WO2018018377A1 - 一种调度方法、功率控制方法及基站 - Google Patents

一种调度方法、功率控制方法及基站 Download PDF

Info

Publication number
WO2018018377A1
WO2018018377A1 PCT/CN2016/091604 CN2016091604W WO2018018377A1 WO 2018018377 A1 WO2018018377 A1 WO 2018018377A1 CN 2016091604 W CN2016091604 W CN 2016091604W WO 2018018377 A1 WO2018018377 A1 WO 2018018377A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
power control
tpc command
command word
tti
Prior art date
Application number
PCT/CN2016/091604
Other languages
English (en)
French (fr)
Inventor
唐志华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/091604 priority Critical patent/WO2018018377A1/zh
Priority to EP16909958.7A priority patent/EP3484228B1/en
Priority to CN201680087314.7A priority patent/CN109417814B/zh
Priority to JP2019503681A priority patent/JP6729850B2/ja
Publication of WO2018018377A1 publication Critical patent/WO2018018377A1/zh
Priority to US16/257,097 priority patent/US10785730B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/60Signalisation aspects of the TPC commands, e.g. frame structure using different transmission rates for TPC commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a scheduling method, a power control method, and a base station.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Inter Cell Interference Coordination is based on the principle that a Cell Center User (CCU) is allowed to freely use all frequency resources and to a cell edge user.
  • CCU Cell Center User
  • CEU Cell Edge User only allows a part of the frequency resource to be used according to the frequency reuse rule.
  • the frequency resource of the system can be divided into three segments as shown in FIG.
  • the CCU of the neighboring cell and the CEU of the local cell may be scheduled in the same frequency band, and the CCU of the neighboring cell may interfere with the CEU of the local cell compared to the CEU of the neighboring cell. It is larger, so the existing method of suppressing inter-cell interference may not achieve the purpose of suppressing inter-cell interference, but may make the performance of system edge users worse.
  • the embodiments of the present invention provide a scheduling method, a power control method, and a base station, so as to at least solve the problem that the prior art may fail to suppress inter-cell interference, and the performance of the system edge user may be worse. Small-area interference improves the performance of system edge users and the average performance of the system.
  • a scheduling method including: a first base station first acquiring a first resource block RB set and a second RB set, where the first RB set is configured by the first base station as a first user equipment UE of the first cell
  • the RB set, the second RB set is a RB set allocated by the second base station to the second UE of the second cell, and then the first base station determines that the first RB set and the second RB set have a common RB, and then adjusts the first RB.
  • the set is used to reduce the interference of the first cell to the second cell.
  • the first base station schedules the first UE according to the adjusted first RB set.
  • the first base station adjusts the first RB set to reduce interference of the first cell to the second cell, where the first base station determines whether the first RB meets a preset condition, if the Deleting the first RB from the first RB set, and determining the next RB of the first RB as the new first RB until the first first RB that does not meet the preset condition is found; and, Determining, by the first base station, whether the second RB meets the preset condition, if yes, deleting the second RB from the first RB set, and determining the previous RB of the second RB as the new second RB until the non-conformity is found The first second RB of the preset condition is stopped.
  • the first RB is the first RB in the first RB set
  • the second RB is the last RB in the first RB set.
  • the preset condition is that the first system utility is greater than the second system utility, and the first system utility is The system utility when the first UE is scheduled on the first RB/second RB is cancelled, and the second system utility is to reserve the system utility when the first UE is scheduled on the first RB/second RB.
  • the interference plus noise ratio, n and j are positive integers.
  • the method further includes: determining, by the first base station, that the third system utility is greater than the first system After the utility, the first RB/second RB is allocated to the third UE in the current transmission time interval TTI that has scheduling requirements but is not scheduled, wherein the third system utility is to increase the third UE in the first RB/second System utility at the time of scheduling on the RB.
  • a base station including: an obtaining unit, an adjusting unit, and a scheduling unit, where the acquiring unit is configured to acquire a first resource block RB set and a second RB set, where the first RB set is a base station as a first cell
  • the RB set allocated by the first user equipment UE, the second RB set is the RB set allocated by the second base station to the second UE of the second cell;
  • the adjusting unit is configured to determine that the first RB set and the second RB set are common
  • the first RB set is adjusted to reduce the interference of the first cell to the second cell
  • the scheduling unit is configured to schedule the first UE according to the adjusted first RB set.
  • the adjusting unit is specifically configured to: determine whether the first RB meets a preset condition, and if yes, delete the first RB from the first RB set, and The latter RB is judged as a new first RB until it stops after finding the first first RB that does not meet the preset condition; and determines whether the second RB meets the preset condition, and if yes, the second RB is from the first Deleting an RB set, and determining the previous RB of the second RB as a new second RB until the first second RB that does not meet the preset condition is found, and stopping; wherein the first RB is the first RB The first RB in the set, the second RB is the last RB in the first RB set, the preset condition is that the first system utility is greater than the second system utility, and the first system utility is canceling the first UE.
  • System utility at the time of scheduling on the first RB/second RB, the second system utility is the system utility when the scheduling of the
  • the adjusting unit is further configured to: if the first RB/second RB is deleted from the first RB set, determining that the third system utility is greater than the first system utility, An RB/second RB is allocated to a third UE in the current transmission time interval TTI that has a scheduling requirement but is not scheduled; wherein the third system utility is to increase the scheduling of the third UE on the first RB/second RB System utility.
  • a base station including: a processor, a memory, a bus, and a communication interface, the memory is configured to store a computer to execute instructions, the processor and the memory are connected through a bus, and when the base station is running, the processor executes the computer execution of the memory storage An instruction to cause the base station to perform the scheduling method of any one of the first aspect to the third possible implementation of the first aspect.
  • the base station obtains the first RB set allocated by the first UE of the first cell, and the second RB set allocated by the second base station to the second UE of the second cell, After determining that the first RB set and the second RB set have a common RB, the first RB set is adjusted, because the base station can learn the first UE and the second UE of the first cell according to the first RB set and the second RB set.
  • the inter-cell interference is caused by the sharing of the resources between the second UEs of the cell, and the first RB set is adjusted accordingly to schedule the first UE of the first cell and the second UE of the second cell as much as possible. At different frequencies Bring on, thereby effectively suppressing inter-cell interference, improving the performance of the system edge users and the average performance of the system.
  • the fourth aspect provides a power control method, including: after the power control period arrives, the first base station acquires a first resource block RB set and a second RB set, where the first RB set is the first base station in a power control period.
  • Each transmission time interval TTI is an RB set allocated by the first user equipment UE of the first cell
  • the second RB set is an RB set allocated by the second base station to the second UE of the second cell in the power control period.
  • the first base station performs power control on the first UE according to the first RB set and the second RB set.
  • the first base station performs power control on the first UE according to the first RB set and the second RB set, including: the first base station according to the first RB set and the second RB set Determining a first system utility corresponding to each TTI in the power control period, the first system utility is assuming that the transmit power control command word TPC of each TTI of the first UE in the power control period is -1, 0, 1, respectively And a system utility of 3 o'clock; the first base station determines an optimal TPC command word for each TTI of the first UE in the power control period according to the first system utility corresponding to each TTI in the power control period, where the first UE is The optimal TPC command word of each TTI in the power control period is a TPC command word corresponding to the largest system utility in the first system utility corresponding to the TTI; the first base station is configured according to each of the first UEs in the power control period The optimal TPC command word of the TTI determines an optimal TPC command
  • the first base station determines, according to the optimal TPC command word of each TTI of the first UE in the power control period, the optimal TPC command of the first UE in the power control period. And the first base station performs statistics on the optimal TPC command word of each TTI in the power control period of the first UE, determines the TPC command word with the highest frequency, and determines the TPC command word with the highest frequency as the first The optimal TPC command word of the UE during the power cycle.
  • the first base station determines, according to the optimal TPC command word of each TTI of the first UE in the power control period, the optimal TPC command of the first UE in the power control period.
  • the word includes: the first base station for each of the first UEs in the power control period
  • the optimal TPC command words of the TTIs are summed to obtain a summation value, and the optimal TPC command word closest to the summation value in the optimal TPC command word of each TTI of the first UE in the power control period is determined.
  • the optimal TPC command word for the first UE during the power control period is determined.
  • the first base station calculates the system utility by using a preset calculation formula, where the preset calculation formula is: among them, U represents system utility, x j represents the transmission rate of the jth UE in the system, B represents the number of RBs occupied by the jth UE, S represents the transmission power of the jth UE, and I represents the interference strength of the jth UE. , N represents the noise intensity.
  • the fifth aspect provides a base station, including: an acquiring unit and a control unit, where the acquiring unit is configured to acquire a first resource block RB set and a second RB set after the power control period arrives, where the first RB set is a base station power
  • Each transmission time interval TTI in the control period is an RB set allocated by the first user equipment UE of the first cell, and the second RB set is a second UE in which the second base station is the second cell in the power control period.
  • the control unit is configured to perform power control on the first UE according to the first RB set and the second RB set.
  • the control unit is specifically configured to: determine, according to the first RB set and the second RB set, a first system utility corresponding to each TTI in the power control period, the first system utility System utility for assuming that the transmit power control command word TPC of each TTI of the first UE in the power control period takes -1, 0, 1, and 3 respectively; the first system corresponding to each TTI in the power control period
  • the maximum system utility corresponds to the TPC command word; determining the optimal TPC command word of the first UE in the power control period according to the optimal TPC command word of each TTI in the power control period of the first UE;
  • the UE sends an optimal TPC command word to enable the first UE to adjust the transmit power according to the optimal TPC command word.
  • control unit is specifically configured to: The UE performs statistics on the optimal TPC command word of each TTI in the power control period, determines the TPC command word with the highest frequency, and determines the TPC command word with the highest frequency as the optimal TPC command of the first UE in the power cycle. word.
  • control unit is specifically configured to: sum the optimal TPC command words of each TTI in the power control period of the first UE, and obtain a summation value, which is to be first
  • the optimal TPC command word whose UE is closest to the summation value in the optimal TPC command word of each TTI in the power control period is determined as the optimal TPC command word of the first UE in the power control period.
  • control unit is specifically configured to: calculate a system utility by using a preset calculation formula, where the preset calculation formula is: U represents a system utilization, x j represents the system of the j th UE, a transmission rate, B denotes the number of the j-th UE occupied RB is, S j-th UE transmit power, I represents the j-th interference intensity by a UE , N represents the noise intensity.
  • a base station including: a processor, a memory, a bus, and a communication interface, the memory is configured to store a computer to execute an instruction, the processor is connected to the memory through a bus, and when the base station is running, the processor executes the computer execution of the memory storage.
  • the power control method and the base station provided by the foregoing embodiment of the present invention, after the power control period arrives, acquire the first RB set and the second allocated by the base station in the first control unit of the first cell in the power control period. And transmitting, by the base station, the second RB set allocated by the second UE of the second cell in the power control period, and performing power control on the first UE according to the first RB set and the second RB set, so that the UE may be transmitted.
