WO2024021981A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024021981A1
WO2024021981A1 PCT/CN2023/103489 CN2023103489W WO2024021981A1 WO 2024021981 A1 WO2024021981 A1 WO 2024021981A1 CN 2023103489 W CN2023103489 W CN 2023103489W WO 2024021981 A1 WO2024021981 A1 WO 2024021981A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
relay device
forwarding
power information
Prior art date
Application number
PCT/CN2023/103489
Other languages
English (en)
French (fr)
Inventor
颜矛
刘凤威
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024021981A1 publication Critical patent/WO2024021981A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the relay device has two antenna panels, one of which is used to communicate with the base station (called the backhaul side) and the other is used to communicate with the terminal device (called the access side). Generally, only one antenna is used to receive signals. After the received signal is amplified, the signal is forwarded by another antenna.
  • This application provides a communication method and device to solve the problem of how to determine power control information and enable amplification and forwarding of the relay device when there is a relay device in the network.
  • this application provides a communication method, which method includes: a relay device determines a plurality of measurement information based on a plurality of first signals, and each measurement information in the plurality of measurement information corresponds to a first signal; The relay device sends the plurality of measurement information to the first network device and receives forwarding power information from the first network device; the forwarding power information is determined based on one or more measurement information, and the forwarding power information The relay device is used to forward signals from network devices or terminal devices.
  • the relay device can determine the forwarding power information based on one or more measurement information, thereby forwarding the signal from the network device or terminal device based on the forwarding power information and improving the coverage of the signal.
  • multiple first signals come from at least one network device, and each network device sends at least one first signal.
  • the first network device is one of at least one network device.
  • the multiple first signals when multiple first signals come from multiple network devices, the multiple first signals may be sent by multiple network devices at the same time, or may be sent by multiple network devices in a time-sharing manner.
  • multiple first signals are scheduled simultaneously by at least one network device.
  • multiple first signals are frequency division multiplexed.
  • multiple first signals are spatially multiplexed.
  • multiple first signals are co-frequency multiplexed; that is, the two signals are at the same frequency, or have partial frequency positions that overlap, or the frequency positions of the two signals may be the same.
  • the network device is a first network device or a second network device, or may be any network device other than the first network device or the second network device.
  • the method further includes: the relay device receives a second signal from the first network device, and forwards the second signal to the terminal device according to the forwarding power information; and the relay device receives the second signal according to the forwarding power information.
  • the relay device receives a second signal from the first network device, and forwards the second signal to the terminal device according to the forwarding power information; and the relay device receives the second signal according to the forwarding power information.
  • the forwarding power information is associated with at least one of the above items, the forwarding power information used by the relay device when forwarding a signal can be closer to the actually required forwarding power information, thereby improving forwarding efficiency.
  • how to specifically determine the forwarding power information can refer to the method of determining the first forwarding power information in the embodiments of this application. information or a second method of forwarding power information.
  • the second network device is one of at least one network device, and the method further includes: the relay device receives the third signal from the second network device, and forwards the third signal to the relay device according to the forwarding power information.
  • Terminal equipment; the forwarding power information is associated with at least one of the following:
  • the relay device can use more accurate forwarding power information when forwarding signals in multi-site mode, thereby improving forwarding efficiency.
  • P Txi represents the preconfigured forwarding power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the forwarding power information corresponding to the i-th first signal
  • W represents the i-th first signal.
  • Por represents the number of ports corresponding to the i-th first signal.
  • the measurement information corresponding to the first signal is the path loss of the first signal;
  • P 0i represents the preconfigured target received power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the forwarding power information corresponding to the i-th first signal
  • PLi represents the i-th first signal. Path loss of the first signal.
  • the method further includes: the relay device receives first information from the first network device, the first information is used to indicate the power offset value; the relay device forwards the second signal to the terminal according to the forwarding power information.
  • Equipment including:
  • the relay device forwards the second signal to the terminal device according to the forwarding power information and the power offset value.
  • the forwarding power information determined based on the measurement information can be adjusted to improve the forwarding efficiency.
  • this application provides a communication method, which method includes: a first network device receives multiple measurement information from a relay device; each measurement information in the multiple measurement information corresponds to one of the multiple first signals. The first signal; the first network device determines the forwarding power information based on one or more measurement information; the forwarding power information is used by the relay device to forward the signal from the network device or the terminal device; the first network device sends the forwarding power information to the relay device .
  • the measurement information corresponding to the first signal is the received power of the first signal;
  • P Txi represents the preconfigured forwarding power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the forwarding power information corresponding to the i-th first signal
  • W represents the i-th first signal.
  • Por represents the number of ports corresponding to the i-th first signal.
  • the measurement information corresponding to the first signal is the path loss of the first signal;
  • P 0i represents the preconfigured target received power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the forwarding power information corresponding to the i-th first signal
  • PLi represents the i-th first signal. Path loss of the first signal.
  • the method further includes: the first network device sending first information to the relay device, where the first information is used to indicate a power offset value corresponding to the forwarding power information.
  • the present application provides a communication method, which method includes: a relay device determines a plurality of measurement information based on a plurality of first signals, and each measurement information in the plurality of measurement information corresponds to one of the plurality of first signals.
  • first signal a first signal among multiple first signals From one network device in at least one network device; the relay device determines the forwarding power information based on multiple measurement information; the forwarding power information is determined based on one or more measurement information; the forwarding power information is used by the relay device to forward information from the network device or terminal device signal.
  • the method further includes: the relay device receives a second signal from the network device, and forwards the second signal to the terminal device according to the forwarding power information.
  • the power information is forwarded and the transmission direction used by the relay device to receive the second signal, the transmission direction used by the relay device to forward the second signal, and the transmission direction used by the first network device to send the second signal. At least one of the items is related.
  • the method further includes: the relay device receives first information from the network device, the first information is used to indicate the power offset value; and forwards the second signal to the terminal device according to the forwarding power information, including: The relay device forwards the second signal to the terminal device according to the forwarding power information and the power offset value.
  • P Txi represents the preconfigured forwarding power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the forwarding power information corresponding to the i-th first signal
  • W represents the i-th first signal.
  • Por represents the number of ports corresponding to the i-th first signal.
  • the measurement information corresponding to the first signal is the path loss of the first signal;
  • P 0i represents the preconfigured target received power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the forwarding power information corresponding to the i-th first signal
  • PLi represents the i-th first signal. Path loss of the first signal.
  • this application provides a communication method, which method includes: the relay device determines K1 pieces of measurement information based on K1 pieces of first signals, and each piece of measurement information in the K1 pieces of measurement information corresponds to one of the K1 pieces of first signals.
  • the first signal, K1 is an integer greater than 0; the relay device sends K1 measurement information to the first network device, and receives K2 first forwarding power information from the first network device; K2 first forwarding power information in Each first forwarding power information is determined based on one or more measurement information, and K2 is greater than or equal to K1.
  • the relay device receives the second signal from the first network device, and forwards the second signal to the terminal device according to the second forwarding power information, where the second forwarding power information is K2 first forwarding power information. A first forwarding power information.
  • K1 first signals come from at least one network device, and the first network device is one of the at least one network device; the second forwarding power information is K2 first forwarding power information, according to the signal from the first network The measurement information corresponding to the first signal of the device is determined.
  • the second forwarding power information and the transmission direction used by the relay device to receive the second signal, the transmission direction used by the relay device to forward the second signal, and the transmission direction used by the first network device to send the second signal At least one of the directions is related.
  • the method further includes: the relay device receives the third signal from the second network device, and forwards the third signal to the terminal device according to the third forwarding power information, where the third forwarding power information is the K2th A first forwarding power information in the forwarding power information.
  • the second forwarding power information and the third forwarding power information are the same forwarding power information, and the second forwarding power information is associated with at least one of the following: the transmission direction used by the relay device to receive the second signal. ;The transmission direction used by the relay device to forward the second signal; the transmission direction used by the first network device to send the second signal; the transmission direction used by the relay device to receive the third signal; the transmission direction used by the relay device to forward the third signal The transmission direction; the transmission direction used by the second network device to send the third signal.
  • each of the K1 first signals is transmitted through one of the K1 carriers
  • the method further includes: the relay device determines the second forwarding power information according to the number of carriers occupied by the second signal and the K1 first forwarding power information.
  • the second forwarding power information satisfies the following form:
  • G_1 represents the first forwarding power information
  • G_2 represents the second forwarding power information
  • C represents the number of carriers occupied by the second signal.
  • K1 is greater than 1, and K1 is less than Q.
  • Q is the maximum number of carriers supported by the relay device.
  • G represents the second forwarding power information
  • C represents the number of carriers occupied by the second signal
  • Gi represents the first forwarding power information corresponding to the i-th carrier occupied by the second signal.
  • the method further includes: the relay device receives first information from the first network device, where the first information is used to indicate the power offset value; the relay device forwards the second signal according to the second forwarding power information. to the terminal device, including: the relay device forwards the second signal to the terminal device according to the second forwarding power information and the power offset value.
  • the method further includes: the relay device receives second information from the first network device, and the second information is used to indicate the power offset corresponding to each of the K2 first forwarding power information. shift value; the relay device forwards the second signal to the terminal device according to the second forwarding power information, including: the relay device forwards the second signal to the terminal device according to the second forwarding power information and the power offset value corresponding to the second forwarding power information.
  • the relay device receives second information from the first network device, and the second information is used to indicate the power offset corresponding to each of the K2 first forwarding power information. shift value; the relay device forwards the second signal to the terminal device according to the second forwarding power information, including: the relay device forwards the second signal to the terminal device according to the second forwarding power information and the power offset value corresponding to the second forwarding power information.
  • the relay device receives second information from the first network device, and the second information is used to indicate the power offset corresponding to each of the K2 first forwarding power information. shift value; the relay device forwards the
  • P Txi represents the preconfigured forwarding power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the first forwarding power information corresponding to the i-th first signal
  • W represents the i-th first signal.
  • Por represents the number of ports corresponding to the i-th first signal.
  • the measurement information corresponding to the first signal includes the path loss and received power of the first signal; the i-th first signal among the K1 first signals
  • P 0i represents the preconfigured target received power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the first forwarding power information corresponding to the i-th first signal
  • PLi represents the i-th first signal.
  • this application provides a communication method, which method includes: the first network device receives K1 pieces of measurement information from the relay device; each of the K1 pieces of measurement information corresponds to one of the K1 pieces of first signals.
  • the first signal, K1 is an integer greater than 0; the first network device determines K2 first forwarding power information based on K1 pieces of measurement information; each of the K2 first pieces of first forwarding power information is based on at least one piece of measurement information. It is determined that K2 is greater than or equal to K1; the first forwarding power information is used by the relay device to forward signals to the terminal device; and the first network device sends K2 pieces of first forwarding power information to the relay device.
  • this application provides a communication method, which method includes: the relay device determines K1 pieces of measurement information based on K1 pieces of first signals, and each of the K1 pieces of measurement information corresponds to one of the K1 pieces of first signals.
  • the first signal, one of the K1 first signals comes from one of the at least one network devices, and K1 is an integer greater than 1; the relay device determines the K2 first forwarding power information based on the K1 measurement information;
  • Each of the K2 first forwarding power information is determined based on one or more measurement information.
  • At least one measurement information corresponds to a different network device, and K2 is greater than or equal to K1; the relay device receives the first forwarding power information from the network device. two signals, and forward the second signal to the terminal device according to the second forwarding power information, where the second forwarding power information is one of the K2 first forwarding power information.
  • the second signal comes from the i-th network device among the plurality of network devices
  • the second forwarding power information is one of the K2 first forwarding power information, the Ki first forwarding power information determined based on the first signal from the i-th network device, and the Ki bit is an integer greater than 0. .
  • each of the K1 first signals corresponds to a beam of the relay device and/or a beam of the network device; the second signal corresponds to the first beam of the first terminal device and/or the network.
