WO2018021075A1 - 振動装置 - Google Patents

振動装置 Download PDF

Info

Publication number
WO2018021075A1
WO2018021075A1 PCT/JP2017/025787 JP2017025787W WO2018021075A1 WO 2018021075 A1 WO2018021075 A1 WO 2018021075A1 JP 2017025787 W JP2017025787 W JP 2017025787W WO 2018021075 A1 WO2018021075 A1 WO 2018021075A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
diaphragms
vibration device
vibration
fixed
Prior art date
Application number
PCT/JP2017/025787
Other languages
English (en)
French (fr)
Inventor
緒方 健治
省吾 黒木
慶太 松岡
嘉之 渡部
Original Assignee
第一精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一精工株式会社 filed Critical 第一精工株式会社
Priority to US16/314,300 priority Critical patent/US11284196B2/en
Priority to CN201780043478.4A priority patent/CN109479167B/zh
Priority to JP2018529786A priority patent/JP6673480B2/ja
Publication of WO2018021075A1 publication Critical patent/WO2018021075A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/006Interconnection of transducer parts

Definitions

  • the present invention relates to a vibration device.
  • the number of vibrators is single.
  • the frequency band in which the vibration displacement of the vibrator can be increased is limited to the vicinity of the resonance frequency (natural frequency) of the vibrator, so it supports acoustics in a frequency band different from the resonance frequency. It becomes difficult to make the electric power generated by the amplitude of the vibration of the casing to be generated and the vibration generated in the frequency band different from the resonance frequency sufficiently large.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vibration device capable of sufficiently increasing the amplitude of vibration of a housing corresponding to sound and the generated power. To do.
  • a vibration device includes: A plurality of diaphragms having laminated piezoelectric layers, flexed and vibrated by expansion and contraction of the piezoelectric layers or vibration force applied from the outside, and having different resonance frequencies; It has an internal space for accommodating the plurality of diaphragms and a fixing part for fixing a part of each diaphragm, and can transmit vibration between each diaphragm and the outside via the fixing part.
  • the diaphragm In the main surface, with respect to a direction orthogonal to the direction from the fixed portion toward the center of the diaphragm, the diaphragm includes a diaphragm whose full width is larger than the full width of the fixed end fixed by the fixed portion. It is good as well.
  • the plurality of diaphragms are arranged in the same plane, It is good as well.
  • a part of the main surface is hollowed to form a through hole, and includes a diaphragm that contains another diaphragm in the through hole. It is good as well.
  • the plurality of diaphragms are arranged concentrically, It is good as well.
  • the through hole is formed eccentrically toward the fixed part rather than the center of the main surface, It is good as well.
  • Each of the plurality of diaphragms is a circular arc plate having the same central angle arranged in a radial direction of a circle centered on a reference point, Fixed to the fixed part at both ends, It is good as well.
  • the portion fixed to the fixed portion of the plurality of diaphragms is A plurality of opposite directions or radially extend around the reference point, It is good as well.
  • Each of the plurality of diaphragms is Two first straight portions having one end fixed to the fixed portion and extending in parallel with each other; A second linear portion connecting the other ends of the two first linear portions; Have The plurality of diaphragms are: Arranged inside the frame formed by the first linear portion and the second linear portion so as to include another diaphragm, It is good as well.
  • the plurality of diaphragms are integrated at a portion fixed to the fixed portion. It is good as well.
  • the plurality of diaphragms are arranged in the thickness direction, It is good as well.
  • the plurality of diaphragms have uniform outer dimensions, It is good as well.
  • the plurality of diaphragms are: Arranged so that the area of the main surface of each diaphragm increases or decreases, It is good as well.
  • the plurality of diaphragms are: Arranged so that its thickness increases or decreases, It is good as well.
  • a weight is provided for each diaphragm, It is good as well.
  • the plurality of diaphragms are: Arranged so that the weight of each weight provided on each increases or decreases, It is good as well.
  • the weight is In each diaphragm, provided on the center line passing through the center of the diaphragm from the fixed portion, It is good as well.
  • the weight is In each diaphragm, it is provided at a position deviated from a center line passing through the center of the diaphragm from the fixed portion. It is good as well.
  • An input / output unit that inputs a voltage signal output from an external device and applies the voltage signal to the piezoelectric layer of each diaphragm or takes out the electric charge generated in the piezoelectric layer as a current is provided. It is good as well.
  • the fixing part is Arranged on the opposite side of the input / output unit, It is good as well.
  • At least one diaphragm is cut away at a portion facing the input / output unit. It is good as well.
  • the shape of the main surface of at least one diaphragm is C-shaped, U-shaped, or concave. It is good as well.
  • the interval between the resonance frequencies of each of the plurality of diaphragms is defined so that the frequency response between adjacent resonance frequencies exceeds the frequency response of the diaphragm alone. It is good as well.
  • a metal plate is bonded to a part of the main surface of at least one diaphragm among the plurality of diaphragms. It is good as well.
  • the diaphragm on which the metal plate is bonded is annular,
  • the metal plate is provided so as to extend in the circumferential direction on the inner edge side of the diaphragm. It is good as well.
  • the diaphragm on which the metal plate is bonded is annular,
  • the metal plate is configured by alternately connecting a short width portion and a long width portion in the circumferential direction of the diaphragm, It is good as well.
  • the diaphragm on which the metal plate is bonded is annular,
  • the metal plate is provided to extend in a circumferential direction of the diaphragm;
  • the width of the metal plate is shortened as the distance from the fixed portion increases. It is good as well.
  • At least one diaphragm of the plurality of diaphragms is An annular plate formed by alternately connecting a short and thin portion and a long and thick portion in the circumferential direction, It is good as well.
  • a metal weight is provided at a position farthest from the fixed portion in the at least one diaphragm, It is good as well.
  • the metal weight projects from the position connected to the diaphragm along the diaphragm in parallel with the diaphragm. It is good as well.
  • the resonance frequencies of the plurality of diaphragms are different.
  • the amplitude of the vibration to be generated and the generated power can be made sufficiently large.
  • FIG. 5 is a cross-sectional view of a reference line BL in FIG. 4. It is a figure which shows the structure which fixes a diaphragm. It is a figure which shows the comparison result of the diaphragm of FIG.
  • FIG. 1 It is a perspective view which shows the structure of the diaphragm of the vibration electric power generating apparatus which concerns on Embodiment 5 of this invention. It is a cross-sectional perspective view of the vibration electric power generating apparatus of FIG. It is a figure which shows the distribution (the 1) of the voltage which generate
  • FIG. 10 is a diagram showing a modification (3-1) of the diaphragm.
  • FIG. 11 is a diagram showing a modification (part 3-2) of the diaphragm. It is a figure which shows the modification (the 4) of a diaphragm. It is a figure which shows the modification (the 5) of a diaphragm. It is a figure which shows the modification (the 6) of a diaphragm. It is a figure which shows the modification (the 7) of a diaphragm. It is a graph which shows an example of the frequency response between the adjacent resonant frequencies.
  • FIG. 31B is a perspective sectional view of the diaphragm of FIG. 31A. It is an enlarged view near a connection part. It is a perspective view which shows the structure of the whole diaphragm provided with the rectangular frame. It is a top view which shows the structure of the diaphragm of the vibration electric power generating apparatus which concerns on Embodiment 8 of this invention. It is a BB perspective sectional view of FIG.
  • FIG. 34A It is a perspective sectional view of a vibration power generator including a case. It is a graph (the 1) of the frequency response of the vibration displacement of a diaphragm. It is a graph (the 2) of the frequency response of the vibration displacement of a diaphragm. It is a graph (the 3) of the frequency response of the vibration displacement of a diaphragm. It is a top view which shows the structure of the diaphragm of the vibration electric power generating apparatus which concerns on Embodiment 9 of this invention.
  • FIG. 36B is a perspective cross-sectional view showing the configuration of the diaphragm in FIG. 36A. It is a perspective sectional view of a vibration power generator including a case.
  • Embodiment 1 FIG. First, the first embodiment of the present invention will be described.
  • a bone conduction earphone 1 ⁇ / b> A as a vibration device includes a housing 2 that is a housing and a signal input unit (input / output unit) 3 that protrudes from the housing 2. ing.
  • the bone conduction earphone 1A is used by inserting the signal input unit 3 into an earphone jack 101 which is an audio output terminal of a mobile terminal device (for example, a smartphone) 100 as an external device.
  • the housing 2 is made of a substance (for example, resin) that can easily transmit acoustic vibration and does not cause a problem even when touched by a human body.
  • the bone conduction earphone 1A accommodates a plurality of diaphragms (see FIG. 3) having different resonance frequencies.
  • the plurality of diaphragms vibrate the housing 2 according to the audio voltage signal output from the earphone jack 101. Therefore, if the user h grips the smartphone 100 in a state where the housing 2 is in contact with the outer skin of his / her head, the vibration of the housing 2 is transmitted as acoustic vibration to the inner ear via the skull.
  • the bone conduction earphone 1A can be used without being inserted into the external auditory canal of the user h.
  • details of the configuration and operation of the bone conduction earphone 1A will be described.
  • the housing 2 is divided into covers 2A and 2B, and is formed by fitting the cover 2A and the cover 2B together.
  • the casing 2 has a shape in which a rectangular parallelepiped portion is connected to a side surface of a cylindrical portion, and as shown in FIG. 3, an internal space 2C substantially similar to the outer shape is provided in the inside thereof. ing.
  • the signal input portion 3 is provided with a locking portion 3B.
  • the engaging portion 3B is engaged with the housing 2 in a state where the engaging portion 3B is sandwiched between the side walls of the end portions of the rectangular parallelepipeds of the covers 2A and 2B. Thereby, the signal input unit 3 is fixed to the housing 2.
  • An audio input terminal (earphone plug) 3A that is a part of the signal input unit 3 protrudes from the housing 2.
  • An output electrode 3C is provided at the end of the signal input unit 3 opposite to the audio input terminal 3A and at the end disposed in the internal space 2C.
  • the audio input terminal 3A and the output electrode 3C are conductive, and the audio voltage signal output from the earphone jack 101 is input to the audio input terminal 3A and sent to the output electrode 3C.
  • the bone conduction earphone 1A includes a plurality of diaphragms 4, 5, 6, and 7 that vibrate in accordance with an audio voltage signal output from the output electrode 3C.
  • the diaphragms 4, 5, 6, and 7 are accommodated in the internal space 2C.
  • the internal space 2 ⁇ / b> C has such a width that it does not come into contact with the vibrating diaphragms 4, 5, 6, 7.
  • the signal input unit 3 is also disposed at a position where it does not come into contact with the diaphragms 4, 5, 6, and 7.
  • the housing 2 has a fixing portion 2D for fixing a part of each of the diaphragms 4, 5, 6, and 7.
  • FIG. 5 which is a cross-sectional view of the reference line BL shown in FIG. 4, the fixing portions 2D are provided on the covers 2A and 2B, respectively. 7 is held as a cantilever across the z-axis direction.
  • the diaphragms 4, 5, 6, and 7 are provided with fixed portions 4D, 5D, 6D, and 7D that are sandwiched and fixed by the fixing portion 2D.
  • the fixed portions 4D, 5D, 6D, and 7D are thicker than other portions, that is, the vibrating beam portions.
  • FIG. 5 and FIG. 6 which is a top view showing the state where the cover 2A is removed
  • the fixed portions 4D, 5D, 6D, and 7D have through holes 4E and 5E that are penetrated in the z-axis direction. , 6E, 7E.
  • four bosses 2E that are columnar protrusions are provided on the fixing portion 2D of the cover 2B. The boss 2E is inserted into the through holes 4E, 5E, 6E, and 7E of the diaphragms 4, 5, 6, and 7.
  • the fixing portion 2D of the cover 2A is provided with four columnar recesses 2F.
  • each boss 2E protrudes from the through holes 4E, 5E, 6E, 7E and is inserted into each recess 2F.
  • each boss 2E is inserted into the through holes 4E, 5E, 6E, and 7E, the parallel movement of the diaphragms 4, 5, 6, and 7 in the casing 2 in the xy plane is restricted. Thereby, the diaphragms 4, 5, 6, and 7 can be firmly fixed to a desired position of the housing 2.
  • cutout portions 4G, 5G, 6G, and 7G that are notched linearly are provided.
  • the cover 2B is provided with four straight side walls 2G extending in the x-axis direction. Each side wall 2G contacts the notches 4G, 5G, 6G, and 7G of the diaphragms 4, 5, 6, and 7. Thereby, the rotation in the xy plane of the diaphragms 4, 5, 6, and 7 around the boss 2E in the housing 2 is restricted.
  • the diaphragms 4, 5, 6, and 7 have flexibility, and a portion that is not fixed by the fixing portion 2D bends and vibrates in accordance with an audio voltage signal output from the output electrode 3C.
  • the diaphragms 4, 5, 6, and 7 are repeatedly deformed and vibrated, as shown in FIG. 5, the diaphragm is centered on the fixed end formed by the fixed portion 2D (fixed portions 4D, 5D, 6D, and 7D).
  • the free ends on the ⁇ y side of 4, 5, 6, and 7 come to warp up and down.
  • the diaphragms 4, 5, 6, and 7 have different shapes, and therefore have different resonance frequencies.
  • the casing 2 transmits the vibration transmitted from the diaphragms 4, 5, 6, and 7 to the outside through the fixing portion 2D. Since the resonance frequencies of the diaphragms 4, 5, 6, and 7 are different from each other, the frequency band in which the vibration amplitude transmitted from the diaphragms 4, 5, 6, and 7 is increased can be expanded.
  • the diaphragms 4, 5, 6, and 7 will be described in more detail. As shown in FIG. 4, the surfaces on the + z side parallel to the xy plane in the diaphragms 4, 5, 6 and 7 are defined as main surfaces 4A, 5A, 6A and 7A, respectively. It can be said that the diaphragms 4, 5, 6, and 7 have different resonance frequencies because the main surfaces 4A, 5A, 6A, and 7A have different areas.
  • the diaphragm 4 is a disk-like member parallel to the xy plane, and the diaphragms 5, 6, and 7 are annular members parallel to the xy plane.
  • the diaphragms 4, 5, 6, and 7 are disposed in the same xy plane.
  • the diaphragms 5, 6, and 7 are hollowed at the center of the main surfaces 5 ⁇ / b> A, 6 ⁇ / b> A, and 7 ⁇ / b> A, and include other diaphragms (for example, the diaphragm 4) in the hollowed portions.
  • the diaphragms 4, 5, 6, and 7 are arranged concentrically around the point O.
  • the diaphragms 5, 6, and 7 a part (center) of the main surfaces 5A, 6A, and 7A is hollowed to form a through hole. In this way, the resonance frequency of the diaphragms 5, 6, and 7 can be further reduced. Further, by housing another diaphragm in a portion (through hole) where the main surfaces 5A, 6A, and 7A are hollowed out, and arranging the diaphragms 4, 5, 6, and 7 on the same plane, the housing 2 Can be made thinner. Furthermore, by arranging the diaphragms 4, 5, 6, and 7 concentrically, the diaphragms 4, 5, 6, and 7 can be vibrated with good balance.
  • the widths W1, W2, W3, and W4 of the diaphragms 4, 5, 6, and 7 are equal to the width of the fixed part 2D (the diaphragms 4, 5, 6, and 7 are The dimension of the fixed fixed end) is larger than d1, d2, d3, d4.
  • the electromechanical coupling coefficient which is the ratio of the magnitude of vibration displacement of the housing 2 (mechanical energy) to the electromagnetic energy applied to the diaphragms 4, 5, 6, and 7, can be increased.
  • the cantilever-shaped diaphragm 4 ′ having the same width as the fixed width d1 of the fixed portion 2D and the same length L1 as the diaphragm 4, and the vibration according to the present embodiment
  • the diaphragm 4 has a larger electromechanical coupling coefficient and a greater vibration displacement of the housing 2. If the vibration displacement of the housing 2 increases, it becomes easier for the user to hear the sound.
  • the diaphragm In order to obtain the same electromechanical coupling coefficient as that of the diaphragm 4 with a cantilever diaphragm having the same width as the width d1 of the fixed portion 2D, for example, the diaphragm needs to have a length L2 longer than L1 ( Diaphragm 4 ′′ in FIG. 7) For this reason, the ratio of the length to the width is increased, and the balance between the length and the width is deteriorated (the sound can hardly be transmitted). If the diaphragm 4 is used, the displacement of the housing 2 can be increased and the sound can be easily transmitted while the ratio of the length to the width is reduced (while the balance between the length and the width is maintained). The same applies to the diaphragms 5, 6 and 7.
  • the shapes of the main surfaces 4A, 5A, 6A, 7A of the diaphragms 4, 5, 6, 7 are, for example, as shown in FIG. 4, from the boss 2E (fixed portion 2D) to the diaphragms 4, 5, 6, 7
  • the line is symmetrical with respect to a reference line BL parallel to the y-axis passing through the center O. In this way, the diaphragms 4, 5, 6, and 7 held as cantilever beams can be vibrated with good balance.
  • the diaphragms 4, 5, 6, and 7 have a structure in which a plurality of layers are stacked. Each layer of the diaphragms 4, 5, 6, and 7 is manufactured using a MEMS (Micro Electro Mechanical Systems) technology that is a semiconductor manufacturing technology.
  • An SOI (Silicon On On Insulator) substrate is used to manufacture the diaphragms 4, 5, 6, and 7.
  • the SOI substrate is a substrate having a laminated structure including a support substrate made of a semiconductor substrate, a BOX layer that is a buried oxide film on the support substrate, and a silicon (SOI) layer that is a semiconductor layer on the BOX layer. A wafer containing an oxide film.
  • the lowermost ( ⁇ z side) base material layer 40B is made of a silicon layer on the BOX layer.
  • a lower electrode layer 40C, a piezoelectric material layer 40D, and an upper electrode layer 40E are stacked in this order on the base material layer 40B.
  • the lower electrode layer 40C, the piezoelectric material layer 40D, and the upper electrode layer 40E form a piezoelectric layer 40A.
  • the diaphragms 4, 5, 6, and 7 have a base material layer (substrate) 40B and a piezoelectric layer 40A laminated on the base material layer 40B.
  • the lower electrode layer 40C and the upper electrode layer 40E are made of a conductive material (for example, a metal such as aluminum or copper), and the piezoelectric material layer 40D is a material (for example, showing piezoelectric characteristics) such as PZT (lead zirconate titanate). Material).
  • the piezoelectric material layer 40D has a property of expanding and contracting in the longitudinal direction (direction orthogonal to the thickness direction) when a voltage having a predetermined polarity is applied in the thickness direction.
  • the piezoelectric layer 40A extends in the longitudinal direction, and the main surface 4A Stress is applied to the side in a direction extending in the plane direction (direction along the y-axis). As a result, the diaphragm 4 warps so that the upper side is convex.
  • a piezoelectric material layer 40D having a property of extending in the longitudinal direction when a voltage is applied between both electrode layers may be used.
  • a positive voltage when a positive voltage is applied, it warps downward so as to be convex, and when a negative voltage is applied, it warps upward so as to be convex.
  • the diaphragms 4, 5, 6, and 7 may be any one that bends and vibrates due to expansion and contraction of the piezoelectric layer 40A.
  • the deformation shown in FIG. 8B or FIG. 8C can be caused by applying a voltage of a predetermined polarity between the upper electrode layer 40E and the lower electrode layer 40C.
  • the degree of deformation is an amount corresponding to the voltage value to be applied.
  • the voltage polarity and the relationship between expansion and contraction may be opposite to those described above.
  • the output electrode 3C of the signal input unit 3 is connected to the lower electrode layer 40C and the upper electrode layer 40E via lead wires (not shown).
  • the audio voltage signal output from the earphone jack 101 of the smartphone 100 is applied to the piezoelectric layers 40 ⁇ / b> A of the diaphragms 4, 5, 6 and 7 via the signal input unit 3.
  • the piezoelectric layer 40A is driven according to the audio voltage signal, and as a result of this driving, the diaphragms 4, 5, 6, and 7 vibrate as indicated by arrows in FIG.
  • the vibration is transmitted to the housing 2 (covers 2A and 2B) via the fixed parts 4D, 5D, 6D, and 7D and the fixing part 2D.
  • the casing 2 can transmit the vibration transmitted from the diaphragms 4, 5, 6, and 7 to the outside via the fixing portion 2D. Thereby, the user h (refer FIG. 1) can hear the sound by vibration.
