electrode, oxygen and water receive electrons and become hydroxide ions. As a whole, an electromotive force is generated between both electrodes due to the production of magnesium hydroxide Mg (OH) 2 from magnesium, oxygen, and water.
  • the electrolytic solution elutes magnesium ions generated at the negative electrode and supplies water that reacts with oxygen to the positive electrode.
  • the magnesium-air battery may be stored in a state that does not contain an electrolytic solution, and the electrolytic solution may be added at the time of use. That is, in the present invention, a structure having a negative electrode and a positive electrode in a state before adding an electrolytic solution is also referred to as a magnesium-air battery.
  • the negative electrode includes the magnesium-lithium alloy of the present invention, and may further include a component for ensuring current collection. It may be formed by applying a carbon paste to a magnesium-lithium alloy or sputtering a dissimilar metal such as platinum or copper. Alternatively, a laminate of a current collector and a magnesium-lithium alloy may be used. One component having both a function as a current collector and a function as a negative electrode active material may be used as the negative electrode.
  • the method for producing the negative electrode is not particularly limited, and can be obtained, for example, by rolling the alloy ingot obtained in any of the steps (b) to (d).
  • the rolled alloy ingot may be polished or roughened using sandpaper or the like. In the case of polishing, it is preferably performed immediately before the production of the battery.
  • the size and shape of the negative electrode are not particularly limited, but usually the thickness of the negative electrode may be about 10 ⁇ m to 5 mm.
  • the positive electrode may have a current collector for supplying electrons to oxygen, which is a positive electrode active material, and a catalyst layer for promoting an oxygen reduction reaction.
  • the current collector includes a conductive material, and examples thereof include carbonaceous materials such as activated carbon, carbon fiber, carbon black, and graphite, and metal materials such as iron, copper, nickel, and aluminum.
  • the catalyst used for the catalyst layer include silver, platinum, ruthenium, palladium, carbon, oxide and the like. Among these, an oxide catalyst is preferable from the viewpoint of both abundant amount of resources and high reaction activity.
  • the current collector and the catalyst layer may each contain a binder, a water repellent material, and the like.
  • the positive electrode may be obtained by preparing a current collector and a catalyst layer as separate components and laminating them.
  • the positive electrode may be formed by mixing a conductive material for the current collector and a catalyst for the catalyst layer. That is, a single component having both a function as a current collector and a function as a catalyst layer may be used as the positive electrode.
  • the positive electrode may further have a support (carrier), a water repellent layer, a gas diffusion layer and the like.
  • the support is made of a material having mechanical strength, and examples thereof include various foamed metals such as nickel, punching metal, and micromesh.
  • the water-repellent layer is made of a material that can transmit oxygen but can block water, and examples thereof include polytetrafluoroethylene (PTFE).
  • the gas diffusion layer preferably has high porosity and high conductivity, and examples of the material include carbon paper and carbon cloth.
  • the method for producing the positive electrode is not particularly limited.
  • a slurry can be prepared by mixing a catalyst, a conductive material, a binder, and a solvent, and the slurry can be applied to a support and dried.
  • the solvent include water and organic solvents (N-methyl-2-pyrrolidone, ethanol, ethylene glycol, etc.).
  • the size and shape of the positive electrode are not particularly limited, but usually the thickness of the positive electrode may be about 20 ⁇ m to 1 cm.
  • electrolytic solution examples include aqueous solutions of NaCl, NaOH, NaHCO 3 , Na 2 SO 4 , HCl, HNO 3 , NH 3 and the like. Among these, a highly safe NaCl aqueous solution is preferable.
  • the magnesium air battery may further have a separator, a current collector, and the like.
  • a separator is arrange
  • the separator material include polyethylene fiber, polypropylene fiber, glass fiber, resin nonwoven fabric, glass nonwoven fabric, and filter paper.
  • the magnesium-air battery of the present invention exhibits excellent discharge characteristics.
  • a negative electrode is produced by processing a magnesium-lithium alloy into a shape having a diameter of 16 mm and a thickness of 1 mm, and MnO 2 , acetylene black, and polyvinylidene fluoride are used at 2: 0.05: A catalyst layer containing 0.1 mass ratio is supported on nickel foam having a diameter of 14 mm to produce a catalyst layer, and a magnesium-air battery having a diameter of 20 mm and a thickness of 3.2 mm is manufactured using the anode and the catalyst layer.
  • a discharge amount evaluation test in which a discharge process of injecting a NaCl aqueous solution as an electrolyte into the magnesium-air battery and discharging at a constant current of 5 mA is repeated 8 times, a discharge amount of 45C or more (obtained in 8 discharge processes) Sum of coulomb amounts).
  • a discharge amount of 70 C or more is obtained, and in a more preferred embodiment, a discharge amount of 100 C or more is obtained.