  • the second forwarding power information is the first forwarding power corresponding to the first beam and/or the second beam among the Ki pieces of first forwarding power information.
  • the method further includes: the relay device receives first information from the network device, the first information is used to indicate the power offset value; and forwards the second signal to the terminal device according to the second forwarding power information, including : The relay device forwards the second signal to the terminal device according to the second forwarding power information and the power offset value.
  • the method further includes: the relay device receives first information from the network device, the first information is used to indicate the power offset value corresponding to each of the K2 first forwarding power information. ; Forwarding the second signal to the terminal device according to the second forwarding power information includes: the relay device forwarding the second signal to the terminal device according to the second forwarding power information and the power offset value corresponding to the second forwarding power information.
  • P Txi represents the preconfigured forwarding power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the first forwarding power information corresponding to the i-th first signal
  • W represents the i-th first signal.
  • Por represents the number of ports corresponding to the i-th first signal.
  • P 0i represents the preconfigured target received power of the i-th first signal
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the first forwarding power information corresponding to the i-th first signal
  • PLi represents the i-th first signal.
  • the present application provides a communication method.
  • the method includes: the relay device determines K pieces of measurement information based on K first signals, and each of the K first signals passes through one of the K carriers. Carrier transmission, K is an integer greater than 0; each measurement information among the K pieces of measurement information is determined based on one of the K first signals;
  • the relay device determines K pieces of first forwarding power information based on the K pieces of measurement information; each of the K pieces of first forwarding power information corresponds to one of the K carriers; the relay device receives the K pieces of first forwarding power information from the network device.
  • the second signal determines the second forwarding power information used to forward the second signal according to the number of carriers occupied by the second signal and the K pieces of first forwarding power information.
  • the second forwarding power information satisfies the following form:
  • G1 represents the first forwarding power information
  • G2 represents the second forwarding power information
  • C represents the number of carriers occupied by the second signal.
  • the method when K is less than Q, the method further includes: determining the first forwarding power information corresponding to each carrier among the Q carriers except the K carriers based on the K first forwarding power information, where Q is the medium The maximum number of carriers supported by the relay device.
  • the second forwarding power information satisfies the following form:
  • G represents the second forwarding power information
  • C represents the number of carriers occupied by the second signal
  • Gi represents the first forwarding power information corresponding to the i-th carrier occupied by the second signal.
  • the measurement information corresponding to the first signal is the received power of the first signal; the first forwarding power corresponding to the i-th carrier among the K carriers
  • P Txi represents the preconfigured forwarding power of the first signal in the i-th carrier
  • P Rxi represents the received power of the first signal in the i-th carrier
  • Gi represents the first forwarding power information corresponding to the i-th carrier
  • W represents the bandwidth corresponding to the second signal
  • Por represents the number of ports corresponding to the first signal.
  • the measurement information corresponding to the first signal is the path loss of the first signal; the first forwarding power corresponding to the i-th carrier among the K carriers
  • P 0i represents the preconfigured target received power of the first signal in the i-th carrier
  • P Rxi represents the received power of the first signal in the i-th carrier
  • Gi represents the first forwarding power information corresponding to the i-th carrier
  • PLi represents the path loss of the first signal corresponding to the i-th carrier.
  • this application provides a communication method, which method includes: the relay device measures at least one first signal from the terminal device or the network device to obtain at least one measurement information; the relay device determines based on the at least one measurement information Forwarding power information; the forwarding power information is determined based on one or more measurement information, and the forwarding power information is used by the relay device to forward signals from network devices or terminal devices.
  • the relay device receives a signal from the network device and forwards the signal from the network device to the terminal device according to the forwarding power information.
  • the relay device receives a signal from the terminal device and forwards the signal from the terminal device to the network device according to the forwarding power information.
  • the present application provides a communication method, which method includes: a relay device measuring at least one first reference signal from a first network device to obtain at least one first measurement information; and the relay device measuring at least one first reference signal from a second network device.
  • the network device performs measurements on at least one second reference signal to obtain at least one second measurement information; the relay device performs measurements on at least one first measurement information and at least one second measurement information.
  • At least one item in the information determines the forwarding power information; the forwarding power information is used by the relay device to forward signals from network equipment or terminal equipment.
  • the network device is a first network device or a second network device.
  • the present application provides a communication device, which can be applied to a relay device and has the function of implementing the methods performed by the relay device in the above-mentioned first to ninth aspects.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • it includes a transceiver unit and a processing unit.
  • the transceiver unit may also be called a communication unit or a transceiver module.
  • the transceiver unit may specifically include a receiving unit and a sending unit.
  • the processing unit may also be called a processing module.
  • the communication device is a communication chip
  • the transceiver unit may be an input/output circuit or port, interface circuit, output circuit, input circuit, pin or related circuit of the communication chip, etc.
  • the processing unit may be a processing circuit or a logic circuit of a communication chip.
  • the present application provides a communication device, which can be applied to a network device and has the function of implementing the method performed by the network device or the first network device in the above-mentioned first to ninth aspects.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • it includes a transceiver unit and a processing unit.
  • the transceiver unit may also be called a communication unit or a transceiver module.
  • the transceiver unit may specifically include a receiving unit and a sending unit.
  • the processing unit may also be called a processing module.
  • the communication device is a communication chip
  • the transceiver unit may be an input/output circuit or port, interface circuit, output circuit, input circuit, pin or related circuit of the communication chip, etc.
  • the processing unit may be a processing circuit or a logic circuit of a communication chip.
  • the present application provides a communication device, which includes: a processor and a memory.
  • Computer programs or computer instructions are stored in the memory, and the processor is used to call and run the computer program or computer instructions stored in the memory, so that the processor implements any possible implementation manner as in the first to ninth aspects.
  • the communication device also includes an interface circuit, and the processor is used to control the interface circuit to send and receive signals and/or information and/or data.
  • the present application provides a communication device, which includes a processor.
  • the processor is configured to call a stored computer program or computer instruction, so that the processor implements any possible implementation manner as in the first to ninth aspects.
  • the communication device also includes an interface circuit, and the processor is used to control the interface circuit to send and receive signals and/or information and/or data.
  • the present application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute any of the possible implementations of the first to ninth aspects.
  • the implementation of the present application also provides a computer-readable storage medium, including computer instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute any of the possible implementations of the first to ninth aspects. .
  • the present application further provides a chip device, including a processor for calling a computer program or computer instructions in the memory, so that the processor executes any of the above-mentioned aspects from the first to the ninth aspect. possible implementations.
  • the processor is coupled to the memory through an interface.
  • embodiments of the present application provide a communication system, which includes the communication device (such as a relay device) described in the tenth aspect and the communication device (such as a network device) described in the eleventh aspect. .
  • Figure 1 is a schematic diagram of a multi-station transmission mode provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another multi-station transmission mode provided by an embodiment of the present application.
  • Figure 3(a) is a schematic diagram of a network architecture suitable for embodiments of the present application.
  • Figure 3(b) is a schematic diagram of a network architecture suitable for embodiments of the present application.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of signal transmission provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of signal transmission provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 10 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of signal transmission provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of signal transmission provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of signal transmission provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of signal transmission provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided by the embodiment of this application can be applied to the fourth generation (4th generation, 4G) communication system, such as long term evolution (long term evolution, LTE), and can also be applied to the fifth generation (5th generation, 5G) communication system.
  • 4G long term evolution
  • 5th generation, 5G 5th generation
  • 5G new radio NR
  • 6G sixth generation (6th generation, 6G) communication system.
  • a beam is a communication resource, or an airspace behavior understood as signal transmission. Specifically, it can refer to the distribution of signal strength formed in different transmission directions in space after the signal is emitted by the antenna.
  • One beam can correspond to one transmission direction. In this application, for convenience of description, beam and transmission direction are regarded as the same term, and the two can be replaced with each other.
  • the beam may be a wide beam, a narrow beam, or other types of beams, and the beam forming technology may be beam forming technology or other technical means.
  • Beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • a beam can be called a spatial domain filter, a spatial filter, a spatial domain parameter, a spatial parameter, a spatial domain setting, a spatial setting. , quasi-colocation (QCL) information, QCL assumption, or QCL indication, etc.
  • Beams can be indicated by a transmission configuration indicator (TCI) state parameter, or by a spatial relationship parameter. Therefore, in this application, the beam can be replaced by transmission direction, transmission resource, air domain filter, space filter, air space parameter, space parameter, air space setting, space setting, QCL information, QCL assumption, QCL indication, TCI status (including uplink TCI status, downlink TCI status), or spatial relationship, etc. Beam can also be replaced by other terms indicating beam, which is not limited in this application.
  • the beam used to transmit signals may be called transmission beam (transmission beam, Tx beam), spatial domain transmission filter (spatial domain transmission filter), spatial transmission filter (spatial transmission filter), spatial domain transmission parameter (spatial domain transmission parameter), spatial transmission parameter (spatial transmission parameter), spatial domain transmission setting (spatial domain transmission setting), or spatial transmission setting (spatial transmission setting).
  • the beam used to receive signals may be called a reception beam (reception beam, Rx beam), a spatial domain reception filter (spatial domain reception filter), a spatial reception filter (spatial reception filter), and a spatial domain reception parameter (spatial domain reception parameter) or spatial reception parameter, spatial domain reception setting, or spatial reception setting.
  • the uplink transmit beam can be indicated by any of spatial relationships, uplink TCI-state, and sounding reference signal (SRS) resources (indicating the transmit beam using the SRS).
  • SRS sounding reference signal
  • the uplink beam can also be replaced by SRS resources.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is emitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beam forming technology or other technologies.
  • the beamforming technology can be digital beamforming technology, analog beamforming technology, hybrid digital beamforming technology, or hybrid analog beamforming technology.
  • Beams generally correspond to resources. For example, when performing beam measurement, the network device measures different beams through different resources. The terminal device feeds back the measured resource quality, and the network device knows the quality of the corresponding beam. When data is transmitted, beam information is also indicated by its corresponding resources. For example, the network device indicates the beam information of the terminal device through the TCI field in the downlink control information (DCI).
  • DCI downlink control information
  • One beam may include one or more antenna ports for transmitting data channels, control channels, detection signals, etc.
  • One or more antenna ports forming a beam can also be regarded as a set of antenna ports.
  • the reference signal can be any of the following signals: synchronization signal, broadcast channel, broadcast signal demodulation signal, channel state information reference signal (CSI-RS), cell specific reference signal (cell specific reference signal (CS-RS), SRS, user equipment specific reference signal (US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, downlink phase noise tracking signal, etc.
  • CSI-RS channel state information reference signal
  • CS-RS cell specific reference signal
  • SRS user equipment specific reference signal
  • US-RS user equipment specific reference signal
  • downlink control channel demodulation reference signal downlink data channel demodulation reference signal
  • downlink phase noise tracking signal etc.
  • the resources used to transmit or receive reference signals may be called reference signal resources.
  • TRP Transmission and reception point
  • TRP is a physical unit for network equipment to send and receive signals.
  • a network equipment may include one or more TRPs. Each TRP has the ability to independently transmit downlink data and receive uplink data.
  • the network side sends reference signals and data signals to the terminal equipment through one or more TRPs, and accepts uplink signals from the terminal equipment.
  • a TRP may contain one or more antennas.
  • the mode in which the terminal device communicates with multiple TRPs at the same time is called multi-station transmission mode or multi-TRP transmission mode.
  • the multiple TRPs may belong to the same cell or different cells.
  • FIG 1 a schematic diagram of a multi-station transmission mode provided by an embodiment of the present application is shown.
  • two TRPs are taken as an example, namely TRP1 and TRP2.
  • TRP1 and TRP2 in Figure 1 belong to different cells, TRP1 belongs to the first network device, and TRP2 belongs to the second network device.
  • TRP1 and TRP2 are taken as an example, namely TRP1 and TRP2.
  • TRP1 and TRP2 in Figure 2 belong to the same cell, that is, TRP1 and TRP2 belong to the same network device.
