WO2018020998A1 - 静電潜像現像用トナー及びその製造方法 - Google Patents
静電潜像現像用トナー及びその製造方法 Download PDFInfo
- Publication number
- WO2018020998A1 WO2018020998A1 PCT/JP2017/025140 JP2017025140W WO2018020998A1 WO 2018020998 A1 WO2018020998 A1 WO 2018020998A1 JP 2017025140 W JP2017025140 W JP 2017025140W WO 2018020998 A1 WO2018020998 A1 WO 2018020998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- toner
- temperature
- polymer
- latent image
- crosslinking agent
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08742—Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08755—Polyesters
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08726—Polymers of unsaturated acids or derivatives thereof
- G03G9/08728—Polymers of esters
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08791—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08793—Crosslinked polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08795—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08797—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0802—Preparation methods
- G03G9/0804—Preparation methods whereby the components are brought together in a liquid dispersing medium
- G03G9/0806—Preparation methods whereby the components are brought together in a liquid dispersing medium whereby chemical synthesis of at least one of the toner components takes place
Definitions
- the present invention relates to an electrostatic latent image developing toner and a method for producing the same.
- the binder resin is composed of an amorphous polyester resin and a cross-linked polyester resin.
- a low-molecular crosslinking agent (1,4-phenylenebisoxazoline) is used to crosslink the crosslinkable polyester resin.
- Patent Document 1 According to the technique disclosed in Patent Document 1, it is possible to obtain a toner excellent in low-temperature fixing property, hot offset resistance, and heat-resistant storage stability.
- the technology disclosed in Patent Document 1 alone has a viscoelasticity suitable for both low temperature fixing and high temperature fixing, and is excellent in all of low temperature fixing properties, hot offset resistance, and heat storage stability. It is not easy to obtain toner for developing an electrostatic latent image. It is difficult to control the crosslinking mode with a low molecular crosslinking agent.
- the present invention has been made in view of the above problems, has viscoelasticity suitable for both low temperature fixing and high temperature fixing, and has all of low temperature fixing properties, hot offset resistance, and heat storage stability.
- An object of the present invention is to provide an excellent toner for developing an electrostatic latent image.
- the electrostatic latent image developing toner according to the present invention includes a plurality of toner particles containing a binder resin.
- the toner particles have a crosslinked structure derived from a polymer crosslinking agent.
- the storage elastic modulus at a temperature of 80 ° C. is 1.0 ⁇ 10 3 Pa or more and 5.0 ⁇ 10 4 Pa or less.
- the storage elastic modulus at a temperature of 120 ° C. is 1.0 ⁇ 10 3 Pa or more and 1.0 ⁇ 10 4 Pa or less.
- the crosslinking density Nx represented by the formula (1) is 2.9 ⁇ 10 ⁇ 7 mol / cm 3 or more and 2.5 ⁇ 10 ⁇ 6 mol / cm 3 or less.
- the loss tangent tan ⁇ x represented by the formula (2) is 0.05 or more and 0.50 or less.
- Nx 10 ⁇ Gx / R ⁇ (T 10000 +343)
- Gx represents the storage elastic modulus [Pa] of the toner temperature T 10000 + 70 ° C.
- R represents the gas constant
- T 10000 represents the toner storage elastic modulus of 1.0 ⁇ 10 4. It represents the temperature [° C.] at which Pa is reached.
- tan ⁇ x Gy / Gx (2)
- Gx represents the temperature T 10000 + 70 ° C. storage modulus of the toner [Pa]
- Gy represents the temperature T 10000 + 70 ° C. loss modulus of the toner [Pa]
- T 10000 is Represents a temperature [° C.] at which the storage elastic modulus of the toner becomes 1.0 ⁇ 10 4 Pa. ]
- the method for producing an electrostatic latent image developing toner according to the present invention includes a melt-kneading step and a pulverizing step.
- a melt-kneading step a toner material containing at least a binder resin and a polymer crosslinking agent is melt-kneaded to obtain a melt-kneaded product.
- the melt-kneaded product is pulverized to obtain a pulverized product including a plurality of particles.
- the amount of the crosslinkable functional group of the polymer crosslinking agent is 1.0 mmol / g or more and 10.0 mmol / g or less.
- the mass average molecular weight of the polymer crosslinking agent is 10,000 or more and 150,000 or less.
- an electrostatic latent image developing toner having viscoelasticity suitable for both low-temperature fixing and high-temperature fixing, and excellent in all of low-temperature fixing properties, hot offset resistance, and heat-resistant storage stability. It becomes possible to provide.
- FIG 4 is a graph for explaining viscoelasticity of the electrostatic latent image developing toner according to the embodiment of the invention. It is a figure for demonstrating a polymer crosslinking agent. It is a figure for demonstrating a low molecular crosslinking agent.
- evaluation results values indicating shape, physical properties, etc.
- powder more specifically, toner base particles, external additives, toner, etc.
- It is the number average of the values measured for a considerable number of particles.
- the number average particle diameter of the powder is the number average value of the equivalent circle diameter of primary particles (diameter of a circle having the same area as the projected area of the particles) measured using a microscope unless otherwise specified.
- the measured value of the volume median diameter (D 50 ) of the powder is measured using a laser diffraction / scattering particle size distribution measuring device (“LA-750” manufactured by Horiba, Ltd.) unless otherwise specified. It is the value.
- the measured value of a mass mean molecular weight (Mw) is the value measured using the gel permeation chromatography, if not prescribed
- the glass transition point (Tg) is a value measured according to “JIS (Japanese Industrial Standard) K7121-2012” using a differential scanning calorimeter (“DSC-6220” manufactured by Seiko Instruments Inc.). It is. In the endothermic curve (vertical axis: heat flow (DSC signal), horizontal axis: temperature) at the second temperature rise measured by the differential scanning calorimeter, the change point of the specific heat (outside the extrapolated line of the baseline and the falling line) The temperature (onset temperature) at the intersection with the insertion line corresponds to Tg (glass transition point).
- DSC-6220 differential scanning calorimeter
- the softening point (Tm) is a value measured using a Koka type flow tester (“CFT-500D” manufactured by Shimadzu Corporation) unless otherwise specified.
- CFT-500D Koka type flow tester
- the temperature that becomes "(baseline stroke value + maximum stroke value) / 2" is Tm (softening point).
- Tm softening point
- the measured value of the melting point (Mp) is an endothermic curve (vertical axis: heat flow (DSC) measured with a differential scanning calorimeter (“DSC-6220” manufactured by Seiko Instruments Inc.) unless otherwise specified).
- Signal horizontal axis: temperature) is the maximum endothermic peak temperature.
- a compound and its derivatives may be generically named by adding “system” after the compound name.
- the name of a polymer is expressed by adding “system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
- Acrylic and methacrylic are sometimes collectively referred to as “(meth) acrylic”.
- the toner according to this embodiment can be suitably used for developing an electrostatic latent image, for example, as a positively chargeable toner.
- the toner of the present exemplary embodiment is a powder that includes a plurality of toner particles (each having a configuration described later).
- the toner may be used as a one-component developer.
- a two-component developer may be prepared by mixing toner and carrier using a mixing device (for example, a ball mill).
- a ferrite carrier specifically, a powder of ferrite particles
- the carrier core may be formed of a magnetic material (for example, a ferromagnetic substance such as ferrite), or the carrier core may be formed of a resin in which magnetic particles are dispersed. Good. Further, magnetic particles may be dispersed in the resin layer covering the carrier core.
- the amount of toner in the two-component developer is preferably 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the carrier. The positively chargeable toner contained in the two-component developer is positively charged by friction with the carrier.
- the toner according to the present embodiment can be used for image formation in, for example, an electrophotographic apparatus (image forming apparatus).
- an electrophotographic apparatus image forming apparatus
- an example of an image forming method using an electrophotographic apparatus will be described.
- an image forming unit (charging device and exposure device) of an electrophotographic apparatus forms an electrostatic latent image on a photosensitive member (for example, a surface layer portion of a photosensitive drum) based on image data.
- a developing device of the electrophotographic apparatus specifically, a developing device in which a developer containing toner is set
- the toner is charged by friction with the carrier, the developing sleeve, or the blade in the developing device before being supplied to the photoreceptor.
- a positively chargeable toner is positively charged.
- toner specifically, toner charged by friction
- a developing sleeve for example, a surface layer portion of a developing roller in the developing device
- the consumed toner is replenished to the developing device from a toner container containing replenishment toner.
- the transfer device of the electrophotographic apparatus transfers the toner image on the photosensitive member to an intermediate transfer member (for example, a transfer belt), the toner image on the intermediate transfer member is further transferred to a recording medium (for example, paper). Transcript to.
- a fixing device fixing method: nip fixing with a heating roller and a pressure roller
- an image is formed on the recording medium.
- a full color image can be formed by superposing four color toner images of black, yellow, magenta, and cyan.
- the transfer method may be a direct transfer method in which the toner image on the photosensitive member is directly transferred to the recording medium without using the intermediate transfer member.
- the fixing method may be a belt fixing method.
- the toner according to this embodiment includes a plurality of toner particles.
- the toner particles may include an external additive.
- the toner particles include an external additive
- the toner particles include a toner base particle and an external additive.
- the external additive adheres to the surface of the toner base particles.
- the toner base particles contain a binder resin.
- the toner base particles may contain an internal additive (for example, at least one of a release agent, a colorant, a charge control agent, and a magnetic powder) in addition to the binder resin, if necessary. If not necessary, the external additive may be omitted. When omitting the external additive, the toner base particles correspond to the toner particles.
- the toner particles contained in the toner according to the present embodiment may be toner particles not having a shell layer (hereinafter referred to as non-capsule toner particles), or toner particles having a shell layer (hereinafter referred to as capsule toner particles). May be described).
- the toner base particles include a core and a shell layer that covers the surface of the core.
- the shell layer is substantially composed of a resin. For example, by covering a core that melts at a low temperature with a shell layer having excellent heat resistance, it is possible to achieve both heat-resistant storage stability and low-temperature fixability of the toner.
- Additives may be dispersed in the resin constituting the shell layer.
- the shell layer may cover the entire surface of the core, or may partially cover the surface of the core.
- the shell layer may be substantially composed of a thermosetting resin, may be substantially composed of a thermoplastic resin, or may contain both a thermoplastic resin and a thermosetting resin. Good.
- the method for forming the shell layer is arbitrary.
- the shell layer may be formed using any of an in-situ polymerization method, a submerged cured coating method, and a coacervation method.
- the toner according to the present embodiment is an electrostatic latent image developing toner having the following configuration (hereinafter referred to as a basic configuration).
- the electrostatic latent image developing toner includes a plurality of toner particles containing a binder resin.