  • the power is adjusted such that its interference to adjacent cells is reduced. Therefore, the power control method provided by the embodiment of the present invention can reduce inter-cell interference to a certain extent, improve system edge user performance and system average performance.
  • FIG. 1 is a schematic diagram of a frequency resource allocation scheme in the prior art
  • FIG. 2 is a schematic diagram 1 of an application scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram 2 of an application scenario according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram 3 of an application scenario according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 4 of an application scenario according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart 1 of a scheduling method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of resource allocation after basic scheduling
  • FIG. 8 is a second schematic flowchart of a scheduling method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart 1 of a power control method according to an embodiment of the present disclosure.
  • 10 is a schematic diagram of values of an optimal TPC command word of each TTI in a current power control period of the first UE;
  • FIG. 11 is a second schematic flowchart of a power control method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 1 of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 2 of a base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 3 of a base station according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram 4 of a base station according to an embodiment of the present invention.
  • a User Equipment is a terminal device, which may be a mobile terminal device or a non-mobile terminal device.
  • the device is mainly used to receive or send business data.
  • User equipment can be distributed in the network.
  • User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees.
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN) (the access portion of the wireless communication network), such as exchanging voice and/or data with the wireless access network.
  • RAN Radio Access Network
  • a base station is a device deployed in a radio access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and a device that provides a base station function in a 3G network includes a Node B (NodeB) and a wireless device.
  • a network controller (RNC) which provides a base station function in a 4G network, includes an evolved Node B (eNB).
  • the base station 10 represents the first base station
  • the base station 20 represents the second base station
  • the cell A represents the first cell
  • the cell B represents the first cell.
  • the second cell UE1 represents the first UE
  • UE2 represents the second UE.
  • the first base station to which the first cell where the first UE belongs and the second base station to which the second cell where the second UE belongs are two different base stations, and the second The number of the base stations is 1; in the application scenario shown in FIG.
  • the first base station to which the first cell where the first UE belongs and the second base station to which the second cell where the second UE belongs are the same base station;
  • the first base station 10 acquires scheduling information of the first UE and the second UE, and adjusts scheduling information of the first UE based on the acquired scheduling information, so as to avoid as much as possible.
  • the time-frequency resource conflict used by the user of the neighboring cell, or the transmission power of the first UE is controlled based on the acquired scheduling information, so as to reduce interference between neighboring cell users as much as possible, thereby suppressing inter-cell interference.
  • For the specific scheduling process refer to the scheduling method described in FIG. 6 of the embodiment of the present invention.
  • the power control process refer to the power control method described in FIG. 9 of the embodiment of the present invention.
  • the embodiment of the present invention further provides a fourth possible application scenario diagram, as shown in FIG. 5.
  • the centralized controller 30 can be configured as a separate network element or in a network element on the core network side.
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • the embodiment of the present invention does not specifically limit this.
  • the centralized controller 30 performs scheduling or power control on the first UE instead of the first base station 10.
  • the specific method may refer to the methods described in FIG. 8 and FIG. 11 of the embodiments of the present invention, respectively.
  • an embodiment of the present invention provides a scheduling method, as shown in Figure 6, including:
  • the first base station acquires a first resource block (RB) set and a second RB set.
  • RB resource block
  • the first RB set is an RB set allocated by the first base station to the first UE of the first cell
  • the second RB set is an RB set allocated by the second base station to the second UE of the second cell.
  • the scheduling method refers to a process in which the base station determines whether to allocate radio resources and allocate radio resources to the UE that initiates the scheduling request according to the uplink scheduling request sent by the UE, combined with the buffer status report of the UE and the uplink channel status.
  • the first base station and the second base station are two different base stations, that is, when the application scenario is the application scenario shown in FIG. 2 and FIG. 4, the first base station may perform the first base station with the first base station through the X2 interface. Communication to obtain a second set of RBs.
  • the first base station and the second base station are the same base station, that is, when the application scenario is the application scenario shown in FIG. 3, the first base station may directly acquire the second RB set.
  • the first eNB After determining that the first RB set and the second RB set have a common RB, the first eNB adjusts the first RB set to reduce interference of the first cell to the second cell.
  • the process of the first base station adjusting the first RB set to reduce the interference of the first cell to the second cell may specifically include:
  • the first RB is the first RB in the first RB set
  • the second RB is the last RB in the first RB set.
  • the preset condition is that the first system utility is greater than the second system utility, and the first system utility is The system utility when the first UE is scheduled on the first RB/second RB is cancelled, and the second system utility is to reserve the system utility when the first UE is scheduled on the first RB/second RB.
  • the system utility may increase or decrease.
  • the first system utility may be greater than the second system utility, or may be smaller than the second system. utility.
  • x j log 2 (1+SINR UEj )
  • x j represents the system shared by the n-th UE resource blocks RB i in the j-th transmission rate of the second UE, SINR UEj signal indicating an uplink transmission channel to the j-th second UE and the first base station
  • the interference plus noise ratio, n and j are positive integers.
  • An optional implementation manner is: using the measurement information of the second cell, converting the interference strength received by the second UE when the first UE is cancelled, and calculating, by using the formula (2) shown below, when the first UE is cancelled.
  • SINR UEj is: using the measurement information of the second cell, converting the interference strength received by the second UE when the first UE is cancelled, and calculating, by using the formula (2) shown below, when the first UE is cancelled.
  • S represents the transmit power of the wanted signal
  • I represents the interference strength
  • N represents the noise strength
  • Another alternative implementation manner is: using a reference signal received power (RSRP) measured by the second base station to obtain a corresponding correction coefficient, and using the correction coefficient to correct the SINR UEj measured by the first base station, that is, The SINR UEj when the first UE is cancelled is obtained .
  • RSRP reference signal received power
  • the first base station allocates to the first cell.
  • the first RB set of one UE (UE1) is RB3-RB10
  • the second RB set of the second UE (UE2) allocated by the second base station to the second cell is RB8-RB13
  • the first base station adjusts the first RB set.
  • the process is: the first base station determines whether the RB3 meets the preset condition, that is, determines whether the system utility of the UE1 is cancelled after the scheduling of the RB3 is cancelled; if yes, the RB3 is deleted from the first RB set, and continues to be judged upward.
  • RB4 meets the preset condition
  • RB4 if RB4 meets the preset condition, RB4 is also deleted from the first RB set; otherwise, the next RB is continuously determined until it stops after finding the first RB that does not meet the preset condition;
  • the first base station determines whether the RB 13 meets the preset condition, that is, determines whether the system utility is assumed to be canceled after canceling the scheduling of the UE1 on the RB13; if yes, the RB13 is deleted from the first RB set, and the RB12 continues to be determined downward.
  • the RB12 meets the preset condition
  • the RB12 if the RB12 meets the preset condition, the RB12 is also deleted from the first RB set. Otherwise, the next RB is continuously determined until the first RB that does not meet the preset condition is found, and then stops.
  • the first base station schedules the first UE according to the adjusted first RB set.
  • the first base station acquires a first RB set allocated by the first base station for the first UE of the first cell, and a second RB set allocated by the second base station to the second UE of the second cell, and determines the first After the RB set and the second RB set have a common RB, the first RB set is adjusted, and the first base station can learn the first UE and the second cell of the first cell according to the first RB set and the second RB set.
  • the inter-cell interference is caused by the sharing of the resources between the two UEs, and the first RB set is adjusted accordingly, so as to try to schedule the first UE of the first cell and the second UE of the second cell to be different. In the frequency band, the inter-cell interference is effectively suppressed, and the performance of the system edge users and the average performance of the system are improved.
  • the method may further include:
  • the first RB/second RB is allocated to the third UE in the current Transmission Time Interval (TTI) that has scheduling requirements but is not scheduled.
  • TTI Transmission Time Interval
  • the third system utility is to increase the adjustment of the third UE on the first RB/second RB. System utility at the time.
  • the part of the RBs may be allocated to the UEs that have scheduling requirements but are not scheduled. That is, once resources are available, new users are scheduled on the remaining resources to make full use of resources and improve system performance.
  • the embodiment of the present invention further provides a scheduling method, as shown in FIG.
  • the centralized controller acquires the first RB set and the second RB set.
  • the first RB set is an RB set allocated by the first base station to the first user equipment UE of the first cell
  • the second RB set is an RB set allocated by the second base station to the second UE of the second cell.
  • the centralized controller may be configured as a separate network element, or may be configured in a network device on the core network side, such as an MME or an SGW.
  • a dedicated interface may be configured for the centralized controller and the base station for the centralized controller to acquire the RB set allocated by the base station for the UE; when the centralized controller is configured in the network device on the core network side
  • the RB set allocated by the base station to the UE is obtained by using a corresponding communication interface between the network device and the base station.
  • the base station is obtained as a UE by using the S1-MME interface between the MME and the base station.
  • the assigned RB set is provided.
  • the method for adjusting the first RB set by the centralized controller is the same as the method for adjusting the first RB set by the first base station in the foregoing embodiment.
  • the method for adjusting the first RB set by the centralized controller is the same as the method for adjusting the first RB set by the first base station in the foregoing embodiment.
  • the centralized controller sends the adjusted first RB set to the first base station, so that the first base station schedules the first UE according to the adjusted first RB set.
  • the base station may according to characteristics of the uplink, such as path loss characteristics, Shadow characteristics and fast fading characteristics, etc., to adjust the UE's transmit power, which is power control.
  • characteristics of the uplink such as path loss characteristics, Shadow characteristics and fast fading characteristics, etc.
  • each cell does not consider the situation of the neighboring cell, and only adjusts the transmit power of the own UE according to its own situation, so the transmit power of the own UE may be adjusted to be higher, and thus the phase is opposite.
  • the UE in the neighboring cell causes serious interference.
  • the embodiment of the present invention further provides a power control method to reduce inter-cell interference to a certain extent, improve system edge user performance and system average performance, and the following will be combined with the drawings in the embodiments of the present invention.
  • the power control method provided by the embodiment of the present invention is described.
  • an embodiment of the present invention provides a power control method, as shown in Figure 9, including:
  • the first base station acquires the first RB set and the second RB set after the power control period arrives.
  • the first RB set is a RB set allocated by the first base station in the power control period for each TTI of the first cell
  • the second RB set is that each TTI of the second base station in the power control period is The set of RBs allocated by the second UE of the second cell.
  • the first base station performs power control on the first UE according to the first RB set and the second RB set.
  • step S902 may specifically include steps S902a1-S902a4:
  • the first base station determines, according to the first RB set and the second RB set, a first system utility corresponding to each TTI in the power control period.
  • the first system utility is a system utility that assumes that the Transmit Power Control (TPC) of each TTI of the first UE in the power control period takes -1, 0, 1, and 3, respectively.
  • TPC Transmit Power Control