  • the fixed part 2D is arranged on the opposite side of the signal input part 3. That is, the position of the fixing unit 2 ⁇ / b> D is separated as much as possible from the signal input unit 3 inserted into the smartphone 100. Because it is possible to increase the displacement of vibration of the housing 2 if the point where vibration is transmitted from the diaphragms 4, 5, 6, and 7 is as far as possible from the signal input unit 3 connected to the smartphone 100. is there.
  • weights 4C, 5C, 6C, and 7C are formed at the opposite ends of the fixed portions 2D of the diaphragms 4, 5, 6, and 7, respectively.
  • the weights 4C, 5C, 6C, and 7C are provided to adjust the resonance frequency of the diaphragms 4, 5, 6, and 7 low.
  • the base material layer 40B and the piezoelectric layer 40A are laminated, and the support substrate layer is left below. ing.
  • the fixed portions 4D, 5D, 6D, and 7D and the weights 4C, 5C, 6C, and 7C are formed by deep etching the Si layer of the SOI substrate.
  • scallops S for example, see FIG. 9) in which unevenness is repeated in the thickness direction are formed.
  • the scallop S is an unevenness in the depth (thickness) direction that is formed according to the repetition of etching in deep etching, and the number thereof depends on the number of etching repetitions described later.
  • Deep etching is also called a Bosch process. In the Bosch process, isotropic etching, protective film formation (passivation), and anisotropic etching are repeated a plurality of times.
  • the user h When there is an incoming call to the smartphone 100, the user h inserts the audio input terminal 3A of the bone conduction earphone 1A into the earphone jack 101, and then brings the housing 2 into contact with the outer skin of the head as shown in FIG. By simply operating the smartphone 100, a call can be made. The same applies to the case where the user h himself / herself transmits from the smartphone 100. Further, the bone conduction earphone 1A can be used not only for calling but also for listening to music and recorded audio data.
  • the resonance frequencies of the plurality of diaphragms 4, 5, 6, and 7 are different from each other.
  • the frequency band in which the vibration of the housing 2 is increased can be expanded for the audio voltage signal for vibrating the plurality of diaphragms 4, 5, 6, and 7, so that the amplitude of vibration corresponding to the sound is sufficient.
  • the diaphragm 4 is circular, the diaphragms 5, 6, and 7 are annular, and arranged in the same plane, the bone conduction earphone 1A can be miniaturized.
  • the size of the housing 2 of the bone conduction earphone 1A can be, for example, approximately 40 mm long ⁇ 20 mm wide ⁇ 10 mm thick.
  • the bone conduction earphone 1A according to the present embodiment, it is not necessary to insert the earphone 1A into the external auditory canal, so that the user h can easily hear surrounding sounds. As a result, danger can be avoided and the stress on the user h due to the inability to hear surrounding sounds is reduced.
  • the outer shape of the main surface 4A of the diaphragm 4 is circular, but is not limited thereto.
  • the outer shape of the main surface 4A may be a polygon such as a quadrangle.
  • it may be a trapezoid or a rhombus.
  • the ratio of the sizes in the x-axis direction and the y-axis direction can be arbitrarily set.
  • the diaphragms 5, 6, and 7 can also be polygonal annular plates.
  • the resonance frequency of the diaphragm 4 is one of important parameters for transmitting a good sound to the user h in the bone conduction type earphone 1A.
  • the resonance frequencies of the diaphragms 4, 5, 6, and 7 are preferably in the range of 400 Hz to 1000 Hz.
  • the resonance frequencies of the diaphragms 4, 5, 6, and 7 may be dispersed (preferably evenly) between them.
  • the thicknesses of the diaphragms 4, 5, 6, and 7 may be reduced.
  • the thickness of the diaphragms 4, 5, 6, and 7 may be increased.
  • the resonance frequency tends to be too low. It becomes easy to keep the resonance frequencies of the diaphragms 4, 5, 6, and 7 within an appropriate range.
  • diaphragms 15, 16, and 17 are the same as the diaphragms 5, 6, and 7 in that the centers of the main surfaces 15 ⁇ / b> A, 16 ⁇ / b> A, and 17 ⁇ / b> A are hollowed out. Thereby, the resonance frequency of diaphragm 15, 16, 17 can be made low.
  • the diaphragms 15, 16, and 17 are different from the diaphragms 5, 6, and 7 only in that a portion facing the signal input unit 3 is notched. In this way, the output electrode 3C of the signal input unit 3 and the wiring between the output electrode 3C and the piezoelectric layer 40A can be arranged in the notched portion, so that the entire earphone can be further downsized. can do.
  • the arm portions 15 ⁇ / b> B, 16 ⁇ / b> B, and 17 ⁇ / b> B extend in an arc shape from the fixed portions 5 ⁇ / b> D, 6 ⁇ / b> D, and 7 ⁇ / b> D toward both sides in the x-axis direction.
  • weights 15C, 16C, and 17C are formed at the tips of the arm portions 15B, 16B, and 17B, respectively.
  • the weights 15C, 16C, and 17C are provided to adjust the resonance frequency of the diaphragms 15, 16, and 17 low.
  • the diaphragms 24, 25, 26, and 27 shown in FIGS. 11A and 11B may be used instead of the diaphragms 4, 15, 16, and 17, the diaphragms 24, 25, 26, and 27 shown in FIGS. 11A and 11B may be used.
  • the diaphragm 24 has a substantially rectangular shape with a main surface 24A extending in the longitudinal direction of the reference line BL.
  • the diaphragms 25, 26, and 27 have U-shaped main surfaces 25A, 26A, and 27A. This is different from the diaphragms 4, 5, 6, 7.
  • the diaphragm 24 is disposed in the hollowed portion of the diaphragm 25, the diaphragms 24 and 25 are disposed in the hollowed portion of the diaphragm 26, and the diaphragm 24 and 25 are disposed in the hollowed portion of the diaphragm 27. 25 and 26 are arranged.
  • the pair of arm portions 25B, 26B, and 27B extend from the fixed portions 5D, 6D, and 7D.
  • Each of the arm portions 25B, 26B, and 27B includes an arc-shaped portion connected to the fixed portions 5D, 6D, and 7D and a portion extending linearly in the ⁇ y direction.
  • Weights 24C, 25C, 26C, and 27C are provided at the distal end of the diaphragm 24 opposite to the fixed portion 2D and the distal ends of the arm portions 25B, 26B, and 27B, whereby the diaphragms 24, 25, The resonance frequencies of 26 and 27 can be adjusted. Due to the application of the audio voltage signal, the diaphragms 24, 25, 26, and 27 vibrate, and the vibration is transmitted to the housing 2 through the fixed portions 4D, 5D, 6D, and 7D and the fixed portion 2D.
  • Each diaphragm is not limited to a C-shaped or U-shaped main surface. It suffices if the center of the main surface is hollowed out and the concave portion is formed by cutting out the portion facing the signal input unit 3.
  • the number of diaphragms is four, but it may be two or three, or may be five or more.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • the bone conduction type earphone according to the present embodiment differs from the first embodiment in the arrangement direction of the plurality of diaphragms.
  • a plurality of diaphragms 34, 35, 36, 37, and 38 are arranged in the thickness direction.
  • the display of the entire housing that accommodates the diaphragms 34, 35, 36, 37, and 38 is omitted.
  • the diaphragms 34, 35, 36, 37, and 38 are flexible disk-shaped or annular members having uniform outer dimensions, and corresponding main surfaces 34 ⁇ / b> A, 35 ⁇ / b> A, 36 ⁇ / b> A. , 37A, 38A.
  • the shape of the main surface 34A of the diaphragm 34 is circular, and the centers of the main surfaces 35A, 36A, 37A, 38A of the diaphragms 35, 36, 37, 38 are hollowed out, and a part of the annular shape is cut away. It is.
  • fixed portions 34D, 35D, 36D, 37D, and 38D that are respectively fixed to the casing are provided on a part of the outer sides of the diaphragms 34, 35, 36, 37, and 38.
  • a pair of arm portions 35B, 36B, 37B, and 38B extend in an arc shape from the fixed portions 35D, 36D, 37D, and 38D.
  • Weights 34C, 35C, 36C, 37C, 38C are provided on the opposite side of the fixed portions 34D, 35D, 36D, 37D, 38D in the diaphragms 34, 35, 36, 37, 38.
  • the weights 34C, 35C, 36C, 37C, 38C are provided to adjust the resonance frequency of the diaphragms 34, 35, 36, 37, 38 low.
  • the scallop S is provided on the side surfaces of the fixed portions 34D, 35D, 36D, 37D, and 38D and the weights 34C, 35C, 36C, 37C, and 38C.
  • the diaphragms 34, 35, 36, 37, and 38 are arranged so that the areas of the main surfaces 34A, 35A, 36A, 37A, and 38A monotonously increase or decrease.
  • the diaphragms 34, 35, 36, 37, and 38 are arranged so that the weights of the weights 34C, 35C, 36C, 37C, and 38C provided to the respective diaphragms increase or decrease. In this way, it is possible to easily adjust the resonance frequency by arranging the diaphragms in order of increasing or decreasing resonance frequency of the diaphragms 34, 35, 36, 37, and 38.
  • the plurality of diaphragms 34, 35, 36, 37, and 38 having different resonance frequencies are provided, and the plurality of diaphragms 34, 35, 36, and 38 are provided.
  • 37 and 38 vibrate respectively.
  • the resonance frequencies of the plurality of diaphragms 34, 35, 36, 37, and 38 are f1, f2, f3, f4, and f5
  • the frequency characteristics of the vibration amplitude (displacement amount) of the entire apparatus are shown by the solid line in FIG. It becomes like this.
  • f6 shows the resonance characteristics of the housing and the device.
  • the frequency characteristics of the vibration amplitude of the entire apparatus are indicated by a dotted line.
  • the frequency band in which the amplitude of vibration becomes large can be expanded.
  • a single diaphragm can sufficiently transmit sound in a frequency band of 750 Hz to 1300 Hz, but by using a plurality of diaphragms 34 to 38, a band capable of sufficiently transmitting sound can be obtained. It can be expanded to a band of 550 Hz to 1550 Hz.
  • an annular diaphragm, a U-shaped diaphragm, or a concave diaphragm may be used.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described.
  • the bone conduction type earphones 1A and 1B according to the above-described embodiments are used by directly inserting the audio input terminal 3A of the signal input unit 3 into the earphone jack 101 of the smartphone 100, as shown in FIG.
  • the bone conduction earphone 1 ⁇ / b> C according to the present embodiment is not a type that is directly plugged into the earphone jack 101 of the smartphone 100 but a type that can be used in a state separated from the smartphone 100 via a cable.
  • the bone conduction earphone 1C As shown in FIG. 15, the bone conduction earphone 1C according to the present embodiment is worn on the ear of the user h.
  • the bone conduction earphone 1 ⁇ / b> C includes a hook portion 61, a housing 62, a cord cable 63, and a signal input portion 64.
  • the hook portion 61 is put on the ear of the user h, and thereby, the bone conduction type earphone 1C is fixed so as to come into contact with the skull via the outer skin of the head of the user h.
  • a diaphragm set 65 composed of a plurality of diaphragms having different resonance frequencies is provided in the internal space of the casing 62, and the diaphragm set 65 is fixed to the casing 62 via a fixing portion 62D.
  • a voice input terminal (earphone plug) is provided at the tip of the cord cable 63, and the voice input terminal is connected to the earphone jack 101 (see FIG. 1) of the smartphone 100.
  • the audio voltage signal output from the earphone jack 101 of the smartphone 100 is input to the signal input unit 64 via the cord cable 63, and the signal input unit 64 converts the input audio voltage signal into the diaphragm set in the housing 62. Apply to 65. Thereby, each diaphragm of the diaphragm set 65 vibrates. The vibration of each diaphragm is transmitted to the housing 62, the housing 62 vibrates, and the vibration is transmitted to the user h as acoustic vibration.
  • the diaphragms of the diaphragm set 65 may be the diaphragms 4 to 7, the diaphragms 4 and 15 to 17, or the vibrations. Plates 24-27 may be used.
  • the bone conduction earphone 1C according to the present embodiment can be always worn on the ear. In this way, it is possible to immediately receive a call even when an incoming call is received.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
  • the bone conduction type earphones 1A, 1B, and 1C that transmit the vibration of the diaphragm to the casing have been described.
  • a vibration power generation apparatus 1D that generates power by vibration of a diaphragm will be described.
  • the vibration power generator 1 ⁇ / b> D includes diaphragms 44, 45, 46, and 47.
  • the shapes of the diaphragms 44, 45, 46, and 47 are the same as those of the diaphragms 4, 5, 6, and 7, but each resonance frequency is about several tens of Hz (50 Hz or less).
  • the diaphragms 44, 45, 46 and 47 vibrate in response to the vibration force received by the housing 2.
  • the vibration power generation device 1D is different from the bone conduction earphone 1A in that it includes an output unit (input / output unit) 30 having a pair of terminals 30A instead of the signal input unit 3.
  • the output unit 30 takes out the electric charge generated in the piezoelectric layer 40 ⁇ / b> A of the diaphragms 44, 45, 46, 47 due to the vibration described above as a current.
  • the diaphragms 44, 45, 46, and 47 have a piezoelectric layer 40A and a base material layer 40B as shown in FIG.
  • the output unit 30 outputs a current based on the electric charges output from the piezoelectric layers 40A of the diaphragms 44, 45, 46, and 47 to the rectifying and smoothing circuit 80 via the pair of terminals 30A.
  • the rectifying / smoothing circuit 80 rectifies and smoothes the current extracted from the diaphragms 44, 45, 46, 47 by an internal diode array and a capacitor, and outputs the rectified and smoothed circuit 80 to the storage battery 81.
  • the storage battery 81 performs charging based on the current rectified and smoothed by the rectifying and smoothing circuit 80.
  • the vibration power generation device 1D when the housing 2 receives a vibration force received from the outside, the force is transmitted to the vibration plates 44, 45, 46, 47 via the fixing portion 2D, and the vibration plates 44, 45, 46, 47 47 vibrates. If the frequency of the vibration force is close to the resonance frequency of the diaphragms 44, 45, 46, and 47, the vibration in any of the diaphragms increases, and the charge generated in the piezoelectric layer 40A formed on the diaphragm increases. Become.
  • the resonance frequencies of the diaphragms 44, 45, 46 and 47 are different from each other, a large amount of charges can be generated in a relatively wide band. For this reason, the generated electric power can be made sufficiently large in a wide frequency band.
  • the desirable resonance frequency of the diaphragm in the vibration power generation device 1D is lower than that of the bone conduction earphone 1A and needs to be about several tens of Hz (50 Hz or less).
  • the vibration power generation apparatus 1 ⁇ / b> D may be incorporated in the smartphone 100.
  • the smartphone 100 may include a plurality of power storage locations, and the other power storage location may be charged by the vibration power generation device 1D while using one power storage location.
  • Embodiment 5 FIG. Next, a fifth embodiment of the present invention will be described.
  • the vibration power generation apparatus 1D that generates power by the vibration of the diaphragm has been described.
  • the vibration power generation apparatus according to Embodiment 5 includes the diaphragms 74, 75, 76, and 77 instead of the diaphragms 44, 45, 46, and 47. This is different from the vibration power generation apparatus 1D according to the fourth embodiment.
  • the diaphragms 74, 75, 76, and 77 are fixed by a fixed portion 74D.
  • the diaphragms 74, 75, 76, and 77 are formed by penetrating part of the main surfaces 74A, 75A, 76A, and 77A to form through holes.
  • the hollowed portion is located closer to the fixed portion 74D than the center of the main surface 74A and is hollowed out.
  • the through hole is eccentric.
  • the diaphragms 74, 75, 76, and 77 have weights 74C, 75C, 76C and 77C are fixed.
  • the weights 74C, 75C, 76C, and 77C have different thicknesses, and the weights differ accordingly.
  • the resonance frequencies of the diaphragms 74, 75, 76, and 77 are finely adjusted to desired values by the weights 74C, 75C, 76C, and 77C.
  • the total width (length in the x-axis direction) of each of the diaphragms 74 to 77 is larger than the total width (length in the x-axis direction) of the fixed portion 74D. For this reason, even when the diaphragms 74 to 77 are inclined at 0 °, 30 °, and 45 ° around the X axis, and the diaphragms 74 to 77 are vibrated in the Z axis direction, FIG. 20A, FIG. 20B, and FIG. As shown, the voltage distribution generated on the main surfaces 74A to 77A of the diaphragms 74 to 77 is almost unchanged. 20A, 20B, and 20C show that the darker the color, the higher the generated voltage.
  • the diaphragms 74 to 77 are tilted around 0 °, 30 °, and 45 ° around the Y axis and the diaphragms 74 to 77 are vibrated in the Z axis direction, they are shown in FIGS. 21A, 21B, and 21C.
  • the voltage distribution generated on the main surfaces 74A to 77A of the diaphragms 74 to 77 does not change much. This means that, as shown in FIGS. 22A, 22B and 22C, the diaphragms 74 to 77 are tilted to 0 °, 30 ° and 45 ° around an axis forming 45 ° with respect to the X axis and the Y axis.
  • the through hole of the diaphragm 74 is eccentric toward the fixed portion 74D rather than the center of the main surface 74A.
  • the outer shapes of the diaphragms 74 to 77 are circular.
  • the outer diameters of the diaphragms 74 to 77 may be polygonal shapes such as a quadrangle.
  • Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described.
  • the vibration power generation apparatus includes a plurality of diaphragms 4-7.
  • the fixing portions 94D, 95D, 96D, and 97D that fix the diaphragms 4 to 7 are formed separately.
  • the fixing portion 94D for fixing the diaphragm 4 is provided at the ⁇ x side end of the diaphragm 4.
  • a fixing portion 95D for fixing the diaphragm 5 is provided at the ⁇ y side end of the diaphragm 5.
  • the fixing portion 96 ⁇ / b> D for fixing the diaphragm 6 is provided at the + x side end of the diaphragm 6.
  • the fixing portion 97 ⁇ / b> D for fixing the diaphragm 7 is provided at the + y side end of the diaphragm 7. That is, the directions in which the diaphragms 4 to 7 are extended with respect to the fixing portions 94D, 95D, 96D, and 97D are different. As described above, the vibration plates 4 to 7 can cope with vibrations in all directions by changing the installation direction (extension direction from the fixing portions 94D, 95D, 96D, and 97D). The generated voltage unevenness can be eliminated and the power generation amount can be made uniform.
  • the shape of the diaphragm is not limited to that of each of the above embodiments.
  • a plurality of cantilever diaphragms 54, 55, 56, 57 arranged in the thickness direction may be used.
  • the lengths of the diaphragms 54 to 57 are different, and the resonance frequencies are also different.
  • the cantilever diaphragms 54, 55, 56, and 57 may be arranged on the same plane.
  • a plurality of diaphragm sets 50 and 51 arranged in the same plane and having different resonance frequencies of the diaphragms may be arranged in the thickness direction.
  • the resonance frequency of each diaphragm can be different between the diaphragm sets 50 and 51.
  • a large number of diaphragms having different resonance frequencies can be densely arranged in a limited volume.
  • the frequency band of sound or power generation can be further expanded, and the interval between the resonance frequencies of the diaphragms can be shortened to make the output of sound or power generation smooth.
  • a diaphragm 70 in which the width of the arm portion 70B gradually changes as the distance from the fixed portion 2D increases and a weight 70C is provided at the tip may be used. Moreover, you may use the diaphragm from which the thickness of an arm part changes gradually as it leaves
  • a T-shaped diaphragm 71 in which the width of the tip portion of the arm portion 71B protrudes on both sides may be used.
  • weights 71C at both ends of the protruding end portion. In this way, the torsional deformation of the vibration plate 71 is increased, and the displacement of the vibration can be increased to increase the charge generated in the piezoelectric layer 40A.
  • an L-shaped diaphragm 72 in which the tip portion of the arm portion 72B is bent may be used.
  • the weight 72C can be provided in a portion that is not on the reference line BL, that is, a bent tip portion. Even if it does in this way, the torsional deformation of the diaphragm 72 becomes large, the displacement of the vibration can be increased, and the transmitted sound and power can be increased.
  • the weight may be provided on the center line (reference line BL) passing through the center of the diaphragm from the fixed portion 2D in each diaphragm, or the center of the diaphragm from the fixed portion 2D. It may be provided at a position deviating from the center line passing through.
  • the weight 70C when generating acoustic vibrations, as shown in FIG. 27, it is better that the weight 70C is on the reference line BL, and more power is generated when generating power.
  • it may be preferable that the weights 71C and 72C are not on the reference line BL as shown in FIGS.
  • the plurality of diaphragms 4 to 7 are arranged such that the areas of the main surfaces 4A to 7A increase or decrease.
  • the present invention is not limited to this.
  • a plurality of diaphragms 4 to 7 may be arranged at random.
  • a plurality of diaphragms 4 to 7 having the same main surface 4A to 7A area and different thicknesses may be arranged.
  • the plurality of diaphragms 4 to 7 may be arranged so that the thickness thereof increases or decreases.
  • the resonance frequency of each diaphragm can be varied.
  • the resonance frequency of each diaphragm may be made different by changing the material with the same area and thickness of the main surface.
  • the diaphragm is fixed to the casing by sandwiching, locking by unevenness, and contact of a notch (contact portion).
  • the present invention is not limited to this.
  • the rotation of the diaphragm may be restricted by replacing the boss 2E with a polygonal boss.