- the toner particles have a crosslinked structure derived from a polymer crosslinking agent.
- the storage elastic modulus of the toner at 80 ° C. (hereinafter referred to as storage elastic modulus G ′ 80 ) is 1.0 ⁇ 10 3 Pa or more and 5.0 ⁇ 10 4 Pa or less.
- the storage elastic modulus of the toner at a temperature of 120 ° C. (hereinafter referred to as storage elastic modulus G ′ 120 ) is 1.0 ⁇ 10 3 Pa or more and 1.0 ⁇ 10 4 Pa or less.
- the crosslink density Nx represented by the following formula (1) is 2.9 ⁇ 10 ⁇ 7 mol / cm 3 or more and 2.5 ⁇ 10 ⁇ 6 mol / cm 3 or less.
- the loss tangent tan ⁇ x represented by the following formula (2) is 0.05 or more and 0.50 or less.
- the measuring methods of the storage elastic modulus, the crosslinking density Nx, and the loss tangent tan ⁇ x are the same methods as the examples described later or alternative methods thereof.
- Nx 10 ⁇ Gx / R ⁇ (T 10000 +343) (1)
- Gx represents the storage elastic modulus [Pa] of the toner temperature T 10000 + 70 ° C.
- R represents the gas constant
- T 10000 represents the toner storage elastic modulus of 1.0 ⁇ 10 4. It represents the temperature [° C.] at which Pa is reached.
- tan ⁇ x Gy / Gx (2)
- Gx represents the temperature T 10000 + 70 ° C. storage modulus of the toner [Pa]
- Gy represents the temperature T 10000 + 70 ° C. loss modulus of the toner [Pa]
- T 10000 is Represents a temperature [° C.] at which the storage elastic modulus of the toner becomes 1.0 ⁇ 10 4 Pa.
- the gas constant is 8.31 ⁇ 10 7 dyne ⁇ cm / mol ⁇ K.
- the toner of the nip fixing system includes a low-temperature fixing with a heating roller having a temperature of about 120 ° C. (temperature of a non-heating pressure roller: about 80 ° C.) and a high-temperature fixing with a heating roller having a temperature of about 150 ° C. It is preferable that fixing can be properly performed both at a temperature of an unheated pressure roller (about 120 ° C.). Such toner can be fixed in a wide temperature range.
- the present inventor has confirmed through experiments and the like that basically the toner of the nip fixing method exhibits the following behavior. did.
- the storage elastic modulus of the toner becomes a predetermined value (hereinafter sometimes referred to as a fixing level) or less.
- the toner is fixed on the recording medium.
- low-temperature fixing pressure roller temperature: about 80 ° C.
- high-temperature fixing pressure roller temperature: about 120 ° C.
- the inventors of the present application have found that, when the storage elastic modulus of the toner becomes 1.0 ⁇ 10 4 Pa or less, the toner is fixed to the recording medium satisfactorily.
- the storage elastic modulus of the toner when the storage elastic modulus of the toner is further reduced so that the storage elastic modulus of the toner becomes smaller than 1.0 ⁇ 10 3 Pa (hereinafter sometimes referred to as HO level), the toner self-aggregates. Loss of power and hot offset occurs.
- the toner having the basic configuration described above has the following configuration (A).
- the storage elastic modulus G ′ 80 is 1.0 ⁇ 10 3 Pa or more and 5.0 ⁇ 10 4 Pa or less
- the storage elastic modulus G ′ 120 is 1.0 ⁇ 10 3 Pa or more and 1.0 ⁇ 10 4 Pa or less.
- the storage elastic modulus of the toner decreases to a fixing level in each of low-temperature fixing (temperature of the pressure roller: 80 ° C.) and high-temperature fixing (temperature of the pressure roller: 120 ° C.).
- the storage elastic modulus of the toner is H.264. O. It does not become smaller than the level (1.0 ⁇ 10 3 Pa). For this reason, it is considered that the toner having the above-described basic configuration hardly causes hot offset in both low temperature fixing and high temperature fixing, and can be appropriately fixed on a recording medium (for example, paper).
- the storage elastic modulus of the toner at a temperature of 150 ° C. (hereinafter sometimes referred to as storage elastic modulus G ′ 150 ) is 1.0 ⁇ 10 2 Pa or more. It is preferable that
- the sharp melt starts at the start temperature of sharp melt (for example, a temperature lower than 80 ° C.), and the storage elastic modulus of the toner rapidly decreases during the sharp melt. Furthermore, when the toner is heated, the amount of change in the storage elastic modulus of the toner (the degree to which the storage elastic modulus decreases as the temperature rises) decreases as the temperature of the toner increases, and eventually reaches a saturation state. No longer changes.
- the storage elastic modulus temperature dependency curve vertical axis: storage elastic modulus, horizontal axis: temperature
- curves L1, L2, and L3 show the same characteristics in the low temperature region with a temperature of about 100 ° C., but show different properties in the high temperature region.
- the storage elastic modulus temperature dependency curve of the toner may be referred to as a “G ′ temperature dependency curve”.
- the storage elastic modulus G ′ 80 is 1.0 ⁇ 10 3 Pa or more and 5.0 ⁇ 10 4 Pa or less, and the storage elastic modulus G ′ 120 and the storage elastic modulus G ′ 150 are 1 respectively. 0.0 ⁇ 10 3 Pa or more and 1.0 ⁇ 10 4 Pa or less.
- the storage elastic modulus G ′ 80 is 1.0 ⁇ 10 3 Pa or more and 5.0 ⁇ 10 4 Pa or less, and the storage elastic modulus G ′ 120 and the storage elastic modulus G ′ 150 are 1 respectively. Exceeds 0 ⁇ 10 4 Pa.
- the storage elastic modulus G ′ 120 of the toner is larger than 1.0 ⁇ 10 4 Pa, the fixability of the toner at high temperature fixing tends to be insufficient.
- the storage elastic modulus G ′ 80 is 1.0 ⁇ 10 3 Pa or more and 5.0 ⁇ 10 4 Pa or less, and the storage elastic modulus G ′ 120 is more than 1.0 ⁇ 10 3 Pa. small.
- the storage elastic modulus G ′ 120 of the toner is smaller than 1.0 ⁇ 10 3 Pa, hot offset of the toner is likely to occur during high-temperature fixing.
- the storage elastic modulus G ′ 80 , the storage elastic modulus G ′ 120 , and the storage elastic modulus G ′ 150 are 1.0 ⁇ 10 3 Pa or more and 1.0 ⁇ 10 4 Pa or less, respectively.
- the temperature at which the storage elastic modulus becomes 1.0 ⁇ 10 4 Pa tends to exist in a temperature region lower than 80 ° C.
- the storage elastic modulus of the toner decreases to 5.0 ⁇ 10 4 Pa (fixing level) at a temperature of 80 ° C. Even when the temperature of the toner is raised to 120 ° C., the storage elastic modulus of the toner does not become lower than 1.0 ⁇ 10 3 Pa (HO level). Therefore, the toner having the characteristics shown by the curve L1 or the curve L4 in FIG. 1 is less likely to cause hot offset in both low temperature fixing and high temperature fixing, and is appropriately fixed on a recording medium (for example, paper). It is considered possible.
- the toner particles have a crosslinked structure derived from a polymer crosslinking agent.
- the toner has a crosslinking density Nx of 2.9 ⁇ 10 ⁇ 7 mol / cm 3 or more and 2.5 ⁇ 10 ⁇ 6 mol / cm 3 or less.
- the loss tangent tan ⁇ x of the toner is 0.05 or more and 0.50 or less.
- the crosslinking density Nx indicates the number of crosslinking points per unit volume in the resin. As the crosslinking density Nx of the toner increases, the hot offset resistance and heat resistant storage stability of the toner tend to improve. However, if the crosslinking density Nx of the toner is too large, the low-temperature fixability of the toner tends to deteriorate.
- the loss tangent tan ⁇ x indicates the viscoelasticity of the resin. Specifically, a resin having a larger loss tangent tan ⁇ x exhibits stronger viscosity. As the loss tangent tan ⁇ x of the toner increases, the low-temperature fixability of the toner tends to improve. However, if the loss tangent tan ⁇ x of the toner is too large, the hot offset resistance and the heat resistant storage stability of the toner tend to deteriorate. When the loss tangent tan ⁇ x of the toner is too small, the storage elastic modulus G ′ 80 of the toner is larger than 5.0 ⁇ 10 4 Pa, and the fixability of the toner at low temperature fixing tends to be insufficient. .
- the present inventor succeeded in setting the crosslinking density Nx and the loss tangent tan ⁇ x to appropriate values by using a polymer crosslinking agent. Specifically, when the resin in the toner particles is appropriately cross-linked using a polymer cross-linking agent, the toner particles have a low-density cross-linking structure (specifically, the distance between the cross-linking points while ensuring sufficient toner elasticity). Can form a long cross-linked structure). Since the toner particles have a low-density cross-linked structure, it is easy to ensure sufficient low-temperature fixability of the toner.
- FIG. 2 is a diagram schematically showing an example of the polymer crosslinking agent (polymer crosslinking agent 10).
- the bonds P1 to P8 indicate the bonds of crosslinking of the polymer crosslinking agent 10, respectively.
- FIG. 3 schematically shows two types of low-molecular crosslinking agents that are generally used (low-molecular crosslinking agent 21: bifunctional aliphatic compound, low-molecular crosslinking agent 22: 4-functional aromatic compound).
- the bonds P11 and P12 indicate the bonds of the low molecular crosslinking agent 21 and the bonds P21 to P24 indicate the bonds of the low molecular crosslinking agent 22, respectively.
- the polymer cross-linking agent 10 has more cross-linking bonds than the low-molecular cross-linking agents 21 and 22. Each of the low-molecular crosslinking agents 21 and 22 has few crosslink bonds and a short distance between the bonds.
- a crosslinked structure having a long distance between the crosslinking points is formed in the resin. For example, when two of the bonds P1 to P8 contribute to the crosslinking, the distance between the crosslinking points becomes longer if the bond P1 and the bond P8 contribute to the crosslinking, but the bond P1 and the bond If P2 contributes to cross-linking, the distance between cross-linking points is shortened.
- the bonds that contribute to crosslinking are determined almost randomly, the average distance for the entire resin is longer when a polymer crosslinking agent is used than when a low-molecular crosslinking agent is used. Tend to be. However, even when a polymer crosslinking agent is used, if the resin is crosslinked too much, the distance between crosslinking points tends to be as short as when a low-molecular crosslinking agent is used. For example, in the polymer cross-linking agent 10, when all of the bonds P1 to P8 contribute to the crosslinking, the crosslinking with only the disjoint bonds as described above (for example, the crosslinking between the bond P1 and the bond P8) This is because the distance between the crosslinking points is shortened.
