WO2023077279A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023077279A1
WO2023077279A1 PCT/CN2021/128262 CN2021128262W WO2023077279A1 WO 2023077279 A1 WO2023077279 A1 WO 2023077279A1 CN 2021128262 W CN2021128262 W CN 2021128262W WO 2023077279 A1 WO2023077279 A1 WO 2023077279A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
value
terminal device
received power
target received
Prior art date
Application number
PCT/CN2021/128262
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180100891.6A priority Critical patent/CN117751654A/zh
Priority to PCT/CN2021/128262 priority patent/WO2023077279A1/zh
Publication of WO2023077279A1 publication Critical patent/WO2023077279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and more specifically, to a wireless communication method, terminal equipment, and network equipment.
  • multiple types of terminal equipment may be supported.
  • a new radio new radio
  • NR new radio
  • a reduced capability (reduced capability, RedCap) terminal device and a non-reduced capability terminal device may be supported.
  • the present application provides a wireless communication method, terminal equipment and network equipment, so as to reduce mutual interference between different types of terminal equipment during PRACH transmission.
  • a wireless communication method including: a first terminal device sends a physical random access channel PRACH to a network device with a first transmit power, wherein the first terminal device is a first type of terminal device, The first transmit power is determined according to a first parameter set, at least one parameter in the first parameter set corresponds to the first type.
  • a wireless communication method including: a network device receiving a physical random access channel PRACH sent by a first terminal device, where the PRACH is sent with a first transmission power, wherein the first terminal device is a terminal device of the first type, the first transmit power is determined according to a first parameter set, and at least one parameter in the first parameter set corresponds to the first type.
  • a terminal device configured to send a physical random access channel PRACH to a network device with a first transmit power, wherein , the first terminal device is a first type of terminal device, the first transmit power is determined according to a first parameter set, and at least one parameter in the first parameter set corresponds to the first type.
  • a network device including: a receiving module, configured to receive a physical random access channel PRACH sent by a first terminal device, where the PRACH is sent with a first transmit power, wherein the first terminal The device is a terminal device of a first type, the first transmit power is determined according to a first parameter set, and at least one parameter in the first parameter set corresponds to the first type.
  • a terminal device including a processor, a memory, and a transceiver, the memory is used to store one or more computer programs, and the processor is used to call the computer program in the memory to control the The transceiver performs some or all of the steps in the method of the first aspect.
  • a network device including a processor, a memory, and a transceiver, the memory is used to store one or more computer programs, and the processor is used to call the computer program in the memory to control the The transceiver performs some or all of the steps in the method of the second aspect.
  • an embodiment of the present application provides a communication system, where the system includes the above-mentioned terminal device and/or network device.
  • the system may further include other devices that interact with the terminal device or network device in the solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program enables the terminal device to perform some or all of the steps in the method of the first aspect above .
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program causes the network device to perform some or all of the steps in the method of the second aspect above .
  • the embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to enable the terminal device to perform the above-mentioned Some or all of the steps in the method of the first aspect.
  • the computer program product can be a software installation package.
  • the embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a network device to execute Part or all of the steps in the method of the second aspect above.
  • the computer program product can be a software installation package.
  • an embodiment of the present application provides a chip, the chip includes a memory and a processor, and the processor can call and run a computer program from the memory to implement the method described in the first aspect or the second aspect above some or all of the steps.
  • the embodiment of the present application introduces parameters for the first type of terminal equipment (such as terminal equipment with reduced capabilities, or terminal equipment with reduced number of receiving antennas), so that the first type of terminal equipment can determine the The transmission power of the PRACH can be matched with its own actual situation, so as to reduce the mutual interference between different types of terminal equipment during the PRACH transmission process.
  • FIG. 1 is an example diagram of a system architecture of a wireless communication system to which an embodiment of the present application can be applied.
  • FIG. 2 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 4 is a structural block diagram of a network device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120 .
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with the terminal device 120 located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. The embodiment of the application does not limit this.
  • the wireless communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system , LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system, and satellite communication systems, and so on.
  • the terminal equipment in the embodiment of the present application may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and can be used to connect people, objects and machines, such as handheld devices with wireless connection functions, vehicle-mounted devices, and the like.
  • the terminal device in the embodiment of the present application can be mobile phone (mobile phone), tablet computer (Pad), notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • UE can be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • a cell phone and an automobile communicate with each other using sidelink signals. Communication between cellular phones and smart home devices without relaying communication signals through base stations.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be called an access network device or a wireless access network device, for example, the network device may be a base station.
  • the network device in this embodiment of the present application may refer to a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network.
  • radio access network radio access network, RAN node (or device) that connects a terminal device to a wireless network.
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), primary station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (access point, AP), transmission node, transceiver node, base band unit (base band unit, BBU), remote radio unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, a modem or a chip configured in the aforementioned equipment or device.
  • the base station can also be a mobile switching center, a device that undertakes the function of a base station in D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communication, and a device in a 6G network.
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • the network device in this embodiment of the present application may refer to a CU or a DU, or, the network device includes a CU and a DU.
  • a gNB may also include an AAU.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • a communication system may support various types of terminal devices. There may be multiple ways to classify types of terminal devices, which is not specifically limited in this embodiment of the present application.
  • terminal devices can be classified into different types according to their capabilities. For example, terminal devices may be divided into reduced capability (reduced capability, RedCap) terminal devices and non-reduced capability terminal devices.
  • a terminal device with reduced capabilities may also be referred to as a low-capability terminal device, or Redcap UE.
  • Terminal devices with reduced capabilities may include, for example, sensors, wearable devices, and other terminal devices that have lower requirements for data transmission rates and bandwidth.
  • the non-capability-reduced terminal devices may be, for example, mobile phones, tablet computers, and other terminal devices that have higher requirements on data transmission rate and bandwidth.
  • terminal devices may be classified into different types of terminal devices according to the number of antennas of the terminal devices (eg, the number of receiving antennas).
  • a communication system generally has requirements on the minimum number of receiving antennas of a terminal device (or the minimum number of receiving antennas of a terminal device working in a certain or certain frequency bands). Therefore, a terminal device whose number of receiving antennas is less than the minimum number of receiving antennas may be called a terminal device with reduced number of receiving antennas, and a terminal device whose number of receiving antennas is greater than or equal to the minimum number of receiving antennas may be called a terminal device with no reduced number of receiving antennas.
  • terminal devices may be divided into terminal devices that support coverage enhancement and terminal devices that do not support coverage enhancement according to whether they support coverage enhancement.
  • the transmission manner of the PRACH corresponding to the terminal device supporting coverage enhancement may be different from the transmission manner of the PRACH corresponding to the terminal device not supporting coverage enhancement.
  • a terminal device supporting coverage enhancement can automatically and repeatedly send the PRACH to enhance the coverage performance of the PRACH.
  • a terminal device supporting coverage enhancement does not need to wait for a response from the network device when automatically and repeatedly sending the PRACH.
  • the NR system is taken as an example to introduce a specific type of terminal equipment (such as a terminal equipment with reduced capabilities or a terminal equipment with a reduced number of antennas) in more detail.
  • the design of the NR system is mainly designed to support enhanced mobile broadband (eMBB) services. That is to say, in order to meet the needs of eMBB services for high speed, high spectral efficiency, and large bandwidth, various parameters, indicators, or requirements of the NR system are mainly designed for major technologies such as large bandwidth and large-scale antennas.
  • eMBB enhanced mobile broadband
  • eMBB enhanced mobile broadband
  • service types in the NR system such as service types in sensor networks, video surveillance, wearable and other scenarios.
  • These services have different requirements from eMBB services in terms of speed, bandwidth, power consumption, and cost.
  • the capabilities of terminal devices supporting these services are different from those of terminal devices supporting eMBB services.
  • a terminal device supporting these services has lower capabilities, such as reduced supported bandwidth, relaxed processing time, and reduced number of antennas.
  • the NR system can be optimized to form a lightweight new radio-light (NR-light) system.
  • NR-light a lightweight new radio-light
  • LTE long term evolution
  • a similar system design exists in related standards to support terminal equipment with a large number of connections, low power consumption, and low cost.
  • system designs such as machine type communication (MTC) and narrowband Internet of things (NB-IoT) in LTE systems.
  • MTC machine type communication
  • NB-IoT narrowband Internet of things
  • it is hoped to introduce a similar technology so that the NR technology can better support other types of services besides the eMBB service.
  • Alternatively, it is hoped that similar technologies will be introduced to support new types of terminal equipment to cover business requirements in scenarios other than eMBB.
  • the NR system can support a new type of terminal equipment to cover business requirements in scenarios such as sensor networks, video surveillance, and wearables.
  • this new type of terminal equipment is called a reduced capability terminal equipment (or low capability terminal equipment, or Redcap UE).
  • standards specify the minimum number of receive antennas (ports) that a terminal device needs to have.
  • the minimum number of receiving antennas may be related to a frequency band.
  • the standard stipulates that the minimum number of receiving antennas required by the terminal equipment is 4; for all other frequency bands, the standard stipulates that the terminal equipment needs to have the minimum number of receiving antennas
  • the quantity is 2.
  • the network device can determine the transmission mode of the downlink channel according to the requirements of the standard on the number of receiving antennas of the terminal device. Especially in the initial access stage, the network device usually does not know the number of receiving antennas of the terminal device. In this case, the downlink channel/signal can be transmitted according to the minimum number of receiving antennas required by the standard.
  • the number of antennas of some terminal equipment may not meet the above minimum requirements for the number of receiving antennas.
  • the above-mentioned service-oriented terminal devices in scenarios such as sensor networks, video surveillance, and wearables, the number of receiving antennas of such terminal devices is often smaller than the minimum number of receiving antennas required. Therefore, in the embodiment of the present application, this type of terminal device can be independently divided into one type, and this type of terminal device can be called a terminal device with reduced receiving antennas.
  • a terminal device whose number of receiving antennas is greater than or equal to the standard requirement for the minimum number of receiving antennas may be called a terminal device with no reduction in receiving antennas.
  • the terminal device with reduced capability and the terminal device with reduced number of receiving antennas may refer to the same type of terminal device.
  • the reduced capability terminal devices may be a subset of terminal devices with a reduced number of receive antennas.
  • the terminal device usually needs to try to synchronize with the network device based on the RACH process (or random access process), and establish a basic signaling connection.
  • the communication system may define and indicate RACH resources to the terminal equipment, so that the terminal equipment performs random access based on the RACH resources.
  • RACH resources may include 256 configurations. Each configuration of RACH resources can be defined by RACH configuration information.
  • the configuration information of RACH can include one or more of the following information: preamble format (preamble format), period, radio frame offset, subframe number in the radio frame, start symbol in the subframe, The number of PRACH time slots, the number of PRACH opportunities in the PRACH time slots, and the duration of the PRACH opportunities.
  • the terminal device can determine the time, frequency and code information of the PRACH resource through the information indicated by the network device.
  • network devices can also indicate synchronization signal/physical broadcast channel block (SS/PBCH block, SSB for short) and The association relationship of the PRACH resources enables the terminal device to determine the PRACH resources it can use according to the detected SSB and the association relationship.
  • SSB can be associated with one or more PRACH opportunities, and can also be associated with preambles (contention based preambles) of multiple competing random access procedures.
  • each SSB index (index) may be associated with a part of specific resources in the RACH resource configuration indicated in the system message.
  • the terminal device may first search for the SSB, and obtain the parameter rsrp-ThresholdSSB through a system message.
  • the parameter rsrp-ThresholdSSB indicates the reference signal receiving power (reference signal receiving power, RSRP) threshold of the SSB.
  • RSRP reference signal receiving power
  • the terminal device can select the SSB satisfying the RSRP threshold according to the measurement result of the SSB, and obtain the mapped PRACH resource according to the SSB.
  • the terminal device can use the PRACH resource to perform PRACH transmission.
  • the communication system may need to control the power of uplink channels or signals.
  • network devices can control the power of uplink channels or signals to compensate channel path loss and shadow fading, and suppress inter-cell interference, thereby improving network coverage and system capacity.
  • the transmission power of the PRACH may be determined in an open-loop power control manner.
  • the transmission power P PRACH,b,f,c (i) of PRACH can be determined by formula (1):
  • P PRACH,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH,target,f,c +PL b,f,c ⁇ (1)
  • P CMAX,f,c (i) is the maximum output power of the terminal equipment
  • P PRACH,target,f,c is the target receiving power of the PRACH
  • PL b,f,c is the path loss of the PRACH.
  • the unit of the transmit power of the PRACH may be decibel milliwatt, that is, dBm.
  • the target received power P PRACH,target,f,c of the PRACH may be a parameter configured by a higher layer.
  • the path losses PL b, f, c of the PRACH may be estimated values determined by the terminal device according to the downlink reference signal.
  • the path loss PL b,f,c of PRACH can be calculated by formula (2):
  • P PRACH, rs, f, c is the transmission power of the reference signal sent by the network device
  • P PRACH, rsrp, f, c is the reference signal filtered by layer 3 (that is, the radio resource control (RRC) layer) Received power (reference signal receiving power, RSRP).
  • RRC radio resource control
  • the reference signal used by the terminal device to measure the path loss may be associated with the PRACH.
  • the terminal device may determine the reference signal of the path loss according to the SSB associated with the PRACH transmission.
  • terminal devices can be divided into multiple types. Different types of terminal equipment may have different capabilities or the number of receiving antennas. For example, within the range of a cell covered by a certain network device, there may be terminal devices with 4 receiving antennas and 2 receiving antennas at the same time, or there may also be a terminal device with 1 receiving antenna.
  • the RSRP measurement result of the terminal equipment on the SSB has a certain relationship with the number of receiving antennas. When the terminal device has multiple receiving antennas, the RSRP measurement result of the SSB can be obtained by combining them through receiving diversity, and the RSRP measurement result is generally not lower than the RSRP result measured by any single receiving antenna.
  • the RSRP measured by terminal devices with a larger number of receiving antennas is usually higher.
  • the RSRP measurement result of the terminal device with 4 receiving antennas for SSB may be higher than that of the terminal device with 2 receiving antennas RSRP measurement results for SSB.
  • a common method (such as the same parameter) is usually used to determine the transmission power of PRACH, resulting in certain types of terminal equipment determining the The transmission power of the PRACH is inappropriate, so that during the transmission of the PRACH, different types of terminal equipment may interfere with each other.
  • a terminal device with reduced capability when the terminal device with reduced capability and non-capable terminal device use the same parameters to determine the transmit power of PRACH, since the number of receiving antennas of the terminal device with reduced capability is reduced, the RSRP measurement for SSB As a result, reduced-capability terminal devices are undervalued compared to non-reduced-capability terminal devices. Therefore, the path loss calculated by the terminal equipment with reduced capability according to the RSRP measurement result of the SSB is too large, which leads to the determined transmit power of the PRACH being too large, which may cause interference to other terminal equipment.
  • the embodiment of the present application designs parameters for different types of terminal equipment.
  • the terminal equipment determines the transmission power of PRACH, it can determine the terminal equipment according to the type of terminal equipment by using the parameters corresponding to this type of terminal equipment.
  • the transmission power of the PRACH can reduce the mutual interference between different types of terminal equipment during the PRACH transmission process.