  • a negative electrode is produced by processing a magnesium-lithium alloy into a shape having a diameter of 14 mm and a thickness of 1 mm, and a catalyst mixture containing carbon black and polytetrafluoroethylene is foamed with a diameter of 14 mm.
  • the magnesium-air battery of the present invention can be repeatedly discharged 20 times or more. In a preferred embodiment of the present invention, it can be repeated 90 times or more, and in a more preferred embodiment, it can be repeated 150 times or more.
  • the magnesium-lithium alloy of the present invention is 0.95% by mass or more and 4.50% by mass or less, or 8.00% by mass or more and 12.00% by mass.
  • % Al or less is preferable.
  • the Al content ratio is 0.95 mass% or more and 4.50 mass% or less
  • the R content ratio is particularly preferably 0 mass% or more and 0.10 mass% or less.
  • the Ca content is particularly preferably 1.02% by mass or more and 1.50% by mass or less.
  • the magnesium-air battery of the present invention can be used as an emergency standby power source, an outdoor power source, a power source in a non-electrified area, and the like. When it is stored in a dry state without adding an electrolyte, it can be stored for a long time. In this case, it functions as a battery by adding an electrolyte during use.
  • the manufacturing method of the magnesium-air battery is not particularly limited.
  • the negative electrode case, the spacer, the current collector, the magnesium-lithium alloy negative electrode, the separator, the positive electrode, and the positive electrode case can be stacked in this order.
  • Example 1 A raw material for each element was prepared and melted by heating to obtain a molten alloy raw material. Subsequently, the melt was cast into a 150 mm ⁇ 300 mm ⁇ 500 mm mold and cooled and solidified to produce a magnesium-lithium alloy alloy ingot. The composition of the obtained magnesium-lithium alloy was quantitatively analyzed by ICP (Inductively Coupled Plasma) emission spectrometry. The results are shown in Table 1. The magnesium-lithium alloy of Example 1 was confirmed to contain impurities such as Si, but the impurity content was a trace amount that did not satisfy the lower limit of quantification. That is, this magnesium-lithium alloy substantially consists of the elements shown in Table 1 and the balance Mg.
  • ICP Inductively Coupled Plasma
  • Examples 2 to 22 and Comparative Examples 1 to 6 Alloy ingots of Examples 2 to 22 and Comparative Examples 1 to 6 were produced in the same manner as Example 1 except that the content ratio of each element was changed as shown in Table 1.
  • the composition of the obtained alloy was quantitatively analyzed in the same manner as in Example 1. The results are shown in Table 1.
  • the alloys of Examples 2 to 22 and Comparative Examples 1 to 6 were confirmed to contain impurities such as Si, but the impurity content was a trace amount that did not satisfy the lower limit of quantification. That is, these alloys are substantially composed of the elements shown in Table 1 and the balance Mg.
  • the characters in parentheses represent the rare earth element symbols used as R.
  • the foamed nickel thus coated with the catalyst slurry was dried on a hot plate heated to 160 ° C. for 3 hours or more.
  • An electrolyte injection hole having a diameter of 3 mm was formed in the central portion, and pressed at 64 MPa for 30 seconds to produce a positive electrode.
  • the thickness of the positive electrode was 150 ⁇ m, and the supported amount of MnO 2 catalyst was 100 mg ⁇ cm ⁇ 2 .
  • a 2032 type coin cell part manufactured by Hosen Co., Ltd. As a battery member, a 2032 type coin cell part manufactured by Hosen Co., Ltd. was used. Negative electrode case, wave washer, spacer, copper foil cut to a diameter of 16 mm (CF-T8G-STD-18 manufactured by Fukuda Metal Foil Powder Co., Ltd.), the above magnesium-lithium alloy negative electrode, filter paper cut to a diameter of 18 mm (5C made by ADVANTEC) 3) The above positive electrode and the positive electrode case with air holes were laminated in this order, and caulking was performed to produce a magnesium air battery.
  • the copper foil functions as a current collector.
  • the filter paper functions as a separator and also has a role of holding an electrolyte solution.
  • the magnesium-air battery was installed in a thermostatic chamber (temperature 25 ° C., relative humidity 30%).
  • a 0.1 M NaCl aqueous solution was prepared as an electrolytic solution, and 0.1 mL of the NaCl aqueous solution was injected into the battery from the positive electrode electrolyte injection hole using a syringe.
  • a discharge test was conducted at a constant current of 5 mA.
  • BLS5516-5V100 mA manufactured by Keiki Keiki Center Co., Ltd. was used.
  • the electrolyte solution was injected again to perform the same discharge process, and a total of eight discharge processes were performed. Table 1 shows the total amount of coulombs obtained in these eight discharge processes as “discharge amount”.
  • the magnesium-air battery was placed in a thermostatic chamber (temperature: 25 ° C.), discharged at a constant current of 10 mA for 5 minutes, and then rested for 30 minutes. This discharge and rest were repeated until no discharge was possible, and the number of repetitions at which discharge was possible was measured. This number is shown in Table 1 as “the number of discharges”.
  • As an evaluation apparatus BLS5516-5V100 mA manufactured by Keiki Keiki Center Co., Ltd. was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