- the polymer crosslinking agent is preferably a copolymer of one or more vinyl compounds having a crosslinkable functional group and one or more vinyl compounds having no crosslinkable functional group.
- a polymer cross-linking agent by changing the compounding ratio of the vinyl compound having a cross-linkable functional group and the vinyl compound having no cross-linkable functional group, the type of each vinyl compound, or the polymerization conditions, the polymer cross-linker can be changed. The amount of the crosslinkable functional group contained can be easily adjusted.
- the repeating unit derived from the vinyl compound is addition-polymerized by a carbon double bond “C ⁇ C”.
- the vinyl compound is a compound having a vinyl group (CH 2 ⁇ CH—) or a group in which hydrogen in the vinyl group is substituted.
- the vinyl compound include ethylene, propylene, butadiene, vinyl chloride, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, acrylonitrile, or styrene.
- a polymer crosslinking agent for forming a low-density crosslinked structure (network structure) in toner particles containing an amorphous polyester resin a polymer crosslinked having an oxazoline group and / or a glycidyl group as a crosslinking functional group Agents are particularly preferred.
- a polymer crosslinking agent having an oxazoline group and an example of a polymer crosslinking agent having a glycidyl group will be described in order.
- a polymer crosslinking agent having an oxazoline group a polymer crosslinking agent containing a repeating unit represented by the following formula (1-1) is particularly preferable.
- the repeating unit represented by the formula (1-1) is referred to as “repeating unit (1-1)”.
- the repeating unit (1-1) is a repeating unit derived from a vinyl compound having an oxazoline group (crosslinkable functional group).
- an aqueous oxazoline group-containing polymer solution (“Epocross (registered trademark) WS series” manufactured by Nippon Shokubai Co., Ltd.) can be used.
- “Epocross WS-300” includes a copolymer of 2-vinyl-2-oxazoline and methyl methacrylate.
- “Epocross WS-700” includes a copolymer of 2-vinyl-2-oxazoline, methyl methacrylate and butyl acrylate.
- R 1 represents a hydrogen atom or an optionally substituted alkyl group (which may be linear, branched or cyclic).
- R 1 is particularly preferably a hydrogen atom or a methyl group.
- R 1 in formula (1-1) represents a hydrogen atom.
- the repeating unit (1-1) has an unopened oxazoline group. Unopened oxazoline groups are likely to react with carboxyl groups, aromatic sulfanyl groups, and aromatic hydroxyl groups. For example, when the repeating unit (1-1) reacts with a carboxyl group of a polyester resin (indicated by R 2 in the formula (1-2)), an oxazoline group is opened as shown in the following formula (1-2) Thus, a crosslinked structure is formed in the polyester resin.
- the toner particles contain a polyester resin containing an ester bond and a polymer containing a repeating unit (1-1). Then, the oxazoline group of at least a part of the repeating unit (1-1) contained in the polymer is ring-opened, so that in the embodiment represented by the formula (1-2), the polyester resin and the repeating unit (1
- the polymer containing -1) is preferably bonded.
- the binder resin of the toner particles includes a repeating unit (1-1) and a repeating unit (1-2).
- R 1 Represents the same group as R 1 in the formula (1-1)
- “R 2 —COO—” preferably represents the end of the acid component of the polyester resin in the toner particles.
- a polymer crosslinking agent having a glycidyl group a polymer crosslinking agent containing a repeating unit represented by the following formula (2-1) is particularly preferable.
- the repeating unit represented by the formula (2-1) is referred to as “repeating unit (2-1)”.
- the repeating unit (2-1) is a repeating unit derived from a vinyl compound having a glycidyl group (crosslinkable functional group).
- R 3 represents a hydrogen atom or an alkyl group which may have a substituent (which may be linear, branched or cyclic).
- R 3 is particularly preferably a hydrogen atom or a methyl group.
- R 4 represents an alkylene group which may have a substituent.
- R 4 is particularly preferably an alkylene group having 1 to 4 carbon atoms.
- R 3 represents a methyl group and R 4 represents a methylene group.
- the repeating unit (2-1) has a glycidyl group. Glycidyl groups easily react with carboxyl groups, amino groups, and aromatic hydroxyl groups. For example, when the repeating unit (2-1) reacts with a carboxyl group of a polyester resin (indicated by R 5 in the formula (2-2)), a glycidyl group is opened as shown in the following formula (2-2). Thus, a crosslinked structure is formed in the polyester resin.
- the toner particles contain a polyester resin containing an ester bond and a polymer containing a repeating unit (2-1). Then, the glycidyl group of at least a part of the repeating unit (2-1) contained in the polymer is ring-opened, so that in the embodiment represented by the formula (2-2), the polyester resin and the repeating unit (2 The polymer containing -1) is preferably bonded.
- the binder resin of the toner particles includes the repeating unit (2-1) and the repeating unit (2-2).
- R 3 And R 4 represent the same group as R 3 and R 4 in formula (2-1), and “R 5 —COO—” represents the end of the acid component of the polyester resin in the toner particles. Particularly preferred.
- the amount of the crosslinkable functional group of the polymer crosslinking agent is 1.0 mmol / g or more and 10 in the above-described basic configuration. It is preferably 0.0 mmol / g or less, and the mass average molecular weight (Mw) of the polymer crosslinking agent is preferably 10,000 or more and 150,000 or less.
- the toner In order to set the crosslinking density Nx and loss tangent tan ⁇ x to appropriate values using the polymer crosslinking agent, the toner has the following configuration (E) in addition to the above-described configurations (A) to (D). Furthermore, it is preferable to have.
- THF insoluble matter tetrahydrofuran insoluble matter
- the amount of THF-insoluble component indicates the amount of crosslinking sites (degree of crosslinking) in the resin.
- the amount of THF-insoluble matter in the toner specifically, the mass ratio in the toner
- the crosslinking density Nx of the toner tends to increase and the loss tangent tan ⁇ x of the toner tends to decrease.
- the amount of THF-insoluble matter in the toner increases, the hot offset resistance and heat-resistant storage stability of the toner tend to improve.
- the amount of THF-insoluble matter in the toner is too large, the fixability of the toner tends to deteriorate.
- the method for measuring the amount of THF-insoluble matter in the toner is the same method as in Examples described later, or an alternative method thereof.
- the toner particles in order to make the amount of the THF-insoluble component to an appropriate value (see configuration (E)), contain a plurality of types of amorphous polyester resins as binder resins.
- the plurality of toner particles are preferably a pulverized product of a kneaded product containing at least a plurality of types of amorphous polyester resins and a polymer crosslinking agent.
- the toner particles contain an amorphous polyester resin having a softening point of less than 100 ° C. and an amorphous polyester resin having a softening point of 120 ° C. or higher.
- Each of the plurality of types of amorphous polyester resins contained in the toner particles preferably includes one or more types of bisphenol as an alcohol component. More preferably, each of the plurality of types of amorphous polyester resins contained in the toner particles further contains an aromatic dicarboxylic acid (for example, terephthalic acid) as an acid component.
- the softening point (Tm) of the resin can be adjusted, for example, by changing the molecular weight of the resin.
- the molecular weight of the resin can be adjusted by changing the polymerization conditions of the resin (more specifically, the amount of polymerization initiator used, the polymerization temperature, or the polymerization time).
- the toner particles do not contain a crystalline polyester resin.
- the toner has the above-described basic configuration, it is possible to ensure sufficient sharp melt properties of the toner even if the toner particles do not contain a crystalline polyester resin.
- the toner median particle preferably has a volume median diameter (D 50 ) of 4 ⁇ m or more and 9 ⁇ m or less.
- the toner base particles and the external additive will be described in order. Depending on the use of the toner, unnecessary components may be omitted.
- the toner base particles in the non-capsule toner particles shown below may be used as the core.
- the binder resin occupies most of the components (for example, 85% by mass or more). For this reason, it is considered that the properties of the binder resin greatly affect the properties of the entire toner base particles.
- the properties of the binder resin (more specifically, the hydroxyl value, acid value, Tg, Tm, etc.) can be adjusted.
- the binder resin has an ester group, an ether group, an acid group, or a methyl group
- the toner base particles tend to be anionic
- the binder resin has an amino group or an amide group
- the toner base particles tend to be cationic.
- an amorphous polyester resin or an amorphous styrene-acrylic acid resin is preferable, and an amorphous polyester resin is particularly preferable.
- the polyester resin is composed of one or more polyhydric alcohols (more specifically, diol, bisphenol, trihydric or higher alcohol as shown below) and one or more polyhydric carboxylic acids (more specifically, Can be obtained by polycondensation with a divalent carboxylic acid or a trivalent or higher carboxylic acid as shown below.
- polyhydric alcohols more specifically, diol, bisphenol, trihydric or higher alcohol as shown below
- polyhydric carboxylic acids more specifically, Can be obtained by polycondensation with a divalent carboxylic acid or a trivalent or higher carboxylic acid as shown below.
- Suitable examples of the aliphatic diol include diethylene glycol, triethylene glycol, neopentyl glycol, 1,2-propanediol, ⁇ , ⁇ -alkanediol (more specifically, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,12-dodecanediol, etc. ), 2-butene-1,4-diol, 1,4-cyclohexanedimethanol, dipropylene glycol, polyethylene glycol, polypropylene glycol, or polytetramethylene glycol.
- suitable bisphenol include bisphenol A, hydrogenated bisphenol A, bisphenol A ethylene oxide adduct, or bisphenol A propylene oxide adduct.
- trihydric or higher alcohols include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butane. Triol, 1,2,5-pentanetriol, glycerol, diglycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, or 1,3,5- Trihydroxymethylbenzene is mentioned.
- divalent carboxylic acids include aromatic dicarboxylic acids (more specifically, phthalic acid, terephthalic acid, or isophthalic acid), ⁇ , ⁇ -alkanedicarboxylic acids (more specifically, malonic acid).
- Preferred examples of the trivalent or higher carboxylic acid include 1,2,4-benzenetricarboxylic acid (trimellitic acid), 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, 1,2,4-cyclohexanetricarboxylic acid, tetra (methylenecarboxyl)
- Examples include methane, 1,2,7,8-octanetetracarboxylic acid, pyromellitic acid, or empole trimer acid.
- amorphous polyester resin one or more bisphenols (more specifically, bisphenol A ethylene oxide adduct or bisphenol A propylene oxide adduct) and one or more aromatics are used.
- a polymer with a dicarboxylic acid for example, terephthalic acid.
- one or more bisphenols for example, two bisphenols: bisphenol A ethylene oxide adduct and bisphenol A propylene oxide adduct
- one or more aromatics are used as a first preferred example of the amorphous polyester resin.