  • the wireless communication method provided by the embodiment of the present application will be described in detail below with reference to FIG. 2 .
  • the method shown in FIG. 2 is described from the perspective of interaction between the network device and the first terminal device.
  • the first terminal device in FIG. 2 is a first type of terminal device.
  • the first type of terminal device may refer to a reduced capability terminal device.
  • the non-reduced capability terminal device may be referred to as a second type of terminal device.
  • the first type of terminal device may refer to a terminal device whose number of receiving antennas is less than the preset minimum number of receiving antennas of the frequency band where the first terminal device is located (generally speaking, the frequency band where the terminal device is located is preset The set minimum number of receiving antennas is designed for non-reduced terminal equipment).
  • the first type of terminal device refers to a terminal device whose number of receiving antennas is less than the preset minimum number of receiving antennas in the frequency band where the first terminal device is located, the number of receiving antennas may be greater than or equal to the preset minimum number of receiving antennas in the frequency band where the terminal device is located.
  • the terminal device with the set minimum number of receiving antennas is called the second type of terminal device.
  • the first type of terminal device may refer to a terminal device supporting coverage enhancement (a terminal device supporting coverage enhancement may automatically and repeatedly send the PRACH to enhance the coverage performance of the PRACH).
  • the terminal device that does not support coverage enhancement can be called a second type of terminal device (a terminal device that does not support coverage enhancement cannot automatically repeat sending PRACH).
  • step S210 the first terminal device sends a PRACH to the network device with a first transmit power.
  • the first transmit power may refer to the power of the first terminal device to transmit the PRACH.
  • the first transmit power may be determined based on a first set of parameters.
  • the first parameter set may be a parameter set for determining the transmit power of the PRACH of the first type of terminal equipment.
  • At least one parameter in the first set of parameters corresponds to a first type.
  • at least one parameter in the first parameter set is a parameter for the first type of terminal equipment.
  • the at least one parameter may be used to determine the transmit power of the PRACH of the first type of terminal equipment.
  • the at least one parameter may be a parameter specially designed for the first type of terminal equipment. Taking the terminal device of the first type as a terminal device with reduced capability and the terminal device of the second type as a terminal device with a non-reduced capability as an example, when the first terminal device is a terminal device of the first type, at least one parameter may be Parameters for end-equipment with reduced capabilities. The non-capability-reduced terminal equipment may not consider the at least one parameter when determining the transmission power of the PRACH.
  • the embodiment of the present application introduces parameters for the first type of terminal equipment (such as terminal equipment with reduced capabilities, or terminal equipment with reduced number of receiving antennas), so that the first type of terminal equipment can determine the The transmission power of the PRACH can be matched with its own actual situation, so as to reduce the mutual interference between different types of terminal equipment during the PRACH transmission process.
  • the transmit power of PRACH is related to the target received power of PRACH (that is, P PRACH,target,f,c in formula (1)) and the path loss of PRACH (that is, P in formula (1) PRACH, target, f, c PL b, f, c ) are related. Therefore, in some embodiments, the first set of parameters may include target received power parameters and/or path loss parameters.
  • the target received power parameter may be used to represent the target received power of the PRACH.
  • the path loss parameter may be used to represent the path loss between the first terminal device and the network device.
  • the target received power parameter and/or the path loss parameter may be configured by the network device.
  • the network device may configure the target received power parameter and/or the path loss parameter through RACH configuration information, or the network device may configure the target received power parameter and/or the path loss parameter through high layer signaling (for example, RRC signaling).
  • the target received power parameter and/or the path loss parameter may be a preset value (such as predefined by a protocol).
  • the transmit power of the PRACH of the first type of terminal equipment may be corrected without changing the configuration of the existing PRACH.
  • a compensation parameter may be added to correct the transmit power of the PRACH.
  • the first parameter set may further include a first compensation parameter, where the first compensation parameter corresponds to the first type.
  • the first compensation parameter corresponding to the first type may mean that the terminal equipment of the first type can determine the transmission power of the PRACH according to the first compensation parameter, and the terminal equipment of the second type may not consider the transmission power of the PRACH when determining the transmission power of the PRACH. a compensation parameter.
  • the first compensation parameter may be used to correct the target received power of the PRACH or the path loss of the PRACH. Or, in some other embodiments, the first compensation parameter may modify the transmission power of the PRACH as a whole.
  • the first compensation parameter may be an offset parameter or a compensation coefficient (or compensation factor).
  • the offset parameter or compensation coefficient can be used to modify the transmission power of the PRACH as a whole.
  • the first compensation parameter may be an offset parameter of the transmission power of the PRACH and/or a compensation coefficient of the transmission power of the PRACH.
  • the target received power parameter may refer to the value of the target received power of the PRACH
  • the path loss parameter may refer to the value of the path loss between the first terminal device and the network device
  • the first compensation parameter may be refers to a compensation power value (compensation value for PRACH transmission power)
  • the first transmission power may be determined according to the sum of the target received power value, the path loss value, and the compensation power value.
  • the transmit power of the second type of terminal device may be based on the value of the target received power and the The sum of path loss values is determined, and the transmission power of the first type of terminal equipment is equivalent to superimposing a power compensation on the basis of the determination method of the transmission power of the second type of terminal equipment (that is, adding a compensation power value ).
  • the value of the first compensation parameter is negative.
  • the first type of terminal device is a terminal device with reduced capability, compared with a terminal device without reduced capability, the number of receiving antennas of the terminal device with reduced capability is reduced, resulting in a calculated path loss of the PRACH being too large, and then The transmission power of the PRACH determined according to the path loss is too high.
  • the first compensation parameter is a negative value, the transmit power of the PRACH of the first terminal device can be effectively corrected, thereby avoiding interference to other terminal devices.
  • the first transmit power of the first terminal device can be determined by the following formula (3) :
  • P PRACH,b,f,c (i) is the first transmission power
  • P CMAX,f,c (i) is the maximum transmission power parameter of the first terminal equipment
  • P PRACH,target,f,c is the target reception power parameters
  • PL b, f, c are path loss parameters
  • is the first compensation parameter.
  • the first compensation parameter may be an offset parameter or a compensation coefficient
  • the offset parameter or compensation coefficient may be used to locally correct the value of one or some parameters that determine the transmit power of the PRACH.
  • the first compensation parameter may be at least one of the following: an offset parameter of the target received power of the PRACH; a compensation coefficient of the target received power of the PRACH; an offset parameter of the path loss of the PRACH; or, the path loss of the PRACH compensation coefficient.
  • the target received power of the PRACH may be partially corrected by using the compensation coefficient.
  • the target received power parameter may refer to the value of the target received power of the PRACH
  • the path loss parameter may refer to the value of the path loss between the first terminal device and the network device
  • the first compensation parameter may be is the compensation coefficient.
  • the compensation coefficient may be used to adjust the value of the target received power.
  • the first transmit power may be determined by adjusting the compensation coefficient according to the value of the target received power and adding the value of the path loss.
  • the first transmit power may be determined according to multiplying the value of the target receive power by the compensation coefficient and adding the value of the path loss.
  • the value of the first compensation parameter may be less than 1.
  • the first type of terminal device is a terminal device with reduced capability, compared with a terminal device without reduced capability, the number of receiving antennas of the terminal device with reduced capability is reduced, resulting in a calculated path loss of the PRACH being too large, and then The transmission power of the PRACH determined according to the path loss is too high.
  • the value of the first compensation parameter is less than 1, when calculating the transmit power of the PRACH according to the product of the first compensation parameter and the value of the target received power, the transmit power of the PRACH of the first terminal device can be reduced, thereby avoiding causing damage to other terminal devices. interference.
  • the first transmit power of the first terminal device can be determined by the following formula (4 )Sure:
  • P PRACH,b,f,c (i) min ⁇ P CMAX,f,c (i), ⁇ P PRACH,target,f,c +PL b,f,c ⁇ (4)
  • P PRACH,b,f,c (i) is the first transmission power
  • P CMAX,f,c (i) is the maximum transmission power parameter of the first terminal equipment
  • P PRACH,target,f,c is the target reception power parameters
  • PL b, f, c are path loss parameters
  • is the first compensation parameter.
  • the path loss of the PRACH may be partially corrected by using the compensation coefficient.
  • the target received power parameter may refer to the value of the target received power of the PRACH
  • the path loss parameter may refer to the value of the path loss between the first terminal device and the network device
  • the first compensation parameter may be is the compensation coefficient.
  • the compensation coefficient may be used to adjust the value of the path loss.
  • the first transmit power may be determined by adjusting the compensation coefficient according to the value of the path loss and adding the value of the target received power.
  • the first transmit power may be determined according to multiplying the value of the path loss by the compensation coefficient and adding the value of the target receive power.
  • the value of the first compensation parameter may be less than 1.
  • the first type of terminal device is a terminal device with reduced capability, compared with a terminal device without reduced capability, the number of receiving antennas of the terminal device with reduced capability is reduced, resulting in a calculated path loss of the PRACH being too large, and then The transmission power of the PRACH determined according to the path loss is too high. If the value of the first compensation parameter is less than 1, when calculating the transmit power of the PRACH according to the product of the first compensation parameter and the value of the path loss, the transmit power of the PRACH of the first terminal device can be reduced, thereby avoiding interference to other terminal devices .
  • the first transmit power of the first terminal device can be determined by the following formula (5 )Sure:
  • P PRACH,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH,target,f,c + ⁇ PL b,f,c ⁇ (5)
  • P PRACH,b,f,c (i) is the first transmission power
  • P CMAX,f,c (i) is the maximum transmission power parameter of the first terminal equipment
  • P PRACH,target,f,c is the target reception power parameters
  • PL b, f, c are path loss parameters
  • is the first compensation parameter.
  • the value of the first compensation parameter may be configured by the network device.
  • the first compensation parameter may be carried in a system message sent by the network device.
  • the system message may refer to a system information block (system information block, SIB).
  • SIB system information block
  • the first compensation parameter may be included in RACH configuration information in system information.
  • the value of the first compensation parameter may be a preset value (such as predefined by the protocol).
  • the first compensation parameter may be a fixed value, that is, for any terminal device of the first type, the value of the first compensation parameter may adopt the same value.
  • the value of the first compensation parameter may also be changed.
  • the value of the first compensation parameter may be associated with the second parameter.
  • the specific content of the second parameter can be set according to actual conditions.
  • the second parameter may include, for example, the number of receiving antennas of the first terminal device, and/or, the frequency band where the first terminal device is located.
  • the value of the first compensation parameter is associated with the number of receiving antennas of the first terminal device. If the number of receiving antennas of the first terminal device is different, the value of the first compensation parameter may be the same or different.
  • the first compensation parameter is the offset parameter of the transmit power of PRACH as an example. If the number of receiving antennas of the first terminal equipment is 2, then the offset parameter of the transmit power of PRACH The value of the parameter may be ⁇ 1, and if the number of receiving antennas of the first terminal device is 1, the value of the offset parameter of the transmit power of the PRACH is ⁇ 2.
  • the value of the first compensation parameter is associated with the frequency band where the first terminal device is located.
  • the frequency bands where the first terminal devices are located are different, and the values of the first compensation parameters may be the same or different.
  • the first compensation parameter being the offset parameter of the transmit power of PRACH as an example, if the frequency band where the first terminal equipment is located is n7 (the minimum number of receiving antennas corresponding to frequency band n7 is 4), then the value of the offset parameter of the transmission power of PRACH can be ⁇ 1, if the frequency band where the first terminal device is located is n2 (the minimum number of receiving antennas corresponding to frequency band n2 is 2), then the transmission power of PRACH The value of the bias parameter may be ⁇ 2.
  • the target received power parameter, the path loss parameter, and the first compensation parameter can be configured in different ways, for example, the target received power parameter and the path loss parameter can be configured by the network device, and the first compensation parameter can be preset value.
  • the target received power parameter, the path loss parameter and the first compensation parameter may be configured in the same manner, for example, the target received power parameter, the path loss parameter and the first compensation parameter may all be configured by the network device.
  • the target received power parameter, the path loss parameter and the first compensation parameter when the target received power parameter, the path loss parameter and the first compensation parameter are configured in the same manner, they may be carried in different messages.
  • the transmit power of the PRACH of the first type of terminal device may be corrected by reconfiguring the target receive power of the PRACH of the first type of terminal device.
  • the transmit power of the PRACH can be corrected by configuring a target receive power parameter.
  • the target received power parameter may correspond to the first type.
  • the target received power parameter corresponding to the first type may mean that the terminal device of the first type may correspond to one or more target received power parameters, and the terminal device of the second type may correspond to one target received power parameter.
  • different target receive power parameters may be selected, so that the determined transmit power of the PRACH is also different.
  • the first type of terminal device can correspond to the target receiving power parameter and the non-reduced
  • the second type of terminal device may only correspond to the target received power parameter of the terminal device without reduced capability.
  • the first type of terminal device may select a target receiving power parameter corresponding to a terminal device with reduced capability
  • the second type of terminal device may select a target receiving power parameter corresponding to a terminal device without reduced capability.
  • the target received power parameter may include a value of the target received power.
  • the value of the target received power may include a first power value and a second power value.
  • the first power value and the second power value may respectively correspond to different types of terminal devices, for example, the first power value may correspond to the first type, and the second power value may correspond to the second type.
  • the target received power parameter may be the target received power of the PRACH for different types of terminal equipment, that is, the target received power of the PRACH corresponding to different types of terminal equipment may be different.
  • the target received power parameter may further include a second compensation parameter, where the second compensation parameter corresponds to the first type.
  • the second compensation parameter corresponding to the first type may mean that terminal devices of the first type have the second compensation parameter, while terminal devices of the second type do not have the second compensation parameter.
  • the second compensation parameter may be a compensation coefficient.
  • the target received power parameter of the first type of terminal equipment may be determined according to the second compensation parameter.
  • the target received power parameter may be determined by adding the value of the target received power to the compensation coefficient (second compensation parameter).
  • the target received power parameter may be determined according to multiplying the value of the target received power by the compensation coefficient (second compensation parameter).
  • the target received power parameter may be configured in multiple manners, which is not limited in this embodiment of the present application.
  • the value of the first parameter may be configured by the network device.
  • the first parameter may be carried in a system message sent by the network device.
  • the system message may refer to a system information block (system information block, SIB).
  • SIB system information block
  • the first parameter may be included in RACH configuration information of the system information.
  • the value of the first parameter may be a preset value (such as predefined by the protocol).
  • the first parameter may be a fixed value, that is, for any target type of terminal device, the first parameter may take the same value.
  • the value of the first parameter may also vary.
  • the value of the first parameter may be associated with the second parameter.
  • the specific content of the second parameter can be set according to actual conditions.
  • the second parameter may include, for example, the number of receiving antennas of the first terminal device, and/or, the frequency band where the first terminal device is located.
  • the value of the first parameter is associated with the number of receiving antennas of the first terminal device. If the number of receiving antennas of the first terminal device is different, the value of the first parameter may be the same or different.
  • the first parameter is an offset parameter of the transmit power of PRACH as an example, if the number of receiving antennas of the first terminal device is 2, then the offset parameter of the transmit power of PRACH is The value may be ⁇ 1, and if the number of receiving antennas of the first terminal device is 1, the value of the offset parameter of the transmit power of the PRACH is ⁇ 2.