  • system utility can be calculated by formula (3) and formula (4) as shown below:
  • U represents system utility
  • x j represents the average rate of the jth UE in the system
  • B represents the number of RBs occupied by the jth UE
  • S represents the transmission power of the jth UE
  • I represents that the jth UE is subjected to
  • the interference intensity N represents the noise intensity.
  • the specificity of the UE's transmit power S can be calculated according to the relevant formula in the 3rd Generation Partnership Project (3GPP) technical standard 36.213.
  • 3GPP 3rd Generation Partnership Project
  • the UE's transmit power can be specifically calculated by the following formula (5):
  • S PUSCH (i) represents the transmit power of the UE in subframe i
  • P CMAX represents the maximum transmit power of the UE
  • M PUSCH (i) represents the number of RBs of the PUSCH allocated by the UE in subframe i or the RB of the PUSCH Bandwidth
  • P O_PUSCH represents the expected PUSCH power
  • represents the road weight compensation weight
  • PL represents the UE calculated downlink path loss
  • f (i) represents the dynamic power control accumulated amount
  • f (i) f (i-1 + ⁇ PUSCH (i)
  • ⁇ PUSCH (i) represents the value of the power control command word
  • f(i) represents the dynamic power control accumulated amount
  • ⁇ PUSCH (i) takes -1, 0, 1, or 3.
  • the first base station determines an optimal TPC command word for each TTI of the first UE in the power control period according to the first system utility corresponding to each TTI in the power control period.
  • the optimal TPC command word of each TTI in the power control period of the first UE is the TPC command word corresponding to the largest system utility in the first system utility corresponding to the TTI.
  • the first base station determines an optimal TPC command word of the first UE in the power control period according to the optimal TPC command word of each TTI of the first UE in the power control period.
  • the TPC command word with the highest frequency is determined by counting the optimal TPC command word of each TTI in the power control period of the first UE, and the TPC command word with the highest frequency is determined as the first UE in the power cycle.
  • the optimal TPC command word within.
  • the optimal TPC command word of each TTI of the first UE in the current power control period is as shown in FIG. 10, that is, 10 TTIs in TTI0, TTI11, TTI2, and the like.
  • the optimal TPC command words are 1, 1, 3, 1, -1, -1, -1, 0, -1, -1, and then statistics can be used to determine the occurrence of the TPC command word with a value of -1. The frequency is the highest, so it is determined that the optimal TPC command word of the first UE in the current power control period is -1.
  • the optimal TPC command word in the word that is closest to the summation value is determined as the optimal TPC command word for the first UE during the power control period.
  • the UE according to FIG. 9 is optimal in 10 TTIs.
  • the value of the TPC command word indicates that the summation value of the optimal TPC command word of the UE in each TTI is 1, and if the optional value of the TPC command word is -1, 0, 1, or 3, then the summation value is 1 is closest to 1, thus determining that the UE has an optimal TPC command word of 1 during the current power control period.
  • the first base station sends an optimal TPC command word to the first UE, so that the first UE adjusts the transmit power according to the optimal TPC command word.
  • the power control method provided by the embodiment of the present invention belongs to the uplink power control, and the specific content of the power control may include: controlling the transmit power of the physical uplink shared channel (PUSCH) of the UE and the sending by the UE.
  • the transmit power of the SRS is not specifically limited in this embodiment of the present invention.
  • the first base station acquires the first RB set allocated by the first UE of the first cell in the power control period, and the second base station in the power control period.
  • Each of the TTIs is a second RB set allocated by the second UE of the second cell, and further performs power control on the first UE according to the first RB set and the second RB set, so that the transmit power of the UE can be adjusted, so that Its interference to neighboring cells is reduced. Therefore, the power control method provided by the embodiment of the present invention can reduce inter-cell interference to a certain extent, improve system edge user performance and system average performance.
  • the embodiment of the present invention further provides a power control method, as shown in FIG.
  • the centralized controller acquires the first RB set and the second RB set after the power control period arrives.
  • the first RB set is a RB set allocated by the first base station in the power control period for each TTI of the first cell
  • the second RB set is that each TTI of the second base station in the power control period is The set of RBs allocated by the second UE of the second cell.
  • the centralized controller performs power control on the first UE according to the first RB set and the second RB set.
  • the centralized controller determines the TPC command word corresponding to the first UE, the TPC command word is sent to the first UE by using the first base station.
  • the embodiment of the present invention further provides a base station.
  • the base station 120 includes: an obtaining unit 1201, an adjusting unit 1202, and a scheduling unit 1203.
  • the obtaining unit 1201 is configured to acquire the first RB set and the second RB set.
  • the adjusting unit 1202 is configured to: after determining that the first RB set and the second RB set have a common RB, adjust the first RB set to reduce the interference of the first cell to the second cell.
  • the scheduling unit 1203 is configured to schedule the first UE according to the adjusted first RB set.
  • the first RB set is an RB set allocated by the base station 120 for the first UE of the first cell
  • the second RB set is the RB set allocated by the second base station 120 for the second UE of the second cell.
  • the adjusting unit 1202 may be specifically configured to:
  • the first RB is the first RB in the first RB set
  • the second RB is the last RB in the first RB set.
  • the preset condition is that the first system utility is greater than the second system utility
  • a system utility is a system utility when the scheduling of the first UE on the first RB/second RB is cancelled
  • the second system utility is a system utility when the scheduling of the first UE on the first RB/second RB is reserved.
  • the adjusting unit 1202 may be specifically configured to: calculate a system utility by using a preset calculation formula.
  • the adjusting unit 1202 is further configured to:
  • first RB/second RB is deleted from the first RB set, and after determining that the third system utility is greater than the first system utility, assigning the first RB/second RB to the current TTI with scheduling requirements but not scheduling Third UE.
  • the third system utility is a system utility when the scheduling of the third UE on the first RB/second RB is increased.
  • the method for performing scheduling by the base station provided by the embodiment of the present invention may be referred to the foregoing method embodiment, and details are not described herein again.
  • the base station provided by the embodiment of the present invention, which acquires the first RB set allocated by the base station for the first UE of the first cell and the second RB set allocated by the second base station to the second UE of the second cell, and determines After the RB set and the second RB set have a common RB, the first RB set is adjusted, because the base station can learn the first UE of the first cell and the second cell of the second cell according to the first RB set and the second RB set.
  • the inter-cell interference is caused by the specific resources between the UEs, and the first RB set is adjusted accordingly to schedule the first UE of the first cell and the second UE of the second cell to be in different frequency bands. Therefore, the inter-cell interference is effectively suppressed, and the performance of the system edge users and the average performance of the system are improved.
  • the embodiment of the present invention further provides a base station, as shown in FIG. 13, comprising: an obtaining unit 1301 and a control unit 1302.
  • the obtaining unit 1301 is configured to acquire the first RB set and the second RB set after the power control period arrives.
  • the control unit 1302 is configured to perform power control on the first UE according to the first RB set and the second RB set.
  • the first RB set is the RB set allocated by the base station 130 for each TTI in the power control period for the first UE of the first cell
  • the second RB set is the second base station 130 for each TTI in the power control period.
  • control unit 1302 may be specifically configured to:
  • the optimal TPC command word is the TPC command word corresponding to the largest system utility in the first system utility corresponding to the TTI;
  • the first system utility is a system utility when the transmit power control command word TPC of each TTI in the power control period is assumed to be -1, 0, 1, and 3, respectively.
  • control unit 1302 may be specifically configured to:
  • Optimizing the optimal TPC command word for each TTI of the first UE during the power control period The TPC command word with the highest frequency is determined, and the TPC command word with the highest frequency is determined as the optimal TPC command word of the first UE in the power cycle.
  • control unit 1302 may be specifically configured to:
  • the optimal TPC command word closest to the value is determined as the optimal TPC command word for the first UE during the power control period.
  • control unit 1302 may be specifically configured to: calculate a system utility by using a preset calculation formula.
  • the default calculation formula is:
  • U represents system utility
  • x j represents the transmission rate of the jth UE in the system
  • B represents the number of RBs occupied by the jth UE
  • S represents the transmission power of the jth UE
  • I represents the interference strength of the jth UE.
  • N represents the noise intensity.
  • the method for performing power control by the base station provided by the embodiment of the present invention may be referred to the foregoing method embodiment, and details are not described herein again.
  • the base station provided by the embodiment of the present invention, after the power control period is reached, the first RB set allocated by the first UE of the first cell in each TTI of the base station in the power control period is acquired, and the second base station is in the power control period.
  • Each of the TTIs is a second RB set allocated by the second UE of the second cell, and further performs power control on the first UE according to the first RB set and the second RB set, so that the transmit power of the UE can be adjusted, so that Its interference to neighboring cells is reduced. Therefore, the power control method provided by the embodiment of the present invention can reduce inter-cell interference to a certain extent, improve system edge user performance and system average performance.
  • the embodiment of the present invention further provides a base station, as shown in FIG. 14, comprising: a processor 1401, a memory 1403, a bus 1402, and a communication interface 1404.
  • the processor 1401, the memory 1403, and the communication interface 1404 pass through the bus 1402. Connect and complete communication with each other.
  • Processor 1401 may be a single core or multi-core central processing unit, or a particular integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 1403 may be a high-speed random access memory (1403) or a non-volatile memory (1403), such as at least one disk storage 1403.
  • the memory 1403 is for storing computer execution instructions 14031. Specifically, the program code may be included in the computer execution instruction 14031.
  • the processor executes the computer-executed instructions stored by the memory to cause the base station to perform the scheduling method described in FIG. 6 when the base station is operating.
  • the base station provided in this embodiment is used to perform the scheduling method described in FIG. 6. Therefore, the technical effects that can be obtained by the base station are also described in the foregoing method embodiments, and details are not described herein again.
  • the embodiment of the present invention further provides a base station 150, as shown in FIG. 15, comprising: a processor 1501, a memory 1503, a bus 1502, and a communication interface 1504.
  • the processor 1501, the memory 1503, and the communication interface 1504 are connected by a bus 1502 and complete communication with each other.
  • Processor 1501 may be a single core or multi-core central processing unit, or a particular integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 1503 may be a high speed RAM or a nonvolatile memory 1503 such as at least one disk memory 1503.
  • the memory 1503 is for storing computer execution instructions 15031. Specifically, the program code may be included in the computer execution instruction 15031.
  • the processor 1501 executes the computer execution instructions 15031 stored by the memory 1503 to cause the base station 150 to perform the power control method described in FIG.
  • the base station provided in this embodiment is used to perform the scheduling method described in FIG. 8. Therefore, the technical effects that can be obtained by the base station are also described in the foregoing method embodiments, and details are not described herein again.
  • an embodiment of the present invention further provides a computer readable instruction (or medium), including computer readable instructions when performing the following operations: performing the method embodiment shown in FIG. 6 and FIG. 8 in the foregoing embodiment.
  • the operation of the base station is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, a computer readable instruction (or medium), including computer readable instructions when performing the following operations: performing the method embodiment shown in FIG. 6 and FIG. 8 in the foregoing embodiment. The operation of the base station.
  • an embodiment of the present invention further provides a computer program product, including the above computer readable medium.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit may be only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or may be integrated by two or more units. In one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种调度方法、功率控制方法及基站,能够有效抑制小区间干扰,提高系统边缘用户的性能以及系统平均性能。所述方法包括:第一基站获取第一资源块RB集合及第二RB集合,第一RB集合为第一基站为第一小区的第一用户设备UE分配的RB集合,第二RB集合为第二基站为第二小区的第二UE分配的RB集合;第一基站确定第一RB集合与第二RB集合存在共同的RB后,调整第一RB集合以降低第一小区对第二小区的干扰;第一基站根据调整后的第一RB集合调度第一UE。本发明适用于通信技术领域。