  • two bosses may be arranged in parallel to restrict the rotation of the diaphragm.
  • the shape of the notch (contact portion) is not limited to a straight line. For example, it may be a notch shape used for wafer alignment.
  • the overall width of the diaphragm need only be slightly larger than the entire width of the fixed part.
  • a diaphragm shaped like a battledore may be used.
  • the shape of the diaphragm is not limited, and the resonance frequency of each diaphragm may be different. If the entire width of the diaphragm is made larger than the entire width of the fixed portion, for example, the power generation amount can be made uniform regardless of the vibration direction. In this case, like the diaphragm according to each of the above embodiments, the polarity of the generated voltage needs to be the same over the entire main surface of the diaphragm.
  • the resonance frequency of several diaphragms may be the same. By doing so, it is possible to increase the power generation amount by increasing the frequency response near the resonance frequency.
  • a vibration device having a desired frequency response is configured by combining a plurality of diaphragms having the same resonance frequency and diaphragms having different resonance frequencies. can do.
  • the frequency response indicates the frequency characteristic of the vibration amplitude (displacement amount) in the entire vibration device.
  • a vibration device having a high frequency response in a wide band in which a decrease in the displacement amount of the diaphragm is within a specified range even if the vibration frequency is changed. can be configured.
  • the resonance frequencies f1 and f2 of the diaphragms are set so that the frequency response (solid line) between the adjacent resonance frequencies f1 and f2 is higher than the frequency response (dotted line) of the diaphragm alone. It suffices if the interval is specified.
  • the frequency response or more means that the vibration amplitude (displacement amount) in the entire vibration device is greater than or equal to the vibration amplitude (displacement amount) to be compared at a specific frequency (for example, a frequency between the resonance frequencies f1 and f2). I mean.
  • Embodiment 7 FIG. Next, a seventh embodiment of the present invention will be described.
  • the vibration power generation apparatus includes a plurality of diaphragms 84 to 87.
  • a part of the diaphragms 84 to 87 is fixed to couple the diaphragms 84 to 87 to the plurality of diaphragms 84 to 87, and a connecting portion 82 which is a fixed portion fixed to the casing is connected to the plurality of diaphragms 84 to 87.
  • the connecting portion 82 is integrated with the diaphragms 84 to 87. Since the diaphragms 84 to 87 have gaps formed between other diaphragms facing each other, even if they are integrated with the connecting portion 82, they can vibrate individually.
  • the diaphragms 84 to 87 are partly cut out of the main surfaces 84A to 87A to form through holes.
  • the hollowed portion is located toward the connecting portion 82 (ie, toward the fixed portion) rather than the center of the main surface 84A.
  • the hollowed-out through hole is eccentric.
  • the diaphragms 84, 85, 86, and 87 have weights 84C, 85C, 86C, and 87C fixed to the opposite side of the connecting portion 82 with respect to the centers of the main surfaces 84A, 85A, 86A, and 87A, respectively.
  • the resonance frequencies of the diaphragms 84, 85, 86, and 87 are finely adjusted to desired values by the weights 84C, 85C, 86C, and 87C.
  • the diaphragms 84, 85, 86, and 87 are configured by laminating a base material layer 40B, a lower electrode layer 40C, a piezoelectric material layer 40D, and an upper electrode layer 40E.
  • the connecting portion 82 includes a Si support layer 40F and a BOX that is a buried oxide film, as in the above embodiments.
  • a layer and a Si active layer 40G are stacked.
  • the upper electrode layer 40E is formed only in necessary portions.
  • the upper electrode layer 40E is formed, for example, on a portion excluding a portion to which the weights 84C to 87C are fixed (a peripheral portion of the weights 84C to 87C) and a peripheral portion of the connecting portion 82 in each of the vibration plates 84 to 87. This is because the peripheral portions of the weights 84C to 87C and the peripheral portion of the connecting portion 82 are difficult to be deformed, so that the necessity of disposing the upper electrode layer 40E is low. In the peripheral portions of the weights 84C to 87C and the peripheral portion of the connecting portion 82, the piezoelectric material layer 40D is exposed. In the connecting portion 82, the upper electrode layer 40E is formed as a transmission path for the voltage signals output from the diaphragms 84 to 87.
  • the diaphragms 84 to 87 can be manufactured by cutting a rectangular substrate using a MEMS technology to which a semiconductor manufacturing technology is applied. At this time, as shown in FIG. 33, the diaphragms 84 to 87 may be formed in the center of the substrate, and the remaining portion of the substrate may be left as a rectangular frame 88 that protects the diaphragm 84. On one side of the rectangular frame 88, rectangular electrodes that output voltage signals generated by the diaphragms 84 to 87 are formed by the upper electrode layer 40E.
  • the plurality of diaphragms 84 to 87 are connected and integrated by the connecting portion 82 as the fixed portion.
  • the plurality of diaphragms 84 to 87 can be easily managed and manufactured, and the plurality of diaphragms 84 to 87 can be fixed to the casing at once with an adhesive or the like.
  • the structure on the fixing side can be simplified, and the contact area between the fixing portion and the fixed portion (connecting portion 82) can be increased to increase the holding force of the fixing portion.
  • Embodiment 8 FIG. Next, an eighth embodiment of the present invention will be described.
  • the vibration power generation apparatus includes a plurality of diaphragms 104 to 113 as shown in FIGS. 34A, 34B, and 34C.
  • the plurality of diaphragms 104 to 108 and 109 to 113 are arc-shaped plates (plates having a shape obtained by cutting an annular ring in half) that are curved along a circle centered on the reference point O.
  • the diaphragms 104 to 108 and 109 to 113 each have the same central angle of 180 degrees and are arranged in the radial direction of a circle centered on the reference point O.
  • the diaphragms 104 to 108 are arranged on the ⁇ x side from the reference point O, and the diaphragms 109 to 113 are arranged on the + x side from the reference point O.
  • weights 104C to 113 are provided at the central portions of the diaphragms 104 to 113, respectively.
  • the thicknesses (length in the z direction) of the weights 104C to 113C provided on the diaphragms 104 to 113 are adjusted so that the diaphragms 104 to 113 vibrate at a desired resonance frequency.
  • the width in the radial direction of the circle centered on the reference point O is larger for the diaphragms 104 to 108 than for the diaphragms 109 to 113.
  • the connecting portion 102 fixes both ends of each of the vibration plates 104 to 108 and 109 to 113 to connect the vibration plates 104 to 108 and 109 to 113, and is to be fixed to the fixing portion 102D of the housing 2 ′. It is.
  • the connecting portion 102 extends in the + y direction and the ⁇ y direction (in opposite directions) around the reference point O along the radial direction of a circle centered on the reference point O.
  • the plurality of diaphragms 104 to 108 and 109 to 113 are integrated with the connecting portion 102.
  • each of the diaphragms 104 to 108 and 109 to 113 is formed with a gap between the other diaphragms facing each other, even if it is integrated with the connecting portion 102, it can vibrate individually.
  • the connecting portion 102 is fixed to the fixing portion 102D of the housing 2 '.
  • the total fixed end width (the width in the y-axis direction coupled to the fixed portion 102) is the same in the same direction (y-axis direction). It is smaller than the entire width.
  • the total of the width d4 'of the fixed end of the diaphragm 104 is smaller than the width W4' of the entire diaphragm 104.
  • diaphragms 104 to 108 and 109 to 113 are arc-shaped plates having the same central angle of 180 degrees, and are centered on reference point O. If arranged in the radial direction of the circle, the number of diaphragms that can be arranged in a plane of the same area can be increased. As a result, the frequency band in which the vibration displacement increases can be widened, and the frequency response between the resonance frequencies can be raised by narrowing the interval between the resonance frequencies of the diaphragms 104 to 108 and 109 to 113.
  • the diaphragms 104 to 113 can increase the number of resonance frequency peaks and increase the vibration displacement in the 50 Hz to 350 Hz band.
  • diaphragms 104 to 108 and diaphragms 109 to 113 have the same width in the radial direction of the circle centered on reference point O and the thicknesses of weights 104C to 113C are the same, as shown in FIG. 35B.
  • the level of vibration displacement drops near 100 Hz.
  • the widths of the diaphragms 104 to 108 and the diaphragms 109 to 113 in the radial direction of the circle centered on the reference point O are made different from each other, and the weights 104C to 113C.
  • the frequency response near 100 Hz can be raised, for example, by about 5 times.
  • three or more connecting portions 102 may be provided radially around the reference point O along the radial direction of a circle centered on the reference point O.
  • the central angle corresponding to each diaphragm may be 120 degrees, and three connecting portions 102 may be provided at 120 ° intervals.
  • Embodiment 9 FIG. Next, a ninth embodiment of the present invention will be described.
  • the vibration power generator includes a plurality of integrated diaphragms 204 to 207 as shown in FIGS. 36A, 36B, and 36C.
  • Each of the plurality of diaphragms 204 to 207 has one end fixed to the fixing portion 202D of the casing 2 ′′, two first linear portions 204A to 207A extending in parallel with each other along the y-axis direction, and two first The second straight portions 204B to 207B connect the other ends of the straight portions 204A to 207A, and the plurality of diaphragms 205 to 207 includes the first straight portions 205A to 207A and the second straight portions 204A to 207A.
  • the other diaphragms 204 to 206 are arranged inside the frame formed by the straight portions 205B to 207B.
  • the plurality of diaphragms 205 to 207 are arranged on the fixing part 202D of the housing 2 ′′.
  • the parts to be fixed, that is, the fixed parts 202 are integrated.
  • the diaphragms 204 to 207 have a rectangular shape as a whole including the fixed portion 202 and have a rectangular through-hole inside.
  • the diaphragm 206 is included in the through hole of the diaphragm 207
  • the diaphragm 205 is included in the through hole of the diaphragm 206
  • the diaphragm 204 is included in the through hole of the diaphragm 205.
  • the width in the x-axis direction of the pair of first straight portions 204A to 207A extending along the y-axis direction and the second straight portions 204B to 207B extending along the x-axis direction The thicknesses of the provided weights 204C to 207C are adjusted so that the diaphragms 204 to 207 vibrate at a desired resonance frequency.
  • the plurality of diaphragms 204 to 207 have U-shaped plate portions, and both ends (fixed ends) of the connecting portions (fixed portions) 202 are fixed to the fixing portions 202D of the housing 2 ′′. Since the diaphragms 204 to 207 have a gap between other diaphragms adjacent to each other, the diaphragms 204 to 207 are individually vibrated even if they are integrated with the coupling portion 202. Is possible.
  • the total fixed end width (the width in the x-axis direction connected to the fixed portion 202) is smaller than the total width in the same direction (x-axis direction).
  • the total width d4 ′′ of the fixed end of the diaphragm 204 is smaller than the total width W4 ′′ of the entire diaphragm 204.
  • each of the diaphragms 204 to 207 can increase not only the vibration about the x axis but also the displacement of the vibration about the axis shifted from the x axis in the xy plane, for example. Therefore, according to the vibration power generator according to the present embodiment, it is possible to widen the vibration direction in which the power generation amount can be increased.
  • the vibration displacement can be increased in the band of 50 Hz to 400 Hz by the diaphragms 204 to 207.
  • the diaphragms 204 to 207 the widths of the first straight portions 204A to 207A in the x-axis direction are made the same, and the thicknesses of the weights 204C to 207C provided on the second straight portions 204B to 207B are made the same.
  • the level of vibration displacement falls between the lowest resonance frequency and the second resonance frequency.
  • the widths of the first straight portions 204A to 207A in the x-axis direction are made different so as to be provided in the second straight portions 204B to 207B.
  • the thicknesses of the weights 204C to 207C are made different, for example, as shown in FIG. 37C, the frequency response between the lowest resonance frequency and the second resonance frequency can be increased by about 30 times.
  • the vibration device includes a plurality of diaphragms having different resonance frequencies, but at least one of the plurality of diaphragms as described above is illustrated in FIG. Instead of the diaphragm 8 shown in FIG.
  • the diaphragm 8 has an annular shape, and is fixed at a fixed portion 8D at one location, and a weight 8C is provided on the opposite side of the fixed portion 8D.
  • a jacket 8B as a metal plate is bonded to a part of the main surface 8A.
  • the jacket 8B is also bonded to a portion of the diaphragm 8 that is not deformed and a portion where the fixed portion 8D and the weight 8C are provided.
  • the annular diaphragm 8 is provided so that the inner edge side of the diaphragm 8 extends in the circumferential direction. In this way, the stress around the boundary between the region where the jacket 8B is bonded and the region where the jacket 8B is not bonded can be increased, and the amount of power generated by the vibration of the diaphragm 8 can be increased.
  • the diaphragm 9 shown in FIG. 39 may be used.
  • the diaphragm 9 is shown cut in half.
  • the diaphragm 9 has an annular shape, and is fixed at a fixed portion 9D at one location, and a weight 9C is provided on the opposite side of the fixed portion 9D.
  • a jacket 9B as a metal plate is bonded on the main surface 9A.
  • the jacket 9 ⁇ / b> B is provided so as to extend in the circumferential direction of the diaphragm 9.
  • the jacket 9 ⁇ / b> B is configured by alternately connecting the narrow portions 9 ⁇ / b> Ba and the wide portions 9 ⁇ / b> Bb (the width is the same as the main surface 9 ⁇ / b> A) in the circumferential direction of the diaphragm 9.
  • the portions 9Ba and 9Bb are not uniform in width and length.
  • the diaphragm 10 shown in FIG. 40 may be used.
  • the diaphragm 10 is shown in a state of being cut in half.
  • the diaphragm 10 has an annular shape, and is fixed at a fixed portion 10D at one location, and a weight 10C is provided on the opposite side of the fixed portion 10D.
  • a jacket 10 ⁇ / b> B as a metal plate is bonded to the diaphragm 10.
  • the jacket 10 ⁇ / b> B is provided so as to extend in the circumferential direction of the diaphragm 10.
  • variety of the jacket 10B is gradually shortened as it leaves
  • the diaphragm 11 shown in FIG. 41 may be used.
  • the diaphragm 11 is shown in a state of being cut in half.
  • the diaphragm 11 has an annular shape and is fixed by a fixed portion 11D at one place.
  • the weight 11 ⁇ / b> C is provided at a position farthest from the fixed portion 11 ⁇ / b> D in the diaphragm 11, and is formed by leaving the Si layer of the SOI wafer that is the material of the diaphragm 11.
  • the diaphragm 11 is an annular plate that is configured by alternately connecting short and thin portions 11Aa (necked portions) and wide and thick portions 11Ab in the circumferential direction.
  • the portion 11Ab is also formed by leaving the Si layer of the SOI wafer that is the material of the diaphragm 11. According to this diaphragm 11, since the stress around the boundary between the short and thin part 11Aa and the long and thick part 11Ab can be increased, the amount of power generated by the vibration of the diaphragm 11 is increased. be able to.
  • a metal weight 11C ′ may be attached as in the diaphragm 11 shown in FIGS. 42A and 42B. As shown in FIG. 43, the weight 11C 'is connected to the diaphragm 11 via the silicon layer 11E at a position farthest from the fixed portion 11D in the diaphragm 11. Further, the weight 11 ⁇ / b> C ′ extends from the position connected to the diaphragm 11 along the diaphragm 11 in parallel with the diaphragm 11. In this way, it is possible to secure the size of the portion of the diaphragm 11 where the stress increases, while increasing the weight 11C ′ to lower the resonance frequency of the entire diaphragm 11. Thereby, the electric power generation amount etc. by the vibration of the diaphragm 11 can be enlarged.
  • jacket and constricted diaphragm can be applied to diaphragms other than arcuate shapes.
  • the vibration device can be used as a private power source for various sensors such as a pressure sensor.
  • a pressure sensor such as a pressure sensor.
  • the vibration power generation device 1D according to each of the above-described embodiments is used as a power source of a sensor that detects pressure fluctuation, the vibration power generation device 1D and the like generate power by vibration generated by pressure fluctuation, and the generated power It is also possible to configure a system in which a sensor is activated and the sensor detects pressure.
  • the diaphragms 4, 5, 6, 7 and the like are manufactured using the MEMS technology to which the semiconductor manufacturing technology is applied, but the present invention is not limited to this.
  • the diaphragms 4, 5, 6, 7, etc. may be manufactured as follows. That is, the piezoelectric material layer 40D is, for example, piezoelectric ceramic, the upper electrode layer 40E is attached to one main surface of the piezoelectric ceramic, and the lower electrode layer 40C is attached to the other main surface of the piezoelectric ceramic. A piezoelectric layer 40A is formed. And the diaphragms 4, 5, 6, 7 etc. may be manufactured by affixing the base material layer 40B which consists of a silicon layer to the lower electrode layer 40C of this piezoelectric layer 40A.
  • the piezoelectric material layer 40D is, for example, piezoelectric ceramic
  • the piezoelectric material layer 40D has higher strength (for example, hardness) than the piezoelectric material layer 40D manufactured using the MEMS technology.
  • the strength of the piezoelectric material layer 40D is relatively high and the strength (for example, hardness) of the diaphragms 4, 5, 6, 7 and the like is also relatively high
  • the piezoelectric material layer 40D (piezoelectric layer 40A) is laminated.
  • the base material layer 40B is not an essential component in the diaphragms 4, 5, 6, 7, and the like.
  • the piezoelectric layer 40A laminated on the base material layer 40B is composed of one piezoelectric material layer 40D.
  • the piezoelectric layer 40A may include a plurality of piezoelectric material layers 40D.
  • a piezoelectric material layer 40D and an upper electrode layer 40E are stacked in this order. Two piezoelectric material layers 40D may be provided.
  • the piezoelectric layer 40A includes, for example, the lower electrode layer 40C, the piezoelectric material layer 40D, the upper electrode layer 40E, the piezoelectric material layer 40D, and the upper electrode layer 40E, and further, the piezoelectric material layer 40D,
  • the electrode layer 40E is laminated in this order, and may have three piezoelectric material layers 40D.
  • the piezoelectric material layers 40D are, for example, PZT.
  • the plurality of piezoelectric material layers 40 ⁇ / b> D may be any piezoelectric element that expands and contracts by application of voltage and flexes and vibrates due to vibration force applied from the outside.
  • the thickness of the weights 74C to 77C is adjusted to finely adjust the resonance frequency of the diaphragms 74 to 77.
  • the thickness of the weights 104C to 113C is also adjusted.
  • the resonance frequencies of the diaphragms 104 to 113 are finely adjusted, the present invention is not limited to this.
  • weights 74C to 77C and weights 104C to 113C having different weights are prepared using materials having different densities, and these weights 74C to 77C and weights 104C to 113C are used as the vibration plates 74 to 77 and the vibration plate 104.
  • the resonance frequencies of diaphragms 74 to 77 and diaphragms 104 to 113 may be finely adjusted by being fixed to.
  • the weights 74C to 77C and the weights 104C to 113C may have the same thickness.
  • diaphragms 84 to 87 are manufactured by cutting a rectangular substrate, but the present invention is not limited to this.
  • the diaphragms 84 to 87 may be manufactured by cutting a circular or elliptical substrate, for example.
  • the diaphragms 104 to 108 and 109 to 113 are arc-shaped plates that are curved along a circle centered on the reference point O (plates having a shape obtained by cutting an annular ring in half).
  • the diaphragms 104 to 108 and 109 to 113 have a rectangular shape as a whole, and may have a concave shape having a rectangular through-hole inside.
  • the bone conduction earphones 1A, 1B, 1C and the vibration power generation apparatus 1D according to the above embodiment can be used as accessories for decoration such as the smartphone 100.
  • the decorativeness can be enhanced.
  • the present invention can be applied to bone conduction earphones and vibration power generation devices.
  • the present invention can be applied to a bone conduction mobile phone or the like in addition to the earphone.
  • the present invention can be applied to a vibration power generator provided in a portion that receives vibration from a moving object such as a person or a car or a moving object such as a road surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