空気電池の負極での使用に適したマグネシウム-リチウム合金、並びに該合金を用いた負極及びマグネシウム空気電池を提供することを目的とする。本願発明のマグネシウム-リチウム合金は、10.50質量%を超え19.50質量%以下のLi、0質量%以上15.00質量%以下のAl、0質量%以上5.00質量%以下のCa、0質量%以上3.00質量%以下のZn、0質量%以上3.00質量%以下のR、0質量%以上2.00質量%以下のMn、0質量%以上0.10質量%以下のFe、0質量%以上0.10質量%以下のCu、0質量%以上0.10質量%以下のNi、並びに残部のMg及び不純物からなり、前記RがY、La、Ce、Nd、及びGdからなる群から選ばれる1種以上の希土類元素を表す。

Description

マグネシウム-リチウム合金及びマグネシウム空気電池
 本発明は、空気電池の負極での使用に適したマグネシウム-リチウム合金、並びに該合金を用いた負極及びマグネシウム空気電池に関する。
 金属空気電池は理論エネルギー密度が高いため近年関心を集めており、様々な金属が試されている。マグネシウムは比較的資源が豊富であり、安価であり、毒性が低いため、マグネシウム又はマグネシウム合金を負極に用いたマグネシウム空気電池が期待されている。
 従来のマグネシウム空気電池は分極が起こりやすくクーロン効率が低いという問題を有する。マグネシウム空気電池では負極中のマグネシウムが腐食しやすく、この腐食が分極を引き起こすと考えられている。従って、主に腐食速度の低下と反応活性の向上を目的として、新たなマグネシウム合金負極材料の開発に多大な努力がなされてきた。
 非特許文献1等に記載されているように、マグネシウム空気電池の負極材料として、マグネシウム-リチウム合金、マグネシウム-アルミニウム合金、マグネシウム-アルミニウム-亜鉛合金、マグネシウム-アルミニウム-マンガン合金といった、様々なマグネシウム合金が検討されてきた。例えば、特許文献1は、マグネシウム、アルミニウム、及びカルシウムを必須成分として含む合金、並びに該合金を負極に用いたマグネシウム空気電池を開示している。
WO2012/144301
チャン(Tianran Zhang)ら,マテリアルズ・ホライズンズ(Materials Horizons),2014,1,196-206
 しかしながら、従来のマグネシウム空気電池においては、負極の腐食速度についてはある程度改善されているものの十分ではなく、その結果としてマグネシウム利用効率は高くない。そのため、従来のマグネシウム空気電池は放電量が小さく、更なる向上が望まれている。
 本発明の目的は、マグネシウム空気電池の負極に使用した際に優れた放電特性を示し得るマグネシウム-リチウム合金を提供することである。
 本発明の他の目的は、マグネシウム空気電池に使用した際に優れた放電特性を示し得る負極を提供することである。
 本発明の更なる目的は、優れた放電特性を示すマグネシウム空気電池を提供することである。
 本発明者らは、上記課題を解決するべく鋭意検討した結果、マグネシウムにリチウム等の特定元素を特定量だけ添加してマグネシウム-リチウム合金を調製し、該合金を負極に使用することによって、優れた放電特性を示すマグネシウム空気電池が得られることを見出し、本発明を完成するに至った。
 本発明の空気電池負極用マグネシウム-リチウム合金は、10.50質量%を超え19.50質量%以下のLi、0質量%以上15.00質量%以下のAl、0質量%以上5.00質量%以下のCa、0質量%以上3.00質量%以下のZn、0質量%以上3.00質量%以下のR、0質量%以上2.00質量%以下のMn、0質量%以上0.10質量%以下のFe、0質量%以上0.10質量%以下のCu、0質量%以上0.10質量%以下のNi、並びに残部のMg及び不純物からなる。ここで、RはY、La、Ce、Nd、及びGdからなる群から選ばれる1種以上の希土類元素を表す。
 本発明の空気電池負極は上記本発明のマグネシウム-リチウム合金を含み、本発明のマグネシウム空気電池は該負極を有する。
 本発明のマグネシウム-リチウム合金を負極に用いたマグネシウム空気電池は、優れた放電特性を示し得る。また、本発明のマグネシウム-リチウム合金は主にβ単相構造を有するため、加工性にも優れている。
 本発明の空気電池負極用マグネシウム-リチウム合金は、Mg及びLiを必須元素として含有し、Al、Ca、Zn、R、Mn、Fe、Cu、及びNiから選ばれる1種以上の任意元素を含有していてもよく、更に少量の不純物を含有してもよい。以下、空気電池負極用マグネシウム-リチウム合金を単に「マグネシウム-リチウム合金」と称する。
 従来から、マグネシウム-リチウム合金において、Liは合金表面にLi2CO3を形成することでMg(OH)2抵抗被膜の生成を遅延させると考えられている(ジャーナル・オブ・ザ・エレクトロケミカル・ソサエティ(Journal of The Electrochemical Society),163(6),C324-C329(2016)参照)。また、Mgの結晶構造はα相構造(hcp構造)であるが、Li含有割合が6~10.5質量%のマグネシウム-リチウム合金はα相構造とβ相構造(bcc構造)のαβ混相構造を有し、Li含有割合が10.5質量%を超えるマグネシウム-リチウム合金はβ単相構造を有することが知られている。β相は多くのすべり系を有するため、Li含有割合を高くするに従ってマグネシウム-リチウム合金の加工性が向上する。
 本発明において、マグネシウム-リチウム合金全体に対するLiの質量比(Li含有割合)は10.50質量%を超え19.50質量%以下である。従って、このマグネシウム-リチウム合金はβ単相構造を有し加工性に優れるため、負極へと容易に加工できる。すなわち、本発明のマグネシウム-リチウム合金は、優れた加工性及び放電特性の両方を達成し得る。なお、β単相構造中に他の相(例えばAl金属間化合物相等)が析出していてもよい。Li含有割合が16.00質量%を超えると、マグネシウム-リチウム合金の耐食性及び強度が低下する傾向がある。
 マグネシウム-リチウム合金全体に対するAlの質量比(Al含有割合)は0質量%以上15.00質量%以下である。Al含有割合が15.00質量%を超えると負極の製造が困難となる。本発明では、Al含有割合が1.70質量%以下という低い割合であっても、優れた放電特性が得られる場合がある。一方、通常はAl含有割合が1.50質量%を超えると加工性が低下することがあるが、本発明ではこのようなAl含有割合であっても十分な加工性が得られる。