  • the network devices involved in the embodiments of this application may be devices in a wireless network.
  • the network device may be a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, and may also be called an access network device.
  • RAN radio access network
  • Network equipment includes but is not limited to: TRP, evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller, BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be used for 5G mobile communications Network devices in the system.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • wireless fidelity wireless fidelity
  • AP wireless fidelity
  • TP transmission point
  • TRP transmission and reception point
  • next generation base station next generation NodeB, gNB
  • transmission reception point TRP
  • TP transmission reception point
  • the network device may also be a network node that constitutes a gNB or transmission point.
  • BBU BBU, or distributed unit (DU), etc.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, MAC layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC MAC layer
  • PHY physical (physical, PHY) layer.
  • AAU implements some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the RAN, or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the terminal device involved in the embodiment of the present application may be a wireless terminal device capable of receiving network device scheduling and indication information.
  • An end device may be a device that provides voice and/or data connectivity to a user, or a handheld device with wireless connectivity capabilities, or other processing device connected to a wireless modem.
  • Terminal equipment referred to as terminal, is also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • An end device is a device that includes wireless communication capabilities (providing voice/data connectivity to the user). For example, handheld devices with wireless connection functions, or vehicle-mounted devices.
  • terminal devices are: mobile phones (mobile phone), tablet computer, notebook computer, handheld computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (VR) device, augmented reality (AR) device, industry Wireless terminals in industrial control, wireless terminals in the Internet of Vehicles, wireless terminals in self-driving, wireless terminals in remote medical surgery, and wireless terminals in smart grids Terminals, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • wireless terminals in the Internet of Vehicles can be vehicle-mounted equipment, vehicle equipment, vehicle-mounted modules, vehicles, etc.
  • Wireless terminals in industrial control can be cameras, robots, etc.
  • Wireless terminals in smart homes can be TVs, air conditioners, sweepers, speakers, set-top boxes, etc.
  • Relay equipment can forward signals from network devices to terminal devices, and can also forward signals from terminal devices to network devices.
  • the specific implementation method of the relay device is not limited, and any device with the above functions can be used as a relay device.
  • the relay device may also be called a network-controlled repeater (NCR) or other names, and is collectively referred to as a relay device in this application.
  • NCR network-controlled repeater
  • the relay device may include an NCR-mobile termination (NCR-MT) entity and an NCR-forwarding (NCR-forwarding) , NCR-Fwd) entity.
  • the link between the NCR-MT entity and network equipment in NCR can be called a control link.
  • the NCR-MT entity is a functional entity that communicates with network equipment through the control link to achieve information exchange (such as side control information (side control information, or control information).
  • the control link corresponds to the NR Uu interface of the network device.
  • the NCR-Fwd entity Through the backhaul link (backhaul link) and access link (accessl link), the NCR-Fwd entity performs uplink/downlink RF signal amplification and forwarding between network equipment and terminal equipment.
  • the control information received by the NCR-MT entity from the network device can be used to control the behavior of the NCR-Fwd entity.
  • the link between the NCR-Fwd entity in NCR and the network device may be called a backhaul link
  • the link between the NCR-Fwd entity in NCR and the terminal device may be called an access link.
  • the relay device includes at least two antenna panels, one of which is used to communicate with the network device; the other is used to communicate with the terminal device.
  • One antenna panel of the relay device is used to receive signals. The received signals are amplified and forwarded by another antenna panel.
  • the beam used by the relay device to communicate with the network device may be called a relay backhaul side beam
  • the beam used by the relay device to communicate with the terminal device may be called a relay access side beam. If the relay device forwards the downlink signal, then the relay return side beam can be used to receive the downlink signal, and the relay access side beam can be used to forward the downlink signal; if the relay device forwards the uplink signal, then the relay access can be used
  • the side beam receives the uplink signal and forwards the uplink signal using the relay backhaul side beam.
  • the relay backhaul side beam can also be replaced by the relay backhaul side resource; the relay access side beam can also be replaced by the relay access side resource.
  • the relay device can forward the signals of multiple network devices to the terminal device at the same time, and can also forward the signals of the terminal device to multiple network devices.
  • Figure 3(b) it is a schematic diagram of a network architecture suitable for this application.
  • Figure 3(b) includes two network devices, namely network device 1 and network device 2.
  • the relay device can forward the signals of network device 1 and network device 2 to the terminal device, and can also forward the signals of the terminal device to the network.
  • the relay device When the relay device is working, for the signal from the network device, the relay device amplifies the signal received by the backhaul side antenna panel and forwards it to the terminal device through the access side antenna panel. If the access side of the relay device has the capability of multiple beams, when the relay device forwards signals, it will aim the access side beam at the terminal device to obtain better transmission performance.
  • the amplification circuit of the relay device will bring noise to the forwarded signal.
  • the noise of the relay device When the noise of the relay device is transmitted to the receiving end, it will cause noise interference to the receiving end.
  • the signal amplification factor of the relay device is too high, on the one hand, the output power of the forwarded signal of the relay device will be relatively large, which will cause interference; on the other hand, it will cause the power amplifier of the relay device to enter the saturation zone. , causing the forwarded signal to be distorted, making it impossible for the receiving end to demodulate correctly. Therefore, this application provides a method that enables the relay device to accurately determine the forwarding power when forwarding signals.
  • each embodiment of the present application involves some message names, such as the first message, etc., and their naming does not limit the protection scope of the embodiments of the present application.
  • the steps in each process are only exemplary and are not strictly limited. For the steps in each process, some steps can be retained according to the actual situation, and/or the order of some steps can be adjusted. In addition, the size of the serial numbers of the above steps does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • beam can also be replaced by terms such as transmission direction, transmission resource, air domain parameter, spatial parameter, etc. This application is not limited to this.
  • FIG. 4 it is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • This process takes an example of a network device sending a reference signal to a relay device, and the relay device forwarding the measurement results of the reference signal to the network device.
  • the method includes:
  • S401 The network device sends the first signal to the relay device.
  • the network device can configure the parameters required to determine the first forwarding power information, such as the preconfigured forwarding power of the first signal and the first signal bandwidth W, to the relay device.
  • the specific configuration process is not described in this application. Not limited.
  • the first signal may be a reference signal.
  • the first signal may be a demodulation reference signal (DMRS), a channel state information reference signal (CSI-RS), or a synchronization signal broadcast channel block (synchronous signal). Any one of signal/physical broadcast channel block, SS/PBCH block, SSB).
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • synchronous signal synchronization signal broadcast channel block
  • the network device may send configuration information of the first signal to the relay device.
  • the configuration information indicates the transmission power, time-frequency resource location, and transmission direction (i.e., beam) of the first signal. and other information.
  • the configuration information can be carried on the physical broadcast channel (physical broadcast channel, PBCH), remaining minimum system information (remaining minimum system information, RMSI), system information block (system information block, SIB) 1, SIB2, SIB3, media access Any item among control (medium access control, MAC) control element (CE), DCI, RRC signaling and system information.
  • the network device may send multiple first signals to the relay device.
  • the relay device includes X1 beams, that is, X1 transmission directions, namely beam 1_1 to beam X1_1, and the network device sends at least X1 first signals.
  • the relay device receives at least one first signal using each beam.
  • the relay device includes X1 beams, namely beam 1_1 to beam X1_1, and the network device includes *X2 first signals, the network device uses each beam to send at least X1 first signals, and the relay device uses each beam to receive at least X2 first signals, so that the relay device uses each beam to receive each signal of the network device The first signal sent by the beam.
  • the network device uses beam 1_2 to send X1 first signals, and the relay device uses beam 1_1 to receive the X1 first signals; then the network device uses beam 1_2 to send X1 first signals, and the relay device uses beam 2_1 to receive the X1 first signals; repeat the above process until each beam of the network device sends X1 first signals.
  • the relay device measures the first signal and obtains measurement information.
  • the relay device uses a relay backhaul side beam to receive the first signal.
  • the relay device is NCR
  • the first signal is measured by the NCR-MT entity.
  • the relay device can obtain multiple measurement information, and one piece of measurement information is determined based on one or more first signals. For example, one signal corresponds to two measurement information, and multiple measurement information can be obtained by receiving multiple times on one signal; or different ports of a signal are sent simultaneously through multiple beams, and different measurement values corresponding to different beams; or simultaneously Send signals at different frequency positions, and the signals at different frequency positions correspond to different measurement values.
  • This approach can be used in all embodiments throughout the text.
  • the measurement information includes one or more of the following:
  • the received power of the first signal The received power of the first signal; the channel quality indicator (CQI) of the first signal; the reference signal received signal power (RSRP) of the first signal; the reference signal received signal quality of the first signal ( reference signal received quality (RSRQ); received signal strength indicator (RSSI) of the first signal; path loss of the first signal; channel state information (CSI) on the return side, for example, receiving antenna the observed phase difference.
  • CQI channel quality indicator
  • RSRP reference signal received signal power
  • RSSI received signal quality of the first signal
  • RSSI received signal strength indicator
  • path loss of the first signal path loss of the first signal
  • CSI channel state information
  • the path loss of the first signal is the difference between the transmission power of the network device for transmitting the first signal and the reception power of the relay device for receiving the first signal.
  • the relay device sends the measurement information of the first signal to the network device.
  • the relay device is NCR
  • the NCR-MT entity sends the measurement information.
  • the relay device sends the measurement information of each of the multiple first signals to the network device, and may also send the measurement information of at least one of the multiple first signals to the network device. Measurement information is not limited by this application.
  • the network device determines the first forwarding power information based on the measurement information, and sends the first forwarding power information to the relay device.
  • the network device may determine a plurality of first forwarding power information, each first forwarding power information being determined based on at least one piece of measurement information.
  • the network device can send the first forwarding power information through any one of RRC, medium access control (medium access control, MAC) control element (control element, CE), and DCI.
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • the first forwarding power information may be based on the preconfigured forwarding power of the first signal, the received power of the first signal, the bandwidth corresponding to the first signal, the number of ports corresponding to the first signal, the return side antenna gain G BH , the access side antenna At least one of the gain G AC and the controller antenna gain P MT is determined.
  • P Tx represents the preconfigured forwarding power of the first signal, which can be configured by the network device, and its unit is decibel millimeter (dBm);
  • P Rx represents the received power of the first signal, and its unit is dBm;
  • G represents The unit of the first forwarding power information corresponding to the first signal is decibel (dB);
  • W represents the bandwidth corresponding to the first signal, and Por represents the number of ports corresponding to the first signal.
  • P 0 represents the preconfigured target received power of the first signal, which can be configured by the network device, and its unit is dBm;
  • P Rx represents the received power of the first signal, and its unit is dBm;
  • G represents the first The first forwarding power information corresponding to the signal, its unit is dB;
  • PL represents the path loss of the first signal.
  • the first forwarding power information corresponding to the first signal can be determined according to the previous implementation.
  • G AC in the above formulas can also be replaced by G BH , or G BH + G AC , or G BH + G AC - G MT , or G BH + G AC + G MT , etc., which will not be listed one by one here.
  • S405 The first network device sends the second signal.
  • the specific content carried by the second signal is not limited and may be data or control signaling, which is not limited in this application.
  • the relay device forwards the second signal to the terminal device according to the first forwarding power information.
  • the relay device uses a relay return side beam to receive the second signal, and uses a relay access side beam to forward the second signal.
  • the relay return side beam for the relay device to receive the second signal and/or the relay access side beam for forwarding the second signal can be configured by the network device or independently determined by the relay device. This application does not limited. If configured by the network device, the network device may instruct the relay device through control information to receive the relay return side beam of the second signal and/or the relay access side beam used to forward the second signal. In the following other processes of this application, the beams used by the relay device to forward uplink signals and downlink signals may also be instructed by the network device through control information, and the details will not be explained one by one.
  • the relay device may determine the transmission power (or amplification gain) of the second signal according to the first forwarding power information, and thereby forward the second signal to the terminal device according to the transmission power.