複数の振動板(4,5,6,7)は、積層された圧電層を有する。複数の振動板(4,5,6,7)は、圧電層の伸縮又は外部からの力により撓んで振動し、共振振動数がそれぞれ異なる。筐体(2)は、複数の振動板(4,5,6,7)を収容する内部空間(2C)と、振動板(4,5,6,7)の一部をそれぞれ固定する固定部(2D)とを有する。筐体(2)は、固定部(2D)を介して各振動板(4,5,6,7)と外部との間で振動を伝達する。

Description

振動装置
 本発明は、振動装置に関する。
 従来より、音響に従った振動子の振動を、鼓膜を介さずに頭蓋骨に伝え、内耳に音として伝達する骨伝導式イヤホンが開示されている(例えば、特許文献1参照)。また、圧電素子が形成された振動子の振動により発電を行う振動発電装置が記載されている(例えば、特許文献2参照)。
特開2014-107828号公報 特開2012-210091号公報
 上記特許文献1に記載の骨伝導式イヤホン又は上記特許文献2に記載の振動発電装置では、振動子は単数である。この場合、振動子の振動の変位を大きくすることができる周波数帯域が、その振動子の共振周波数(固有振動数)付近に限られるようになるので、共振周波数とは異なる周波数帯域の音響に対応する筐体の振動の振幅や、共振周波数とは異なる周波数帯域の振動により発電される電力を十分な大きさにするのが困難になる。
 本発明は、上記実情に鑑みてなされたものであり、音響に対応する筐体の振動の振幅や、発電される電力を十分な大きさにすることができる振動装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る振動装置は、
 積層された圧電層を有し、該圧電層の伸縮又は外部から加えられた振動力により撓んで振動し、共振振動数がそれぞれ異なる複数の振動板と、
 前記複数の振動板を収容する内部空間と、前記各振動板の一部を固定する固定部とを有し、前記固定部を介して前記各振動板と外部との間で振動を伝達可能な筐体と、
 を備える。
 この場合、前記複数の振動板として、
 その主面における、前記固定部から前記振動板の中心へ向かう方向に直交する方向に関して、前記振動板の全幅が前記固定部によって固定される固定端の全幅より大きい振動板を含む、
 こととしてもよい。
 また、前記複数の振動板は、同一の平面内に配置されている、
 こととしてもよい。
 前記複数の振動板として、
 主面の一部がくりぬかれて貫通孔が形成され、前記貫通孔に他の振動板を内包する振動板を含む、
 こととしてもよい。
 前記複数の振動板は、同心に配置されている、
 こととしてもよい。
 前記貫通孔が、主面の中央よりも前記固定部の方に偏芯して形成されている、
 こととしてもよい。
 前記複数の振動板それぞれは、基準点を中心とする円の半径方向に配列された中心角が同じ円弧状の板であり、
 両端で前記固定部に固定される、
 こととしてもよい。
 前記複数の振動板における前記固定部に固定される部分は、
 前記基準点を中心として逆方向又は放射状に複数延びている、
 こととしてもよい。
 前記複数の振動板それぞれは、
 一端が前記固定部に固定され、互いに平行に延びる2つの第1の直線部と、
 前記2つの第1の直線部の他端同士を連結する第2の直線部と、
 を有し、
 前記複数の振動板は、
 前記第1の直線部及び前記第2の直線部で形成される枠の内側に、他の振動板を内包するように配列される、
 こととしてもよい。
 前記複数の振動板は、前記固定部に固定される部分で一体化している、
 こととしてもよい。
 前記複数の振動板は、その厚み方向に配列されている、
 こととしてもよい。
 前記複数の振動板は、外形寸法が均一である、
 こととしてもよい。
 前記複数の振動板は、
 前記各振動板の主面の面積が増加又は減少するように配列されている、
 こととしてもよい。
 前記複数の振動板は、
 その厚みが増加又は減少するように配列されている、
 こととしてもよい。
 前記各振動板に重りが設けられている、
 こととしてもよい。
 前記複数の振動板は、
 それぞれに設けられた前記重りの重さが増加又は減少するように配列されている、
 こととしてもよい。
 前記重りは、
 前記各振動板における、前記固定部から前記振動板の中心を通る中心線上に設けられている、
 こととしてもよい。
 前記重りは、
 前記各振動板における、前記固定部から前記振動板の中心を通る中心線から外れた位置に設けられている、
 こととしてもよい。
 外部機器から出力された電圧信号を入力して前記各振動板の前記圧電層に印加するか、前記圧電層に生じた電荷を電流として取り出すかのいずれかを行う入出力部を備える、
 こととしてもよい。
 前記固定部は、
 前記入出力部の反対側に配置されている、
 こととしてもよい。
 前記複数の振動板のうち、少なくとも1枚の振動板では、前記入出力部に対向する部分が切り欠かれている、
 こととしてもよい。
 前記複数の振動板のうち、少なくとも1枚の振動板の主面の形状は、C字状、U字状又は凹状である、
 こととしてもよい。
 前記複数の振動板のいずれかと、共振周波数が同一である他の振動板を備える、
 こととしてもよい。
 隣接する共振周波数の間の周波数応答が、振動板単独の周波数応答を上回るように、前記複数の振動板各々の共振周波数の間隔が規定されている、
 こととしてもよい。
 前記複数の振動板のうちの少なくとも1つの振動板の主面の一部に、金属板が貼り合わされている、
 こととしてもよい。
 前記金属板が貼り合わされた振動板は、円環状であり、
 前記金属板が、前記振動板の内縁側を円周方向に延びるように設けられている、
 こととしてもよい。
 前記金属板が貼り合わされた振動板は、円環状であり、
 前記金属板は、幅が短い部分と幅が長い部分とが前記振動板の円周方向に交互に連結されて構成されている、
 こととしてもよい。
 前記金属板が貼り合わされた振動板は、円環状であり、
 前記金属板が、前記振動板の円周方向に延びるように設けられ、
 前記固定部から離れるにつれて、前記金属板の幅が短くなっている、
 こととしてもよい。
 前記複数の振動板のうちの少なくとも1つの振動板は、
 幅が短くかつ薄い部分と、幅が長くかつ厚い部分とがその円周方向に交互に連結されて構成された円環状の板である、
 こととしてもよい。
 前記少なくとも1つの振動板における前記固定部から最も遠い位置に金属製の重りが設けられている、
 こととしてもよい。
 前記金属製の重りが、前記振動板と接続された位置から、前記振動板に沿って前記振動板と平行に張り出している、
 こととしてもよい。
 本発明によれば、複数の振動板の共振周波数がそれぞれ異なる。これにより、複数の振動板を振動させるための電気信号又は外部から伝えられる振動力について、筐体の振動又は圧電層で発電される電力が大きくなる周波数帯域を拡げることができるので、音響に対応する振動の振幅や、発電される電力を十分な大きさにすることができる。
本発明の実施の形態1に係る骨伝導式イヤホンが装着されたスマートフォンを用いて通話を行う様子を示す図である。 本発明の実施の形態1に係る骨伝導式イヤホンの外観を示す斜視図である。 図1の骨伝導式イヤホンの内部構成を模式的に示す斜視図である。 振動板の上面図である。 図4の基準線BLの断面図である。 振動板を固定する構成を示す図である。 図3の振動板とカンチレバー状の振動板との比較結果を示す図である。 振動板の積層構造を示す断面図である。 圧電層に正極性の電圧が印加された状態の振動板を示す断面図である。 圧電層に負極性の電圧が印加された状態の振動板を示す断面図である。 スカロップの一例を示す図である。 振動板の変形例(その1)の上面図である。 振動板の変形例(その1)の斜視図である。 振動板の変形例(その2)の上面図である。 振動板の変形例(その2)の斜視図である。 本発明の実施の形態2に係る骨伝導式イヤホンの内部構造を示す斜視図である。 振動板の構成を示す図である。 筐体の振動の変位量の周波数特性のグラフである。 本発明の実施の形態3に係る骨伝導式イヤホンの構成を示す斜視図である。 本発明の実施の形態4に係る振動発電装置の構成を示す斜視図である。 図16の振動発電装置の回路構成を示す模式図である。 本発明の実施の形態5に係る振動発電装置の振動板の構成を示す斜視図である。 図18の振動発電装置の断面斜視図である。 X軸回りに傾けたときに振動板に発生する電圧の分布(その1)を示す図である。 X軸回りに傾けたときに振動板に発生する電圧の分布(その2)を示す図である。 X軸回りに傾けたときに振動板に発生する電圧の分布(その3)を示す図である。 Y軸回りに傾けたときに振動板に発生する電圧の分布(その1)を示す図である。 Y軸回りに傾けたときに振動板に発生する電圧の分布(その2)を示す図である。 Y軸回りに傾けたときに振動板に発生する電圧の分布(その3)を示す図である。 X軸及びY軸に対して45°傾いた軸回りに傾けたときに振動板に発生する電圧の分布(その1)を示す図である。 X軸及びY軸に対して45°傾いた軸回りに傾けたときに振動板に発生する電圧の分布(その2)を示す図である。 X軸及びY軸に対して45°傾いた軸回りに傾けたときに振動板に発生する電圧の分布(その3)を示す図である。 振動板の傾きと感度との関係を示すグラフである。 本発明の実施の形態6に係る振動発電装置の振動板の構成を示す上面図である。 振動板の変形例(その3-1)を示す図である。 振動板の変形例(その3-2)を示す図である。 振動板の変形例(その4)を示す図である。 振動板の変形例(その5)を示す図である。 振動板の変形例(その6)を示す図である。 振動板の変形例(その7)を示す図である。 隣接する共振周波数の間の周波数応答の一例を示すグラフである。 本発明の実施の形態7に係る振動発電装置の振動板の表側の構成を示す斜視図である。 本発明の実施の形態7に係る振動発電装置の振動板の裏側の構成を示す斜視図である。 図31Aの振動板の斜視断面図である。 連結部付近の拡大図である。 矩形枠が設けられた振動板全体の構成を示す斜視図である。 本発明の実施の形態8に係る振動発電装置の振動板の構成を示す上面図である。 図34AのB-B斜視断面図である。 筐体を含む振動発電装置の斜視断面図である。 振動板の振動変位の周波数応答のグラフ(その1)である。 振動板の振動変位の周波数応答のグラフ(その2)である。 振動板の振動変位の周波数応答のグラフ(その3)である。 本発明の実施の形態9に係る振動発電装置の振動板の構成を示す上面図である。 図36Aの振動板の構成を示す斜視断面図である。 筐体を含む振動発電装置の斜視断面図である。 振動板の振動変位の周波数応答のグラフ(その1)である。 振動板の振動変位の周波数応答のグラフ(その2)である。 振動板の振動変位の周波数応答のグラフ(その3)である。 振動板の変形例(その8)を示す図である。 振動板の変形例(その9)を示す図である。 振動板の変形例(その10)を示す図である。 振動板の変形例(その11)を示す図である。 振動板の変形例(その12;表)を示す図である。 振動板の変形例(その12;裏)を示す図である。 重り周辺の拡大図である。
 以下、本発明を実施するための形態について図面を参照して詳細に説明する。なお、図中、同一の構成要素には同じ符号を付すものとする。
実施の形態1.
 まず、本発明の実施の形態1について説明する。
 図1に示すように、本実施の形態に係る振動装置としての骨伝導式イヤホン1Aは、ハウジングである筐体2と、筐体2から突出する信号入力部(入出力部)3とを備えている。骨伝導式イヤホン1Aは、信号入力部3を、外部機器としての携帯端末機器(例えばスマートフォン)100の音声出力端子であるイヤホンジャック101に差し込んで使用される。筐体2は、音響振動を伝え易く、人体が触れても問題のない物質(例えば樹脂)などで構成されている。
 骨伝導式イヤホン1Aは、共振周波数がそれぞれ異なる複数の振動板(図3参照)を収容する。複数の振動板は、イヤホンジャック101から出力される音声電圧信号に従って筐体2を振動させる。したがって、使用者hが筐体2を自らの頭部の外皮に当てた状態でスマートフォン100を把持するようにすれば、筐体2の振動は、頭蓋骨を介して内耳へ音響振動として伝えられる。このように、骨伝導式イヤホン1Aは、使用者hの外耳道に挿入されることなく使用可能となっている。以下では、骨伝導式イヤホン1Aの構成及び動作の詳細について説明する。
 図2に示すように、筐体2は、カバー2A,2Bに分かれており、カバー2Aとカバー2Bとが嵌め合うことによって形成される。筐体2は、円筒形状の部分の側面に直方体状の部分が連結された形状となっており、図3に示すように、その内部には、その外形とほぼ相似な内部空間2Cが設けられている。信号入力部3には、係止部3Bが設けられている。この係止部3Bがカバー2A,2Bの直方体の先端部分の側壁に挟まれた状態で筐体2と係止される。これにより、信号入力部3が筐体2に固定される。
 筐体2からは、信号入力部3の一部である音声入力端子(イヤホンプラグ)3Aが突出している。信号入力部3における音声入力端子3Aと反対側の端部であり、内部空間2Cに配置された端部には、出力電極3Cが設けられている。音声入力端子3Aと出力電極3Cとは導通しており、イヤホンジャック101から出力される音声電圧信号は、音声入力端子3Aに入力され、出力電極3Cへ送られる。
 骨伝導式イヤホン1Aは、出力電極3Cから出力される音声電圧信号に従って振動する複数の振動板4,5,6,7を備える。振動板4,5,6,7は内部空間2Cに収容されている。内部空間2Cは、振動する振動板4,5,6,7と接触することがないような広さを有している。また、信号入力部3も、振動板4,5,6,7と接触することがない位置に配置されている。
 図3及び図4に示すように、筐体2は、振動板4,5,6,7各々の一部を固定する固定部2Dを有する。図4に示す基準線BLの断面図である図5に示すように、固定部2Dは、カバー2A,2Bにそれぞれ設けられており、一対の固定部2Dが、振動板4,5,6,7をz軸方向に挟んで片持ち梁として保持している。振動板4,5,6,7には、固定部2Dに挟持されて固定される被固定部4D,5D,6D,7Dが設けられている。被固定部4D,5D,6D,7Dの厚みは、他の部分、すなわち振動する梁の部分より厚くなっている。
 また、図5及びカバー2Aが除かれた状態を示す上面図である図6に示すように、被固定部4D,5D,6D,7Dには、z軸方向に貫通された貫通孔4E,5E,6E,7Eが設けられている。一方、カバー2Bの固定部2D上には円柱状の突起である4つのボス2Eが設けられている。ボス2Eは、振動板4,5,6,7の貫通孔4E,5E,6E,7Eに挿通される。カバー2Aの固定部2Dには、4つの円柱状の凹部2Fが設けられている。各ボス2Eの先端は、貫通孔4E,5E,6E,7Eから突出して、各凹部2Fに挿入される。各ボス2Eが貫通孔4E,5E,6E,7Eに挿通されることにより、筐体2内における振動板4,5,6,7のxy面内の平行移動が規制される。これにより、振動板4,5,6,7を筐体2の所望の位置により強固に固定することができる。
 また、被固定部4D,5D,6D,7Dの+y端には、それぞれ直線状に切り欠かれた切り欠き部4G,5G,6G,7Gが設けられている。また、カバー2Bには、x軸方向に延びる直線状の4つの側壁2Gが設けられている。各側壁2Gは、振動板4,5,6,7の切り欠き部4G,5G,6G,7Gと当接する。これにより、筐体2内におけるボス2Eを中心とする振動板4,5,6,7のxy面内の回転が規制される。
 振動板4,5,6,7は可撓性を有し、固定部2Dで固定されていない部分が出力電極3Cから出力される音声電圧信号に従って、撓んで振動する。振動板4,5,6,7が変形を繰り返して振動すると、図5に示すように、固定部2D(被固定部4D,5D,6D,7D)によって形成される固定端を中心に振動板4,5,6,7の-y側の自由端が上下に反り返るようになる。
 振動板4,5,6,7は、それぞれ異なる形状を有し、それにより共振周波数が異なる。筐体2は、固定部2Dを介して振動板4,5,6,7から伝えられる振動を外部に伝達する。振動板4,5,6,7の共振周波数がそれぞれ異なるので、振動板4,5,6,7から伝えられる振動振幅が大きくなる周波数帯域を拡げることができる。
 振動板4,5,6,7について、さらに詳細に説明する。図4に示すように、振動板4,5,6,7におけるxy面に平行な+z側の面をそれぞれ主面4A,5A,6A,7Aとする。振動板4,5,6,7は、主面4A,5A,6A,7Aの面積が異なるため、共振周波数が異なるとも言える。振動板4は、xy面に平行な円板状の部材であり、振動板5,6,7は、xy面に平行な円環状の部材である。振動板4,5,6,7は、同一のxy平面内に配置されている。振動板5,6,7は、主面5A,6A,7Aの中央がくりぬかれ、くりぬかれた部分に他の振動板(例えば振動板4)を内包している。振動板4,5,6,7は、点Oを中心として、同心に配置されている。
 上述のように、振動板5,6,7では、主面5A,6A,7Aの一部(中央)がくりぬかれ貫通孔が形成されている。このようにすれば、振動板5,6,7の共振周波数を、より一層低くすることができる。また、主面5A,6A,7Aをくりぬいた部分(貫通孔)に他の振動板を収容し、振動板4,5,6,7を同一平面に配列する構造とすることにより、筐体2の薄型化を図ることができる。さらに、振動板4,5,6,7を同心に配置することにより、振動板4,5,6,7をバランス良く振動させることができる。