 マグネシウム-リチウム合金全体に対するCaの質量比(Ca含有割合)は0質量%以上5.00質量%以下である。Ca含有割合の好ましい範囲は他の元素の含有割合に依るため一概に規定できない。通常、Ca含有割合が高すぎるとマグネシウム-リチウム合金の加工性が低下する場合があるが、本発明では0.60質量%以上或いは3.05質量%以上といった高いCa含有割合であっても十分な加工性が得られる。
 マグネシウム-リチウム合金全体に対するZnの質量比(Zn含有割合)は0質量%以上3.00質量%以下である。Znを添加するとマグネシウム-リチウム合金の加工性が更に改善される場合がある。
 RはY、La、Ce、Nd、及びGdからなる群から選ばれる1種以上の希土類元素である。RはFeと金属間化合物を形成しやすいことが知られている。詳細な機構は明らかではないが、マグネシウム-リチウム合金中で生じたRFe化合物はMg(OH)2抵抗被膜の生成を抑制又は遅延させる効果があると予想される。マグネシウム-リチウム合金全体に対するRの質量比(R含有割合)は0質量%以上3.00質量%以下である。R含有割合の好ましい範囲は他の元素の含有割合に依るため一概に規定できないが、R含有割合が0質量%以上1.00質量%以下(特に0.001質量%以上0.45質量%以下)である場合により優れた加工性が得られることが多い。
 MnはFeと安定な金属間化合物を形成し、マグネシウム-リチウム合金の耐食性を改善することが知られている。詳細な機構は明らかではないが、マグネシウム-リチウム合金が過剰量のMnを含有すると、上記RFe化合物によるMg(OH)2生成を抑制又は遅延させる効果が制限されると予想される。マグネシウム-リチウム合金全体に対するMnの質量比(Mn含有割合)は0質量%以上2.00質量%以下である。Mn含有割合の好ましい範囲は他の元素の含有割合に依るため一概に規定できないが、Mn含有割合が0.001質量%以上0.50質量%以下(特に0.30質量%以下)である場合により優れた耐食性が得られることが多い。
 マグネシウム-リチウム合金全体に対するFeの質量比(Fe含有割合)は0質量%以上0.10質量%以下である。Fe含有割合の好ましい範囲は他の元素の含有割合に依るため一概に規定できないが、Fe含有割合が0質量%以上0.05質量%以下である場合により優れた放電特性が得られることが多い。通常、Fe含有割合が0.005質量%を超えると、マグネシウム-リチウム合金の耐食性が低下し、電池の放電特性が悪化する場合があるが、本発明ではLi、Al、Ca、Zn、R、及びMnの含有割合を適宜調整することで、0.005質量%或いは0.007質量%を超えるFe含有割合であっても十分な放電特性を達成し得る。
 マグネシウム-リチウム合金全体に対するCuの質量比(Cu含有割合)は0質量%以上0.10質量%以下である。Cu含有割合の好ましい範囲は他の元素の含有割合に依るため一概に規定できないが、Cu含有割合が0質量%以上0.05質量%以下である場合により優れた放電特性が得られることが多い。通常、Cu含有割合が0.005質量%を超えると、マグネシウム-リチウム合金の耐食性が低下し、電池の放電特性が悪化する場合があるが、本発明ではLi、Al、Ca、Zn、R、及びMnの含有割合を適宜調整することで、0.005質量%或いは0.007質量%を超えるCu含有割合であっても十分な放電特性を達成し得る。
 マグネシウム-リチウム合金全体に対するNiの質量比(Ni含有割合)は0質量%以上0.10質量%以下である。Ni含有割合の好ましい範囲は他の元素の含有割合に依るため一概に規定できないが、Ni含有割合が0質量%以上0.05質量%以下である場合により優れた放電特性が得られることが多い。通常、Ni含有割合が0.005質量%を超えると、マグネシウム-リチウム合金の耐食性が低下し、電池の放電特性が悪化する場合があるが、本発明ではLi、Al、Ca、Zn、R、及びMnの含有割合を適宜調整することで、0.005質量%或いは0.007質量%を超えるNi含有割合であっても十分な放電特性を達成し得る。
 本発明のマグネシウム-リチウム合金において、上記Li及び任意元素以外の残部はMg及び不純物からなる。
 本発明において「不純物」とは、マグネシウム-リチウム合金に意図的に加えたわけではないが該合金に混入した元素を意味する。すなわち、「不純物」は、合金の原料に混入していた元素であって合金製造過程において除去されなかった元素や、合金製造過程において外部から混入した元素を包含する。上記任意元素(特にCu、Ni、及びFe)を意図的に加えていないにも関わらず合金中に残存する場合があるが、本発明ではこれら任意元素を不純物としては扱わない。すなわち、本発明において、不純物はMg、Li、Al、Ca、Zn、R、Mn、Cu、Ni、及びFe以外の1種以上の元素である。不純物の例としてはSi等が挙げられる。
 本発明のマグネシウム-リチウム合金は、通常は不純物を含まないことが好ましいが、合金の特性に大きな悪影響を与えない範囲の量で不純物を含んでいてもよい。すなわち、マグネシウム-リチウム合金全体に対する不純物の質量比(不純物含有割合)は0質量%であるのが好ましいが、0.1質量%以下であれば許容される。一般的な合金原料及び合金製造方法を用いた場合は、不純物含有割合は通常0.001質量%以上0.5質量%以下である。
 負極にマグネシウム又はマグネシウム合金を用いたマグネシウム空気電池は分極が起こりやすいという問題を有している。負極の腐食は分極の原因となり得るため、例えば上記非特許文献1等に記載されているように、従来から負極材料の腐食量を減らすことについて研究が数多くなされてきた。一方、本発明においては、Li、R等で抵抗被膜の生成を抑制又は遅延することや、Mn等の含有割合を調整して抵抗被膜を安定化することによって、電池性能を改善する。R及びMnの合計の含有割合は、好ましくは0.001質量%以上、より好ましくは0.007質量%以上である。また、R及びMnの合計の含有割合は、好ましくは0.50質量%以下、より好ましくは0.30質量%以下である。
 マグネシウム-リチウム合金を製造する方法は、上述の組成及び物性を有する合金が得られる方法であれば特に限定されない。例えば、各元素の原料を溶融し合金原料溶融物を得る工程(a)と、合金原料溶融物を冷却固化して合金鋳塊を得る工程(b)とを含む方法が挙げられる。工程(b)で得られた合金鋳塊を均質化熱処理する工程(c)を行ってもよい。また、工程(b)又は(c)で得られた合金鋳塊を熱間圧延する工程(d)を行ってもよい。