  • the relay device specifically determines the transmission power of the second signal based on the first forwarding power information.
  • P Rx2 represents the received power of the second signal
  • G represents the first forwarding power information
  • the second signal also corresponds to a maximum transmission power.
  • the maximum transmission power may be the maximum uplink transmission capability of the relay device or the maximum power allowed to transmit signals in the uplink. If the transmission power determined according to the first forwarding power information is greater than the maximum transmission power, Then the relay device forwards the second signal to the terminal device according to the maximum transmission power.
  • the network device may also send power offset value indication information to the relay device, where the power offset value indication information is used to indicate at least one power offset value.
  • each power offset value corresponds to a time unit, and the time unit can be a time slot or a subframe.
  • the relay device forwards the second signal in the first time unit, it may forward the second signal to the terminal device according to the first forwarding power information and the power offset value corresponding to the first time unit, that is, it forwards the second signal in the first time unit.
  • the transmission power of the second signal is determined based on the first forwarding power information and the power offset value corresponding to the first time unit.
  • each power offset value corresponds to a signal type
  • the signal type includes but is not limited to broadcast signals, data signals, control signals, etc.
  • the relay device may forward the second signal to the terminal device according to the first forwarding power information and the power offset value corresponding to the signal type of the second signal.
  • the broadcast signal corresponds to the first power offset value
  • the data signal corresponds to the second power offset value
  • the control signal corresponds to the third power offset value. If the second signal is a broadcast signal, then the relay device forwards the power information according to the first and the first power offset value is used to forward the second signal to the terminal device.
  • each power offset value corresponds to a beam of the relay device.
  • the beam here may refer to at least one of the following: a relay backhaul side beam, or a relay access side beam, or a paired relay backhaul side beam-access side beam, or a transmission beam of a network device .
  • the relay device may forward the second signal to the terminal device according to the first forwarding power information and the power offset value corresponding to the beam of the second signal.
  • beam 1 of the relay device corresponds to the first power offset value
  • beam 2 corresponds to the second power offset value. If the relay device uses beam 2 to forward the second signal, then the relay device transmits the second signal according to the first forwarding power information and the second power offset value.
  • the second power offset value forwards the second signal to the terminal device.
  • the first forwarding power information used by the relay device to forward the second signal may also be at least one of the beam used by the relay device to receive the second signal and the beam used by the relay device to forward the second signal.
  • the beam here may refer to the relay backhaul side beam, or the relay access side beam, or the paired relay backhaul side beam-access side beam, or the transmission beam of the network device.
  • the first forwarding power information used by the relay device to forward the second signal and the beam used by the relay device to receive the second signal.
  • the relay device uses the first beam (for example, the first beam is The relay backhaul side beam) receives the second signal, and then the first forwarding power information used by the relay device to forward the second signal is determined based on the first signal received through the first beam. For example, a relay device receives signal 0 via beam 0 and signal 1 via beam 1. The measurement information corresponding to signal 0 is used to determine the forwarding power information 0, and the measurement information corresponding to the signal 1 is used to determine the forwarding power information 1. When the relay device receives the second signal using beam 1, the relay device forwards the second signal according to the forwarding power information 1.
  • the first beam is The relay backhaul side beam
  • the first forwarding power information used by the relay device to forward the second signal there is a correlation between the first forwarding power information used by the relay device to forward the second signal and the beam used by the relay device to forward the second signal.
  • a correspondence relationship between the relay backhaul side beam and the relay access side beam of the relay device may be established in advance. If the relay device uses the first beam to forward the second signal, and the relay return side beam corresponding to the first beam is the second beam, then the first forwarding power information used by the relay device to forward the second signal is based on the second beam. The beam is determined by the first signal received.
  • beam 0 and beam 1 are relay backhaul side beams
  • beam 2 and beam 3 are relay access side beams
  • beam 0 corresponds to beam 2
  • beam 1 and beam 3 corresponds to the relay device receiving signal 0 through beam 0 and signal 1 through beam 1.
  • the measurement information corresponding to signal 0 is used to determine the forwarding power information 0
  • the measurement information corresponding to the signal 1 is used to determine the forwarding power information 1.
  • the relay device uses beam 2 to forward the second signal, the relay device forwards the second signal according to the forwarding power information 0; when the relay device uses beam 3 to forward the second signal, the relay device forwards the second signal according to the forwarding power information 1.
  • the first forwarding power information used by the relay device to forward the second signal may also be associated with the beam used by the network device to send the second signal. Specifically, if the network device uses the second beam to send the second signal, then the first forwarding power information used by the relay device to forward the second signal is determined based on the first signal sent through the second beam.
  • the network device sends signal 0 through beam 0, correspondingly, the relay device receives signal 0 through beam 1, and the measurement information corresponding to signal 0 is used to determine the forwarding power information 0; the network device sends signal 1 through beam 2, correspondingly, The relay device receives signal 1 through beam 1, and the measurement information corresponding to signal 1 is used to determine the forwarding power information 1; the network device sends signal 2 through beam 2, and accordingly, the relay device receives signal 2 through beam 4, and signal 2 corresponds to The measurement information is used to determine forwarding power information 3. If the network device sends the second signal through beam 2 and the relay device receives the second signal through beam 1, then the relay device forwards the second signal according to forwarding power information 1.
  • the relay device may also forward the signal from the terminal device to the network device according to the first forwarding power information.
  • the relay device may also forward the signal from the terminal device to the network device according to the first forwarding power information.
  • the relay device may also forward the signal from the terminal device to the network device according to the first forwarding power information.
  • S407 The terminal device sends the fourth signal.
  • the specific content carried by the fourth signal is not limited. It may be data or information or signals other than data. This application is not limited to this.
  • the relay device forwards the fourth signal to the network device according to the first forwarding power information.
  • the relay device uses a relay access side beam to receive the fourth signal, and uses a relay return side beam to forward the fourth signal.
  • the relay return side beam used by the relay device to forward the fourth signal can be configured by the network device or independently determined by the relay device. This application is not limited to this.
  • the first forwarding power information used by the relay device to forward the fourth signal may also be associated with the beam used by the relay device to forward the fourth signal.
  • the first forwarding power information used by the relay device to forward the fourth signal may also be associated with the beam used by the relay device to forward the fourth signal.
  • the first forwarding power information used by the relay device to forward the fourth signal may also be associated with the beam used by the terminal device to send the fourth signal.
  • the first forwarding power information used by the relay device to forward the fourth signal may also be associated with the beam used by the terminal device to send the fourth signal.
  • the forwarding power information is the amplification gain
  • the amplification gain G2 of the second signal is forwarded
  • the offset value O is greater than 0, that is, a larger amplification gain is used to amplify the uplink signal. Based on this method, the uplink coverage performance can be improved and the coverage difference between downlink and uplink in the network can be reduced.
  • the relay device obtains measurement information by measuring signals from the network device, so that the network device determines the forwarding power information based on the measurement information.
  • the relay device can forward the signal of the network device or terminal device based on the forwarding power information, thereby achieving accurate control of the forwarding power of the signal and avoiding phenomena such as distortion of the forwarded signal caused by large forwarding power.
  • the relay device may also determine the forwarding power information based on the measurement information (or the first signal, or the measurement reference signal). For details, please refer to the following process.
  • FIG. 7 it is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method includes:
  • S701 The network device sends the first signal to the relay device.
  • the relay device measures the first signal and obtains measurement information.
  • the relay device determines the first forwarding power information based on the measurement information (or the first signal, or the measurement reference signal).
  • the network device may configure the parameters required to determine the first forwarding power information, such as the preconfigured forwarding power P Tx of the first signal and the first signal bandwidth W, to the relay device.
  • the relay device specifically determines the first forwarding power information based on the measurement information (or the first signal, or the measurement reference signal). For example, reference can be made to the description in S404, which will not be described again here.
  • S704 The first network device sends the second signal.
  • the specific content carried by the second signal is not limited and may be data or control signaling, which is not limited in this application.
  • S705 The relay device forwards the second signal to the terminal device according to the first forwarding power information.
  • the relay device uses a relay return side beam to receive the second signal, and uses a relay access side beam to forward the second signal.
  • the relay access side beam used by the relay device to forward the second signal can be configured by the network device or independently determined by the relay device. This application is not limited to this.
  • S706 The terminal device sends the fourth signal.
  • the specific content carried by the fourth signal is not limited. It may be data or information other than data. This application is not limited to this.
  • the relay device forwards the fourth signal to the network device according to the first forwarding power information.
  • the relay device uses a relay return side beam to receive the fourth signal, and uses a relay access side beam to forward the fourth signal.
  • the relay return side beam used by the relay device to forward the fourth signal can be configured by the network device or independently determined by the relay device. This application is not limited to this.
  • the relay device obtains measurement information by measuring signals from the network device, and thereby determines the forwarding power information based on the measurement information.
  • the relay device can forward the signal of the network device or terminal device based on the forwarding power information, thereby achieving accurate control of the forwarding power of the signal and avoiding phenomena such as distortion of the forwarded signal caused by large forwarding power.
  • the network device sends the first signal, and the relay device measures the first signal.
  • the terminal device may also send the first signal, and the relay device measures the first signal from the terminal device, as described in detail below.
  • FIG. 8 it is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method includes:
  • S801 The terminal device sends the first signal to the relay device.
  • the terminal device or network device can configure the parameters required to determine the first forwarding power information, such as the preconfigured forwarding power P Tx of the first signal and the first signal bandwidth W, to the relay device.
  • the specific configuration process is described in this application. Not limited.
  • the first signal may be a reference signal.
  • the first signal may be a channel sounding reference signal (SRS) signal, a physical random access channel (PRACH) signal, or a random access preamble (preamble). any of them.
  • SRS channel sounding reference signal
  • PRACH physical random access channel
  • preamble random access preamble
  • the relay device measures the first signal and obtains measurement information.
  • the relay device sends the measurement information of the first signal to the network device.
  • the network device determines the first forwarding power information based on the measurement information (or the first signal, or the measurement reference signal), and sends the first forwarding power information to the relay device.
  • the relay device may not send measurement information to the network device.
  • the relay device may determine the first forwarding power information by itself based on the measurement information (or the first signal, or the measurement reference signal). The specific process is not known. Again.
  • S803 to S804 can also be replaced by: the relay device can also send measurement information to the terminal device; the terminal device determines the first forwarding power information based on the measurement information (or the first signal, or the measurement reference signal) , and sends the first forwarding power information to the relay device (or the terminal device first reports the first forwarding power information to the network device, and then the network device sends configuration information to the relay device, and the configuration information is used to determine the first forwarding power ).
  • the relay device can forward the second signal from the network device to the terminal device according to the first forwarding power information; the relay device can forward the fourth signal from the terminal device to the network device according to the first forwarding power information.
  • the specific process may refer to the description in S405 to S408 or other embodiments, which will not be described again here.
  • the relay device can also send the first signal to the network device.
  • Figure 9 it is a schematic flow chart of a communication method provided by the embodiment of this application. The method includes:
  • the relay device sends the first signal to the network device.
  • the network device can configure the transmission power of the first signal, time-frequency resource location and other information to the relay device.
  • the specific configuration process is not limited in this application.
  • the network device measures the first signal and obtains measurement information.
  • the network device determines the first forwarding power information based on the measurement information (or the first signal, or the measurement reference signal), and sends the first forwarding power information to the relay device.
  • the network device can also instruct the relay device beam information.
  • the network device instructs the relay device to return beam information on the backhaul side (or indicates an index of the first signal on the backhaul side). Further instructing the return side beam allows the relay to adopt a more accurate return side beam when amplifying and forwarding, thereby improving signal forwarding performance.
  • the relay device can forward the second signal from the network device to the terminal device according to the first forwarding power information; the relay device can forward the fourth signal from the terminal device to the network device according to the first forwarding power information.