 また、図4に示すように、振動板4,5,6,7の主面4A,5A,6A,7Aにおいて、固定部2Dから振動板4,5,6,7の中心Oへ向かう方向に直交する方向(x軸方向)に関して、振動板4,5,6,7の幅W1,W2,W3,W4が、固定部2Dの幅(振動板4,5,6,7が固定部2Dによって固定された固定端の寸法)d1,d2,d3,d4よりも大きくなっている。これにより、振動板4,5,6,7に加えられる電磁エネルギに対する筐体2の振動の変位の大きさ(機械エネルギ)の比率である電気機械結合係数を大きくすることができる。
 例えば、図7に示すように、固定部2Dの固定幅d1と同じ幅を有し、長さが振動板4と同じL1であるカンチレバー形状の振動板4’と、本実施の形態に係る振動板4とを比較した場合、振動板4の方が、電気機械結合係数は大きくなり、筐体2の振動の変位が大きくなる。筐体2の振動の変位が大きくなれば、使用者が音を聞き取り易くなる。
 固定部2Dの幅d1と同じ幅のカンチレバー式の振動板で、振動板4と同じ電気機械結合係数を得るには、例えば、振動板の長さをL1よりも長いL2とする必要がある(図7の振動板4”)。このため、幅に対する長さの比が大きくなり、長さと幅とにおけるバランスが悪くなる(音が伝わり難くなり得る)。これに対し、本実施の形態に係る振動板4を用いれば、幅に対する長さの比を小さくしつつ(長さと幅とにおけるバランスを保ちつつ)、筐体2の変位を大きくし、音を伝え易くすることができる。これは、振動板5,6,7についても同様である。
 また、振動板4,5,6,7の主面4A,5A,6A,7Aの形状は、例えば図4に示すように、ボス2E(固定部2D)から振動板4,5,6,7の中心Oを通るy軸に平行な基準線BLを基準にして線対称となっている。このようにすれば、片持ち梁として保持された振動板4,5,6,7をバランス良く振動させることができる。
 振動板4,5,6,7は、複数の層が積層された構造を有している。振動板4,5,6,7の各層は、半導体製造技術であるMEMS(Micro Electro Mechanical Systems)技術を用いて製造される。振動板4,5,6,7の製造には、SOI(Silicon On Insulator)基板が用いられる。SOI基板とは、半導体基板から成る支持基板と、支持基板上の埋込酸化膜であるBOX層と、BOX層上の半導体層であるシリコン(SOI)層とから成る積層構造を有する基板であり、酸化膜を内包するウエハである。
 例えば、図8Aの振動板4の断面図に示すように、最も下(-z側)の基材層40Bは、BOX層上のシリコン層から成る。基材層40Bの上に、下部電極層40Cと、圧電材料層40Dと、上部電極層40Eとが、この順に積層されている。下部電極層40Cと、圧電材料層40Dと、上部電極層40Eとで、圧電層40Aが形成される。振動板4,5,6,7は、基材層(基板)40Bと、基材層40B上に積層された圧電層40Aと、を有する。
 下部電極層40C及び上部電極層40Eは、導電性材料(例えば、アルミニウムや銅などの金属)から成り、圧電材料層40Dは、例えばPZT(チタン酸ジルコン酸鉛)などの材料(圧電特性を示す材料)から成る。圧電材料層40Dは、厚み方向に所定極性の電圧を印加すると、長手方向(厚み方向に直交する方向)に伸縮する性質を有する。
 図8Bに示すように、上部電極層40Eが正で、下部電極層40Cが負となる極性(以下、正極性と呼ぶ)の電圧を印加すると、圧電層40Aは長手方向に伸び、主面4A側に、面方向(y軸に沿った方向)に伸びる方向への応力が加わる。その結果、振動板4は、上方が凸になるように反り返る。
 これに対して、図8Cに示すように、上部電極層40Eが負で、下部電極層40Cが正となる極性(以下、負極性と呼ぶ)の電圧を印加すると、圧電層40Aは長手方向に縮み、主面4A側に、面方向に縮む方向への応力が加わる。その結果、振動板4は、下方が凸になるように反り返る。
 もちろん、上部電極層40E側が正、下部電極層40C側が負となるように、両電極層間に電圧を印加すると、長手方向に縮む一方で、上部電極層40E側が負、下部電極層40C側が正となるように、両電極層間に電圧を印加すると、長手方向に伸びる性質を有するような圧電材料層40Dを用いても構わない。この場合、正極性の電圧を印加すると、下方が凸になるように反り返り、負極性の電圧を印加すると、上方が凸になるように反り返る。このように、振動板4,5,6,7は、圧電層40Aの伸縮により撓んで振動するものであればよい。
 いずれにしても、上部電極層40Eと下部電極層40Cとの間に、所定極性の電圧を印加することにより、図8B又は図8Cに示す変形を生じさせることができる。変形の度合いは、印加する電圧値に応じた量になる。なお、圧電素子を構成する材料によって(例えば、バルク、薄膜によって)分極作用が異なるので、電圧の極性と伸縮の関係とが上述とは逆になる場合がある。
 信号入力部3の出力電極3Cは、不図示のリード線を介して、下部電極層40C、上部電極層40Eに接続されている。スマートフォン100のイヤホンジャック101から出力された音声電圧信号は、信号入力部3を介して、振動板4,5,6,7の圧電層40Aに印加される。圧電層40Aは音声電圧信号に従って駆動され、この駆動により、図5の矢印に示すように、振動板4,5,6,7が振動する。その振動は被固定部4D,5D,6D,7D及び固定部2Dを介して筐体2(カバー2A,2B)に伝えられる。筐体2は、固定部2Dを介して振動板4,5,6,7から伝えられる振動を外部に伝達可能である。これにより、使用者h(図1参照)が振動による音を聞き取れるようになっている。
 また、内部空間2Cにおいて、固定部2Dは、信号入力部3の反対側に配置されている。すなわち、固定部2Dの位置は、スマートフォン100に差し込まれた信号入力部3からできるだけ離されている。振動板4,5,6,7から振動が伝えられるポイントをスマートフォン100に接続された信号入力部3からできるだけ離しておいた方が、筐体2の振動の変位を大きくすることができるからである。
 さらに、振動板4,5,6,7の固定部2Dの反対側の先端には、重り4C,5C,6C,7Cがそれぞれ形成されている。この重り4C,5C,6C,7Cは、振動板4,5,6,7の共振周波数を低く調整するために設けられている。
 また、被固定部4D,5D,6D,7D及び重り4C,5C,6C,7Cでは、基材層40Bと圧電層40Aとが積層され、さらにその下に支持基板層が残された状態となっている。被固定部4D,5D,6D,7D及び重り4C,5C,6C,7Cは、SOI基板のSi層を深掘りエッチングすることにより形成される。被固定部4D,5D,6D,7D及び重り4C,5C,6C,7Cの側壁には、厚み方向に凹凸が繰り返されたスカロップS(例えば、図9参照)が形成されている。スカロップSは、深掘りエッチングにおけるエッチングの繰り返しに応じて形成される深さ(厚み)方向の凹凸であり、その数は、後述のエッチング繰り返し回数に依存する。深掘りエッチングは、ボッシュプロセスとも呼ばれる。ボッシュプロセスでは、等方性エッチング、保護膜形成(パッシベーション)、異方性エッチングを複数回繰り返すことにより行われる。
 スマートフォン100に着信があると、使用者hは、骨伝導式イヤホン1Aの音声入力端子3Aをイヤホンジャック101に差し込んだ後、図1に示すように、筐体2を頭部の外皮に接触させてスマートフォン100を操作するだけで、通話が可能になる。これは、スマートフォン100から使用者hが自ら発信する場合も同様である。また、通話に限らず、音楽や記録された音声データを聞く際にも、骨伝導式イヤホン1Aを使用することができる。
 以上詳細に説明したように、本実施の形態によれば、複数の振動板4,5,6,7の共振周波数がそれぞれ異なる。これにより、複数の振動板4,5,6,7を振動させるための音声電圧信号について、筐体2の振動が大きくなる周波数帯域を拡げることができるので、音響に対応する振動の振幅を十分な大きさにすることができる。
 また、本実施の形態によれば、振動板4を円形状、振動板5,6,7を円環状にし、同一平面内に配列することによって、骨伝導式イヤホン1Aを小型化することができる。骨伝導式イヤホン1Aの筐体2のサイズは、例えば、長さ40mm×幅20mm×厚み10mm程度とすることができる。
 また、本実施の形態に係る骨伝導式イヤホン1Aによれば、外耳道内に挿入する必要がないので、使用者hが周囲の音を聞き取り易くすることができる。これにより、危険を回避することができるようになるうえ、周囲の音が聞こえないことによる使用者hのストレスも軽減される。
 なお、本実施の形態では、振動板4の主面4Aの外形を円形としたが、これには限られない。例えば、主面4Aの外形を、四角形のような多角形としてもよい。例えば、台形、菱形としてもよい。x軸方向、y軸方向のサイズの比は、任意に設定することができる。これに合わせて、振動板5,6,7も、多角形の環状の板とすることができる。
 なお、骨伝導式イヤホン1Aで、良質な音を使用者hに伝える重要なパラメータの1つに振動板4の共振周波数がある。振動板4,5,6,7の共振周波数としては、400Hz~1000Hzの範囲内にあるのが望ましいとされている。振動板4,5,6,7の共振周波数は、この間で(望ましくは均等に)分散させるとよい。振動板4,5,6,7の共振周波数が望ましい範囲よりも高い場合には、振動板4,5,6,7の厚みを薄くすればよい。逆に、振動板4,5,6,7の共振周波数が望ましい範囲よりも低い場合には、振動板4,5,6,7の厚みを厚くすればよい。上述したカンチレバー形状の振動板4’、4”を用いた場合には、共振周波数が低すぎる傾向にある。その点、本実施の形態に係る振動板4,5,6,7を用いれば、振動板4,5,6,7の共振周波数を適正範囲内に収め易くなる。
 また、円環状の振動板5,6,7の代わりに、図10A及び図10Bに示すような振動板15,16,17を備えるようにしてもよい。振動板15,16,17は、その主面15A,16A,17Aの中央がくりぬかれている点については、振動板5,6,7と同じである。これにより、振動板15,16,17の共振周波数を低くすることができる。
 また、振動板15,16,17では、信号入力部3に対向する部分が切り欠かれている点のみが振動板5,6,7と異なる。このようにすれば、信号入力部3の出力電極3C、及び出力電極3Cと圧電層40Aとの間の配線等を、切り欠かれた部分に配置することができるので、イヤホン全体をより小型化することができる。
 振動板15,16,17では、被固定部5D,6D,7Dからx軸方向の両側に向かってアーム部15B,16B,17Bが円弧状に延びており、信号入力部3の近傍まで達している。また、各アーム部15B,16B,17Bの先端には、重り15C,16C,17Cがそれぞれ形成されている。この重り15C,16C,17Cは、振動板15,16,17の共振周波数を低く調整するために設けられている。
 また、振動板4,15,16,17に代えて、図11A及び図11Bに示す振動板24,25,26,27を用いてもよい。振動板24は、その主面24Aが基準線BLを長手方向とするように延びた略矩形状となっており、振動板25,26,27は、その主面25A,26A,27AがU字状となっている点が、振動板4,5,6,7と異なる。振動板25のくりぬかれた部分には振動板24が配置され、振動板26のくりぬかれた部分には振動板24,25が配置され、振動板27のくりぬかれた部分には振動板24,25,26が配置されている。
 一対のアーム部25B,26B,27Bは、被固定部5D,6D,7Dから延びている。各アーム部25B,26B,27Bでは、被固定部5D,6D,7Dに接続する円弧状の部分と、-y方向に直線状に延びる部分とで構成されている。振動板24における固定部2Dとは逆側の先端、各アーム部25B,26B,27Bの先端には、重り24C,25C,26C,27Cが設けられており、これにより、振動板24,25,26,27の共振周波数の調整が可能になる。音声電圧信号の印加により、振動板24,25,26,27が振動して、被固定部4D,5D,6D,7D及び固定部2Dを介して筐体2へ振動が伝えられる。
 各振動板は、主面がC字状、U字状のものに限られない。主面の中央がくりぬかれ、信号入力部3に対向する部分が切り欠かれた凹状となっていればよい。
 また、骨伝導式イヤホン1Aでは、振動板の数は4つであったが、2つ又は3つであってもよいし、5つ以上であってもよい。
実施の形態2.
 次に、本発明の実施の形態2について説明する。
 本実施の形態に係る骨伝導式イヤホンは、複数の振動板の配列方向が、上記実施の形態1と異なる。図12に示すように、上記実施の形態1に係る骨伝導式イヤホン1Bでは、複数の振動板34,35,36,37,38が、その厚み方向に配列されている。なお、図12では、振動板34,35,36,37,38を収容する筐体全体の表示は省略されている。
 図13に示すように、振動板34,35,36,37,38は、外形寸法が均一な可撓性のある円板状又は円環状の部材であり、対応する主面34A,35A,36A,37A,38Aを有する。振動板34の主面34Aの形状は円形であり、振動板35,36,37,38の主面35A,36A,37A,38Aの中央はくりぬかれており、その円環状の一部が切り欠かれている。
 言い換えると、振動板34,35,36,37,38の外辺の一部には、それぞれ筐体に固定される被固定部34D,35D,36D,37D,38Dが設けられており、振動板35,36,37,38では、被固定部35D,36D,37D,38Dから一対のアーム部35B,36B,37B,38Bが円弧状に延びている。
 振動板34,35,36,37,38における被固定部34D,35D,36D,37D,38Dの逆側には、重り34C,35C,36C,37C,38Cが設けられている。この重り34C,35C,36C,37C,38Cは、振動板34,35,36,37,38の共振周波数を低く調整するために設けられている。なお、被固定部34D,35D,36D,37D,38D、重り34C,35C,36C,37C,38Cの側面にスカロップSが設けられているのは前述の通りである。
 振動板34,35,36,37,38は、それぞれの主面34A,35A,36A,37A,38Aの面積が単調に増加又は減少するように配列されている。また、振動板34,35,36,37,38は、それぞれに設けられた重り34C,35C,36C,37C,38Cの重さが増加又は減少するように配列されている。このようにすれば、振動板34,35,36,37,38の共振周波数が大きい又は小さい順に、振動板を配列し、共振周波数を調整し易くすることができる。
 以上詳細に説明したように、本実施の形態によれば、共振振動数がそれぞれ異なる複数の振動板34,35,36,37,38を有し、それら複数の振動板34,35,36,37,38がそれぞれ振動する。複数の振動板34,35,36,37,38の共振周波数をf1,f2,f3,f4,f5とすると、装置全体の振動振幅(変位量)の周波数特性は、図14の実線で示されるようになる。f6は、筐体とデバイス一体での共振特性を示している。これに対して、例えば、1枚の振動板35のみ備える骨伝導式イヤホンの場合には、装置全体の振動振幅の周波数特性は点線で示されるようになる。このように、骨伝導式イヤホン1Aでは、振動の振幅が大きくなる周波数帯域を拡げることができる。例えば、単体の振動板では、750Hz以上1300Hz以下の周波数帯域の音声を十分に伝達することができるが、複数の振動板34~38を用いることにより、音声を十分に伝達することができる帯域を、550Hz以上1550Hz以下の帯域まで拡げることができる。
 なお、振動板35~38に代えて、円環状の振動板、U字状の他、凹状の振動板を用いてもよい。
実施の形態3.
 次に、本発明の実施の形態3について説明する。
 上記各実施の形態に係る骨伝導式イヤホン1A,1Bは、スマートフォン100のイヤホンジャック101に信号入力部3の音声入力端子3Aを直接差し込んで用いるものであったが、図15に示すように、本実施の形態に係る骨伝導式イヤホン1Cは、スマートフォン100のイヤホンジャック101に直接差し込むタイプではなく、ケーブルを介してスマートフォン100と離した状態で使用できるタイプである。
 図15に示すように、本実施の形態に係る骨伝導式イヤホン1Cは、使用者hの耳に装着される。この骨伝導式イヤホン1Cは、フック部61と、筐体62と、コードケーブル63と、信号入力部64とを備える。
 フック部61は、使用者hの耳にかけられ、これにより、骨伝導式イヤホン1Cが使用者hの頭部の外皮を介して頭蓋骨に当接するように固定される。筐体62の内部空間には共振周波数が異なる複数の振動板から成る振動板組65が設けられており、振動板組65は、固定部62Dを介して筐体62に固定されている。コードケーブル63の先端には、音声入力端子(イヤホンプラグ)が設けられており、その音声入力端子はスマートフォン100のイヤホンジャック101(図1参照)に接続されている。
 スマートフォン100のイヤホンジャック101から出力される音声電圧信号は、コードケーブル63を介して信号入力部64に入力され、信号入力部64は、入力した音声電圧信号を、筐体62内の振動板組65に印加する。これにより振動板組65の各振動板が振動する。各振動板の振動は、筐体62に伝えられ、筐体62が振動し、その振動が、使用者hに音響振動として伝えられる。
 本実施の形態に係る骨伝導式イヤホン1Cでは、振動板組65の各振動板は、振動板4~7であってもよいし、振動板4,15~17であってもよいし、振動板24~27であってもよい。
 本実施の形態に係る骨伝導式イヤホン1Cは、常時耳に装着しておくことができる。このようにすれば、着信時にも直ちに受話を行うことができる。
実施の形態4.
 次に、本発明の実施の形態4について説明する。
 上記実施の形態1,2,3では、振動板の振動を筐体に伝達する骨伝導式イヤホン1A,1B,1Cについて説明した。本実施の形態では、振動板の振動により発電を行う振動発電装置1Dについて説明する。
