WO2015136836A1 - 水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池 - Google Patents

水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池 Download PDF

Info

Publication number
WO2015136836A1
WO2015136836A1 PCT/JP2015/000623 JP2015000623W WO2015136836A1 WO 2015136836 A1 WO2015136836 A1 WO 2015136836A1 JP 2015000623 W JP2015000623 W JP 2015000623W WO 2015136836 A1 WO2015136836 A1 WO 2015136836A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
electrode
group
alloy
negative electrode
Prior art date
Application number
PCT/JP2015/000623
Other languages
English (en)
French (fr)
Inventor
大山 秀明
亜希子 岡部
加藤 文生
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/115,240 priority Critical patent/US20170002442A1/en
Priority to CN201580012235.5A priority patent/CN106103758A/zh
Priority to JP2016507287A priority patent/JPWO2015136836A1/ja
Publication of WO2015136836A1 publication Critical patent/WO2015136836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/283Cells or batteries with two cup-shaped or cylindrical collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/30Pressing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a hydrogen storage alloy having a novel crystal structure, an alloy powder for an electrode, a negative electrode for an alkaline storage battery, and an alkaline storage battery.
  • Hydrogen storage alloys having Ce 2 Ni 7 type and CeNi 3 type crystal structures are known to have a relatively high capacity and are expected as alloy powders for electrodes.
  • a conventional hydrogen storage alloy having a relatively high capacity is used as an alloy powder for an electrode of an alkaline storage battery, it is known that the discharge capacity decreases relatively early when the charge / discharge cycle of the alkaline storage battery is repeated. .
  • Patent Document 1 a hydrogen storage alloy having A 2 B 4 type and AB 5 type basic units (cells) suppresses deterioration of the alloy due to storage and release of hydrogen.
  • hydrogen storage alloys that have A 2 B 7 type, AB 3 type or similar crystal phase as the main phase and contain AB 3 type, A 2 B 7 type and / or A 5 B 19 type parallel intergrowth are also high capacity. (Patent Document 2).
  • an alkaline storage battery using a hydrogen storage alloy containing a rare earth element, Mg, Ni, and Al, the rare earth element containing Gd, and having a crystal structure different from the AB 5 type has high hydrogen storage capacity, low temperature discharge characteristics, and There is a report that it is excellent in high rate discharge characteristics (Patent Document 3).
  • Another aspect of the present invention relates to an electrode alloy powder containing the hydrogen storage alloy.
  • Still another aspect of the present invention relates to a negative electrode for an alkaline storage battery containing the above alloy powder for an electrode as a negative electrode active material.
  • Still another aspect of the present invention relates to an alkaline storage battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte, wherein the negative electrode is the negative electrode for an alkaline storage battery.
  • an alkaline storage battery having a high capacity and a long life can be realized.
  • crystal phase Psp novel crystal region
  • the hydrogen storage alloy according to the present embodiment has a crystal structure belonging to, for example, a P63 / mmc space group.
  • alloys having a crystal structure belonging to the P63 / mmc space group for example, alloys of A 2 B 7 type (AB 3.5 type) and A 5 B 19 type (AB 3.8 type) are known. These alloys have a higher capacity than AB 5 type alloys, but the crystal structure is relatively unstable. Further, as described above, none of the peaks Psp1, Psp2 and Psp3 are observed in the X-ray diffraction images of the A 2 B 7 type and A 5 B 19 type alloys.
  • the crystal phase Psp that expresses at least one selected from the peak Psp1, the peak Psp2, and the peak Psp3 probably has an intermediate structure between the A 2 B 7 type and the A 5 B 19 type. Conceivable.
  • the length of the crystal phase Psp in the c-axis direction is considered to have a basic unit (cell) larger than 24 angstroms and smaller than 32 angstroms.
  • a hydrogen storage alloy having a crystalline phase Psp has a higher capacity than an AB 5 type alloy or the like. Although the reason is not clear, when a hydrogen storage alloy having a crystalline phase Psp is used as an alloy powder for an electrode of an alkaline storage battery, a decrease in discharge capacity when the charge / discharge cycle of the alkaline storage battery is repeated is suppressed. Therefore, the hydrogen storage alloy having the crystal phase Psp is useful as an electrode alloy powder.
  • a plurality of specific peaks Psp (k) may be observed with the appearance of the peak Psp1, the peak Psp2 and / or the peak Psp3.
  • the peak Psp (k) is observed in the following region, for example.
  • the composition of the hydrogen storage alloy having the crystal phase Psp is not particularly limited, but preferably includes, for example, the element L, the element M, and the element E.
  • the element L is at least one selected from the group consisting of Group 3 elements and Group 4 elements in the periodic table
  • the element M is an alkaline earth metal element
  • the element E is 5th in the periodic table.
  • Group 12 to Group 11 transition metal element; Group 12 element; Group 13 second period to fifth period element; Group 14 third period to fifth period element; N; P and S It is at least one selected from the group.
  • the element L and the element M are mainly present at the A site
  • the element E is mainly present at the B site.
  • the molar ratio mE of the element E to the sum of the elements L and M preferably satisfies 2.5 ⁇ mE ⁇ 4.5, and more preferably satisfies 2.7 ⁇ mE ⁇ 3.3.
  • the molar ratio x of the element M in the total of the elements L and M preferably satisfies 0.28 ⁇ x ⁇ 0.5, and more preferably satisfies 0.3 ⁇ x ⁇ 0.4. .
  • a crystal structure belonging to the P63 / mmc space group is easily generated.
  • the Group 3 elements of the periodic table include Sc, Y, lanthanoid elements and actinoid elements.
  • Lanthanoid elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Actinoid elements include, for example, Ac, Th, Pa, Np and the like.
  • examples of Group 4 elements of the periodic table include Ti, Zr, and Hf.
  • the element L may contain 1 type of the said element, and may contain 2 or more types.
  • the element L preferably contains at least Y and a lanthanoid element among these elements.
  • Y has a strong affinity for oxygen and has the ability to reduce surrounding oxides. Therefore, when the element L contains Y, corrosion of the hydrogen storage alloy is suppressed.
  • the molar ratio y of Y in the element L is preferably 0.001 ⁇ y ⁇ 0.1, and more preferably 0.01 ⁇ y ⁇ 0.05.
  • La, Ce, Pr, Nd and Sm are preferred, La and Sm are more preferred, and La is most preferred.
  • the molar ratio z of La in the element L is preferably 0.5 ⁇ z ⁇ 0.9, and more preferably 0.6 ⁇ z ⁇ 0.7.
  • the element M that is, the alkaline earth element
  • examples of the element M include Mg, Ca, Sr, Ba and the like. Since alkaline earth elements easily form ion-bonded hydrides, it is considered that the hydrogen storage alloy containing the element M contributes to an increase in capacity.
  • the element M may include one of alkaline earth elements or two or more.
  • the element M preferably contains at least Mg, and the molar ratio v of Mg in the element M is preferably 0.001 ⁇ v ⁇ 1, more preferably 0.3 ⁇ v ⁇ 1.
  • Element E is a transition metal element of Group 5 to Group 11 of the Periodic Table; Group 12 element; Group 13 of Period 2 to Period 5; Group 14 of Period 3 to Period 5 N is at least one selected from the group consisting of P and S;
  • the element E may include one of the above elements or two or more. Among them, the element E is composed of V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, B, Al, Ga, In, Si, Ge, Sn, and P. It is preferable to include at least one selected from the group.
  • the element E particularly preferably contains at least Ni, Co, and Al.
  • Ni is preferable as the main component of the element E, and the molar ratio mNi of Ni to the total of the elements L and M preferably satisfies 2 ⁇ mNi ⁇ 3.8, and further satisfies 2 ⁇ mNi ⁇ 3. preferable.
  • Co is considered to suppress the formation of crystal defects accompanying the expansion and contraction of the alloy when hydrogen is occluded and released when Co is strongly bonded to surrounding elements.
  • the molar ratio mCo of Co to the total of the elements L and M preferably satisfies 0.15 ⁇ mCo ⁇ 0.5, and more preferably 0.2 ⁇ mCo ⁇ 0.3.
  • Al has the effect of reducing the hydrogen equilibrium pressure in the hydrogen storage reaction.
  • the molar ratio mAl of Al to the total of the elements L and M preferably satisfies 0.01 ⁇ mAl ⁇ 0.1, and more preferably 0.01 ⁇ mAl ⁇ 0.07.
  • the molar ratio mCu of Cu to the total of the elements L and M is preferably 0 ⁇ mCu ⁇ 0.03, and more preferably 0.001 ⁇ mCu ⁇ 0.02.
  • the element E contains an element such as Ge or Sn
  • the activity of the alloy surface can be enhanced and elution of the constituent elements can be suppressed.
  • Ge easily forms a composite hydroxide, it suppresses deterioration of the alloy.
  • Sn has an ability to suppress expansion and contraction when storing and releasing hydrogen.
  • the molar ratio mGe of Ge to the sum of the elements L and M is more preferably 0 ⁇ mGe ⁇ 0.1, and further preferably 0.001 ⁇ mGe ⁇ 0.1.