  • the specific process can refer to The descriptions in S405 to S408 or other embodiments will not be described again here.
  • the relay device can also send the first signal to the terminal device.
  • Figure 10 it is a schematic flow chart of a communication method provided by the embodiment of this application. The method includes:
  • the relay device sends the first signal to the terminal device.
  • the network device can configure the transmission power of the first signal, time-frequency resource location and other information to the relay device.
  • the specific configuration process is not limited in this application.
  • the terminal device measures the first signal and obtains measurement information.
  • the terminal device determines the first forwarding power information based on the measurement information (or the first signal, or the measurement reference signal), and sends the first forwarding power information to the relay device.
  • the relay device can forward the second signal from the network device to the terminal device according to the first forwarding power information; the relay device can forward the fourth signal from the terminal device to the network device according to the first forwarding power information.
  • the specific process may refer to the description in S405 to S408 or other embodiments, which will not be described again here.
  • This application can also be applied to multi-site transmission mode or multi-carrier transmission mode scenarios, which will be described in detail below.
  • FIG. 11 it is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method includes:
  • the relay device determines K1 pieces of measurement information based on K1 first signals, where K1 is an integer greater than 0.
  • the K1 first signals come from at least one network device, and each network device sends at least one first signal.
  • one network device corresponds to one TRP; for another example, one network device corresponds to one base station, and one base station corresponds to one or more TRPs.
  • the network device may send the first signal through one or more TRPs. For example, when this application is applied in a multi-site transmission mode scenario, it can be applied to this implementation method.
  • the network device may configure the parameters required to determine the first forwarding power information, such as the preconfigured forwarding power of the first signal and the first signal bandwidth W, to the relay device.
  • the specific configuration process is not limited by this application.
  • multiple network devices may also refer to: multiple network transmission beams, or multiple resource sets, or multiple resource pools, or multiple carrier components (CCs), or multiple community. That is, the above concepts are equivalent.
  • the K1 first signals come from the terminal device.
  • the terminal device For details, please refer to the description in the previous process.
  • the K1 first signals are frequency division multiplexed.
  • the K1 first signals are spatially multiplexed.
  • the K1 first signals are co-frequency multiplexed; that is, the two signals are at the same frequency, or have partial frequency positions overlapping, or the frequency positions of the two signals may be the same.
  • one network device may indicate to the relay device the configuration information of K1 first signals, or each network device may indicate to the relay device the configuration information of the first signals sent by the network device.
  • the configuration information is used to indicate the transmission power, time-frequency resource location, beam and other information of the first signal.
  • the configuration information of the first signal can be carried in any one of PBCH, RMSI, SIB1, SIB2, SIB3, MAC-CE, DCI, RRC signaling and system information.
  • K1 signals may determine Kx measurement information, where Kx is different from K1.
  • Kx is different from K1.
  • one signal corresponds to two measurement information, and multiple measurement information can be obtained by receiving multiple times on one signal; or different ports of a signal are sent simultaneously through multiple beams, and different measurement values corresponding to different beams; or simultaneously Send signals at different frequency positions, and the signals at different frequency positions correspond to different measurement values.
  • This approach can be used in all embodiments throughout the text.
  • This implementation method can also be applied to the method flows in Figures 4 to 8.
  • At least one network device includes a first network device and a second network device
  • the first network device and the second network device each correspond to a reference signal resource set
  • each reference signal resource set includes at least one reference signal resource set.
  • Each network device may send the first signal through the reference signal resource in the reference signal resource set.
  • the relay device includes
  • the relay device can select reasonable partial beams (for example, X1) to receive K1 signals, thereby reducing the number of required first signals.
  • X1 backhaul side beams represent the beams selected by the relay for measurement from the X2 backhaul side beams, where X1 may be smaller than X2.
  • This implementation method can also be applied to the method flows in Figures 4 to 8.
  • a network device includes X3 beams, and the network device sends at least X1 first signals through each beam, then the network device sends at least X1*X3 first signals, and the relay device uses Each relay return side beam in the transmission side beam receives at least X3 first signals from the network device.
  • each of the K1 first signals is transmitted through a carrier, and the K1 first signals correspond to at least one carrier.
  • K1 first signals correspond to K1 carriers, and each of the K1 first signals is transmitted through one of the K1 carriers.
  • the carrier may also be called a component carrier (CC), which is referred to as a carrier in this application; the relay device may support M carriers, and M is greater than or equal to K1.
  • CC component carrier
  • this application is applied in a multi-carrier transmission mode scenario, it can be applied to this implementation.
  • the K1 first signals may come from one or more network devices, which is not limited by this application.
  • each of the K1 measurement information corresponds to a first signal among the K1 first signals, that is, one measurement information is determined based on a first signal.
  • the specific content of the measurement information please refer to the description in S402. I won’t go into details here.
  • the K1 measurement information can be divided into multiple groups, each group including at least one piece of measurement information.
  • the measurement information included in each group of measurement information can be the first TRP sent by the same network device or the same network device. The signal is confirmed.
  • the measurement information included in each set of measurement information may be determined based on the first signal received by the relay device using the same beam.
  • the measurement information is RSRP. Taking 2 TRPs as an example, the K1 measurement information can be as shown in Table 1.
  • RS(i,j) represents the index (or resource index) of the relay device using beam #j to receive the first signal from TRPi, and the relay device uses beam #j to receive the first signal
  • RSRP(i,j) Indicates the measurement information corresponding to the first signal, i ⁇ 0,1 ⁇ ,j ⁇ 0,1,2,... ⁇ .
  • the K1 measurement information can be as shown in Table 2.
  • RSi indicates that the network device sends the first signal through the i-th TRP
  • RSRP(i,j) indicates that the relay device uses beam #j to receive the measurement information corresponding to the first signal from RSi, i ⁇ 0,1 ⁇ ,j ⁇ 0,1,2,... ⁇ .
  • the measurement information is RSRP.
  • the K1 measurement information can be as shown in Table 3.
  • the network side can configure a reference signal resource set for each TRP, RS(i,j) represents the index (or resource index) of the relay device using beam #j to receive the first signal from the reference signal resource set i, RSRP (i,j) represents the measurement information corresponding to the first signal, i ⁇ 0,1 ⁇ , j ⁇ 0,1,2,... ⁇ .
  • the measurement information is RSRP.
  • the K1 measurement information can be as shown in Table 4.
  • the network side can configure a reference signal resource set for each TRP, RS(i,j) represents the index (or resource index) of the relay device using beam #j to receive the first signal from the reference signal resource set i, RSRP (i,j) represents the measurement information corresponding to the first signal, i ⁇ 0,1 ⁇ , j ⁇ 0,1,2,... ⁇ .
  • One packet represents the measurement information of multiple resources (or TRP signals) that can be received by the relay device at the same time, that is, one packet corresponds to the beam of one relay device.
  • the K1 measurement information can also be sorted according to the size of the measurement information, for example, as shown in Table 5.
  • the network side can configure a reference signal resource set for each TRP.
  • Group #0 and the measurement information corresponding to the first set of measurement results are all the first signal RSRPs received by the relay device.
  • the maximum value in; group #0, the measurement information corresponding to the second group of measurement results (i.e. RSRP(0,0)) is the second largest value among all first signal RSRPs received by the relay device, and so on.
  • the columns corresponding to the first set of measurement information are signals belonging to the same reference signal resource set (or sent by the same TRP); the columns corresponding to the second set of measurement information are signals belonging to another reference signal resource set (or sent by the same TRP). Or another TRP sent) signal.
  • the measurement information in the same column can be arranged in descending order from large to small, or can also be sorted from small to large, which is not limited by this application.
  • the K1 measurement information can also be sorted according to the size of the measurement information, for example, as shown in Table 6.
  • the third column is the comprehensive measurement information group.
  • each comprehensive measurement information in the comprehensive measurement information group is the sum of all measurement information in a row corresponding to the comprehensive measurement information.
  • a column of comprehensive measurement information group sequence can be added to each table according to the method in Table 6, which is not limited in this application.
  • the measurement information in all tables in this application can meet preset conditions.
  • the measurement information is RSRP
  • the measured RSRP is greater than a threshold value.
  • the threshold value may be preset, or determined by the relay based on network device configuration information, or configured by the network device.
  • the relay device may send to the network device measurement information determined based on the second signal sent by the network device.
  • the relay device may send K1 pieces of measurement information to one of at least one network device. This implementation manner will be described below as an example, and the same can be said for other situations.
  • the relay device sends K1 pieces of measurement information to the first network device.
  • the first network device is one of the at least one network device.
  • This application does not limit how the relay device sends the K1 pieces of measurement information.
  • the relay device directly reports each measurement information to the first network device.
  • the relay device sends first measurement information and K1-1 relative measurement information to the first network device, where the first measurement information is one measurement information among K1 pieces of measurement information, and K1-1 relative measurement information.
  • Each relative measurement information in the measurement information is the difference between one piece of measurement information except the first measurement information among the K1 pieces of measurement information and the first measurement information.
  • the first network device can determine the K1 pieces of measurement information based on the K1-1 pieces of relative measurement information and the first measurement information.
  • the first measurement information may be any measurement information among the K1 pieces of measurement information.
  • the first measurement information may be the largest measurement information among the K1 pieces of measurement information, or it may be the smallest measurement information among the K1 pieces of measurement information.
  • the relay device can divide the K1 measurement information into multiple groups. For each group of measurement information, the relay device sends a first measurement information to the first network device. For each group of measurement information, For other measurement information, the relay device sends relative measurement information of the measurement information, that is, the difference between the measurement information and the first measurement information. For example, for Table 1, each row in Table 1 can be regarded as a group. The relay device reports the first measurement information in each row to the first network device. The relay device reports other measurement information in each row. The difference between this measurement and the first measurement in the row.
  • the quantization step size of the first measurement information reported by the relay device may be different from the quantization step size of the relative measurement information.
  • the quantization step size of the first measurement information is 2dB
  • the quantization step size of the relative measurement information is 1dB (or 0.5dB). Reporting relative measurement information with a relatively small quantization step size can report measurement information more accurately, thereby facilitating subsequent gain/power control.
  • the relay device may report only part of the K1 measurement information.
  • the relay device divides K1 pieces of measurement information into multiple groups, and the relay device can report only one or more groups of measurement information.
  • the relay device can only report one or more columns of measurement information.
  • the relay device determines K3 comprehensive measurement information based on K1 measurement information, for example, one comprehensive measurement information is the sum of one or more measurement information, the relay device can send K3 comprehensive measurement information to the first network device. .
  • the relay device can send the comprehensive measurement information in the comprehensive measurement information group. In this case, the relay device may not send K1 pieces of measurement information.
  • Reporting method three the relay device divides the K1 measurement information into multiple groups, and the relay device can report only one or several groups of measurement information in each group of measurement information. For example, with reference to Table 6, each column of measurement information is divided into a group, and the relay device can send at least one measurement information in the second column, at least one measurement information in the third column, and at least one measurement information in the fourth column.
  • the relay device reports the measurement information may be determined based on the instruction information of the first network device. For example, the first network device sends measurement reporting instruction information to the relay device, and the measurement reporting instruction information is used to instruct the relay device to report the measurement information using at least one reporting method among reporting method one, reporting method two, and reporting method three.
  • the measurement reporting indication information may also be used to indicate the amount of measurement information reported by the relay device, or the measurement reporting indication information may also be used to indicate the amount of measurement information reported by the relay device using each reporting method.
  • the measurement information reported may be the same, so only one of the reporting methods can be used. For example, only measurement information is reported according to reporting method one, or measurement information is reported only according to reporting method two.
  • the first network device determines K2 pieces of first forwarding power information based on K1 pieces of measurement information, and sends K2 pieces of first forwarding power information to the relay device.
  • each of the K2 first forwarding power information is determined based on at least one measurement information, and K2 is greater than or equal to K1.
  • a first forwarding power information is determined based on a piece of measurement information.
