WO2023206108A1 - 无线通信的方法及装置 - Google Patents

无线通信的方法及装置 Download PDF

Info

Publication number
WO2023206108A1
WO2023206108A1 PCT/CN2022/089412 CN2022089412W WO2023206108A1 WO 2023206108 A1 WO2023206108 A1 WO 2023206108A1 CN 2022089412 W CN2022089412 W CN 2022089412W WO 2023206108 A1 WO2023206108 A1 WO 2023206108A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency range
terminal
interference signal
signal
interference
Prior art date
Application number
PCT/CN2022/089412
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/089412 priority Critical patent/WO2023206108A1/zh
Publication of WO2023206108A1 publication Critical patent/WO2023206108A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a wireless communication method and device.
  • the terminal can perform uplink transmission on the resource block (RB) allocated by the network device.
  • RB resource block
  • interference signals will be generated between the signal on the RB and the direct current (DC) signal of the terminal. If the interference signal falls within the receiving frequency range of other terminals, it will cause interference to the signal reception of other terminals.
  • This application provides a wireless communication method and device. Various aspects involved in the embodiments of this application are introduced below.
  • a first aspect provides a wireless communication method, including: a network device determines a first resource block RB position based on first information, the first RB position is used to indicate an RB of a first terminal, and the first information includes The first DC position of the first terminal.
  • a wireless communication method including: a second terminal sending first indication information to a network device, where the first indication information is used to instruct the second terminal to perform signal reception or transmission in a first frequency range. , the first frequency range is used to determine the first resource block RB position, and the first RB position is used to indicate the RB of the first terminal.
  • a wireless communication method including: a first terminal determines a second DC position, the second DC position is determined based on second information, and the second information includes a second resource block RB position, so The second RB position is used to indicate the RB of the first terminal.
  • a wireless communication method including: a network device sending second indication information to a first terminal, the second indication information being used to instruct the first terminal to determine a second direct current DC position, and the second direct current DC position is determined by the network device.
  • the two DC positions are determined based on second information, the second information includes a second resource block RB position, and the second RB position is used to indicate the RB of the first terminal.
  • a wireless communication method including: a second terminal sending first indication information to a network device, the first indication information being used to instruct the second terminal to perform signal reception or transmission in a first frequency range. , the first frequency range is used to determine the second DC position of the first terminal.
  • a wireless communication device is provided.
  • the device is a network device and includes: a determining unit configured to determine a first resource block RB position based on first information, where the first RB position is used to indicate a first resource block RB position.
  • the RB of the terminal, the first information includes the first DC position of the first terminal.
  • a seventh aspect provides a wireless communication device, where the device is a second terminal, including: a sending unit configured to send first indication information to a network device, where the first indication information is used to instruct the second terminal A first frequency range for signal reception or transmission, and the first frequency range is used to determine the first RB position allocated to the first terminal.
  • a wireless communication device is provided.
  • the device is a first terminal and includes: a determining unit configured to determine a second DC position, where the second DC position is determined based on second information, and the second DC position is determined based on the second information.
  • the information includes a second resource block RB position, and the second RB position is used to indicate the RB of the first terminal.
  • a wireless communication device is provided.
  • the device is a network device and includes: a sending unit configured to send second indication information to a first terminal, where the second indication information is used to instruct the first terminal.
  • Determine a second direct current DC position the second DC position is determined based on second information, the second information includes a second resource block RB position, and the second RB position is used to indicate the RB of the first terminal.
  • a wireless communication device including: a sending unit configured to send first indication information to a network device, where the first indication information is used to instruct the second terminal to perform signal reception or transmission. Frequency range, the first frequency range is used to determine the second DC position of the first terminal.
  • a wireless communication device including a memory and a processor, the memory is used to store a program, and the processor is used to call the program in the memory to execute the first to fifth aspects. any of the methods described.
  • a device including a processor for calling a program from a memory to execute the method described in any one of the first to fifth aspects.
  • a chip including a processor for calling a program from a memory, so that a device installed with the chip executes the method described in any one of the first to fifth aspects.
  • a fourteenth aspect provides a computer-readable storage medium having a program stored thereon, the program causing a computer to perform the method described in any one of the first to fifth aspects.
  • a fifteenth aspect provides a computer program product, including a program that causes a computer to perform the method described in any one of the first to fifth aspects.
  • a sixteenth aspect provides a computer program that causes a computer to perform the method described in any one of the first to fifth aspects.
  • the embodiment of the present application can change the frequency range of the interference signal by determining the first RB position allocated to the first terminal and/or the second DC position of the first terminal, thereby helping to avoid or reduce the impact of the interference signal on Interference occurs in signal reception at the second terminal.
  • Figure 1 is an example diagram of a wireless communication system applied in the embodiment of the present application.
  • Figure 2 is a schematic diagram of a signal modulation method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the positional relationship before and after signal modulation provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the signal transmission process provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of the DC position provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of image interference provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of intermodulation interference provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of third-order intermodulation interference and fifth-order intermodulation interference provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the interference signal provided by the embodiment of the present application causing interference to the second terminal.
  • Figure 10 is a schematic diagram of another wireless communication system provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of interference signal indication provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a bitmap provided by an embodiment of the present application.
  • Figure 13 is a schematic flow chart of a wireless communication method provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram for determining the position of the third RB provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram for determining the position of the third RB provided by an embodiment of the present application.
  • Figure 16 is a schematic flow chart of another wireless communication method provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram for determining the third frequency range provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram for determining the fourth frequency range provided by an embodiment of the present application.
  • Figure 19 is another schematic diagram for determining the third frequency range provided by the embodiment of the present application.
  • Figure 20 is another schematic diagram for determining the fourth frequency range provided by the embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a wireless communication device provided by another embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a wireless communication device provided by yet another embodiment of the present application.
  • Figure 23 is a schematic structural diagram of a wireless communication device provided by yet another embodiment of the present application.
  • Figure 24 is a schematic structural diagram of a wireless communication device provided by yet another embodiment of the present application.
  • Figure 25 is a schematic structural diagram of a wireless communication device provided by yet another embodiment of the present application.
  • Figure 26 is a schematic structural diagram of a wireless communication device provided by yet another embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of the present application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • the communication device involved in this application may be a network device or a terminal device.
  • the first communication device is a network device
  • the second communication device is a terminal device.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the first communication device and the second communication device are both network devices, or both are terminal devices.
  • spectrum relocation can be accomplished through signal modulation.
  • the signal generated by the terminal is a low-frequency signal, and the low-frequency signal is not suitable for transmission in the channel. After signal modulation, the low-frequency signal can be converted into a high-frequency signal suitable for transmission in the channel.
  • Signal modulation can be achieved through mixers.
  • the mixer can mix the input signal F1 and the modulated carrier signal F0 to obtain a high-frequency signal F2.
  • the mixer can perform nonlinear operations on the input signal F1 and the modulated carrier signal F0, obtain the frequency difference signal or the frequency sum signal of the two signals, and filter out the required high-order frequency signal from the obtained signal.
  • F2 the frequency position relationship of F1, F0 and F2 is shown in Figure 3.
  • the F0 position is also called the L0 position.
  • the F0 position is the frequency position of the local oscillator.
  • the center frequency point is the F0 position.
  • the center frequency point is also called the DC carrier position, that is, the DC position. Therefore, the F0 position is the DC position.
  • signal modulation may be implemented in a radio frequency integrated circuit (RFIC) (also known as a radio frequency transceiver).
  • RFIC radio frequency integrated circuit
  • the signal transmission process is introduced below in conjunction with Figure 4.
  • the terminal in the embodiment of the present application may include a baseband integrated circuit (BBIC), an RFIC, a power amplifier (power amplifier, PA), and an antenna.
  • the RFIC may include the mixer described above.
  • BBIC is used to generate baseband signals, which are low-frequency signals.
  • the BBIC can send the baseband signal to the RFIC.
  • the RFIC After the RFIC receives the baseband signal, it can perform signal modulation on the baseband signal based on the DC signal (or F0) to obtain a radio frequency signal. Radio frequency signals are high frequency signals.
  • the RFIC can send the radio frequency signal to the PA.
  • the PA can amplify the radio frequency signal and output it to the antenna, which radiates the radio frequency signal into the air.
  • the setting of the DC position depends on the terminal implementation.
  • the terminal can independently determine the DC position.
  • the embodiment of the present application does not specifically limit the DC position.
  • the DC position can be the center frequency point of the transmitting frequency band.
  • the DC position may be the center frequency point of the transmission channel.
  • the DC position is the center frequency point of the bandwidth part (BWP) configured by the network device.
  • BWP bandwidth part
  • the DC position can also be offset by a certain distance from the above-mentioned center frequency point, as shown in Figure 5.
  • the above-mentioned transmission channel is also referred to as a useful channel in the following, and the solution of the embodiment of the present application will be described below by taking the useful channel as an example.
  • the network device may allocate RB positions for uplink transmission to the terminal.
  • the terminal can perform uplink transmission in the allocated RB position.
  • the signal at the DC position will produce interference signals with the signal at the RB position allocated by the network equipment to the terminal.
  • the interference signal may include an image interference signal and/or an intermodulation interference signal.
  • FIG. 6 shows a schematic diagram of generating an image interference signal.
  • the generation of the image signal is similar to the signal modulation process described above.
  • the image interference signal can be understood as the mapping of the signal at the RB position to the signal at the DC position. This image signal is a useless signal, and this image signal will cause interference in the frequency range that overlaps with the image signal.
  • the location of the intermodulation interference signal can be obtained based on the sum/or difference of frequencies between two or more signals.
  • Intermodulation interference signals can be generated by two or more signals passing through nonlinear devices (such as PAs).
  • the location of the intermodulation interference signal may be determined based on one or more of: RB location, DC location, and the location of the image interference signal.
  • the position of the intermodulation interference signal can be shown in Figure 7.
  • the RB position allocated by the network equipment to the terminal is F1
  • the frequency range of the image interference signal is F2.
  • the frequency range of the intermodulation interference signal generated by F1 and F2 is F3.
  • the sum of the absolute value of m and the absolute value of n is the level of the intermodulation interference signal. For example, when the sum of the absolute values of m and n is 3, the intermodulation interference signal generated is a third-order intermodulation interference signal. For another example, when the sum of the absolute values of m and n is 5, the intermodulation interference signal generated is a fifth-order intermodulation interference signal.
  • the intermodulation interference signal shown in Figure 7 is generated by the image interference signal and the signal at the RB position, and the embodiment of the present application is not limited to this.
  • the intermodulation interference signal may also include an interference signal generated by the signal at the RB position and the signal at the DC position.
  • the intermodulation interference signal may also include an interference signal generated by an image interference signal and a signal at a DC position.
  • the third-order intermodulation interference signal between the signal at the RB position and the image interference signal is q
  • the fifth-order intermodulation interference signal between the signal at the RB position and the image interference signal is Q
  • the third-order intermodulation signal between the signal at the RB position and the signal at the DC position is y
  • the fifth-order intermodulation signal between the signal at the RB position and the signal at the DC position is Y.
  • the third-order intermodulation interference signal between the image interference signal and the signal at the DC position is d
  • the fifth-order intermodulation interference signal between the image interference signal and the signal at the DC position is D.
  • the above-mentioned interference signal (such as image interference signal and/or intermodulation interference signal) overlaps (partially or completely) with the frequency range of signal transmission by other terminals, it will cause interference to the signal transmission of other users.
  • the frequency band for signal reception by the second terminal is Fa
  • the frequency range of the interference signal generated by the first terminal is F3. Since F3 partially overlaps with Fa, the interference signal generated by the first terminal may cause interference to the third terminal.
  • the signal reception of the second terminal causes interference, causing the reception performance of the second terminal to degrade.
  • One way is to reduce the transmit signal power of the first terminal. After the transmit signal power of the first terminal decreases, the interference to the second terminal will be reduced. However, this method will have an impact on the transmission performance of the first terminal, resulting in a reduction in the transmission performance of the transmitting terminal.
  • Another way is for the second terminal to reduce the receiving sensitivity of the interfered frequency band. This method will have an impact on the reception performance of the second terminal, causing the reception performance of the second terminal to be degraded.
  • embodiments of the present application provide a wireless communication method and device to change the position of the interference signal by determining the first RB position allocated by the network device to the first terminal and/or the second DC position of the first terminal. (or frequency band), thereby helping to avoid or reduce the impact of interference signals on the signal reception of the second terminal.
  • the first RB position may be determined based on the first information.
  • the first information may include one or more of the following information: a first DC position of the first terminal, a first frequency range, and a frequency range in which interference exists in the first frequency range (hereinafter referred to as interference frequency). scope).
  • the first information may include the first DC location.
  • the first DC position does not change, by determining the first RB position, the frequency position of the interference signal generated by the first RB position can be changed, thereby avoiding or reducing the impact of the interference signal on the signal reception of the second terminal.
  • the first information may include a first frequency range and/or an interference frequency range. When determining the first RB position, using the first frequency range and/or the interference frequency range as a reference factor can avoid or reduce the interference to the first frequency range and/or the interference frequency range caused by the interference signal generated by the first RB position.
  • the second DC location may be determined based on the second information.
  • the second information may include one or more of the following information: the second RB position, the first frequency range, and the interference frequency range allocated by the network device to the first terminal.
  • the first information may include the second RB location.
  • the second RB position does not change, by determining the second DC position, the frequency position of the interference signal generated by the second DC position can be changed, thereby avoiding or reducing the impact of the interference signal on the signal reception of the second terminal.
  • the first information may include a first frequency range and/or an interference frequency range. When determining the second DC position, using the first frequency range and/or the interference frequency range as a reference factor can avoid or reduce interference signals generated by the second DC position from interfering with the first frequency range and/or the interference frequency range.
  • the first frequency range is the frequency range in which the second terminal receives or transmits signals. That is, the second terminal receives or transmits signals in the first frequency range.
  • the first frequency range is the receiving frequency band or transmitting frequency range of the first terminal. frequency band.
  • interference may or may not exist, or interference may exist only in part of the frequency band. This is not specifically limited in the embodiments of this application. Therefore, the interfering frequency range may be part or all of the first frequency range.
  • the first frequency range is transmitted by the second terminal to the network device.
  • the second terminal may send the first frequency range to the network device through the first indication information.
  • the first terminal may not actually interfere with the signal reception of the second terminal. It can only be understood that interference may potentially occur. For example, when the linearity of the first terminal is relatively good, or the degree of suppression of out-of-band signals is relatively high, the intermodulation interference signal generated by it is relatively weak. In this case, the interference signal generated by the first terminal may not interfere with signal reception by the second terminal.
  • the second terminal can report the interfered frequency range, and after receiving the interfered frequency range reported by the second terminal, the RB position and/or DC position can be adjusted, so that the RB position can be adjusted. And/or DC position is accurately adjusted to avoid limiting the assignable range of RB position and/or DC position.
  • the second terminal may report only the interfering frequency range, or may report the entire first frequency range to the network device.
  • the second terminal may report the signal measurement results in the interference frequency range to the network device, or the second terminal may report all the signal measurement results in the first frequency range to the network device.
  • the second terminal can detect the reception performance of the downlink signal. If it detects that the received signal quality of the downlink signal has declined, it can send first indication information to the network device to indicate the presence of signal reception by the second terminal. interference.
  • the second terminal may also determine the interference frequency range where the signal quality is reduced, and send the interference frequency range to the network device through the first indication information, that is, the first indication information may also indicate the interference frequency range.
  • the second terminal may measure a downlink signal (such as a downlink reference signal or a downlink data signal), and when the measurement result of the downlink signal is lower than a preset threshold, send the first indication information to the network device.
  • the network device may determine that there is interference in signal reception of the second terminal.
  • the first indication information is sent by the second terminal to the network device when the first condition is met.
  • the first condition includes that the signal measurement result of the downlink signal of the second terminal is lower than a preset threshold.
  • the interference caused by the first terminal to the second terminal may not interfere with the entire frequency band or the entire channel. That is, the interference signal generated by the first terminal may not interfere with the entire receiving frequency band of the second terminal (i.e., the first frequency range). cause interference.
  • the frequency range of the interference signal generated by the first terminal partially overlaps with the first frequency range.
  • the second terminal can measure downlink signals on different frequencies within the first frequency range, and determine the interference frequency range based on the signal measurement results.
  • the second terminal may determine that there is interference in signal reception on the frequency. By comparing the signal measurement result with the preset threshold, the second terminal can determine the interference frequency range within the first frequency range.
  • Signal measurement results may include one or more of the following: signal-to-jamming and noise ratio (SINR) measurement results, reference signal receiving power (RSRP) measurement results, reference Measurement results of signal receiving quality (RSRQ).
  • SINR signal-to-jamming and noise ratio
  • RSRP reference signal receiving power
  • RSSQ reference Measurement results of signal receiving quality
  • the interference frequency range may also be called a high interference area, and the frequency range within the first frequency range except the interference frequency range may be called a low interference area.
  • the first frequency range can be divided into a high interference area and a low interference area.
  • the high interference area is the frequency range where the signal measurement result is less than the preset threshold
  • the low interference area is the frequency range where the signal measurement result is greater than or equal to the preset threshold.
  • the preset threshold may be a threshold predefined in the protocol.
  • the preset threshold may be a threshold determined by the second terminal, that is, the preset threshold is determined by the second terminal.
  • the preset threshold may be a threshold determined by the network device corresponding to the second terminal, that is, the preset threshold is determined by the network device corresponding to the second terminal.
  • the second terminal may only send the signal measurement results of the interference frequency range to the network device. In other embodiments, the second terminal may send all the signal measurement results of the first frequency range to the network device. By sending the signal measurement results to the network device, it can help the network device accurately determine the frequency range in which the second terminal has interference.
  • the first frequency range may be indicated by a bitmap.
  • the first frequency range may be divided into multiple frequency bands based on the first frequency unit.
  • the second terminal may indicate to the network device whether there is interference in the multiple frequency bands through a bitmap, where the bitmap is based on the first frequency unit.
  • the first frequency unit may be one or more of RB, sub-carrier space (SCS), and predefined frequency size.
  • the first frequency range can be divided into n sub-frequency ranges, then the bitmap can include n bits, the n bits correspond to the n sub-frequency ranges one-to-one, and the n bits
  • the bits are respectively used to indicate whether interference exists in the n sub-frequency ranges or whether the interference is greater than a preset threshold.
  • the interference that is greater than or equal to the preset threshold may be called high interference
  • the interference that is lower than the preset threshold may be called low interference.