 図16に示すように、振動発電装置1Dは、振動板44,45,46,47を備える。振動板44,45,46,47の形状は、振動板4,5,6,7と同じであるが、それぞれの共振周波数は数十Hz程度(50Hz以下)である。振動板44,45,46,47は、筐体2が受けた振動力を受けて振動する。
 振動発電装置1Dは、信号入力部3に代えて、一対の端子30Aを有する出力部(入出力部)30を備える点が、骨伝導式イヤホン1Aと異なっている。出力部30は、上述の振動により、振動板44,45,46,47の圧電層40Aに生じた電荷を電流として取り出す。なお、振動板44,45,46,47は、図17に示すように、圧電層40Aおよび基材層40Bを有する。
 出力部30は、振動板44,45,46,47の圧電層40Aから出力される電荷に基づく電流を、一対の端子30Aを介して整流平滑回路80に出力する。整流平滑回路80は、振動板44,45,46,47から取り出した電流を、内部のダイオード列及びコンデンサによって、整流及び平滑化し、蓄電池81に出力する。蓄電池81は、整流平滑回路80で整流、平滑化された電流に基づいて、充電を行う。
 振動発電装置1Dでは、外部から受ける振動力を筐体2が受けると、その力が固定部2Dを介して、振動板44,45,46,47に伝えられ、振動板44,45,46,47が振動する。振動力の周波数が振動板44,45,46,47の共振周波数の近くであれば、いずれかの振動板における振動が大きくなり、その振動板に形成された圧電層40Aにおいて発生する電荷が大きくなる。
 振動板44,45,46,47の共振周波数はそれぞれ異なるので、比較的広い帯域で、多くの電荷を発生することができる。このため、広い周波数帯域で、発電される電力を十分な大きさにすることができる。
 上述のように、本実施の形態においては、振動発電装置1Dにおいて望ましい振動板の共振周波数は、骨伝導式イヤホン1Aよりも低く、数10Hz程度(50Hz以下)とする必要がある。
 なお、振動発電装置1Dは、スマートフォン100内部に組み込まれているようにしてもよい。この場合、スマートフォン100では、複数の蓄電地を備え、1つの蓄電地を使用する間に、振動発電装置1Dにより、他の蓄電地の充電を行うようにしてもよい。
実施の形態5.
 次に、本発明の実施の形態5について説明する。
 上記実施の形態4では、振動板の振動により発電を行う振動発電装置1Dについて説明した。本実施の形態5に係る振動発電装置は、図18に示すように、振動板44,45,46,47に代えて、振動板74,75,76,77を備えている点が、上記実施の形態4に係る振動発電装置1Dと異なる。振動板74,75,76,77は、被固定部74Dによって固定されている。
 振動板74,75,76,77は、主面74A,75A,76A、77Aの一部がくりぬかれ貫通孔が形成されている。振動板74,75,76,77のうち、振動板74では、そのくりぬかれた部分(貫通孔)は、主面74Aの中心よりも被固定部74Dの方に位置しており、くりぬかれた貫通孔は偏芯している。
 また、図19に示すように、振動板74,75,76,77は、主面74A,75A,76A,77Aの中心を基準として、被固定部74Dの反対側に、それぞれ重り74C,75C,76C,77Cが固定される。重り74C,75C,76C,77Cは、それぞれ厚みが異なっており、その分だけ重さが異なる。重り74C,75C,76C,77Cにより、振動板74,75,76,77の共振周波数が所望の値に微調整されている。
 本実施の形態においても、振動板74~77のそれぞれの全幅(x軸方向における長さ)は、被固定部74Dの全幅(x軸方向における長さ)よりも大きくなっている。このため、X軸回りに振動板74~77を0°、30°、45°に傾け、その振動板74~77をZ軸方向に振動させた場合でも、図20A、図20B及び図20Cに示すように、振動板74~77の主面74A~77Aに発生する電圧分布はほぼ変わらない。図20A、図20B及び図20Cでは、色が濃いほど、発生する電圧が高くなることを示している。
 また、Y軸回りに振動板74~77を0°、30°、45°に傾け、その振動板74~77をZ軸方向に振動させた場合でも、図21A、図21B及び図21Cに示すように、振動板74~77の主面74A~77Aに発生する電圧分布はあまり変わらない。このことは、図22A、図22B及び図22Cに示すように、X軸、Y軸に対して45°を成す軸回りに、振動板74~77を0°、30°、45°に傾け、その振動板74~77をZ軸方向に振動させた場合も同様である。なお、これらの電圧分布から明らかなように、振動の方向に関わらず、振動板74~77の主面74A~77Aにおいて発生する電圧の極性は同じである。
 振動板74~77における軸回りの傾きと感度(傾きが0°の時の発電量に対する、任意の傾きで発生する発電量の割合)を調べたところ、図23に示すように、振動板74~77を傾ければ、発生する電圧は減少するが、その減少の度合い及び減少量は、X軸回り、Y軸回り、X軸,Y軸に対して45度を成す軸回りでも、ほぼ同じであった。このことは、振動板74~77のそれぞれ全幅が、被固定部74Dの全幅よりも大きくなっていることにより、全方向の振動において(振動の方向によらず)、振動板74~77における変位量が均一となり、電圧を均等に発生させることができることを示している。
 また、本実施の形態では、振動板74の貫通孔を主面74Aの中央よりも被固定部74Dの方に偏芯させている。これにより、本実施の形態では、振動板74の貫通孔を偏芯させない場合と比較して、振動板74の変位量を大きくして、発生する電圧をより大きくすることが可能である。
 なお、本実施の形態では、振動板74~77の外形を円形としたが、これには限られない。振動板74~77の外径を四角形等の多角形状にするようにしてもよい。
実施の形態6.
 次に、本発明の実施の形態6について説明する。
 図24に示すように、本実施の形態6に係る振動発電装置は、複数の振動板4~7を備えている。本実施の形態では、各振動板4~7を固定する固定部94D,95D,96D,97Dは、別々に形成されている。振動板4を固定する固定部94Dは、振動板4の-x側端部に設けられている。また、振動板5を固定する固定部95Dは、振動板5の-y側端部に設けられている。また、振動板6を固定する固定部96Dは、振動板6の+x側端部に設けられている。さらに、振動板7を固定する固定部97Dは、振動板7の+y側端部に設けられている。すなわち、振動板4~7は、固定部94D,95D,96D,97Dを基準として延設される方向が異なっている。このように、振動板4~7について、設置の向き(固定部94D,95D,96D,97Dからの延設方向)を変えることにより、あらゆる方向の振動に対応することができるようになるので、発生する電圧のむらを解消して、発電量を均一化することができる。
 以上説明したように、上記各実施の形態に係る振動装置としての骨伝導式イヤホン1A~1C、振動発電装置1Dについて説明したが、これには様々な変形が可能である。例えば、振動板の形状は、上記各実施の形態のものには限られない。例えば、図25Aに示すように、厚み方向に配列されたカンチレバー式の振動板54,55,56,57を複数用いるようにしてもよい。振動板54~57では、その長さが異なり、それにより共振周波数も異なっている。また、図25Bに示すように、カンチレバー式の振動板54,55,56,57を同一平面に配列するようにしてもよい。
 また、図26に示すように、同一平面に配列され、各振動板の共振周波数がそれぞれ異なる振動板組50,51を、その厚み方向に複数配列するようにしてもよい。この場合、振動板組50,51間でも、各振動板の共振周波数を異なるものとすることができる。このようにすれば、共振周波数が異なる多数の振動板を、限られた容積の中に密に配列することができる。これにより、音響又は発電の周波数帯域をさらに拡げることができるうえ、各振動板の共振周波数の間隔を短くして、音響又は発電の出力を滑らかなものとすることができる。
 また、図27に示すように、固定部2Dから離れるにつれてアーム部70Bの幅が徐々に変化し、重り70Cが先端に設けられた振動板70を用いてもよい。また、固定部2Dから離れるにつれてアーム部の厚みが徐々に変化する振動板を用いてもよい。
 さらに、図28に示すように、アーム部71Bの先端部分の幅が両側に張り出しているT字状の振動板71を用いてもよい。この場合、先端部分の出っ張った両端にそれぞれ重り71Cを設けるようにすることができる。このようにすれば、振動板71のねじり変形が大きくなって、その振動の変位を大きくして、圧電層40Aで生成される電荷をより大きくすることができる。
 また、図29に示すように、アーム部72Bの先端部分が折れ曲がっているL字状の振動板72を用いてもよい。この場合、基準線BL上でない部分、すなわち折れ曲がった先端部分に重り72Cを設けることができる。このようにしても、振動板72のねじり変形が大きくなって、その振動の変位を大きくして、伝える音響や電力を大きくすることができる。
 このように、重りは、各振動板における、固定部2Dから振動板の中心を通る中心線(基準線BL)上に設けられているようにしてもよいし、固定部2Dから振動板の中心を通る中心線から外れた位置に設けられるようにしてもよい。一般的に、音響振動を発生させる場合には、図27に示すように、重り70Cは基準線BL上にあった方がよいし、発電を行う場合には、より多くの電荷を発生させるために、ねじり振動を発生させるべく、図28、図29に示すように、重り71C、72Cが基準線BL上にない方がよい場合もある。
 なお、上記各実施の形態では、複数の振動板4~7において、主面4A~7Aの面積が増加又は減少するように配列したが、本発明はこれには限られない。複数の振動板4~7をランダムに配列するようにしてもよい。
 また、例えば、主面4A~7Aの面積が同じで、厚みが異なる複数の振動板4~7を配列するようにしてもよい。この場合、複数の振動板4~7を、その厚みが増加又は減少するように配列するようにしてもよい。このようにしても、各振動板の共振周波数を異ならせることができる。また、主面の面積、厚みを同じにして、材質を変更して、各振動板の共振周波数を異ならせるようにしてもよい。
 上記実施の形態では、挟み込み、凹凸による係止、切り欠き部(当接部)の当接により、振動板を筐体に固定した。しかしながら、本発明はこれには限られない。例えば、ボス2Eを多角形状のボスに代えて、振動板の回転を規制するようにしてもよい。また、2つのボスを並列に配列して、振動板の回転を規制するようにしてもよい。切り欠き部(当接部)の形状も直線状には限られない。例えば、ウエハの位置合わせに用いられるようなノッチ状のものであってもよい。
 また、振動板の全幅は固定部の全幅より少しでも大きければよい。例えば、羽子板のような形状の振動板であってもよい。要は、本発明では、振動板の形状に制限はなく、各振動板の共振周波数が異なっていればよい。固定部の全幅よりも振動板の全幅を大きくすれば、例えば、振動方向によらず発電量を均一化することができる。この場合、上記各実施の形態に係る振動板のように、振動板の主面の全面において、発生する電圧の極性を同じにする必要がある。
 また、何枚かの振動板の共振周波数は同じであってもよい。そのようにすれば、その共振周波数近傍の周波数応答を上げて発電量を大きくすることができる。このように、振動板の形状、厚み、重りなどを調整して、共振周波数が同じ複数の振動板と、共振周波数が異なる振動板とを組み合わせることにより、所望の周波数応答を有する振動装置を構成することができる。なお、周波数応答とは、振動装置全体における振動振幅(変位量)の周波数特性を示している。
 また、隣接する振動板の共振周波数の間隔を狭くすることにより、振動の周波数が変わっても振動板の変位量の減少が規定の範囲内となる、広い帯域で高い周波数応答を有する振動装置を構成することができる。例えば、図30に示すように、隣接する共振周波数f1,f2の間の周波数応答(実線)が振動板単独の周波数応答(点線)以上を示すように、各振動板の共振周波数f1,f2の間隔が規定されていればよい。なお、周波数応答以上とは、特定の周波数(例えば共振周波数f1,f2の間の周波数)において、振動装置全体における振動振幅(変位量)が比較対象の振動振幅(変位量)以上であることを意味している。
実施の形態7.
 次に、本発明の実施の形態7について説明する。
 図31A及び図31Bに示すように、本実施の形態に係る振動発電装置は、複数の振動板84~87を備えている。複数の振動板84~87には、振動板84~87の一部を固定して振動板84~87を連結すると共に、筐体に固定される被固定部である連結部82が接続している。連結部82は、振動板84~87と一体化されている。振動板84~87は、対向する他の振動板との間に隙間が形成されているので連結部82と一体化されていても、個別に振動することが可能である。
 振動板84~87は、主面84A~87Aの一部がくりぬかれ貫通孔が形成されている。振動板84~87のうち、振動板84では、そのくりぬかれた部分(貫通孔)は、主面84Aの中心よりも連結部82の方に(すなわち固定部の方に)位置しており、くりぬかれた貫通孔は偏芯している。
 振動板84,85,86,87は、主面84A,85A,86A,87Aの中心を基準として、連結部82の反対側に、それぞれ重り84C,85C,86C,87Cが固定される。重り84C,85C,86C,87Cにより、振動板84,85,86,87の共振周波数が所望の値に微調整されている。
 また、振動板84,85,86,87は、図32A及び図32Bに示すように、基材層40B、下部電極層40C、圧電材料層40D、上部電極層40Eが積層されて構成される。また、連結部82は、上記各実施の形態と同様に、基材層40B、下部電極層40C、圧電材料層40D、上部電極層40Eの他、Si支持層40F、埋込酸化膜であるBOX層、Si活性層40Gが積層されて構成される。ここで、上部電極層40Eは、必要な部分にのみ形成されている。上部電極層40Eは、例えば、各振動板84~87における重り84C~87Cが固定される部分(重り84C~87Cの周囲部分)および連結部82の周囲部分を除いた部分に形成される。これは、重り84C~87Cの周囲部分および連結部82の周囲部分は変形し難いので、上部電極層40Eを配置する必要性が低いためである。重り84C~87Cの周囲部分および連結部82の周囲部分では、圧電材料層40Dが露出した状態となっている。また、連結部82において、各振動板84~87から出力される電圧信号の伝送経路として上部電極層40Eが形成される。
 振動板84~87は、半導体製造技術を応用したMEMS技術を用いて、矩形状の基板をカッティングすることにより製造することができる。このとき、図33に示すように、振動板84~87は、基板の中央に形成され、基板の残りの部分は、振動板84を保護する矩形枠88として残すようにしてもよい。矩形枠88の一辺には、各振動板84~87で発生した電圧信号を出力する矩形状の電極が、上部電極層40Eにより形成されている。
 本実施の形態によれば、複数の振動板84~87は、被固定部としての連結部82により連結され一体化している。これにより、複数の振動板84~87を管理し製造し易くなるうえ、複数の振動板84~87を接着剤などで筐体に一度に固定することができる。また、固定する側の構造も簡単なものとすることができるし、固定部と被固定部(連結部82)との接触面積を大きくして、固定部の保持力を高めることができる。
実施の形態8.
 次に、本発明の実施の形態8について説明する。
 本実施の形態に係る振動発電装置は、図34A、図34B及び図34Cに示すように、複数の振動板104~113を備える。複数の振動板104~108、109~113は、それぞれ基準点Oを中心とする円に沿って湾曲する円弧状の板(円環を半分に切断した形状を有する板)である。振動板104~108、109~113は、それぞれ中心角が同じ180度であり、基準点Oを中心とする円の半径方向に配列されている。振動板104~108は、基準点Oよりも-x側に配列され、振動板109~113は、基準点Oよりも+x側に配列されている。また、振動板104~113の中央部分には、重り104C~113が設けられている。振動板104~113に設けられた重り104C~113Cの厚み(z方向の長さ)は、振動板104~113が所望の共振周波数で振動するように調整されている。基準点Oを中心とする円の半径方向における幅は、振動板104~108の方が、振動板109~113よりも広い。
 連結部102は、各振動板104~108、109~113の両端を固定して振動板104~108、109~113を連結すると共に、筐体2’の固定部102Dに固定される被固定部である。連結部102は、基準点Oを中心とする円の半径方向に沿って、基準点Oを中心として+y方向および-y方向に(互いに逆方向に)延びている。複数の振動板104~108、109~113は、連結部102と一体化している。各振動板104~108、109~113は、対向する他の振動板との間に隙間が形成されているので連結部102と一体化されていても、個別に振動することが可能である。図34Cに示すように、連結部102は、筐体2’の固定部102Dに固定される。
 ここで、各振動板104~108、109~113においても、固定される固定端の幅(被固定部102と連結されるy軸方向の幅)の合計は、同じ方向(y軸方向)の全体の幅よりも小さい。例えば、図34Aに示すように、振動板104の固定端の幅d4’の合計は、振動板104全体の幅W4’よりも小さい。このようにすれば、各振動板104~108、109~113は、y軸回りの振動だけでなく、例えば、xy平面内において、y軸からずれた軸回りの振動の変位も大きくすることができる。したがって、本実施の形態に係る振動発電装置によれば、発電量を大きくすることができる振動方向を広げることができる。