  • the measurement information corresponding to the first signal includes the received power of the first signal, then the i-th first signal among the K1 first signals corresponds to
  • P Txi represents the preconfigured forwarding power of the i-th first signal.
  • the forwarding power can be configured by the first network device or any network device, or can be configured by the network device that sends the first signal, i ⁇ 0 ,1,2,... ⁇
  • P Rxi represents the received power of the i-th first signal
  • Gi represents the first forwarding power information corresponding to the i-th first signal
  • W represents the bandwidth corresponding to the i-th first signal
  • the measurement information corresponding to the first signal includes the path loss and received power of the first signal, then the i-th of the K1 first signals
  • P 0i represents the preconfigured target received power of the i-th first signal.
  • the target received power can be configured by the first network device or any network device, or can also be configured by the network device that sends the first signal, i ⁇ ⁇ 0,1,2,... ⁇ , P Rxi represents the received power of the i-th first signal, Gi represents the first forwarding power information corresponding to the i-th first signal, and PLi represents the path loss of the i-th first signal .
  • Implementation manner two a first forwarding power information is determined based on multiple measurement information.
  • the forwarding power information is determined based on two pieces of measurement information. Other situations can be deduced in the same way and will not be described again. Assume that The forwarding power information is determined based on measurement information one and measurement information two.
  • the first signal corresponding to measurement information one and the first signal corresponding to measurement information two come from different network devices, or the first signal corresponding to measurement information one and measurement information two
  • the corresponding first signal comes from the same network device, but from a different TRP.
  • forwarding power information one is determined based on measurement information one, and forwarding power information two is determined based on measurement information two, then the first forwarding power information determined based on measurement information one and measurement information two can be determined based on forwarding power information one. and the second forwarding power information is determined.
  • the first forwarding power information satisfies the following form:
  • G represents the first forwarding power information
  • G0 represents the forwarding power information one
  • G1 represents the forwarding power information two
  • max() represents the maximum value operation
  • min() represents the minimum value operation
  • weighting factors a0 and a1 offset Factors b0 and b1 can be predefined or configured by the network device. Further, the weighting factors a0 and a1 and the offset factors b0 and b1 can reflect differences in scheduling bandwidths or signal priorities of different first signals.
  • the relay device uses different beams to receive the first signal corresponding to measurement information one and the first signal corresponding to measurement information two, or the relay device uses the same beam to receive the first signal corresponding to measurement information one and the first signal corresponding to measurement information two. Measure the first signal corresponding to information two.
  • the first signal corresponding to measurement information one and the first signal corresponding to measurement information two are scheduled simultaneously by the first network device.
  • the first signal corresponding to measurement information one and the first signal corresponding to measurement information two are frequency division multiplexed.
  • the first signal corresponding to measurement information one and the first signal corresponding to measurement information two are space division multiplexed.
  • the first signal corresponding to measurement information one and the first signal corresponding to measurement information two are co-frequency multiplexed; that is, the two signals are located at the same frequency, or have partial frequency overlap, or two The frequency locations of the signals may be the same.
  • RSi-j represents the index (or resource index) of the relay device using beam #j to receive the first signal from network device i.
  • the relay device uses beam #j to receive the first signal.
  • RSRP(i,j) represents The measurement information corresponding to the first signal is i ⁇ 0,1,2,... ⁇ , j ⁇ 0,1,2,... ⁇ .
  • the first network device may also send part or all of the above corresponding relationship to the relay device. For example, the first network device indicates at least one of a first signal corresponding to each first forwarding power information, a beam for receiving the first signal, and a beam for transmitting the first signal.
  • the first network device may send K2 pieces of first forwarding power information through RRC signaling, or may send K2 pieces of first forwarding power information through other methods, which is not limited in this application.
  • the first network device may also update the K2 first forwarding power information, for example, update the value of one or more first forwarding power information in the K2 first forwarding power information.
  • the first network device may send the updated one or more first forwarding power information through MAC CE, or may update through other methods, which is not limited in this application.
  • the first network device may also send first information to the relay device, where the first information is used to indicate the power offset value.
  • the first information may specifically indicate that the relay device is in time slot k. , perform signal forwarding based on the power offset value.
  • the first information may be transmitted through DCI, which is not limited in this application.
  • the first network device may also send second information to the relay device, where the second information is used to indicate the power offset value corresponding to each of the K2 first forwarding power information.
  • the second information is used to indicate the power offset value corresponding to each of the K2 first forwarding power information.
  • the corresponding relationship between the first forwarding power information and the power offset value may be as shown in Expression 8.
  • the power offset value may correspond to a signal type, and the signal type includes but is not limited to broadcast signals, data signals, control signals, etc.
  • the relay device forwards a signal, it can determine whether to use the power offset value based on the signal type of the signal to be forwarded.
  • the power offset value corresponds to a broadcast signal, and the broadcast signal includes but is not limited to SSB, PRACH, and SIB1.
  • the relay device forwards the broadcast signal, the power offset value corresponding to the first forwarding power information and the first forwarding power information is used. Forward the broadcast signal; when the relay device forwards the data signal or control signal, it forwards the data signal or control signal according to the first forwarding power information.
  • the relay device can also determine the K2 first forwarding power information. In this case, S1102 and S1103 can no longer be performed, but the relay device determines the K2 first forwarding information according to the method described in S1103. Power information, the specific process will not be described again.
  • the relay device receives the second signal from the first network device, and forwards the second signal to the terminal device according to the second forwarding power information.
  • S1105 The relay device receives the third signal from the second network device, and forwards the third signal to the terminal device according to the third forwarding power information.
  • the second network device is one of the at least one network device.
  • the second forwarding power information and the third forwarding power information are the forwarding power information among the K2 pieces of first forwarding power information.
  • the terminal device in S1104 and the terminal device in S1105 may be the same terminal device or different terminal devices, and this application is not limited to this.
  • the relationship between the second forwarding power information and the third forwarding power information may exist in the following two situations:
  • Case 1 There is a correlation between the second forwarding power information used by the relay device to forward the second signal and the third forwarding power information used to forward the third signal.
  • the second forwarding power information and the third forwarding power information are equal. (or the same forwarding power information), the second forwarding power information or the third forwarding power information is based on the measurement information corresponding to the first signal from the first network device and the measurement information corresponding to the first signal from the second network device. definite.
  • G represents the second forwarding power information or the third forwarding power information
  • G0 represents the forwarding power information one determined based on the measurement information one
  • G1 represents the forwarding power information two determined based on the measurement information two
  • max() represents the maximum value operation
  • min() represents the minimum value operation
  • the weighting factors a0 and a1 and the offset factors b0 and b1 can be predefined or configured by the network device.
  • the second forwarding power information or the third forwarding power information is associated with at least one of the following: the beam used by the relay device to receive the second signal, which may be called beam one; the relay device forwards the second signal The beam used by the signal may be called beam two; the beam used by the first network device to send the second signal may be called beam three; the beam used by the relay device to receive the third signal may be called beam four; middle The beam used by the relay device to forward the third signal may be called beam five; the beam used by the second network device to send the third signal may be called beam six.
  • the first signal from the first network device is called signal one
  • the measurement information determined based on signal one is measurement information one
  • the forwarding power information determined based on measurement information one is forwarding power information one
  • from the second network The first signal of the device is called signal two
  • the measurement information determined based on signal two is measurement information two
  • the forwarding power information determined based on measurement information two is forwarding power information two. If the second forwarding power information or the third forwarding power information is determined based on forwarding power information one and forwarding power information two, then signal one can satisfy at least one of the following:
  • the relay device uses beam one to receive signal one; the relay device uses the beam corresponding to beam two to receive signal one, and the beam corresponding to beam two is pre-agreed; the first network device uses beam three to send signal one.
  • signal two satisfies at least one of the following: the relay device uses beam four to receive signal two; the relay device uses the beam corresponding to beam five to receive signal two, and the beam corresponding to beam five is pre-agreed; the second network device uses Beam six sends signal two.
  • the first network device sends multiple first signals and the second network device also sends multiple first signals.
  • Measurement information one and measurement information two are based on the multiple first signals of the first network device. signal and the best measurement result obtained from the plurality of first signals from the second network device.
  • the second forwarding power information used by the relay device to forward the second signal and the third forwarding power information used to forward the third signal are independent of each other, that is, the second forwarding power information is based on the information from the first network device.
  • the third forwarding power information is determined based on the measurement information corresponding to the first signal from the second network device.
  • the second forwarding power information and the third forwarding power information are independent of each other, how to determine the second forwarding power information will be described separately below. The following description also applies to the third forwarding power information, and the description will not be repeated subsequently.
  • the relay device uses a relay return side beam to receive the second signal, and uses a relay access side beam to forward the second signal.
  • the relay return side beam for the relay device to receive the second signal and/or the relay access side beam for forwarding the second signal can be configured by the network device or independently determined by the relay device. This application does not limited. If configured by the network device, the network device may instruct the relay device through the control information to receive the relay return side beam of the second signal and the relay access side beam used to forward the second signal. The above description also applies to the third signal and will not be repeated here.
  • how the relay device determines one first forwarding power information as the second forwarding power information from the K2 first forwarding power information may have multiple implementations, and this application is not limited to this.
  • the relay device uses the first forwarding power information determined based on the measurement information corresponding to the first signal from the first network device among the K2 first forwarding power information as the second forwarding power information. That is, the second forwarding power information is determined based on the measurement information corresponding to the first signal from the first network device among the K2 pieces of first forwarding power information.
  • the measurement information corresponding to the second forwarding power information may be the maximum value of the plurality of measurement information corresponding to the plurality of first signals from the first network device.
  • the second forwarding power information used by the relay device to forward the second signal the beam used by the relay device to receive the second signal, the beam used by the relay device to forward the second signal, the first network There is an association relationship between at least one of the beam used by the device to send the second signal and the beam used by the first network device to send the first signal.
  • the relay device determines a first forwarding power from K2 first forwarding power information based on the first beam. information as the second forwarding power information.
  • the relay device uses the first forwarding power information determined based on the measurement information corresponding to the specific first signal among the K2 first forwarding power information as the second forwarding power information; wherein the specific first signal comes from the A network device, and the specific first signal satisfies at least one of the following: the relay device uses a first beam to receive the first signal; the relay device uses a beam corresponding to the second beam to receive the first signal, and the second beam corresponds to The beams are pre-agreed.
  • the corresponding relationship between the relay backhaul side beam and the relay access side beam of the relay device may be established in advance. If the relay device uses the first beam (at this time, the first beam is the relay access side beam) to send the second signal, the relay device will use the K2 first forwarding power information to receive the second signal based on the first beam received by the second beam. The first forwarding power information determined by the measurement information corresponding to the signal is used as the second forwarding power information; wherein the second beam is the relay return side beam, and there is a corresponding relationship between the second beam and the first beam.
  • the network device uses the third beam to send the second signal, and the relay device uses the second beam to forward the second signal. Then the relay device uses the third beam and/or the second beam to obtain the K2 first forwarding power information. Determine a first forwarding power information as a second forwarding Power information.
  • the relay device uses the first forwarding power information determined based on the measurement information corresponding to the specific first signal among the K2 first forwarding power information as the second forwarding power information; wherein the specific first signal comes from the A network device, and the specific first signal satisfies at least one of the following: the network device uses a third beam to send the first signal; the relay device uses a beam corresponding to the second beam to receive the first signal, and the second beam corresponds to The beams are pre-agreed.
  • the network device uses two reference signal resource sets (respectively, a first reference signal resource set and a second reference signal resource set) to send the first signal.
  • Each reference signal set corresponds to a TRP.
  • These two reference signal resources The number of reference signal resources included in the sets may be the same or different.
  • the following description takes the two reference signal resource sets both including X reference signal resources as an example. This does not represent a limit on the number of resources included in the reference signal resource set.