 本発明のマグネシウム空気電池は、通常は負極、正極、及び電解質を有し、該負極が上記本発明のマグネシウム-リチウム合金を含む。電解質は電解質溶液(電解液)の形態で使用してよい。マグネシウム空気電池は酸素を正極活物質として利用し、マグネシウムを負極活物質として利用する。負極中のマグネシウムは電子を放出してマグネシウムイオンとなり、電解液中に溶出する。一方、正極では酸素と水が電子を受け取って水酸化物イオンとなる。全体で見ると、マグネシウム、酸素、及び水から水酸化マグネシウムMg(OH)2が生じることで両極間に起電力が発生する。電解液は負極で発生したマグネシウムイオンを溶出させるともに、酸素と反応する水を正極に供給する。電解液を含まない状態でマグネシウム空気電池を保管し、使用する時点で電解液を加えてもよい。即ち、本発明では、電解液を加える前の状態の負極及び正極を有する構造体も、マグネシウム空気電池と称する。
 負極は本発明のマグネシウム-リチウム合金を含み、更に集電性を確保するための構成要素を含んでいてもよい。マグネシウム-リチウム合金にカーボンペーストを塗布したり、白金や銅等の異種金属をスパッタしてなるものであってもよい。或いは、集電体とマグネシウム-リチウム合金とを積層したものであってもよい。集電体としての機能と負極活物質としての機能とを併せ持つ1つの構成要素を負極として使用してもよい。
 負極の作製方法は特に限定されないが、例えば上記工程(b)~(d)のいずれかで得られた合金鋳塊を圧延加工して得られる。サンドペーパー等を用いて、圧延加工した合金鋳塊を研磨又は粗面化してもよい。研磨する場合は電池を作製する直前に行うのが好ましい。負極の大きさや形状も特に限定されないが、通常、負極の厚みは10μm~5mm程度であってよい。
 正極は、正極活物質である酸素に電子を供給するための集電体と、酸素還元反応を促進するための触媒層とを有してよい。集電体は導電性材料を含み、その例としては活性炭、炭素繊維、カーボンブラック、黒鉛等のような炭素質材料や、鉄、銅、ニッケル、アルミニウム等のような金属材料等が挙げられる。触媒層に用いられる触媒の例としては、銀、白金、ルテニウム、パラジウム、カーボン、酸化物等が挙げられる。中でも、資源量の豊富さと反応活性の高さの両立の観点から酸化物系触媒が好ましい。集電体及び触媒層はそれぞれバインダーや撥水材料等を含んでいてもよい。正極は集電体と触媒層とを別個の構成要素として用意しこれらを積層したものであってよい。或いは、正極は集電体用の導電性材料と触媒層用の触媒とを混合してなるものであってもよい。即ち、集電体としての機能と触媒層としての機能とを併せ持つ1つの構成要素を正極として使用してもよい。
 正極は更に支持体(担体)、撥水層、ガス拡散層等を有していてもよい。支持体は機械的強度を有する材料からなり、その例としてはニッケル等の各種発泡金属、パンチングメタル、マイクロメッシュ等が挙げられる。撥水層は酸素を透過可能であるが水を遮断できる材料からなり、その例としてはポリテトラフルオロエチレン(PTFE)等が挙げられる。ガス拡散層は好ましくは高い多孔性及び高い導電性を有し、その材料の例としてはカーボンペーパー、カーボンクロス等が挙げられる。
 正極の作製方法は特に限定されないが、例えば、触媒、導電性材料、バインダー、及び溶媒を混合してスラリーを調製し、このスラリーを支持体に塗付し、乾燥して作製できる。溶媒の例としては水や有機溶媒(N-メチル-2-ピロリドン、エタノール、エチレングリコール等)が挙げられる。正極の大きさや形状も特に限定されないが、通常、正極の厚みは20μm~1cm程度であってよい。
 電解液としては、NaCl、NaOH、NaHCO3、Na2SO4、HCl、HNO3、NH3等の水溶液が挙げられる。中でも、安全性の高いNaCl水溶液が好ましい。
 マグネシウム空気電池は、更にセパレータや集電体等を有していてもよい。通常、セパレータは負極と正極との間に配置され、両電極間の短絡を防止するとともに、電解質を保持し、イオンを伝導させる役割を有する。セパレータの材料としては、ポリエチレン繊維、ポリプロピレン繊維、ガラス繊維、樹脂不織布、ガラス不織布、濾紙等が挙げられる。
 本発明のマグネシウム空気電池は優れた放電特性を示す。例えば、後述する実施例に示すように、マグネシウム-リチウム合金を直径16mm且つ厚さ1mmの形状に加工して負極を作製し、MnO2、アセチレンブラック、及びポリフッ化ビニリデンを2:0.05:0.1の質量比で含む触媒合材を直径14mmの発泡ニッケルに担持させて触媒層を作製し、該負極及び触媒層を用いて直径20mm且つ厚さ3.2mmのマグネシウム空気電池を製造し、このマグネシウム空気電池の内部に電解液としてNaCl水溶液を注入して5mA定電流にて放電させる放電過程を8回繰り返す放電量評価試験において、45C以上の放電量(8回の放電過程で得られるクーロン量の総和)を示し得る。本発明の好ましい態様においては70C以上の放電量が得られ、より好ましい態様においては100C以上の放電量が得られる。
 また、後述する実施例に示すように、マグネシウム-リチウム合金を直径14mm且つ厚さ1mmの形状に加工して負極を作製し、カーボンブラック及びポリテトラフルオロエチレンを含む触媒合材を直径14mmの発泡ニッケルに担持させて触媒層を作製し、該負極及び触媒層の下半分をNaCl水溶液に浸漬してマグネシウム空気電池を製造し、10mA定電流にて5分間放電させた後に30分間休止させる過程を繰り返す放電回数評価試験において、本発明のマグネシウム空気電池は放電を20回以上繰り返して行うことが可能である。本発明の好ましい態様においては90回以上繰り返すことが可能であり、より好ましい態様においては150回以上繰り返すことが可能である。
 上述の放電回数評価試験において優れた放電回数を得る観点からは、本発明のマグネシウム-リチウム合金は、0.95質量%以上4.50質量%以下、又は8.00質量%以上12.00質量%以下のAlを含有することが好ましい。Al含有割合が0.95質量%以上4.50質量%以下である場合、R含有割合が0質量%以上0.10質量%以下であることが特に好ましい。また、Al含有割合が8.00質量%以上12.00質量%以下である場合、Ca含有割合が1.02質量%以上1.50質量%以下であることが特に好ましい。