Description

一种调度方法、功率控制方法及基站 技术领域
本发明涉及通信技术领域,尤其涉及一种调度方法、功率控制方法及基站。
背景技术
移动通信系统中,小区内干扰和小区间干扰(Inter Cell Interference,ICI)是制约系统性能的两个主要因素。长期演进(Long Term Evolution,LTE)系统所采用的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术能够提供正交的子载波,因此能够较好的解决小区内干扰问题,这就使得小区间干扰成为制约LTE系统性能的主要因素。
目前,一种抑制小区间干扰的技术是小区间干扰协调(Inter Cell Interference Coordination,ICIC)技术,其原理在于允许小区中心用户(Cell Center User,CCU)自由使用所有频率资源,而对小区边缘用户(Cell Edge User,CEU)只允许其按照频率复用规则使用一部分频率资源,例如,可按照图1所示,将系统的频率资源分为三段,允许所有小区的CCU使用所有频率资源,而只允许小区1的CEU使用第一段频率,小区2、4、6的CEU只使用第二段频率,小区3、5、7的CEU只使用第三段频率,这样一来,相邻小区的CEU所使用的频率资源即不会重叠,因此能够有效抑制相邻小区CEU之间干扰。
然而,按照现有的ICIC技术,可能会将邻小区的CCU和本小区的CEU调度在相同的频带上,而相比于邻小区的CEU,邻小区的CCU对本小区的CEU产生的干扰可能会更大,因此现有的此种抑制小区间干扰的方法可能达不到抑制小区间干扰的目的,反而会使系统边缘用户的性能更差。
发明内容
为此,本发明实施例提供一种调度方法、功率控制方法及基站,以至少解决现有技术可能达不到抑制小区间干扰,反而会使系统边缘用户的性能更差的问题,能够有效抑制小区间干扰,提高系统边缘用户的性能以及系统平均性能。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种调度方法,包括:第一基站先获取第一资源块RB集合及第二RB集合,其中,第一RB集合为第一基站为第一小区的第一用户设备UE分配的RB集合,第二RB集合为第二基站为第二小区的第二UE分配的RB集合,接着,第一基站确定第一RB集合与第二RB集合存在共同的RB后,调整第一RB集合以降低第一小区对第二小区的干扰,最后,第一基站根据调整后的第一RB集合调度第一UE。
在第一方面第一种可能的实现方式中,第一基站调整第一RB集合以降低第一小区对第二小区的干扰,包括:第一基站确定第一RB是否符合预设条件,若符合,将第一RB从第一RB集合中删除,并将第一RB的后一RB作为新的第一RB进行判断,直至找到不符合预设条件的第一个第一RB后停止;以及,第一基站确定第二RB是否符合预设条件,若符合,将第二RB从第一RB集合中删除,并将第二RB的前一RB作为新的第二RB进行判断,直至找到不符合预设条件的第一个第二RB后停止。其中,第一RB为第一RB集合中的第一个RB,第二RB为第一RB集合中的最后一个RB,预设条件为第一系统效用大于第二系统效用,第一系统效用为取消第一UE在第一RB/第二RB上的调度时的系统效用,第二系统效用为保留第一UE在第一RB/第二RB上的调度时的系统效用。
在第一方面第二种可能的实现方式中,第一基站利用预设的计算式计算系统效用,预设的计算式为:
Figure PCTCN2016091604-appb-000001
其中, xj=log2(1+SINRUEj),
Figure PCTCN2016091604-appb-000002
表示系统效用,xj表示系统中共用资源块RBi的n个UE中的第j个第二UE的传输速率,SINRUEj表示第j个第二UE到第一基站的上行传输信道的信号与干扰加噪声比,n和j为正整数。
在第一方面第三种可能的实现方式中,若第一基站将第一RB/第二RB从第一RB集合中删除,则方法还包括:第一基站确定第三系统效用大于第一系统效用后,将第一RB/第二RB分配给当前传输时间间隔TTI中有调度需求但未对其调度的第三UE,其中,第三系统效用为增加第三UE在第一RB/第二RB上的调度时的系统效用。
这样,在第一基站对第一UE进行资源调整的过程中,若取消了第一UE在某些RB上的调度,则将这部分RB分配给有调度需求但未对其调度的UE,即一旦有资源剩余即在该剩余资源上调度新的用户,如此一来,即可提高系统资源的利用率,从而提高系统性能。
第二方面,提供一种基站,包括:获取单元、调整单元以及调度单元;其中,获取单元用于,获取第一资源块RB集合及第二RB集合,第一RB集合为基站为第一小区的第一用户设备UE分配的RB集合,第二RB集合为第二基站为第二小区的第二UE分配的RB集合;调整单元用于,确定第一RB集合与第二RB集合存在共同的RB后,调整第一RB集合以降低第一小区对第二小区的干扰;调度单元用于,根据调整后的第一RB集合调度第一UE。
在第二方面第一种可能的实现方式中,调整单元具体用于:确定第一RB是否符合预设条件,若符合,将第一RB从第一RB集合中删除,并将第一RB的后一RB作为新的第一RB进行判断,直至找到不符合预设条件的第一个第一RB后停止;以及,确定第二RB是否符合预设条件,若符合,将第二RB从第一RB集合中删除,并将第二RB的前一RB作为新的第二RB进行判断,直至找到不符合预设条件的第一个第二RB后停止;其中,第一RB为第一RB集合中的第一个RB,第二RB为第一RB集合中的最后一个RB,预设条件为第一系统效用大于第二系统效用,第一系统效用为取消第一UE 在第一RB/第二RB上的调度时的系统效用,第二系统效用为保留第一UE在第一RB/第二RB上的调度时的系统效用。
在第二方面第二种可能的实现方式中,调整单元具体用于:利用预设的计算式计算系统效用,预设的计算式为:
Figure PCTCN2016091604-appb-000003
其中,xj=log2(1+SINRUEj),
Figure PCTCN2016091604-appb-000004
表示系统效用,xj表示系统中共用资源块RBi的n个UE中的第j个第二UE的传输速率,SINRUEj表示第j个第二UE到基站的上行传输信道的信号与干扰加噪声比,n和j为正整数。
在第二方面第三种可能的实现方式中,调整单元还用于:若将第一RB/第二RB从第一RB集合中删除,确定第三系统效用大于第一系统效用后,将第一RB/第二RB分配给当前传输时间间隔TTI中有调度需求但未对其调度的第三UE;其中,第三系统效用为增加第三UE在第一RB/第二RB上的调度时的系统效用。
这样,在基站对第一UE进行资源调整的过程中,若取消了第一UE在某些RB上的调度,则将这部分RB分配给有调度需求但未对其调度的UE,即一旦有资源剩余即在该剩余资源上调度新的用户,如此一来,即可提高系统资源的利用率,从而提高系统性能。
第三方面,提供一种基站,包括:处理器、存储器、总线以及通信接口,存储器用于存储计算机执行指令,处理器与存储器通过总线连接,当基站运行时,处理器执行存储器存储的计算机执行指令,以使基站执行第一方面至第一方面第三种可能的实现方式中的任一种所述的调度方法。
基于上述本发明实施例提供的调度方法及基站,基站通过获取其为第一小区的第一UE分配的第一RB集合以及第二基站为第二小区的第二UE分配的第二RB集合,并在确定第一RB集合和第二RB集合存在共同的RB后,对第一RB集合进行调整,由于基站根据第一RB集合和第二RB集合可获知第一小区的第一UE与第二小区的第二UE间具体是因为共用了哪些资源而造成了小区间干扰,进而据此对第一RB集合进行调整,以尽量将第一小区的第一UE和第二小区的第二UE调度在不同的频 带上,从而有效抑制小区间干扰,提高系统边缘用户的性能以及系统平均性能。
第四方面,提供一种功率控制方法,包括:第一基站在功率控制周期到达后,获取第一资源块RB集合及第二RB集合,第一RB集合为第一基站在功率控制周期内的每个传输时间间隔TTI为第一小区的第一用户设备UE分配的RB集合,第二RB集合为第二基站在功率控制周期内的每个TTI为第二小区的第二UE分配的RB集合;第一基站根据第一RB集合以及第二RB集合,对第一UE进行功率控制。
在第四方面第一种可能的实现方式中,第一基站根据第一RB集合以及第二RB集合,对第一UE进行功率控制,包括:第一基站根据第一RB集合以及第二RB集合,确定功率控制周期内的每个TTI对应的第一系统效用,第一系统效用为假定第一UE在功率控制周期内的每个TTI的发射功率控制命令字TPC分别取-1、0、1以及3时的系统效用;第一基站根据功率控制周期内的每个TTI对应的第一系统效用,确定第一UE在功率控制周期内的每个TTI的最优TPC命令字,第一UE在功率控制周期内的每个TTI的最优TPC命令字为该TTI对应的第一系统效用中最大的系统效用所对应的TPC命令字;第一基站根据第一UE在功率控制周期内的每个TTI的最优TPC命令字,确定第一UE在功率控制周期内的最优TPC命令字;第一基站向第一UE发送最优TPC命令字,以使第一UE根据最优TPC命令字调整发射功率。
在第四方面第二种可能的实现方式中,第一基站根据第一UE在功率控制周期内的每个TTI的最优TPC命令字,确定第一UE在功率控制周期内的最优TPC命令字,包括:第一基站对第一UE在功率控制周期内的每个TTI的最优TPC命令字进行统计,确定其中频数最高的TPC命令字,并将频数最高的TPC命令字确定为第一UE在功率周期内的最优TPC命令字。
在第四方面第三种可能的实现方式中,第一基站根据第一UE在功率控制周期内的每个TTI的最优TPC命令字,确定第一UE在功率控制周期内的最优TPC命令字,包括:第一基站对第一UE在功率控制周期内的每 个TTI的最优TPC命令字进行求和,得到求和值,将第一UE在功率控制周期内的每个TTI的最优TPC命令字中与求和值最接近的最优TPC命令字确定为第一UE在功率控制周期内的最优TPC命令字。
在第四方面第四种可能的实现方式中,第一基站利用预设的计算式计算系统效用,预设的计算式为:
Figure PCTCN2016091604-appb-000005
其中,
Figure PCTCN2016091604-appb-000006
U表示系统效用,xj表示系统中第j个UE的传输速率,B表示第j个UE占用的RB的数目,S表示第j个UE的发射功率,I表示第j个UE受到的干扰强度,N表示噪声强度。
第五方面,提供一种基站,包括:获取单元以及控制单元;获取单元,用于在功率控制周期到达后,获取第一资源块RB集合及第二RB集合,第一RB集合为基站在功率控制周期内的每个传输时间间隔TTI为第一小区的第一用户设备UE分配的RB集合,第二RB集合为第二基站在功率控制周期内的每个TTI为第二小区的第二UE分配的RB集合;控制单元,用于根据第一RB集合以及第二RB集合,对第一UE进行功率控制。
在第五方面第一种可能的实现方式中,控制单元具体用于:根据第一RB集合以及第二RB集合,确定功率控制周期内的每个TTI对应的第一系统效用,第一系统效用为假定第一UE在功率控制周期内的每个TTI的发射功率控制命令字TPC分别取-1、0、1以及3时的系统效用;根据功率控制周期内的每个TTI对应的第一系统效用,确定第一UE在功率控制周期内的每个TTI的最优TPC命令字,第一UE在功率控制周期内的每个TTI的最优TPC命令字为该TTI对应的第一系统效用中最大的系统效用所对应的TPC命令字;根据第一UE在功率控制周期内的每个TTI的最优TPC命令字,确定第一UE在功率控制周期内的最优TPC命令字;向第一UE发送最优TPC命令字,以使第一UE根据最优TPC命令字调整发射功率。
在第五方面第二种可能的实现方式中,控制单元具体用于:对第一 UE在功率控制周期内的每个TTI的最优TPC命令字进行统计,确定其中频数最高的TPC命令字,并将频数最高的TPC命令字确定为第一UE在功率周期内的最优TPC命令字。
在第五方面第三种可能的实现方式中,控制单元具体用于:对第一UE在功率控制周期内的每个TTI的最优TPC命令字进行求和,得到求和值,将第一UE在功率控制周期内的每个TTI的最优TPC命令字中与求和值最接近的最优TPC命令字确定为第一UE在功率控制周期内的最优TPC命令字。
在第五方面第四种可能的实现方式中,控制单元具体用于:利用预设的计算式计算系统效用,预设的计算式为:
Figure PCTCN2016091604-appb-000007
Figure PCTCN2016091604-appb-000008
U表示系统效用,xj表示系统中第j个UE的传输速率,B表示第j个UE占用的RB的数目,S表示第j个UE的发射功率,I表示第j个UE受到的干扰强度,N表示噪声强度。
第六方面,提供一种基站,包括:处理器、存储器、总线以及通信接口,存储器用于存储计算机执行指令,处理器与存储器通过总线连接,当基站运行时,处理器执行存储器存储的计算机执行指令,以使基站执行第四方面至第四方面第四种可能的实现方式中的任一种所述的功率控制方法。
基于上述本发明实施例提供的功率控制方法及基站,在功率控制周期到达后,通过获取基站在功率控制周期内的每个TTI为第一小区的第一UE分配的第一RB集合以及第二基站在功率控制周期内的每个TTI为第二小区的第二UE分配的第二RB集合,进而根据第一RB集合及第二RB集合对第一UE进行功率控制,即可对UE的发射功率进行调整,使得其对相邻小区干扰减小。因此,本发明实施例提供的功率控制方法能够在一定程度上降低小区间干扰,提高系统边缘用户的性能以及系统平均性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中频率资源分配方案的示意图;
图2为本发明实施例的一种应用场景的示意图一;
图3为本发明实施例的一种应用场景的示意图二;
图4为本发明实施例的一种应用场景的示意图三;
图5为本发明实施例的一种应用场景的示意图四;
图6为本发明实施例提供的一种调度方法的流程示意图一;
图7为基础调度后的资源分配情况示意图;