- polymers of a group dicarboxylic acid eg, terephthalic acid
- one or more ⁇ , ⁇ -alkanedicarboxylic acids eg, adipic acid
- one or more bisphenols for example, two bisphenols: bisphenol A ethylene oxide adduct and bisphenol A propylene oxide adduct
- one or more aromatics are used as a third preferred example of the non-crystalline polyester resin.
- a polymer of an aromatic dicarboxylic acid eg, terephthalic acid
- one or more ⁇ , ⁇ -alkanedicarboxylic acid eg, adipic acid
- one or more trivalent or higher carboxylic acid eg, trimellitic acid
- an amorphous polyester resin having a high softening point (for example, an amorphous polyester resin having a softening point of 120 ° C. or higher) is easily obtained. Specifically, it is considered that the resin is crosslinked with a trivalent or higher carboxylic acid.
- the toner base particles may contain a crystalline polyester resin (for example, a crystalline polyester resin having a crystallinity index of 0.90 to 1.15).
- a crystalline polyester resin for example, a crystalline polyester resin having a crystallinity index of 0.90 to 1.15.
- Tm and Mp are greatly different.
- a clear Mp may not be measured for an amorphous resin.
- the styrene-acrylic acid resin is a copolymer of one or more styrene monomers and one or more acrylic monomers.
- styrene monomers and acrylic monomers as shown below can be used preferably.
- styrenic monomer examples include styrene, alkylstyrene (more specifically, ⁇ -methylstyrene, p-ethylstyrene, 4-tert-butylstyrene, etc.), p-hydroxystyrene, m-hydroxystyrene. , ⁇ -chlorostyrene, o-chlorostyrene, m-chlorostyrene, or p-chlorostyrene.
- alkylstyrene more specifically, ⁇ -methylstyrene, p-ethylstyrene, 4-tert-butylstyrene, etc.
- p-hydroxystyrene m-hydroxystyrene.
- ⁇ -chlorostyrene o-chlorostyrene
- m-chlorostyrene m-chlorostyrene
- p-chlorostyrene
- acrylic acid monomer examples include (meth) acrylic acid, (meth) acrylonitrile, (meth) acrylic acid alkyl ester, or (meth) acrylic acid hydroxyalkyl ester.
- alkyl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, (meth) acryl Examples include n-butyl acid, iso-butyl (meth) acrylate, or 2-ethylhexyl (meth) acrylate.
- Suitable examples of the (meth) acrylic acid hydroxyalkyl ester include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, or (meth) acrylic.
- the acid 4-hydroxybutyl is mentioned.
- the toner base particles may contain a colorant.
- a colorant a known pigment or dye can be used according to the color of the toner.
- the amount of the colorant is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin.
- the toner base particles may contain a black colorant.
- a black colorant is carbon black.
- the black colorant may be a colorant that is toned to black using a yellow colorant, a magenta colorant, and a cyan colorant.
- the toner base particles may contain a color colorant such as a yellow colorant, a magenta colorant, or a cyan colorant.
- the yellow colorant for example, one or more compounds selected from the group consisting of condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and arylamide compounds can be used.
- the yellow colorant include C.I. I. Pigment Yellow (3, 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 151, 154, 155 168, 174, 175, 176, 180, 181, 191, or 194), naphthol yellow S, Hansa yellow G, or C.I. I. Vat yellow can be preferably used.
- the magenta colorant is, for example, selected from the group consisting of condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds.
- One or more compounds can be used.
- Examples of the magenta colorant include C.I. I. Pigment Red (2, 3, 5, 6, 7, 19, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 144, 146, 150, 166, 169, 177 184, 185, 202, 206, 220, 221 or 254) can be preferably used.
- cyan colorant for example, one or more compounds selected from the group consisting of a copper phthalocyanine compound, an anthraquinone compound, and a basic dye lake compound can be used.
- cyan colorants include C.I. I. Pigment blue (1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, or 66), phthalocyanine blue, C.I. I. Bat Blue, or C.I. I. Acid blue can be preferably used.
- the toner base particles may contain a release agent.
- the release agent is used, for example, for the purpose of improving the fixing property or offset resistance of the toner.
- the amount of the release agent is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the binder resin.
- the release agent examples include low molecular weight polyethylene, low molecular weight polypropylene, polyolefin copolymer, polyolefin wax, microcrystalline wax, paraffin wax, or aliphatic hydrocarbon wax such as Fischer-Tropsch wax; oxidized polyethylene wax or a block thereof Oxides of aliphatic hydrocarbon waxes such as copolymers; plant waxes such as candelilla wax, carnauba wax, wood wax, jojoba wax, or rice wax; animal properties such as beeswax, lanolin, or whale wax Waxes; mineral waxes such as ozokerite, ceresin, or petrolatum; waxes based on fatty acid esters such as montanic ester waxes or castor waxes; such as deoxidized carnauba wax; Some or all of the fatty acid ester can be preferably used de oxidized wax.
- One type of release agent may be used alone, or multiple types of release agents may be used in combination.
- a compatibilizer may be added to the toner base particles.
- the toner base particles may contain a charge control agent.
- the charge control agent is used, for example, for the purpose of improving the charge stability or charge rising property of the toner.
- the charge rising characteristic of the toner is an index as to whether or not the toner can be charged to a predetermined charge level in a short time.
- the anionicity of the toner base particles can be enhanced.
- a positively chargeable charge control agent to the toner base particles, the cationic property of the toner base particles can be enhanced.
- the toner base particles may contain magnetic powder.
- magnetic powder materials include ferromagnetic metals (more specifically, iron, cobalt, nickel, or alloys containing one or more of these metals), ferromagnetic metal oxides (more specifically, Ferrite, magnetite, chromium dioxide, or the like) or a material subjected to ferromagnetization treatment (more specifically, a carbon material or the like imparted with ferromagnetism by heat treatment) can be suitably used.
- One type of magnetic powder may be used alone, or a plurality of types of magnetic powder may be used in combination.
- An external additive (specifically, a powder containing a plurality of external additive particles) may be adhered to the surface of the toner base particles. Unlike the internal additive, the external additive does not exist inside the toner base particles, but selectively exists only on the surface of the toner base particles (surface layer portion of the toner particles). For example, the toner base particles (powder) and the external additive (powder) are stirred together, so that the external additive adheres to the surface of the toner base particles. The toner base particles and the external additive particles do not chemically react with each other and are physically bonded instead of chemically.
- the strength of the bond between the toner base particles and the external additive particles depends on the stirring conditions (more specifically, the stirring time, the rotation speed of the stirring, etc.), the particle diameter of the external additive particles, and the shape of the external additive particles. And the surface condition of the external additive particles.
- the amount of the external additive (if multiple types of external additive particles are used, The total amount of external additive particles) is preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the toner base particles.
- the external additive particles are preferably inorganic particles such as silica particles or metal oxide particles (more specifically, alumina, titanium oxide, magnesium oxide, zinc oxide, strontium titanate, or barium titanate). Particularly preferred. However, particles of an organic acid compound such as a fatty acid metal salt (more specifically, zinc stearate) or resin particles may be used as the external additive particles. Moreover, you may use the composite particle which is a composite of a multiple types of material as external additive particle
- the external additive particles may be surface-treated. One type of external additive particles may be used alone, or a plurality of types of external additive particles may be used in combination.
- Toner Production Method In order to easily and suitably manufacture the toner having the above basic configuration, for example, a toner manufacturing method including the following melt-kneading step and pulverizing step is preferable. More preferably, the toner production method includes the following classification step and external addition step.
- melt-kneading process a toner material containing at least a binder resin and a polymer crosslinking agent (for example, a plurality of amorphous polyester resins, polymer crosslinking agents, colorants, and a release agent) is mixed and obtained.
- the obtained mixture is melt-kneaded to obtain a melt-kneaded product.
- a mixing device for example, FM mixer
- FM mixer FM mixer
- the amount of the crosslinkable functional group is 1.0 mmol / g or more and 10.0 mmol / g or less, and the mass average molecular weight (Mw) is 10,000 or more and 150,000 or less. It is preferable to use a polymer crosslinking agent.
- a masterbatch containing a binder resin and a colorant may be used as the toner material.
- the obtained melt-kneaded product is pulverized to obtain a pulverized product containing a plurality of particles.
- the molten and kneaded product is solidified by cooling using a cooling and solidifying device (more specifically, a drum flaker or the like).
- the obtained solidified product is roughly pulverized using the first pulverizer.
- the obtained coarsely pulverized product is further pulverized using a second pulverizer.
- an external additive is attached to the surface of the toner base particles.
- the toner base particles and the external additive are mixed under conditions that prevent the external additive from being embedded in the toner base particles, thereby allowing the external additive to adhere to the surface of the toner base particles. .
- a toner containing a large number of toner particles can be produced. Note that unnecessary steps may be omitted. For example, when a commercially available product can be used as a material as it is, the step of preparing the material can be omitted by using a commercially available product. Further, when the external additive is not attached to the surface of the toner base particle (that is, the external addition step is omitted), the toner base particle corresponds to the toner particle. In order to obtain a predetermined compound, a salt, ester, hydrate, or anhydride of the compound may be used as a raw material. In order to produce the toner efficiently, it is preferable to form a large number of toner particles simultaneously. The toner particles produced at the same time are considered to have substantially the same configuration.
- Table 1 shows toners TA-1 to TA-7 and TB-1 to TB-9 (each toner for developing an electrostatic latent image) according to Examples or Comparative Examples.
- Table 2 shows the crosslinking agents CL-1 to CL-9 used in the production of the toner shown in Table 1.
- toners TA-1 to TA-7 and TB-1 to TB-9 will be described in order.
- the evaluation in which an error occurs a considerable number of measurement values with sufficiently small errors are obtained, and the arithmetic average of the obtained measurement values is used as the evaluation value.
- the flask contents were heated to 235 ° C. while stirring the flask contents in a nitrogen atmosphere, and the resin raw material (bisphenol A ⁇ EO 2 mol addition was performed while stirring the flask contents under the conditions of nitrogen atmosphere and temperature 235 ° C.
- the contents of the flask were reacted (condensation polymerization reaction) until all of the product and terephthalic acid were dissolved.
- the pressure inside the flask was reduced, and the contents of the flask were reduced until the Tm of the reaction product (polyester resin) reached a predetermined temperature (90 ° C.) under a reduced pressure atmosphere (pressure 8.0 kPa) and a temperature of 235 ° C. Reacted.
- an amorphous polyester resin PES-A having a glass transition point (Tg) of 60 ° C. and a softening point (Tm) of 90 ° C. was obtained.