  • the molar ratio mSn of Sn to the total of the elements L and M is more preferably 0 ⁇ mSn ⁇ 0.1, and further preferably 0.001 ⁇ mSn ⁇ 0.1.
  • the molar ratio mN of N to the sum of the elements L and M is preferably 0 ⁇ mN ⁇ 0.01, and more preferably 0.001 ⁇ mN ⁇ 0.01.
  • the hydrogen storage alloy belonging to the P63 / mmc space group has a complicated crystal structure and is relatively unstable, and the constituent elements of the hydrogen storage alloy tend to be easily eluted. On the other hand, it is considered that the elution of the constituent elements can be effectively suppressed if the hydrogen storage alloy has the crystal phase Psp.
  • the alloy powder for electrodes includes, for example, (i) a process A in which an alloy is formed from a single element of a hydrogen storage alloy, (ii) a process B in which the alloy obtained in the process A is granulated, and (iii) a process B. It can obtain by passing through the process C which activates the granular material obtained by above.
  • (I) Process A (alloying process)
  • Known alloying processes include plasma arc melting, high frequency melting (die casting), mechanical alloying (mechanical alloy), mechanical milling, and rapid solidification.
  • the rapid solidification method includes roll spinning method, melt drag method, direct casting and rolling method, spinning in spinning liquid, spray forming method, gas atomization method, wet spraying method, splat method, rapid solidification thin strip grinding method, gas spraying method.
  • the following method is suitable.
  • each constituent element can be mixed in advance, and the resulting mixture can be alloyed by the various methods described above.
  • the difference in melting point is within 100 ° C., they may be melted simultaneously.
  • the temperature of the molten metal is gradually lowered according to the melting point of the element to be added.
  • Such an operation promotes the production of a hydrogen storage alloy having a crystalline phase Psp.
  • the suppression of evaporation of the low melting point element is related to the generation of the crystalline phase Psp.
  • the above method is particularly effective when some of the constituent elements are alkaline earth elements (element M).
  • the molten metal is cooled to produce a crude alloy.
  • a crude alloy can be obtained by supplying molten metal to a mold or the like and cooling in the mold. Thereafter, it is preferable to anneal the crude alloy. By performing annealing, the dispersibility of the constituent elements in the hydrogen storage alloy is improved, and elution and segregation of the constituent elements are easily suppressed.
  • the crude alloy is preferably heated to 900 ° C. to 1100 ° C., more preferably 950 to 1050 ° C. The heating time is, for example, 4 to 48 hours.
  • the crude alloy is preferably annealed in a pressurized atmosphere containing an inert gas such as argon.
  • the pressure of the pressurized atmosphere is, for example, 0.15 to 1 MPa.
  • step B the alloy ingot obtained in step A is granulated.
  • the granulation of the alloy can be performed by wet pulverization, dry pulverization, or the like, and these may be combined.
  • the pulverization can be performed by a ball mill or the like.
  • wet pulverization an ingot is pulverized using a liquid medium such as water. The obtained particles are classified as necessary.
  • the average particle size of the obtained alloy particles is, for example, 5 to 50 ⁇ m, preferably 5 to 30 ⁇ m. When the average particle size is in such a range, the surface area of the hydrogen storage alloy can be maintained in an appropriate range.
  • the average particle diameter means a volume-based median diameter.
  • the alloy particles obtained in the step B may be referred to as a raw material powder of the electrode alloy powder.
  • the pulverized product (raw material powder) can be activated by bringing the pulverized product into contact with an alkaline aqueous solution.
  • the method for contacting the alkaline aqueous solution with the raw material powder is not particularly limited. For example, it can be performed by immersing the raw material powder in an alkaline aqueous solution, adding the raw material powder in the alkaline aqueous solution, stirring, or spraying the alkaline aqueous solution onto the raw material powder.
  • the activation may be performed under heating.
  • the alkaline aqueous solution for example, an aqueous solution containing potassium hydroxide, sodium hydroxide, lithium hydroxide or the like can be used. Of these, sodium hydroxide and / or potassium hydroxide are preferably used. From the viewpoint of activation efficiency, productivity, process reproducibility, and the like, the concentration of alkali in the aqueous alkali solution is, for example, 5 to 50% by mass, preferably 10 to 45% by mass.
  • the obtained alloy powder may be washed with water.
  • the water washing is preferably finished after the pH of the water used for washing becomes 9 or less.
  • the alloy powder after the activation treatment is usually dried.
  • the alloy powder for an electrode of the present invention can be obtained through such a process, and since it can achieve both high capacity and life characteristics, it is suitable for use as an anode active material of an alkaline storage battery. .
  • the alkaline storage battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte.
  • the negative electrode contains the above-described electrode alloy powder as a negative electrode active material.
  • FIG. 1 is a longitudinal sectional view schematically showing the structure of an alkaline storage battery according to an embodiment of the present invention.
  • the alkaline storage battery includes a bottomed cylindrical battery case 4 also serving as a negative electrode terminal, an electrode group housed in the battery case 4 and an alkaline electrolyte (not shown). In the electrode group, the negative electrode 1, the positive electrode 2, and the separator 3 interposed therebetween are spirally wound.
  • a sealing plate 7 including a safety valve 6 is disposed in the opening of the battery case 4 via an insulating gasket 8, and the alkaline storage battery is hermetically sealed by caulking the opening end of the battery case 4 inward.
  • the sealing plate 7 also serves as a positive electrode terminal, and is electrically connected to the positive electrode 2 via the positive electrode lead 9.
  • an electrode group is accommodated in a battery case 4, an alkaline electrolyte is injected, a sealing plate 7 is disposed in an opening of the battery case 4 via an insulating gasket 8, and the battery case 4 Can be obtained by caulking and sealing.
  • the negative electrode 1 of the electrode group and the battery case 4 are electrically connected via a negative electrode current collector plate disposed between the electrode group and the inner bottom surface of the battery case 4.
  • the positive electrode 2 of the electrode group and the sealing plate 7 are electrically connected via the positive electrode lead 9.
  • the negative electrode is not particularly limited as long as it includes the above-described electrode alloy powder as a negative electrode active material, and other constituent elements known in the art can be used in nickel-metal hydride storage batteries.
  • the negative electrode may include a core material and a negative electrode active material attached to the core material.
  • a negative electrode can be formed by attaching a negative electrode paste containing at least a negative electrode active material (electrode alloy powder) to a core material.
  • a negative electrode core material The porous or non-porous board
  • the active material may be filled in the pores of the core material.
  • the negative electrode paste usually contains a dispersion medium, and a known component used for the negative electrode, for example, a conductive agent, a binder, a thickener, and the like may be added as necessary.
  • the negative electrode can be formed, for example, by applying a negative electrode paste to the core, removing the dispersion medium by drying, and rolling.
  • a known medium such as water can be used.
  • the conductive agent is not particularly limited as long as it is a material having electronic conductivity.
  • graphite such as natural graphite (flaky graphite etc.), artificial graphite and expanded graphite; carbon black such as acetylene black and ketjen black; conductive fibers such as carbon fiber and metal fiber; metal particles such as copper powder
  • An organic conductive material such as a polyphenylene derivative can be exemplified.
  • These conductive agents may be used alone or in combination of two or more.
  • the amount of the conductive agent is, for example, 0.01 to 50 parts by mass, preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
  • binder examples include resin materials such as rubber-like materials such as styrene-butadiene copolymer rubber (SBR); polyolefin resins such as polyethylene and polypropylene; polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene. Fluoropolymers such as copolymers, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers; acrylic resins such as ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, ethylene-methyl acrylate copolymers, and the like Na ion crosslinked body etc. can be illustrated.
  • a binder can be used individually by 1 type or in combination of 2 or more types. The amount of the binder is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