  • the value of the first parameter is associated with the frequency band where the first terminal device is located.
  • the frequency bands where the first terminal devices are located are different, and the values of the first parameters may be the same or different.
  • the terminal device of the target type as a terminal device with reduced capabilities
  • the first parameter being the offset parameter of the transmit power of the PRACH
  • the value of the offset parameter of the transmit power of PRACH can be ⁇ 1
  • the frequency band where the first terminal device is located is n2 (the minimum number of receiving antennas corresponding to frequency band n2 is 2)
  • the offset of the transmit power of PRACH The value of the parameter can be ⁇ 2.
  • the value of the target received power parameter corresponding to the first type of terminal device is smaller than the value of the target received power parameter corresponding to the second type of terminal device.
  • the transmit power of the PRACH of the terminal device with reduced capability directly select the target received power parameter corresponding to the terminal device with reduced capability (the value of the target received power parameter is smaller than the target received power corresponding to the terminal device with reduced capability) , so that the PRACH transmit power of the terminal device with reduced capability can be calculated according to the target received power parameter corresponding to the terminal device with reduced capability, so that the determined transmit power of PRACH matches the own situation of the terminal device with reduced capability, and then Interference with other terminal equipment can be avoided.
  • the value of the first parameter may also be associated with the number of receiving antennas of the first terminal device and the frequency band where the first terminal device is located.
  • the following takes the first terminal device as a terminal device with reduced capabilities as an example, and uses four embodiments to illustrate in more detail how to determine the first parameter and the transmission power of the PRACH.
  • the first compensation parameter is the offset parameter of the transmission power of PRACH
  • Embodiment 1 designs an offset parameter for the transmit power of the PRACH, which can correct the transmit power of the PRACH as a whole, thereby avoiding mutual interference when different terminal devices receive the PRACH.
  • the first terminal device When the first terminal device is a terminal device with reduced capability, the number of receiving antennas of the first terminal device may be less than that of a terminal device without reduced capability. Therefore, the RSRP obtained by measuring the SSB by the first terminal device is relatively low, resulting in a relatively large path loss of the PRACH obtained through calculation. In order to compensate for the path loss, the transmit power of the PRACH is also set to be relatively large. In order to avoid unreasonable setting of PRACH transmission power, the embodiment of the present application may increase the offset parameter ⁇ of PRACH transmission power in the above-mentioned calculation formula (1) for calculating PRACH transmission power. Based on this, in the embodiment of the present application, the formula for calculating the transmit power of the PRACH may be determined by the formula (3) above. In this example, the first compensation parameter ⁇ is an offset parameter of the transmission power of the PRACH.
  • the value of the offset parameter ⁇ of the transmit power of the PRACH can be configured by the network device.
  • the network device may configure the offset parameter ⁇ of the transmit power of the PRACH through the system message SIB.
  • SIB system message
  • An example of configuring the offset parameter ⁇ of the transmit power of the PRACH by a network device through a system message is given below.
  • preambleTransMax ENUMERATED ⁇ n3,n4,n5,n6,n7,n8,n10,n20,n50,n100,n200 ⁇ ,
  • the offset parameter ⁇ of the transmission power of the PRACH can be set through the parameter PRACHPowerOffset.
  • the offset parameter ⁇ of the transmission power of the PRACH may be a preset value.
  • the preset offset parameter ⁇ may be related to the frequency band where the first terminal equipment is located, that is, the frequency band where the first terminal equipment is located corresponds to the preset value of the offset parameter ⁇ . set value.
  • the minimum number of receiving antennas corresponding to different frequency bands is different.
  • the minimum receiving antennas required by non-capability-reduced terminal equipment If the number is 4, the number of receiving antennas of terminal equipment with reduced capabilities can be reduced to 2 or 1; for all other frequency bands, the minimum number of receiving antennas required for terminal equipment with reduced capabilities is 2, and the number of receiving antennas for terminal equipment with reduced capabilities can be Reduced to 1.
  • the preset bias parameter ⁇ may be different.
  • the frequency band where the first terminal device is located is n7 (the minimum number of receiving antennas corresponding to frequency band n7 is 4), then the value of the offset parameter of the transmission power of the PRACH can be ⁇ 1, and the frequency band where the first terminal device is located is n2 (the minimum number of receiving antennas corresponding to the frequency band n2 is 2), then the value of the offset parameter of the transmit power of the PRACH may be ⁇ 2.
  • the preset bias parameter ⁇ may be related to the number of receiving antennas of the first terminal device. Taking the first terminal device as a terminal device with reduced capability as an example, if the number of receiving antennas of the first terminal device is 2, the value of the offset parameter of the transmit power of the PRACH may be ⁇ 1, if the receiving antennas of the first terminal device If the quantity is 1, then the value of the offset parameter of the transmit power of the PRACH is ⁇ 2.
  • Embodiment 2 For the first type of target received power parameters
  • Embodiment 2 designs different PRACH target receiving powers for different types of terminal equipment, so that the target receiving power of PRACH can be matched with the type of terminal equipment, thereby avoiding the influence of inappropriate PRACH transmission power on other terminals.
  • the reception of PRACH causes interference.
  • the network device can independently configure the target received power of PRACH for the terminal device with reduced capability. For example, compared with the target received power of PRACH for the terminal device with reduced capability, the network device can configure a lower target received power for the terminal device with reduced capability.
  • the receiving power is used to offset the influence of the increase in the transmitting power of the PRACH due to the decrease in the number of receiving antennas and the large calculated path loss.
  • the preambleReceivedTargetPower-RedCap parameter for terminal devices with reduced capabilities may be added to the configuration information of the RACH.
  • An example is given below in which the network device configures the target received power of the PRACH of the terminal device with reduced capability by adding the preambleReceivedTargetPower-RedCap parameter in the RACH configuration information.
  • preambleReceivedTargetPower-RedCap INTEGER(-202..-60)
  • preambleTransMax ENUMERATED ⁇ n3,n4,n5,n6,n7,n8,n10,n20,n50,n100,n200 ⁇ ,
  • the preambleReceivedTargetPower parameter can be used to configure the target received power of PRACH for non-reduced capability terminal devices;
  • the preambleReceivedTargetPower-RedCap parameter can be used to configure the target received power of PRACH for reduced capability terminal devices.
  • the target received power of the PRACH for terminal devices with reduced capabilities may also be obtained according to the target received power of PRACH for terminal devices without reduced capabilities.
  • the value of the power offset can be configured by the network device or can be a preset value. For a specific preset method, refer to Embodiment 1.
  • the power offset may be related to the frequency band where the first terminal device is located, or may be related to the number of receiving antennas of the first terminal device, which will not be repeated here.
  • the first compensation parameter is the compensation coefficient of the target received power of PRACH
  • Embodiment 3 Corrects the value of the parameter (target received power of PRACH) used to determine the transmit power of PRACH through the compensation coefficient of the target received power of PRACH, so as to avoid the PRACH transmission power of other terminal equipment from being affected by inappropriate PRACH transmit power. interference to reception.
  • the first terminal device is a terminal device with reduced capability
  • the number of receiving antennas of the terminal device with reduced capability is smaller than that of terminal device without reduced capability. Therefore, the RARP obtained by measuring the SSB of the first terminal device is relatively low, resulting in a relatively large path loss of the PRACH obtained through calculation.
  • the transmit power of the PRACH is also set to be relatively large.
  • the embodiment of the present application may increase the compensation coefficient ⁇ of the PRACH target received power in the above-mentioned calculation formula (1) for calculating the PRACH transmission power. Based on this, in the embodiment of the present application, the formula for calculating the transmit power of the PRACH may be determined by the formula (4) above.
  • the first compensation parameter ⁇ is a compensation coefficient of the target received power of the PRACH.
  • the value of the compensation coefficient ⁇ of the target received power of the PRACH can be configured by the network device.
  • the network device may configure the compensation coefficient ⁇ of the target received power of the PRACH through the system message SIB.
  • the compensation coefficient ⁇ of the target received power of the PRACH may be a preset value.
  • the compensation coefficient may be related to the frequency band where the first terminal device is located, or may be related to the number of receiving antennas of the first terminal device, which will not be repeated here.
  • the first compensation parameter is the compensation coefficient of the path loss of PRACH
  • Embodiment 4 Corrects the value of the parameter (path loss of PRACH) used to determine the transmission power of PRACH through the compensation coefficient of the path loss of PRACH, which can avoid the inappropriate transmission power of PRACH caused by the path loss of inappropriate PRACH , thus causing interference to the reception of the PRACH of other terminal devices.
  • path loss of PRACH path loss of PRACH
  • the first terminal device is a terminal device with reduced capability
  • the number of receiving antennas of the terminal device with reduced capability is smaller than that of terminal device without reduced capability. Therefore, the RARP obtained by measuring the SSB of the first terminal device is relatively low, resulting in a relatively large path loss of the PRACH obtained through calculation.
  • the transmit power of the PRACH is also set to be relatively large.
  • the embodiment of the present application may increase the compensation coefficient ⁇ of PRACH path loss in the calculation formula (1) for calculating the PRACH transmit power mentioned above. Based on this, in the embodiment of the present application, the formula for calculating the transmit power of the PRACH may be determined by the formula (5) above.
  • the first compensation parameter ⁇ is a compensation coefficient of the path loss of the PRACH.
  • the value of the compensation coefficient ⁇ of the path loss of the PRACH can be configured by the network device.
  • the network device may configure the compensation coefficient ⁇ of the path loss of the PRACH through the system message SIB.
  • the compensation coefficient ⁇ of the path loss of the PRACH may be a preset value.
  • the compensation coefficient may be related to the frequency band where the first terminal device is located, or may be related to the number of receiving antennas of the first terminal device, which will not be repeated here.
  • FIG. 3 is a structural block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 300 in FIG. 3 may be the aforementioned first terminal device.
  • the terminal device 300 may include a sending module 310 .
  • the sending module 310 may be configured to send the PRACH to the network device with a first transmit power, where the first terminal device is a first type of terminal device, and the first transmit power is determined according to a first parameter set, and at least One parameter corresponds to the first type.
  • the first parameter set includes a target received power parameter and a path loss parameter
  • the target received power parameter is used to represent the target received power of the PRACH
  • the path loss parameter is used to represent the path between the first terminal device and the network device loss.
  • the first parameter set further includes a first compensation parameter corresponding to the first type.
  • the target received power parameter is the value of the target received power of the PRACH
  • the path loss parameter is the value of the path loss between the first terminal device and the network device
  • the first compensation parameter is a compensation power value
  • the first transmit power is It is determined according to the sum of the value of the target received power, the value of the path loss and the value of the compensation power.
  • the value of the first compensation parameter is a negative value.
  • the target received power parameter is the value of the target received power of the PRACH
  • the path loss parameter is the value of the path loss between the first terminal device and the network device
  • the first compensation parameter is a compensation coefficient
  • the first transmit power is based on The value of the target received power is determined by adjusting the compensation coefficient and adding the value of the path loss.
  • the first transmit power is determined according to the value of the target received power after adjusting the compensation coefficient and adding the value of the path loss, including: the first transmit power is determined according to the value of the target received power and It is determined by multiplying the compensation coefficients and adding the value of the path loss, wherein the value of the first compensation parameter is less than 1.
  • the target received power parameter is the value of the target received power of the PRACH
  • the path loss parameter is the value of the path loss between the first terminal device and the network device
  • the first compensation parameter is a compensation coefficient
  • the first transmit power is based on The value of the path loss is determined by adjusting the compensation coefficient and adding the value of the target received power.
  • the first transmit power is determined according to the value of the path loss after adjusting the compensation coefficient, and then adding the value of the target received power, including: the first transmit power is determined according to the value of the path loss and the compensation coefficient are multiplied together with the value of the target received power, wherein the value of the first compensation parameter is less than 1.
  • the first compensation parameter is a preset value.
  • the first compensation parameter is associated with the number of receiving antennas of the first terminal device and/or the frequency band where the first terminal device is located.
  • the first compensation parameter is configured by the network device.
  • the configuration of the first compensation parameter by the network device includes: configuring the first compensation parameter by the network device through configuration information of a random access channel RACH.
  • the target received power parameter corresponds to the first type.
  • the target received power parameter includes a value of the target received power.
  • the value of the target received power includes a first power value and a second power value, wherein the first power value corresponds to the first type, the second power value corresponds to the second type, and the target received by the first terminal device The value of the received power is the first power value.
  • the target received power parameter further includes a second compensation parameter, where the second compensation parameter corresponds to the first type.
  • the second compensation parameter is a compensation coefficient
  • the target received power parameter is determined according to the addition of the target received power value and the compensation coefficient, or the target received power parameter is determined according to the multiplication of the target received power value and the compensation coefficient .
  • the target received power parameter is configured by a network device.
  • the target received power parameter is configured by the network device, including: the target received power parameter is configured by the network device through RACH configuration information.
  • the target received power parameter is a preset value.
  • the target received power parameter is associated with the number of receiving antennas of the first terminal device and/or the frequency band where the first terminal device is located.
  • the value of the target received power parameter corresponding to the first type of terminal device is smaller than the value of the target received power parameter corresponding to the second type of terminal device.
  • the first type of terminal device includes: a terminal device with reduced capabilities; a terminal device with a number of receiving antennas smaller than a preset minimum number of receiving antennas in the frequency band where the first terminal device is located; or a terminal device that supports coverage enhancement.
  • the terminal device 300 shown in FIG. 3 can be used to implement the wireless communication method shown in FIG. 2 , and its implementation process is the same as the content related to the above method. For details, refer to the embodiment shown in FIG. 2 , which will not be repeated here.
  • FIG. 4 is a structural block diagram of a network device provided by an embodiment of the present application.
  • the network device 400 in FIG. 4 may include a receiving module 410 .
  • the receiving module 410 may be configured to receive the PRACH sent by the first terminal device, where the PRACH is sent with the first transmit power.
  • the first terminal device is a first type of terminal device, the first transmission power is determined according to a first parameter set, and at least one parameter in the first parameter set corresponds to the first type.
  • the first parameter set includes a target received power parameter and a path loss parameter
  • the target received power parameter is used to represent the target received power of the PRACH
  • the path loss parameter is used to represent the path between the first terminal device and the network device loss.
  • the first parameter set further includes a first compensation parameter corresponding to the first type.
  • the target received power parameter is the value of the target received power of the PRACH
  • the path loss parameter is the value of the path loss between the first terminal device and the network device
  • the first compensation parameter is a compensation power value
  • the first transmit power is It is determined according to the sum of the value of the target received power, the value of the path loss and the value of the compensation power.
  • the value of the first compensation parameter is a negative value.
  • the target received power parameter is the value of the target received power of the PRACH
  • the path loss parameter is the value of the path loss between the first terminal device and the network device
  • the first compensation parameter is a compensation coefficient
  • the first transmit power is based on The value of the target received power is determined by adjusting the compensation coefficient and adding the value of the path loss.
  • the first transmit power is determined according to the value of the target received power after adjusting the compensation coefficient and adding the value of the path loss, including: the first transmit power is determined according to the value of the target received power and It is determined by multiplying the compensation coefficients and adding the value of the path loss, wherein the value of the first compensation parameter is less than 1.