图8为本发明实施例提供的一种调度方法的流程示意图二;
图9为本发明实施例提供的一种功率控制方法的流程示意图一;
图10为第一UE在当前功率控制周期内各TTI的最优TPC命令字的取值示意图;
图11为本发明实施例提供的一种功率控制方法的流程示意图二;
图12为本发明实施例提供的一种基站的结构示意图一;
图13为本发明实施例提供的一种基站的结构示意图二;
图14为本发明实施例提供的一种基站的结构示意图三;
图15为本发明实施例提供的一种基站的结构示意图四。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。在下文描述中,出于解释而非限定的目的,阐述了一些特定细节以便清楚理解。在一些实施例中,省略了公知的装置、电路和方法的详细描述,以免因不必要的细节使得描述模糊。通篇描述中,相同的引用数字和相同的名称指代相同或相似的元素。
首先,对本发明实施例中的相关设备进行简单介绍如下:
用户设备(User Equipment,UE)是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(Radio Access Network,RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站(Base Station,BS),是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(Base Transceiver Station,BTS)和基站控制器(Base Station Controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(Radio Network Controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(Evolved NodeB,eNB)。
其次,给出本发明实施例可能的应用场景图,分别如图2-4所示,图中,基站10表示第一基站,基站20表示第二基站,小区A表示第一小区,小区B表示第二小区,UE1表示第一UE,UE2表示第二UE。其中,在图2所示的应用场景图中,第一UE所在的第一小区所属的第一基站与第二UE所在的第二小区所属的第二基站为两个不同的基站,且第二基站的个数为1;在图3所示的应用场景中,第一UE所在的第一小区所属的第一基站与第二UE所在的第二小区所属的第二基站为同一个基站;在图 4所示的应用场景中,第一UE所在的第一小区所属的第一基站与第二UE所在的第二小区所属的第二基站为两个不同的基站,且第二基站的个数大于1。
在图2-4所示的应用场景图中,第一基站10通过获取第一UE及第二UE的调度信息,并基于所获取的调度信息调整第一UE的调度信息,以尽可能地避免相邻小区的用户所使用的时频资源冲突,或者,基于所获取的调度信息对第一UE的发射功率进行控制,以尽可能地减少相邻小区用户间的干扰,从而达到抑制小区间干扰,提高系统边缘用户的性能以及系统平均性能的目的。其中,具体调度过程请参考本发明实施例附图6描述的调度方法,功率控制过程则请参考本发明实施例附图9描述的功率控制方法。
除图2-4所示的3种可能的应用场景外,本发明实施例还提供了第4种可能的应用场景图,如图5所示。对比图5和图2,可以发现,二者的区别在于,图5所示的应用场景图中增加了集中控制器30。集中控制器30可作为单独的网元配置,也可配置在核心网侧的网元中,例如,在LTE系统中,具体可以将集中控制器30配置在移动管理节点(Mobility Management Entity,MME)或服务网关(Serving Gateway,SGW)中,本发明实施例对此不作具体限定。在图5所示的应用场景中,集中控制器30代替第一基站10执行对第一UE的调度或功率控制,具体方法可分别参考本发明实施例附图8和附图11描述的方法。
基于图2-4所示的应用场景,本发明实施例提供一种调度方法,如图6所示,包括:
S601、第一基站获取第一资源块(Resource Block,RB)集合及第二RB集合。
其中,第一RB集合为第一基站为第一小区的第一UE分配的RB集合,第二RB集合为第二基站为第二小区的第二UE分配的RB集合。
具体来说,当第一基站完成对第一UE的基础调度后,即触发了本发 明实施例提供的调度方法。其中,所述的基础调度指的是基站根据UE发送的上行调度请求,结合UE的缓存状态报告及上行信道状态,确定是否为发起调度请求的UE分配无线资源以及分配多少无线资源的过程。
需要说明的是,当第一基站和第二基站为两个不同的基站时,也即应用场景为图2和图4所示的应用场景时,第一基站可通过X2接口与第一基站进行通信以获取第二RB集合。当第一基站和第二基站为同一个基站时,也即应用场景为图3所示的应用场景时,第一基站可直接获取第二RB集合。
S602、第一基站确定第一RB集合与第二RB集合存在共同的RB后,调整第一RB集合以降低第一小区对第二小区的干扰。
其中,第一基站调整第一RB集合以降低第一小区对第二小区的干扰的过程具体可以包括:
第一基站确定第一RB是否符合预设条件,若符合,将第一RB从第一RB集合中删除,并将第一RB的后一RB作为新的第一RB进行判断,直至找到不符合预设条件的第一个第一RB后停止;以及,
第一基站确定第二RB是否符合预设条件,若符合,将第二RB从第一RB集合中删除,并将第二RB的前一RB作为新的第二RB进行判断,直至找到不符合预设条件的第一个第二RB后停止。
其中,第一RB为第一RB集合中的第一个RB,第二RB为第一RB集合中的最后一个RB,预设条件为第一系统效用大于第二系统效用,第一系统效用为取消第一UE在第一RB/第二RB上的调度时的系统效用,第二系统效用为保留第一UE在第一RB/第二RB上的调度时的系统效用。容易理解,当取消第一UE在某一RB上的调度时,其邻区的第二UE受到的干扰的强度将会减小,第二UE在该RB上的效用就会增大,但由于取消了第一UE在该RB上的调度,导致第一UE在该RB上的效用即为0,因而,取消第一UE在某一RB上的调度时,系统效用可能增加也可能减小,换言之,第一系统效用可能大于第二系统效用,也可能小于第二系统 效用。
其中,系统效用具体可通过公式(1)所示的计算式来计算:
Figure PCTCN2016091604-appb-000009
式中,xj=log2(1+SINRUEj),
Figure PCTCN2016091604-appb-000010
表示系统效用,xj表示系统中共用资源块RBi的n个UE中的第j个第二UE的传输速率,SINRUEj表示第j个第二UE到第一基站的上行传输信道的信号与干扰加噪声比,n和j为正整数。
进一步的,对于信干噪比SINRUEj,具体可以有以下两种可选的计算方式:
一种可选的实现方式为:利用第二小区的测量信息,折算得到取消第一UE时第二UE受到的干扰强度,进而通过如下所示的公式(2)计算得到取消第一UE时的SINRUEj
Figure PCTCN2016091604-appb-000011
式中,S表示有用信号的发射功率,I表示干扰强度,N表示噪声强度。
另一种可选的实现方式为:利用第二基站测得的参考信号接收功率(Reference Signal Receiving Power,RSRP)折算得到对应的修正系数,使用修正系数修正第一基站测量得到的SINRUEj,即得到取消第一UE时的SINRUEj
当然,以上所述仅为本发明实施例列举的两种常用的计算SINR的方法,本领域技术人员可以理解,还可有其它计算SINR的方法,本发明实施例对此不作具体限定。
示例性的,以下将结合具体示例对上述第一基站调整第一RB集合的过程进行详细说明如下:
参见图7所示的基础调度结果,假设第一基站分配给第一小区的第 一UE(UE1)的第一RB集合为RB3-RB10,第二基站分配给第二小区的第二UE(UE2)的第二RB集合为RB8-RB13,则第一基站调整第一RB集合的过程为:第一基站确定RB3是否符合预设条件,即判断假定取消UE1在RB3上的调度后系统效用是否有所增加;若符合,则将RB3从第一RB集合中删除,并继续向上判断RB4是否符合预设条件,若RB4符合预设条件,则同样将RB4从第一RB集合中删除,否则,继续判断下一RB,直至找到不符合预设条件的第一个RB后停止;以及,第一基站确定RB13是否符合预设条件,即判断假定取消UE1在RB13上的调度后系统效用是否有所增加;若符合,则将RB13从第一RB集合中删除,并继续向下判断RB12是否符合预设条件,若RB12符合预设条件,则同样将RB12从第一RB集合中删除,否则,继续判断下一RB,直至找到不符合预设条件的第一个RB后停止。
S603、第一基站根据调整后的第一RB集合调度第一UE。
基于上述方案,第一基站通过获取第一基站为第一小区的第一UE分配的第一RB集合以及第二基站为第二小区的第二UE分配的第二RB集合,并在确定第一RB集合和第二RB集合存在共同的RB后,对第一RB集合进行调整,由于第一基站根据第一RB集合和第二RB集合可获知第一小区的第一UE与第二小区的第二UE间具体是因为共用了哪些资源而造成了小区间干扰,进而据此对第一RB集合进行调整,以尽量将第一小区的第一UE和第二小区的第二UE调度在不同的频带上,从而有效抑制小区间干扰,提高系统边缘用户的性能以及系统平均性能。
优选的,本发明实施例提供的调度方法中,若第一基站将第一RB/第二RB从第一RB集合中删除,则所述方法还可以包括:
第一基站确定第三系统效用大于第一系统效用后,将第一RB/第二RB分配给当前传输时间间隔(Transmission Time Interva,TTI)中有调度需求但未对其调度的第三UE。
其中,第三系统效用为增加第三UE在第一RB/第二RB上的调 度时的系统效用。
即,在第一基站对第一UE进行资源调整的过程中,若取消了第一UE在某些RB上的调度,则可将这部分RB分配给有调度需求但未对其调度的UE。即,一旦有资源剩余,即在该剩余资源上调度新的用户,以充分利用资源,提高系统性能。
基于图5所示的应用场景,本发明实施例还提供了一种调度方法,如图8所示,包括:
S801、集中控制器获取第一RB集合及第二RB集合。
其中,第一RB集合为第一基站为第一小区的第一用户设备UE分配的RB集合,第二RB集合为第二基站为第二小区的第二UE分配的RB集合。
其中,集中控制器可作为单独的网元配置,也可将其配置在核心网侧的网络设备中,如MME或SGW。当集中控制器作为单独的网元配置时,可为集中控制器与基站配置专门的接口以供集中控制器获取基站为UE分配的RB集合;当集中控制器配置在核心网侧的网络设备中时,则通过该网络设备与基站间相应的通信接口获取基站为UE分配的RB集合,例如,当集中控制器配置在MME中时,可通过MME与基站间的S1-MME接口获取基站为UE分配的RB集合。
S802、集中控制器确定第一RB集合与第二RB集合存在共同的RB后,调整第一RB集合以降低第一小区对第二小区的干扰。
其中,集中控制器对第一RB集合的调整方法与前述实施例中第一基站对第一RB集合的调整方法相同,请参考前述相关描述,此处不再赘述。
S803、集中控制器向第一基站发送调整后的第一RB集合,以使第一基站根据调整后的第一RB集合调度第一UE。
由于上述方案与附图6描述的调度方法相类似,因此其所能获得的 有益效果与附图6描述的调度方法所能获得的有益效果相同,本发明实施例对此不再赘述。
本领域技术人员可以理解,以上本发明实施例提供的调度方法既适用于上行调度,也适用于下行调度,本发明实施例对此不作具体限定。
现有技术中,为使UE的发射功率既足够大以满足服务质量(Quality of Service,QoS)的要求、又足够小以节约终端电池,基站会根据上行链路的特征,比如路径损耗特征、阴影特征和快速衰落特征等,来调整UE的发射功率,此即功率控制。目前,现有的功率控制方案中,各小区不考虑相邻小区的情况,仅根据自身情况对自身UE的发射功率进行调整,因此可能会将自身UE的发射功率调整的较高,从而对相邻小区的UE造成严重干扰。为此,本发明实施例还提供了的一种功率控制方法,以在一定程度上降低小区间干扰,提高系统边缘用户的性能以及系统平均性能,以下将结合本发明实施例中的附图,对本发明实施例提供的功率控制方法进行描述。
基于图2-4所示的应用场景,本发明实施例提供了一种功率控制方法,如图9所示,包括:
S901、第一基站在功率控制周期到达后,获取第一RB集合及第二RB集合。
其中,第一RB集合为第一基站在功率控制周期内的每个TTI为第一小区的第一UE分配的RB集合,第二RB集合为第二基站在功率控制周期内的每个TTI为第二小区的第二UE分配的RB集合。
S902、第一基站根据第一RB集合以及第二RB集合,对第一UE进行功率控制。
本发明实施例的一种可选的实现方式中,步骤S902具体可以包括步骤S902a1-S902a4:
S902a1、第一基站根据第一RB集合以及第二RB集合,确定功率控制周期内的每个TTI对应的第一系统效用。
其中,第一系统效用为假定第一UE在功率控制周期内的每个TTI的发射功率控制命令字(Transmit Power Control,TPC)分别取-1、0、1以及3时的系统效用。
即,对于当前功率控制周期内的每个TTI,假定第一UE的TPC命令字分别取-1、0、1以及3时计算对应的系统效用。
具体的,可通过如下所示的公式(3)和公式(4)计算系统效用:
Figure PCTCN2016091604-appb-000012
Figure PCTCN2016091604-appb-000013
式中,U表示系统效用,xj表示系统中第j个UE的平均速率,B表示第j个UE占用的RB的数目,S表示第j个UE的发射功率,I表示第j个UE受到的干扰强度,N表示噪声强度。
公式(4)中,UE的发射功率S的具体可根据第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术标准36.213中的有关公式进行计算。其中,以PUSCH信道为例,UE的发射功率具体可通过如下所示的公式(5)计算:
SPUSCH(i)=min{PCMAX,10log10(MPUSCH(i))+PO_PUSCH+a×PL+DTF(i)+f(i)}     公式(5)
式中,SPUSCH(i)表示UE在子帧i的发射功率,PCMAX表示UE的最大发射功率,MPUSCH(i)表示UE在子帧i所分配的PUSCH的RB的数目或者PUSCH的RB带宽;PO_PUSCH表示预期的PUSCH的功率;α表示路损的补偿权值,PL表示UE计算的下行路损;f(i)表示动态功率控制累加量,f(i)=f(i-1)+δPUSCH(i),δPUSCH(i)表示功率控制命令字的值,f(i)表示动态功率控制累加量,δPUSCH(i)取-1、0、1或3。
S902a2、第一基站根据功率控制周期内的每个TTI对应的第一系统效用,确定第一UE在功率控制周期内的每个TTI的最优TPC命令字。
其中,第一UE在功率控制周期内的每个TTI的最优TPC命令字为该TTI对应的第一系统效用中最大的系统效用所对应的TPC命令字。
举例来说,假设在当前功率控制周期内的某一TTI,当第一UE的TPC命令字取-1时对应的第一系统效用为U-1=23,第一UE的TPC命令字取0时对应的第一系统效用为U0=6,第一UE的TPC命令字取1时对应的第一系统效用为U1=12,第一UE的TPC命令字取3时对应的第一系统效用为U1=5,则由于U-1=23为其中最大的系统效用,因此确定第一UE在该TTI的最优TPC命令字为-1。
S902a3、第一基站根据第一UE在功率控制周期内的每个TTI的最优TPC命令字,确定第一UE在功率控制周期内的最优TPC命令字。
具体来说,有以下两种可选的确定第一UE在功率控制周期内的最优TPC命令字的方法:
其一,通过对第一UE在功率控制周期内的每个TTI的最优TPC命令字进行统计,确定其中频数最高的TPC命令字,将频数最高的TPC命令字确定为第一UE在功率周期内的最优TPC命令字。
举例来说,假设一个功率控制周期包括10个TTI,且第一UE在当前功率控制周期内的各TTI的最优TPC命令字如图10所示,即在TTI0、TTI11、TTI2等10个TTI的最优TPC命令字依次为1、1、3、1、-1、-1、-1、0、-1、-1,则经统计,可确定取值为-1的TPC命令字出现的频数最高,因此确定第一UE在当前功率控制周期内的最优TPC命令字为-1。
其二,通过对第一UE在功率控制周期内的每个TTI的最优TPC命令字进行求和,得到求和值,将第一UE在功率控制周期内的每个TTI的最优TPC命令字中与求和值最接近的最优TPC命令字确定为第一UE在功率控制周期内的最优TPC命令字。
仍以图9为例进行说明,根据图9所示的UE在10个TTI内的最优 TPC命令字取值可知,该UE在各TTI内的最优TPC命令字的求和值为1,假设TPC命令字的可选值为-1、0、1或3,则其中与求和值1最接近的为1,因此确定该UE在当前功率控制周期内的最优TPC命令字为1。
S902a4、第一基站向第一UE发送最优TPC命令字,以使第一UE根据最优TPC命令字调整发射功率。
需要说明的是,本发明实施例提供的上述功率控制方法属于上行的功率控制,功率控制的具体内容可以包括:控制UE在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的发射功率以及UE发送SRS的发射功率,本发明实施例对此不作具体限定。
基于上述方案,第一基站在功率控制周期到达后,通过获取第一基站在功率控制周期内的每个TTI为第一小区的第一UE分配的第一RB集合以及第二基站在功率控制周期内的每个TTI为第二小区的第二UE分配的第二RB集合,进而根据第一RB集合及第二RB集合对第一UE进行功率控制,即可对UE的发射功率进行调整,使得其对相邻小区干扰减小。因此,本发明实施例提供的功率控制方法能够在一定程度上降低小区间干扰,提高系统边缘用户的性能以及系统平均性能。
基于图5所示的应用场景,本发明实施例还提供了一种功率控制方法,如图11所示,包括:
S1101、集中控制器在功率控制周期到达后,获取第一RB集合及第二RB集合。
其中,第一RB集合为第一基站在功率控制周期内的每个TTI为第一小区的第一UE分配的RB集合,第二RB集合为第二基站在功率控制周期内的每个TTI为第二小区的第二UE分配的RB集合。
另外,有关集中控制器的配置可参考前述实施例中步骤S801下面的相关描述。
S1102、集中控制器根据第一RB集合以及第二RB集合,对第一UE进行功率控制。
其中,集中控制器根据第一RB集合以及第二RB集合对第一UE进行功率控制的具体过程可参考前述实施例中步骤S902下的相关描述,二者区别在于,在本发明实施例中,当集中控制器确定第一UE对应的TPC命令字后,需借助第一基站向第一UE下发TPC命令字。
由于上述方案与附图9描述的功率控制方法相类似,因此其所能获得的有益效果与附图9描述的调度方法所能获得的有益效果相同,本发明实施例对此不再赘述。
本发明实施例还提供一种基站,如图12所示,所述基站120包括:获取单元1201、调整单元1202以及调度单元1203。
其中,获取单元1201用于,获取第一RB集合及第二RB集合。
调整单元1202用于,确定第一RB集合与第二RB集合存在共同的RB后,调整第一RB集合以降低第一小区对第二小区的干扰。
调度单元1203用于,根据调整后的第一RB集合调度第一UE。
其中,第一RB集合为基站120为第一小区的第一UE分配的RB集合,第二RB集合为第二基站120为第二小区的第二UE分配的RB集合。
一种可选的实现方式中,本发明实施例提供的基站120中,调整单元1202具体可以用于:
确定第一RB是否符合预设条件,若符合,将第一RB从第一RB集合中删除,并将第一RB的后一RB作为新的第一RB进行判断,直至找到不符合预设条件的第一个第一RB后停止;以及,
确定第二RB是否符合预设条件,若符合,将第二RB从第一RB集合中删除,并将第二RB的前一RB作为新的第二RB进行判断,直至找到不符合预设条件的第一个第二RB后停止。
其中,第一RB为第一RB集合中的第一个RB,第二RB为第一RB集合中的最后一个RB,预设条件为第一系统效用大于第二系统效用,第 一系统效用为取消第一UE在第一RB/第二RB上的调度时的系统效用,第二系统效用为保留第一UE在第一RB/第二RB上的调度时的系统效用。
可选的,本发明实施例提供的基站120中,调整单元1202具体可以用于:利用预设的计算式计算系统效用。
其中,预设的计算式为:
Figure PCTCN2016091604-appb-000014
式中,xj=log2(1+SINRUEj),
Figure PCTCN2016091604-appb-000015
表示系统效用,xj表示系统中共用RBi的n个UE中的第j个第二UE的传输速率,SINRUEj表示第j个第二UE到基站120的上行传输信道的信号与干扰加噪声比,n和j为正整数。
可选的,本发明实施例提供的基站120中,调整单元1202还可以用于:
若将第一RB/第二RB从第一RB集合中删除,确定第三系统效用大于第一系统效用后,将第一RB/第二RB分配给当前TTI中有调度需求但未对其调度的第三UE。
其中,第三系统效用为增加第三UE在第一RB/第二RB上的调度时的系统效用。
具体的,通过本发明实施例提供的基站进行调度的方法可参考上述方法实施例,本发明实施例在此不再赘述。
基于本发明实施例提供的基站,其通过获取基站为第一小区的第一UE分配的第一RB集合以及第二基站为第二小区的第二UE分配的第二RB集合,并在确定第一RB集合和第二RB集合存在共同的RB后,对第一RB集合进行调整,由于基站根据第一RB集合和第二RB集合可获知第一小区的第一UE与第二小区的第二UE间具体是因为共用了哪些资源而造成了小区间干扰,进而据此对第一RB集合进行调整,以尽量将第一小区的第一UE和第二小区的第二UE调度在不同的频带上,从而有效抑制小区间干扰,提高系统边缘用户的性能以及系统平均性能。
本发明实施例还提供了一种基站,如图13所示,包括:获取单元1301以及控制单元1302。
其中,获取单元1301,用于在功率控制周期到达后,获取第一RB集合及第二RB集合。
控制单元1302,用于根据第一RB集合以及第二RB集合,对第一UE进行功率控制。
其中,第一RB集合为基站130在功率控制周期内的每个TTI为第一小区的第一UE分配的RB集合,第二RB集合为第二基站130在功率控制周期内的每个TTI为第二小区的第二UE分配的RB集合。
一种可选的实现方式中,本发明实施例提供的基站130中,控制单元1302具体可以用于:
根据第一RB集合以及第二RB集合,确定功率控制周期内的每个TTI对应的第一系统效用;
根据功率控制周期内的每个TTI对应的第一系统效用,确定第一UE在功率控制周期内的每个TTI的最优TPC命令字;其中,第一UE在功率控制周期内的每个TTI的最优TPC命令字为该TTI对应的第一系统效用中最大的系统效用所对应的TPC命令字;
根据第一UE在功率控制周期内的每个TTI的最优TPC命令字,确定第一UE在功率控制周期内的最优TPC命令字;
向第一UE发送最优TPC命令字,以使第一UE根据最优TPC命令字调整发射功率。
其中,第一系统效用为假定第一UE在功率控制周期内的每个TTI的发射功率控制命令字TPC分别取-1、0、1以及3时的系统效用。
本发明实施例的一种可选的实现方式中,控制单元1302具体可以用于:
对第一UE在功率控制周期内的每个TTI的最优TPC命令字进行统 计,确定其中频数最高的TPC命令字,并将频数最高的TPC命令字确定为第一UE在功率周期内的最优TPC命令字。
本发明实施例的另一种可选的实现方式中,控制单元1302具体可以用于:
对第一UE在功率控制周期内的每个TTI的最优TPC命令字进行求和,得到求和值,将第一UE在功率控制周期内的每个TTI的最优TPC命令字中与求和值最接近的最优TPC命令字确定为第一UE在功率控制周期内的最优TPC命令字。
可选的,本发明实施例提供的基站130中,控制单元1302具体可以用于:利用预设的计算式计算系统效用。
其中,预设的计算式为:
Figure PCTCN2016091604-appb-000016
式中,
Figure PCTCN2016091604-appb-000017
U表示系统效用,xj表示系统中第j个UE的传输速率,B表示第j个UE占用的RB的数目,S表示第j个UE的发射功率,I表示第j个UE受到的干扰强度,N表示噪声强度。
具体的,通过本发明实施例提供的基站进行功率控制的方法可参考上述方法实施例,本发明实施例在此不再赘述。
基于本发明实施例提供的基站,在功率控制周期到达后,通过获取基站在功率控制周期内的每个TTI为第一小区的第一UE分配的第一RB集合以及第二基站在功率控制周期内的每个TTI为第二小区的第二UE分配的第二RB集合,进而根据第一RB集合及第二RB集合对第一UE进行功率控制,即可对UE的发射功率进行调整,使得其对相邻小区干扰减小。因此,本发明实施例提供的功率控制方法能够在一定程度上降低小区间干扰,提高系统边缘用户的性能以及系统平均性能。
本发明实施例还提供了一种基站,如图14所示,包括:处理器1401、存储器1403、总线1402以及通信接口1404。
其中,处理器1401、存储器1403和通信接口1404之间通过总线1402 连接并完成相互间的通信。
处理器1401可能为单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。
存储器1403可以为高速随机存取存储器1403(Random Access Memory,RAM),也可以为非易失性存储器1403(non-volatile memory),例如至少一个磁盘存储器1403。
存储器1403用于存储计算机执行指令14031。具体的,计算机执行指令14031中可以包括程序代码。
当基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行附图6所描述的调度方法。
由于本实施例提供的基站用于执行附图6所描述的调度方法,因此,其所能获得的技术效果也可以参照上述方法实施例的描述,此处不再赘述。
本发明实施例还提供了一种基站150,如图15所示,包括:处理器1501、存储器1503、总线1502以及通信接口1504。
其中,处理器1501、存储器1503和通信接口1504之间通过总线1502连接并完成相互间的通信。
处理器1501可能为单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。
存储器1503可以为高速RAM,也可以为非易失性存储器1503,例如至少一个磁盘存储器1503。
存储器1503用于存储计算机执行指令15031。具体的,计算机执行指令15031中可以包括程序代码。
当基站150运行时,所述处理器1501执行所述存储器1503存储的所述计算机执行指令15031,以使所述基站150执行附图8所描述的功率控制方法。
由于本实施例提供的基站用于执行附图8所描述的调度方法,因此,其所能获得的技术效果也可以参照上述方法实施例的描述,此处不再赘述。
此外,本发明实施例还提供一种计算可读媒体(或介质),包括在被执行时进行以下操作的计算机可读指令:执行上述实施例中如图6及图8所示的方法实施例中基站的操作。
另外,本发明实施例还提供一种计算机程序产品,包括上述计算机可读介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成 在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种调度方法,其特征在于,所述方法包括:
    第一基站获取第一资源块RB集合及第二RB集合,所述第一RB集合为所述第一基站为第一小区的第一用户设备UE分配的RB集合,所述第二RB集合为第二基站为第二小区的第二UE分配的RB集合;