 また、本実施の形態に係る振動発電装置によれば、振動板104~108、109~113を、中心角が同じ180度である円弧状の板とし、それを、基準点Oを中心とする円の半径方向に配列すれば、同じ面積の平面内における配列可能な振動板の数を増やすことができる。これにより、振動の変位が大きくなる周波数帯域を広げることができるし、各振動板104~108、109~113の共振周波数の間隔を狭くして、共振周波数間の周波数応答を持ち上げることができる。
 例えば、図35Aに示すように、振動板104~113により、共振周波数のピークの数を増やし、振動の変位を50Hz~350Hzの帯域で大きくすることができる。ここで、振動板104~108、振動板109~113について、基準点Oを中心とする円の半径方向における幅を同一とし、重り104C~113Cの厚みを同一とした場合、図35Bに示すように、100Hz付近で、振動変位のレベルが落ちている。しかし、本実施の形態に係る振動発電装置のように、基準点Oを中心とする円の半径方向における、振動板104~108と振動板109~113との幅を異ならせ、重り104C~113Cの厚みを調整した場合には、図35Cに示すように、100Hz付近の周波数応答を例えば約5倍に持ち上げることができる。
 なお、連結部102は、基準点Oを中心に、基準点Oを中心とする円の半径方向に沿って放射状に3本以上設けられていてもよい。例えば、各振動板に対応する中心角を120度として、連結部102を120°間隔で3本設けるようにしてもよい。
実施の形態9.
 次に、本発明の実施の形態9について説明する。
 本実施の形態に係る振動発電装置は、図36A、図36B及び図36Cに示すように、一体化された複数の振動板204~207を備えている。複数の振動板204~207それぞれは、一端が筐体2”の固定部202Dに固定され、y軸方向に沿って互いに平行に延びる2つの第1の直線部204A~207Aと、2つの第1の直線部204A~207Aの他端同士を連結する第2の直線部204B~207Bと、を有している。複数の振動板205~207は、第1の直線部205A~207A及び第2の直線部205B~207Bで形成される枠の内側に、他の振動板204~206を内包するように配列される。また、複数の振動板205~207は、筐体2”の固定部202Dに固定される部分、すなわち被固定部202で一体化している。
 すなわち、振動板204~207は、被固定部202を含め、全体として矩形状であり、内部に矩形状の貫通孔を有すると考えることもできる。振動板207の貫通孔に振動板206が内包され、振動板206の貫通孔に振動板205が内包され、振動板205の貫通孔に振動板204が内包される。振動板204~207において、y軸方向に沿って延びた一対の第1の直線部204A~207Aのx軸方向における幅と、x軸方向に沿って延びた第2の直線部204B~207Bに設けられた重り204C~207Cの厚みとは、振動板204~207が所望の共振周波数で振動するように調整されている。
 言い換えると、複数の振動板204~207は、U字状の板の部分を有し、その両端(固定端)が筐体2”の固定部202Dに固定される連結部(被固定部)202に連結されることにより構成されている。振動板204~207は、隣接する他の振動板との間に隙間が形成されているので、連結部202と一体化されていても、個別に振動することが可能である。
 各振動板204~207においても、固定される固定端の幅(被固定部202と連結されるx軸方向の幅)の合計は、同じ方向(x軸方向)の全体の幅よりも小さい。例えば、図36Aに示すように、振動板204の固定端の幅d4”の合計は、振動板204全体の幅W4”の合計よりも小さい。このようにすれば、各振動板204~207は、x軸回りの振動だけでなく、例えば、xy平面内においてx軸からずれた軸回りの振動の変位も大きくすることができる。従って、本実施の形態に係る振動発電装置によれば、発電量を大きくすることができる振動方向を広げることができる。
 よって、例えば、図37Aに示すように、振動板204~207により振動の変位を50Hz~400Hzの帯域で大きくすることができる。ここで、振動板204~207において、第1の直線部204A~207Aのx軸方向における幅を同一とし、第2の直線部204B~207Bに設けられた重り204C~207Cの厚みを同一とした場合、図37Bに示すように、最低の共振周波数と2番目の共振周波数との間で、振動変位のレベルが落ちている。しかし、本実施の形態に係る振動発電装置のように、振動板204~207において、第1の直線部204A~207Aのx軸方向における幅を異ならせ、第2の直線部204B~207Bに設けられた重り204C~207Cの厚みを異ならせた場合には、例えば図37Cに示すように、最低の共振周波数と2番目の共振周波数との間の周波数応答を約30倍に持ち上げることができる。
 なお、上記各実施の形態に係る振動装置は、共振周波数がそれぞれ異なる複数の振動板を備えるものであったが、上述したような複数の振動板のうち、少なくとも1つの振動板を、図38に示す振動板8に代えるようにしてもよい。振動板8は、円環状であり、1箇所で被固定部8Dで固定され、被固定部8Dの反対側に重り8Cが設けられている。この振動板8では、その主面8Aの一部に金属板としてのジャケット8Bが貼り合わされている。ジャケット8Bは、振動板8における変形しない部分、被固定部8Dや重り8Cが設けられる部分にも貼り合わされている。この円環状の振動板8では、振動板8の内縁側を円周方向に延びるように設けられている。このようにすれば、ジャケット8Bが貼り合わされた領域と、貼り合わされていない領域との境界周辺の応力を大きくして、振動板8の振動による発電量等を大きくすることができる。
 また、図39に示す振動板9を用いてもよい。図39では、振動板9は、半分に切断された状態で示されている。この振動板9は、円環状であり、1箇所で被固定部9Dで固定され、被固定部9Dの反対側に重り9Cが設けられている。主面9A上には、金属板としてのジャケット9Bが貼り合わされている。ジャケット9Bは、振動板9の円周方向に延びるように設けられている。より具体的には、ジャケット9Bは、幅が短い部分9Baと幅が広い(幅が主面9Aと同じ)部分9Bbとが振動板9の円周方向に交互に連結されて構成されている。部分9Ba,9Bbは、幅や長さが不均一である。このようなジャケット9Bを取り付けることにより、ジャケット9Bが貼り合わされた領域と、ジャケット9Bが貼り合わされていない領域との境界周辺の応力をより大きくして、振動板9の振動による発電量等を大きくすることができる。
 また、図40に示す振動板10を用いてもよい。図40では、振動板10は、半分に切断された状態で示されている。この振動板10は、円環状であり、1箇所で被固定部10Dで固定され、被固定部10Dの反対側に重り10Cが設けられている。この振動板10には、金属板としてのジャケット10Bが貼り合わされている。ジャケット10Bは、振動板10の円周方向に延びるように設けられている。また、被固定部10Dから離れるにつれて、ジャケット10Bの幅は徐々に短くなっている。このジャケット10Bを取り付けることにより、ジャケット10Bが貼り合わされた領域と、ジャケット10Bが貼り合わされていない領域との境界周辺の応力をより大きくして、振動板10の振動による発電量等を大きくすることができる。
 また、図41に示す振動板11を用いてもよい。図41では、振動板11は、半分に切断された状態で示されている。この振動板11は、円環状であり、1箇所で被固定部11Dで固定されている。重り11Cは、振動板11における被固定部11Dから最も遠い位置に設けられており、振動板11の素材であるSOIウエハのSi層を残すことにより形成されている。この振動板11は、幅が短くかつ薄い部分11Aa(くびれ部)と、幅が広くかつ厚い部分11Abとがその円周方向に交互に連結されて構成された円環状の板である。部分11Abも、振動板11の素材であるSOIウエハのSi層を残すことにより形成されている。この振動板11によれば、幅が短くかつ薄い部分11Aaと、幅が長くかつ厚い部分11Abとの境界周辺の応力を大きくすることができるので、振動板11の振動による発電量等を大きくすることができる。
 また、図42A及び図42Bに示す振動板11のように、金属製の重り11C’を取り付けるようにしてもよい。図43に示すように、重り11C’は、振動板11における被固定部11Dから最も遠い位置に、シリコン層11Eを介して振動板11に接続されている。また、重り11C’は、振動板11と接続された位置から、振動板11に沿って振動板11と平行に張り出している。このようにすれば、重り11C’を重くして振動板11全体の共振周波数を低くしつつ、振動板11で応力が大きくなる部分の大きさを確保することができる。これにより、振動板11の振動による発電量等を大きくすることができる。
 上述のようなジャケット及びくびれのある振動板は、円弧状以外の形状の振動板に適用することができる。
 なお、振動装置は、例えば圧力センサ等の各種センサの自家電源として用いることができる。例えば、圧力変動を検出するセンサの電源として上記各実施の形態に係る振動発電装置1D等を用いれば、圧力の変動によって生じた振動で振動発電装置1D等が発電を行い、発電された電力でセンサを作動させ、そのセンサが圧力を検出するシステムを構成することも可能である。
 上記実施の形態では、振動板4,5,6,7等は、半導体製造技術を応用したMEMS技術を用いて製造されたが、本発明はこれには限られない。振動板4,5,6,7等は、以下のようにして製造されてもよい。即ち、圧電材料層40Dが例えば圧電セラミックスとされ、この圧電セラミックスの一方の主面に上部電極層40Eが貼り付けられ、圧電セラミックスの他方の主面に下部電極層40Cが貼り付けられることで、圧電層40Aが形成される。そして、この圧電層40Aの下部電極層40Cに、シリコン層から成る基材層40Bが貼り付けられることで、振動板4,5,6,7等が製造されてもよい。
 なお、圧電材料層40Dが例えば圧電セラミックスである場合、その圧電材料層40Dは、MEMS技術を用いて製造された圧電材料層40Dと比較して強度(例えば硬度)が高い。このように、圧電材料層40Dの強度が比較的高く、振動板4,5,6,7等の強度(例えば硬度)も比較的高い場合、圧電材料層40D(圧電層40A)が積層される基材層40Bは、振動板4,5,6,7等において必須の構成ではない。
 上記実施の形態では、基材層40B上に積層された圧電層40Aは、1つの圧電材料層40Dで構成されていた。しかしながら、本発明はこれには限られない。圧電層40Aは、複数の圧電材料層40Dを有していてもよい。
 圧電層40Aは、例えば、下部電極層40Cと、圧電材料層40Dと、上部電極層40Eとに加え、更に、圧電材料層40Dと、上部電極層40Eとが、この順で積層されており、2つの圧電材料層40Dを有していてもよい。また、圧電層40Aは、例えば、下部電極層40Cと、圧電材料層40Dと、上部電極層40Eと、圧電材料層40Dと、上部電極層40Eとに加え、更に、圧電材料層40Dと、上部電極層40Eとが、この順で積層されており、3つの圧電材料層40Dを有していてもよい。
 なお、上述のように、複数の圧電材料層40Dが積層された圧電層40Aによって振動板4,5,6,7等が形成される場合であっても、それら圧電材料層40Dは、例えばPZTに限られない。複数の圧電材料層40Dは、電圧の印加によって伸縮動作し、外部から加えられた振動力により撓んで振動する圧電素子であればよい。
 上述した実施の形態5においては、重り74C~77Cの厚みを調整して振動板74~77の共振周波数を微調整し、実施の形態8においても、同様に、重り104C~113Cの厚みを調整して振動板104~113の共振周波数を微調整したが、本発明はこれに限られない。例えば、密度の異なる材質を使用して、重さが異なる重り74C~77C、重り104C~113Cを用意し、それらの重り74C~77C、重り104C~113Cを、振動板74~77、振動板104~113に固着させることで、振動板74~77、振動板104~113の共振周波数を微調整してもよい。この場合、重り74C~77C、重り104C~113Cの厚みが同程度になることもある。
 上述した実施の形態7においては、振動板84~87は、矩形状の基板がカッティングされて製造されたが、本発明はこれに限られない。振動板84~87は、例えば円形や楕円形の基板がカッティングされて製造されてもよい。
 上述した実施の形態8においては、振動板104~108、109~113は、それぞれ基準点Oを中心とする円に沿って湾曲する円弧状の板(円環を半分に切断した形状を有する板)であったが、本発明はこれに限られない。振動板104~108、109~113は、全体として矩形状であり、内部に矩形状の貫通孔を有する凹の字状であってもよい。
 上記実施の形態に係る骨伝導式イヤホン1A,1B,1C及び振動発電装置1Dは、スマートフォン100等の装飾用のアクセサリとして利用することもできる。例えば、筐体2等の形状を特定のキャラクタの形状とすることにより、その装飾性を高めることができる。
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 なお、本願については、2016年7月29日に出願された日本国特許出願2016-150162号、2016年10月26日に出願された日本国特許出願2016-210049号を基礎とする優先権を主張し、本明細書中に日本国特許出願2016-150162号及び日本国特許出願2016-210049号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、骨伝導式イヤホンや振動発電装置に適用することができる。例えば、イヤホンの他、骨伝導の携帯電話等に適用することができる。また、人、車などの動くもの、又は路面等の動くものから振動を受ける部分に設けられる振動発電装置に適用することができる。
 1A,1B,1C 骨伝導式イヤホン、1D 振動発電装置、2,2’,2” 筐体、2A,2B カバー、2C 内部空間、2D 固定部、2E ボス、2F 凹部、2G 側壁、3 信号入力部、3A 音声入力端子、3B 係止部、3C 出力電極、4,4’,4” 振動板、4A 主面、4C 重り、4D 被固定部、4E 貫通孔、4G 切り欠き部、5 振動板、5A 主面、5C 重り、5D 被固定部、5E 貫通孔、5G 切り欠き部、6 振動板、6A 主面、6C 重り、6D 被固定部、6E 貫通孔、6G 切り欠き部、7 振動板、7A 主面、7C 重り、7D 被固定部、7E 貫通孔、7G 切り欠き部、8 振動板、8A 主面、8B ジャケット、8C 重り、8D 被固定部、9 振動板、9A 主面、9B ジャケット、9Ba 部分、9Bb 部分、9C 重り、9D 被固定部、10 振動板、10A 主面、10B ジャケット、10C 重り、10D 被固定部、11 振動板、11A 主面、11Aa 部分(くびれ部)、11Ab 部分、11C,11C’ 重り、11D 被固定部、11E シリコン層、15 振動板、15A 主面、15B アーム部、15C 重り、16 振動板、16A 主面、16B アーム部、16C 重り、17 振動板、17A 主面、17B アーム部、17C 重り、24 振動板、24A 主面、24C 重り、25 振動板、25A 主面、25B アーム部、25C 重り、26 振動板、26A 主面、26B アーム部、26C 重り、27 振動板、27A 主面、27B アーム部、27C 重り、30 出力部、30A 端子、34 振動板、34A 主面、34B アーム部、34C 重り、34D 被固定部、35 振動板、35A 主面、35B アーム部、35C 重り、35D 被固定部、36 振動板、36A 主面、36B アーム部、36C 重り、36D 被固定部、37 振動板、37A 主面、37B アーム部、37C 重り、37D 被固定部、38 振動板、38A 主面、38B アーム部、38C 重り、38D 被固定部、40A 圧電層、40B 基材層、40C 下部電極層、40D 圧電材料層、40E 上部電極層、40F Si支持層、40G Si活性層、44,45,46,47 振動板、50 振動板組,51 振動板組、54,55,56,57 振動板、61 フック部、62 筐体、62D 固定部、63 コードケーブル、64、信号入力部、65 振動板組、70 振動板、70B アーム部、70C 重り、71 振動板、71B アーム部、71C 重り、72 振動板、72B アーム部、72C 重り、74 振動板、74A 主面、74C 重り、74D 被固定部、75 振動板、75A 主面、75C 重り、76 振動板、76A 主面、76C 重り、77 振動板、77A 主面、77C 重り、80 整流平滑回路、81 蓄電池、82 連結部、84,85,86,87 振動板、84A,85A,86A,87A 主面、84C,85C,86C,87C 重り、88 矩形枠、94D,95D,96D,97D 固定部、100 携帯端末機器(スマートフォン)、101 イヤホンジャック、102 連結部(被固定部)、102D 固定部、104,105,106,107,108,109,110,111,112,113 振動板、104C,105C,106C,107C,108C,109C,110C,111C,112C,113C 重り、202 連結部(被固定部)、202D 固定部、204,205,206,207 振動板、204A,205A,206A,207A 第1の直線部、204B,205B,206B,207B 第2の直線部、204C,205C,206C,207C 重り、h 使用者、S スカロップ