  • the bitmap can indicate the sub-frequency range where interference exists and the sub-frequency range where interference does not exist through different values of bits. For example, the value of the bit corresponding to the sub-frequency range where interference exists is 1, and the value of the bit corresponding to the sub-frequency range where interference does not exist is 0. For example, if the 1st to mth sub-frequency range is a high interference area and the m+1 to nth sub-frequency range is a low interference area, the value of the first m bits in the bitmap can be 1, and the remaining bits can be The bit value is 0. Of course, the value of the bit corresponding to the sub-frequency range where interference exists may be 0, and the value of the bit corresponding to the sub-frequency range where interference does not exist may be 1. This is not specifically limited in the embodiment of the present application.
  • Figure 13 is a schematic flow chart of a wireless communication method provided by an embodiment of the present application. The method shown in Figure 13 includes step S1310.
  • step S1310 the network device determines the first RB location based on the first information.
  • the first RB position is used to indicate the RB of the first terminal.
  • the determination of the first RB position allocated to the first terminal can be understood as adjusting the first RB position allocated to the first terminal.
  • the first RB position may also be called the adjusted RB position.
  • the network device determining the first RB position allocated to the first terminal may include the network device determining the number of the first RBs. By changing the number of first RBs, the location of the interference signal generated by the first terminal can be changed, thereby avoiding or reducing interference to signal reception by the second terminal.
  • the first information may include the first frequency range and/or the interference frequency range.
  • the following takes the first information as the first frequency range as an example to introduce the solution of the embodiment of the present application.
  • the network device may determine the first RB position allocated to the first terminal based on the interference frequency range.
  • the first RB position does not cause interference to the interference frequency range.
  • the frequency range of the interference signal determined based on the first RB position does not overlap with the interference frequency range.
  • the method shown in Figure 13 further includes step S1302.
  • the second terminal sends the first instruction information to the network device.
  • the network device can first determine whether the first interference signal generated by the first terminal interferes with the interference frequency range, that is, determine whether the first terminal is the source of interference.
  • the network device determines the first RB position. In other words, when the network device determines that the first terminal is the interference source, the network device may determine the first RB position based on the first information. If the first terminal is not an interference source, the network device does not need to determine the first RB position.
  • the network device may determine the first frequency range based on the first indication information.
  • the network device may determine the frequency range of the first interference signal of the first terminal based on the first DC position and the second RB position.
  • the frequency range of the first interference signal may be determined by the first DC position and the second RB position. Location determined.
  • the network device may determine whether the first terminal is the interference source based on the interference frequency range and the frequency range of the first interference signal.
  • the second RB position here may refer to the RB position allocated by the network device to the first terminal before determining the first RB position, or in other words, the second RB position is the current RB position of the first terminal.
  • the first DC position here may refer to the current DC position of the first terminal.
  • the first DC location may be reported to the network device by the first terminal.
  • the first terminal may report the first DC location to the network device through radio resource control (radio resource control, RRC) signaling.
  • radio resource control radio resource control
  • the network device may determine whether the first terminal is an interference source based on one or more of the following information: the relationship between the frequency range of the first interference signal and the interference frequency range; the relationship between the first terminal and the third interference signal. The distance between the two terminals. In other words, it can be determined that the first terminal is the interference source based on the second condition.
  • the second condition includes one or more of the following determinations: the frequency range of the first interfering signal at least partially overlaps with the interference frequency range; the distance between the first terminal and the second terminal is less than or equal to the first preset threshold.
  • the network device may determine the first terminal as the interference source.
  • the network device may determine the first terminal to be the interference source.
  • the network device determines that the frequency range of the first interference signal at least partially overlaps with the interference frequency range, and the distance between the first terminal and the second terminal is less than or equal to the first preset threshold, the network device The first terminal can be determined to be the interference source.
  • the network device can determine whether the first terminal is the interference source based on the distance between the first terminal and the second terminal and the relationship between the frequency range of the first interference signal and the interference frequency range. In this way, the judgment result of the interference source can be made more accurate, thereby achieving more precise adjustment of the RB position.
  • the first interference signal generated by the first terminal may include one or more of a first image interference signal and a first intermodulation interference signal.
  • the embodiment of the present application does not specifically limit the level of the first intermodulation interference signal.
  • the first intermodulation interference signal may include a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the first intermodulation interference signal may also include other levels of intermodulation interference signals.
  • the intermodulation interference signal may include a second-order intermodulation interference signal, a fourth-order intermodulation interference signal, etc.
  • the frequency range of the first interference signal may be determined based on the first DC position and the second RB position.
  • the frequency range of the first image interference signal can be determined based on the second RB position and the first DC position.
  • the frequency range of the first intermodulation interference signal may be determined based on at least two of the following information: the frequency range of the first image interference signal, the second RB position, and the first DC position.
  • the first intermodulation interference signal may include one or more of the following signals: an intermodulation interference signal generated by the first image interference signal and the signal at the second RB position, the intermodulation interference signal at the first DC position.
  • the network device may reversely derive the third RB position based on the first frequency range, and the third RB position may be understood as an allocable RB area (or interval). Further, the network device may determine that the first RB position allocated to the first terminal is an RB position in the third RB position. In other words, the first RB position is part or all of the third RB position. For example, the network device may select a first RB position from the third RB position and allocate the first RB position to the first terminal.
  • the network device may determine the intermodulation interference location based on the interference frequency range.
  • the intermodulation interference location does not overlap with the interference frequency range.
  • the network device may determine the third RB position based on the first DC position and the intermodulation interference position.
  • the third-order intermodulation interference signal shown in Figure 14 is the third-order intermodulation interference signal between the signal at the third RB position and the image interference signal.
  • the network device may select the first RB position from the third RB position and indicate the first RB position to the first terminal.
  • the first RB position may include the number of first RBs.
  • the terminal device may send an uplink signal at the first RB position.
  • the solution in which the first information includes the interference frequency range is introduced above.
  • the solution in which the first information includes the first frequency range is introduced below.
  • the first frequency range is a frequency range in which the second terminal receives or transmits signals.
  • the first frequency range may be configured by the network device to the second terminal.
  • the network device may determine the first RB location based on the first frequency range. For example, the network device may determine the number of first RBs based on the first frequency range.
  • the first RB location does not cause interference to the first frequency range.
  • the frequency range of the interference signal determined based on the first RB position does not overlap with the first frequency range.
  • the network device actively avoids signal interference from the perspective of scheduling.
  • it can avoid allocating the RB position to the first terminal that will cause interference to the second terminal. , so that the interference signal generated by the first RB position allocated to the first terminal does not fall within the first frequency range as much as possible, so as to avoid or reduce interference to the signal reception of the second terminal.
  • the network device may determine the third RB location based on the first frequency range.
  • the first RB position is the RB position among the third RB positions.
  • the network device may allocate the first RB position to the first terminal from the third RB position, that is, the first RB position is part or all of the third RB position.
  • the third RB position may refer to an RB position that does not cause interference to the first frequency range. For example, the frequency range of the second interference signal generated by the RB position in the third RB position and the first DC position does not overlap with the first frequency range.
  • the second interference signal may include one or more of a second image interference signal and a second intermodulation interference signal.
  • the embodiment of the present application does not specifically limit the level of the second intermodulation interference signal.
  • the second intermodulation interference signal may include a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the second intermodulation interference signal may also include other levels of intermodulation interference signals.
  • the second intermodulation interference signal may include a second-order intermodulation interference signal, a fourth-order intermodulation interference signal, etc.
  • the frequency range of the second interference signal may be determined based on the first DC position and the third RB position.
  • the frequency range of the second image interference signal may be determined based on the third RB position and the first DC position.
  • the frequency range of the second intermodulation interference signal may be determined based on at least two of the following information: the frequency range of the second image interference signal, the third RB position, and the first DC position.
  • the second intermodulation interference signal may include one or more of the following signals: an intermodulation interference signal generated by the second image interference signal and the signal at the third RB position, the intermodulation interference signal at the first DC position. The intermodulation interference signal generated by the signal and the signal at the third RB position, the intermodulation interference signal generated by the second image interference signal and the signal at the first DC position.
  • the network device may allocate the first RB position to the first terminal based on the first frequency range.
  • the network device allocating the first RB position to the first terminal may include the network device allocating the first RB number to the first terminal.
  • the network device may reversely derive the third RB location (or allocable RB area) based on the first frequency range. Further, the network device may allocate the first RB position to the first terminal from the third RB position.
  • the network device may determine the intermodulation interference location based on the first frequency range.
  • the intermodulation interference position does not overlap with the first frequency range.
  • the network device may determine the image interference position and the third RB position based on the first DC position and the intermodulation interference position.
  • the third-order intermodulation interference signal shown in Figure 15 is the third-order intermodulation interference signal between the signal at the third RB position and the image interference signal.
  • the network device may select the first RB position from the third RB position and indicate the first RB position to the first terminal.
  • the first RB position may include the number of first RBs.
  • the terminal device may send an uplink signal at the first RB position.
  • inventions of the present application can also determine the second DC position of the first terminal to avoid or reduce interference to the signal reception of the second terminal.
  • the solution for determining the second DC position of the first terminal will be introduced below with reference to Figures 16-20.
  • Figure 16 is another wireless communication method provided by an embodiment of the present application.
  • the method includes step S1610.
  • step S1610 the first terminal determines the second DC position.
  • the second DC location is determined based on the second information.
  • Determining the second DC position in the embodiment of the present application can be understood as adjusting the DC position.
  • the second DC position may also be called the adjusted DC position.
  • the method shown in Figure 16 may further include step S1602.
  • step S1602 the network device sends second instruction information to the first terminal.
  • the second instruction information is used to instruct the first terminal to determine the second DC position, or the first instruction information is used to instruct the first terminal to adjust the DC position.
  • the first terminal determines the second DC position.
  • the second indication information may indicate the interference frequency range.
  • the second DC location may be determined based on the second information.
  • the second DC location may be determined based on the second RB location.
  • the second DC position may be determined based on the first frequency range.
  • the second DC position may be determined based on the interference frequency range.
  • the second DC location may be determined by the network device or the first terminal, which is not specifically limited in this embodiment of the present application. If the second DC location is determined by the network device, the network device may indicate the second DC location to the first terminal. After receiving the second DC position indicated by the network device, the first terminal may adjust the DC position to the second DC position.
  • the second indication information may be used to indicate one or more of the following information: a second frequency range in which DC can be placed, and a third frequency range in which DC cannot be placed.
  • the second frequency range in which DC can be placed can be understood as a DC whitelist or an allocable DC location
  • the third frequency range in which DC cannot be placed can be understood as a DC blacklist or unallocable DC location.
  • the DC position within the second frequency range will affect signal reception by the second terminal, and the DC position within the third frequency range will not affect signal reception by the second terminal. It can be understood that the second frequency range does not overlap with the third frequency range.
  • the first terminal may determine the second DC position.
  • the second DC location is within the second frequency range, and/or the second DC location is not within the third frequency range. If the second indication information indicates the second frequency range, the second DC position is located within the second frequency range. If the second indication information indicates the third frequency range, the second DC position is not located within the third frequency range, or the second DC position is located within a frequency range outside the third frequency range.
  • the second frequency range and/or the third frequency range may be determined based on the first information.
  • the second frequency range and/or the third frequency range may be determined based on the first frequency range.
  • the second frequency range and/or the third frequency range may be determined based on the interference frequency range.
  • the following describes a solution for determining the second frequency range and/or the third frequency range based on the first frequency range.
  • the network device may determine the second frequency range and/or the third frequency range based on the first frequency range.
  • the frequency range of the third interference signal generated at the DC position within the second frequency range does not overlap with the first frequency range.
  • the frequency range of the third interference signal generated by the DC position in the second frequency range and the second RB (current RB) position does not overlap with the first frequency range. Since the second DC position is located within the second frequency range, it can also be said that the frequency range of the third interference signal is determined based on the second DC position and the second RB position.
  • the frequency range of the interference signal generated by the DC position in the third frequency range overlaps with the first frequency range.
  • the frequency range of the interference signal generated by the DC position and the second RB position in the third frequency range overlaps with the first frequency range (including partial or complete overlap).
  • the second DC position may be located within the second frequency range or not within the third frequency range. Therefore, the frequency range of the third interference signal determined based on the second DC position and the second RB position does not overlap with the first frequency range.
  • the second frequency range determined according to the first frequency range and the second frequency range determined according to the interference frequency range may be different, or alternatively, the second frequency range determined according to the first frequency range may be different.
  • the third frequency range may be different from the third frequency range determined based on the interference frequency range.
  • the above-mentioned third interference signal may include one or more of a third image interference signal and a third intermodulation interference signal.
  • the embodiment of the present application does not specifically limit the level of the third intermodulation interference signal.
  • the third intermodulation interference signal may include a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the third intermodulation interference signal may also include other levels of intermodulation interference signals.
  • the intermodulation interference signal may include a second-order intermodulation interference signal, a fourth-order intermodulation interference signal, etc.
  • the frequency range of the third interference signal may be determined based on the DC position (or the second DC position) within the second frequency range and the second RB position.
  • the frequency range of the third image interference signal can be determined based on the second RB position and the second DC position.
  • the frequency range of the third intermodulation interference signal may be determined based on at least two of the following information: the frequency range of the third image interference signal, the second RB position, the second DC position (or the second frequency range or the third Frequency Range).
  • the third intermodulation interference signal may include one or more of the following signals: the intermodulation interference signal generated by the third image interference signal and the signal at the second RB position, the signal at the second DC position and the second intermodulation interference signal.
  • the network device may first reversely deduce the intermodulation interference position based on the first frequency range, and then determine the second frequency range and/or the third frequency range based on the intermodulation interference position. Three frequency ranges.
  • Figure 17 shows a solution for determining the second frequency range based on the first frequency range.
  • the network device may first determine the intermodulation interference position 1 based on the first frequency range.
  • the intermodulation interference position 1 does not overlap with the first frequency range.
  • the network device may determine the second frequency range based on the second RB position and the intermodulation interference position 1.
  • the third-order intermodulation interference signal shown in Figure 17 is the third-order intermodulation interference signal between the DC and the image interference signal.
  • Figure 18 shows a solution for determining the third frequency range based on the first frequency range.
  • the network device may first determine the intermodulation interference location 2 based on the first frequency range.
  • the intermodulation interference position 2 overlaps with the first frequency range, or in other words, the intermodulation interference position 2 is the first frequency range.
  • the network device may determine the third frequency range based on the second RB position and the intermodulation interference position 2.
  • the third-order intermodulation interference signal shown in Figure 18 is the third-order intermodulation interference signal between the signal at the DC position and the image interference signal.
  • the following describes a solution for determining the second frequency range and/or the third frequency range based on the interference frequency range.
  • the method of determining the second frequency range and/or the third frequency range based on the interference frequency range is similar to the method of determining the second frequency range and/or the third frequency range based on the first frequency range. For details not described in detail, please refer to the above. description of.
  • the network device may determine the second frequency range and/or the third frequency range based on the interference frequency range.
  • the frequency range of the third interference signal generated at the DC position within the second frequency range does not overlap with the interference frequency range.
  • the frequency range of the third interference signal generated by the DC position and the second RB position within the second frequency range does not overlap with the interference frequency range. Since the second DC position is located within the second frequency range, it can also be said that the frequency range of the third interference signal is determined based on the second DC position and the second RB position.
  • the frequency range of the interference signal generated at the DC position within the third frequency range overlaps with the interference frequency range.
  • the frequency range of the interference signal generated by the DC position in the third frequency range and the second RB position overlaps with the interference frequency range (including partial or complete overlap).
  • the second DC position may be located within the second frequency range or not within the third frequency range. Therefore, the frequency range of the third interference signal determined based on the second DC position and the second RB position does not overlap with the interference frequency range.
  • the network device determines the second frequency range and/or the third frequency range, it can first reversely deduce the intermodulation interference position based on the interference frequency range, and then determine the second frequency range and/or the third frequency range based on the intermodulation interference position. Frequency Range.
  • Figure 19 shows a solution for determining the second frequency range based on the interference frequency range.
  • Network equipment can first determine the intermodulation interference location based on the interference frequency range3.
  • the intermodulation interference position 3 does not overlap with the interference frequency range.
  • the network device may determine the second frequency range based on the second RB position and the intermodulation interference position 3.
  • the third-order intermodulation interference signal shown in Figure 19 is the third-order intermodulation interference signal between the signal at the DC position and the image interference signal.
  • Figure 20 shows a solution for determining the third frequency range based on the interference frequency range.
  • Network equipment can first determine the intermodulation interference location based on the interference frequency range4.
  • the intermodulation interference position 4 overlaps with the interference frequency range, or in other words, the intermodulation interference position 4 is the interference frequency range.
  • the network device may determine the third frequency range based on the second RB position and the intermodulation interference position 4.
  • the third-order intermodulation interference signal shown in Figure 20 is the third-order intermodulation interference signal between the signal at the DC position and the image interference signal.
  • the second frequency range and/or the third frequency range may be indicated through a bitmap. That is to say, the network device may indicate the second frequency range and/or the third frequency range to the first terminal through a bitmap.
  • the second frequency range and/or the third frequency range may be divided into multiple frequency bands based on the first frequency unit.
  • the network device may indicate to the first terminal whether the multiple frequency bands can be placed in DC positions through a bitmap, where the bitmap is in units of the first frequency unit.
  • the first frequency unit may be one or more of RB, SCS, and predefined frequency sizes.
  • the network device may indicate the second frequency range and/or the third frequency range to the first terminal through the bitmap, and the second terminal may indicate the first frequency range to the network device.
  • the second terminal may indicate the first frequency range to the network device.