  • the target received power parameter is the value of the target received power of the PRACH
  • the path loss parameter is the value of the path loss between the first terminal device and the network device
  • the first compensation parameter is a compensation coefficient
  • the first transmit power is based on The value of the path loss is determined by adjusting the compensation coefficient and adding the value of the target received power.
  • the first transmit power is determined according to the value of the path loss after adjusting the compensation coefficient, and then adding the value of the target received power, including: the first transmit power is determined according to the value of the path loss and the compensation coefficient are multiplied together with the value of the target received power, wherein the value of the first compensation parameter is less than 1.
  • the first compensation parameter is a preset value.
  • the first compensation parameter is associated with the number of receiving antennas of the first terminal device and/or the frequency band where the first terminal device is located.
  • the first compensation parameter is configured by the network device.
  • the configuration of the first compensation parameter by the network device includes: configuring the first compensation parameter by the network device through configuration information of a random access channel RACH.
  • the target received power parameter corresponds to the first type.
  • the target received power parameter includes a value of the target received power.
  • the value of the target received power includes a first power value and a second power value, wherein the first power value corresponds to the first type, the second power value corresponds to the second type, and the target received by the first terminal device The value of the received power is the first power value.
  • the target received power parameter further includes a second compensation parameter, where the second compensation parameter corresponds to the first type.
  • the second compensation parameter is a compensation coefficient
  • the target received power parameter is determined according to the addition of the target received power value and the compensation coefficient, or the target received power parameter is determined according to the multiplication of the target received power value and the compensation coefficient .
  • the target received power parameter is configured by a network device.
  • the target received power parameter is configured by the network device, including: the target received power parameter is configured by the network device through RACH configuration information.
  • the target received power parameter is a preset value.
  • the target received power parameter is associated with the number of receiving antennas of the first terminal device and/or the frequency band where the first terminal device is located.
  • the value of the target received power parameter corresponding to the first type of terminal device is smaller than the value of the target received power parameter corresponding to the second type of terminal device.
  • the first type of terminal device includes: a terminal device with reduced capabilities; a terminal device with a number of receiving antennas smaller than a preset minimum number of receiving antennas in the frequency band where the first terminal device is located; or a terminal device that supports coverage enhancement.
  • the network device 400 shown in FIG. 4 can be used to implement the wireless communication method shown in FIG. 2 , and its implementation process is the same as the content related to the above method. For details, refer to the embodiment shown in FIG. 2 , which will not be repeated here.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device 500 can be used to implement the methods described in the above method embodiments, and its implementation process is the same as that related to the above methods. For details, refer to the embodiment shown in FIG. 2 , and details are not repeated here.
  • Apparatus 500 may be a chip, a terminal device or a network device.
  • Apparatus 500 may include one or more processors 510 .
  • the processor 510 can support the device 500 to implement the methods described in the foregoing method embodiments.
  • the processor 510 may be a general purpose processor or a special purpose processor.
  • the processor may be a central processing unit (central processing unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • Apparatus 500 may also include one or more memories 520 .
  • a program is stored in the memory 520, and the program can be executed by the processor 510, so that the processor 510 executes the methods described in the foregoing method embodiments.
  • the memory 520 may be independent from the processor 510 or may be integrated in the processor 510 .
  • the apparatus 500 may also include a transceiver 530 .
  • the processor 510 can communicate with other devices or chips through the transceiver 530 .
  • the processor 510 may send and receive data with other devices or chips through the transceiver 530 .
  • the embodiment of the present application also provides a computer-readable storage medium for storing programs.
  • the computer-readable storage medium can be applied to the terminal device or the network device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the terminal device or the network device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes programs.
  • the computer program product can be applied to the terminal device or the network device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the terminal device or the network device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device or the network device provided in the embodiments of the present application, and the computer program enables the computer to execute the methods performed by the terminal device or the network device in the various embodiments of the present application.
  • the "indication" mentioned may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is instructed, configures and is configured, etc. relation.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • serial numbers of the above-mentioned processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, rather than the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be read by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)) or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种无线通信的方法、终端设备和网络设备。该方法包括:第一终端设备以第一发射功率向网络设备发送物理随机接入信道PRACH,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。在确定PRACH的发射功率时,本申请实施例引入了针对第一类型的终端设备(如能力降低的终端设备,或接收天线数量减少的终端设备)的参数,使得第一类型的终端设备确定出的PRACH的发射功率可以与其自身的实际情况相匹配,以降低PRACH传输过程中的不同类型的终端设备之间的相互干扰。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在某些通信系统中,可以支持多种类型的终端设备。例如,在新无线(new radio,NR)系统中,可以支持能力降低的(reduced capability,RedCap)终端设备和非能力降低的终端设备。
相关技术中,在进行上行功率控制时,不同类型的终端设备通常采用相同的方式确定物理随机接入信道(physical random access channel,PRACH)的发射功率。但是,由于不同类型的终端设备的能力或接收天线数量可能不同,采用相同的方式确定PRACH的发射功率时,导致不同类型的终端设备之间可能会产生干扰。
发明内容
本申请提供一种无线通信的方法、终端设备和网络设备,以降低PRACH传输过程中的不同类型的终端设备之间的相互干扰。
第一方面,提供一种无线通信的方法,包括:第一终端设备以第一发射功率向网络设备发送物理随机接入信道PRACH,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
第二方面,提供一种无线通信的方法,包括:网络设备接收第一终端设备发送的物理随机接入信道PRACH,所述PRACH是以第一发射功率发送的,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
第三方面,提供一种终端设备,所述终端设备为第一终端设备,所述第一终端设备包括:发送模块,用于以第一发射功率向网络设备发送物理随机接入信道PRACH,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
第四方面,提供一种网络设备,包括:接收模块,用于接收第一终端设备发送的物理随机接入信道PRACH,所述PRACH是以第一发射功率发送的,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
第五方面,提供一种终端设备,包括处理器、存储器和收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,以控制所述收发器执行第一方面的方法中的部分或全部步骤。
第六方面,提供一种网络设备,包括处理器、存储器和收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,以控制所述收发器执行第二方面的方法中的部分或全部步骤。
第七方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该终端设备或网络设备进行交互的其他设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端设备执行上述第一方面的方法中的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得网络设备执行上述第二方面的方法中的部分或全部步骤。
第十方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端设备执行上述第一方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十一方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使网络设备执行上述第二方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十二方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述第一方面或第二方面的方法中所描述的部分或全部步骤。
在确定PRACH的发射功率时,本申请实施例引入了针对第一类型的终端设备(如能力降低的终端 设备,或接收天线数量减少的终端设备)的参数,使得第一类型的终端设备确定出的PRACH的发射功率可以与其自身的实际情况相匹配,以降低PRACH传输过程中的不同类型的终端设备之间的相互干扰。
附图说明
图1为可应用本申请实施例的无线通信系统的系统架构示例图。
图2为本申请实施例提供的无线通信的方法的示意性流程图。
图3为本申请实施例提供的终端设备的结构框图。
图4为本申请实施例提供的网络设备的结构框图。
图5为本申请实施例提供的装置的示意性结构图。
具体实施方式
通信系统架构
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或 多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
终端设备的类型
通信系统可以支持多种类型的终端设备。终端设备的类型的划分方式可以有多种,本申请实施例对此不作具体限定。