  • the thickener examples include carboxymethylcellulose (CMC) and modified products thereof (including salts such as Na salt), cellulose derivatives such as methylcellulose; saponified polymers having vinyl acetate units such as polyvinyl alcohol; polyethylene oxide, etc. Examples include polyalkylene oxide.
  • CMC carboxymethylcellulose
  • modified products thereof including salts such as Na salt
  • cellulose derivatives such as methylcellulose
  • saponified polymers having vinyl acetate units such as polyvinyl alcohol
  • polyethylene oxide etc.
  • Examples include polyalkylene oxide.
  • a thickener can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the thickener is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
  • the positive electrode may include a core material and an active material or an active material layer attached to the core material.
  • the positive electrode can be formed, for example, by attaching a positive electrode paste containing at least a positive electrode active material to a core material. More specifically, the positive electrode can be formed by applying a positive electrode paste to the core, removing the dispersion medium by drying, and rolling.
  • the positive electrode may be an electrode obtained by sintering active material powder together with a core material.
  • the positive electrode core material known materials can be used, and examples thereof include porous substrates such as nickel foams and sintered nickel plates.
  • the positive electrode active material for example, nickel compounds such as nickel hydroxide and nickel oxyhydroxide are used.
  • the positive electrode paste usually contains a dispersion medium, and a known component used for the positive electrode, for example, a conductive agent, a binder, a thickener, and the like may be added as necessary.
  • a conductive agent for example, a conductive agent, a binder, a thickener, and the like
  • the dispersion medium, the conductive agent, the binder, the thickener and the amount thereof can be selected in the same manner as in the negative electrode paste.
  • conductive cobalt oxides such as cobalt hydroxide and ⁇ -type cobalt oxyhydroxide may be used.
  • the positive electrode may also contain metal compounds (oxides, hydroxides, etc.) such as zinc oxide and zinc hydroxide as additives.
  • a microporous film or nonwoven fabric made of polyolefin such as polyethylene or polypropylene can be used.
  • alkaline electrolyte for example, an aqueous solution containing an alkaline electrolyte is used.
  • alkaline electrolyte include alkali metal hydroxides such as lithium hydroxide, potassium hydroxide, and sodium hydroxide. These can be used individually by 1 type or in combination of 2 or more types.
  • the alkaline electrolyte preferably contains at least potassium hydroxide, and further preferably contains sodium hydroxide and / or lithium hydroxide.
  • the specific gravity of the alkaline electrolyte is, for example, 1.03 to 1.55, preferably 1.11 to 1.32.
  • Example 1 (1) Preparation of raw material powder La (melting point 920 ° C.) and Y as element L, melting point 1526 ° C., Mg as element M (melting point 650 ° C.), Co as element E (melting point 1495 ° C.), Al (melting point) 660 ° C.) and Ni (melting point: 1455 ° C.) were melted in a high-frequency melting furnace at the mass ratio or molar ratio shown in Table 1. At this time, the high frequency melting furnace was charged in the order of high melting point (Y>Co>Ni>La>Al> Mg), and after the charged material was sufficiently dissolved, the next material was charged. However, Y, Co and Ni are simultaneously put into a 1550 ° C.
  • the temperature of the high-frequency melting furnace is lowered to 1200 ° C. and La is put into the molten metal, and then the temperature of the high-frequency melting furnace is raised to 1100 ° C. Then, Al and Mg were put into the molten metal.
  • the molten metal was poured into a mold to produce a hydrogen storage alloy ingot.
  • the obtained ingot was annealed by heating at 1060 ° C. for 10 hours under atmospheric pressure and argon atmosphere.
  • the annealed ingot was pulverized into particles.
  • the obtained particles were pulverized in the presence of water using a wet ball mill and sieved with a sieve having a mesh diameter of 75 ⁇ m in a wet state to obtain a hydrogen storage alloy (raw material powder) having an average particle diameter of 20 ⁇ m.
  • a sintered positive electrode having a capacity of 1500 mAh obtained by filling a positive electrode core material made of a porous sintered substrate with nickel hydroxide was prepared. About 90 parts by mass of Ni (OH) 2 is used for the positive electrode active material, about 6 parts by mass of Zn (OH) 2 is added as an additive, and about 4 parts by mass of Co (OH) 2 is added as a conductive material. did. An exposed portion of the core material that does not hold the active material was provided at one end portion along the longitudinal direction of the positive electrode core material.
  • a nickel metal hydride battery with a 4/5 A size and a nominal capacity of 1500 mAh as shown in FIG. 1 was produced.
  • the positive electrode 2 and the negative electrode 1 were wound through a separator 3 to produce a cylindrical electrode plate group.
  • the exposed portion of the positive electrode core material and the exposed portion of the negative electrode core material were exposed on the opposite end surfaces.
  • a separator 3 a sulfonated polypropylene nonwoven fabric (thickness: 100 ⁇ m) was used.
  • a positive electrode lead 9 was welded to the end face of the electrode plate group from which the positive electrode core material was exposed.
  • a negative electrode current collector plate was welded to the end face of the electrode plate group from which the negative electrode core material was exposed.
  • the sealing plate 7 and the positive electrode 2 were electrically connected via the positive electrode lead 9, and then the negative electrode current collector plate was placed downward, and the electrode plate group was housed in a battery case 4 made of a cylindrical bottomed can.
  • the negative electrode lead connected to the negative electrode current collector plate was welded to the bottom of the battery case 4. After injecting the electrolyte into the battery case 4, the opening of the battery case 4 was sealed with a sealing plate 7 having a gasket 8 on the periphery, thereby completing a nickel metal hydride storage battery.
  • an alkaline aqueous solution in which lithium hydroxide was dissolved at a rate of 40 g / L in an aqueous potassium hydroxide solution (specific gravity: 1.3) was used.
  • Example 2 In the raw material powder production process, La, Y, Mg, Co, Al and Ni alone were used at a mass ratio or molar ratio shown in Table 1, and the obtained ingot was further subjected to an argon atmosphere at a pressure of 0.3 MPa. A hydrogen storage alloy having an average particle diameter of 20 ⁇ m was obtained in the same manner as in Example 1 except that the annealing was performed at 1060 ° C. for 10 hours. Other than that produced the negative electrode and the nickel hydride storage battery similarly to Example 1. FIG.
  • Example 3 In the raw material powder production process, in addition to La, Y, Mg, Co, Al and Ni, a simple substance of Cu (melting point: 1084 ° C.) was used in a mass ratio or a molar ratio shown in Table 1, and the obtained ingot was further used.
  • a hydrogen storage alloy having an average particle diameter of 20 ⁇ m was obtained in the same manner as in Example 1 except that annealing was performed at 1060 ° C. for 10 hours in an argon atmosphere at a pressure of 0.3 MPa.
  • Cu was introduced into the molten metal after introducing Y, Co and Ni into the high-frequency melting furnace and before introducing La. Other than that produced the negative electrode and the nickel hydride storage battery similarly to Example 1.
  • Comparative Example 1 In the raw material powder production process, each of La, Y, Mg, Co, Al and Ni was melted at the mass ratio or molar ratio shown in Table 1 all at the same time in a high-frequency melting furnace at 1500 ° C. As in Example 1, a raw material powder containing a hydrogen storage alloy having an average particle diameter of 20 ⁇ m was obtained.
  • the ratio of the intensity I2 of the peak Psp2 to the intensity Imax of the strongest peak Pmax: I2 / Imax was also 0.01 or more.
  • the ratio of the intensity I3 of the peak Psp3 to the intensity Imax of the strongest peak Pmax: I3 / Imax was 0.01 or more.
  • the alloy of Comparative Example 1 was found to be A 2 B 7 type.
  • FIG. 2 shows X-ray diffraction images of Example 3 and Comparative Example 1.
  • Table 2 shows the positions (2 ⁇ ) of the peaks Psp1, Psp2 and Psp3 observed in the X-ray diffraction images of the examples and comparative examples and the peak intensity ratio (count ratio) to the intensity Imax of the strongest peak Pmax.
  • the hydrogen storage alloy of the present invention it is possible to obtain an electrode alloy powder that can achieve both high discharge characteristics and excellent life characteristics (such as high temperature life characteristics) of an alkaline storage battery. Therefore, it is expected to be used as a power source for various devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、高容量で長寿命なアルカリ蓄電池を実現する水素吸蔵合金を提供するものである。本発明に係る水素吸蔵合金は、CuKα線によるX線回折像が、(1)2θ=32.25±0.15°におけるピークPsp1、(2)2θ=33.55±0.15°におけるピークPsp2、および(3)2θ=37.27±0.15°におけるピークPsp3 から選ばれる少なくとも1つを有する。