    所述第一基站确定所述第一RB集合与所述第二RB集合存在共同的RB后,调整所述第一RB集合以降低所述第一小区对所述第二小区的干扰;
    所述第一基站根据调整后的第一RB集合调度所述第一UE。
  2. 根据权利要求1所述的方法,其特征在于,所述第一基站调整所述第一RB集合以降低所述第一小区对所述第二小区的干扰,包括:
    所述第一基站确定第一RB是否符合预设条件,若符合,将所述第一RB从所述第一RB集合中删除,并将所述第一RB的后一RB作为新的第一RB进行判断,直至找到不符合所述预设条件的第一个第一RB后停止;以及,
    所述第一基站确定第二RB是否符合预设条件,若符合,将所述第二RB从所述第一RB集合中删除,并将所述第二RB的前一RB作为新的第二RB进行判断,直至找到不符合所述预设条件的第一个第二RB后停止;
    其中,所述第一RB为所述第一RB集合中的第一个RB,所述第二RB为所述第一RB集合中的最后一个RB,所述预设条件为第一系统效用大于第二系统效用,所述第一系统效用为取消所述第一UE在所述第一RB/第二RB上的调度时的系统效用,所述第二系统效用为保留所述第一UE在所述第一RB/第二RB上的调度时的系统效用。
  3. 根据权利要求2所述的方法,其特征在于,所述第一基站利用预设的计算式计算系统效用,所述预设的计算式为:
    Figure PCTCN2016091604-appb-100001
    其中,xj=log2(1+SINRUEj),
    Figure PCTCN2016091604-appb-100002
    表示系统效用,xj表示系统中共用资源块RBi 的n个UE中的第j个第二UE的传输速率,SINRUEj表示所述第j个第二UE到所述第一基站的上行传输信道的信号与干扰加噪声比,n和j为正整数。
  4. 根据权利要求2或3所述的方法,其特征在于,若所述第一基站将所述第一RB/第二RB从所述第一RB集合中删除,所述方法还包括:
    所述第一基站确定第三系统效用大于第一系统效用后,将所述第一RB/第二RB分配给当前传输时间间隔TTI中有调度需求但未对其调度的第三UE;其中,所述第三系统效用为增加所述第三UE在所述第一RB/第二RB上的调度时的系统效用。
  5. 一种功率控制方法,其特征在于,所述方法包括:
    第一基站在功率控制周期到达后,获取第一资源块RB集合及第二RB集合;其中,所述第一RB集合为所述第一基站在所述功率控制周期内的每个传输时间间隔TTI为第一小区的第一用户设备UE分配的RB集合,所述第二RB集合为第二基站在所述功率控制周期内的每个TTI为第二小区的第二UE分配的RB集合;
    所述第一基站根据所述第一RB集合以及所述第二RB集合,对所述第一UE进行功率控制。
  6. 根据权利要求5所述的方法,其特征在于,所述第一基站根据所述第一RB集合以及所述第二RB集合,对所述第一UE进行功率控制,包括:
    所述第一基站根据所述第一RB集合以及所述第二RB集合,确定所述功率控制周期内的每个TTI对应的第一系统效用;其中,所述第一系统效用为假定所述第一UE在所述功率控制周期内的每个TTI的发射功率控制命令字TPC分别取-1、0、1以及3时的系统效用;
    所述第一基站根据所述功率控制周期内的每个TTI对应的第一系统效用,确定所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字;其中,所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字为该TTI对应的第一系统效用中最大的系统效用所对应的TPC命令 字;
    所述第一基站根据所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字,确定所述第一UE在所述功率控制周期内的最优TPC命令字;
    所述第一基站向所述第一UE发送所述最优TPC命令字,以使所述第一UE根据所述最优TPC命令字调整发射功率。
  7. 根据权利要求6所述的方法,其特征在于,所述第一基站根据所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字,确定所述第一UE在所述功率控制周期内的最优TPC命令字,包括:
    所述第一基站对所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字进行统计,确定其中频数最高的TPC命令字,并将所述频数最高的TPC命令字确定为所述第一UE在所述功率周期内的最优TPC命令字。
  8. 根据权利要求6所述的方法,其特征在于,所述第一基站根据所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字,确定所述第一UE在所述功率控制周期内的最优TPC命令字,包括:
    所述第一基站对所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字进行求和,得到求和值,将所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字中与所述求和值最接近的最优TPC命令字确定为第一UE在所述功率控制周期内的最优TPC命令字。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述第一基站利用预设的计算式计算系统效用,所述预设的计算式为:
    Figure PCTCN2016091604-appb-100003
    其中,
    Figure PCTCN2016091604-appb-100004
    U表示系统效用,xj表示系统中第j个UE的传输速率,B表示所述第j个UE占用的RB的数目,S表示所述第j个UE的发射功率,I表示所述第j个UE受到的干扰强度,N表示噪声强度。
  10. 一种基站,其特征在于,所述基站包括:获取单元、调整单元以及调度单元;
    所述获取单元用于,获取第一资源块RB集合及第二RB集合,所述第一RB集合为所述基站为第一小区的第一用户设备UE分配的RB集合,所述第二RB集合为第二基站为第二小区的第二UE分配的RB集合;
    所述调整单元用于,确定所述第一RB集合与所述第二RB集合存在共同的RB后,调整所述第一RB集合以降低所述第一小区对所述第二小区的干扰;
    所述调度单元用于,根据调整后的第一RB集合调度所述第一UE。
  11. 根据权利要求10所述的基站,其特征在于,所述调整单元具体用于:
    确定第一RB是否符合预设条件,若符合,将所述第一RB从所述第一RB集合中删除,并将所述第一RB的后一RB作为新的第一RB进行判断,直至找到不符合所述预设条件的第一个第一RB后停止;以及,
    确定第二RB是否符合预设条件,若符合,将所述第二RB从所述第一RB集合中删除,并将所述第二RB的前一RB作为新的第二RB进行判断,直至找到不符合所述预设条件的第一个第二RB后停止;
    其中,所述第一RB为所述第一RB集合中的第一个RB,所述第二RB为所述第一RB集合中的最后一个RB,所述预设条件为第一系统效用大于第二系统效用,所述第一系统效用为取消所述第一UE在所述第一RB/第二RB上的调度时的系统效用,所述第二系统效用为保留所述第一UE在所述第一RB/第二RB上的调度时的系统效用。
  12. 根据权利要求11所述的基站,其特征在于,所述调整单元具体用于:
    利用预设的计算式计算系统效用,所述预设的计算式为:
    Figure PCTCN2016091604-appb-100005
    其中,xj=log2(1+SINRUEj),
    Figure PCTCN2016091604-appb-100006
    表示系统效用,xj表示系 统中共用资源块RBi的n个UE中的第j个第二UE的传输速率,SINRUEj表示所述第j个第二UE到所述基站的上行传输信道的信号与干扰加噪声比,n和j为正整数。
  13. 根据权利要求11或12所述的基站,其特征在于,所述调整单元还用于:
    若将所述第一RB/第二RB从所述第一RB集合中删除,确定第三系统效用大于第一系统效用后,将所述第一RB/第二RB分配给当前传输时间间隔TTI中有调度需求但未对其调度的第三UE;其中,所述第三系统效用为增加所述第三UE在所述第一RB/第二RB上的调度时的系统效用。
  14. 一种基站,其特征在于,所述基站包括:获取单元以及控制单元;
    所述获取单元,用于在功率控制周期到达后,获取第一资源块RB集合及第二RB集合;其中,所述第一RB集合为所述基站在所述功率控制周期内的每个传输时间间隔TTI为第一小区的第一用户设备UE分配的RB集合,所述第二RB集合为第二基站在所述功率控制周期内的每个TTI为第二小区的第二UE分配的RB集合;
    所述控制单元,用于根据所述第一RB集合以及所述第二RB集合,对所述第一UE进行功率控制。
  15. 根据权利要求14所述的基站,其特征在于,所述控制单元具体用于:
    根据所述第一RB集合以及所述第二RB集合,确定所述功率控制周期内的每个TTI对应的第一系统效用;其中,所述第一系统效用为假定所述第一UE在所述功率控制周期内的每个TTI的发射功率控制命令字TPC分别取-1、0、1以及3时的系统效用;
    根据所述功率控制周期内的每个TTI对应的第一系统效用,确定所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字;其中,所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字为该TTI对应的第一系统效用中最大的系统效用所对应的TPC命令字;
    根据所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令 字,确定所述第一UE在所述功率控制周期内的最优TPC命令字;
    向所述第一UE发送所述最优TPC命令字,以使所述第一UE根据所述最优TPC命令字调整发射功率。
  16. 根据权利要求15所述的基站,其特征在于,所述控制单元具体用于:
    对所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字进行统计,确定其中频数最高的TPC命令字,并将所述频数最高的TPC命令字确定为所述第一UE在所述功率周期内的最优TPC命令字。
  17. 根据权利要求15所述的基站,其特征在于,所述控制单元具体用于:
    对所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字进行求和,得到求和值,将所述第一UE在所述功率控制周期内的每个TTI的最优TPC命令字中与所述求和值最接近的最优TPC命令字确定为第一UE在所述功率控制周期内的最优TPC命令字。
  18. 根据权利要求15-17任一项所述的基站,其特征在于,所述控制单元具体用于:
    利用预设的计算式计算系统效用,所述预设的计算式为:
    Figure PCTCN2016091604-appb-100007
    其中,
    Figure PCTCN2016091604-appb-100008
    U表示系统效用,xj表示系统中第j个UE的传输速率,B表示所述第j个UE占用的RB的数目,S表示所述第j个UE的发射功率,I表示所述第j个UE受到的干扰强度,N表示噪声强度。
  19. 一种基站,其特征在于,所述基站包括:处理器、存储器、总线以及通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如权利要求1-4任一项所述的调度方法。
  20. 一种基站,其特征在于,所述基站包括:处理器、存储器、总线以及通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如权利要求5-9任一项所述的功率控制方法。
PCT/CN2016/091604 2016-07-25 2016-07-25 一种调度方法、功率控制方法及基站 WO2018018377A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/091604 WO2018018377A1 (zh) 2016-07-25 2016-07-25 一种调度方法、功率控制方法及基站
EP16909958.7A EP3484228B1 (en) 2016-07-25 2016-07-25 Scheduling method, power control method, and base station
CN201680087314.7A CN109417814B (zh) 2016-07-25 2016-07-25 一种调度方法、功率控制方法及基站
JP2019503681A JP6729850B2 (ja) 2016-07-25 2016-07-25 スケジューリング方法、電力制御方法、基地局、およびプログラム
US16/257,097 US10785730B2 (en) 2016-07-25 2019-01-25 Scheduling method, power control method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091604 WO2018018377A1 (zh) 2016-07-25 2016-07-25 一种调度方法、功率控制方法及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/257,097 Continuation US10785730B2 (en) 2016-07-25 2019-01-25 Scheduling method, power control method, and base station