 本発明のマグネシウム空気電池は、緊急時用の予備電源、アウトドア用電源、未電化地域における電源等として使用できる。電解液を加えずに乾燥状態で保管する場合は長期間の保管が可能である。この場合、使用時に電解液を加えることで電池として機能する。
 マグネシウム空気電池の製造方法は特に限定されないが、例えば、負極ケース、スペーサー、集電体、マグネシウム-リチウム合金負極、セパレータ、正極、及び正極ケースをこの順に積層して製造できる。
 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はそれらに限定されるものではない。
実施例1
 各元素の原料を準備し、加熱溶解して合金原料溶融物を得た。続いてこの溶融物を150mm×300mm×500mmの金型中に鋳込んで冷却固化し、マグネシウム-リチウム合金の合金鋳塊を作製した。得られたマグネシウム-リチウム合金の組成をICP(Inductively Coupled Plasma)発光分光分析により定量分析した。結果を表1に示す。なお、実施例1のマグネシウム-リチウム合金はSi等の不純物を含んでいることが確認されたが、不純物の含有割合は定量下限値に満たない微量であった。即ち、このマグネシウム-リチウム合金は実質的に表1に示す元素と残部のMgとからなる。
実施例2~22及び比較例1~6
 各元素の含有割合を表1に示す通り変更したこと以外は実施例1と同様に、実施例2~22及び比較例1~6の合金鋳塊を作製した。得られた合金の組成を実施例1と同様に定量分析した。結果を表1に示す。なお、実施例2~22及び比較例1~6の合金はSi等の不純物を含んでいることが確認されたが、不純物の含有割合は定量下限値に満たない微量であった。即ち、これらの合金は実質的に表1に示す元素と残部のMgとからなる。なお、表1の「R」の欄において、括弧内の文字はRとして使用した希土類の元素記号を表す。
 実施例1~22及び比較例1~6の合金鋳塊を用いて、以下のとおり放電量評価試験及び放電回数評価試験を行った。
[放電量評価試験]
(負極の作製)
 合金鋳塊を厚み1mmに圧延し、直径16mmに切り出し、両面を#600サンドペーパーで研磨して、負極を作製した。なお、研磨は電池を作製する直前に行った。
(正極の作製)
 MnO2(東ソー株式会社製HMH)と、アセチレンブラック(デンカ株式会社製デンカブラック)と、ポリフッ化ビニリデン溶液(株式会社クレハ製KFポリマーL#1120)とを、MnO2:アセチレンブラック:ポリフッ化ビニリデンの質量比が2:0.05:0.1となるよう秤量し、溶媒として1mLのN-メチル-2-ピロリドンを加え、2時間混合して触媒スラリーを調製した。直径14mmに切り出した発泡ニッケル(住友電気工業株式会社製セルメット#8)をこの触媒スラリーに浸漬した。このようにして触媒スラリーが塗布された発泡ニッケルを160℃に加熱したホットプレート上で3時間以上乾燥した。中央部分に直径3mmの電解液注入孔をあけ、64MPaで30秒間プレスして、正極を作製した。なお、正極の厚みは150μmであり、MnO2触媒担持量は100mg・cm-2であった。
(マグネシウム空気電池の作製)
 電池部材として宝泉株式会社製2032型コインセルパーツを用いた。負極ケース、ウェーブワッシャー、スペーサー、直径16mmに切り出した銅箔(福田金属箔粉工業株式会社製CF-T8G-STD-18)、上記マグネシウム-リチウム合金負極、直径18mmに切り出した濾紙(ADVANTEC製5C)3枚、上記正極、及び空気孔付き正極ケースをこの順に積層し、かしめ処理を行ってマグネシウム空気電池を作製した。ここで、銅箔は集電体として機能する。また、濾紙はセパレータとして機能し、且つ電解液を保持する役割も有する。
(放電量の測定)
 上記マグネシウム空気電池を恒温槽(温度25℃、相対湿度30%)内に設置した。電解液として0.1MのNaCl水溶液を調製し、注射器を用いて0.1mLの当該NaCl水溶液を正極の電解液注入孔より電池内部に注入した。注入後速やかに5mA定電流にて放電試験を実施した。評価装置としては株式会社計測器センター製BLS5516-5V100mAを使用した。放電過程終了後、再度電解液を注入して同様の放電過程を行い、合計で8回の放電過程を実施した。これら8回の放電過程で得られたクーロン量の総和を「放電量」として表1に示す。
[放電回数評価試験]
(負極の作製)
 合金鋳塊を厚み1mmに圧延し、直径14mmに切り出し、負極を作製した。
(正極の作製)
 0.2gのカーボンブラック(デンカ株式会社製デンカブラック)と、0.067gの60%ポリテトラフルオロエチレン液(AGC Chemicals製Fluon AD-911L)とを秤量し、溶媒として10mLの純水を加え、2時間混合して触媒スラリーを調製した。直径14mmに切り出した発泡ニッケル(住友電気工業株式会社製セルメット#8)をこの触媒スラリーに浸漬した。このようにして触媒スラリーが塗布された発泡ニッケルを130℃に加熱したホットプレート上で3時間以上乾燥し、270℃で3時間焼成した。得られた焼成体を64MPaで30秒間プレスして、正極を作製した。なお、正極の厚みは150μmであった。
(マグネシウム空気電池の作製)
 50mLガラス瓶(UMサンプル瓶)の蓋に2箇所穴をあけ、それぞれの穴にクリップ付きリード線を通して固定した。一方のクリップに上記正極を接続し、他方のクリップに上記負極を接続し、正極と負極が同じ高さになるよう調整した。ガラス瓶に10wt%NaCl水溶液を入れ、正極及び負極を接続したクリップ付きの蓋を閉め、マグネシウム空気電池を作製した。ここで、NaCl水溶液の量は、正極及び負極の下半分がNaCl水溶液に浸漬され、クリップとの接続部分がNaCl水溶液に触れないように調整した。クリップと負極の接続部分がNaCl水溶液に浸された場合、接続部分で電流集中が生じて腐食が進行するため、正確な評価ができない。
(放電回数の測定)
 上記マグネシウム空気電池を恒温槽(温度25℃)内に設置し、10mA定電流にて5分間放電させた後、30分間休止した。この放電及び休止を放電できなくなるまで繰り返し、放電が可能な繰り返し回数を測定した。この回数を「放電回数」として表1に示す。評価装置としては株式会社計測器センター製BLS5516-5V100mAを用いた。
[規則26に基づく補充 21.08.2017] 
Figure WO-DOC-TABLE-1