Description

水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池
 本発明は、新規な結晶構造を有する水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池に関する。
 Ce2Ni7型およびCeNi3型の結晶構造を有する水素吸蔵合金は、比較的高容量であることが知られており、電極用合金粉末として期待されている。しかし、比較的高容量な従来の水素吸蔵合金をアルカリ蓄電池の電極用合金粉末として用いた場合、アルカリ蓄電池の充放電サイクルを繰り返すと、比較的早期に放電容量が低下することが知られている。
 一方、A24型とAB5型の基本ユニット(セル)を有する水素吸蔵合金は、水素の吸蔵および放出に伴う合金の劣化が抑制されるという報告がある(特許文献1)。
 また、A27型、AB3型もしくはその類似結晶相を主相とし、AB3型、A27型および/またはA519型の平行連晶を含む水素吸蔵合金も高容量で寿命特性に優れるという報告がある(特許文献2)。
 更に、希土類元素、Mg、NiおよびAlを含み、希土類元素がGdを含み、AB5型とは異なる結晶構造を有する水素吸蔵合金を用いたアルカリ蓄電池は、水素吸蔵能力が高く、低温放電特性および高率放電特性に優れるという報告がある(特許文献3)。
特開2012-174639号公報 国際公開第2001-48841号パンフレット 特開2006-277995号公報
 特許文献1~3をはじめ、従来の水素吸蔵合金では、アルカリ蓄電池の寿命特性の向上に限界がある。そこで、高容量を有し、かつ長寿命なアルカリ蓄電池を実現できる水素吸蔵合金の開発が望まれている。
 本発明の一局面は、CuKα線によるX線回折像が、(1)2θ=32.25±0.15°におけるピークPsp1、(2)2θ=33.55±0.15°におけるピークPsp2、および(3)2θ=37.27±0.15°におけるピークPsp3から選ばれる少なくとも1つを有する、水素吸蔵合金に関する。
 本発明の他の一局面は、上記水素吸蔵合金を含む、電極用合金粉末に関する。
 本発明の更に他の一局面は、上記電極用合金粉末を、負極活物質として含むアルカリ蓄電池用負極に関する。
 本発明の更に他の一局面は、正極と、負極と、正極および負極の間に介在するセパレータと、アルカリ電解液とを具備し、負極が、上記アルカリ蓄電池用負極である、アルカリ蓄電池に関する。
 本発明によれば、高容量を有し、かつ長寿命なアルカリ蓄電池を実現可能である。
本発明の一実施形態に係るアルカリ蓄電池の構造を模式的に示す縦断面図である。 本発明の一実施形態に係る水素吸蔵合金のX線回折像を示す図である。
(水素吸蔵合金)
 本実施形態に係る水素吸蔵合金のCuKα線によるX線回折像は、(1)2θ=32.25±0.15°(すなわち32.10~32.40°)におけるピークPsp1、(2)2θ=33.55±0.15°(すなわち33.40~33.70°)におけるピークPsp2、および(3)2θ=37.27±0.15°(すなわち37.12~37.42°)におけるピークPsp3から選ばれる少なくとも1つを有する。ピークPsp1、ピークPsp2およびピークPsp3は、従来の水素吸蔵合金のX線回折像では観測されない。すなわち、本発明の水素吸蔵合金は、新規な結晶領域(以下、結晶相Psp)を含んでいると考えられる。
 本実施形態に係る水素吸蔵合金は、例えばP63/mmcの空間群に属する結晶構造を有する。P63/mmcの空間群に属する結晶構造を有する合金としては、例えばA27型(AB3.5型)およびA519型(AB3.8型)の合金が知られている。これらの合金はAB5型の合金に比べて高容量であるが、結晶構造は比較的不安定である。また、上記のように、A27型およびA519型の合金のX線回折像では、ピークPsp1、ピークPsp2およびピークPsp3は、いずれも観測されない。
 詳細は不明であるが、ピークPsp1、ピークPsp2およびピークPsp3から選ばれる少なくとも1つを発現させる結晶相Pspは、おそらくA27型とA519型との中間的な構造を有すると考えられる。また、結晶相Pspのc軸方向の長さは、24オングストロームより大きく、かつ32オングストロームより小さい基本ユニット(セル)を有していると考えられる。
 結晶相Pspを有する水素吸蔵合金は、AB5型合金などに比べて高容量である。また、理由は定かではないが、結晶相Pspを有する水素吸蔵合金をアルカリ蓄電池の電極用合金粉末として用いた場合、アルカリ蓄電池の充放電サイクルを繰り返した場合の放電容量の低下が抑制される。よって、結晶相Pspを有する水素吸蔵合金は、電極用合金粉末として有用である。
 結晶相Pspを有する水素吸蔵合金のX線回折像には、ピークPsp1、ピークPsp2および/またはピークPsp3の出現に伴って、更に複数の特有のピークPsp(k)が観測される場合がある。ピークPsp(k)は、例えば、以下の領域に観測される。
ピークPsp(4):2θ=10.6~11.2°
ピークPsp(5):2θ=12.8~13.4°
ピークPsp(6):2θ=26.1~26.7°
ピークPsp(7):2θ=26.6~27.2°
ピークPsp(8):2θ=28. 2~28. 8°
ピークPsp(9):2θ=30.2~30.6°
ピークPsp(10):2θ=31.5~31.8°
 本実施形態において、ピークPsp1の強度は特に限定されるものではないが、ピークPsp1の強度I1と、X線回折像が2θ=10~90°に有する最強ピークPmaxの強度Imaxとの比:I1/Imaxが0.01以上であれば、結晶相Pspが十分に発達していると考えられる。同様に、ピークPsp2の強度も特に限定されるものではないが、ピークPsp2の強度I2と、X線回折像が2θ=10~90°に有する最強ピークPmaxの強度Imaxとの比:I2/Imaxが、0.01以上である場合にも、結晶相Pspが十分に発達していると考えられる。更に、ピークPsp3の強度も特に限定されるものではないが、ピークPsp2の強度I3と、X線回折像が2θ=10~90°に有する最強ピークPmaxの強度Imaxとの比:I3/Imaxが、0.01以上である場合にも、結晶相Pspが十分に発達していると考えられる。なお、I1/Imaxは0.04以上が更に好ましく、I2/Imaxは0.09以上が更に好ましく、I3/Imaxは0.05以上が更に好ましい。
 結晶相Pspを有する水素吸蔵合金の組成は、特に限定されないが、例えば、元素L、元素Mおよび元素Eを含むことが好ましい。
 ここで、元素Lは、周期表第3族元素および第4族元素からなる群より選択される少なくとも一種であり、元素Mは、アルカリ土類金属元素であり、元素Eは、周期表第5族~第11族の遷移金属元素;第12族元素;第13族の第2周期~第5周期の元素;第14族の第3周期~第5周期の元素;N;PおよびSからなる群より選択される少なくとも一種である。ABX型の水素吸蔵合金では、元素Lおよび元素Mは、主にAサイトに存在し、元素Eは主にBサイトに存在する。
 元素Lと元素Mとの合計に対する元素Eのモル比mEは2.5≦mE≦4.5を充足することが好ましく、2.7≦mE≦3.3を充足することが更に好ましい。このような組成を有することで、P63/mmcの空間群に属する結晶構造が生成しやすくなる。
 元素Lと元素Mとの合計に占める元素Mのモル比xは、0.28≦x≦0.5を充足することが好ましく、0.3≦x≦0.4を充足することが更に好ましい。このような組成を有することで、P63/mmcの空間群に属する結晶構造が生成しやすくなる。
 元素Lのうち、周期表第3族元素には、Sc、Y、ランタノイド元素およびアクチノイド元素が含まれる。ランタノイド元素には、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuが含まれる。アクチノイド元素には、例えば、Ac、Th、Pa、Npなどが含まれる。元素Lのうち、周期表第4族元素としては、Ti、ZrおよびHfが挙げられる。元素Lは、上記元素のうちの一種を含んでもよく、二種以上を含んでもよい。