Claims (31)

  1.  積層された圧電層を有し、該圧電層の伸縮又は外部から加えられた振動力により撓んで振動し、共振振動数がそれぞれ異なる複数の振動板と、
     前記複数の振動板を収容する内部空間と、前記各振動板の一部を固定する固定部とを有し、前記固定部を介して前記各振動板と外部との間で振動を伝達可能な筐体と、
     を備える振動装置。
  2.  前記複数の振動板として、
     その主面における、前記固定部から前記振動板の中心へ向かう方向に直交する方向に関して、前記振動板の全幅が前記固定部によって固定される固定端の全幅より大きい振動板を含む、
     請求項1に記載の振動装置。
  3.  前記複数の振動板は、同一の平面内に配置されている、
     請求項1又は2に記載の振動装置。
  4.  前記複数の振動板として、
     主面の一部がくりぬかれて貫通孔が形成され、前記貫通孔に他の振動板を内包する振動板を含む、
     請求項3に記載の振動装置。
  5.  前記複数の振動板は、同心に配置されている、
     請求項4に記載の振動装置。
  6.  前記貫通孔が、主面の中央よりも前記固定部の方に偏芯して形成されている、
     請求項4に記載の振動装置。
  7.  前記複数の振動板それぞれは、基準点を中心とする円の半径方向に配列された中心角が同じ円弧状の板であり、
     両端で前記固定部に固定される、
     請求項3に記載の振動装置。
  8.  前記複数の振動板における前記固定部に固定される部分は、
     前記基準点を中心として逆方向又は放射状に複数延びている、
     請求項7に記載の振動装置。
  9.  前記複数の振動板それぞれは、
     一端が前記固定部に固定され、互いに平行に延びる2つの第1の直線部と、
     前記2つの第1の直線部の他端同士を連結する第2の直線部と、
     を有し、
     前記複数の振動板は、
     前記第1の直線部及び前記第2の直線部で形成される枠の内側に、他の振動板を内包するように配列される、
     請求項3に記載の振動装置。
  10.  前記複数の振動板は、前記固定部に固定される部分で一体化している、
     請求項3から9のいずれか一項に記載の振動装置。
  11.  前記複数の振動板は、その厚み方向に配列されている、
     請求項1又は2に記載の振動装置。
  12.  前記複数の振動板は、外形寸法が均一である、
     請求項11に記載の振動装置。
  13.  前記複数の振動板は、
     前記各振動板の主面の面積が増加又は減少するように配列されている、
     請求項3又は11に記載の振動装置。
  14.  前記複数の振動板は、
     その厚みが増加又は減少するように配列されている、
     請求項3又は11に記載の振動装置。
  15.  前記各振動板に重りが設けられている、
     請求項3又は11に記載の振動装置。
  16.  前記複数の振動板は、
     それぞれに設けられた前記重りの重さが増加又は減少するように配列されている、
     請求項15に記載の振動装置。
  17.  前記重りは、
     前記各振動板における、前記固定部から前記振動板の中心を通る中心線上に設けられている、
     請求項15又は16に記載の振動装置。
  18.  前記重りは、
     前記各振動板における、前記固定部から前記振動板の中心を通る中心線から外れた位置に設けられている、
     請求項15又は16に記載の振動装置。
  19.  外部機器から出力された電圧信号を入力して前記各振動板の前記圧電層に印加するか、前記圧電層に生じた電荷を電流として取り出すかのいずれかを行う入出力部を備える、
     請求項1又は2に記載の振動装置。
  20.  前記固定部は、
     前記入出力部の反対側に配置されている、
     請求項19に記載の振動装置。
  21.  前記複数の振動板のうち、少なくとも1枚の振動板では、前記入出力部に対向する部分が切り欠かれている、
     請求項20に記載の振動装置。
  22.  前記複数の振動板のうち、少なくとも1枚の振動板の主面の形状は、C字状、U字状又は凹状である、
     請求項21に記載の振動装置。
  23.  前記複数の振動板のいずれかと、共振周波数が同一である他の振動板を備える、
     請求項1又は2に記載の振動装置。
  24.  隣接する共振周波数の間の周波数応答が、振動板単独の周波数応答を上回るように、前記複数の振動板各々の共振周波数の間隔が規定されている、
     請求項1又は2に記載の振動装置。
  25.  前記複数の振動板のうちの少なくとも1つの振動板の主面の一部に、金属板が貼り合わされている、
     請求項1又は2に記載の振動装置。
  26.  前記金属板が貼り合わされた振動板は、円環状であり、
     前記金属板が、前記振動板の内縁側を円周方向に延びるように設けられている、
     請求項25に記載の振動装置。
  27.  前記金属板が貼り合わされた振動板は、円環状であり、
     前記金属板は、幅が短い部分と幅が長い部分とが前記振動板の円周方向に交互に連結されて構成されている、
     請求項25に記載の振動装置。
  28.  前記金属板が貼り合わされた振動板は、円環状であり、
     前記金属板が、前記振動板の円周方向に延びるように設けられ、
     前記固定部から離れるにつれて、前記金属板の幅が短くなっている、
     請求項25に記載の振動装置。
  29.  前記複数の振動板のうちの少なくとも1つの振動板は、
     幅が短くかつ薄い部分と、幅が長くかつ厚い部分とがその円周方向に交互に連結されて構成された円環状の板である、
     請求項1又は2に記載の振動装置。
  30.  前記少なくとも1つの振動板における前記固定部から最も遠い位置に金属製の重りが接続されている、
     請求項29に記載の振動装置。
  31.  前記金属製の重りが、前記振動板と接続された位置から、前記振動板に沿って前記振動板と平行に張り出している、
     請求項30に記載の振動装置。
     
PCT/JP2017/025787 2016-07-29 2017-07-14 振動装置 WO2018021075A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/314,300 US11284196B2 (en) 2016-07-29 2017-07-14 Vibration device
CN201780043478.4A CN109479167B (zh) 2016-07-29 2017-07-14 振动装置
JP2018529786A JP6673480B2 (ja) 2016-07-29 2017-07-14 振動装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016150162 2016-07-29
JP2016-150162 2016-07-29
JP2016210049 2016-10-26
JP2016-210049 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018021075A1 true WO2018021075A1 (ja) 2018-02-01

Family

ID=61016066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025787 WO2018021075A1 (ja) 2016-07-29 2017-07-14 振動装置

Country Status (4)

Country Link
US (1) US11284196B2 (ja)
JP (1) JP6673480B2 (ja)
CN (1) CN109479167B (ja)
WO (1) WO2018021075A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161030A (ja) * 2018-03-14 2019-09-19 新日本無線株式会社 圧電素子
JP2020068584A (ja) * 2018-10-23 2020-04-30 一般財団法人電力中央研究所 電力変換機器、発電設備
TWI842033B (zh) * 2021-07-30 2024-05-11 南韓商樂金顯示科技股份有限公司 振動設備及包含其之聲音產生設備

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739904B1 (de) * 2019-05-14 2024-10-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Akustisches biegewandlersystem und akustische vorrichtung
JP7102456B2 (ja) * 2020-04-13 2022-07-19 矢崎総業株式会社 電流センサ
CN112068225A (zh) * 2020-09-16 2020-12-11 东方智感(浙江)科技股份有限公司 一种电子式降雨量测量装置及方法
CN215453267U (zh) * 2021-06-22 2022-01-07 瑞声声学科技(深圳)有限公司 骨传导传感器组件
JP2023539967A (ja) * 2021-08-11 2023-09-21 深▲セン▼市韶音科技有限公司 マイクロフォン
CN113507676A (zh) * 2021-08-13 2021-10-15 中北大学 硅基悬臂梁式mems压电麦克风的结构及装置
SE546029C2 (en) * 2022-12-22 2024-04-16 Myvox Ab A mems-based micro speaker device and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116398A (en) * 1980-02-20 1981-09-12 Pioneer Electronic Corp Multiway coaxial flat plane type speaker
JPS62259026A (ja) * 1986-05-06 1987-11-11 Yasushi Ishii 振動型温度センサ−
JP2003520540A (ja) * 2000-01-24 2003-07-02 ニュー トランスデューサーズ リミテッド 変換器
JP2005045691A (ja) * 2003-07-24 2005-02-17 Taiyo Yuden Co Ltd 圧電振動装置
JP2006200976A (ja) * 2005-01-19 2006-08-03 Denso Corp 超音波センサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163477A (ja) 1995-12-04 1997-06-20 Mitsubishi Electric Corp 骨伝導音声振動検出素子
JP2003274470A (ja) * 2002-03-19 2003-09-26 Denso Corp 骨伝導音声振動検出素子、骨伝導音声振動検出素子の製造方法および音声認識システム
US6995659B2 (en) * 2003-10-31 2006-02-07 Nokia Corporation Sound generating transducer
JP2006237792A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 圧電型音響変換装置
JP2012210091A (ja) 2011-03-30 2012-10-25 Seiko Epson Corp 発電装置
JP5956320B2 (ja) 2012-11-29 2016-07-27 Kddi株式会社 音声振動出力装置
CN104219598B (zh) * 2013-05-31 2018-03-30 美律电子(深圳)有限公司 双振膜声波传感器
JP6330202B2 (ja) * 2014-07-31 2018-05-30 株式会社オーディオテクニカ 咽喉マイクロホン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116398A (en) * 1980-02-20 1981-09-12 Pioneer Electronic Corp Multiway coaxial flat plane type speaker
JPS62259026A (ja) * 1986-05-06 1987-11-11 Yasushi Ishii 振動型温度センサ−
JP2003520540A (ja) * 2000-01-24 2003-07-02 ニュー トランスデューサーズ リミテッド 変換器
JP2005045691A (ja) * 2003-07-24 2005-02-17 Taiyo Yuden Co Ltd 圧電振動装置
JP2006200976A (ja) * 2005-01-19 2006-08-03 Denso Corp 超音波センサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161030A (ja) * 2018-03-14 2019-09-19 新日本無線株式会社 圧電素子
JP2020068584A (ja) * 2018-10-23 2020-04-30 一般財団法人電力中央研究所 電力変換機器、発電設備
JP7211760B2 (ja) 2018-10-23 2023-01-24 一般財団法人電力中央研究所 発電設備
TWI842033B (zh) * 2021-07-30 2024-05-11 南韓商樂金顯示科技股份有限公司 振動設備及包含其之聲音產生設備

Also Published As

Publication number Publication date
US11284196B2 (en) 2022-03-22
CN109479167A (zh) 2019-03-15
CN109479167B (zh) 2020-06-16
JPWO2018021075A1 (ja) 2019-05-16
US20210227329A1 (en) 2021-07-22
JP6673480B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6673480B2 (ja) 振動装置
JP4683635B2 (ja) 受話装置
JP5759641B1 (ja) 電気音響変換装置及び電子機器
JPWO2009141912A1 (ja) イヤホン装置
CN108513240B (zh) 电声转换装置
CN110603819B (zh) Mems声音传感器、mems麦克风及电子设备
JP2019114958A (ja) 電気音響変換器
CN102687532B (zh) 电声换能器、电子装置、电声变换方法及声波输出方法
JP2022174260A (ja) 電気音響変換器及び電気音響変換装置
JP6642709B2 (ja) 骨伝導装置
JP3395672B2 (ja) 圧電型電気音響変換器
KR20080102656A (ko) 음향 변환 장치
KR100856484B1 (ko) 압전형 진동자 및 이를 포함하는 중이 이식형 보청기
KR101544834B1 (ko) 압전진동발생기
KR101501624B1 (ko) 휴대단말
JP6996853B2 (ja) 電気音響変換装置
US11825273B2 (en) Vibration module for placement on an eardrum
JP6875908B2 (ja) 電気音響変換装置
WO2014162409A1 (ja) イヤホン装置
RU2802593C1 (ru) Микрофон костной проводимости
JP2018019386A (ja) 電気音響変換装置
KR20110083419A (ko) 마이크로 폰
JP2021027506A (ja) 電気音響変換装置
KR20180007699A (ko) 전기 음향 변환 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834083

Country of ref document: EP

Kind code of ref document: A1