Claims (8)

  1.  10.50質量%を超え19.50質量%以下のLi、
     0質量%以上15.00質量%以下のAl、
     0質量%以上5.00質量%以下のCa、
     0質量%以上3.00質量%以下のZn、
     0質量%以上3.00質量%以下のR、
     0質量%以上2.00質量%以下のMn、
     0質量%以上0.10質量%以下のFe、
     0質量%以上0.10質量%以下のCu、
     0質量%以上0.10質量%以下のNi、並びに
     残部のMg及び不純物からなり、
     前記RがY、La、Ce、Nd、及びGdからなる群から選ばれる1種以上の希土類元素を表す、
     空気電池負極用マグネシウム-リチウム合金。
  2.  前記マグネシウム-リチウム合金を直径14mm且つ厚さ1mmの形状に加工して負極を作製し、カーボンブラック及びポリテトラフルオロエチレンを含む触媒合材を直径14mmの発泡ニッケルに担持させて触媒層を作製し、前記負極及び前記触媒層の下半分をNaCl水溶液に浸漬してマグネシウム空気電池を製造し、10mA定電流にて5分間放電させた後に30分間休止させる過程を放電できなくなるまで繰り返す放電回数評価試験において、放電回数が20回以上である、請求項1に記載のマグネシウム-リチウム合金。
  3.  前記マグネシウム-リチウム合金を直径16mm且つ厚さ1mmの形状に加工して負極を作製し、MnO2、アセチレンブラック、及びポリフッ化ビニリデンを2:0.05:0.1の質量比で含む触媒合材を直径14mmの発泡ニッケルに担持させて触媒層を作製し、前記負極及び前記触媒層を用いて直径20mm且つ厚さ3.2mmのマグネシウム空気電池を製造し、前記マグネシウム空気電池の内部に電解液としてNaCl水溶液を注入して5mA定電流にて放電させる放電過程を8回繰り返す放電量評価試験において、前記8回の放電過程で得られるクーロン量の総和が45C以上である、請求項1又は2に記載のマグネシウム-リチウム合金。
  4.  前記Rの含有割合が0.001質量%以上0.45質量%以下である、請求項1~3のいずれかに記載のマグネシウム-リチウム合金。
  5.  前記Mnの含有割合が0.001質量%以上0.30質量%以下である、請求項1~4のいずれかに記載のマグネシウム-リチウム合金。
  6.  前記R及びMnの合計の含有割合が0.001質量%以上0.50質量%以下である、請求項1~5のいずれかに記載のマグネシウム-リチウム合金。
  7.  請求項1~6のいずれかに記載のマグネシウム-リチウム合金を含む空気電池負極。
  8.  請求項7に記載の負極を有するマグネシウム空気電池。
PCT/JP2017/026940 2016-07-26 2017-07-25 マグネシウム-リチウム合金及びマグネシウム空気電池 WO2018021360A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558520A JP6290520B1 (ja) 2016-07-26 2017-07-25 マグネシウム−リチウム合金及びマグネシウム空気電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146438 2016-07-26
JP2016-146438 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021360A1 true WO2018021360A1 (ja) 2018-02-01

Family

ID=61016834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026940 WO2018021360A1 (ja) 2016-07-26 2017-07-25 マグネシウム-リチウム合金及びマグネシウム空気電池

Country Status (2)