 元素Lは、これらの元素のうち、少なくともYおよびランタノイド元素を含むことが好ましい。Yは、酸素に対する親和性が強く、周辺の酸化物を還元する能力を有する。そのため、元素LがYを含む場合、水素吸蔵合金の腐食が抑制される。元素Lに占めるYのモル比yは0.001≦y≦0.1であることが好ましく、0.01≦y≦0.05であることが更に好ましい。また、ランタノイド元素の中では、La、Ce、Pr、NdおよびSmが好ましく、LaおよびSmが更に好ましく、Laが最も好ましい。元素Lに占めるLaのモル比zは0.5≦z≦0.9であることが好ましく、0.6≦z≦0.7であることが更に好ましい。
 元素M、すなわちアルカリ土類元素としては、Mg、Ca、Sr、Baなどが例示できる。アルカリ土類元素は、イオン結合性の水素化物を形成し易いため、元素Mを含む水素吸蔵合金は高容量化に寄与すると考えられる。元素Mは、アルカリ土類元素のうちの一種を含んでもよく、二種以上を含んでもよい。
 元素Mは、少なくともMgを含むことが好ましく、元素Mに占めるMgのモル比vは、0.001≦v≦1であることが好ましく、0.3≦v≦1であることが更に好ましい。これにより、合金が水素を吸蔵し易くなり、容量を高めることができるとともに、水素の放出性の低下も抑制される。
 元素Eは、周期表第5族~第11族の遷移金属元素;第12族元素;第13族の第2周期~第5周期の元素;第14族の第3周期~第5周期の元素;N;PおよびSからなる群より選択される少なくとも一種である。元素Eは、上記元素のうちの一種を含んでもよく、二種以上を含んでもよい。なかでも、元素Eは、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、B、Al、Ga、In、Si、Ge、SnおよびPからなる群より選択される少なくとも一種を含むことが好ましい。また、元素Eは、少なくともNi、CoおよびAlを含むことが特に好ましい。
 Niは、元素Eの主成分として好ましく、元素Lと元素Mとの合計に対するNiのモル比mNiは、2≦mNi≦3.8を満たすことが好ましく、2≦mNi≦3を満たすことが更に好ましい。
 Coは、周囲の元素との結合が強く、水素が吸蔵および放出される際、合金の膨張収縮に伴う結晶欠陥の生成を抑制すると考えられる。元素Lと元素Mとの合計に対するCoのモル比mCoは、0.15≦mCo≦0.5を満たすことが好ましく、0.2≦mCo≦0.3であることが更に好ましい。
 Alは、水素吸蔵反応における水素平衡圧を低下させる効果がある。元素Lと元素Mとの合計に対するAlのモル比mAlは、0.01≦mAl≦0.1を満たすことが好ましく、0.01≦mAl≦0.07であることが更に好ましい。
 また、元素EがCuを含むことにより、充放電の繰り返しによる膨張と収縮で生成される結晶歪の緩和が促進される。元素Lと元素Mとの合計に対するCuのモル比mCuは、0≦mCu≦0.03であることが好ましく、0.001≦mCu≦0.02であることが更に好ましい。
 更に、元素EがGe、Snなどの元素を含むことにより、合金表面の活性を高めることができるとともに、構成元素の溶出を抑制することができる。Geは、複合水酸化物を形成し易いため、合金の劣化を抑制する。Snは、水素を吸蔵および放出する際の膨張収縮を抑制する能力を有する。元素Lと元素Mとの合計に対するGeのモル比mGeは、0≦mGe≦0.1であることが更に好ましく、0.001≦mGe≦0.1であることが更に好ましい。元素Lと元素Mとの合計に対するSnのモル比mSnは、0≦mSn≦0.1であることが更に好ましく、0.001≦mSn≦0.1であることが更に好ましい。
 更に、元素Eが少量のNを含むことにより、水素の固体内移動度が増加する傾向がある。これは、水素吸蔵合金結晶内に、Nを起点とした水素の通過パスが形成されることによるものと推測される。水素の固体内拡散係数が向上することにより、放電特性(特に、低温での放電特性)が向上する。元素Lと元素Mとの合計に対するNのモル比mNは、0≦mN≦0.01であることが好ましく、0.001≦mN≦0.01であることが更に好ましい。
 P63/mmcの空間群に属する水素吸蔵合金は、結晶構造が複雑で比較的不安定であり、水素吸蔵合金の構成元素が溶出し易くなる傾向がある。一方、結晶相Pspを有する水素吸蔵合金であれば、構成元素の溶出を効果的に抑制することができると考えられる。
 以下、結晶相Pspを有する水素吸蔵合金および電極用合金粉末の製造方法について説明する。
 電極用合金粉末は、例えば、(i)水素吸蔵合金の構成元素の単体から合金を形成する工程A、(ii)工程Aで得られた合金を粒状化する工程B、および(iii)工程Bで得られた粒状物を活性化処理する工程C、を経ることにより得ることができる。
(i)工程A(合金化工程)
 合金化工程としては、プラズマアーク溶融法、高周波溶融(金型鋳造)法、メカニカルアロイング法(機械合金法)、メカニカルミリング法、急冷凝固法などが知られている。また、急冷凝固法には、ロールスピニング法、メルトドラッグ法、直接鋳造圧延法、回転液中紡糸法、スプレイフォーミング法、ガスアトマイズ法、湿式噴霧法、スプラット法、急冷凝固薄帯粉砕法、ガス噴霧スプラット法、メルトエクストラクション法、スプレイフォーミング法、回転電極法などがある。ただし、結晶相Pspを有する水素吸蔵合金を得るためには、例えば、以下の方法が適している。
 まず、各構成元素の単体を準備する。これらを予め混合し、得られた混合物を上記の各種方法により合金化することもできる。しかし、結晶相Pspを有する水素吸蔵合金を得るためには、各構成元素の単体を高融点の元素から順に溶解させることが好ましい。具体的には、構成元素のうち最も融点の高い元素の単体を最初に溶融させ、その溶湯の中に、次に融点の高い元素の単体を投入する。その後も融点の高い順に溶湯に原料を投入し、全ての構成元素を溶融させる。ただし、融点の差が100℃以内の元素同士であれば、同時に溶融させてもよい。また、溶湯の温度は、投入する元素の融点に応じて、徐々に下げていくことが好ましい。このような操作によれば、結晶相Pspを有する水素吸蔵合金の生成が促進される。その理由は定かではないが、例えば、低融点の元素の蒸発が抑制されることが結晶相Pspの生成に関連しているものと考えられる。構成元素の一部がアルカリ土類元素(元素M)である場合には、上記方法が特に有効である。
 次に、全ての構成元素を溶融させた後、溶湯を冷まして粗合金を生成させる。例えば、溶湯を鋳型などに供給し、鋳型内で冷却することにより粗合金が得られる。その後、粗合金のアニールを行うことが好ましい。アニールを行うことにより、水素吸蔵合金中での構成元素の分散性が向上し、構成元素の溶出や偏析を抑制し易くなる。アニールでは、粗合金を900℃~1100℃に加熱することが好ましく、950~1050℃に加熱することが更に好ましい。加熱時間は、例えば4~48時間である。
 また、粗合金は、アルゴンなどの不活性ガスを含む加圧雰囲気中でアニールすることが好ましい。加圧雰囲気の圧力は、例えば0.15~1MPaである。このようなアニールを行うことで、結晶相Pspの生成が更に促進される。その理由も定かではないが、ここでも低融点の元素の蒸発が抑制されることが結晶相Pspの生成に関連しているものと考えられる。以上により、結晶相Pspを有する水素吸蔵合金のインゴットが得られる。
(ii)工程B(粒状化工程)
 工程Bでは、工程Aで得られた合金のインゴットを粒状化する。合金の粒状化は、湿式粉砕、乾式粉砕などにより行うことができ、これらを組み合わせてもよい。粉砕は、ボールミルなどにより行うことができる。湿式粉砕では、水などの液体媒体を用いてインゴットを粉砕する。得られた粒子は、必要に応じて分級される。
 得られる合金粒子の平均粒径は、例えば5~50μm、好ましくは5~30μmである。平均粒径がこのような範囲である場合、水素吸蔵合金の表面積を適度な範囲に維持することができる。なお、本明細書中、平均粒径とは、体積基準のメディアン径を意味する。