  • the network device before sending the second indication information to the first terminal, may also first determine whether the interference signal generated by the first terminal interferes with the first frequency range, that is, determine whether the first terminal is the source of interference. When it is determined that the first terminal is the interference source, the network device then sends second indication information to the first terminal. In other words, the second indication information is sent by the network device to the first terminal when the first interference signal generated by the first terminal interferes with the first frequency range.
  • the network device may determine whether the first terminal is an interference source based on one or more of the following information: the relationship between the frequency range of the first interference signal and the first frequency range; the relationship between the first terminal and the second terminal. distance. In other words, it can be determined that the first terminal is the interference source based on the second condition.
  • the second condition includes one or more determinations of the following: the frequency range of the first interference signal at least partially overlaps with the first frequency range; the distance between the first terminal and the second terminal is less than or equal to the first preset threshold.
  • the network device may determine the first terminal as the interference source.
  • the network device may determine the first terminal to be the interference source.
  • the network device may determine the first terminal as the source of interference.
  • the network device may determine whether the first terminal is the interference source based on the distance between the first terminal and the second terminal and the relationship between the frequency range of the first interference signal and the first frequency range. In this way, the judgment result of the interference source can be made more accurate, thereby achieving more precise adjustment of the DC position.
  • the first interference signal may include one or more of a first image interference signal and a first intermodulation interference signal.
  • the embodiment of the present application does not specifically limit the level of the first intermodulation interference signal.
  • the first intermodulation interference signal may include a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the first intermodulation interference signal may also include other levels of intermodulation interference signals.
  • the intermodulation interference signal may include a second-order intermodulation interference signal, a fourth-order intermodulation interference signal, etc.
  • the frequency range of the first interference signal may be determined based on the first DC location of the first terminal and the second RB location allocated by the network device to the first terminal.
  • the frequency range of the first image interference signal can be determined based on the second RB position and the first DC position.
  • the frequency range of the first intermodulation interference signal may be determined based on at least two of the following information: the frequency range of the first image interference signal, the second RB position, and the first DC position.
  • the first intermodulation interference signal may include one or more of the following signals: an intermodulation interference signal generated by the first image interference signal and the signal at the second RB position, the intermodulation interference signal at the first DC position.
  • the network device can also send the first information to the first terminal, and the first terminal determines the location of the second DC based on the first information. Determine the second DC location.
  • the solution for the first terminal to determine the location of the second DC is similar to the solution for the network device to determine the location of the second DC.
  • the following takes the first information as an interference frequency range as an example to introduce a solution for the first terminal to determine the position of the second DC based on the interference frequency range.
  • the network device may send second indication information to the first terminal, and the second indication information may be used to indicate the interference frequency range.
  • the interference frequency range can also be indicated using the bitmap described above.
  • the first terminal After receiving the interference frequency range, the first terminal can determine the second DC position based on the interference frequency range.
  • the second DC position will not cause interference to the signal reception of the second terminal.
  • the frequency range of the third interference signal generated at the second DC location does not overlap with the interference frequency range.
  • the first terminal may determine the second frequency range and/or the third frequency range based on the interference frequency range. Further, the first terminal may determine (or select) the second DC position from the second frequency range, or the first terminal may determine (or select) the second DC position from a frequency range outside the third frequency range.
  • the network device Before the network device sends the interference frequency range to the first terminal, it may first determine whether the first terminal is the source of interference. If the first terminal is the interference source, the network device sends the interference frequency range to the first terminal. If the first terminal is not the source of interference, the network device may not send the interference frequency range to the first terminal. That is to say, the interference frequency range is sent by the network device to the first terminal when the first terminal is the source of interference. In this case, after receiving the interference frequency range, the first terminal can directly determine the second DC position. Having the network device determine the source of interference can save the judgment resources of the first terminal and reduce the power consumption of the first terminal.
  • the first terminal may also determine whether it is the source of interference. Regardless of whether the first terminal is the source of interference, the network device can directly send the interference frequency range to the first terminal. In this case, after receiving the interference frequency range, the first terminal can first determine whether it is the source of interference based on the interference frequency range. After determining that you are the source of interference, determine the second DC location.
  • the multiple embodiments described above can be implemented individually or combined with each other, which is not specifically limited in the embodiments of the present application.
  • this can be achieved by determining the first RB position without changing the DC position of the first terminal, or it can also be achieved by determining the second DC position. location without changing the second RB location allocated by the network device to the first terminal, or it can also be implemented by determining the first RB location and the second DC location at the same time.
  • Figure 21 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • Device 2100 in Figure 21 may be any network device described above.
  • the apparatus 2100 may include a determining unit 2110.
  • Determining unit 2110 configured to determine the first resource block RB position based on the first information, the second RB position is used to indicate the RB of the first terminal, and the first information includes the first DC of the first terminal. DC location.
  • the determining unit 2110 is configured to: when the first interference signal generated by the first terminal interferes with the first frequency range, based on the first information, determine the first allocated signal for the first terminal.
  • An RB position, the first frequency range is the frequency range in which the second terminal receives or transmits signals.
  • the frequency range of the first interfering signal is determined based on the first DC location and the second RB location.
  • the interference caused by the first interfering signal to the first frequency range is determined based on one or more of the following conditions: the frequency range of the first interfering signal is at least as different from the first frequency range as Partial overlap; the distance between the first terminal and the second terminal is less than or equal to the first preset threshold.
  • the first interference signal includes at least one or more of the following signals: a first image interference signal or a first intermodulation interference signal.
  • the frequency range of the first intermodulation interference signal is determined based on at least two of the following information: the second RB position, the frequency range of the first image interference signal, the first DC Location.
  • the first intermodulation interference signal includes a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the apparatus 2100 further includes: a receiving unit 2120, configured to receive first indication information sent by the second terminal, where the first indication information is used to indicate the first frequency range.
  • the first indication information includes signal measurement results of the first frequency range.
  • the signal measurement results include one or more of the following: measurement results of signal-to-interference-to-noise ratio SINR, measurement results of reference signal received power RSRP, and measurement results of reference signal reception quality RSRQ.
  • the first frequency range is indicated by a bitmap.
  • the bitmap is in units of one or more of the following information: RB, subcarrier spacing SCS, and predefined frequency size.
  • the first indication information is sent by the second terminal to the network device when a first condition is met, and the first condition includes the downlink signal of the second terminal.
  • the signal measurement result is lower than the preset threshold.
  • the preset threshold is a predefined threshold, or the preset threshold is determined by the second terminal, or the preset threshold is determined by a network device corresponding to the second terminal.
  • the determining unit 2110 is configured to: determine a third RB position based on the first frequency range and the first DC position, where the first RB position is a third RB position in the third RB position. Some or all RB positions.
  • the first frequency range does not overlap with the frequency range of the second interference signal, and the frequency range of the second interference signal is determined based on the third RB position and the first DC position.
  • the second interference signal includes at least one or more of the following signals: a second image interference signal or a second intermodulation interference signal.
  • the frequency range of the second intermodulation interference signal is determined based on at least two of the following information: the third RB position, the frequency range of the second image interference signal, the first DC Location.
  • the second intermodulation interference signal includes a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the determining unit 2110 is configured to determine the number of the first RB based on the first information.
  • Figure 22 is a schematic structural diagram of another wireless communication device provided by an embodiment of the present application.
  • the device 2200 in Figure 22 may be any second terminal described above.
  • the device 2200 may include a sending unit 2210.
  • the sending unit 2210 is configured to send first indication information to the network device.
  • the first indication information is used to indicate a first frequency range in which interference exists in signal reception of the second terminal.
  • the first frequency range is used to determine The target resource block RB position allocated by the first terminal.
  • the adjusted RB will not cause interference to signal reception in the first frequency range.
  • the first indication information includes signal measurement results of the first frequency range.
  • the signal measurement results include one or more of the following: measurement results of signal-to-interference-to-noise ratio SINR, measurement results of reference signal received power RSRP, and measurement results of reference signal reception quality RSRQ.
  • the first frequency range is indicated by a bitmap.
  • the bitmap is in units of one or more of the following information: RB, subcarrier spacing SCS, and predefined frequency size.
  • the first indication information is sent by the second terminal to the network device when a first condition is met, and the first condition includes the downlink signal of the second terminal.
  • the signal measurement result is lower than the preset threshold.
  • the preset threshold is a predefined threshold, or the preset threshold is determined by the second terminal, or the preset threshold is determined by a network device corresponding to the second terminal.
  • the first frequency range is used to determine the number of first RBs.
  • Figure 23 is a schematic structural diagram of another wireless communication device provided by an embodiment of the present application.
  • the device 2300 in Figure 23 may be any first terminal described above.
  • the device 2300 may include a determining unit 2310.
  • Determining unit 2310 configured to determine a second direct current DC position, the second DC position is determined based on second information, the second information includes a second resource block RB position, and the second RB position is used to indicate the first RB of a terminal.
  • the apparatus further includes: a receiving unit 2320, configured to receive second indication information sent by the network device, where the second indication information is used to instruct the first terminal to determine the second DC Location.
  • the second indication information is used to indicate a first frequency range
  • the first frequency range is a frequency range in which the second terminal performs signal reception or transmission.
  • the second indication information is used to indicate one or more of the following information: a second frequency range in which DC can be placed, a third frequency range in which DC cannot be placed; the second DC position is within the second frequency range and/or the second DC position is not within the third frequency range.
  • the second frequency range and/or the third frequency range are determined based on a first frequency range, which is a frequency range in which the second terminal performs signal reception or transmission.
  • the first frequency range does not overlap with the frequency range of the third interference signal, and the frequency range of the third interference signal is determined based on the second DC position and the second RB position.
  • the second frequency range and/or the third frequency range are determined based on the frequency range in which interference exists in the first frequency range, which is where the second terminal performs signal reception or transmission. Frequency Range.
  • the frequency range in which interference exists in the first frequency range does not overlap with the frequency range of a third interference signal
  • the frequency range of the third interference signal is based on the second DC position and the second The RB position is determined.
  • the third interference signal includes one or more of the following signals: a third image interference signal, a third intermodulation interference signal.
  • the frequency range of the third intermodulation interference signal is determined based on at least two of the following information: the second RB position, the frequency range of the third image interference signal, the second DC Location.
  • the third intermodulation interference signal includes a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the second frequency range and/or the third frequency range are indicated by a bitmap.
  • the bitmap is in units of one or more of the following information: RB, subcarrier spacing SCS, and predefined frequency size.
  • the determining unit 2310 is configured to determine the second DC position when the first interference signal generated by the first terminal interferes with the first frequency range.
  • the range is the frequency range in which the second terminal receives or transmits signals.
  • the second indication information is sent by the network device to the first terminal when the first interference signal generated by the first terminal interferes with the first frequency range, so
  • the first frequency range is a frequency range in which the second terminal receives or transmits signals.
  • the interference caused by the first interfering signal to the first frequency range is determined based on one or more of the following conditions: the frequency range of the first interfering signal is at least as different from the first frequency range as Partial overlap; the distance between the first terminal and the second terminal is less than or equal to the first preset threshold.
  • the first interference signal includes at least one or more of the following signals: a first image interference signal or a first intermodulation interference signal.
  • the frequency range of the first intermodulation interference signal is determined based on at least two of the following information: the second RB position, the frequency range of the first image interference signal, the first terminal The first DC position.
  • the first intermodulation interference signal includes a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the first frequency range is sent by the second terminal to the network device through first indication information.
  • the first indication information is sent by the second terminal to the network device when a first condition is met, and the first condition includes the downlink signal of the second terminal.
  • the signal measurement result is lower than the preset threshold.
  • the preset threshold is a predefined threshold, or the preset threshold is determined by the second terminal, or the preset threshold is determined by a network device corresponding to the second terminal.
  • the first indication information includes signal measurement results of the first frequency range.
  • the signal measurement results include one or more of the following: SINR measurement results, RSRP measurement results, and RSRQ measurement results.
  • Figure 24 is a schematic structural diagram of another wireless communication device provided by an embodiment of the present application.
  • Device 2400 in Figure 24 may be any network device described above.
  • the device 2400 may include a sending unit 2410.
  • the sending unit 2410 is configured to send second indication information to the first terminal.
  • the second indication information is used to instruct the first terminal to determine a second DC position.
  • the second DC position is determined based on the second information.
  • the second information includes a second resource block RB position, and the second RB position is used to indicate the RB of the first terminal.
  • the second indication information is used to indicate a first frequency range
  • the first frequency range is a frequency range in which the second terminal performs signal reception or transmission.
  • the second indication information is used to indicate one or more of the following information: a second frequency range in which DC can be placed, a third frequency range in which DC cannot be placed; the second DC position is within the second frequency range and/or the second DC position is not within the third frequency range.
  • the second frequency range and/or the third frequency range are determined based on a first frequency range, which is a frequency range in which the second terminal performs signal reception or transmission.
  • the first frequency range does not overlap with the frequency range of the third interference signal, and the frequency range of the third interference signal is determined based on the second DC position and the second RB position.
  • the second frequency range and/or the third frequency range are determined based on the frequency range in which interference exists in the first frequency range, which is where the second terminal performs signal reception or transmission. Frequency Range.
  • the frequency range in which interference exists in the first frequency range does not overlap with the frequency range of a third interference signal
  • the frequency range of the third interference signal is based on the second DC position and the second The RB position is determined.
  • the third interference signal includes one or more of the following signals: a third image interference signal, a third intermodulation interference signal.
  • the frequency range of the third intermodulation interference signal is determined based on at least two of the following information: the second RB position, the frequency range of the third image interference signal, the second DC Location.
  • the third intermodulation interference signal includes a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the second frequency range and/or the third frequency range are indicated by a bitmap.
  • the bitmap is in units of one or more of the following information: RB, subcarrier spacing SCS, and predefined frequency size.
  • the first frequency range is used by the first terminal to determine whether the first interference signal generated by the first terminal will cause interference to the first frequency range.
  • the second indication information is sent by the network device to the first terminal when the first interference signal generated by the first terminal interferes with the first frequency range. .
  • the interference caused by the first interfering signal to the first frequency range is determined based on one or more of the following conditions: the frequency range of the first interfering signal is at least as different from the first frequency range as Partial overlap; the distance between the first terminal and the second terminal is less than or equal to the first preset threshold.
  • the first interference signal includes at least one or more of the following signals: a first image interference signal or a first intermodulation interference signal.
  • the frequency range of the first intermodulation interference signal is determined based on at least two of the following information: the second RB position, the frequency range of the first image interference signal, the first terminal The first DC position.
  • the first intermodulation interference signal includes a third-order intermodulation interference signal and/or a fifth-order intermodulation interference signal.
  • the first frequency range is sent by the second terminal to the network device through first indication information.
  • the first indication information is sent by the second terminal to the network device when a first condition is met, and the first condition includes the downlink signal of the second terminal.
  • the signal measurement result is lower than the preset threshold.
  • the preset threshold is a predefined threshold, or the preset threshold is determined by the second terminal, or the preset threshold is determined by a network device corresponding to the second terminal.
  • the first indication information includes signal measurement results of the first frequency range.
  • the signal measurement results include one or more of the following: measurement results of signal-to-interference-to-noise ratio SINR, measurement results of reference signal received power RSRP, and measurement results of reference signal reception quality RSRQ.
  • Figure 25 is a schematic structural diagram of another wireless communication device provided by an embodiment of the present application.
  • the device 2500 in Figure 25 may be any second terminal described above.
  • the device 2500 may include a sending unit 2510.
  • the sending unit 2510 is configured to send first indication information to the network device.
  • the first indication information is used to indicate the first frequency range in which the second terminal performs signal reception or transmission.
  • the first frequency range is used to determine the second frequency range. One terminal for the second DC position.
  • the first indication information includes signal measurement results of the first frequency range.
  • the signal measurement results include one or more of the following: measurement results of signal-to-interference-to-noise ratio SINR, measurement results of reference signal received power RSRP, and measurement results of reference signal reception quality RSRQ.
  • the first frequency range is indicated by a bitmap.
  • the bitmap is based on one or more of the following information: resource block RB, subcarrier spacing SCS, and predefined frequency size.
  • the first indication information is sent by the second terminal to the network device when a first condition is met, and the first condition includes the downlink signal of the second terminal.
  • the signal measurement result is lower than the preset threshold.
  • the preset threshold is a predefined threshold, or the preset threshold is determined by the second terminal, or the preset threshold is determined by a network device corresponding to the second terminal.
  • Figure 26 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the dashed line in Figure 26 indicates that the unit or module is optional.
  • the device 2600 can be used to implement the method described in the above method embodiment.
  • the device 2600 may be a chip, a first terminal, a second terminal or a network device.
  • Apparatus 2600 may include one or more processors 2610.
  • the processor 2610 can support the device 2600 to implement the method described in the foregoing method embodiments.
  • the processor 2610 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 2600 may also include one or more memories 2620.
  • the memory 2620 stores a program, which can be executed by the processor 2610, so that the processor 2610 executes the method described in the foregoing method embodiment.
  • the memory 2620 may be independent of the processor 2610 or integrated in the processor 2610.
  • Apparatus 2600 may also include a transceiver 2630.
  • Processor 2610 may communicate with other devices or chips through transceiver 2630.
  • the processor 2610 can send and receive data with other devices or chips through the transceiver 2630.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied to the UE (such as the first UE or the second UE mentioned above) or the network device (such as the source network device or the target network device mentioned above) provided by the embodiment of the present application, and the program enables the computer to Execute the methods executed by the UE or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied to the UE (such as the first UE or the second UE mentioned above) or the network device (such as the source network device or the target network device mentioned above) provided by the embodiment of the present application, and the program causes the computer to execute the present invention. Apply for methods performed by UE or network equipment in various embodiments.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the UE (such as the first UE or the second UE mentioned above) or the network device (such as the source network device or the target network device mentioned above) provided by the embodiment of the present application, and the computer program causes the computer to execute the present invention. Apply for methods performed by UE or network equipment in various embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法及装置。该方法包括:网络设备基于第一信息,确定第一RB位置,所述第一RB位置用于指示第一终端的RB,所述第一信息包括所述第一终端的第一DC位置。