在一些实施例中,可以根据终端设备的能力将终端设备划分成不同类型。例如,可以将终端设备划分成能力降低的(reduced capability,RedCap)终端设备和非能力降低的终端设备。能力降低的终端设备也可以称为低能力终端设备,或者Redcap UE。能力降低的终端设备例如可以包括传感器、可穿戴设备等对数据传输速率、带宽要求较低的终端设备。非能力降低的终端设备例如可以是手机、平板电脑等对数据传输速率、带宽要求较高的终端设备。
在一些实施例中,可以根据终端设备的天线数量(如接收天线数量)将终端设备划分成不同类型的终端设备。例如,通信系统通常对终端设备的最小接收天线数量(或工作在某个或某些频段的终端设备的最小接收天线数量)有要求。因此,可以将接收天线数量小于该最小接收天线数量的终端设备称为接收天线减少的终端设备,将接收天线数量大于或等于该最小接收天线数量的终端设备称为非接收天线减少的终端设备。
在一些实施例中,可以根据是否支持覆盖增强将终端设备划分成支持覆盖增强的终端设备和不支持覆盖增强的终端设备。支持覆盖增强的终端设备对应的PRACH的发送方式可以与不支持覆盖增强的终端设备对应的PRACH的发送方式不同。例如,支持覆盖增强的终端设备可以自动重复发送PRACH以增强PRACH的覆盖性能。在一些实施例中,支持覆盖增强的终端设备在自动重复发送PRACH时不需要等待网络设备的应答。
下文以NR系统为例,对特定类型的终端设备(如能力降低的终端设备或天线数量减少的终端设备)进行更为详细的介绍。
能力降低的终端设备
NR系统的设计主要是为了支持增强型移动宽带(enhanced mobile broadband,eMBB)业务而设计的。也就是说,为了满足eMBB业务对高速率、高频谱效率、大带宽的需要,NR系统的各种参数、指标或要求主要是面向大带宽、大规模天线等主要技术而设计的。
然而,除了eMBB业务,NR系统中还存在多种不同的业务类型,例如传感器网络、视频监控、可穿戴等场景下的业务类型。这些业务在速率、带宽、功耗、成本等方面与eMBB业务有着不同的需求。换句话说,支持这些业务的终端设备的能力与支持eMBB业务的终端设备的能力是不同的。例如,支持这些业务的终端设备相比支持eMBB的终端设备的能力是降低的,如支持的带宽减小、处理时间放松、天线数减少等。
面对上述不同于eMBB业务的业务类型以及相应的终端设备,可以对NR系统进行优化,从而形成一种轻量级的新无线(new radio-light,NR-light)系统。在LTE技术中,相关标准存在类似的系统设计,以用于支持大连接数、低功耗、低成本的终端设备。例如,LTE系统中的机器类型通信(machine type communication,MTC)和窄带物联网(narrow band internet of thing,NB-IoT)等系统设计。在NR系统中,希望引入类似的技术,使得NR技术除可以支持eMBB业务之外,还可以更好地支持其他业务类型。或者,希望引入类似的技术,可以支持新的终端设备的类型用以覆盖除eMBB以外的其他场景下的业务需求。例如,NR系统可以支持一种新的终端设备类型用以覆盖传感器网络、视频监控、可穿戴等场景下的业务需求。在目前的3GPP标准化中,这种新的终端设备类型被称为能力降低的终端设备(或低能力终端设备,或Redcap UE)。
天线数量减少的终端设备
在NR技术中,标准规定了终端设备需要具有的最小接收天线(端口)数量。在一些实施例中,该最小接收天线数量可以与频段(band)有关。例如,在NR系统中,对于频段n7,n38,n41,n77,n78,n79,标准规定终端设备需要具有的最小接收天线数量为4;对于其他所有频段,标准规定终端设备需要具有的最小接收天线数量为2。网络设备可以根据标准对终端设备的接收天线数量的要求,确定下行信道的传输方式。特别是在初始接入阶段,网络设备通常并不知道终端设备的接收天线数量。在这种情 况下,可以根据标准对最小的接收天线数的要求进行下行信道/信号的传输。
但是,某些终端设备的天线数量可能达不到上述最小接收天线数量的要求。例如前文提到的面向传感器网络、视频监控、可穿戴等场景下的业务类型的终端设备,这类终端设备的接收天线数量往往小于该最小接收天线数量的要求。因此,在本申请实施例中,可以将此类终端设备独立地划分成一种类型,该类终端设备可以称为接收天线减少的终端设备。相应地,接收天线数量大于或等于标准对最小接收天线数量的要求的终端设备可以称为非接收天线减少的终端设备。
应理解,在一些实施例中,能力降低的终端设备和接收天线数量减少的终端设备可以指同一类终端设备。或者,能力降低的终端设备可以是接收天线数量减少的终端设备的子集。
RACH过程
终端设备通常需要基于RACH过程(或随机接入过程)尝试与网络设备同步,并建立基本的信令连接。为了支持RACH过程,通信系统可以定义并向终端设备指示RACH资源,以便终端设备基于RACH资源进行随机接入。
以NR的版本15(release 15,Rel-15)为例进行说明。该版本的NR系统定义了RACH资源,以帮助终端设备进行初始接入。RACH资源可以包括256种配置。RACH资源的每种配置可以由RACH的配置信息定义。RACH的配置信息可以包含以下信息中的一种或多种:前导码格式(preamble format),周期,无线帧偏移,无线帧内的子帧编号,子帧内的起始符号,子帧内PRACH时隙的个数,PRACH时隙内PRACH时机的个数,以及PRACH时机持续时间等。终端设备通过网络设备指示的这些信息,可以确定PRACH资源的时、频、码信息。
对终端设备而言,网络设备在系统消息中除了可以指示RACH的配置信息之外,还可以指示同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block,简称SSB)与PRACH资源的关联关系,使得终端设备可以根据检测到的SSB与该关联关系,确定其可以使用的PRACH资源。其中,每个SSB都可以关联一个或者多个PRACH时机,也可以关联多个竞争的随机接入过程的前导码(contention based preambles)。换句话说,每个SSB索引(index)可以关联系统消息中指示的RACH资源配置中一部分特定的资源。
作为一个示例,终端设备在初始接入过程中,首先可以对SSB进行搜索,并通过系统消息获得参数rsrp-ThresholdSSB。该参数rsrp-ThresholdSSB指示了SSB的参考信号接收功率(reference signal receiving power,RSRP)门限。然后,终端设备可以根据对SSB的测量结果,选定满足RSRP门限的SSB,并根据SSB得到其映射的PRACH资源。终端设备得到对应的PRACH资源后,便可以使用PRACH资源进行PRACH传输。
上行信道功率控制
在一些场景下,通信系统可能需要对上行信道或信号的功率进行控制。例如,网络设备可以对上行信道或信号的功率进行控制,以补偿信道的路径损耗和阴影衰落、抑制小区间彼此干扰,从而提高网络覆盖和系统容量。
针对PRACH进行上行功率控制,可以采用开环功率控制的方式确定PRACH的发射功率。例如,PRACH的发射功率P PRACH,b,f,c(i)可以通过公式(1)确定:
P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c}  (1)
其中,P CMAX,f,c(i)为终端设备的最大输出功率,P PRACH,target,f,c为PRACH的目标接收功率,PL b,f,c为PRACH的路径损耗。PRACH的发射功率的单位可以是分贝毫瓦,即dBm。
PRACH的目标接收功率P PRACH,target,f,c可以是高层配置的参数。
PRACH的路径损耗PL b,f,c可以是终端设备根据下行参考信号确定的估计值。例如,PRACH的路径损耗PL b,f,c可以通过公式(2)计算得到:
PL b,f,c=P PRACH,rs,f,c-P PRACH,rsrp,f,c  (2)
其中,P PRACH,rs,f,c为网络设备发送的参考信号发射功率,P PRACH,rsrp,f,c为经过层3(即无线资源控制(radio resource control,RRC)层)过滤的参考信号接收功率(reference signal receiving power,RSRP)。
终端设备用于测量路径损耗的参考信号可以与PRACH具有关联关系,例如,在初始接入过程中,终端设备可以根据与PRACH传输关联的SSB确定路径损耗的参考信号。
前文提到,终端设备可以划分为多种类型。不同类型的终端设备具有的能力或接收天线数量可能会不同。例如,在某网络设备覆盖的小区范围内,可能同时存在具有4根接收天线和2根接收天线的终端设备,或者也可能还存在具有1根接收天线的终端设备。终端设备对SSB的RSRP测量结果与接收天线数量有一定关系。当终端设备具有多个接收天线时,可以通过接收分集进行合并得到SSB的RSRP测量结果,该RSRP测量结果通常不低于任何一个单独的接收天线测得的RSRP结果。换句话说,当具有不同接收天线数量的终端设备进行RSRP测量时,具有较多接收天线数量的终端设备测得的RSRP通 常较高。以前文所述的小区内同时存在具有4根接收天线和2根接收天线的终端设备为例,具有4根接收天线的终端设备对SSB的RSRP测量结果可能高于具有2根接收天线的终端设备对SSB的RSRP测量结果。
当通信系统支持多种类型的终端设备时,相关技术中,针对不同类型的终端设备,通常采用通用的方式(如相同的参数)确定PRACH的发射功率,导致某些类型的终端设备确定出的PRACH的发射功率不合适,从而导致PRACH传输过程中,不同类型的终端设备可能会相互干扰。
以能力降低的终端设备为例,当能力降低的终端设备和非能力降低的终端设备采用相同的参数确定PRACH的发射功率时,由于能力降低的终端设备的接收天线数量减少,对于SSB的RSRP测量结果,能力降低的终端设备相比非能力降低的终端设备是偏低的。因此,能力降低的终端设备根据SSB的RSRP测量结果计算得到的路径损耗偏大,进而导致确定出的PRACH的发射功率偏大,从而可能会对其他终端设备造成干扰。
因此,针对某些特定类型的终端设备,如何合理确定终端设备的PRACH的发射功率,是需要解决的问题。
为了解决上述问题,本申请实施例设计了针对不同类型的终端设备的参数,终端设备在确定PRACH的发射功率时,可以根据终端设备的类型,采用与该类型的终端设备对应的参数确定终端设备的PRACH的发射功率,从而可以降低PRACH传输过程中的不同类型的终端设备之间的相互干扰。
下面结合图2,对本申请实施例提供的无线通信的方法进行详细描述。图2所示的方法是站在网络设备和第一终端设备交互的角度进行描述的。图2中的第一终端设备为第一类型的终端设备。
本申请实施例对第一类型的终端设备不做具体限定。在一些实施例中,第一类型的终端设备可以是指能力降低的终端设备。当第一类型的终端设备是指能力降低的终端设备时,可以将非能力降低的终端设备称为第二类型的终端设备。在一些实施例中,第一类型的终端设备可以是指接收天线数量小于该第一终端设备所处的频段预设的最小接收天线数量的终端设备(通常而言,终端设备所处的频段预设的最小接收天线数量是针对非能力降低的终端设备而设计的)。当第一类型的终端设备是指接收天线数量小于该第一终端设备所处的频段预设的最小接收天线数量的终端设备时,可以将接收天线数量大于或等于该终端设备所处的频段预设的最小接收天线数量的终端设备称为第二类型的终端设备。在一些实施例中,第一类型的终端设备可以是指支持覆盖增强的终端设备(支持覆盖增强的终端设备可以自动重复发送PRACH以增强PRACH的覆盖性能)。当第一类型的终端设备是指支持覆盖增强的终端设备时,可以将不支持覆盖增强的终端设备称为第二类型的终端设备(不支持覆盖增强的终端设备不能自动重复发送PRACH)。
参见图2,在步骤S210,第一终端设备以第一发射功率向网络设备发送PRACH。
第一发射功率可以是指第一终端设备发射PRACH的功率。该第一发射功率可以基于第一参数集确定。第一参数集可以是用于确定第一类型的终端设备的PRACH的发射功率的参数集。
第一参数集中的至少一个参数与第一类型对应。换句话说,第一参数集中的至少一个参数为针对第一类型的终端设备的参数。该至少一个参数可以用于确定第一类型的终端设备的PRACH的发射功率。例如,该至少一个参数可以为针对第一类型的终端设备而专门设计的参数。以第一类型的终端设备为能力降低的终端设备、第二类型的终端设备为非能力降低的终端设备为例,当第一终端设备为第一类型的终端设备时,则至少一个参数可以是针对能力降低的终端设备的参数。非能力降低的终端设备在确定PRACH的发射功率时,可以不考虑该至少一个参数。
在确定PRACH的发射功率时,本申请实施例引入了针对第一类型的终端设备(如能力降低的终端设备,或接收天线数量减少的终端设备)的参数,使得第一类型的终端设备确定出的PRACH的发射功率可以与其自身的实际情况相匹配,以降低PRACH传输过程中的不同类型的终端设备之间的相互干扰。
前文结合公式(1),对PRACH的发射功率的确定方式进行了描述。从公式(1)可以看出,PRACH的发射功率与PRACH的目标接收功率(即公式(1)中的P PRACH,target,f,c)和PRACH的路径损耗(即公式(1)中的P PRACH,target,f,cPL b,f,c)有关。因此,在一些实施例中,第一参数集可以包括目标接收功率参数和/或路径损耗参数。目标接收功率参数可以用于表示PRACH的目标接收功率。路径损耗参数可以用于表示第一终端设备与网络设备之间的路径损耗。
作为一种实现方式,目标接收功率参数和/或路径损耗参数可以是由网络设备配置的。例如,网络设备可以通过RACH的配置信息配置目标接收功率参数和/或路径损耗参数,或者,网络设备可以通过高层信令(例如,RRC信令)配置目标接收功率参数和/或路径损耗参数。作为另一种实现方式,目标接收功率参数和/或路径损耗参数可以是预设值(如协议预定义)。
在一些实施例中,可以在不改变既有的PRACH的配置的情况下,对第一类型的终端设备的PRACH 的发射功率进行修正。例如,在确定第一类型的终端设备的PRACH的发射功率时,可以新增一个补偿参数对PRACH的发射功率进行修正。作为一种实现方式,第一参数集还可以包括第一补偿参数,该第一补偿参数与第一类型对应。第一补偿参数与第一类型对应可以是指第一类型的终端设备可以根据第一补偿参数确定PRACH的发射功率,而第二类型的终端设备在确定PRACH的发射功率时,可以不考虑该第一补偿参数。
在一些实施例中,第一补偿参数可用于对PRACH的目标接收功率或PRACH的路径损耗进行修正。或者,在另一些实施例中,第一补偿参数可以将PRACH的发射功率作为一个整体进行修正。
在一些实施例中,该第一补偿参数可以是偏置参数或补偿系数(或称,补偿因子)。该偏置参数或补偿系数可用于对PRACH的发射功率作为一个整体进行修正。例如,该第一补偿参数可以是PRACH的发射功率的偏置参数和/或PRACH的发射功率的补偿系数。具体地,作为一种实现方式,目标接收功率参数可以是指PRACH的目标接收功率的值,路径损耗参数可以是指第一终端设备与网络设备之间的路径损耗的值,第一补偿参数可以是指补偿功率值(对PRACH的发射功率的补偿值),这种情况下,第一发射功率可以是根据该目标接收功率的值、该路径损耗的值以及该补偿功率值之和确定的。以第一类型的终端设备为能力降低的终端设备、第二类型的终端设备为非能力降低的终端设备为例,第二类型的终端设备的发射功率可以是根据该目标接收功率的值和该路径损耗的值之和确定的,而第一类型的终端设备的发射功率相当于在第二类型的终端设备的发射功率确定方式的基础上叠加了一个功率补偿(即,增加了一个补偿功率值)。
在一些实施例中,该第一补偿参数的取值为负值。例如,当第一类型的终端设备为能力降低的终端设备时,与非能力降低的终端设备相比,能力降低的终端设备的接收天线数量减少,导致计算得到的PRACH的路径损耗偏大,进而根据该路径损耗确定出的PRACH的发射功率偏大。当第一补偿参数为负值时,可以有效修正第一终端设备的PRACH的发射功率,进而避免对其他终端设备造成干扰。
当第一发射功率是根据目标接收功率的值、路径损耗的值以及补偿功率值之和确定时,作为一种实现方式,第一终端设备的第一发射功率可以通过下面的公式(3)确定:
P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c+α}   (3)
其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,α为第一补偿参数。
在一些实施例中,该第一补偿参数可以是偏置参数或补偿系数,且该偏置参数或补偿系数可用于对确定PRACH的发射功率的某个或某些参数的取值进行局部修正。例如,该第一补偿参数可以是以下中的至少一种:PRACH的目标接收功率的偏置参数;PRACH的目标接收功率的补偿系数;PRACH的路径损耗的偏置参数;或者,PRACH的路径损耗的补偿系数。
作为一个示例,当第一补偿参数为PRACH的目标接收功率的补偿系数时,可以通过该补偿系数对PRACH的目标接收功率进行局部修正。具体地,作为一种实现方式,目标接收功率参数可以是指PRACH的目标接收功率的值,路径损耗参数可以是指第一终端设备与网络设备之间的路径损耗的值,第一补偿参数可以是指补偿系数。
可选地,当第一补偿参数为补偿系数时,该补偿系数可以用于对目标接收功率的值进行调节。这种情况下,第一发射功率可以是根据目标接收功率的值经过该补偿系数的调节,再加路径损耗的值确定的。例如,第一发射功率可以是根据目标接收功率的值与该补偿系数相乘,再加路径损耗的值确定的。在该实施例中,第一补偿参数的取值可以小于1。例如,当第一类型的终端设备为能力降低的终端设备时,与非能力降低的终端设备相比,能力降低的终端设备的接收天线数量减少,导致计算得到的PRACH的路径损耗偏大,进而根据该路径损耗确定出的PRACH的发射功率偏大。如果第一补偿参数的取值小于1,根据第一补偿参数与目标接收功率的值的乘积计算PRACH的发射功率时,可以降低第一终端设备的PRACH的发射功率,进而避免对其他终端设备造成干扰。
当第一发射功率是根据目标接收功率的值经过该补偿系数的调节,再加路径损耗的值确定时,作为一种实现方式,第一终端设备的第一发射功率可以通过下面的公式(4)确定:
P PRACH,b,f,c(i)=min{P CMAX,f,c(i),γ·P PRACH,target,f,c+PL b,f,c}  (4)
其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,γ为第一补偿参数。
作为另一个示例,当第一补偿参数为PRACH的路径损耗的补偿系数时,可以通过该补偿系数对PRACH的路径损耗进行局部修正。具体地,作为一种实现方式,目标接收功率参数可以是指PRACH的目标接收功率的值,路径损耗参数可以是指第一终端设备与网络设备之间的路径损耗的值,第一补偿参数可以是指补偿系数。
可选地,当第一补偿参数为补偿系数时,该补偿系数可以用于对路径损耗的值进行调节。这种情况 下,第一发射功率可以是根据路径损耗的值经过该补偿系数的调节,再加目标接收功率的值确定的。例如,第一发射功率可以是根据路径损耗的值与该补偿系数相乘,再加目标接收功率的值确定的。在该实施例中,第一补偿参数的取值可以小于1。例如,当第一类型的终端设备为能力降低的终端设备时,与非能力降低的终端设备相比,能力降低的终端设备的接收天线数量减少,导致计算得到的PRACH的路径损耗偏大,进而根据该路径损耗确定出的PRACH的发射功率偏大。如果第一补偿参数的取值小于1,根据第一补偿参数与路径损耗的值的乘积计算PRACH的发射功率时,可以降低第一终端设备的PRACH的发射功率,进而避免对其他终端设备造成干扰。
当第一发射功率是根据路径损耗的值与该补偿系数相乘,再加目标接收功率的值确定时,作为一种实现方式,第一终端设备的第一发射功率可以通过下面的公式(5)确定:
P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+β·PL b,f,c}   (5)
其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,β为第一补偿参数。
在一些实施例中,第一补偿参数的取值可以由网络设备配置。在一些实施例中,第一补偿参数可以承载于网络设备发送的系统消息中。该系统消息可以是指系统信息块(system information block,SIB)。示例性地,该第一补偿参数可以包含于系统信息的RACH的配置信息中。