 また、工程Bで得られる合金粒子を、電極用合金粉末の原料粉末と称する場合がある。
(iii)工程C(活性化工程)
 工程Cにおいて、粉砕物(原料粉末)の活性化は、粉砕物を、アルカリ水溶液と接触させることにより行うことができる。アルカリ水溶液と原料粉末との接触方法は、特に制限されない。例えば、アルカリ水溶液中に、原料粉末を浸漬させたり、アルカリ水溶液中に原料粉末を添加して、撹拌したり、アルカリ水溶液を原料粉末に噴霧したりすることにより行うことができる。活性化は、加熱下で行ってもよい。
 アルカリ水溶液としては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどを含む水溶液が使用できる。これらのうち、水酸化ナトリウムおよび/または水酸化カリウムなどを用いることが好ましい。活性化の効率、生産性、工程の再現性などの観点から、アルカリ水溶液中のアルカリの濃度は、例えば5~50質量%、好ましくは10~45質量%である。
 アルカリ水溶液による活性化処理の後、得られる合金粉末を水洗してもよい。合金粉末の表面に不純物が残存するのを低減するため、水洗は洗浄に用いた水のpHが9以下になってから終了することが好ましい。活性化処理後の合金粉末は、通常、乾燥される。
 本発明の電極用合金粉末は、このような工程を経ることにより得ることができ、高容量と寿命特性とを両立させることができるため、アルカリ蓄電池の負極活物質として使用するのに適している。
(アルカリ蓄電池)
 アルカリ蓄電池は、正極と、負極と、正極および負極の間に介在するセパレータと、アルカリ電解液とを具備する。負極は、上記の電極用合金粉末を、負極活物質として含む。
 アルカリ蓄電池の構成を、図1を参照しながら以下に説明する。図1は、本発明の一実施形態に係るアルカリ蓄電池の構造を模式的に示す縦断面図である。アルカリ蓄電池は、負極端子を兼ねる有底円筒型の電池ケース4と、電池ケース4内に収容された電極群および図示しないアルカリ電解液とを含む。電極群では、負極1と、正極2と、これらの間に介在するセパレータ3とが、渦巻き状に巻回されている。電池ケース4の開口部には、絶縁ガスケット8を介して、安全弁6を備える封口板7が配置され、電池ケース4の開口端部が内側にかしめられることにより、アルカリ蓄電池が密閉されている。封口板7は、正極端子を兼ねており、正極リード9を介して、正極2と電気的に接続されている。
 このようなアルカリ蓄電池は、電極群を、電池ケース4内に収容し、アルカリ電解液を注液し、電池ケース4の開口部に絶縁ガスケット8を介して封口板7を配置し、電池ケース4の開口端部を、かしめ封口することにより得ることができる。このとき、電極群の負極1と、電池ケース4とは、電極群と電池ケース4の内底面との間に配置された負極集電板を介して電気的に接続させる。また、電極群の正極2と、封口板7とは、正極リード9を介して電気的に接続させる。
 次に、ニッケル水素蓄電池の構成要素をより具体的に説明する。
(負極)
 負極は、上記の電極用合金粉末を負極活物質として含む限り特に制限されず、他の構成要素としては、ニッケル水素蓄電池において使用される公知のものが使用できる。
 負極は、芯材と、芯材に付着した負極活物質とを含んでもよい。このような負極は、芯材に少なくとも負極活物質(電極用合金粉末)を含む負極ペーストを付着させることにより形成できる。負極芯材としては、公知のものが使用でき、ステンレス鋼、ニッケルまたはその合金などで形成された多孔性または無孔の基板が例示できる。芯材が多孔性基板の場合、活物質は、芯材の空孔に充填されていてもよい。
 負極ペーストには、通常、分散媒が含まれ、必要に応じて、負極に使用される公知の成分、例えば、導電剤、結着剤、増粘剤などを添加してもよい。負極は、例えば、芯材に負極ペーストを塗布した後、乾燥により分散媒を除去し、圧延することにより形成できる。分散媒としては、公知の媒体、例えば、水を使用できる。
 導電剤としては、電子伝導性を有する材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト;アセチレンブラック、ケッチェンブラックなどのカ-ボンブラック;炭素繊維、金属繊維などの導電性繊維;銅粉などの金属粒子;ポリフェニレン誘導体などの有機導電性材料などが例示できる。これらの導電剤は、一種を単独でまたは二種以上を組み合わせて用いてもよい。導電剤の量は、電極用合金粉末100質量部に対して、例えば0.01~50質量部、好ましくは0.1~30質量部である。
 結着剤としては、樹脂材料、例えば、スチレン-ブタジエン共重合ゴム(SBR)などのゴム状材料;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素樹脂;エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸メチル共重合体などのアクリル樹脂およびそのNaイオン架橋体などが例示できる。結着剤は、一種を単独でまたは二種以上を組み合わせて使用できる。結着剤の量は、電極用合金粉末100質量部に対して、例えば0.01~10質量部、好ましくは0.05~5質量部である。
 増粘剤としては、例えばカルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体;ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエチレンオキシドなどのポリアルキレンオキサイドなどが挙げられる。増粘剤は、一種を単独でまたは二種以上を組み合わせて使用できる。増粘剤の量は、電極用合金粉末100質量部に対して、例えば0.01~10質量部、好ましくは0.05~5質量部である。
(正極)
 正極は、芯材と、これに付着した活物質または活物質層とを含んでもよい。正極は、例えば、芯材に少なくとも正極活物質を含む正極ペーストを付着させることにより形成できる。より具体的には、正極は、芯材に正極ペーストを塗布した後、乾燥により分散媒を除去し、圧延することにより形成できる。正極は、活物質粉末を芯材とともに焼結した電極であってもよい。
 正極芯材としては、公知のものが使用でき、ニッケル発泡体、焼結ニッケル板などの多孔性基板が例示できる。正極活物質としては、例えば、水酸化ニッケル、オキシ水酸化ニッケルなどのニッケル化合物が使用される。
 正極ペーストには、通常、分散媒が含まれ、必要に応じて、正極に使用される公知の成分、例えば、導電剤、結着剤、増粘剤などを添加してもよい。分散媒、導電剤、結着剤および増粘剤およびその量は、負極ペーストの場合と同様に選択できる。
 導電剤としては、水酸化コバルト、γ型オキシ水酸化コバルトなどの導電性のコバルト酸化物を用いてもよい。また、正極は、添加剤として、酸化亜鉛、水酸化亜鉛などの金属化合物(酸化物、水酸化物など)などを含んでもよい。
(その他)
 セパレータとしては、ポリエチレンやポリプロピレンなどのポリオレフィン製の微多孔フィルムや不織布が使用できる。
 アルカリ電解液としては、例えば、アルカリ電解質を含む水溶液が使用される。アルカリ電解質としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物が例示できる。これらは、一種を単独でまたは二種以上を組み合わせて使用できる。アルカリ電解液は、少なくとも水酸化カリウムを含むことが好ましく、さらに水酸化ナトリウムおよび/または水酸化リチウムを含むことが好ましい。アルカリ電解液の比重は、例えば1.03~1.55、好ましくは1.11~1.32である。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
(1)原料粉末の調製