Description

无线通信的方法及装置 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种无线通信的方法及装置。
背景技术
终端可以在网络设备分配的资源块(resource block,RB)上进行上行传输。但是,该RB上的信号与终端的直流(direct current,DC)信号之间会产生干扰信号。如果该干扰信号落入其他终端的接收频率范围内,将会对其他终端的信号接收产生干扰。
发明内容
本申请提供一种无线通信的方法及装置。下面对本申请实施例涉及的各个方面进行介绍。
第一方面,提供一种无线通信的方法,包括:网络设备基于第一信息,确定第一资源块RB位置,所述第一RB位置用于指示第一终端的RB,所述第一信息包括所述第一终端的第一直流DC位置。
第二方面,提供一种无线通信的方法,包括:第二终端向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定第一资源块RB位置,所述第一RB位置用于指示第一终端的RB。
第三方面,提供一种无线通信的方法,包括:第一终端确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
第四方面,提供一种无线通信的方法,包括:网络设备向第一终端发送第二指示信息,所述第二指示信息用于指示所述第一终端确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
第五方面,提供一种无线通信的方法,包括:第二终端向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定第一终端的第二直流DC位置。
第六方面,提供一种无线通信的装置,所述装置为网络设备,包括:确定单元,用于基于第一信息,确定第一资源块RB位置,所述第一RB位置用于指示第一终端的RB,所述第一信息包括所述第一终端的第一直流DC位置。
第七方面,提供一种无线通信的装置,所述装置为第二终端,包括:发送单元,用于向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定为第一终端分配的第一RB位置。
第八方面,提供一种无线通信的装置,所述装置为第一终端,包括:确定单元,用于确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
第九方面,提供一种无线通信的装置,所述装置为网络设备,包括:发送单元,用于向第一终端发送第二指示信息,所述第二指示信息用于指示所述第一终端确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
第十方面,提供一种无线通信的装置,包括:发送单元,用于向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定第一终端的第二直流DC位置。
第十一方面,提供一种无线通信装置,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如第一方面至第五方面中的任一方面所述的方法。
第十二方面,提供一种装置,包括处理器,用于从存储器中调用程序,以执行如第一方面至第五方面中的任一方面所述的方法。
第十三方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如第一方面至第五方面中的任一方面所述的方法。
第十四方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行如第一方面至第五方面中的任一方面所述的方法。
第十五方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行如第一方面至第五方面中的任一方面所述的方法。
第十六方面,提供一种计算机程序,所述计算机程序使得计算机执行如第一方面至第五方面中的任一方面所述的方法。
考虑到RB位置和DC位置是影响干扰信号频率范围的重要因素,RB位置和DC位置中的任意一个发生改变,都会导致干扰信号的频率范围发生改变。因此,本申请实施例可以通过确定为第一终端分配的第一RB位置和/或第一终端的第二DC位置,来改变干扰信号的频率范围,从而有助于避免或减少该干扰信号对第二终端的信号接收产生干扰。
附图说明
图1是本申请实施例应用的无线通信系统的示例图。
图2是本申请实施例提供的一种信号调制方法的示意图。
图3是本申请实施例提供的一种信号调制前后位置关系的示意图。
图4是本申请实施例提供的信号发射过程的示意图。
图5是本申请实施例提供的DC位置的示意图。
图6是本申请实施例提供的镜像干扰的示意图。
图7是本申请实施例提供的互调干扰的示意图。
图8是本申请实施例提供的三阶互调干扰和五阶互调干扰的示意图。
图9是本申请实施例提供的干扰信号对第二终端产生干扰的示意图。
图10是本申请实施例提供的另一种无线通信系统的示意图。
图11是本申请实施例提供的干扰信号指示的示意图。
图12是本申请实施例提供的一种比特位图的示意图。
图13是本申请实施例提供的一种无线通信方法的示意性流程图。
图14是本申请实施例提供的一种确定第三RB位置的示意图。
图15是本申请实施例提供的一种确定第三RB位置的示意图。
图16是本申请实施例提供的另一种无线通信方法的示意性流程图。
图17是本申请实施例提供的一种确定第三频率范围的示意图。
图18是本申请实施例提供的一种确定第四频率范围的示意图。
图19是本申请实施例提供的另一种确定第三频率范围的示意图。
图20是本申请实施例提供的另一种确定第四频率范围的示意图。
图21是本申请另一实施例提供的无线通信装置的示意性结构图。
图22是本申请又一实施例提供的无线通信装置的示意性结构图。
图23是本申请又一实施例提供的无线通信装置的示意性结构图。
图24是本申请又一实施例提供的无线通信装置的示意性结构图。
图25是本申请又一实施例提供的无线通信装置的示意性结构图。
图26是本申请又一实施例提供的无线通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、 用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中涉及到的通信设备,可以为网络设备,或者也可以为终端设备。例如,第一通信设备为网络设备,第二通信设备为终端设备。又如,第一通信设备为终端设备,第二通信设备为网络设备。又如,第一通信设备和第二通信设备均为网络设备,或者均为终端设备。
还应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。在无线通信中,可以通过信号调制的方式完成频谱搬移。例如,终端产生的信号为低频信号,而低频信号不适合在信道中传输,经过信号调制后,可以将低频信号转换为适合在信道中传输的高频信号。
信号调制可以通过混频器来实现。如图2所示,混频器可以将输入信号F1和调制载波信号F0进行混合,得到高频信号F2。例如,混频器可以将输入信号F1和调制载波信号F0进行非线性操作,得到这两个信号的频率之差信号或频率之和信号,并从得到的信号中筛选出需要的高阶频率信号F2。其中,F1、F0和F2的频率位置关系如图3所示。F1、F0和F2的频率位置关系满足如下公式:F2=F1+F0。需要说明的是,下文也将频率位置称为位置或频率范围。
F0位置也称为L0位置。F0位置为本地振荡器的频率位置。对于宽带信号来说,中心频点为F0位置。中心频点也称为直流载波位置,即DC位置,因此,F0位置为DC位置。
在一些实施例中,信号调制可以在射频集成电路(radio frequency integrated circuit,RFIC)(或称为射频收发机)中实现。下面结合图4对信号的发射过程进行介绍。
如图4所示,本申请实施例中的终端可以包括基带集成电路(baseband integrated circuit,BBIC)、RFIC、功率放大器(power amplifier,PA)以及天线。该RFIC可以包括上文描述的混频器。BBIC用 于产生基带信号,该基带信号为低频信号。BBIC可以将基带信号发送至RFIC。RFIC接收到基带信号后,可以基于DC信号(或F0),对基带信号进行信号调制,得到射频信号。射频信号为高频信号。得到射频信号后,RFIC可以将射频信号发送至PA。PA可以将该射频信号放大后输出至天线,由天线将射频信号辐射到空中。
对于终端来说,DC位置的设定取决于终端实现,终端可自主确定DC位置,本申请实施例对DC位置不做具体限定。例如,DC位置可以为发射频段的中心频点。又例如,DC位置可以为发射信道的中心频点。又例如,DC位置为网络设备配置的带宽部分(bandwidth part,BWP)的中心频点。再例如,DC位置也可以偏移上述中心频点一定距离,如图5所示。需要说明的是,上述发射信道在下文中也被称为有用信道,下文将以有用信道为例对本申请实施例的方案进行描述。
在一些实施例中,网络设备可以为终端分配用于上行传输的RB位置。终端可以在该分配的RB位置上进行上行传输。DC位置上的信号会和网络设备为终端分配的RB位置上的信号产生干扰信号。该干扰信号可以包括镜像干扰信号和/或互调干扰信号。
图6示出的是产生镜像干扰信号的示意图。镜像信号的产生与上文描述的信号调制过程类似。镜像干扰信号的频率F2与RB的频率(下文也称为RB位置)F1、DC位置F0满足如下关系:F2=2F0-F1,即在频率关系上,F1与F0的距离等于F2与F0的距离。镜像干扰信号可以理解为RB位置上的信号关于DC位置上的信号的映射。该镜像信号为无用信号,该镜像信号会对与镜像信号重叠的频率范围产生干扰。
互调干扰信号的位置可以是根据两个或多个信号之间的频率之和/或之差得到的。互调干扰信号可以是由两个或多个信号经过非线性器件(如PA)产生的。例如,互调干扰信号的位置可以基于以下中的一种或多种确定:RB位置、DC位置以及镜像干扰信号的位置。
以镜像干扰信号和RB位置上的信号为例,互调干扰信号的位置可以如图7所示。网络设备为终端分配的RB位置为F1,镜像干扰信号的频率范围为F2,那么由F1和F2产生的互调干扰信号的频率范围为F3,那么,在频率关系上,F1、F2和F3满足如下公式:F3=m*F1+n*F2,其中,m、n为整数。
m的绝对值与n的绝对值之和为互调干扰信号的阶级。例如,m的绝对值与n的绝对值之和为3时,产生的互调干扰信号为三阶互调干扰信号。又例如,m的绝对值与n的绝对值之和为5时,产生的互调干扰信号为五阶互调干扰信号。
图7所示的互调干扰信号是由镜像干扰信号和RB位置上的信号产生的,本申请实施例并不限于此。例如,互调干扰信号还可以包括由RB位置上的信号与DC位置上的信号产生的干扰信号。又例如,互调干扰信号还可以包括由镜像干扰信号和DC位置上的信号产生的干扰信号。
下面以三阶互调干扰信号和五阶互调干扰信号为例,对本申请实施例中的互调干扰信号进行说明。参见图8,RB位置上的信号与镜像干扰信号之间的三阶互调干扰信号为q,RB位置上的信号与镜像干扰信号之间的五阶互调干扰信号为Q。RB位置上的信号与DC位置上的信号之间的三阶互调信号为y,RB位置上的信号与DC位置上的信号之间的五阶互调信号为Y。镜像干扰信号与DC位置上的信号之间的三阶互调干扰信号为d,镜像干扰信号与DC位置上的信号之间的五阶互调干扰信号为D。
当上述干扰信号(如镜像干扰信号和/或互调干扰信号)与其他终端进行信号传输的频率范围重叠(部分重叠或全部重叠)时,将会对其他用户的信号传输产生干扰。以图9为例,第二终端进行信号接收的频段为Fa,第一终端产生的干扰信号的频率范围为F3,由于F3为Fa部分重叠,因此,第一终端产生的干扰信号可能会对第二终端的信号接收产生干扰,导致第二终端的接收性能下降。
对于上述问题,目前的解决方式是有两种。一种方式是降低第一终端的发射信号功率,第一终端的发射信号功率下降后,对第二终端的干扰就会减小。但是,这种方式会对第一终端的发射性能产生影响,导致发射终端的发射性能降低。另一种方式是第二终端降低被干扰频段的接收灵敏度。这种方式会对第二终端的接收性能产生影响,导致第二终端的接收性能下降。
由前文的描述可知,干扰信号的产生以及频率位置均与RB位置和DC位置直接相关,可以认为RB位置和DC位置是产生干扰信号的源信号。改变RB位置和/或DC位置的将会导致干扰信号的位置发生改变。基于上述考虑,本申请实施例提供一种无线通信的方法及装置,通过确定网络设备为第一终端分配的第一RB位置和/或第一终端的第二DC位置,来改变干扰信号的位置(或频段),从而有助于避免或减少干扰信号对第二终端的信号接收产生影响。
第一RB位置可以基于第一信息确定。在一些实施例中,第一信息可以包括以下信息中的一种或多种:第一终端的第一DC位置、第一频率范围和第一频率范围中存在干扰的频率范围(下文简称干扰频率范围)。例如,第一信息可以包括第一DC位置。在第一DC位置不发生变化的情况下,通过确定第一RB位置,可以使得第一RB位置产生的干扰信号的频率位置发生改变,从而避免或减少干扰信号对 第二终端的信号接收产生影响。在另一些实施例中,第一信息可以包括第一频率范围和/或干扰频率范围。在确定第一RB位置时,将第一频率范围和/或干扰频率范围作为参考因素,可以避免或减少第一RB位置产生的干扰信号对第一频率范围和/或干扰频率范围产生干扰。
第二DC位置可以基于第二信息确定。在一些实施例中,第二信息可以包括以下信息中的一种或多种:网络设备为第一终端分配的第二RB位置、第一频率范围和干扰频率范围。例如,第一信息可以包括第二RB位置。在第二RB位置不发生变化的情况下,通过确定第二DC位置,可以使得第二DC位置产生的干扰信号的频率位置发生改变,从而避免或减少干扰信号对第二终端的信号接收产生影响。在另一些实施例中,第一信息可以包括第一频率范围和/或干扰频率范围。在确定第二DC位置时,将第一频率范围和/或干扰频率范围作为参考因素,可以避免或减少第二DC位置产生的干扰信号对第一频率范围和/或干扰频率范围产生干扰。
第一频率范围为第二终端进行信号接收或发送的频率范围,即第二终端在第一频率范围内进行信号的接收或发送,或者说,第一频率范围为第一终端的接收频段或发送频段。在第一频率范围内,第二终端进行信号接收时,可能存在干扰,也可能不存在干扰,也可能仅部分频段存在干扰,本申请实施例对此不做具体限定。因此,干扰频率范围可以为第一频率范围中的部分或全部频率范围。
在一些实施例中,第一频率范围由第二终端发送至网络设备。第二终端可以通过第一指示信息向网络设备发送第一频率范围。
当第一干扰信号的频率范围与第一频率范围部分或全部重叠时,实际上第一终端不一定会对第二终端的信号接收产生干扰,只能理解为潜在的将会有干扰的发生。例如,当第一终端的线性度比较好,或对带外信号的抑制度比较高时,其产生的互调干扰信号比较弱。在该情况下,第一终端产生的干扰信号可能不会对第二终端的信号接收产生干扰。基于此,本申请实施例可以由第二终端上报受干扰频率范围,在接收到第二终端的上报的干扰频率范围后,再进行RB位置和/或DC位置的调整,这样可以实现对RB位置和/或DC位置精准的调整,避免对RB位置和/或DC位置的可分配范围造成限定。
第二终端在向网络设备上报受干扰频率范围时,可以仅上报干扰频率范围,也可以将第一频率范围都上报给网络设备。例如,第二终端可以将干扰频率范围的信号测量结果上报给网络设备,或者,第二终端可以将第一频率范围的信号测量结果都上报给网络设备。
参见图10,第二终端可以对下行信号的接收性能进行检测,在检测到下行信号的接收信号质量下降的情况下,可以向网络设备发送第一指示信息,以指示第二终端的信号接收存在干扰。第二终端还可以确定信号质量降低的干扰频率范围,并将干扰频率范围通过第一指示信息发送给网络设备,即第一指示信息还可以指示干扰频率范围。
第二终端可以对下行信号(如下行参考信号或下行数据信号)进行测量,在下行信号的测量结果低于预设门限的情况下,向网络设备发送第一指示信息。网络设备接收到第一指示信息后,可以确定第二终端的信号接收存在干扰。换句话说,第一指示信息是在满足第一条件的情况下,由第二终端发送至网络设备。其中,第一条件包括第二终端的下行信号的信号测量结果低于预设门限。
第一终端对第二终端产生干扰可能不会是整个频段或整个信道上都存在干扰,即第一终端产生的干扰信号可能不会对第二终端的整个接收频段(即第一频率范围)都产生干扰。例如,第一终端产生的干扰信号的频率范围与第一频率范围部分重叠。第二终端可以对第一频率范围内不同频率上的下行信号进行测量,并根据信号测量结果,确定干扰频率范围。
如果某个频率上的信号测量结果低于预设门限,则第二终端可以确定该频率上的信号接收存在干扰。通过将信号测量结果与预设门限相比,第二终端可以确定第一频率范围内干扰频率范围。
信号测量结果可以包括以下中的一种或多种:信号干扰噪声比(signal-to jamming and noise ratio,SINR)的测量结果、参考信号接收功率(reference signal receiving power,RSRP)的测量结果、参考信号接收质量(reference signal receiving quality,RSRQ)的测量结果。
干扰频率范围也可以称为高干扰区域,第一频率范围内除干扰频率范围之外的频率范围可以称为低干扰区域。以图11为例,通过进行信号测量,可以将第一频率范围分为高干扰区域和低干扰区域。高干扰区域为信号测量结果小于预设门限的频率范围,低干扰区域为信号测量结果大于或等于预设门限的频率范围。
本申请实施例对预设门限的确定方式不做做具体限定。例如,预设门限可以是协议中预定义的门限。又例如,预设门限可以是第二终端确定的门限,即预设门限由第二终端确定。再例如,预设门限可以是第二终端对应的网络设备确定的门限,即预设门限由第二终端对应的网络设备确定。
在一些实施例中,第二终端可以仅将干扰频率范围的信号测量结果发送给网络设备。在另一些实施例中,第二终端可以将第一频率范围的信号测量结果都发送给网络设备。通过向网络设备发送信号测量 结果,可以有助于网络设备准确判断第二终端存在干扰的频率范围。
第一频率范围可以通过比特位图的方式来指示。第一频率范围可以以第一频率单元为单位,分为多个频段。第二终端可以通过比特位图向网络设备分别指示该多个频段是否存在干扰,其中,比特位图以第一频率单元为单位。第一频率单元可以为RB、子载波间隔(sub-carrier space,SCS)、预定义的频率大小中的一种或多种。
以图12为例,第一频率范围可以划分为n个子频率范围,则该比特位图可以包括n个比特位,该n个比特位与该n个子频率范围一一对应,且该n个比特位分别用于指示该n个子频率范围是否存在干扰或干扰是否大于预设阈值。下文可以将干扰大于或等于预设阈值的干扰称为高干扰,将干扰低于预设阈值的干扰称为低干扰。
下文以比特位图指示高干扰区域和低干扰区域为例,对比特位图的指示方式进行介绍。比特位图可以通过比特位的不同取值来指示存在干扰的子频率范围和不存在干扰的子频率范围。例如,存在干扰的子频率范围对应的比特位的取值为1,不存在干扰的子频率范围对应的比特位的取值为0。举例说明,如果第1~m个子频率范围为高干扰区域,第m+1~n个子频率范围为低干扰区域,则比特位图中前m个比特位的取值可以为1,剩余的比特位的取值为0。当然,存在干扰的子频率范围对应的比特位的取值可以为0,不存在干扰的子频率范围对应的比特位的取值可以为1,本申请实施例对此不做具体限定。
下面结合图13-图20,对本申请实施例的无线通信方法进行介绍。
图13是本申请实施例提供的一种无线通信方法的示意性流程图。图13所示的方法包括步骤S1310。
在步骤S1310、网络设备基于第一信息,确定第一RB位置。第一RB位置用于指示第一终端的RB。
本申请实施例中的确定为第一终端分配的第一RB位置可以理解为调整为第一终端分配的第一RB位置。第一RB位置也可以称为调整后的RB位置。
网络设备确定为第一终端分配的第一RB位置可以包括网络设备确定第一RB的数量。通过改变第一RB的数量可以改变第一终端产生的干扰信号的位置,从而避免或减少对第二终端的信号接收产生干扰。
如前文所述,第一信息可以包括第一频率范围和/或干扰频率范围。下面先以第一信息为第一频率范围为例,对本申请实施例的方案进行介绍。
在一些实施例中,网络设备可以基于干扰频率范围,确定为第一终端分配的第一RB位置。可选地,第一RB位置不会对干扰频率范围产生干扰。例如,基于第一RB位置确定的干扰信号的频率范围不与干扰频率范围重叠。