  • the X first signals sent by the first network device alone in time sequence using the first reference signal resource set are RS(0,0), RS(0,1), and RS(0,2). ⁇ RS(0,X-1);
  • the relay device uses beam #0 to beam #(X-1) to receive the above-mentioned X first signals. Assume that among the X pieces of measurement information obtained by the relay device based on the X first signals, the measurement information corresponding to RS(0,0) is the largest and corresponds to beam #0 of the relay device.
  • the X first signals sent by the second network device in time sequence using the second reference signal resource set alone are RS(1,0), RS(1,1), RS(1,2) ⁇ RS(1 ,X-1); the relay equipment uses beam #0 to beam #(X-1) to receive the above-mentioned X first signals. Assume that among the X pieces of measurement information obtained by the relay device based on the X first signals, the measurement information corresponding to RS(1,1) is the largest and corresponds to beam #1 of the relay device.
  • the measurement information obtained by the relay device based on RS(0,0) and RS(1,0) is the largest, corresponding to Beam #0 of the relay device (actually, it can be a beam other than beam #0 and beam #1, without limitation).
  • the relay device obtains the The measurement information is the largest and corresponds to beam #2 of the relay device (actually, it can be any beam from beam #0 to beam #(X-1), without limitation).
  • beam #0, beam #1, RS(0,0), RS(1,1) are only examples, and must be determined based on actual measurement results in practice.
  • beam #0, beam #1, RS(0,0), and RS(1,1) may be determined according to preset conditions. For example, it is only necessary that the signal quality measured by the relay device exceeds the threshold.
  • the threshold value may be preset or determined based on network control information.
  • the relay device may determine the first forwarding power information based on the measurement information corresponding to RS(0,0) (or RS(0,1)) as the second forwarding power information, so as to determine the first forwarding power information based on the second forwarding power information. Forward the second signal.
  • the relay device may use the first forwarding power information determined according to the measurement information corresponding to RS(1,1) (or RS(1,1)) as the second forwarding power information, thereby forwarding the first forwarding power information according to the second forwarding power information. Two signals.
  • the network device When the second signal received by the relay device comes from TRP0 and TRP1 of the network device, that is, the network device sends two second signals at the same time, respectively through TRP0 and TRP1. If the relay device uses beam #0 to receive the second signal (or The second signal is sent simultaneously through two TRPs), and the relay device can transmit the measurement information corresponding to RS(0,0) (or, RS(0,0)) and RS(1,0) (or, RS(1 ,0)) The first forwarding power information determined by the corresponding measurement information is used as the second forwarding power information, so that the second signal is forwarded according to the second forwarding power information.
  • the relay device When the relay device receives the second signal from TRP0 and TRP1 of the network device, that is, the network device sends two second signals at the same time, respectively through TRP0 and TRP1. If the relay device uses beam #2 to receive the second signal, The relay device may determine the first value based on the measurement information corresponding to RS(0,2) (or RS(0,2)) and the measurement information corresponding to RS(1,2) (or RS(1,2)). The forwarding power information is used as the second forwarding power information, so that the second signal is forwarded according to the second forwarding power information.
  • the relay device if the relay device uses the first beam to forward the second signal, uses the second beam to receive the second signal, and the first network device uses the third beam to send the second signal, the relay device will forward K2 first signals.
  • the first forwarding power information determined according to the measurement information corresponding to the specific first signal is used as the second forwarding power information; wherein the specific first signal comes from the first network device, and the specific first signal satisfies At least one of the following: the relay device uses a second beam to receive the first signal; the first network device uses a third beam to send the first signal; the relay device uses a beam corresponding to the first beam to receive the first signal, the first The beam corresponding to the beam is pre-agreed.
  • the network device uses two reference signal resource sets (respectively, a first reference signal resource set and a second reference signal resource set) to send the first signal.
  • Each reference signal set corresponds to a TRP.
  • These two reference signal resources The number of reference signal resources included in the set can be the same or different. The following takes the example that both reference signal resource sets include X reference signal resources. Note that it does not represent a limit on the number of resources included in the reference signal resource set.
  • the network device separately uses each beam to send the X first signals in time sequence through the first reference signal resource set, which are RS(0,0), RS(0,1), RS(0,2) ⁇ RS (0,X-1); For the X first signals sent by each beam, the relay device uses beam #0 to beam #(X-1) to receive the X first signals.
  • the network device sends Y sets of reference signal resources, for a total of XY first signals.
  • the measurement information corresponding to the first signal corresponding to beam #0 of the relay device and corresponding to beam #A of the network device is the largest.
  • the network device uses each beam separately to send the X first signals in time sequence through the second reference signal resource set, which are RS(1,0), RS(1,1), RS(1,2) ⁇ RS (1,X-1);
  • the relay device uses beam #0 to beam #(X-1) to receive the X first signals. It is assumed that among the XY pieces of measurement information obtained by the relay device based on the XY pieces of first signals, the measurement information corresponding to the first signal corresponding to beam #1 of the relay device and corresponding to beam #B of the network device is the largest.
  • the measurement information obtained by the relay device based on beam #0 is the largest.
  • the relay device uses beam #0 to receive the second signal, and if the network device uses beam #A to send the second signal, the relay device can transmit the second signal according to the corresponding relay device.
  • Beam #0, and the first forwarding power information determined by the measurement information corresponding to the first signal of beam #A of the network device is used as the second forwarding power information, so that the second signal is forwarded according to the second forwarding power information.
  • the relay device When the second signal received by the relay device comes from TRP0 and TRP1 of the first network device, that is, the first network device sends two second signals (or the second signal is sent simultaneously through two TRPs), which are sent through TRP0 and TRP1 respectively.
  • the relay device can use beam #0 corresponding to the relay device, and the corresponding first network device
  • the measurement information corresponding to the first signal of beam #A of a network device and the first forwarding power information determined by the measurement information corresponding to the beam #0 of the relay device and corresponding to the first signal of beam #B of the first network device as the second forwarding power information, thereby forwarding the second signal according to the second forwarding power information.
  • the measurement information of K1 first signals in K1 carriers can be used for signal forwarding in Q carriers, K1 is less than or equal to Q, and Q is the relay device The maximum number of carriers supported.
  • the relay device may determine the second forwarding power information based on the number of carriers occupied by the second signal and the K1 pieces of first forwarding power information.
  • G1 represents the first forwarding power information determined based on the first signal
  • G represents the second forwarding power information
  • C represents the number of carriers occupied by the second signal.
  • Implementation method 2 There is a preset corresponding relationship between the K1 first forwarding power information and the Q carriers.
  • the corresponding relationship may be preset or configured by the first network device.
  • the indices of the K first forwarding power information are ⁇ PC#(0), PC#(1),...,PC#(K1-1) ⁇
  • the indices of the Q carriers are ⁇ c_0,c_1 respectively.
  • the corresponding relationship between K1 first forwarding power information and Q carriers can be as shown in Expression 9.
  • one first forwarding power information may correspond to one or more carriers, 0 ⁇ K q ⁇ K1-1, 0 ⁇ q ⁇ Q-1.
  • the second forwarding power information for forwarding the second signal can be determined based on the correspondence between K1 first forwarding power information and Q carriers, that is, the second forwarding power information forwarded by the second signal corresponds to the carrier occupied by the second signal.
  • the first forwarding power information is used as the second forwarding power information.
  • the second forwarding power information of the second signal forwarded by the relay device satisfies the following form:
  • G represents the second forwarding power information
  • C represents the number of carriers occupied by the second signal
  • Gi represents the first forwarding power information corresponding to the i-th carrier occupied by the second signal.
  • the index of the carrier occupied by the second signal is ⁇ 0, 1, 2 ⁇
  • the corresponding first forwarding power information is G0, G1, and G2 respectively.
  • the second forwarding power information used by the relay device to forward the second signal, the beam used by the relay device to receive the second signal, and the beam used by the relay device to forward the second signal At least one of the beams has a correlation relationship.
  • the first network device sends a first signal through two carriers (carrier 0 and carrier 1).
  • the number of first signals sent by the first network device through these two carriers may be the same or different.
  • the X first signals sent by the first network device in time sequence through carrier 0 are RS(0,0), RS(0,1), RS(0,2) ⁇ RS( 0,X-1); the relay device uses beam #0 to beam #(X-1) to receive the above-mentioned X first signals.
  • the measurement information corresponding to RS(0,0) is the largest and corresponds to beam #0 of the relay device.
  • the X first signals sent by the first network device in time sequence through carrier 1 are RS(1,0), RS(1,1), RS(1,2)...RS(1,X-1) ;
  • the relay equipment uses beam #0 to beam #(X-1) to receive the above-mentioned X first signals. Assume that among the X pieces of measurement information obtained by the relay device based on the X first signals, the measurement information corresponding to RS(1,1) is the largest and corresponds to beam #1 of the relay device.
  • the measurement information obtained by the relay device based on RS(0,0) and RS(1,0) is the largest, corresponding to the beam of the relay device #0.
  • the relay device may use beam #0 to forward the second signal. Further, the relay device may use the first forwarding power information determined based on the measurement information corresponding to RS(0,0) as the second forwarding power information, so as to forward the second signal based on the second forwarding power information.
  • the relay device when the second signal received by the relay device corresponds to carrier 1, if the relay device uses beam #1 to forward the second signal, the relay device can forward the first signal determined based on the measurement information corresponding to RS(1,1).
  • the power information is used as the second forwarding power information, so that the second signal is forwarded according to the second forwarding power information.
  • the relay device When the second signal received by the relay device corresponds to carrier 0 and carrier 1, that is, the first network device sends two second signals, respectively through carrier 0 and carrier 1. If the relay device uses beam #0 to receive the second signal , the relay device may use the first forwarding power information determined based on the measurement information corresponding to RS(0,0) and the measurement information corresponding to RS(1,0) as the second forwarding power information, so as to use the second forwarding power information to Forward the second signal.
  • the second forwarding power information used by the relay device to forward the second signal can also be combined with the beam used by the relay device to receive the second signal and the relay device forwarding the second signal.
  • the first network device sends a first signal through two carriers (carrier 0 and carrier 1).
  • the number of first signals sent by the first network device through these two carriers may be the same or different.
  • the number of first signals sent by the two carriers is the same as an example, and does not represent a limitation on the number of first signals.
  • the first network device includes a total of Y beams.
  • the first network device uses each beam to send X first signals in time sequence through carrier 0, which are RS(0,0), RS(0, 1), RS(0,2) ⁇ RS(0,X-1);
  • the relay device respectively adopts beam #0 to beam #( X-1) Receive the above-mentioned X first signals. It is assumed that among the XY pieces of measurement information obtained by the relay device based on the XY pieces of first signals, the measurement information corresponding to the first signal corresponding to beam #0 of the relay device and corresponding to beam #A of the first network device is the largest.
  • the X first signals sent by the first network device in time sequence through carrier 1 using each beam are respectively RS(1,0), RS(1,1), RS(1,2) ⁇ RS(1, X-1);
  • the relay device uses beam #0 to beam #(X-1) to receive the X first signals. It is assumed that among the XY pieces of measurement information obtained by the relay device based on the XY pieces of first signals, the measurement information corresponding to the first signal corresponding to beam #0 of the relay device and corresponding to beam #B of the first network device is the largest.
  • the first network device uses carrier 0 and carrier 1 to send the above 2XY first signals at the same time, among the 2XY measurement information obtained by the relay device, the measurement information obtained according to RS(0,0) and RS(1,0) Maximum, where the RS(0,0) corresponds to the beam #0 of the relay device and corresponds to the beam #A of the first network device; the RS(1,0) corresponds to the beam #0 of the relay device and corresponds to the first network device Beam #B for network equipment.
  • the relay device When the second signal received by the relay device corresponds to carrier 0, if the relay device uses beam #0 to receive the second signal, and if the first network device uses beam #A to send the second signal, the relay device can transmit the second signal according to the corresponding relay device. of beam #0, and the first forwarding power information determined by the measurement information corresponding to the first signal of beam #A of the first network device is used as the second forwarding power information, so that the second signal is forwarded according to the second forwarding power information.