- the method for synthesizing the non-crystalline polyester resin PES-B is to replace 100 g of bisphenol A ⁇ EO 2 mol adduct and 90 g of terephthalic acid as a resin raw material, and 100 g of bisphenol A ⁇ EO (ethylene oxide) 2 mol adduct and bisphenol A.
- the synthesis method of the non-crystalline polyester resin PES-A was the same except that 100 g of PO (propylene oxide) 2 mol adduct, 60 g of terephthalic acid and 20 g of adipic acid were used.
- the glass transition point (Tg) was 40 ° C. and the softening point (Tm) was 90 ° C.
- crosslinking agent CL-1 As the crosslinking agent CL-1, an oxazoline group-containing polymer aqueous solution (“Epocross WS-700” manufactured by Nippon Shokubai Co., Ltd., solid content concentration: 25 mass%, Tg: 50 ° C.) was prepared.
- crosslinking agent CL-2 As the crosslinking agent CL-2, an oxazoline group-containing polymer aqueous solution (“Epocross WS-300” manufactured by Nippon Shokubai Co., Ltd., solid content concentration: 10 mass%, Tg: 90 ° C.) was prepared.
- the preparation method of the crosslinking agent CL-4 was the same as the preparation method of the crosslinking agent CL-3, except that the addition amount of the chain transfer agent (BTBTPB) was changed from 1.165 g to 0.565 g.
- the obtained crosslinker CL-4 (glycidyl group-containing polymer) was an acrylic resin having a glycidyl group amount of 1.3 mmol / g and a mass average molecular weight (Mw) of 140000.
- crosslinking agent CL-5 (isocyanate group-containing polymer) was obtained.
- the obtained crosslinking agent CL-5 was a urethane-modified polyester resin having an isocyanate group content of 1.3 mmol / g and a weight average molecular weight (Mw) of 2300.
- the preparation method of the crosslinking agent CL-6 is the same as the preparation method of the crosslinking agent CL-5, except that the addition amount of trimellitic anhydride is changed from 50 g to 57 g and the addition amount of isophorone diisocyanate is changed from 40 g to 30 g. Met.
- the obtained crosslinking agent CL-6 (isocyanate group-containing polymer) was a urethane-modified polyester resin having an isocyanate group amount of 0.5 mmol / g and a mass average molecular weight (Mw) of 6000.
- crosslinking agent CL-7 A low molecular crosslinking agent (trimellitic anhydride) was prepared as the crosslinking agent CL-7.
- crosslinker CL-8 A low molecular crosslinking agent (pyromellitic anhydride) was prepared as the crosslinking agent CL-8.
- cross-linking agent CL-9 A low molecular crosslinking agent (2,2′-bis (2-oxazoline)) was prepared as the crosslinking agent CL-9.
- the toner TA-1 60 parts by mass of the amorphous polyester resin PES-B, 20 parts by mass of the amorphous polyester resin PES-C, 1 part by mass of the crosslinking agent CL-1, Part by weight of a release agent (Nissan Electol WEP-8) and 9 parts by weight of a colorant (MA-100) were mixed.
- the toner TA-7 40 parts by mass of the amorphous polyester resin PES-A, 40 parts by mass of the amorphous polyester resin PES-C, 1 part by mass of the crosslinking agent CL-4, Part by weight of a release agent (Nissan Electol WEP-8) and 9 parts by weight of a colorant (MA-100) were mixed.
- the obtained mixture was melt-kneaded using a twin screw extruder (“PCM-30” manufactured by Ikegai Co., Ltd.) under the conditions of a material supply rate of 100 g / min, a shaft rotation speed of 150 rpm, and a cylinder temperature of 100 ° C. . Thereafter, the obtained kneaded material was cooled. Subsequently, the cooled kneaded material was coarsely pulverized using a pulverizer (“Rotoplex (registered trademark)” manufactured by Hosokawa Micron Corporation) under the condition of a set particle diameter of 2 mm.
- the obtained coarsely pulverized product was finely pulverized using a pulverizer (“Turbo Mill RS type” manufactured by Freund Turbo Co., Ltd.).
- the obtained finely pulverized product was classified using a classifier (classifier using the Coanda effect: “Elbow Jet EJ-LABO type” manufactured by Nittetsu Mining Co., Ltd.).
- toner mother particles having a volume median diameter (D 50 ) of 6.7 ⁇ m were obtained.
- toner base particles were externally added. Specifically, 100 parts by mass of toner base particles, positively-charged silica particles (“AEROSIL (registered trademark) REA90” manufactured by Nippon Aerosil Co., Ltd.), content: dry-type silica particles imparted with positive charge by surface treatment, number average 1 Next particle size: 20 nm) 1 part by mass is mixed for 5 minutes using a 10 L capacity FM mixer (Nihon Coke Kogyo Co., Ltd.) to attach the external additive (silica particles) to the surface of the toner base particles. I let you. Subsequently, the obtained powder was sieved using a sieve of 200 mesh (aperture 75 ⁇ m). As a result, toners containing a large number of toner particles (toners TA-1 to TA-7 and TB-1 to TB-9 shown in Table 1) were obtained.
- AEROSIL registered trademark
- REA90 Registered trademark
- content dry-type silica particles imparted with positive charge by surface
- the amount of THF-insoluble matter in the toner (specifically, the mass ratio in the toner) and the storage elastic modulus G ′ 80 (the storage elastic modulus of the toner at 80 ° C.), the storage elastic modulus G ′ 120 (the storage elastic modulus of the toner at 120 ° C.), and the temperature T 10000 (specifically, the storage elastic modulus of the toner is 1.0 ⁇ 10 and temperature) to be 4 Pa, a loss tangent Tanderutax (particularly, the temperature T 10000 + 70 ° C. of the loss tangent) of the toner, each of the measurement results of the crosslinking density Nx were as shown in Table 3.
- the amount of THF-insoluble matter in the toner is 0.19% by mass
- the storage elastic modulus G ′ 80 is 1.8 ⁇ 10 3 Pa
- the storage elastic modulus G ′ 120 is 1.2 ⁇ 10 3 Pa
- temperature T 10000 is 72 ° C.
- loss tangent tan ⁇ x (toner loss tangent at 142 ° C.) is 0.12
- crosslinking density Nx is 6.9 ⁇ 10 ⁇ 7. mol / cm 3 .
- ⁇ Measuring method of storage elastic modulus G ′ 80 , G ′ 120 , loss tangent tan ⁇ x, and crosslinking density Nx> A sample (toner) (0.1 g) was set in a pellet molding machine, and a pressure of 4 MPa was applied to the toner to obtain a cylindrical pellet having a diameter of 10 mm and a thickness of 1.5 mm. Subsequently, the obtained pellets were set in a measuring device. As a measuring device, a rheometer (“Physica MCR-301” manufactured by Anton Paar) was used. A measuring jig (parallel plate) was attached to the tip of the shaft of the measuring device (specifically, a shaft driven by a motor).
- the pellets were placed on a plate of a measuring apparatus (specifically, a heat table heated by a heater).
- the pellets on the plate were heated to 110 ° C. to melt the pellets (toner lump) once.
- a measurement jig parallel plate
- the toner was then cooled to 40 ° C. Thereafter, the dynamic viscoelasticity of the sample (toner) was measured using a measuring apparatus under the conditions of a measurement temperature range of 40 ° C.
- the storage elastic modulus G ′ 80 (the storage elastic modulus of the toner at 80 ° C.) and the storage elastic modulus G ′ 120 (the storage elastic modulus of the toner at 120 ° C.)
- temperature T 10000 temperature at which the storage elastic modulus of the toner becomes 1.0 ⁇ 10 4 Pa
- loss tangent tan ⁇ x toner temperature T 10000 + loss tangent at 70 ° C.
- crosslinking density Nx were measured.
- the crosslinking density Nx was calculated based on the following formula (1).
- the gas constant was 8.31 ⁇ 10 7 dyne ⁇ cm / mol ⁇ K.
- Nx 10 ⁇ Gx / R ⁇ (T 10000 +343) (1)
- Gx represents the storage elastic modulus [Pa] of the toner temperature T 10000 + 70 ° C.
- R represents the gas constant
- T 10000 represents the toner storage elastic modulus of 1.0 ⁇ 10 4. It represents the temperature [° C.] at which Pa is reached. ]
- the loss tangent tan ⁇ x was calculated based on the following equation (2).
- tan ⁇ x Gy / Gx (2)
- Gx represents the temperature T 10000 + 70 ° C. storage modulus of the toner [Pa]
- Gy represents the temperature T 10000 + 70 ° C. loss modulus of the toner [Pa]
- T 10000 is Represents a temperature [° C.] at which the storage elastic modulus of the toner becomes 1.0 ⁇ 10 4 Pa. ]
- evaluation methods The evaluation method for each sample (toners TA-1 to TA-7 and TB-1 to TB-9) is as follows.
- the obtained toner for evaluation was placed on a sieve having a known mass of 100 mesh (aperture 150 ⁇ m). Then, the mass of the sieve containing the evaluation toner was measured, and the mass of the toner on the sieve (the mass of the toner before sieving) was determined. Subsequently, the above sieve is set in a powder characteristic evaluation apparatus (“Powder Tester (registered trademark)” manufactured by Hosokawa Micron Corporation), and according to the manual of the powder tester, the sieve is vibrated for 30 seconds under the conditions of the rheostat scale 5 for evaluation. The toner was sieved.
- Powder Tester registered trademark
- An image was formed using the two-component developer prepared as described above, and the minimum fixing temperature and the maximum fixing temperature were evaluated.
- As an evaluation machine a printer having a Roller-Roller type heat and pressure type fixing device (an evaluation machine in which the fixing temperature can be changed by modifying “FS-C5250DN” manufactured by Kyocera Document Solutions Co., Ltd.) was used.
- the two-component developer prepared as described above was charged into the developing device of the evaluation machine, and the sample (replenishment toner) was charged into the toner container of the evaluation machine.
- the measuring range of the fixing temperature was 100 ° C. or higher and 150 ° C. or lower.
- the fixing temperature of the fixing device was increased by 2 ° C. from 100 ° C., and the lowest temperature (minimum fixing temperature) at which the solid image (toner image) can be fixed on the paper was measured. Whether or not the toner could be fixed was confirmed by a rubbing test as shown below. Specifically, the evaluation paper passed through the fixing device was bent so that the surface on which the image was formed was on the inside, and the image on the fold was rubbed 5 times with a 1 kg weight coated with a cloth. Subsequently, the paper was spread and the bent portion of the paper (the portion where the solid image was formed) was observed.
- the length (peeling length) of toner peeling at the bent portion was measured.
- the lowest temperature among the fixing temperatures at which the peeling length was 1 mm or less was defined as the lowest fixing temperature.