在一些实施例中,图13所示的方法还包括步骤S1302。在步骤S1302、第二终端向网络设备发送第一指示信息。网络设备接收到第二终端发送的第一指示信息后,可以先确定第一终端产生的第一干扰信号是否对干扰频率范围产生干扰,即确定第一终端是否为干扰来源。在确定第一终端是干扰来源的情况下,网络设备再确定第一RB位置。换句话说,网络设备可以在确定第一终端为干扰来源的情况下,基于第一信息,确定第一RB位置。如果第一终端不是干扰来源,则网络设备可以不用确定第一RB位置。
网络设备接收到第二终端发送的第一指示信息后,可以基于第一指示信息确定第一频率范围。另外,网络设备可以基于第一DC位置以及第二RB位置,确定第一终端的第一干扰信号的频率范围,换句话说,第一干扰信号的频率范围可以由第一DC位置和第二RB位置确定。进一步地,网络设备可以基于干扰频率范围以及第一干扰信号的频率范围,确定第一终端是否为干扰来源。这里的第二RB位置可以指,在确定第一RB位置之前网络设备为第一终端分配的RB位置,或者说,该第二RB位置是第一终端当前的RB位置。这里的第一DC位置可以指第一终端当前的DC位置。
第一DC位置可以由第一终端上报给网络设备。例如,第一终端可以通过无线资源控制(radio resource control,RRC)信令将第一DC位置上报给网络设备。
在一些实施例中,网络设备可以基于以下信息中的一种或多种,确定第一终端是否为干扰来源:第一干扰信号的频率范围与干扰频率范围之间的关系;第一终端与第二终端之间的距离。换句话说,第一终端为干扰来源可以基于第二条件确定。第二条件包括以下中的一种或多种确定:第一干扰信号的频率范围与干扰频率范围至少部分重叠;第一终端与第二终端之间的距离小于或等于第一预设阈值。
在一些实施例中,如果网络设备确定第一干扰信号的频率范围与干扰频率范围至少部分重叠,则网络设备可以确定第一终端为干扰来源。
在另一些实施例中,如果网络设备确定第一终端与第二终端之间的距离小于或等于第一预设阈值,则网络设备可以确定第一终端为干扰来源。
在另一些实施例中,如果网络设备确定第一干扰信号的频率范围与干扰频率范围至少部分重叠,且 第一终端与第二终端之间的距离小于或等于第一预设阈值,则网络设备可以确定第一终端为干扰来源。
在一些情况下,如果第一终端与第二终端之间的距离比较远,即使第一干扰信号的频率范围与干扰频率范围重叠,第一终端也不会对第二终端产生干扰,或者第一终端对第二终端的干扰比较小。因此,网络设备可以基于第一终端与第二终端之间的距离以及第一干扰信号的频率范围与干扰频率范围之间的关系,确定第一终端是否为干扰来源。通过这种方式,可以使得干扰来源的判断结果更准确,从而实现对RB位置更精准地调整。
第一终端产生的第一干扰信号可以包括第一镜像干扰信号、第一互调干扰信号中的一种或多种。本申请实施例对第一互调干扰信号的阶级不做具体限定。例如,第一互调干扰信号可以包括三阶互调干扰信号和/或五阶互调干扰信号。当然,第一互调干扰信号也可以包括其他阶级的互调干扰信号。例如,互调干扰信号可以包括二阶互调干扰信号、四阶互调干扰信号等。
第一干扰信号的频率范围可以基于第一DC位置和第二RB位置确定。
由前文的描述可知,第一镜像干扰信号的频率范围可以基于第二RB位置以及第一DC位置确定。第一互调干扰信号的频率范围可以基于以下信息中的至少两种确定:第一镜像干扰信号的频率范围、第二RB位置、第一DC位置。在一些实施例中,第一互调干扰信号可以包括以下信号中的一种或多种:第一镜像干扰信号与第二RB位置上的信号产生的互调干扰信号、第一DC位置上的信号与第二RB位置上的信号产生的互调干扰信号、第一镜像干扰信号与第一DC位置上的信号产生的互调干扰信号。
在一些实施例中,网络设备可以基于第一频率范围,反向推导出第三RB位置,该第三RB位置可以理解为可分配RB区域(或区间)。进一步地,网络设备可以确定为第一终端分配的第一RB位置为第三RB位置中的RB位置,换句话说,第一RB位置为第三RB位置中的部分或全部RB位置。例如,网络设备可以从第三RB位置中选择第一RB位置,并为第一终端分配该第一RB位置。
在一些实施例中,网络设备可以基于干扰频率范围,确定出互调干扰位置。该互调干扰位置与干扰频率范围不重叠。在确定出互调干扰位置后,网络设备可以基于第一DC位置以及互调干扰位置,确定出第三RB位置。
下面以互调干扰为三阶互调干扰为例,对网络设备确定第三RB位置的方式进行介绍。参见图14,图14示出的三阶互调干扰信号为第三RB位置上的信号与镜像干扰信号之间的三阶互调干扰信号。在接收到第二终端发送的干扰频率范围后,网络设备可以基于干扰频率范围,确定出三阶互调干扰位置F3。由上文描述可知,F3与第三RB位置F1、镜像干扰信号的位置F2之间满足如下关系:F3=2F2-F1。另外,F1、F2与第一DC位置F0满足如下关系:F2=2F0-F1。通过上述两个公式,可以得到第三RB位置F1=(4F0-F3)/3。因此,基于第一DC位置以及互调干扰位置F3,可以确定出第一第三RB位置。
在确定出第三RB位置后,网络设备可以从第三RB位置中选择第一RB位置,并向第一终端指示该第一RB位置。该第一RB位置可以包括第一RB的数量。终端设备接收到第一RB位置后,可以在该第一RB位置上发送上行信号。
上文介绍了第一信息包括干扰频率范围的方案,下面对第一信息包括第一频率范围的方案进行介绍。
第一频率范围为第二终端进行信号接收或发送的频率范围。第一频率范围可以是网络设备配置给第二终端的。网络设备可以基于第一频率范围确定第一RB位置。例如,网络设备可以基于第一频率范围确定第一RB的数量。
在一些实施例中,第一RB位置不会对第一频率范围产生干扰。例如,基于第一RB位置确定的干扰信号的频率范围不与第一频率范围重叠。
在本申请实施例中,网络设备从调度的角度,主动对信号干扰进行规避,在为第一终端分配第一RB位置时,可以避免为第一终端分配会对第二终端产生干扰的RB位置,使得为第一终端分配的第一RB位置产生的干扰信号尽量不落入第一频率范围内,以避免或减少对第二终端的信号接收产生干扰。
在一些实施例中,网络设备可以基于第一频率范围,确定第三RB位置。第一RB位置为第三RB位置中的RB位置。网络设备可以从第三RB位置中为第一终端分配第一RB位置,即第一RB位置为第三RB位置中的部分或全部RB位置。第三RB位置可以指不会对第一频率范围产生干扰的RB位置。例如,第三RB位置内的RB位置与第一DC位置产生的第二干扰信号的频率范围与第一频率范围不重叠。
第二干扰信号可以包括第二镜像干扰信号、第二互调干扰信号中的一种或多种。本申请实施例对第二互调干扰信号的阶级不做具体限定。例如,第二互调干扰信号可以包括三阶互调干扰信号和/或五阶互调干扰信号。当然,第二互调干扰信号也可以包括其他阶级的互调干扰信号。例如,第二互调干扰信号可以包括二阶互调干扰信号、四阶互调干扰信号等。
第二干扰信号的频率范围可以基于第一DC位置和第三RB位置确定。例如,第二镜像干扰信号的频率范围可以基于第三RB位置以及第一DC位置确定。又例如,第二互调干扰信号的频率范围可以基于以下信息中的至少两种确定:第二镜像干扰信号的频率范围、第三RB位置、第一DC位置。在一些实施例中,第二互调干扰信号可以包括以下信号中的一种或多种:第二镜像干扰信号与第三RB位置上的信号产生的互调干扰信号、第一DC位置上的信号与第三RB位置上的信号产生的互调干扰信号、第二镜像干扰信号与第一DC位置上的信号产生的互调干扰信号。
网络设备可以基于第一频率范围,为第一终端分配第一RB位置。网络设备为第一终端分配第一RB位置可以包括网络设备为第一终端分配第一RB的数量。通过改变RB数量可以改变第一终端产生的干扰信号的位置,从而避免或减少对第二终端的信号接收产生干扰。
在一些实施例中,网络设备可以基于第一频率范围,反向推导出第三RB位置(或可分配RB区域)。进一步地,网络设备可以从第三RB位置内为第一终端分配第一RB位置。
在一些实施例中,网络设备可以基于第一频率范围,确定出互调干扰位置。该互调干扰位置与第一频率范围不重叠。在确定出互调干扰位置后,网络设备可以基于第一DC位置以及互调干扰位置,确定出镜像干扰位置和第三RB位置。
下面以互调干扰为三阶互调干扰为例,对网络设备确定第三RB位置的方式进行介绍。参见图15,图15示出的三阶互调干扰信号为第三RB位置上的信号与镜像干扰信号之间的三阶互调干扰信号。网络设备可以基于第一频率范围,确定出三阶互调干扰位置F3’。由上文描述可知,F3’与第三RB位置F1’、镜像干扰信号的位置F2’之间满足如下关系:F3’=2F2’-F1’。另外,F1’、F2’与第一DC位置F0’满足如下关系:F2’=2F0’-F1’。通过上述两个公式,可以得到第三RB位置F1’=(4F0’-F3’)/3。因此,基于第一DC位置F0’以及互调干扰位置F3’,可以确定出第三RB’位置。
在确定出第三RB位置后,网络设备可以从第三RB位置中选择第一RB位置,并向第一终端指示该第一RB位置。该第一RB位置可以包括第一RB的数量。终端设备接收到第一RB位置后,可以在该第一RB位置上发送上行信号。
上文详细介绍了网络设备确定为第一终端分配的第一RB位置的方案。除了确定第一RB位置的方式之外,本申请实施例还可以通过确定第一终端的第二DC位置,来避免或减少对第二终端的信号接收产生干扰。下面结合图16-图20,对确定第一终端的第二DC位置的方案进行介绍。
图16是本申请实施例提供的另一种无线通信的方法。该方法包括步骤S1610。
在步骤S1610、第一终端确定第二DC位置。第二DC位置基于第二信息确定。
本申请实施例中的确定第二DC位置可以理解为调整DC位置。第二DC位置也可以称为调整后的DC位置。
在一些实施例中,图16所示的方法还可以包括步骤S1602。在步骤S1602、网络设备向第一终端发送第二指示信息,该第二指示信息用于指示第一终端确定第二DC位置,或者第一指示信息用于指示第一终端对DC位置进行调整。在接收到第二指示信息的情况下,第一终端确定第二DC位置。在一些实施例中,第二指示信息可以指示干扰频率范围。
第二DC位置可以基于第二信息确定。例如,第二DC位置可以基于第二RB位置确定。又例如,第二DC位置可以基于第一频率范围确定。又例如,第二DC位置可以基于干扰频率范围确定。第二DC位置可以是网络设备确定的,也可以是第一终端确定的,本申请实施例对此不做具体限定。如果第二DC位置是网络设备确定的,则网络设备可以将第二DC位置指示给第一终端。第一终端接收到网络设备指示的第二DC位置后,可以将DC位置调整为第二DC位置。
在一些实施例中,第二指示信息可用于指示以下信息中的一种或多种:可以放置DC的第二频率范围、不可以放置DC的第三频率范围。可以放置DC的第二频率范围可以理解为DC白名单或者可分配DC位置,不可以放置DC的第三频率范围可以理解为DC黑名单或者不可分配DC位置。在一些实施例中,第二频率范围内的DC位置会对第二终端的信号接收产生影响,第三频率范围内的DC位置不会对第二终端的信号接收产生影响。可以理解的是,第二频率范围与第三频率范围不重叠。
第一终端接收到网络设备指示的第二频率范围和/或第三频率范围后,可以确定第二DC位置。第二DC位置位于第二频率范围内,和/或,第二DC位置不位于第三频率范围内。如果第二指示信息指示第二频率范围,则第二DC位置位于第二频率范围内。如果第二指示信息指示第三频率范围,则第二DC位置不位于第三频率范围内,或第二DC位置位于第三频率范围之外的频率范围内。
第二频率范围和/或第三频率范围可以基于第一信息确定。例如,第二频率范围和/或第三频率范围可以基于第一频率范围确定。又例如,第二频率范围和/或第三频率范围可以基于干扰频率范围确定。
下面对第二频率范围和/或第三频率范围基于第一频率范围确定的方案进行介绍。
网络设备可以基于第一频率范围,确定第二频率范围和/或第三频率范围。在该情况下,第二频率范围内的DC位置产生的第三干扰信号的频率范围与第一频率范围不重叠。例如,第二频率范围内的DC位置与第二RB(当前RB)位置产生的第三干扰信号的频率范围与第一频率范围不重叠。由于第二DC位置位于第二频率范围内,因此,也可以说,第三干扰信号的频率范围基于第二DC位置与第二RB位置确定。或者,第三频率范围内的DC位置产生的干扰信号的频率范围与第一频率范围重叠。例如,第三频率范围内的DC位置与第二RB位置产生的干扰信号的频率范围与第一频率范围重叠(包括部分或全部重叠)。
在本申请实施例中,第二DC位置可以位于第二频率范围内或不位于第三频率范围内。因此,基于第二DC位置与第二RB位置确定的第三干扰信号的频率范围与第一频率范围不重叠。
可以理解的是,如果第一频率范围和干扰频率范围不同,则根据第一频率范围确定的第二频率范围和根据干扰频率范围确定的第二频率范围可能不同,或者,根据第一频率范围确定的第三频率范围和根据干扰频率范围确定的第三频率范围可能不同。
上述第三干扰信号可以包括第三镜像干扰信号、第三互调干扰信号中的一种或多种。本申请实施例对第三互调干扰信号的阶级不做具体限定。例如,第三互调干扰信号可以包括三阶互调干扰信号和/或五阶互调干扰信号。当然,第三互调干扰信号也可以包括其他阶级的互调干扰信号。例如,互调干扰信号可以包括二阶互调干扰信号、四阶互调干扰信号等。
第三干扰信号的频率范围可以基于第二频率范围内的DC位置(或第二DC位置)和第二RB位置确定。
由前文的描述可知,第三镜像干扰信号的频率范围可以基于第二RB位置以及第二DC位置确定。又例如,第三互调干扰信号的频率范围可以基于以下信息中的至少两种确定:第三镜像干扰信号的频率范围、第二RB位置、第二DC位置(或者第二频率范围或第三频率范围)。例如,第三互调干扰信号可以包括以下信号中的一种或多种:第三镜像干扰信号与第二RB位置上的信号产生的互调干扰信号、第二DC位置上的信号与第二RB位置上的信号产生的互调干扰信号、第三镜像干扰信号与第二DC位置上的信号产生的互调干扰信号。
网络设备在确定第二频率范围和/或第三频率范围时,可以先基于第一频率范围,反向推导出互调干扰位置,然后基于互调干扰位置,确定第二频率范围和/或第三频率范围。
下面结合图17和图18分别对第二频率范围和第三频率范围的确定方式进行介绍。
图17示出的是基于第一频率范围确定第二频率范围的方案。网络设备可以先基于第一频率范围,确定出互调干扰位置1。该互调干扰位置1与第一频率范围不重叠。在确定出互调干扰位置1后,网络设备可以基于第二RB位置以及互调干扰位置1,确定出第二频率范围。
下面以互调干扰为三阶互调干扰为例,对网络设备确定第二频率范围的方式进行介绍。参见图17,图17示出的三阶互调干扰信号为DC与镜像干扰信号之间的三阶互调干扰信号。网络设备可以基于第一频率范围,确定出三阶互调干扰位置F3。由上文描述可知,F3与第二频率范围内的DC位置F0、镜像干扰信号的位置F2之间满足如下关系:F3=2F2-F0。另外,F2、F0与第二RB位置F1满足如下关系:F2=2F0-F1。通过上述两个公式,可以得到第二频率范围F0=(F3+2F1)/3。因此,基于第二RB位置以及互调干扰位置F3,可以确定出第二频率范围。
图18示出的是基于第一频率范围确定第三频率范围的方案。网络设备可以先基于第一频率范围,确定出互调干扰位置2。该互调干扰位置2与第一频率范围重叠,或者说,互调干扰位置2为第一频率范围。在确定出互调干扰位置2后,网络设备可以基于第二RB位置以及互调干扰位置2,确定出第三频率范围。
下面以互调干扰为三阶互调干扰为例,对网络设备确定第三频率范围的方式进行介绍。参见图18,图18示出的三阶互调干扰信号为DC位置上的信号与镜像干扰信号之间的三阶互调干扰信号。网络设备可以基于第一频率范围,确定出三阶互调干扰位置F3’。由上文描述可知,F3’与第三频率范围内的DC位置F0’、镜像干扰信号的位置F2之间满足如下关系:F3’=2F2-F0’。另外,F0’、F2与网络设备为第一终端分配的RB位置F1满足如下关系:F2=2F0’-F1。通过上述两个公式,可以得到第三频率范围F0’=(F3’+2F1)/3。因此,基于第二RB位置以及互调干扰位置F3’,可以确定出第三频率范围。
下面对第二频率范围和/或第三频率范围基于干扰频率范围确定的方案进行介绍。基于干扰频率范围确定第二频率范围和/或第三频率范围的方式,与基于第一频率范围确定第二频率范围和/或第三频率范围的方式类似,未详细描述的内容可以参见上文的描述。
网络设备可以基于干扰频率范围,确定第二频率范围和/或第三频率范围。在该情况下,第二频率范围内的DC位置产生的第三干扰信号的频率范围与干扰频率范围不重叠。例如,第二频率范围内的 DC位置与第二RB位置产生的第三干扰信号的频率范围与干扰频率范围不重叠。由于第二DC位置位于第二频率范围内,因此,也可以说,第三干扰信号的频率范围基于第二DC位置与第二RB位置确定。或者,第三频率范围内的DC位置产生的干扰信号的频率范围与干扰频率范围重叠。例如,第三频率范围内的DC位置与第二RB位置产生的干扰信号的频率范围与干扰频率范围重叠(包括部分或全部重叠)。
在本申请实施例中,第二DC位置可以位于第二频率范围内或不位于第三频率范围内。因此,基于第二DC位置与第二RB位置确定的第三干扰信号的频率范围与干扰频率范围不重叠。
网络设备在确定第二频率范围和/或第三频率范围时,可以先基于干扰频率范围,反向推导出互调干扰位置,然后基于互调干扰位置,确定第二频率范围和/或第三频率范围。
下面结合图19和图20分别对第二频率范围和第三频率范围的确定方式进行介绍。
图19示出的是基于干扰频率范围确定第二频率范围的方案。网络设备可以先基于干扰频率范围,确定出互调干扰位置3。该互调干扰位置3与干扰频率范围不重叠。在确定出互调干扰位置3后,网络设备可以基于第二RB位置以及互调干扰位置3,确定出第二频率范围。
下面以互调干扰为三阶互调干扰为例,对网络设备确定第二频率范围的方式进行介绍。参见图19,图19示出的三阶互调干扰信号为DC位置上的信号与镜像干扰信号之间的三阶互调干扰信号。网络设备可以基于干扰频率范围,确定出三阶互调干扰位置F3。由上文描述可知,F3与第二频率范围内的DC位置F0、镜像干扰信号的位置F2之间满足如下关系:F3=2F2-F0。另外,F0、F2与第二RB位置F1满足如下关系:F2=2F0-F1。通过上述两个公式,可以得到第二频率范围F0=(F3+2F1)/3。因此,基于第二RB位置以及互调干扰位置F3,可以确定出第二频率范围。
图20示出的是基于干扰频率范围确定第三频率范围的方案。网络设备可以先基于干扰频率范围,确定出互调干扰位置4。该互调干扰位置4与干扰频率范围重叠,或者说,互调干扰位置4为干扰频率范围。在确定出互调干扰位置3后,网络设备可以基于第二RB位置以及互调干扰位置4,确定出第三频率范围。
下面以互调干扰为三阶互调干扰为例,对网络设备确定第三频率范围的方式进行介绍。参见图20,图20示出的三阶互调干扰信号为DC位置上的信号与镜像干扰信号之间的三阶互调干扰信号。网络设备可以基于干扰频率范围,确定出三阶互调干扰位置F3’。由上文描述可知,F3’与第三频率范围内的DC位置F0’、镜像干扰信号的位置F2之间满足如下关系:F3’=2F2-F0’。另外,F0’、F2与第二RB位置F1满足如下关系:F2=2F0’-F1。通过上述两个公式,可以得到第三频率范围F0’=(F3’+2F1)/3。因此,基于第二RB位置以及互调干扰位置F3’,可以确定出第三频率范围。
第二频率范围和/或第三频率范围可以通过比特位图来指示,也就是说,网络设备可以通过比特位图的方式向第一终端指示第二频率范围和/或第三频率范围。第二频率范围和/或第三频率范围可以以第一频率单元为单位,分为多个频段。网络设备可以通过比特位图向第一终端分别指示该多个频段是否能够放置DC位置,其中,比特位图以第一频率单元为单位。第一频率单元可以为RB、SCS、预定义的频率大小中的一种或多种。
网络设备可以通过比特位图向第一终端第二频率范围和/或第三频率范围的方式,与第二终端向网络设备指示第一频率范围的方式,具体方式可以参见上文图12的描述,为了简洁,此处不再赘述。
在一些实施例中,网络设备在向第一终端发送第二指示信息之前,还可以先判断第一终端产生的干扰信号是否对第一频率范围产生干扰,即判断第一终端是否为干扰来源。在确定第一终端为干扰来源的情况下,网络设备再向第一终端发送第二指示信息。换句话说,第二指示信息是在第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,由网络设备发送至第一终端。
网络设备可以基于以下信息中的一种或多种,确定第一终端是否为干扰来源:第一干扰信号的频率范围与第一频率范围之间的关系;第一终端与第二终端之间的距离。换句话说,第一终端为干扰来源可以基于第二条件确定。第二条件包括以下中的一种或多种确定:第一干扰信号的频率范围与第一频率范围至少部分重叠;第一终端与第二终端之间的距离小于或等于第一预设阈值。