Country Link
JP (1) JP6290520B1 (ja)
WO (1) WO2018021360A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013328A1 (ja) * 2018-07-13 2020-01-16 中央工産株式会社 電気化学デバイス用電極材
CN112593132A (zh) * 2020-12-30 2021-04-02 郑州轻研合金科技有限公司 一种高强半固态双相压铸镁锂合金及其制备方法
CN114026260A (zh) * 2019-07-08 2022-02-08 Lkr轻金属能力中心兰斯霍芬有限责任公司 镁合金及用于生产其的方法
WO2022030333A1 (ja) * 2020-08-03 2022-02-10 公立大学法人大阪 負極複合体及び二次電池
WO2023090127A1 (ja) * 2021-11-19 2023-05-25 キヤノン株式会社 合金、合金部材、機器及び合金の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005345A (zh) * 2021-02-20 2021-06-22 维欧(天津)能源技术服务股份有限公司 一种高温力学性能双相镁锂合金及其加工工艺
CN113355571B (zh) * 2021-06-23 2023-01-31 西安四方超轻材料有限公司 一种镁锂合金材料制备方法
CN115036470A (zh) * 2022-04-22 2022-09-09 青岛九环新越新能源科技股份有限公司 一种抑制锂枝晶生长的高镁含量锂-镁合金/铜复合箔负极及其制备方法
CN114540685B (zh) * 2022-04-28 2022-07-19 北京理工大学 一种抗时效软化高强高模耐腐蚀的双相镁锂合金及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226929A (ja) * 2002-02-01 2003-08-15 Kasatani:Kk マグネシウム合金材の冷間プレス成形方法
JP2014164901A (ja) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd マグネシウムイオン二次電池用負極板、及びマグネシウムイオン二次電池、および電池パック
JP2016085850A (ja) * 2014-10-24 2016-05-19 藤倉ゴム工業株式会社 マグネシウム空気電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226929A (ja) * 2002-02-01 2003-08-15 Kasatani:Kk マグネシウム合金材の冷間プレス成形方法
JP2014164901A (ja) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd マグネシウムイオン二次電池用負極板、及びマグネシウムイオン二次電池、および電池パック
JP2016085850A (ja) * 2014-10-24 2016-05-19 藤倉ゴム工業株式会社 マグネシウム空気電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013328A1 (ja) * 2018-07-13 2020-01-16 中央工産株式会社 電気化学デバイス用電極材
CN114026260A (zh) * 2019-07-08 2022-02-08 Lkr轻金属能力中心兰斯霍芬有限责任公司 镁合金及用于生产其的方法
CN114096690A (zh) * 2019-07-08 2022-02-25 Lkr轻金属能力中心兰斯霍芬有限责任公司 具有精细尺度共晶结构,特别是纳米共晶结构的合金以及这种合金的生产
WO2022030333A1 (ja) * 2020-08-03 2022-02-10 公立大学法人大阪 負極複合体及び二次電池
CN112593132A (zh) * 2020-12-30 2021-04-02 郑州轻研合金科技有限公司 一种高强半固态双相压铸镁锂合金及其制备方法
WO2023090127A1 (ja) * 2021-11-19 2023-05-25 キヤノン株式会社 合金、合金部材、機器及び合金の製造方法

Also Published As

Publication number Publication date
JPWO2018021360A1 (ja) 2018-07-26
JP6290520B1 (ja) 2018-03-07

Similar Documents

Publication Publication Date Title
JP6993337B2 (ja) マグネシウム-リチウム合金及びマグネシウム空気電池
JP6290520B1 (ja) マグネシウム−リチウム合金及びマグネシウム空気電池
Varzi et al. 3D porous Cu–Zn alloys as alternative anode materials for Li‐ion batteries with superior low T performance
JP6928093B2 (ja) リチウム金属負極、その製造方法およびこれを含むリチウム二次電池
Li et al. Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries
EP2628812A1 (en) Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
EP3199667A1 (en) Method for producing silicon-plated metal plate
JP2011216467A (ja) アルカリ蓄電池用水素吸蔵合金およびこの合金を負極に備えたアルカリ蓄電池ならびにアルカリ蓄電池システム
JP5535684B2 (ja) アルカリ蓄電池用水素吸蔵合金およびこれを用いたアルカリ蓄電池用水素吸蔵合金電極
JP2004139768A (ja) 多孔質薄膜電極と、これを負極とするリチウム二次電池
JP2011249150A (ja) 蓄電デバイス集電体用アルミニウム箔及び蓄電デバイス集電体
JP2010007177A (ja) 水素吸蔵合金粉末とその表面処理方法、アルカリ蓄電池用負極、およびアルカリ蓄電池
EP2713426B1 (en) Nickel-metal hydride storage battery
US11519090B2 (en) Method and apparatus for producing electrolytic aluminum foil
JP2000012016A (ja) 電池用負極およびその製造方法
JP6422017B2 (ja) 水素吸蔵合金、電極及びニッケル水素蓄電池
JP2004039516A (ja) すぐれた接面通電性を長期に亘って発揮する固体高分子形燃料電池の多孔質金属ガス拡散シート
JP2016018653A (ja) 負極集電体、非水電解質電池用の負極及び非水電解質電池
TWI255576B (en) An anode plate based on the zinc-aluminum alloy and a zinc-air battery containing the same
JP6394955B2 (ja) 水素吸蔵合金、電極及びニッケル水素蓄電池
Xin et al. Promising electrochemical hydrogen storage properties of thick Mg–Pd films obtained by insertion of thin Ti interlayers
WO2015136836A1 (ja) 水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池
JP2003257418A (ja) リチウムイオン2次電池用負極
JPWO2020013327A1 (ja) 電気化学デバイス用電極材およびその製造方法
JP5769028B2 (ja) ニッケル水素蓄電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017558520

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834362

Country of ref document: EP

Kind code of ref document: A1