Publications (1)

Publication Number Publication Date
WO2018018377A1 true WO2018018377A1 (zh) 2018-02-01

Family

ID=61015253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091604 WO2018018377A1 (zh) 2016-07-25 2016-07-25 一种调度方法、功率控制方法及基站

Country Status (5)

Country Link
US (1) US10785730B2 (zh)
EP (1) EP3484228B1 (zh)
JP (1) JP6729850B2 (zh)
CN (1) CN109417814B (zh)
WO (1) WO2018018377A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788722A (zh) * 2019-11-08 2021-05-11 成都鼎桥通信技术有限公司 一种上行功率控制方法和设备
WO2023206108A1 (zh) * 2022-04-26 2023-11-02 Oppo广东移动通信有限公司 无线通信的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10588057B2 (en) 2018-03-14 2020-03-10 Cable Television Laboratories, Inc. Methods and systems for communicating between base stations of two different wireless communication networks
CN110996332A (zh) * 2019-12-25 2020-04-10 公安部第一研究所 一种基于干扰的覆盖自适应调整方法
WO2023211998A1 (en) * 2022-04-26 2023-11-02 Interdigital Patent Holdings, Inc. Fbe channel access in sidelink unlicensed

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472339A (zh) * 2007-12-25 2009-07-01 华为技术有限公司 一种小区干扰协调的方法
CN104247534A (zh) * 2012-01-19 2014-12-24 华为技术有限公司 上行资源分配的系统和方法
CN104754587A (zh) * 2013-12-31 2015-07-01 中兴通讯股份有限公司 一种lte系统干扰协调的方法及装置
WO2016089270A1 (en) * 2014-12-03 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) METHODS PROVIDING COORDINATION FOR UPLINK (UL) COORDINATED MULTIPOINT (CoMP) RECEPTION AND RELATED NETWORK NODES

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526963B2 (en) * 2003-10-30 2013-09-03 Qualcomm Incorporated Restrictive reuse for a wireless communication system
JP2006333346A (ja) 2005-05-30 2006-12-07 Matsushita Electric Ind Co Ltd 無線通信装置、基地局、移動通信端末及びデータ再送方法
JP2010504026A (ja) * 2006-09-14 2010-02-04 インターデイジタル テクノロジー コーポレーション 干渉の最適化によるセルおよびリソースブロックの割当て
EP2115893B1 (en) * 2007-02-09 2021-05-12 Telecom Italia S.p.A. Mitigation of co-channel interference in a wireless communication system
GB0713338D0 (en) * 2007-07-10 2007-08-22 Vodafone Plc Interference co-ordination
US8280396B2 (en) * 2008-01-11 2012-10-02 Alcatel Lucent Overload control method for a wireless cellular network
EP2239976A4 (en) * 2008-03-31 2015-09-09 Nec Corp WIRELESS COMMUNICATION SYSTEM, BASE STATION, MOBILE STATION, AND METHOD FOR DETERMINING A TRANSMISSION PARAMETER
CN101572868B (zh) * 2008-05-04 2013-08-07 中兴通讯股份有限公司 干扰调整通知方法及系统
US8825100B2 (en) * 2008-08-11 2014-09-02 Blackberry Limited Method and system for providing a power boost for a wireless communication link using a subset of subcarrier frequencies of the wireless communication link channel as a reduced bandwidth channel
EP2364566B1 (en) * 2008-11-03 2013-06-05 Nokia Siemens Networks Oy Methods, apparatuses, system, related computer program product and data structure for power control and resource allocation
US8340038B2 (en) * 2009-01-09 2012-12-25 Ntt Docomo, Inc. Method for time frequency spreading in a femtocell network for interference reduction
RU2515607C2 (ru) * 2009-01-29 2014-05-20 Эппл Инк Система и способ беспроводного доступа
US8660600B2 (en) * 2009-03-12 2014-02-25 Qualcomm Incorporated Over-the-air overload indicator
KR101547545B1 (ko) * 2009-04-20 2015-09-04 삼성전자주식회사 무선 통신 시스템의 기지국간 간섭 제거를 위한 방법 및 이를 위한 장치
KR101607988B1 (ko) * 2009-04-23 2016-04-12 삼성전자주식회사 무선통신시스템에서 간섭 완화를 위한 장치 및 방법
JP5222794B2 (ja) * 2009-06-05 2013-06-26 株式会社日立製作所 無線通信システムのリソース割当方法及び通信装置
JP4621798B1 (ja) * 2009-11-09 2011-01-26 京セラ株式会社 無線基地局及び通信制御方法
US20120282889A1 (en) * 2010-01-12 2012-11-08 Sumitomo Electric Industries, Ltd Base station device
US8159974B2 (en) * 2010-01-15 2012-04-17 Alcatel Lucent Method of configuring interfaces between a plurality of communication nodes
CN101841915A (zh) * 2010-01-19 2010-09-22 北京邮电大学 一种通信系统中的资源调度和分配方法及调度器
CN102143595A (zh) 2010-01-28 2011-08-03 华为技术有限公司 干扰协调处理方法和装置
JP5466034B2 (ja) * 2010-02-15 2014-04-09 京セラ株式会社 無線基地局及び通信制御方法
WO2011111751A1 (ja) * 2010-03-12 2011-09-15 京セラ株式会社 無線通信システム、高電力基地局、低電力基地局、及び、無線通信方法
WO2011118577A1 (ja) * 2010-03-23 2011-09-29 住友電気工業株式会社 基地局装置及び端末装置
CN105722227B (zh) * 2010-04-23 2020-01-03 瑞典爱立信有限公司 异构网中上行链路控制信道上的干扰减轻
JP5589558B2 (ja) * 2010-05-26 2014-09-17 ソニー株式会社 無線通信装置および無線通信方法
US9094920B2 (en) * 2010-08-16 2015-07-28 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatuses for power control using variable step size
JP2011101344A (ja) * 2010-09-01 2011-05-19 Kyocera Corp 無線基地局及び通信制御方法
JPWO2012063837A1 (ja) * 2010-11-10 2014-05-12 京セラ株式会社 無線通信システム、無線基地局、ネットワーク装置及び通信制御方法
CN102469466B (zh) * 2010-11-11 2015-05-06 华为技术有限公司 一种干扰处理方法与装置
WO2012062364A1 (en) * 2010-11-11 2012-05-18 Nokia Siemens Networks Oy Interference management for coexisting radio systems
US8879411B2 (en) * 2010-12-16 2014-11-04 Htc Corporation Method of handling interference mitigation in heterogeneous network by channel measurement and related communication device
US9363780B2 (en) * 2011-08-12 2016-06-07 Intel Corporation System and method of uplink power control in a wireless communication system
WO2014098685A1 (en) * 2012-12-21 2014-06-26 Telefonaktiebolaget L M Ericsson (Publ) Method and device for transmission scheduling
US9641284B2 (en) * 2013-12-19 2017-05-02 Lg Electronics Inc. Method and apparatus for receiving or transmitting interference information
CN104935396B (zh) * 2014-03-20 2019-09-10 中兴通讯股份有限公司 干扰消除或抑制的信令通知方法及系统、接收方法及装置
CN105210427B (zh) * 2014-04-22 2019-05-24 华为技术有限公司 确定配置参数、发送调度请求的方法及相关设备
US10237030B2 (en) * 2014-11-03 2019-03-19 Qualcomm Incorporated Communicating hybrid automatic repeat/request (HARQ) feedback in wireless communications
CN105830376B (zh) * 2014-11-24 2019-03-26 华为技术有限公司 一种自适应调制编码的方法及装置
US9629136B1 (en) * 2015-05-22 2017-04-18 Sprint Spectrum L.P. Method and system for reducing PRACH interference

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472339A (zh) * 2007-12-25 2009-07-01 华为技术有限公司 一种小区干扰协调的方法
CN104247534A (zh) * 2012-01-19 2014-12-24 华为技术有限公司 上行资源分配的系统和方法
CN104754587A (zh) * 2013-12-31 2015-07-01 中兴通讯股份有限公司 一种lte系统干扰协调的方法及装置
WO2016089270A1 (en) * 2014-12-03 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) METHODS PROVIDING COORDINATION FOR UPLINK (UL) COORDINATED MULTIPOINT (CoMP) RECEPTION AND RELATED NETWORK NODES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3484228A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788722A (zh) * 2019-11-08 2021-05-11 成都鼎桥通信技术有限公司 一种上行功率控制方法和设备
CN112788722B (zh) * 2019-11-08 2023-03-31 成都鼎桥通信技术有限公司 一种上行功率控制方法和设备
WO2023206108A1 (zh) * 2022-04-26 2023-11-02 Oppo广东移动通信有限公司 无线通信的方法及装置

Also Published As

Publication number Publication date
EP3484228A1 (en) 2019-05-15
CN109417814B (zh) 2020-09-29
EP3484228B1 (en) 2020-02-26
US20190174425A1 (en) 2019-06-06
EP3484228A4 (en) 2019-06-19
JP6729850B2 (ja) 2020-07-29
CN109417814A (zh) 2019-03-01
JP2019522439A (ja) 2019-08-08
US10785730B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
US11252671B2 (en) Power control method and apparatus
CN110062453B (zh) 移动终端以及控制移动终端的方法
US20170265150A1 (en) User equipment and method for enhanced uplink power control
WO2018018377A1 (zh) 一种调度方法、功率控制方法及基站
US10932200B2 (en) Uplink power control method and apparatus to reduce user equipment-to-user equipment cross interference
WO2014101674A1 (zh) 负载均衡的方法和网络控制节点
CN106793047B (zh) 一种上行功率控制方法及基站
WO2018120065A1 (zh) 动态时分双工的设置装置、方法以及通信系统
WO2019028767A1 (zh) 分配和接收频域资源的方法、装置及通信系统
JP2014529961A (ja) 無線通信システム内でシングルポイント送信器からシングルポイント受信器への少なくとも1つの第1送信およびマルチポイント送信器からまたはマルチポイント受信器への少なくとも1つの第2送信を調整する方法、ネットワーク・ノード、およびその移動局
JP2015513281A (ja) ヘテロジニアスネットワークにおける電力適応方法および装置
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信系统
WO2014108028A1 (zh) 无线通信方法和无线通信设备
CN109155921B (zh) 用于设备到设备通信的方法和装置
JP5825421B2 (ja) 通信制御装置、通信制御方法及び通信制御システム
JP6183377B2 (ja) 基地局装置、通信方法および端末装置
JP2017046077A (ja) 無線基地局、ユーザ端末、無線通信方法
EP2692081B1 (en) Selection of a secondary component carrier based on interference information
US20190150101A1 (en) Network node and method for ue specific power handling
WO2016045312A1 (zh) 干扰调节处理方法及装置
KR20160140098A (ko) 무선 패킷 네트워크를 위한 스케줄링 방법 및 장치
WO2017024570A1 (zh) 一种确定小区簇子帧配置的方法及装置
WO2021120035A1 (zh) 上行功率控制的方法和装置
EP3000271B1 (en) Signalling scheme
CN117479130A (zh) 侧行链路质量确定方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016909958

Country of ref document: EP

Effective date: 20190206