 元素LとしてのLa(融点920℃)およびY(融点1526℃)、元素MとしてのMg(融点650℃)、元素EとしてのCo(融点1495℃)、Al(融点660℃)およびNi(融点1455℃)の各単体を、表1に示す質量比もしくはモル比で、高周波溶解炉で溶融させた。このとき、融点の高い順(Y>Co>Ni>La>Al>Mg)に、高周波溶解炉投入し、投入した材料が十分に溶解した後、次の材料を投入した。ただし、Y、CoおよびNiは同時に1550℃の高周波溶解炉に投入し、その後、高周波溶解炉の温度を1200℃に下げてLaを溶湯に投入し、その後、高周波溶解炉の温度を1100℃に下げてAlおよびMgを溶湯に投入した。溶湯を鋳型へ流し込み、水素吸蔵合金のインゴットを作製した。
 得られたインゴットを、大気圧下で、アルゴン雰囲気下、1060℃で10時間加熱してアニールした。アニール後のインゴットを、粒子に粉砕した。得られた粒子を、湿式ボールミルを用いて水の存在下で粉砕し、湿潤状態でメッシュ径が75μmの篩でふるい、平均粒径20μmの水素吸蔵合金(原料粉末)を得た。
(2)電極用合金粉末の調製
 上記(1)で得られた原料粉末と、水酸化ナトリウムを40質量%の濃度で含む温度が100℃のアルカリ水溶液とを混合し、50分間撹拌を続けた。得られた粉末を回収し、温水で洗浄し、脱水後、乾燥した。洗浄は、使用後の温水のpHが9以下になるまで行った。その結果、不純物が除去された状態の電極用合金粉末を得た。
(3)負極の作製
 上記(2)で得られた電極用合金粉末100質量部に対して、CMC0.15質量部、アセチレンブラック0.3質量部およびSBR0.7質量部を加え、さらに水を添加して練合することにより、負極ペーストを調製した。得られた負極ペーストを、ニッケルメッキを施した鉄製パンチングメタル(厚み60μm、孔径1mm、開孔率42%)からなる芯材の両面に塗布した。ペーストの塗膜は、乾燥後、芯材とともにローラでプレスした。こうして、容量2200mAhの負極を得た。負極の長手方向に沿う一端部には、芯材の露出部を設けた。
(4)正極の作製
 多孔性焼結基板からなる正極芯材に水酸化ニッケルを充填させて得られた容量1500mAhの焼結式正極を準備した。正極活物質には約90質量部のNi(OH)2を用い、添加剤として約6質量部のZn(OH)2を添加し、導電材として約4質量部のCo(OH)2を添加した。正極芯材の長手方向に沿う一方の端部には、活物質を保持しない芯材の露出部を設けた。
(5)ニッケル水素蓄電池の作製
 上記で得られた負極および正極を用いて、図1に示すような4/5Aサイズで公称容量1500mAhのニッケル水素蓄電池を作製した。具体的には、正極2と負極1とを、セパレータ3を介して捲回し、円柱状の極板群を作製した。極板群では、正極芯材の露出部と、負極芯材の露出部とを、それぞれ反対側の端面に露出させた。セパレータ3には、スルホン化処理したポリプロピレン製の不織布(厚み100μm)を用いた。正極芯材が露出する極板群の端面には正極リード9を溶接した。負極芯材が露出する極板群の端面には、負極集電板を溶接した。
 正極リード9を介して封口板7と正極2とを電気的に接続させ、その後、負極集電板を下方にして、極板群を円筒形の有底缶からなる電池ケース4に収容した。負極集電板と接続された負極リードを、電池ケース4の底部と溶接した。電池ケース4に電解液を注液した後、周縁にガスケット8を具備する封口板7で、電池ケース4の開口部を封口し、ニッケル水素蓄電池を完成させた。
 電解液には、水酸化カリウム水溶液(比重:1.3)に、水酸化リチウムを40g/Lの割合で溶解したアルカリ水溶液を用いた。
《実施例2》
 原料粉末の作製工程において、La、Y、Mg、Co、AlおよびNiの単体を表1に示す質量比もしくはモル比で用い、更に、得られたインゴットを、圧力0.3MPaのアルゴン雰囲気下、1060℃で10時間加熱してアニールしたこと以外、実施例1と同様に、平均粒径20μmの水素吸蔵合金を得た。それ以外は、実施例1と同様に負極およびニッケル水素蓄電池を作製した。
《実施例3》
 原料粉末の作製工程において、La、Y、Mg、Co、AlおよびNiに加え、Cu(融点1084℃)の単体を、表1に示す質量比もしくはモル比で用い、更に、得られたインゴットを、圧力0.3MPaのアルゴン雰囲気下、1060℃で10時間加熱してアニールしたこと以外、実施例1と同様に、平均粒径20μmの水素吸蔵合金を得た。なお、Cuは、Y、CoおよびNiを高周波溶解炉に投入した後、Laを投入する前に、溶湯に投入した。それ以外は、実施例1と同様に負極およびニッケル水素蓄電池を作製した。
《比較例1》
 原料粉末の作製工程において、La、Y、Mg、Co、AlおよびNiの各単体を、表1に示す質量比もしくはモル比で、全て同時に1500℃の高周波溶解炉で溶融させたこと以外、実施例1と同様に、平均粒径20μmの水素吸蔵合金を含む原料粉末を得た。
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例で得られた電極合金粉末およびニッケル水素蓄電池について、下記の評価を行った。
(a)X線回折測定
 以下の条件で、電極合金粉末のCuKα線によるX線回折測定を行った。
測定装置:スペクトリス社製X´Pert PRO
ターゲット:モノクロCu/C
管電圧/管電流:45kV/40mA
走査モード:Continuous
ステップ幅:0.02°
走査速度:120s/step
スリット幅(DS/SS/RS):0.5°/None/0.1mm
測定範囲:10~90°(2θ)
 実施例1~3のX線回折像は、(1)2θ=32.25±0.15°、(2)2θ=33.55±0.15°、および(3)2θ=37.27±0.15°に、それぞれ特有のピークPsp1、ピークPsp2およびピークPsp2を有し、結晶相Pspを有するとともに、P63/mmcの空間群に属する結晶構造を有することが確認された。
 実施例1~3において、ピークPsp1の強度I1(カウント数(ピーク高さ)、以下同じ)と、2θ=10~90°に有する最強ピークPmaxの強度Imaxとの比:I1/Imaxは、0.01以上であった。また、ピークPsp2の強度I2と、最強ピークPmaxの強度Imaxとの比:I2/Imaxも0.01以上であった。更に、ピークPsp3の強度I3と、最強ピークPmaxの強度Imaxとの比:I3/Imaxも0.01以上であった。
 なお、最強ピークPmaxは2θ=42.21°に観測された。
 一方、比較例1においては、(1)2θ=32.25±0.15°、(2)2θ=33.55±0.15°および(3)2θ=37.27±0.15°のいずれの領域にも、明確なピークは観測されなかった。比較例1の合金はA27型であることが判明した。
 図2に、実施例3および比較例1のX線回折像を示す。また、実施例および比較例のX線回折像において観測されたピークPsp1、Psp2およびPsp3の位置(2θ)および最強ピークPmaxの強度Imaxに対するピーク強度比(カウント数の比)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(b)高温寿命特性
 実施例および比較例のニッケル水素蓄電池を、40℃環境下にて10時間率(150mA)で15時間充電し、5時間率(300mA)で電池電圧が1.0Vになるまで放電した。この充放電サイクルを100回繰り返した。2サイクル目の放電容量に対する100サイクル目の放電容量の比率を、容量維持率として百分率で求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1~3では、比較例1に比べて、明らかに容量維持率が向上しており、寿命特性が改善されていることが示された。なお、実施例1~3の水素吸蔵合金は、AB3型合金と同等程度の容量を有し、AB5型合金よりも約10%高容量であることを確認した。
 本発明の水素吸蔵合金によれば、アルカリ蓄電池の高い放電特性と優れた寿命特性(高温寿命特性など)とを両立できる電極用合金粉末を得ることができる。そのため、各種機器の電源としての利用が期待される。
1 負極
2 正極
3 セパレータ
4 電池ケース
6 安全弁
7 封口板
8 絶縁ガスケット
9 正極リード