在一些实施例中,第一补偿参数的取值可以为预设值(如协议预定义)。在该实施例中,该第一补偿参数可以是定值,即针对任意第一类型的终端设备,第一补偿参数的取值均可以采用相同取值。或者,第一补偿参数的取值也可以是变化的。例如,第一补偿参数的取值可以与第二参数关联。该第二参数的具体内容可以根据实际情况设定。例如,该第二参数例如可以包括第一终端设备的接收天线数量,和/或,第一终端设备所处的频段。
作为一个示例,第一补偿参数的取值与第一终端设备的接收天线数量关联。第一终端设备的接收天线数量不同,则第一补偿参数的取值可以相同,也可以不同。以第一类型的终端设备为能力降低的终端设备,第一补偿参数为PRACH的发射功率的偏置参数为例,如果第一终端设备的接收天线数量为2,则PRACH的发射功率的偏置参数的取值可以为α1,如果第一终端设备的接收天线数量为1,则PRACH的发射功率的偏置参数的取值为α2。
作为另一个示例,第一补偿参数的取值与第一终端设备所处的频段关联。第一终端设备所处的频段不同,则第一补偿参数的取值可以相同,也可以不同。以第一类型的终端设备为能力降低的终端设备,第一补偿参数为PRACH的发射功率的偏置参数为例,如果第一终端设备所处的频段为n7(频段n7对应的最小接收天线数为4),则PRACH的发射功率的偏置参数的取值可以为α1,如果第一终端设备所处的频段为n2(频段n2对应的最小接收天线数为2),则PRACH的发射功率的偏置参数的取值可以为α2。
需要说明的是,本申请实施例对目标接收功率参数、路径损耗参数和第一补偿参数的配置方式是否相同不做具体限定。作为一个示例,目标接收功率参数、路径损耗参数和第一补偿参数可以采用不同的配置方式,例如,目标接收功率参数、路径损耗参数可以是由网络设备配置的,第一补偿参数可以是预设值。作为另一个示例,目标接收功率参数、路径损耗参数和第一补偿参数可以采用相同的配置方式,例如,目标接收功率参数、路径损耗参数和第一补偿参数都可以是由网络设备配置的。在一些实施例中,目标接收功率参数、路径损耗参数和第一补偿参数采用相同的配置方式时,可以通过不同的消息承载。
在另一些实施例中,可以通过重新配置第一类型的终端设备的PRACH的目标接收功率,对第一类型的终端设备的PRACH的发射功率进行修正。例如,可以通过配置目标接收功率参数对PRACH的发射功率进行修正。作为一个示例,目标接收功率参数可以与第一类型对应。目标接收功率参数与第一类型对应可以是指第一类型的终端设备可以对应一个或多个目标接收功率参数,第二类型的终端设备可以对应一个目标接收功率参数。第一类型的终端设备和第二类型的终端设备确定PRACH的发射功率时,可以选择不同的目标接收功率参数,从而确定出的PRACH的发射功率也不一样。以第一类型的终端设备为能力降低的终端设备、第二类型的终端设备为非能力降低的终端设备为例,第一类型的终端设备可以对应能力降低的终端设备的目标接收功率参数和非能力降低的终端设备的目标接收功率参数,而第二类型的终端设备可以仅对应非能力降低的终端设备的目标接收功率参数。需要确定PRACH的发射功率时,第一类型的终端设备可以选择能力降低的终端设备对应的目标接收功率参数;而第二类型的终端设备可以选择非能力降低的终端设备对应的目标接收功率参数。
在一些实施例中,目标接收功率参数可以包括目标接收功率的值。可选地,该目标接收功率的值可以包括第一功率值和第二功率值。第一功率值和第二功率值可以分别与不同类型的终端设备对应,例如,第一功率值可以与第一类型对应,第二功率值可以与第二类型对应。作为一个示例,当第一功率值与第一类型对应时,第一终端设备接收到的目标接收功率的值为第一功率值。换句话说,该目标接收功率参 数可以是针对不同类型的终端设备的PRACH的目标接收功率,即不同类型的终端设备对应的PRACH的目标接收功率可以不同。
在一些实施例中,目标接收功率参数还可以包括第二补偿参数,该第二补偿参数与第一类型对应。第二补偿参数与第一类型对应可以是指第一类型的终端设备具有该第二补偿参数,而第二类型的终端设备并不具有该第二补偿参数。
可选地,该第二补偿参数可以是补偿系数。可以根据该第二补偿参数确定第一类型的终端设备的目标接收功率参数。作为一个示例,目标接收功率参数可以是根据目标接收功率的值与该补偿系数(第二补偿参数)相加确定的。作为另一个示例,目标接收功率参数可以是根据目标接收功率的值与该补偿系数(第二补偿参数)相乘确定的。
重新配置第一类型的终端设备的PRACH的目标接收功率时,目标接收功率参数可以有多种配置方式,本申请实施例对此并不限定。例如,第一参数的取值可以由网络设备配置。在一些实施例中,第一参数可以承载于网络设备发送的系统消息中。该系统消息可以是指系统信息块(system information block,SIB)。示例性地,该第一参数可以包含于系统信息的RACH的配置信息中。或者,第一参数的取值可以为预设值(如协议预定义)。在该实施例中,该第一参数可以是定值,即针对任意目标类型的终端设备,第一参数的取值均可以采用相同取值。或者,第一参数的取值也可以是变化的。例如,第一参数的取值可以与第二参数关联。该第二参数的具体内容可以根据实际情况设定。例如,该第二参数例如可以包括第一终端设备的接收天线数量,和/或,第一终端设备所处的频段。
作为一个示例,第一参数的取值与第一终端设备的接收天线数量关联。第一终端设备的接收天线数量不同,则第一参数的取值可以相同,也可以不同。以目标类型的终端设备为能力降低的终端设备,第一参数为PRACH的发射功率的偏置参数为例,如果第一终端设备的接收天线数量为2,则PRACH的发射功率的偏置参数的取值可以为α1,如果第一终端设备的接收天线数量为1,则PRACH的发射功率的偏置参数的取值为α2。
作为另一个示例,第一参数的取值与第一终端设备所处的频段关联。第一终端设备所处的频段不同,则第一参数的取值可以相同,也可以不同。以目标类型的终端设备为能力降低的终端设备,第一参数为PRACH的发射功率的偏置参数为例,如果第一终端设备所处的频段为n7(频段n7对应的最小接收天线数为4),则PRACH的发射功率的偏置参数的取值可以为α1,如果第一终端设备所处的频段为n2(频段n2对应的最小接收天线数为2),则PRACH的发射功率的偏置参数的取值可以为α2。
在一些实施例,第一类型的终端设备对应的目标接收功率参数的值小于第二类型的终端设备对应的目标接收功率参数的值。以第一类型的终端设备为能力降低的终端设备、第二类型的终端设备为非能力降低的终端设备为例,与非能力降低的终端设备相比,能力降低的终端设备的接收天线数量减少,导致计算得到的PRACH的路径损耗偏大,进而根据该路径损耗确定出的PRACH的发射功率偏大。如果在确定能力降低的终端设备的PRACH的发射功率时,直接选择与能力降低的终端设备对应的目标接收功率参数(该目标接收功率参数的值小于非能力降低的终端设备对应的目标接收功率),从而可以根据该与能力降低的终端设备对应的目标接收功率参数计算能力降低的终端设备的PRACH的发射功率,使得确定出的PRACH的发射功率与能力降低的终端设备的自身情况相匹配,进而可以避免对其他终端设备造成干扰。
需要说明的是,在一些实施例中,第一参数的取值还可以同时和第一终端设备的接收天线数量、第一终端设备所处的频段关联。
需要说明的是,前文提及的各种实施方式可以应用于图2所示的实施例中,本申请对此并不限定。
为了便于理解,下面以第一终端设备为能力降低的终端设备为例,结合4个实施例,对第一参数以及PRACH的发射功率的确定方式进行更为详细地举例说明。
实施例1:第一补偿参数为PRACH的发射功率的偏置参数
实施例1为PRACH的发射功率设计了偏置参数,可以对PRACH的发射功率作为一个整体进行修正,进而可以避免不同终端设备接收PRACH时的相互干扰。
第一终端设备为能力降低的终端设备时,与非能力降低的终端设备相比,第一终端设备的接收天线数量可能较少。因此,第一终端设备测量SSB得到的RSRP偏低,导致计算得到的PRACH的路径损耗较大。为了补偿该路径损耗,PRACH的发射功率也会设置的偏大。为了避免不合理的PRACH的发射功率的设置,本申请实施例可以在前文所述的计算PRACH的发射功率的计算公式(1)中,增加PRACH的发射功率的偏置参数α。基于此,在本申请实施例中,计算PRACH的发射功率的公式可以通过前文的公式(3)确定。在该示例中,第一补偿参数α为PRACH的发射功率的偏置参数。
在一些实施例中,PRACH的发射功率的偏置参数α的取值可以由网络设备配置。例如,网络设备可以通过系统消息SIB配置PRACH的发射功率的偏置参数α。下面给出一个网络设备通过系统消息配 置PRACH的发射功率的偏置参数α的示例。
RACH-ConfigGeneric::=SEQUENCE{
prach-ConfigurationIndex INTEGER(0..255),
msg1-FDM ENUMERATED{one,two,four,eight},
msg1-FrequencyStart INTEGER(0..maxNrofPhysicalResourceBlocks-1),
zeroCorrelationZoneConfig INTEGER(0..15),
preambleReceivedTargetPower INTEGER(-202..-60),
PRACHPowerOffset{…},
preambleTransMax ENUMERATED{n3,n4,n5,n6,n7,n8,n10,n20,n50,n100,n200},
powerRampingStep ENUMERATED{dB0,dB2,dB4,dB6},
ra-ResponseWindow ENUMERATED{sl1,sl2,sl4,sl8,sl10,sl20,sl40,sl80}}
在该示例中,可以通过参数PRACHPowerOffset设置PRACH的发射功率的偏置参数α。
在另一些实施例中,PRACH的发射功率的偏置参数α可以是预设值。
PRACH的发射功率的偏置参数α为预设值时,预设的偏置参数α可以与第一终端设备所处的频段有关,即第一终端设备所处的频段对应偏置参数α的预设值。例如,现有的某些通信系统中,例如NR系统,不同频段对应的最小接收天线数不同,对于频段n7,n38,n41,n77,n78以及n79,非能力降低的终端设备要求的最小接收天线数量为4,能力降低的终端设备的接收天线数量可以减少为2或1;对于其他所有频段,非能力降低的终端设备要求的最小接收天线数为2,能力降低的终端设备的接收天线数可以减少为1。针对不同频段,预设的偏置参数α可以不同。例如,第一终端设备所处的频段为n7(频段n7对应的最小接收天线数为4),则PRACH的发射功率的偏置参数的取值可以为α1,第一终端设备所处的频段为n2(频段n2对应的最小接收天线数为2),则PRACH的发射功率的偏置参数的取值可以为α2。
或者,预设的偏置参数α可以与第一终端设备的接收天线数有关。以第一终端设备为能力降低的终端设备为例,如果第一终端设备的接收天线数量为2,则PRACH的发射功率的偏置参数的取值可以为α1,如果第一终端设备的接收天线数量为1,则PRACH的发射功率的偏置参数的取值为α2。
实施例2:针对第一类型的目标接收功率参数
实施例2针对不同类型的终端设备,设计了不同的PRACH的目标接收功率,从而可以使得PRACH的目标接收功率与终端设备的类型相匹配,进而可以避免不合适的PRACH的发射功率对其他终端的PRACH的接收造成干扰。
第一终端设备为能力降低的终端设备时,由于能力降低的终端设备的接收天线数量的降低,导致计算得到的路径损耗较大,从而会造成PRACH的发射功率的增大,同等条件下相比非能力降低的终端设备,能力降低的终端设备在网络设备侧的接收功率偏大。因此,网络设备可以为能力降低的终端设备独立配置PRACH的目标接收功率,比如,相比非能力降低的终端设备的PRACH的目标接收功率,网络设备可以为能力降低的终端设备配置较低的目标接收功率,以抵消由于接收天线数量的降低,计算得到的路径损耗较大会造成PRACH的发射功率增大的影响。
具体地,作为一种实现方式,可以在RACH的配置信息中增加针对能力降低的终端设备的preambleReceivedTargetPower-RedCap参数。下面给出一个网络设备通过在RACH的配置信息中增加preambleReceivedTargetPower-RedCap参数以配置能力降低的终端设备的PRACH的目标接收功率的示例。
RACH-ConfigGeneric::=SEQUENCE{
prach-ConfigurationIndex INTEGER(0..255),
msg1-FDM ENUMERATED{one,two,four,eight},
msg1-FrequencyStart INTEGER(0..maxNrofPhysicalResourceBlocks-1),
zeroCorrelationZoneConfig INTEGER(0..15),
preambleReceivedTargetPower INTEGER(-202..-60),
preambleReceivedTargetPower-RedCap INTEGER(-202..-60),
preambleTransMax ENUMERATED{n3,n4,n5,n6,n7,n8,n10,n20,n50,n100,n200},
powerRampingStep ENUMERATED{dB0,dB2,dB4,dB6},
ra-ResponseWindow ENUMERATED{sl1,sl2,sl4,sl8,sl10,sl20,sl40,sl80}}
在该示例中,preambleReceivedTargetPower参数可以用于配置针对非能力降低的终端设备的PRACH的目标接收功率;preambleReceivedTargetPower-RedCap参数可以用于配置针对能力降低的终端设备的PRACH的目标接收功率。
在一些实施例中,用于能力降低的终端设备的PRACH的目标接收功率还可以根据用于非能力降低的终端设备的PRACH的目标接收功率得到。例如,它们之间可以具有一定的功率偏置。该功率偏置的 取值可以由网络设备配置或者可以是预设值。具体的预设的方法可以参考实施例1,例如,该功率偏置可以与第一终端设备所处的频段有关,或者可以与第一终端设备的接收天线数量有关,此处不再赘述。
实施例3:第一补偿参数为PRACH的目标接收功率的补偿系数
实施例3通过PRACH的目标接收功率的补偿系数对用于确定PRACH的发射功率的参数(PRACH的目标接收功率)的取值进行修正,以避免不合适的PRACH的发射功率对其他终端设备的PRACH的接收造成干扰。
第一终端设备为能力降低的终端设备时,与非能力降低的终端设备相比,能力降低的终端设备的接收天线数量较少。因此,第一终端设备测量SSB得到的RARP偏低,导致计算得到的PRACH的路径损耗较大。为了补偿该路径损耗,PRACH的发射功率也会设置的偏大。为了避免不合理的PRACH的发射功率的设置,本申请实施例可以在前文所述的计算PRACH的发射功率的计算公式(1)中,增加PRACH的目标接收功率的补偿系数γ。基于此,在本申请实施例中,计算PRACH的发射功率的公式可以通过前文的公式(4)确定。在该示例中,第一补偿参数γ为PRACH的目标接收功率的补偿系数。
在一些实施例中,PRACH的目标接收功率的补偿系数γ的取值可以由网络设备配置。例如,网络设备可以通过系统消息SIB配置PRACH的目标接收功率的补偿系数γ。
在另一些实施例中,PRACH的目标接收功率的补偿系数γ可以是预设值。具体的预设的方法可以参考实施例1,例如,该补偿系数可以与第一终端设备所处的频段有关,或者可以与第一终端设备的接收天线数量有关,此处不再赘述。
实施例4:第一补偿参数为PRACH的路径损耗的补偿系数
实施例4通过PRACH的路径损耗的补偿系数对用于确定PRACH的发射功率的参数(PRACH的路径损耗)的取值进行修正,可以避免不合适的PRACH的路径损耗导致的PRACH的发射功率不合适,从而对其他终端设备的PRACH的接收造成干扰。
第一终端设备为能力降低的终端设备时,与非能力降低的终端设备相比,能力降低的终端设备的接收天线数量较少。因此,第一终端设备测量SSB得到的RARP偏低,导致计算得到的PRACH的路径损耗较大。为了补偿该路径损耗,PRACH的发射功率也会设置的偏大。为了避免不合理的PRACH的发射功率的设置,本申请实施例可以在前文所述的计算PRACH的发射功率的计算公式(1)中,增加PRACH的路径损耗的补偿系数β。基于此,在本申请实施例中,计算PRACH的发射功率的公式可以通过前文的公式(5)确定。在该示例中,第一补偿参数β为PRACH的路径损耗的补偿系数。
在一些实施例中,PRACH的路径损耗的补偿系数β的取值可以由网络设备配置。例如,网络设备可以通过系统消息SIB配置PRACH的路径损耗的补偿系数β。
在另一些实施例中,PRACH的路径损耗的补偿系数β可以是预设值。具体的预设的方法可以参考实施例1,例如,该补偿系数可以与第一终端设备所处的频段有关,或者可以与第一终端设备的接收天线数量有关,此处不再赘述。
上文结合图1至图2,详细描述了本申请的方法实施例,下面结合图3至图5,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图3是本申请实施例提供的终端设备的结构框图。图3中的终端设备300可以为前文提到的第一终端设备。该终端设备300可以包括发送模块310。
发送模块310可用于以第一发射功率向网络设备发送PRACH,其中,第一终端设备为第一类型的终端设备,第一发射功率是根据第一参数集确定的,该第一参数集中的至少一个参数与第一类型对应。
可选地,第一参数集包括目标接收功率参数和路径损耗参数,该目标接收功率参数用于表示PRACH的目标接收功率,该路径损耗参数用于表示第一终端设备与网络设备之间的路径损耗。
可选地,第一参数集还包括第一补偿参数,该第一补偿参数与第一类型对应。
可选地,目标接收功率参数为PRACH的目标接收功率的值,路径损耗参数为第一终端设备与网络设备之间的路径损耗的值,第一补偿参数为补偿功率值,第一发射功率是根据该目标接收功率的值、该路径损耗的值和该补偿功率值之和确定的。
可选地,第一补偿参数的取值为负值。
可选地,第一发射功率满足如下公式:P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c+α};其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,α为第一补偿参数。
可选地,目标接收功率参数为PRACH的目标接收功率的值,路径损耗参数为第一终端设备与网络设备之间的路径损耗的值,第一补偿参数为补偿系数,第一发射功率是根据该目标接收功率的值经过该补偿系数的调节,再加该路径损耗的值确定的。
可选地,第一发射功率是根据该目标接收功率的值经过该补偿系数的调节,再加该路径损耗的值确定的,包括:所述第一发射功率是根据该目标接收功率的值与该补偿系数相乘,再加该路径损耗的值确定的,其中,第一补偿参数的取值小于1。
可选地,第一发射功率满足如下公式:P PRACH,b,f,c(i)=min{P CMAX,f,c(i),γ·P PRACH,target,f,c+PL b,f,c};其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,γ为第一补偿参数。
可选地,目标接收功率参数为PRACH的目标接收功率的值,路径损耗参数为第一终端设备与网络设备之间的路径损耗的值,第一补偿参数为补偿系数,第一发射功率是根据该路径损耗的值经过该补偿系数的调节,再加该目标接收功率的值确定的。
可选地,第一发射功率是根据该路径损耗的值经过该补偿系数的调节,再加该目标接收功率的值确定的,包括:第一发射功率是根据该路径损耗的值与该补偿系数相乘,再加该目标接收功率的值确定的,其中,第一补偿参数的取值小于1。
可选地,第一发射功率满足如下公式:P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+β·PL b,f,c};其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,β为第一补偿参数。
可选地,第一补偿参数为预设值。
可选地,第一补偿参数与第一终端设备的接收天线数量和/或第一终端设备所处的频段关联。
可选地,第一补偿参数由网络设备配置。
可选地,第一补偿参数由网络设备配置,包括:第一补偿参数由网络设备通过随机接入信道RACH的配置信息进行配置。
可选地,目标接收功率参数与第一类型对应。
可选地,目标接收功率参数包括目标接收功率的值。
可选地,目标接收功率的值包括第一功率值和第二功率值,其中,第一功率值与第一类型对应,第二功率值与第二类型对应,第一终端设备接收到的目标接收功率的值为第一功率值。
可选地,目标接收功率参数还包括第二补偿参数,该第二补偿参数与第一类型对应。