在一些实施例中,如果网络设备确定第一干扰信号的频率范围与第一频率范围至少部分重叠,则网络设备可以确定第一终端为干扰来源。
在另一些实施例中,如果网络设备确定第一终端与第二终端之间的距离小于或等于第一预设阈值,则网络设备可以确定第一终端为干扰来源。
在另一些实施例中,如果网络设备确定第一干扰信号的频率范围与第一频率范围至少部分重叠,且第一终端与第二终端之间的距离小于或等于第一预设阈值,则网络设备可以确定第一终端为干扰来源。
在一些情况下,如果第一终端与第二终端之间的距离比较远,即使第一干扰信号的频率范围与第一 频率范围重叠,第一终端也不会对第二终端产生干扰,或者第一终端对第二终端的干扰比较小。因此,网络设备可以基于第一终端与第二终端之间的距离以及第一干扰信号的频率范围与第一频率范围之间的关系,确定第一终端是否为干扰来源。通过这种方式,可以使得干扰来源的判断结果更准确,从而实现对DC位置更精准地调整。
第一干扰信号可以包括第一镜像干扰信号、第一互调干扰信号中的一种或多种。本申请实施例对第一互调干扰信号的阶级不做具体限定。例如,第一互调干扰信号可以包括三阶互调干扰信号和/或五阶互调干扰信号。当然,第一互调干扰信号也可以包括其他阶级的互调干扰信号。例如,互调干扰信号可以包括二阶互调干扰信号、四阶互调干扰信号等。
第一干扰信号的频率范围可以基于第一终端的第一DC位置和网络设备为第一终端分配的第二RB位置确定。
由前文的描述可知,第一镜像干扰信号的频率范围可以基于第二RB位置以及第一DC位置确定。第一互调干扰信号的频率范围可以基于以下信息中的至少两种确定:第一镜像干扰信号的频率范围、第二RB位置、第一DC位置。在一些实施例中,第一互调干扰信号可以包括以下信号中的一种或多种:第一镜像干扰信号与第二RB位置上的信号产生的互调干扰信号、第一DC位置上的信号与第二RB位置上的信号产生的互调干扰信号、第一镜像干扰信号与第一DC位置上的信号产生的互调干扰信号。
上文详细介绍了由网络设备基于第一信息,确定第二DC位置的方案,在一些实施例中,网络设备也可以将第一信息发送给第一终端,由第一终端基于第一信息,确定第二DC位置。第一终端确定第二DC位置的方案与网络设备确定第二DC位置的方案类似,未详细描述的内容可以参见上文的描述。
下面以第一信息为干扰频率范围为例,介绍第一终端基于干扰频率范围,确定第二DC位置的方案。
网络设备可以向第一终端发送第二指示信息,该第二指示信息可用于指示干扰频率范围。干扰频率范围也可以采用上文描述的比特位图的方式进行指示。
第一终端接收到干扰频率范围后,可以基于干扰频率范围,确定第二DC位置。第二DC位置不会对第二终端的信号接收产生干扰。例如,第二DC位置产生的第三干扰信号的频率范围与干扰频率范围不重叠。
在一些实施例中,第一终端可以基于干扰频率范围,确定第二频率范围和/或第三频率范围。进一步地,第一终端可以从第二频率范围内确定(或选择)第二DC位置,或者第一终端可以从第三频率范围之外的频率范围内确定(或选择)第二DC位置。
网络设备向第一终端发送干扰频率范围之前,可以先判断第一终端是否为干扰来源。如果第一终端为干扰来源,则网络设备向第一终端发送干扰频率范围。如果第一终端不是干扰来源,则网络设备可以不向第一终端发送干扰频率范围。也就是说,干扰频率范围是在第一终端为干扰来源的情况下,由网络设备发送至第一终端。在该情况下,第一终端在接收到干扰频率范围后,可以直接确定第二DC位置。由网络设备执行干扰来源的判断,可以节省第一终端的判断资源,降低第一终端的功耗。
当然,在一些实施例中,也可以由第一终端来判断自己是否为干扰来源。不论第一终端是否为干扰来源,网络设备均可直接将干扰频率范围发送至第一终端。在该情况下,第一终端接收到干扰频率范围后,可以先基于干扰频率范围,确定自己是否为干扰来源。在确定自己为干扰来源的情况下,再确定第二DC位置。
上文描述的多个实施例可以单独实施,也可以相互结合,本申请实施例对此不做具体限定。例如,为了避免或减少第一终端的干扰信号对第二终端的信号接收产生干扰,可以通过确定第一RB位置,而不改变第一终端的DC位置来实现,或者也可以通过确定第二DC位置,而不改变网络设备为第一终端分配的第二RB位置来实现,或者也可以同时确定第一RB位置以及第二DC位置来实现。
上文结合图1至图20,详细描述了本申请的方法实施例,下面结合图21至图26,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图21是本申请实施例提供的无线通信装置的示意性结构图。图21的装置2100可以为上文描述的任意一种网络设备。该装置2100可以包括确定单元2110。
确定单元2110,用于基于第一信息,确定第一资源块RB位置,所述第二RB位置用于指示第一终端的RB,所述第一信息包括所述第一终端的第一直流DC位置。
在一些实施例中,所述确定单元2110用于:在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,基于第一信息,确定为第一终端分配的第一RB位置,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第一干扰信号的频率范围基于所述第一DC位置和第二RB位置确定。
在一些实施例中,所述第一干扰信号对所述第一频率范围产生干扰基于以下条件中的一种或多种确定:所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
在一些实施例中,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
在一些实施例中,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第一镜像干扰信号的频率范围、所述第一DC位置。
在一些实施例中,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
在一些实施例中,所述装置2100还包括:接收单元2120,用于接收所述第二终端发送的第一指示信息,所述第一指示信息用于指示所述第一频率范围。
在一些实施例中,所述第一指示信息包括所述第一频率范围的信号测量结果。
在一些实施例中,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
在一些实施例中,所述第一频率范围通过比特位图的方式指示。
在一些实施例中,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
在一些实施例中,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
在一些实施例中,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
在一些实施例中,所述确定单元2110用于:基于所述第一频率范围和所述第一DC位置,确定第三RB位置,所述第一RB位置为所述第三RB位置中的部分或全部RB位置。
在一些实施例中,所述第一频率范围与第二干扰信号的频率范围不重叠,所述第二干扰信号的频率范围基于所述第三RB位置与所述第一DC位置确定。
在一些实施例中,所述第二干扰信号至少包括以下信号中的一种或多种:第二镜像干扰信号或第二互调干扰信号。
在一些实施例中,所述第二互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第三RB位置、所述第二镜像干扰信号的频率范围、所述第一DC位置。
在一些实施例中,所述第二互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
在一些实施例中,所述确定单元2110用于:基于所述第一信息,确定所述第一RB的数量。
图22是本申请实施例提供另一种的无线通信装置的示意性结构图。图22的装置2200可以为上文描述的任意一种第二终端。该装置2200可以包括发送单元2210。
发送单元2210,用于向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端的信号接收存在干扰的第一频率范围,所述第一频率范围用于确定为第一终端分配的目标资源块RB位置。
在一些实施例中,调整后的RB不会对所述第一频率范围的信号接收产生干扰。
在一些实施例中,所述第一指示信息包括所述第一频率范围的信号测量结果。
在一些实施例中,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
在一些实施例中,所述第一频率范围通过比特位图的方式指示。
在一些实施例中,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
在一些实施例中,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
在一些实施例中,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
在一些实施例中,所述第一频率范围用于确定所述第一RB的数量。
图23是本申请实施例提供另一种的无线通信装置的示意性结构图。图23的装置2300可以为上文描述的任意一种第一终端。该装置2300可以包括确定单元2310。
确定单元2310,用于确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
在一些实施例中,所述装置还包括:接收单元2320,用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一终端确定所述第二DC位置。
在一些实施例中,所述第二指示信息用于指示第一频率范围,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第二指示信息用于指示以下信息中的一种或多种:可以放置DC的第二频率范围,不可以放置DC的第三频率范围;所述第二DC位置位于所述第二频率范围内和/或所述第二DC位置不位于所述第三频率范围内。
在一些实施例中,所述第二频率范围和/或所述第三频率范围基于第一频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第一频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
在一些实施例中,所述第二频率范围和/或所述第三频率范围基于第一频率范围中存在干扰的频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第一频率范围中存在干扰的频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
在一些实施例中,所述第三干扰信号包括以下信号中的一种或多种:第三镜像干扰信号、第三互调干扰信号。
在一些实施例中,所述第三互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第三镜像干扰信号的频率范围、所述第二DC位置。
在一些实施例中,所述第三互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
在一些实施例中,所述第二频率范围和/或所述第三频率范围通过比特位图来指示。
在一些实施例中,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
在一些实施例中,所述确定单元2310用于:在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,确定所述第二DC位置,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第二指示信息是在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,由所述网络设备发送至所述第一终端,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第一干扰信号对所述第一频率范围产生干扰基于以下条件中的一种或多种确定:所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
在一些实施例中,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
在一些实施例中,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第一镜像干扰信号的频率范围、所述第一终端的第一DC位置。
在一些实施例中,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
在一些实施例中,所述第一频率范围由所述第二终端通过第一指示信息发送至所述网络设备。
在一些实施例中,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
在一些实施例中,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
在一些实施例中,所述第一指示信息包括所述第一频率范围的信号测量结果。
在一些实施例中,所述信号测量结果包括以下中的一种或多种:SINR的测量结果、RSRP的测量结果、RSRQ的测量结果。
图24是本申请实施例提供另一种的无线通信装置的示意性结构图。图24的装置2400可以为上文描述的任意一种网络设备。该装置2400可以包括发送单元2410。
发送单元2410,用于向第一终端发送第二指示信息,所述第二指示信息用于指示所述第一终端确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
在一些实施例中,所述第二指示信息用于指示第一频率范围,所述第一频率范围为第二终端进行信 号接收或发送的频率范围。
在一些实施例中,所述第二指示信息用于指示以下信息中的一种或多种:可以放置DC的第二频率范围,不可以放置DC的第三频率范围;所述第二DC位置位于所述第二频率范围内和/或所述第二DC位置不位于所述第三频率范围内。
在一些实施例中,所述第二频率范围和/或所述第三频率范围基于第一频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第一频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
在一些实施例中,所述第二频率范围和/或所述第三频率范围基于第一频率范围中存在干扰的频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
在一些实施例中,所述第一频率范围中存在干扰的频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
在一些实施例中,所述第三干扰信号包括以下信号中的一种或多种:第三镜像干扰信号、第三互调干扰信号。
在一些实施例中,所述第三互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第三镜像干扰信号的频率范围、所述第二DC位置。
在一些实施例中,所述第三互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
在一些实施例中,所述第二频率范围和/或所述第三频率范围通过比特位图来指示。
在一些实施例中,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
在一些实施例中,所述第一频率范围用于所述第一终端确定所述第一终端产生的第一干扰信号是否会对所述第一频率范围产生干扰。
在一些实施例中,所述第二指示信息是在所述第一终端产生的第一干扰信号对所述第一频率范围产生干扰的情况下,由所述网络设备发送至所述第一终端。
在一些实施例中,所述第一干扰信号对所述第一频率范围产生干扰基于以下条件中的一种或多种确定:所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
在一些实施例中,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
在一些实施例中,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第一镜像干扰信号的频率范围、所述第一终端的第一DC位置。
在一些实施例中,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
在一些实施例中,所述第一频率范围由所述第二终端通过第一指示信息发送至所述网络设备。
在一些实施例中,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
在一些实施例中,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
在一些实施例中,所述第一指示信息包括所述第一频率范围的信号测量结果。
在一些实施例中,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
图25是本申请实施例提供另一种的无线通信装置的示意性结构图。图25的装置2500可以为上文描述的任意一种第二终端。该装置2500可以包括发送单元2510。
发送单元2510,用于向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定第一终端的第二直流DC位置。
在一些实施例中,所述第一指示信息包括所述第一频率范围的信号测量结果。
在一些实施例中,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
在一些实施例中,所述第一频率范围通过比特位图的方式指示。
在一些实施例中,所述比特位图以以下信息中的一种或多种为单位:资源块RB、子载波间隔SCS、预定义的频率大小。
在一些实施例中,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络 设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
在一些实施例中,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
图26是本申请实施例提供的无线通信装置的示意性结构图。图26中的虚线表示该单元或模块为可选的。该装置2600可用于实现上述方法实施例中描述的方法。装置2600可以是芯片、第一终端、第二终端或网络设备。
装置2600可以包括一个或多个处理器2610。该处理器2610可支持装置2600实现前文方法实施例所描述的方法。该处理器2610可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置2600还可以包括一个或多个存储器2620。存储器2620上存储有程序,该程序可以被处理器2610执行,使得处理器2610执行前文方法实施例所描述的方法。存储器2620可以独立于处理器2610也可以集成在处理器2610中。
装置2600还可以包括收发器2630。处理器2610可以通过收发器2630与其他设备或芯片进行通信。例如,处理器2610可以通过收发器2630与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的UE(如前文的第一UE或第二UE)或网络设备(如前文的源网络设备或目标网络设备)中,并且该程序使得计算机执行本申请各个实施例中的由UE或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的UE(如前文的第一UE或第二UE)或网络设备(如前文的源网络设备或目标网络设备)中,并且该程序使得计算机执行本申请各个实施例中的由UE或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的UE(如前文的第一UE或第二UE)或网络设备(如前文的源网络设备或目标网络设备)中,并且该计算机程序使得计算机执行本申请各个实施例中的由UE或网络设备执行的方法。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。