Claims (12)

  1.  CuKα線によるX線回折像が、
    (1)2θ=32.25±0.15°におけるピークPsp1、
    (2)2θ=33.55±0.15°におけるピークPsp2、および
    (3)2θ=37.27±0.15°におけるピークPsp3
    から選ばれる少なくとも1つを有する、水素吸蔵合金。
  2.  P63/mmcの空間群に属する結晶構造を有する、請求項1に記載の水素吸蔵合金。
  3.  前記ピークPsp1の強度I1と、前記X線回折像が2θ=10~90°に有する最強ピークPmaxの強度Imaxとの比:I1/Imaxが、0.01以上である、請求項1または2に記載の水素吸蔵合金。
  4.  前記ピークPsp2の強度I2と、前記X線回折像が2θ=10~90°に有する最強ピークPmaxの強度Imaxとの比:I2/Imaxが、0.01以上である、請求項1~3のいずれか1項に記載の水素吸蔵合金。
  5.  前記ピークPsp3の強度I3と、前記X線回折像が2θ=10~90°に有する最強ピークPmaxの強度Imaxとの比:I3/Imaxが、0.01以上である、請求項1~4のいずれか1項に記載の水素吸蔵合金。
  6.  請求項1~5のいずれか1項に記載の水素吸蔵合金を含む、電極用合金粉末。
  7.  前記水素吸蔵合金は、元素L、元素Mおよび元素Eを含み、
     前記元素Lは、周期表第3族元素および第4族元素からなる群より選択される少なくとも一種であり、
     前記元素Mは、アルカリ土類金属元素であり、
     前記元素Eは、周期表第5族~第11族の遷移金属元素;第12族元素;第13族の第2周期~第5周期の元素;第14族の第3周期~第5周期の元素;N;PおよびSからなる群より選択される少なくとも一種であり、
     前記元素Lと前記元素Mとの合計に対する前記元素Eのモル比mEは、2.5≦mE≦4.5を充足する、請求項6に記載の電極用合金粉末。
  8.  前記元素Lと元素Mとの合計に占める前記元素Mのモル比xは0.28≦x≦0.5である、請求項7に記載の電極用合金粉末。
  9.  前記元素Lは、少なくともYおよびランタノイド元素を含み、
     前記元素Mは、少なくともMgを含み、
     前記元素Eは、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、B、Al、Ga、In、Si、Ge、Sn、NおよびPからなる群より選択される少なくとも一種を含む、請求項7または8に記載の電極用合金粉末。
  10.  前記元素Eは、少なくともCo、NiおよびAlを含み、
     前記元素Lと前記元素Mとの合計に対するNiのモル比mNiは2≦mNi≦3.8であり、
     前記元素Lと前記元素Mとの合計に対するCoのモル比mCoは0.15≦mCo≦0.75であり、
     前記元素Lと前記元素Mとの合計に対するAlのモル比:mAlは0.01≦mAl≦0.1である、請求項9に記載の電極用合金粉末。
  11.  請求項1~5のいずれか1項記載の水素吸蔵合金、または、請求項6~10のいずれか1項記載の電極用合金粉末を、負極活物質として含むアルカリ蓄電池用負極。
  12.  正極と、負極と、前記正極および前記負極の間に介在するセパレータと、アルカリ電解液とを具備し、
     前記負極が、請求項11に記載のアルカリ蓄電池用負極である、アルカリ蓄電池。
PCT/JP2015/000623 2014-03-12 2015-02-12 水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池 WO2015136836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/115,240 US20170002442A1 (en) 2014-03-12 2015-02-12 Hydrogen-absorbing alloy, alloy powder for electrode, negative electrode for alkaline storage battery, and alkaline storage battery
CN201580012235.5A CN106103758A (zh) 2014-03-12 2015-02-12 储氢合金、电极用合金粉末、碱性蓄电池用负极及碱性蓄电池
JP2016507287A JPWO2015136836A1 (ja) 2014-03-12 2015-02-12 水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014048668 2014-03-12
JP2014-048668 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015136836A1 true WO2015136836A1 (ja) 2015-09-17

Family

ID=54071299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000623 WO2015136836A1 (ja) 2014-03-12 2015-02-12 水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池

Country Status (4)

Country Link
US (1) US20170002442A1 (ja)
JP (1) JPWO2015136836A1 (ja)
CN (1) CN106103758A (ja)
WO (1) WO2015136836A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571756B (zh) * 2015-12-11 2017-02-21 財團法人工業技術研究院 用以分析瀏覽記錄及其文件之方法及其系統
CN114686772B (zh) * 2022-03-31 2023-08-15 包头稀土研究院 稀土-铁基合金材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021439A (ja) * 1998-06-30 2000-01-21 Toshiba Corp ニッケル水素二次電池
JP2002069554A (ja) * 2000-09-06 2002-03-08 Toshiba Corp 水素吸蔵合金、アルカリ二次電池、ハイブリッドカー及び電気自動車
JP2007063611A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池
JP2007087631A (ja) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd アルカリ蓄電池
JP2011023337A (ja) * 2009-06-18 2011-02-03 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金およびその製造方法
JP2012211392A (ja) * 1997-06-17 2012-11-01 Toshiba Corp 水素吸蔵合金及び二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054781C (zh) * 1995-03-11 2000-07-26 青岛化工学院 纳米储氢蛋壳式稀土过渡金属超微粒子催化剂的制备方法
CN1120896C (zh) * 2000-10-11 2003-09-10 施志刚 吸氢合金及其制法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211392A (ja) * 1997-06-17 2012-11-01 Toshiba Corp 水素吸蔵合金及び二次電池
JP2000021439A (ja) * 1998-06-30 2000-01-21 Toshiba Corp ニッケル水素二次電池
JP2002069554A (ja) * 2000-09-06 2002-03-08 Toshiba Corp 水素吸蔵合金、アルカリ二次電池、ハイブリッドカー及び電気自動車
JP2007063611A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池
JP2007087631A (ja) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd アルカリ蓄電池
JP2011023337A (ja) * 2009-06-18 2011-02-03 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金およびその製造方法

Also Published As

Publication number Publication date
JPWO2015136836A1 (ja) 2017-04-06
US20170002442A1 (en) 2017-01-05
CN106103758A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5909683B2 (ja) 電極用合金粉末、それを用いたアルカリ蓄電池用負極およびアルカリ蓄電池
US8318349B2 (en) Negative electrode active material for nickel-metal hydride battery and nickel-metal hydride battery using the same, and method for treating negative electrode active material for nickel-metal hydride battery
US20110274972A1 (en) Hydrogen-absorbing alloy and nickel-metal hydride rechargeable battery
JP4667513B2 (ja) 水素吸蔵合金粉末とその表面処理方法、アルカリ蓄電池用負極、およびアルカリ蓄電池
JP5169050B2 (ja) ニッケル水素電池用負極活物質およびニッケル水素電池、およびニッケル水素電池用負極活物質の処理方法
US10305099B2 (en) Electrode alloy powder, negative electrode for nickel-metal hydride storage batteries using the same, and nickel-metal hydride storage battery
JP2010073424A (ja) ニッケル水素蓄電池
WO2015136836A1 (ja) 水素吸蔵合金、電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池
JP6422017B2 (ja) 水素吸蔵合金、電極及びニッケル水素蓄電池
JP5861099B2 (ja) 電極用合金粉末、それを用いたニッケル水素蓄電池用負極およびニッケル水素蓄電池
JP6394955B2 (ja) 水素吸蔵合金、電極及びニッケル水素蓄電池
WO2016157669A1 (ja) 電極用合金粉末、それを用いたニッケル水素蓄電池用負極およびニッケル水素蓄電池
WO2016051688A1 (ja) 電極用合金粉末、それを用いたニッケル水素蓄電池用負極およびニッケル水素蓄電池
JP2010182684A (ja) ニッケル水素電池用負極活物質の処理方法ならびにニッケル水素電池用負極活物質およびニッケル水素電池
JP5979542B2 (ja) 電極用合金粉末、それを用いたアルカリ蓄電池用負極およびアルカリ蓄電池
JP5991525B2 (ja) アルカリ蓄電池
JP2010262763A (ja) 水素吸蔵合金粉末の表面処理方法、ニッケル水素電池用負極活物質、ニッケル水素電池用負極、ならびにニッケル水素電池
JP2008269888A (ja) ニッケル水素蓄電池
WO2016157672A1 (ja) 電極用合金粉末、それを用いたニッケル水素蓄電池用負極およびニッケル水素蓄電池
JP2014053135A (ja) 電極用合金粉末の製造方法、電極用合金粉末、アルカリ蓄電池用負極、およびアルカリ蓄電池
JPH10241726A (ja) ニッケル水素二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507287

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15115240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760820

Country of ref document: EP

Kind code of ref document: A1