可选地,第二补偿参数为补偿系数,目标接收功率参数是根据目标接收功率的值与补偿系数相加确定的,或目标接收功率参数是根据目标接收功率的值与补偿系数相乘确定的。
可选地,目标接收功率参数由网络设备配置。
可选地,目标接收功率参数由网络设备配置,包括:目标接收功率参数由网络设备通过RACH的配置信息进行配置。
可选地,目标接收功率参数为预设值。
可选地,目标接收功率参数与第一终端设备的接收天线数量和/或第一终端设备所处的频段关联。
可选地,第一类型的终端设备对应的目标接收功率参数的值小于第二类型的终端设备对应的目标接收功率参数的值。
可选地,第一类型的终端设备包括:能力降低的终端设备;接收天线数量小于第一终端设备所处的频段预设的最小接收天线数量的终端设备;或者,支持覆盖增强的终端设备。
图3所示的终端设备300可以用于实现图2所示的无线通信方法,其实现过程与前文方法相关的内容相同,具体可以参考图2所示的实施例,此处不再赘述。
图4是本申请实施例提供的网络设备的结构框图。图4中的网络设备400可以包括接收模块410。
接收模块410可用于接收第一终端设备发送的PRACH,该PRACH是以第一发射功率发送的。其中,第一终端设备为第一类型的终端设备,第一发射功率是根据第一参数集确定的,该第一参数集中的至少一个参数与第一类型对应。
可选地,第一参数集包括目标接收功率参数和路径损耗参数,该目标接收功率参数用于表示PRACH的目标接收功率,该路径损耗参数用于表示第一终端设备与网络设备之间的路径损耗。
可选地,第一参数集还包括第一补偿参数,该第一补偿参数与第一类型对应。
可选地,目标接收功率参数为PRACH的目标接收功率的值,路径损耗参数为第一终端设备与网络设备之间的路径损耗的值,第一补偿参数为补偿功率值,第一发射功率是根据该目标接收功率的值、该路径损耗的值和该补偿功率值之和确定的。
可选地,第一补偿参数的取值为负值。
可选地,第一发射功率满足如下公式:P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c+α};其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为 目标接收功率参数,PL b,f,c为路径损耗参数,α为第一补偿参数。
可选地,目标接收功率参数为PRACH的目标接收功率的值,路径损耗参数为第一终端设备与网络设备之间的路径损耗的值,第一补偿参数为补偿系数,第一发射功率是根据该目标接收功率的值经过该补偿系数的调节,再加该路径损耗的值确定的。
可选地,第一发射功率是根据该目标接收功率的值经过该补偿系数的调节,再加该路径损耗的值确定的,包括:所述第一发射功率是根据该目标接收功率的值与该补偿系数相乘,再加该路径损耗的值确定的,其中,第一补偿参数的取值小于1。
可选地,第一发射功率满足如下公式:P PRACH,b,f,c(i)=min{P CMAX,f,c(i),γ·P PRACH,target,f,c+PL b,f,c};其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,γ为第一补偿参数。
可选地,目标接收功率参数为PRACH的目标接收功率的值,路径损耗参数为第一终端设备与网络设备之间的路径损耗的值,第一补偿参数为补偿系数,第一发射功率是根据该路径损耗的值经过该补偿系数的调节,再加该目标接收功率的值确定的。
可选地,第一发射功率是根据该路径损耗的值经过该补偿系数的调节,再加该目标接收功率的值确定的,包括:第一发射功率是根据该路径损耗的值与该补偿系数相乘,再加该目标接收功率的值确定的,其中,第一补偿参数的取值小于1。
可选地,第一发射功率满足如下公式:P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+β·PL b,f,c};其中,P PRACH,b,f,c(i)为第一发射功率,P CMAX,f,c(i)为第一终端设备的最大发射功率参数,P PRACH,target,f,c为目标接收功率参数,PL b,f,c为路径损耗参数,β为第一补偿参数。
可选地,第一补偿参数为预设值。
可选地,第一补偿参数与第一终端设备的接收天线数量和/或第一终端设备所处的频段关联。
可选地,第一补偿参数由网络设备配置。
可选地,第一补偿参数由网络设备配置,包括:第一补偿参数由网络设备通过随机接入信道RACH的配置信息进行配置。
可选地,目标接收功率参数与第一类型对应。
可选地,目标接收功率参数包括目标接收功率的值。
可选地,目标接收功率的值包括第一功率值和第二功率值,其中,第一功率值与第一类型对应,第二功率值与第二类型对应,第一终端设备接收到的目标接收功率的值为第一功率值。
可选地,目标接收功率参数还包括第二补偿参数,该第二补偿参数与第一类型对应。
可选地,第二补偿参数为补偿系数,目标接收功率参数是根据目标接收功率的值与补偿系数相加确定的,或目标接收功率参数是根据目标接收功率的值与补偿系数相乘确定的。
可选地,目标接收功率参数由网络设备配置。
可选地,目标接收功率参数由网络设备配置,包括:目标接收功率参数由网络设备通过RACH的配置信息进行配置。
可选地,目标接收功率参数为预设值。
可选地,目标接收功率参数与第一终端设备的接收天线数量和/或第一终端设备所处的频段关联。
可选地,第一类型的终端设备对应的目标接收功率参数的值小于第二类型的终端设备对应的目标接收功率参数的值。
可选地,第一类型的终端设备包括:能力降低的终端设备;接收天线数量小于第一终端设备所处的频段预设的最小接收天线数量的终端设备;或者,支持覆盖增强的终端设备。
图4所示的网络设备400可以用于实现图2所示的无线通信方法,其实现过程与前文方法相关的内容相同,具体可以参考图2所示的实施例,此处不再赘述。
图5是本申请实施例的通信装置的示意性结构图。该装置500可用于实现上述方法实施例中描述的方法,其实现过程与前文方法相关的内容相同,具体可以参考图2所示的实施例,此处不再赘述。装置500可以是芯片、终端设备或网络设备。
装置500可以包括一个或多个处理器510。该处理器510可支持装置500实现前文方法实施例所描述的方法。该处理器510可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置500还可以包括一个或多个存储器520。存储器520上存储有程序,该程序可以被处理器510 执行,使得处理器510执行前文方法实施例所描述的方法。存储器520可以独立于处理器510也可以集成在处理器510中。
装置500还可以包括收发器530。处理器510可以通过收发器530与其他设备或芯片进行通信。例如,处理器510可以通过收发器530与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端设备或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端设备或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端设备或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端设备或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端设备或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端设备或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取 的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (120)

  1. 一种无线通信的方法,其特征在于,包括:
    第一终端设备以第一发射功率向网络设备发送物理随机接入信道PRACH,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数集包括目标接收功率参数和路径损耗参数,所述目标接收功率参数用于表示所述PRACH的目标接收功率,所述路径损耗参数用于表示所述第一终端设备与所述网络设备之间的路径损耗。
  3. 根据权利要求2所述的方法,其特征在于,所述第一参数集还包括第一补偿参数,所述第一补偿参数与所述第一类型对应。
  4. 根据权利要求3所述的方法,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿功率值,所述第一发射功率是根据所述目标接收功率的值、所述路径损耗的值和所述补偿功率值之和确定的。
  5. 根据权利要求4所述的方法,其特征在于,所述第一补偿参数的取值为负值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c+α};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,α为所述第一补偿参数。
  7. 根据权利要求3所述的方法,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的。
  8. 根据权利要求7所述的方法,其特征在于,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的,包括:
    所述第一发射功率是根据所述目标接收功率的值与所述补偿系数相乘,再加所述路径损耗的值确定的,其中,所述第一补偿参数的取值小于1。
  9. 根据权利要求3、7或8所述的方法,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),γ·P PRACH,target,f,c+PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,γ为所述第一补偿参数。
  10. 根据权利要求3所述的方法,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述路径损耗的值经过所述补偿系数的调节,再加所述目标接收功率的值确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述第一发射功率是根据所述路径损耗的值经过所述补偿系数的调节,再加所述目标接收功率的值确定的,包括:
    所述第一发射功率是根据所述路径损耗的值与所述补偿系数相乘,再加所述目标接收功率的值确定的,其中,所述第一补偿参数的取值小于1。
  12. 根据权利要求3、10或11所述的方法,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+β·PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,β为所述第一补偿参数。
  13. 根据权利要求3-12中任一项所述的方法,其特征在于,所述第一补偿参数为预设值。
  14. 根据权利要求13所述的方法,其特征在于,所述第一补偿参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  15. 根据权利要求3-12中任一项所述的方法,其特征在于,所述第一补偿参数由所述网络设备配置。
  16. 根据权利要求15所述的方法,其特征在于,所述第一补偿参数由所述网络设备配置,包括:
    所述第一补偿参数由所述网络设备通过随机接入信道RACH的配置信息进行配置。
  17. 根据权利要求2所述的方法,其特征在于,所述目标接收功率参数与所述第一类型对应。
  18. 根据权利要求17所述的方法,其特征在于,所述目标接收功率参数包括目标接收功率的值。
  19. 根据权利要求18所述的方法,其特征在于,所述目标接收功率的值包括第一功率值和第二功率值,其中,所述第一功率值与所述第一类型对应,所述第二功率值与第二类型对应,所述第一终端设备接收到的目标接收功率的值为所述第一功率值。
  20. 根据权利要求18所述的方法,其特征在于,所述目标接收功率参数还包括第二补偿参数,所述第二补偿参数与所述第一类型对应。
  21. 根据权利要求20所述的方法,其特征在于,所述第二补偿参数为补偿系数,所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相加确定的,或所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相乘确定的。
  22. 根据权利要求17-21中任一项所述的方法,其特征在于,所述目标接收功率参数由所述网络设备配置。
  23. 根据权利要求22所述的方法,其特征在于,所述目标接收功率参数由所述网络设备配置,包括:
    所述目标接收功率参数由所述网络设备通过RACH的配置信息进行配置。
  24. 根据权利要求17-21中任一项所述的方法,其特征在于,所述目标接收功率参数为预设值。
  25. 根据权利要求24所述的方法,其特征在于,所述目标接收功率参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  26. 根据权利要求17-25中任一项所述的方法,其特征在于,所述第一类型的终端设备对应的目标接收功率参数的值小于第二类型的终端设备对应的目标接收功率参数的值。
  27. 根据权利要求1-26中任一项所述的方法,其特征在于,所述第一类型的终端设备包括:
    能力降低的终端设备;
    接收天线数量小于所述第一终端设备所处的频段预设的最小接收天线数量的终端设备;或者,
    支持覆盖增强的终端设备。
  28. 一种无线通信的方法,其特征在于,包括:
    网络设备接收第一终端设备发送的物理随机接入信道PRACH,所述PRACH是以第一发射功率发送的,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
  29. 根据权利要求28所述的方法,其特征在于,所述第一参数集包括目标接收功率参数和路径损耗参数,所述目标接收功率参数用于表示所述PRACH的目标接收功率,所述路径损耗参数用于表示所述第一终端设备与所述网络设备之间的路径损耗。
  30. 根据权利要求29所述的方法,其特征在于,所述第一参数集还包括第一补偿参数,所述第一补偿参数与所述第一类型对应。
  31. 根据权利要求30所述的方法,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿功率值,所述第一发射功率是根据所述目标接收功率的值、所述路径损耗的值和所述补偿功率值之和确定的。
  32. 根据权利要求31所述的方法,其特征在于,所述第一补偿参数的取值为负值。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c+α};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,α为所述第一补偿参数。
  34. 根据权利要求30所述的方法,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的。
  35. 根据权利要求34所述的方法,其特征在于,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的,包括:
    所述第一发射功率是根据所述目标接收功率的值与所述补偿系数相乘,再加所述路径损耗的值确定的,其中,所述第一补偿参数的取值小于1。
  36. 根据权利要求30、34或35所述的方法,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),γ·P PRACH,target,f,c+PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,γ为所述第一补偿参数。
  37. 根据权利要求30所述的方法,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述路径损耗的值经过所述补偿系数的调节,再加所述目标接收功率的值确定的。
  38. 根据权利要求37所述的方法,其特征在于,所述第一发射功率是根据所述路径损耗的值经过所述补偿系数的调节,再加所述目标接收功率的值确定的,包括:
    所述第一发射功率是根据所述路径损耗的值与所述补偿系数相乘,再加所述目标接收功率的值确定的,其中,所述第一补偿参数的取值小于1。
  39. 根据权利要求30、37或38所述的方法,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+β·PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,β为所述第一补偿参数。
  40. 根据权利要求30-39中任一项所述的方法,其特征在于,所述第一补偿参数为预设值。
  41. 根据权利要求40所述的方法,其特征在于,所述第一补偿参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  42. 根据权利要求30-39中任一项所述的方法,其特征在于,所述第一补偿参数由所述网络设备配置。
  43. 根据权利要求42所述的方法,其特征在于,所述第一补偿参数由所述网络设备配置,包括:
    所述第一补偿参数由所述网络设备通过随机接入信道RACH的配置信息进行配置。
  44. 根据权利要求29所述的方法,其特征在于,所述目标接收功率参数与所述第一类型对应。
  45. 根据权利要求44所述的方法,其特征在于,所述目标接收功率参数包括目标接收功率的值。
  46. 根据权利要求45所述的方法,其特征在于,所述目标接收功率的值包括第一功率值和第二功率值,其中,所述第一功率值与所述第一类型对应,所述第二功率值与第二类型对应,所述第一终端设备接收到的目标接收功率的值为所述第一功率值。
  47. 根据权利要求45所述的方法,其特征在于,所述目标接收功率参数还包括第二补偿参数,所述第二补偿参数与所述第一类型对应。
  48. 根据权利要求47所述的方法,其特征在于,所述第二补偿参数为补偿系数,所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相加确定的,或所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相乘确定的。
  49. 根据权利要求44-48中任一项所述的方法,其特征在于,所述目标接收功率参数由所述网络设备配置。
  50. 根据权利要求49所述的方法,其特征在于,所述目标接收功率参数由所述网络设备配置,包括:
    所述目标接收功率参数由所述网络设备通过RACH的配置信息进行配置。
  51. 根据权利要求44-48中任一项所述的方法,其特征在于,所述目标接收功率参数为预设值。
  52. 根据权利要求51所述的方法,其特征在于,所述目标接收功率参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  53. 根据权利要求44-52中任一项所述的方法,其特征在于,所述第一类型的终端设备对应的目标接收功率参数的值小于第二类型的终端设备对应的目标接收功率参数的值。
  54. 根据权利要求28-53中任一项所述的方法,其特征在于,所述第一类型的终端设备包括:
    能力降低的终端设备;
    接收天线数量小于所述第一终端设备所处的频段预设的最小接收天线数量的终端设备;或者,
    支持覆盖增强的终端设备。
  55. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述第一终端设备包括:
    发送模块,用于以第一发射功率向网络设备发送物理随机接入信道PRACH,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
  56. 根据权利要求55所述的终端设备,其特征在于,所述第一参数集包括目标接收功率参数和路径损耗参数,所述目标接收功率参数用于表示所述PRACH的目标接收功率,所述路径损耗参数用于表示所述第一终端设备与所述网络设备之间的路径损耗。
  57. 根据权利要求56所述的终端设备,其特征在于,所述第一参数集还包括第一补偿参数,所述第一补偿参数与所述第一类型对应。
  58. 根据权利要求57所述的终端设备,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿功率值,所述第一发射功率是根据所述目标接收功率的值、所述路径损耗的值和所述补偿功率值之和确定的。