Claims (170)

  1. 一种无线通信的方法,其特征在于,包括:
    网络设备基于第一信息,确定第一资源块RB位置,所述第一RB位置用于指示第一终端的RB,所述第一信息包括所述第一终端的第一直流DC位置。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备基于第一信息,确定第一资源块RB位置,包括:
    在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,所述网络设备基于第一信息,确定为第一终端分配的第一RB位置,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  3. 根据权利要求2所述的方法,其特征在于,所述第一干扰信号的频率范围基于所述第一DC位置和第二RB位置确定。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一干扰信号对第一频率范围产生干扰基于以下条件中的一种或多种确定:
    所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;
    所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
  6. 根据权利要求5所述的方法,其特征在于,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:第二RB位置、所述第一镜像干扰信号的频率范围、所述第一DC位置。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述第二终端发送的第一指示信息,所述第一指示信息用于指示所述第一频率范围。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  10. 根据权利要求9所述的方法,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述第一频率范围通过比特位图的方式指示。
  12. 根据权利要求11所述的方法,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  13. 根据权利要求8-12中任一项所述的方法,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  14. 根据权利要求13所述的方法,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  15. 根据权利要求2-14中任一项所述的方法,其特征在于,所述网络设备基于第一信息,确定第一资源块RB位置,包括:
    所述网络设备基于所述第一频率范围和所述第一DC位置,确定第三RB位置,所述第一RB位置为所述第三RB位置中的部分或全部RB位置。
  16. 根据权利要求15所述的方法,其特征在于,所述第一频率范围与第二干扰信号的频率范围不重叠,所述第二干扰信号的频率范围基于所述第三RB位置与所述第一DC位置确定。
  17. 根据权利要求16所述的方法,其特征在于,所述第二干扰信号至少包括以下信号中的一种或多种:第二镜像干扰信号或第二互调干扰信号。
  18. 根据权利要求17所述的方法,其特征在于,所述第二互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第三RB位置、所述第二镜像干扰信号的频率范围、所述第一DC位置。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第二互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  20. 根据权利要求1-19中任一项所述的方法,其特征在于,所述网络设备基于第一信息,确定第一资源块RB位置,包括:
    所述网络设备基于所述第一信息,确定所述第一RB的数量。
  21. 一种无线通信的方法,其特征在于,包括:
    第二终端向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定第一资源块RB位置,所述第一RB位置用于指示第一终端的RB。
  22. 根据权利要求21所述的方法,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  23. 根据权利要求22所述的方法,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  24. 根据权利要求21-23中任一项所述的方法,其特征在于,所述第一频率范围通过比特位图的方式指示。
  25. 根据权利要求24所述的方法,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  26. 根据权利要求21-25中任一项所述的方法,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  27. 根据权利要求26所述的方法,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  28. 根据权利要求21-27中任一项所述的方法,其特征在于,所述第一频率范围用于确定所述第一RB的数量。
  29. 一种无线通信的方法,其特征在于,包括:
    第一终端确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一终端确定所述第二DC位置。
  31. 根据权利要求30所述的方法,其特征在于,所述第二指示信息用于指示第一频率范围,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  32. 根据权利要求30所述的方法,其特征在于,所述第二指示信息用于指示以下信息中的一种或多种:可以放置DC的第二频率范围,不可以放置DC的第三频率范围;
    所述第二DC位置位于所述第二频率范围内和/或所述第二DC位置不位于所述第三频率范围内。
  33. 根据权利要求32所述的方法,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  34. 根据权利要求33所述的方法,其特征在于,所述第一频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  35. 根据权利要求32所述的方法,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围中存在干扰的频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  36. 根据权利要求35所述的方法,其特征在于,所述第一频率范围中存在干扰的频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  37. 根据权利要求34或36所述的方法,其特征在于,所述第三干扰信号包括以下信号中的一种或多种:第三镜像干扰信号、第三互调干扰信号。
  38. 根据权利要求37所述的方法,其特征在于,所述第三互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第三镜像干扰信号的频率范围、所述第二DC位置。
  39. 根据权利要求38所述的方法,其特征在于,所述第三互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  40. 根据权利要求32-39中任一项所述的方法,其特征在于,所述第二频率范围和/或所述第三频 率范围通过比特位图来指示。
  41. 根据权利要求40所述的方法,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  42. 根据权利要求29所述的方法,其特征在于,所述第一终端确定目标直流DC位置,包括:
    在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,所述第一终端确定所述第二DC位置,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  43. 根据权利要求30-41中任一项所述的方法,其特征在于,所述第二指示信息是在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,由所述网络设备发送至所述第一终端,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  44. 根据权利要求42或43所述的方法,其特征在于,所述第一干扰信号对所述第一频率范围产生干扰基于以下条件中的一种或多种确定:
    所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;
    所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
  45. 根据权利要求42-44中任一项所述的方法,其特征在于,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
  46. 根据权利要求45所述的方法,其特征在于,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第一镜像干扰信号的频率范围、所述第一终端的第一DC位置。
  47. 根据权利要求46所述的方法,其特征在于,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  48. 根据权利要求31、33、34、42-47中任一项所述的方法,其特征在于,所述第一频率范围由所述第二终端通过第一指示信息发送至所述网络设备。
  49. 根据权利要求48所述的方法,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  50. 根据权利要求49所述的方法,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  51. 根据权利要求48-50中任一项所述的方法,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  52. 根据权利要求51所述的方法,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  53. 一种无线通信的方法,其特征在于,包括:
    网络设备向第一终端发送第二指示信息,所述第二指示信息用于指示所述第一终端确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
  54. 根据权利要求53所述的方法,其特征在于,所述第二指示信息用于指示第一频率范围,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  55. 根据权利要求53所述的方法,其特征在于,所述第二指示信息用于指示以下信息中的一种或多种:可以放置DC的第二频率范围,不可以放置DC的第三频率范围;
    所述第二DC位置位于所述第二频率范围内和/或所述第二DC位置不位于所述第三频率范围内。
  56. 根据权利要求55所述的方法,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  57. 根据权利要求56所述的方法,其特征在于,所述第一频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  58. 根据权利要求55所述的方法,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围中存在干扰的频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  59. 根据权利要求58所述的方法,其特征在于,所述第一频率范围中存在干扰的频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  60. 根据权利要求57或59所述的方法,其特征在于,所述第三干扰信号包括以下信号中的一种或多种:第三镜像干扰信号、第三互调干扰信号。
  61. 根据权利要求60所述的方法,其特征在于,所述第三互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第三镜像干扰信号的频率范围、所述第二DC位置。
  62. 根据权利要求61所述的方法,其特征在于,所述第三互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  63. 根据权利要求55-62中任一项所述的方法,其特征在于,所述第二频率范围和/或所述第三频率范围通过比特位图来指示。
  64. 根据权利要求63所述的方法,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  65. 根据权利要求54所述的方法,其特征在于,所述第一频率范围用于所述第一终端确定所述第一终端产生的第一干扰信号是否会对所述第一频率范围产生干扰。
  66. 根据权利要求56-58中任一项所述的方法,其特征在于,所述第二指示信息是在所述第一终端产生的第一干扰信号对所述第一频率范围产生干扰的情况下,由所述网络设备发送至所述第一终端。
  67. 根据权利要求65或66所述的方法,其特征在于,所述第一干扰信号对所述第一频率范围产生干扰基于以下条件中的一种或多种确定:
    所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;
    所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
  68. 根据权利要求65-67中任一项所述的方法,其特征在于,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
  69. 根据权利要求68所述的方法,其特征在于,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第一镜像干扰信号的频率范围、所述第一终端的第一DC位置。
  70. 根据权利要求68或69所述的方法,其特征在于,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  71. 根据权利要求54、56、57、65-70中任一项所述的方法,其特征在于,所述第一频率范围由所述第二终端通过第一指示信息发送至所述网络设备。
  72. 根据权利要求71所述的方法,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  73. 根据权利要求72所述的方法,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  74. 根据权利要求71-73中任一项所述的方法,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  75. 根据权利要求74所述的方法,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  76. 一种无线通信的方法,其特征在于,包括:
    第二终端向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定第一终端的第二直流DC位置。
  77. 根据权利要求76所述的方法,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  78. 根据权利要求77所述的方法,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  79. 根据权利要求76-78中任一项所述的方法,其特征在于,所述第一频率范围通过比特位图的方式指示。
  80. 根据权利要求79所述的方法,其特征在于,所述比特位图以以下信息中的一种或多种为单位:资源块RB、子载波间隔SCS、预定义的频率大小。
  81. 根据权利要求76-80中任一项所述的方法,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测 量结果低于预设门限。
  82. 根据权利要求81所述的方法,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  83. 一种无线通信的装置,其特征在于,所述装置为网络设备,所述装置包括:
    确定单元,用于基于第一信息,确定第一资源块RB位置,所述第一RB位置用于指示第一终端的RB,所述第一信息包括所述第一终端的第一直流DC位置。
  84. 根据权利要求83所述的装置,其特征在于,所述确定单元用于:
    在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,基于第一信息,确定为第一终端分配的第一RB位置,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  85. 根据权利要求84所述的装置,其特征在于,所述第一干扰信号的频率范围基于所述第一DC位置和第二RB位置确定。
  86. 根据权利要求84或85所述的装置,其特征在于,所述第一干扰信号对第一频率范围产生干扰基于以下条件中的一种或多种确定:
    所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;
    所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
  87. 根据权利要求84-86中任一项所述的装置,其特征在于,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
  88. 根据权利要求87所述的装置,其特征在于,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:第二RB位置、所述第一镜像干扰信号的频率范围、所述第一DC位置。
  89. 根据权利要求87或88所述的装置,其特征在于,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  90. 根据权利要求84-89中任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收所述第二终端发送的第一指示信息,所述第一指示信息用于指示所述第一频率范围。
  91. 根据权利要求90所述的装置,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  92. 根据权利要求91所述的装置,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  93. 根据权利要求90-92中任一项所述的装置,其特征在于,所述第一频率范围通过比特位图的方式指示。
  94. 根据权利要求93所述的装置,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  95. 根据权利要求90-94中任一项所述的装置,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  96. 根据权利要求95所述的装置,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  97. 根据权利要求83所述的装置,其特征在于,所述确定单元用于:
    基于所述第一频率范围和所述第一DC位置,确定第三RB位置,所述第一RB位置为所述第三RB位置中的部分或全部RB位置。
  98. 根据权利要求97所述的装置,其特征在于,所述第一频率范围与第二干扰信号的频率范围不重叠,所述第二干扰信号的频率范围基于所述第三RB位置内的RB位置与所述第一DC位置确定。
  99. 根据权利要求98所述的装置,其特征在于,所述第二干扰信号至少包括以下信号中的一种或多种:第二镜像干扰信号或第二互调干扰信号。
  100. 根据权利要求99所述的装置,其特征在于,所述第二互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第三RB位置、所述第二镜像干扰信号的频率范围、所述第一DC位置。
  101. 根据权利要求99或100所述的装置,其特征在于,所述第二互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  102. 根据权利要求83-101中任一项所述的装置,其特征在于,所述确定单元用于:
    基于所述第一信息,确定所述第一RB的数量。
  103. 一种无线通信的装置,其特征在于,所述装置为第二终端,所述装置包括:
    发送单元,用于向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定为第一终端分配的第一资源块RB位置。
  104. 根据权利要求103所述的装置,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  105. 根据权利要求104所述的装置,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  106. 根据权利要求103-105中任一项所述的装置,其特征在于,所述第一频率范围通过比特位图的方式指示。
  107. 根据权利要求106所述的装置,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  108. 根据权利要求103-107中任一项所述的装置,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  109. 根据权利要求108所述的装置,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  110. 根据权利要求103-109中任一项所述的装置,其特征在于,所述第一频率范围用于确定所述第一RB的数量。
  111. 一种无线通信的装置,其特征在于,所述装置为第一终端,所述装置包括:
    确定单元,用于确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
  112. 根据权利要求111所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一终端确定所述第二DC位置。
  113. 根据权利要求112所述的装置,其特征在于,所述第二指示信息用于指示第一频率范围,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  114. 根据权利要求112所述的装置,其特征在于,所述第二指示信息用于指示以下信息中的一种或多种:可以放置DC的第二频率范围,不可以放置DC的第三频率范围;
    所述第二DC位置位于所述第二频率范围内和/或所述第二DC位置不位于所述第三频率范围内。
  115. 根据权利要求114所述的装置,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  116. 根据权利要求115所述的装置,其特征在于,所述第一频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  117. 根据权利要求114所述的装置,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围中存在干扰的频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  118. 根据权利要求117所述的装置,其特征在于,所述第一频率范围中存在干扰的频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  119. 根据权利要求117或118所述的装置,其特征在于,所述第三干扰信号包括以下信号中的一种或多种:第三镜像干扰信号、第三互调干扰信号。
  120. 根据权利要求119所述的装置,其特征在于,所述第三互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第三镜像干扰信号的频率范围、所述第二DC位置。
  121. 根据权利要求120所述的装置,其特征在于,所述第三互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  122. 根据权利要求114-121中任一项所述的装置,其特征在于,所述第二频率范围和/或所述第三频率范围通过比特位图来指示。
  123. 根据权利要求122所述的装置,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  124. 根据权利要求111所述的装置,其特征在于,所述确定单元用于:
    在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,确定所述第二DC位置,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  125. 根据权利要求112-123中任一项所述的装置,其特征在于,所述第二指示信息是在所述第一终端产生的第一干扰信号对第一频率范围产生干扰的情况下,由所述网络设备发送至所述第一终端,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  126. 根据权利要求124或125所述的装置,其特征在于,所述第一干扰信号对所述第一频率范围产生干扰基于以下条件中的一种或多种确定:
    所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;
    所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
  127. 根据权利要求124-126中任一项所述的装置,其特征在于,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
  128. 根据权利要求127所述的装置,其特征在于,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第一镜像干扰信号的频率范围、所述第一终端的第一DC位置。
  129. 根据权利要求128所述的装置,其特征在于,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  130. 根据权利要求113、115、116、124-129中任一项所述的装置,其特征在于,所述第一频率范围由所述第二终端通过第一指示信息发送至所述网络设备。
  131. 根据权利要求130所述的装置,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  132. 根据权利要求131所述的装置,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  133. 根据权利要求130-132中任一项所述的装置,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  134. 根据权利要求133所述的装置,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  135. 一种无线通信的装置,其特征在于,所述装置为网络设备,所述装置包括:
    发送单元,用于向第一终端发送第二指示信息,所述第二指示信息用于指示所述第一终端确定第二直流DC位置,所述第二DC位置基于第二信息确定,所述第二信息包括第二资源块RB位置,所述第二RB位置用于指示所述第一终端的RB。
  136. 根据权利要求135所述的装置,其特征在于,所述第二指示信息用于指示第一频率范围,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  137. 根据权利要求135所述的装置,其特征在于,所述第二指示信息用于指示以下信息中的一种或多种:可以放置DC的第二频率范围,不可以放置DC的第三频率范围;
    所述第二DC位置位于所述第二频率范围内和/或所述第二DC位置不位于所述第三频率范围内。
  138. 根据权利要求137所述的装置,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  139. 根据权利要求138所述的装置,其特征在于,所述第一频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  140. 根据权利要求137所述的装置,其特征在于,所述第二频率范围和/或所述第三频率范围基于第一频率范围中存在干扰的频率范围确定,所述第一频率范围为第二终端进行信号接收或发送的频率范围。
  141. 根据权利要求140所述的装置,其特征在于,所述第一频率范围中存在干扰的频率范围与第三干扰信号的频率范围不重叠,所述第三干扰信号的频率范围基于所述第二DC位置与所述第二RB位置确定。
  142. 根据权利要求139或141所述的装置,其特征在于,所述第三干扰信号包括以下信号中的一种或多种:第三镜像干扰信号、第三互调干扰信号。
  143. 根据权利要求142所述的装置,其特征在于,所述第三互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第三镜像干扰信号的频率范围、所述第二DC位置。
  144. 根据权利要求143所述的装置,其特征在于,所述第三互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  145. 根据权利要求137-144中任一项所述的装置,其特征在于,所述第二频率范围和/或所述第三频率范围通过比特位图来指示。
  146. 根据权利要求145所述的装置,其特征在于,所述比特位图以以下信息中的一种或多种为单位:RB、子载波间隔SCS、预定义的频率大小。
  147. 根据权利要求136所述的装置,其特征在于,所述第一频率范围用于所述第一终端确定所述第一终端产生的第一干扰信号是否会对所述第一频率范围产生干扰。
  148. 根据权利要求138-140中任一项所述的装置,其特征在于,所述第二指示信息是在所述第一终端产生的第一干扰信号对所述第一频率范围产生干扰的情况下,由所述网络设备发送至所述第一终端。
  149. 根据权利要求147或148所述的装置,其特征在于,所述第一干扰信号对所述第一频率范围产生干扰基于以下条件中的一种或多种确定:
    所述第一干扰信号的频率范围与所述第一频率范围至少部分重叠;
    所述第一终端与所述第二终端之间的距离小于或等于第一预设阈值。
  150. 根据权利要求147-149中任一项所述的装置,其特征在于,所述第一干扰信号至少包括以下信号中的一种或多种:第一镜像干扰信号或第一互调干扰信号。
  151. 根据权利要求150所述的装置,其特征在于,所述第一互调干扰信号的频率范围基于以下信息中的至少两种确定:所述第二RB位置、所述第一镜像干扰信号的频率范围、所述第一终端的第一DC位置。
  152. 根据权利要求150或151所述的装置,其特征在于,所述第一互调干扰信号包括三阶互调干扰信号和/或五阶互调干扰信号。
  153. 根据权利要求136、138、139、147-152中任一项所述的装置,其特征在于,所述第一频率范围由所述第二终端通过第一指示信息发送至所述网络设备。
  154. 根据权利要求153所述的装置,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  155. 根据权利要求154所述的装置,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  156. 根据权利要求153-155中任一项所述的装置,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  157. 根据权利要求156所述的装置,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  158. 一种无线通信的装置,其特征在于,所述装置为第二终端,所述装置包括:
    发送单元,用于向网络设备发送第一指示信息,所述第一指示信息用于指示所述第二终端进行信号接收或发送的第一频率范围,所述第一频率范围用于确定第一终端的第二直流DC位置。
  159. 根据权利要求158所述的装置,其特征在于,所述第一指示信息包括所述第一频率范围的信号测量结果。
  160. 根据权利要求159所述的装置,其特征在于,所述信号测量结果包括以下中的一种或多种:信号干扰噪声比SINR的测量结果、参考信号接收功率RSRP的测量结果、参考信号接收质量RSRQ的测量结果。
  161. 根据权利要求158-160中任一项所述的装置,其特征在于,所述第一频率范围通过比特位图的方式指示。
  162. 根据权利要求161所述的装置,其特征在于,所述比特位图以以下信息中的一种或多种为单位:资源块RB、子载波间隔SCS、预定义的频率大小。
  163. 根据权利要求158-162中任一项所述的装置,其特征在于,所述第一指示信息是在满足第一条件的情况下,由所述第二终端发送至所述网络设备,所述第一条件包括所述第二终端的下行信号的信号测量结果低于预设门限。
  164. 根据权利要求163所述的装置,其特征在于,所述预设门限为预定义的门限,或者所述预设门限由所述第二终端确定,或者所述预设门限由所述第二终端对应的网络设备确定。
  165. 一种无线通信装置,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求1-82中任一项所述的方法。
  166. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1-82中任一项所述的方法。
  167. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-82中任一项所述的方法。
  168. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-82中任一项所述的方法。
  169. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-82中任一项所述的方法。
  170. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-82中任一项所述的方法。
PCT/CN2022/089412 2022-04-26 2022-04-26 无线通信的方法及装置 WO2023206108A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089412 WO2023206108A1 (zh) 2022-04-26 2022-04-26 无线通信的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089412 WO2023206108A1 (zh) 2022-04-26 2022-04-26 无线通信的方法及装置