- the minimum fixing temperature was less than 110 ° C., it was evaluated as “good”, and when the minimum fixing temperature was 110 ° C. or higher, it was evaluated as “poor” (not good).
- the measuring range of the fixing temperature was 150 ° C. or higher and 200 ° C. or lower.
- the fixing temperature of the fixing device was increased by 2 ° C. from 150 ° C., and the maximum temperature at which no offset occurred (maximum fixing temperature) was measured. With respect to the paper passed through the fixing device, it was confirmed by visual observation whether or not an offset occurred (toner adhered to the fixing roller).
- the maximum fixing temperature was 170 ° C. or higher, it was evaluated as “good”, and when the maximum fixing temperature was lower than 170 ° C., it was evaluated as “poor” (not good).
- Table 4 shows the evaluation results of toners TA-1 to TA-7 and TB-1 to TB-9.
- Table 4 shows measured values of low-temperature fixability (minimum fixing temperature), hot offset resistance (maximum fixing temperature), and heat-resistant storage stability (aggregation rate).
- each of toners TA-1 to TA-7 had the above-described basic configuration.
- the toner particles had a crosslinked structure derived from a polymer crosslinking agent (crosslinking agents CL-1 to CL-4).
- the storage elastic modulus G ′ 80 (the storage elastic modulus of the toner at 80 ° C.) was 1.0 ⁇ 10 3 Pa or more and 5.0 ⁇ 10 4 Pa or less (see Table 3).
- the storage elastic modulus G ′ 120 (the storage elastic modulus at a toner temperature of 120 ° C.) was 1.0 ⁇ 10 3 Pa to 1.0 ⁇ 10 4 Pa (see Table 3).
- the crosslinking density Nx was 2.9 ⁇ 10 ⁇ 7 mol / cm 3 or more and 2.5 ⁇ 10 ⁇ 6 mol / cm 3 or less (see Table 3).
- the loss tangent tan ⁇ x was 0.05 or more and 0.50 or less (see Table 3).
- the storage elastic modulus G ′ 150 (the storage elastic modulus of the toner at 150 ° C.) is obtained for each of the toners TA-1 to TA-7. It was 1.0 ⁇ 10 2 Pa or more and 1.0 ⁇ 10 4 Pa or less.
- each of toners TA-1 to TA-7 (toners according to Examples 1 to 7) has viscoelasticity suitable for both low temperature fixing and high temperature fixing, and low temperature fixing. Excellent in heat resistance, hot offset resistance, and heat storage stability.
- the electrostatic latent image developing toner according to the present invention can be used for forming an image in, for example, a copying machine, a printer, or a multifunction machine.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
Nx=10×Gx/R×(T10000+343) …(1)
[式(1)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Rは気体定数を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。]
tanδx=Gy/Gx …(2)
[式(2)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Gyは、トナーの温度T10000+70℃の損失弾性率[Pa]を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。]
静電潜像現像用トナーが、結着樹脂を含有するトナー粒子を、複数含む。トナー粒子は、高分子架橋剤に由来する架橋構造を有する。トナーの温度80℃の貯蔵弾性率(以下、貯蔵弾性率G’80と記載する)は1.0×103Pa以上5.0×104Pa以下である。トナーの温度120℃の貯蔵弾性率(以下、貯蔵弾性率G’120と記載する)は1.0×103Pa以上1.0×104Pa以下である。下記式(1)で表される架橋密度Nxは、2.9×10-7mol/cm3以上2.5×10-6mol/cm3以下である。下記式(2)で表される損失正接tanδxは、0.05以上0.50以下である。貯蔵弾性率、架橋密度Nx、及び損失正接tanδxの各々の測定方法は、後述する実施例と同じ方法又はその代替方法である。
Nx=10×Gx/R×(T10000+343) …(1)
[式(1)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Rは気体定数を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。]
tanδx=Gy/Gx …(2)
[式(2)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Gyは、トナーの温度T10000+70℃の損失弾性率[Pa]を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。]
(C)トナーの架橋密度Nxが2.9×10-7mol/cm3以上2.5×10-6mol/cm3以下である。
(D)トナーの損失正接tanδxが0.05以上0.50以下である。
(結着樹脂)
トナー母粒子では、一般に、成分の大部分(例えば、85質量%以上)を結着樹脂が占める。このため、結着樹脂の性質がトナー母粒子全体の性質に大きな影響を与えると考えられる。結着樹脂として複数種の樹脂を組み合わせて使用することで、結着樹脂の性質(より具体的には、水酸基価、酸価、Tg、又はTm等)を調整することができる。結着樹脂がエステル基、エーテル基、酸基、又はメチル基を有する場合には、トナー母粒子はアニオン性になる傾向が強くなり、結着樹脂がアミノ基又はアミド基を有する場合には、トナー母粒子はカチオン性になる傾向が強くなる。
トナー母粒子は、着色剤を含有してもよい。着色剤としては、トナーの色に合わせて公知の顔料又は染料を用いることができる。画像形成に適したトナーを得るためには、着色剤の量が、結着樹脂100質量部に対して、1質量部以上20質量部以下であることが好ましい。
トナー母粒子は、離型剤を含有してもよい。離型剤は、例えば、トナーの定着性又は耐オフセット性を向上させる目的で使用される。トナーの定着性又は耐オフセット性を向上させるためには、離型剤の量は、結着樹脂100質量部に対して、1質量部以上30質量部以下であることが好ましい。
トナー母粒子は、電荷制御剤を含有してもよい。電荷制御剤は、例えば、トナーの帯電安定性又は帯電立ち上がり特性を向上させる目的で使用される。トナーの帯電立ち上がり特性は、短時間で所定の帯電レベルにトナーを帯電可能か否かの指標になる。
トナー母粒子は、磁性粉を含有してもよい。磁性粉の材料としては、例えば、強磁性金属(より具体的には、鉄、コバルト、ニッケル、又はこれら金属の1種以上を含む合金等)、強磁性金属酸化物(より具体的には、フェライト、マグネタイト、又は二酸化クロム等)、又は強磁性化処理が施された材料(より具体的には、熱処理により強磁性が付与された炭素材料等)を好適に使用できる。1種類の磁性粉を単独で使用してもよいし、複数種の磁性粉を併用してもよい。
トナー母粒子の表面に外添剤(詳しくは、複数の外添剤粒子を含む粉体)を付着させてもよい。外添剤は、内添剤とは異なり、トナー母粒子の内部には存在せず、トナー母粒子の表面(トナー粒子の表層部)のみに選択的に存在する。例えば、トナー母粒子(粉体)と外添剤(粉体)とを一緒に攪拌することで、トナー母粒子の表面に外添剤が付着する。トナー母粒子と外添剤粒子とは、互いに化学反応せず、化学的ではなく物理的に結合する。トナー母粒子と外添剤粒子との結合の強さは、攪拌条件(より具体的には、攪拌時間、及び攪拌の回転速度等)、外添剤粒子の粒子径、外添剤粒子の形状、及び外添剤粒子の表面状態などによって調整できる。
前述の基本構成を有するトナーを容易かつ好適に製造するためには、例えば、次に示す溶融混練工程と粉砕工程とを含むトナーの製造方法が好ましい。また、トナーの製造方法が、次に示す分級工程と外添工程とを含むことがより好ましい。
以下、溶融混練工程の一例について説明する。溶融混練工程では、少なくとも結着樹脂と高分子架橋剤とを含むトナー材料(例えば、複数種の非結晶性ポリエステル樹脂、高分子架橋剤、着色剤、及び離型剤)を混合し、得られた混合物を溶融混練して、溶融混練物を得る。トナー材料の混合には、混合装置(例えば、FMミキサー)を好適に使用できる。混合物の溶融混練には、二軸押出機、三本ロール混練機、又は二本ロール混練機を好適に使用できる。前述の基本構成を有するトナーを得るためには、架橋性官能基の量が1.0mmol/g以上10.0mmol/g以下であり、かつ、質量平均分子量(Mw)が10000以上150000以下である高分子架橋剤を使用することが好ましい。なお、トナー材料として、結着樹脂及び着色剤を含むマスターバッチを用いてもよい。
続けて、得られた溶融混練物を粉砕して、複数の粒子を含む粉砕物を得る。例えば、冷却固化装置(より具体的には、ドラムフレーカー等)を用いて溶融混練物を冷却することにより固化する。続けて、第1の粉砕装置を用いて、得られた固化物を粗粉砕する。その後、得られた粗粉砕物を、第2の粉砕装置を用いてさらに粉砕する。
続けて、得られた粉砕物を、分級機(例えば、風力分級機)を用いて分級する。これにより、所望の粒子径を有するトナー母粒子が得られる。
外添工程では、トナー母粒子の表面に外添剤を付着させる。混合機を用いて、トナー母粒子に外添剤が埋め込まれないような条件でトナー母粒子と外添剤とを混合することで、トナー母粒子の表面に外添剤を付着させることができる。
(非結晶性ポリエステル樹脂PES-Aの合成)
温度計、ガラス製の窒素導入管、攪拌装置(ステンレススチール製の攪拌羽根)、及び流下式コンデンサー(熱交換器)を備えた容量10Lの4つ口フラスコ内に、ビスフェノールA・EO(エチレンオキサイド)2モル付加物200gと、テレフタル酸90gと、2-エチルヘキサン酸錫(II)54gとを入れた。続けて、窒素導入管を通じてフラスコ内に窒素ガスを導入し、フラスコ内を窒素雰囲気(不活性雰囲気)にした。続けて、窒素雰囲気で、フラスコ内容物を攪拌しながら温度235℃まで昇温させて、窒素雰囲気かつ温度235℃の条件で、フラスコ内容物を攪拌しながら、樹脂原料(ビスフェノールA・EO2モル付加物、及びテレフタル酸)が全て溶解するまでフラスコ内容物を反応(縮重合反応)させた。続けて、フラスコ内を減圧し、減圧雰囲気(圧力8.0kPa)かつ温度235℃の条件で、反応生成物(ポリエステル樹脂)のTmが所定の温度(90℃)になるまで、フラスコ内容物を反応させた。その結果、ガラス転移点(Tg)60℃、軟化点(Tm)90℃の非結晶性ポリエステル樹脂PES-Aが得られた。