  59. 根据权利要求58所述的终端设备,其特征在于,所述第一补偿参数的取值为负值。
  60. 根据权利要求58或59所述的终端设备,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c+α};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,α为所述第一补偿参数。
  61. 根据权利要求57所述的终端设备,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的。
  62. 根据权利要求61所述的终端设备,其特征在于,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的,包括:
    所述第一发射功率是根据所述目标接收功率的值与所述补偿系数相乘,再加所述路径损耗的值确定的,其中,所述第一补偿参数的取值小于1。
  63. 根据权利要求57、61或62所述的终端设备,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),γ·P PRACH,target,f,c+PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,γ为所述第一补偿参数。
  64. 根据权利要求57所述的终端设备,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述路径损耗的值经过所述补偿系数的调节,再加所述目标接收功率的值确定的。
  65. 根据权利要求64所述的终端设备,其特征在于,所述第一发射功率是根据所述路径损耗的值经过所述补偿系数的调节,再加所述目标接收功率的值确定的,包括:
    所述第一发射功率是根据所述路径损耗的值与所述补偿系数相乘,再加所述目标接收功率的值确定的,其中,所述第一补偿参数的取值小于1。
  66. 根据权利要求57、64或65所述的终端设备,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+β·PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,β为所述第一补偿参数。
  67. 根据权利要求57-66中任一项所述的终端设备,其特征在于,所述第一补偿参数为预设值。
  68. 根据权利要求67所述的终端设备,其特征在于,所述第一补偿参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  69. 根据权利要求57-66中任一项所述的终端设备,其特征在于,所述第一补偿参数由所述网络设备配置。
  70. 根据权利要求69所述的终端设备,其特征在于,所述第一补偿参数由所述网络设备配置,包括:
    所述第一补偿参数由所述网络设备通过随机接入信道RACH的配置信息进行配置。
  71. 根据权利要求56所述的终端设备,其特征在于,所述目标接收功率参数与所述第一类型对应。
  72. 根据权利要求71所述的终端设备,其特征在于,所述目标接收功率参数包括目标接收功率的值。
  73. 根据权利要求72所述的终端设备,其特征在于,所述目标接收功率的值包括第一功率值和第二功率值,其中,所述第一功率值与所述第一类型对应,所述第二功率值与第二类型对应,所述第一终端设备接收到的目标接收功率的值为所述第一功率值。
  74. 根据权利要求72所述的终端设备,其特征在于,所述目标接收功率参数还包括第二补偿参数,所述第二补偿参数与所述第一类型对应。
  75. 根据权利要求74所述的终端设备,其特征在于,所述第二补偿参数为补偿系数,所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相加确定的,或所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相乘确定的。
  76. 根据权利要求71-75中任一项所述的终端设备,其特征在于,所述目标接收功率参数由所述网络设备配置。
  77. 根据权利要求76所述的终端设备,其特征在于,所述目标接收功率参数由所述网络设备配置,包括:
    所述目标接收功率参数由所述网络设备通过RACH的配置信息进行配置。
  78. 根据权利要求71-75中任一项所述的终端设备,其特征在于,所述目标接收功率参数为预设值。
  79. 根据权利要求78所述的终端设备,其特征在于,所述目标接收功率参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  80. 根据权利要求71-79中任一项所述的终端设备,其特征在于,所述第一类型的终端设备对应的目标接收功率参数的值小于第二类型的终端设备对应的目标接收功率参数的值。
  81. 根据权利要求55-80中任一项所述的终端设备,其特征在于,所述第一类型的终端设备包括:
    能力降低的终端设备;
    接收天线数量小于所述第一终端设备所处的频段预设的最小接收天线数量的终端设备;或者,
    支持覆盖增强的终端设备。
  82. 一种网络设备,其特征在于,包括:
    接收模块,用于接收第一终端设备发送的物理随机接入信道PRACH,所述PRACH是以第一发射功率发送的,其中,所述第一终端设备为第一类型的终端设备,所述第一发射功率是根据第一参数集确定的,所述第一参数集中的至少一个参数与所述第一类型对应。
  83. 根据权利要求82所述的网络设备,其特征在于,所述第一参数集包括目标接收功率参数和路径损耗参数,所述目标接收功率参数用于表示所述PRACH的目标接收功率,所述路径损耗参数用于表示所述第一终端设备与所述网络设备之间的路径损耗。
  84. 根据权利要求83所述的网络设备,其特征在于,所述第一参数集还包括第一补偿参数,所述第一补偿参数与所述第一类型对应。
  85. 根据权利要求84所述的网络设备,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿功率值,所述第一发射功率是根据所述目标接收功率的值、所述路径损耗的值和所述补偿功率值之和确定的。
  86. 根据权利要求85所述的网络设备,其特征在于,所述第一补偿参数的取值为负值。
  87. 根据权利要求85或86所述的网络设备,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c+α};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,α为所述第一补偿参数。
  88. 根据权利要求84所述的网络设备,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的。
  89. 根据权利要求88所述的网络设备,其特征在于,所述第一发射功率是根据所述目标接收功率的值经过所述补偿系数的调节,再加所述路径损耗的值确定的,包括:
    所述第一发射功率是根据所述目标接收功率的值与所述补偿系数相乘,再加所述路径损耗的值确定的,其中,所述第一补偿参数的取值小于1。
  90. 根据权利要求84、88或89所述的网络设备,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),γ·P PRACH,target,f,c+PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,γ为所述第一补偿参数。
  91. 根据权利要求84所述的网络设备,其特征在于,所述目标接收功率参数为所述PRACH的目标接收功率的值,所述路径损耗参数为所述第一终端设备与所述网络设备之间的路径损耗的值,所述第一补偿参数为补偿系数,所述第一发射功率是根据所述路径损耗的值经过所述补偿系数的调节,再加所述目标接收功率的值确定的。
  92. 根据权利要求91所述的网络设备,其特征在于,所述第一发射功率是根据所述路径损耗的值 经过所述补偿系数的调节,再加所述目标接收功率的值确定的,包括:
    所述第一发射功率是根据所述路径损耗的值与所述补偿系数相乘,再加所述目标接收功率的值确定的,其中,所述第一补偿参数的取值小于1。
  93. 根据权利要求84、91或92所述的网络设备,其特征在于,所述第一发射功率满足如下公式:
    P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+β·PL b,f,c};
    其中,P PRACH,b,f,c(i)为所述第一发射功率,P CMAX,f,c(i)为所述第一终端设备的最大发射功率参数,P PRACH,target,f,c为所述目标接收功率参数,PL b,f,c为所述路径损耗参数,β为所述第一补偿参数。
  94. 根据权利要求84-93中任一项所述的网络设备,其特征在于,所述第一补偿参数为预设值。
  95. 根据权利要求94所述的网络设备,其特征在于,所述第一补偿参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  96. 根据权利要求84-93中任一项所述的网络设备,其特征在于,所述第一补偿参数由所述网络设备配置。
  97. 根据权利要求96所述的网络设备,其特征在于,所述第一补偿参数由所述网络设备配置,包括:
    所述第一补偿参数由所述网络设备通过随机接入信道RACH的配置信息进行配置。
  98. 根据权利要求83所述的网络设备,其特征在于,所述目标接收功率参数与所述第一类型对应。
  99. 根据权利要求98所述的网络设备,其特征在于,所述目标接收功率参数包括目标接收功率的值。
  100. 根据权利要求99所述的网络设备,其特征在于,所述目标接收功率的值包括第一功率值和第二功率值,其中,所述第一功率值与所述第一类型对应,所述第二功率值与第二类型对应,所述第一终端设备接收到的目标接收功率的值为所述第一功率值。
  101. 根据权利要求99所述的网络设备,其特征在于,所述目标接收功率参数还包括第二补偿参数,所述第二补偿参数与所述第一类型对应。
  102. 根据权利要求101所述的网络设备,其特征在于,所述第二补偿参数为补偿系数,所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相加确定的,或所述目标接收功率参数是根据所述目标接收功率的值与所述补偿系数相乘确定的。
  103. 根据权利要求98-102中任一项所述的网络设备,其特征在于,所述目标接收功率参数由所述网络设备配置。
  104. 根据权利要求103所述的网络设备,其特征在于,所述目标接收功率参数由所述网络设备配置,包括:
    所述目标接收功率参数由所述网络设备通过RACH的配置信息进行配置。
  105. 根据权利要求98-102中任一项所述的网络设备,其特征在于,所述目标接收功率参数为预设值。
  106. 根据权利要求105所述的网络设备,其特征在于,所述目标接收功率参数与所述第一终端设备的接收天线数量和/或所述第一终端设备所处的频段关联。
  107. 根据权利要求98-106中任一项所述的网络设备,其特征在于,所述第一类型的终端设备对应的目标接收功率参数的值小于第二类型的终端设备对应的目标接收功率参数的值。
  108. 根据权利要求82-107中任一项所述的网络设备,其特征在于,所述第一类型的终端设备包括:
    能力降低的终端设备;
    接收天线数量小于所述第一终端设备所处的频段预设的最小接收天线数量的终端设备;或者,
    支持覆盖增强的终端设备。
  109. 一种终端设备,其特征在于,包括存储器、处理器和收发器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以控制所述收发器执行如权利要求1-27中任一项所述的方法。
  110. 一种网络设备,其特征在于,包括存储器、处理器和收发器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以控制所述收发器执行如权利要求28-54中任一项所述的方法。
  111. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1-27中任一项所述的方法。
  112. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求28-54中任一项所述的方法。
  113. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-27中任一项所述的方法。
  114. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求28-54中任一项所述的方法。
  115. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-27中任一项所述的方法。
  116. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求28-54中任一项所述的方法。
  117. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-27中任一项所述的方法。
  118. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求28-54中任一项所述的方法。
  119. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-27中任一项所述的方法。
  120. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求28-54中任一项所述的方法。
PCT/CN2021/128262 2021-11-02 2021-11-02 无线通信的方法、终端设备和网络设备 WO2023077279A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100891.6A CN117751654A (zh) 2021-11-02 2021-11-02 无线通信的方法、终端设备和网络设备
PCT/CN2021/128262 WO2023077279A1 (zh) 2021-11-02 2021-11-02 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128262 WO2023077279A1 (zh) 2021-11-02 2021-11-02 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023077279A1 true WO2023077279A1 (zh) 2023-05-11

Family

ID=86240475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128262 WO2023077279A1 (zh) 2021-11-02 2021-11-02 无线通信的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN117751654A (zh)
WO (1) WO2023077279A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190467A1 (zh) * 2013-05-27 2014-12-04 华为技术有限公司 接入控制方法、用户设备和无线网络控制器
CN111867084A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种prach资源配置和指示配置的方法、装置及设备
WO2020263474A1 (en) * 2019-06-27 2020-12-30 Qualcomm Incorporated Transmission power control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190467A1 (zh) * 2013-05-27 2014-12-04 华为技术有限公司 接入控制方法、用户设备和无线网络控制器
CN111867084A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种prach资源配置和指示配置的方法、装置及设备
WO2020263474A1 (en) * 2019-06-27 2020-12-30 Qualcomm Incorporated Transmission power control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA NETWORKS: "PRACH Configuration for MTC UEs", 3GPP TSG-RAN WG1 MEETING #80BIS R1-151316, 19 April 2015 (2015-04-19), XP050934195 *

Also Published As

Publication number Publication date
CN117751654A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN110831135B (zh) 一种功率控制的方法和装置
US20220264470A1 (en) Transmit Power Control Method, Related Device, and System
US10966238B2 (en) Wireless device, network node, and methods performed thereby for handling grant use
US20210410080A1 (en) Power Control Method and Power Control Apparatus
US20210377916A1 (en) Wireless Communications Method and Apparatus
CN115413045B (zh) 信息传输方法、终端设备和网络设备
WO2022022517A1 (zh) 确定传输功率的方法及装置
US20240015544A1 (en) Multi-link measurement reporting
WO2021031028A1 (zh) 一种用于信号发送的方法、装置以及用于信号接收的方法、装置
CN116210335A (zh) 用于降低能力设备的早期指示
WO2022253150A1 (zh) 数据传输方法及装置
WO2023077279A1 (zh) 无线通信的方法、终端设备和网络设备
EP4252448A1 (en) Measurement protocol for restricted multi-link devices
EP4075876A1 (en) Communication method and device
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
US20220338093A1 (en) Communication method, device, and system
WO2023115341A1 (zh) 无线通信的方法、终端设备及网络设备
WO2022147711A1 (zh) 信号处理方法、装置、设备及存储介质
WO2023004545A1 (zh) 通信方法及通信装置
EP4395441A1 (en) Resource configuration method and communication apparatus
WO2023097666A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123073A1 (zh) 通信方法、终端设备及网络设备
WO2024021981A1 (zh) 一种通信方法及装置
WO2023070336A1 (zh) 通信方法、终端设备及网络设备
WO2023051755A1 (zh) 一种资源配置方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100891.6

Country of ref document: CN