Publications (1)

Publication Number Publication Date
WO2023206108A1 true WO2023206108A1 (zh) 2023-11-02

Family

ID=88516595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089412 WO2023206108A1 (zh) 2022-04-26 2022-04-26 无线通信的方法及装置

Country Status (1)

Country Link
WO (1) WO2023206108A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571664A (zh) * 2010-12-30 2012-07-11 中国移动通信集团公司 降低多载波通信系统中直流干扰的方法和装置
CN105577337A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 一种下行信号的发送、接收方法及装置
WO2018018377A1 (zh) * 2016-07-25 2018-02-01 华为技术有限公司 一种调度方法、功率控制方法及基站
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system
CN108023715A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 同步信号接收、发送方法及相应装置
CN110637437A (zh) * 2017-05-12 2019-12-31 高通股份有限公司 无线通信系统中参考信号和直流副载波的冲突缓解
US20200092145A1 (en) * 2018-09-17 2020-03-19 Apple Inc. Systems and methods for reducing inter-carrier interference in device-to-device (d2d) communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571664A (zh) * 2010-12-30 2012-07-11 中国移动通信集团公司 降低多载波通信系统中直流干扰的方法和装置
CN105577337A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 一种下行信号的发送、接收方法及装置
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system
WO2018018377A1 (zh) * 2016-07-25 2018-02-01 华为技术有限公司 一种调度方法、功率控制方法及基站
CN108023715A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 同步信号接收、发送方法及相应装置
CN110637437A (zh) * 2017-05-12 2019-12-31 高通股份有限公司 无线通信系统中参考信号和直流副载波的冲突缓解
US20200092145A1 (en) * 2018-09-17 2020-03-19 Apple Inc. Systems and methods for reducing inter-carrier interference in device-to-device (d2d) communication

Similar Documents

Publication Publication Date Title
WO2020029725A1 (zh) 接收和发送信号的方法以及通信装置
WO2020215981A1 (zh) 辅小区激活方法和装置
US20230309193A1 (en) User equipment overheating handling during lte-new radio simultaneous ul transmission
US11490280B2 (en) Carrier harmonization for RF performance optimization
TWI540848B (zh) 無線通信裝置與方法
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
US20220394737A1 (en) Resource configuration method and network device
JP2022521719A (ja) 電力制御方法および電力制御装置
CN115989691B (zh) 与aoa估计一起启用cli测量
CN116349192A (zh) 由设备进行的用于请求定位资源的物理层信令
US20240015544A1 (en) Multi-link measurement reporting
US20240155371A1 (en) Communication method and communication apparatus
US20210120556A1 (en) Apparatus, system and method of communication according to an automated frequency coordination (afc) allocation scheme
WO2018202168A1 (zh) 信息传输方法及装置
TWI758253B (zh) 蜂巢式輔助的精細時序量測之設備、系統及方法
WO2023206108A1 (zh) 无线通信的方法及装置
WO2019174013A1 (zh) 通信方法、通信装置和系统
WO2024016352A1 (zh) 通信方法及通信装置
WO2023065158A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023070336A1 (zh) 通信方法、终端设备及网络设备
WO2023092577A1 (zh) 通信方法、终端设备及网络设备
WO2023115341A1 (zh) 无线通信的方法、终端设备及网络设备
WO2023240580A1 (zh) 通信方法、终端设备及网络设备
WO2023077279A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023131108A1 (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938964

Country of ref document: EP

Kind code of ref document: A1