非結晶性ポリエステル樹脂PES-Bの合成方法は、樹脂原料として、ビスフェノールA・EO2モル付加物200gとテレフタル酸90gとに代えて、ビスフェノールA・EO(エチレンオキサイド)2モル付加物100gとビスフェノールA・PO(プロピレンオキサイド)2モル付加物100gとテレフタル酸60gとアジピン酸20gとを使用した以外は、非結晶性ポリエステル樹脂PES-Aの合成方法と同じであった。得られた非結晶性ポリエステル樹脂PES-Bに関しては、ガラス転移点(Tg)が40℃、軟化点(Tm)が90℃であった。
温度計、ガラス製の窒素導入管、攪拌装置(ステンレススチール製の攪拌羽根)、及び流下式コンデンサー(熱交換器)を備えた容量10Lの4つ口フラスコ内に、ビスフェノールA・EO(エチレンオキサイド)2モル付加物100gと、ビスフェノールA・PO(プロピレンオキサイド)2モル付加物100gと、テレフタル酸60gと、アジピン酸20gと、2-エチルヘキサン酸錫(II)54gとを入れた。続けて、窒素導入管を通じてフラスコ内に窒素ガスを導入し、フラスコ内を窒素雰囲気(不活性雰囲気)にした。続けて、窒素雰囲気で、フラスコ内容物を攪拌しながら温度235℃まで昇温させて、窒素雰囲気かつ温度235℃の条件で、フラスコ内容物を攪拌しながら、樹脂原料(ビスフェノールA・EO2モル付加物、及びテレフタル酸)が全て溶解するまでフラスコ内容物を反応(縮重合反応)させた。続けて、フラスコ内を減圧し、減圧雰囲気(圧力8.0kPa)かつ温度235℃の条件で、フラスコ内容物をさらに1.5時間(90分間)反応(詳しくは、重合反応)させた。
架橋剤CL-1として、オキサゾリン基含有高分子水溶液(株式会社日本触媒製「エポクロスWS-700」、固形分濃度:25質量%、Tg:50℃)を準備した。
架橋剤CL-2として、オキサゾリン基含有高分子水溶液(株式会社日本触媒製「エポクロスWS-300」、固形分濃度:10質量%、Tg:90℃)を準備した。
還流冷却器、窒素導入管、攪拌装置、及び温度計を備えた容量0.3Lのセパラブルフラスコを温度30℃のウォーターバスにセットした。続けて、そのフラスコ内に、メタクリル酸グリシジル10gと、メタクリル酸メチル20gと、連鎖移動剤(BTBTPB:(1,4-ビス(2-チオベンジルチオ)プロプ-2-イル)ベンゼン)1.165gと、開始剤(2,2’-アゾビス(イソブチロニトリル))0.82gと、溶剤(メチルエチルケトン)40mLと、トルエン20mLとを入れた。続けて、窒素ガスでフラスコ内容物を15分間バブリングした後、ウォーターバスを用いてフラスコ内の温度を72℃に上げた。続けて、フラスコ内容物を6時間反応させた後、フラスコ内容物(反応生成物)をメタノールに投入して、グリシジル基含有高分子を沈殿させた。そして、沈殿物(グリシジル基含有高分子)を回収して、架橋剤CL-3を得た。得られた架橋剤CL-3(グリシジル基含有高分子)は、グリシジル基の量9.2mmol/g、質量平均分子量(Mw)17000のアクリル酸系樹脂であった。
架橋剤CL-4の調製方法は、連鎖移動剤(BTBTPB)の添加量を1.165gから0.565gに変更した以外は、架橋剤CL-3の調製方法と同じであった。得られた架橋剤CL-4(グリシジル基含有高分子)は、グリシジル基の量1.3mmol/g、質量平均分子量(Mw)140000のアクリル酸系樹脂であった。
温度計、ガラス製の窒素導入管、攪拌装置(ステンレススチール製の攪拌羽根)、及び流下式コンデンサー(熱交換器)を備えた容量10Lの4つ口フラスコ内に、ビスフェノールA・EO(エチレンオキサイド)2モル付加物200gと、無水トリメリット酸50gと、2-エチルヘキサン酸錫(II)54gとを入れた。続けて、窒素導入管を通じてフラスコ内に窒素ガスを導入し、フラスコ内を窒素雰囲気(不活性雰囲気)にした。続けて、窒素雰囲気で、フラスコ内容物を攪拌しながら温度235℃まで昇温させて、窒素雰囲気かつ温度235℃の条件で、フラスコ内容物を攪拌しながら、樹脂原料(ビスフェノールA・EO2モル付加物、及び無水トリメリット酸)が全て溶解するまでフラスコ内容物を反応(縮重合反応)させた。続けて、フラスコ内を減圧し、減圧雰囲気(圧力8.0kPa)かつ温度235℃の条件でフラスコ内容物を反応させて、ポリエステル樹脂を得た。その後、フラスコ内容物を冷却した。
架橋剤CL-6の調製方法は、無水トリメリット酸の添加量を50gから57gに変更し、イソホロンジイソシアネートの添加量を40gから30gに変更した以外は、架橋剤CL-5の調製方法と同じであった。得られた架橋剤CL-6(イソシアネート基含有高分子)は、イソシアネート基の量0.5mmol/g、質量平均分子量(Mw)6000のウレタン変性ポリエステル樹脂であった。
架橋剤CL-7として、低分子架橋剤(無水トリメリット酸)を準備した。
架橋剤CL-8として、低分子架橋剤(無水ピロメリット酸)を準備した。
架橋剤CL-9として、低分子架橋剤(2,2’-ビス(2-オキサゾリン))を準備した。
(トナー母粒子の作製)
FMミキサー(日本コークス工業株式会社製「FM-20B」)を用いて、表1中の「結着樹脂(PES)」に示される種類及び量の結着樹脂(各トナーに定められた、非結晶性ポリエステル樹脂PES-A~PES-Cのいずれか)と、表1中の「架橋剤」に示される種類及び量の架橋剤(各トナーに定められた、架橋剤CL-1~CL-9のいずれか)と、離型剤(エステルワックス:日油株式会社製「ニッサンエレクトール(登録商標)WEP-8」)9質量部と、着色剤(カーボンブラック:三菱化学株式会社製「MA-100」)9質量部とを混合した。
続けて、得られたトナー母粒子を外添処理した。詳しくは、トナー母粒子100質量部と、正帯電性シリカ粒子(日本アエロジル株式会社製「AEROSIL(登録商標)REA90」、内容:表面処理により正帯電性が付与された乾式シリカ粒子、個数平均1次粒子径:20nm)1質量部とを、容量10LのFMミキサー(日本コークス工業株式会社製)を用いて5分間混合することにより、トナー母粒子の表面に外添剤(シリカ粒子)を付着させた。続けて、得られた粉体を、200メッシュ(目開き75μm)の篩を用いて篩別した。その結果、多数のトナー粒子を含むトナー(表1に示されるトナーTA-1~TA-7及びTB-1~TB-9)が得られた。
サンプル瓶に、THF(テトラヒドロフラン)100mLと、試料(トナー)1gとを入れて、温度25℃かつ湿度50%RHの環境下で12時間静置した。サンプル瓶内の液を、ブフナー漏斗を用いて減圧ろ過(固液分離)した。続けて、得られたろ液中の溶剤(THF、酢酸エチル、及びクロロホルム)を蒸発させて、固形分(THF溶解分)を得た。続けて、固形分の質量(THF溶解分の質量)を測定した。そして、式「トナー中のTHF不溶分の量=100×(1g-THF溶解分の質量)/1g」に基づいて、トナー中のTHF不溶分の量(単位:質量%)を求めた。
試料(トナー)0.1gをペレット成形機にセットし、トナーに圧力4MPaを加えて、直径10mm、厚さ1.5mmの円柱状のペレットを得た。続けて、得られたペレットを測定装置にセットした。測定装置としては、レオメーター(アントンパール社製「PhysicaMCR-301」)を用いた。測定装置のシャフト(詳しくは、モーターで駆動されるシャフト)の先端には、測定治具(パラレルプレート)を取り付けた。ペレットは、測定装置のプレート(詳しくは、ヒーターで加熱されるヒート台)上に載せた。プレート上のペレットを110℃まで加熱して、ペレット(トナーの塊)を一度溶融させた。トナー全体が溶融したところで、溶融したトナーに上から測定治具(パラレルプレート)を密着させて、平行な2枚のプレート(上:測定治具、下:ヒート台)の間にトナーを挟んだ。そして、トナーを40℃まで冷却した。その後、測定装置を用いて、測定温度範囲40℃~200℃、昇温速度2℃/分、振動周波数1Hzの条件で、試料(トナー)の動的粘弾性を測定した。詳しくは、試料(トナー)の動的粘弾性として、貯蔵弾性率G’80(トナーの温度80℃の貯蔵弾性率)と、貯蔵弾性率G’120(トナーの温度120℃の貯蔵弾性率)と、温度T10000(トナーの貯蔵弾性率が1.0×104Paになる温度)と、損失正接tanδx(トナーの温度T10000+70℃の損失正接)と、架橋密度Nxとを測定した。
Nx=10×Gx/R×(T10000+343) …(1)
[式(1)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Rは気体定数を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。]
tanδx=Gy/Gx …(2)
[式(2)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Gyは、トナーの温度T10000+70℃の損失弾性率[Pa]を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。]
各試料(トナーTA-1~TA-7及びTB-1~TB-9)の評価方法は、以下のとおりである。
試料(トナー)2gを容量20mLのポリエチレン製容器に入れて、その容器を、58℃に設定された恒温器内に3時間静置した。その後、恒温器から取り出したトナーを20℃で3時間冷却して、評価用トナーを得た。
凝集率=100×(篩別後のトナーの質量)/(篩別前のトナーの質量)
現像剤用キャリア(FS-C5250DN用キャリア)100質量部と、試料(トナー)5質量部とを、ボールミルを用いて30分間混合して、2成分現像剤を調製した。
トナーTA-1~TA-7及びTB-1~TB-9の各々の評価結果を、表4に示す。表4は、低温定着性(最低定着温度)、耐ホットオフセット性(最高定着温度)、及び耐熱保存性(凝集率)の各々の測定値を示している。
Claims (10)
- 結着樹脂を含有するトナー粒子を、複数含む静電潜像現像用トナーであって、
前記トナー粒子が、高分子架橋剤に由来する架橋構造を有し、
温度80℃の貯蔵弾性率は1.0×103Pa以上5.0×104Pa以下であり、
温度120℃の貯蔵弾性率は1.0×103Pa以上1.0×104Pa以下であり、
式(1)で表される架橋密度Nxは、2.9×10-7mol/cm3以上2.5×10-6mol/cm3以下であり、
式(2)で表される損失正接tanδxは、0.05以上0.50以下である、静電潜像現像用トナー。
Nx=10×Gx/R×(T10000+343) …(1)
[式(1)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Rは気体定数を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。]
tanδx=Gy/Gx …(2)
[式(2)中、Gxは、トナーの温度T10000+70℃の貯蔵弾性率[Pa]を表し、Gyは、トナーの温度T10000+70℃の損失弾性率[Pa]を表し、T10000は、トナーの貯蔵弾性率が1.0×104Paになる温度[℃]を表す。] - 前記高分子架橋剤は、架橋性官能基を有する1種以上のビニル化合物と、架橋性官能基を有しない1種以上のビニル化合物との共重合体である、請求項1に記載の静電潜像現像用トナー。
- 前記トナー粒子は、ポリエステル樹脂と、下記式(2-1)で表される繰返し単位を含む重合物とを含有し、
前記重合物に含まれる少なくとも一部の、前記式(2-1)で表される前記繰返し単位のグリシジル基が開環することにより、下記式(2-2)で表される態様で前記ポリエステル樹脂と前記重合物とが結合している、請求項2に記載の静電潜像現像用トナー。
- 前記トナー粒子は、前記結着樹脂として非結晶性ポリエステル樹脂を含有し、前記高分子架橋剤は、架橋性官能基としてオキサゾリン基及び/又はグリシジル基を有する、請求項1に記載の静電潜像現像用トナー。
- 前記トナー粒子は、結晶性ポリエステル樹脂を含有しない、請求項5に記載の静電潜像現像用トナー。
- 前記高分子架橋剤の架橋性官能基の量は、1.0mmol/g以上10.0mmol/g以下であり、
前記高分子架橋剤の質量平均分子量は、10000以上150000以下であり、
テトラヒドロフラン不溶分の割合は0.01質量%以上0.50質量%以下である、請求項5に記載の静電潜像現像用トナー。 - 前記トナー粒子は、前記結着樹脂として、複数種の非結晶性ポリエステル樹脂を含有し、
前記複数のトナー粒子は、少なくとも前記複数種の非結晶性ポリエステル樹脂と前記高分子架橋剤とを含む混練物の粉砕物である、請求項6に記載の静電潜像現像用トナー。 - 前記複数種の非結晶性ポリエステル樹脂は、軟化点100℃未満の非結晶性ポリエステル樹脂と、軟化点120℃以上の非結晶性ポリエステル樹脂とを含み、
前記複数種の非結晶性ポリエステル樹脂はそれぞれ、アルコール成分として1種以上のビスフェノールを含み、
前記トナーの温度150℃の貯蔵弾性率は1.0×102Pa以上である、請求項8に記載の静電潜像現像用トナー。 - 少なくとも結着樹脂と高分子架橋剤とを含むトナー材料を溶融混練して、溶融混練物を得る溶融混練工程と、
前記溶融混練物を粉砕して、複数の粒子を含む粉砕物を得る粉砕工程と、
を含み、
前記高分子架橋剤の架橋性官能基の量は、1.0mmol/g以上10.0mmol/g以下であり、
前記高分子架橋剤の質量平均分子量は、10000以上150000以下である、静電潜像現像用トナーの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780003502.1A CN108139703B (zh) | 2016-07-27 | 2017-07-10 | 静电潜像显影用调色剂及其制造方法 |
US15/767,301 US10289015B2 (en) | 2016-07-27 | 2017-07-10 | Electrostatic latent image developing toner and method for producing the same |
JP2018529483A JP6519712B2 (ja) | 2016-07-27 | 2017-07-10 | 静電潜像現像用トナー及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-147350 | 2016-07-27 | ||
JP2016147350 | 2016-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018020998A1 true WO2018020998A1 (ja) | 2018-02-01 |
Family
ID=61016776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025140 WO2018020998A1 (ja) | 2016-07-27 | 2017-07-10 | 静電潜像現像用トナー及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10289015B2 (ja) |
JP (1) | JP6519712B2 (ja) |
CN (1) | CN108139703B (ja) |
WO (1) | WO2018020998A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019215481A (ja) * | 2018-06-14 | 2019-12-19 | 京セラドキュメントソリューションズ株式会社 | トナー |
JP7484417B2 (ja) | 2020-05-25 | 2024-05-16 | 京セラドキュメントソリューションズ株式会社 | 磁性トナー |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024058677A (ja) * | 2022-09-16 | 2024-04-26 | ヒューレット-パッカード デベロップメント カンパニー エル.ピー. | Gpcピーク面積比を示すトナー粒子 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11282198A (ja) * | 1997-12-25 | 1999-10-15 | Canon Inc | トナ―及び画像形成方法 |
JP2000292969A (ja) * | 1999-04-02 | 2000-10-20 | Canon Inc | 乾式トナー |
WO2009020155A1 (ja) * | 2007-08-08 | 2009-02-12 | Kao Corporation | 電子写真用トナーの製造方法 |
JP2010032564A (ja) * | 2008-07-24 | 2010-02-12 | Sharp Corp | トナーの製造方法およびトナー、現像剤、現像装置ならびに画像形成装置 |
JP2011047978A (ja) * | 2009-08-25 | 2011-03-10 | Ricoh Co Ltd | トナー、現像剤、及び画像形成方法 |
JP2012066990A (ja) * | 2010-08-25 | 2012-04-05 | Fuji Xerox Co Ltd | スズ−亜鉛複合酸化物粉体、スズ−亜鉛複合酸化物粉体の製造方法、電子写真用キャリアおよび電子写真用現像剤 |
JP2013092729A (ja) * | 2011-10-27 | 2013-05-16 | Sharp Corp | トナーおよびその製造方法 |
JP2015127767A (ja) * | 2013-12-27 | 2015-07-09 | 花王株式会社 | 静電荷像現像用トナーの製造方法 |
JP2016061886A (ja) * | 2014-09-17 | 2016-04-25 | 花王株式会社 | 静電荷像現像用トナーの製造方法 |
JP2016224432A (ja) * | 2015-05-28 | 2016-12-28 | 三洋化成工業株式会社 | トナーバインダーおよびトナー |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3067761B1 (ja) * | 1999-03-04 | 2000-07-24 | 富士ゼロックス株式会社 | 静電荷像現像用トナ―及びその製造方法、静電荷像現像用現像剤並びに画像形成方法 |
US8227164B2 (en) * | 2009-06-08 | 2012-07-24 | Ricoh Company, Limited | Toner, and developer, developer container, process cartridge, image forming apparatus and image forming method using the toner |
JP5460670B2 (ja) | 2011-10-14 | 2014-04-02 | 京セラドキュメントソリューションズ株式会社 | 静電荷像現像用トナー |
KR101732324B1 (ko) * | 2013-09-06 | 2017-05-02 | 가부시키가이샤 리코 | 토너 |
-
2017
- 2017-07-10 US US15/767,301 patent/US10289015B2/en not_active Expired - Fee Related
- 2017-07-10 JP JP2018529483A patent/JP6519712B2/ja not_active Expired - Fee Related
- 2017-07-10 WO PCT/JP2017/025140 patent/WO2018020998A1/ja active Application Filing
- 2017-07-10 CN CN201780003502.1A patent/CN108139703B/zh not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11282198A (ja) * | 1997-12-25 | 1999-10-15 | Canon Inc | トナ―及び画像形成方法 |
JP2000292969A (ja) * | 1999-04-02 | 2000-10-20 | Canon Inc | 乾式トナー |
WO2009020155A1 (ja) * | 2007-08-08 | 2009-02-12 | Kao Corporation | 電子写真用トナーの製造方法 |
JP2010032564A (ja) * | 2008-07-24 | 2010-02-12 | Sharp Corp | トナーの製造方法およびトナー、現像剤、現像装置ならびに画像形成装置 |
JP2011047978A (ja) * | 2009-08-25 | 2011-03-10 | Ricoh Co Ltd | トナー、現像剤、及び画像形成方法 |
JP2012066990A (ja) * | 2010-08-25 | 2012-04-05 | Fuji Xerox Co Ltd | スズ−亜鉛複合酸化物粉体、スズ−亜鉛複合酸化物粉体の製造方法、電子写真用キャリアおよび電子写真用現像剤 |
JP2013092729A (ja) * | 2011-10-27 | 2013-05-16 | Sharp Corp | トナーおよびその製造方法 |
JP2015127767A (ja) * | 2013-12-27 | 2015-07-09 | 花王株式会社 | 静電荷像現像用トナーの製造方法 |
JP2016061886A (ja) * | 2014-09-17 | 2016-04-25 | 花王株式会社 | 静電荷像現像用トナーの製造方法 |
JP2016224432A (ja) * | 2015-05-28 | 2016-12-28 | 三洋化成工業株式会社 | トナーバインダーおよびトナー |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019215481A (ja) * | 2018-06-14 | 2019-12-19 | 京セラドキュメントソリューションズ株式会社 | トナー |
JP7135479B2 (ja) | 2018-06-14 | 2022-09-13 | 京セラドキュメントソリューションズ株式会社 | トナー |
JP7484417B2 (ja) | 2020-05-25 | 2024-05-16 | 京セラドキュメントソリューションズ株式会社 | 磁性トナー |
Also Published As
Publication number | Publication date |
---|---|
CN108139703B (zh) | 2021-06-29 |
CN108139703A (zh) | 2018-06-08 |
JP6519712B2 (ja) | 2019-05-29 |
US20180307151A1 (en) | 2018-10-25 |
JPWO2018020998A1 (ja) | 2018-10-04 |
US10289015B2 (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107121903B (zh) | 静电潜像显影用调色剂 | |
JP2017151412A (ja) | 静電潜像現像用トナー | |
US10054867B2 (en) | Toner | |
JP2017151194A (ja) | 静電潜像現像用トナー | |
JP6489287B2 (ja) | 静電潜像現像用トナー | |
JP6519712B2 (ja) | 静電潜像現像用トナー及びその製造方法 | |
JP6432710B2 (ja) | 静電潜像現像用トナー | |
JP2019040024A (ja) | トナー及びその製造方法 | |
JP6879100B2 (ja) | トナー | |
US10018933B2 (en) | Electrostatic latent image developing toner | |
WO2017179357A1 (ja) | 静電潜像現像用トナー及びその製造方法 | |
JP6551370B2 (ja) | 静電潜像現像用トナー | |
JP6855997B2 (ja) | トナー及びその製造方法 | |
JP6635058B2 (ja) | 静電潜像現像用トナー | |
JP2019008234A (ja) | トナー | |
JP2018097052A (ja) | 静電潜像現像用トナー及びその製造方法 | |
JP6520869B2 (ja) | 静電潜像現像用トナー | |
JP6686969B2 (ja) | 静電潜像現像用トナー | |
JP6569561B2 (ja) | 静電潜像現像用トナー | |
JP2019215481A (ja) | トナー | |
US10466608B2 (en) | Toner | |
JP2019061207A (ja) | トナー | |
JP6750580B2 (ja) | トナー | |
JP6468232B2 (ja) | 静電潜像現像用トナー | |
JP2020016689A (ja) | トナー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018529483 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15767301 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17834006 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17834006 Country of ref document: EP Kind code of ref document: A1 |