  • the first network device When the second signal received by the relay device corresponds to carrier 0 and carrier 1, that is, the first network device sends two second signals, respectively through carrier 0 and carrier 1. If the relay device uses beam #0 to receive the second signal . Further, if the first network device uses beam #A and beam #B to send the second signal, the relay device can send the first signal based on beam #0 corresponding to the relay device and corresponding to beam #A of the first network device. The first forwarding power information determined by the corresponding measurement information and the measurement information corresponding to the first signal corresponding to the beam #0 of the relay device and the beam #B of the first network device is used as the second forwarding power information, so that according to the first forwarding power information The second forwarding power information forwards the second signal.
  • the relay device receives the fourth signal from the terminal device, and forwards the fourth signal to the first network device according to the fourth forwarding power information, where the fourth forwarding power information is one of the K2 first forwarding power informations. Forward power information.
  • the process of the relay device forwarding the fourth signal may be similar to the process of the relay device forwarding the second signal.
  • the fourth forwarding power information may be determined in the same manner as the second forwarding power information is determined. Specifically, Refer to the description in S1104, which will not be described again here.
  • the network device or terminal device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in various embodiments of the present application can be integrated into a processor, or can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • an embodiment of the present application also provides a communication device for realizing the functions of the network device or the relay device in the above method.
  • the device may be a software module or a system on a chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1600 may include: a processing unit 1601 and a communication unit 1602.
  • the communication unit may also be called a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the steps of sending and receiving by the network device or relay device in the above method embodiment.
  • the communication unit may also be called an interface circuit, a transceiver, a transceiver device, etc.
  • the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
  • the device used to implement the receiving function in the communication unit 1602 can be regarded as a receiving unit
  • the device used to implement the sending function in the communication unit 1602 can be regarded as a sending unit, that is, the communication unit 1602 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, an interface circuit, or a transceiver circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • the processing unit is configured to determine a plurality of measurement information based on a plurality of first signals, and each measurement information in the plurality of measurement information corresponds to a first signal in the plurality of first signals;
  • a communication unit configured to send a plurality of measurement information to the first network device and receive forwarding power information from the first network device; the forwarding power information is determined based on one or more measurement information, and the forwarding power information is used by the relay device to forward from Signals from network equipment or terminal equipment.
  • the communication unit is configured to receive multiple measurement information from the relay device; each measurement information in the multiple measurement information corresponds to one first signal in the multiple first signals;
  • a processing unit configured to determine the forwarding power information based on multiple measurement information; the forwarding power information is determined based on multiple measurement information; the forwarding power information is used by the relay device to forward signals from network equipment or terminal equipment;
  • the communication unit is used to send forwarding power information to the relay device.
  • the communication unit is used to receive multiple first signals
  • a processing unit configured to determine a plurality of measurement information according to a plurality of first signals, each measurement information in the plurality of measurement information corresponding to a first signal in the plurality of first signals, and a first signal in the plurality of first signals.
  • the signal comes from one network device in at least one network device; the forwarding power information is determined based on multiple measurement information; the forwarding power information is determined based on one or more measurement information; the forwarding power information is used by the relay device to forward the signal from the network device or the terminal device.
  • the processing unit is configured to determine K1 pieces of measurement information based on K1 pieces of first signals. Each piece of measurement information in the K1 piece of measurement information corresponds to one of the K1 pieces of first signals. K1 is greater than 0. an integer;
  • a communication unit configured to send K1 pieces of measurement information to the first network device and receive K2 pieces of first forwarding power information from the first network device; each of the K2 pieces of first forwarding power information is based on a Or multiple measurement information determines that K2 is greater than or equal to K1.
  • the communication unit is used to receive K1 pieces of measurement information from the relay device; each of the K1 pieces of measurement information corresponds to one of the K1 first signals, and K1 is greater than 0. integer;
  • a processing unit configured to determine K2 first forwarding power information based on K1 pieces of measurement information; each of the K2 first forwarding power information is determined based on at least one piece of measurement information, and K2 is greater than or equal to K1; first The forwarding power information is used by the relay device to forward signals to the terminal device;
  • the communication unit is used to send K2 first forwarding power information to the relay device.
  • the processing unit 1601 and the communication unit 1602 can also perform other functions.
  • the processing unit 1601 and the communication unit 1602 can also perform other functions.
  • FIG. 17 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the device shown in FIG. 17 may be a hardware circuit implementation of the device shown in FIG. 16 .
  • the communication device can be adapted to the flow chart shown above to perform the functions of the relay device or network device in the above method embodiment.
  • FIG. 17 shows only the main components of the communication device.
  • the communication device 1700 includes a processor 1710 and an interface circuit 1720 .
  • the processor 1710 and the interface circuit 1720 are coupled to each other.
  • the interface circuit 1720 can be an interface circuit, a pin, an interface circuit or an input-output interface.
  • the communication device 1700 may also include a memory 1730 for storing instructions executed by the processor 1710 or input data required for the processor 1710 to run the instructions or data generated after the processor 1710 executes the instructions.
  • the processor 1710 is used to implement the functions of the above-mentioned processing unit 1601
  • the interface circuit 1720 is used to implement the functions of the above-mentioned communication unit 1602.
  • the relay device chip implements the functions of the relay device in the above method embodiment.
  • the relay device chip receives information from other modules (such as radio frequency modules or antennas) in the relay device, and the information is sent by the network device to the relay device; or, the relay device chip sends information to other modules (such as radio frequency modules or antennas) in the relay device.
  • the relay device chip sends information to other modules (such as radio frequency modules or antennas) in the relay device.
  • a radio frequency module or antenna sends information, which is sent by the relay device to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the relay device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules) or antenna) to send information, which is sent by the network device to the relay device.
  • processor in the embodiment of the present application may be a central processing unit, or other general-purpose processor, digital signal processor, application-specific integrated circuit or other programmable logic device, transistor logic device, hardware component or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the memory may be random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile phone hard drive or any other form of storage media well known in the art.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.

Abstract

本申请提供一种通信方法及装置,其中方法包括:中继设备根据多个第一信号确定多个测量信息,所述多个测量信息中的每个测量信息对应一个第一信号;所述中继设备向第一网络设备发送所述多个测量信息,并接收来自所述第一网络设备的转发功率信息;所述转发功率信息根据所述多个测量信息确定,所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号。通过上述方法,中继设备可以根据一个或多个测量信息确定转发功率信,从而实现根据转发功率信息转发来自网络设备或终端设备的信号,提高信号的覆盖范围。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年07月29日提交中国专利局、申请号为202210910193.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着移动通信网络的演进,为了降低基站与终端设备之间的路损,一种实现方式中,提出了借助中继设备,辅助基站和终端设备之间通信。中继设备有两个天线面板,其中一个用于与基站通信(称为回传侧),另一个用于与终端设备通信(称为接入侧)。一般情况下,只有一个用于接收信号,接收信号经过放大后,由另外一个天线转发信号。
现有系统中,仅考虑基站与终端设备之间直接进行管理,没有考虑加入中继设备之后,对中继设备放大增益(或转发功率)、通断等进行管理。因此在网络中存在中继设备的情况下,如何确定功率控制信息,使能中继设备的放大转发,是一个亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,用以解决在网络中存在中继设备的情况下,如何确定功率控制信息,使能中继设备的放大转发。
第一方面,本申请提供一种通信方法,该方法包括:中继设备根据多个第一信号确定多个测量信息,所述多个测量信息中的每个测量信息对应一个第一信号;所述中继设备向第一网络设备发送所述多个测量信息,并接收来自所述第一网络设备的转发功率信息;所述转发功率信息根据一个或多个测量信息确定,所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号。
通过上述方法,中继设备可以根据一个或多个测量信息确定转发功率信,从而实现根据转发功率信息转发来自网络设备或终端设备的信号,提高信号的覆盖范围。
一种实现方式中,多个第一信号来自至少一个网络设备,每个网络设备发送至少一个第一信号。第一网络设备为至少一个网络设备中的一个设备。
一种实现方式中,多个第一信号来自多个网络设备时,多个第一信号可以由多个网络设备同时发送,也可以由多个网络设备分时发送。
一种实现方式中,多个第一信号是至少一个网络设备同时调度的。
一种实现方式中,多个第一信号之间是频分复用的。
一种实现方式中,多个第一信号之间是空分复用的。
一种实现方式中,多个第一信号之间是同频复用的;即两个信号位于相同频率,或者有部分频率位置重叠,或者两个信号的频率位置可能相同。
一种实现方式中,该网络设备为第一网络设备或第二网络设备,也可以为第一网络设备或第二网络设备之外的任一网络设备。
一种实现方式中,该方法还包括:中继设备接收来自第一网络设备的第二信号,并根据转发功率信息将第二信号转发至终端设备;转发功率信息和中继设备接收第二信号所使用的传输方向、中继设备转发第二信号所使用的传输方向、第一网络设备发送第二信号所使用的传输方向中的至少一项存在关联关系。
通过上述方法,由于转发功率信息与上述至少一项关联,使得中继设备在转发信号时,使用的转发功率信息能够更接近实际需要的转发功率信息,提高转发效率。
一种实现方式中,该转发功率信息的具体如何确定,可以参考本申请实施例中确定第一转发功率信 息或第二转发功率信息的方法。
一种实现方式中,第二网络设备为至少一个网络设备中的一个设备,该方法还包括:中继设备接收来自第二网络设备的第三信号,并根据转发功率信息将第三信号转发至终端设备;转发功率信息和以下至少一项存在关联关系:
中继设备接收第二信号所使用的传输方向;中继设备转发第二信号所使用的传输方向;第一网络设备发送第二信号所使用的传输方向;中继设备接收第三信号所使用的传输方向;中继设备转发第三信号所使用的传输方向;第二网络设备发送第三信号所使用的传输方向。
通过上述方法,由于转发功率信息与上述至少一项关联,使得中继设备在多站点模式下转发信号时,能够使用更准确的转发功率信息,提高转发效率。
一种实现方式中,对于多个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的接收功率;多个第一信号中的第i个第一信号对应转发功率信息,转发功率信息满足以下任一形式:
PTxi=PRxi+Gi;
PTxi=PRxi+Gi+10log10W;
PTxi=PRxi+Gi+10log10W+10log10Por;
其中,PTxi表示第i个第一信号预配置的转发功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的转发功率信息,W表示第i个第一信号对应的带宽,Por表示第i个第一信号对应的端口数。
一种实现方式中,对于多个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的路损;多个第一信号中的第i个第一信号对应转发功率信息,转发功率信息满足以下形式:Gi=P0i+PLi-PRxi
其中,P0i表示第i个第一信号预配置的目标接收功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的转发功率信息,PLi表示第i个第一信号的路损。
一种实现方式中,该方法还包括:中继设备接收来自第一网络设备的第一信息,第一信息用于指示功率偏移值;中继设备根据转发功率信息将第二信号转发至终端设备,包括:
中继设备根据转发功率信息以及功率偏移值将第二信号转发至终端设备。
通过上述方法,通过为转发功率信息配置功率偏移值,可以实现对根据测量信息确定的转发功率信息进行调整,提高转发效率。
第二方面,本申请提供一种通信方法,该方法包括:第一网络设备接收来自中继设备的多个测量信息;多个测量信息中的每个测量信息对应多个第一信号中的一个第一信号;第一网络设备根据一个或多个测量信息确定转发功率信息;转发功率信息用于中继设备转发来自网络设备或终端设备的信号;第一网络设备向中继设备发送转发功率信息。
一种实现方式中,对于多个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的接收功率;多个第一信号中的第i个第一信号对应转发功率信息,转发功率信息满足以下任一形式:PTxi=PRxi+Gi;
PTxi=PRxi+Gi+10log10W;
PTxi=PRxi+Gi+10log10W+10log10Por;
其中,PTxi表示第i个第一信号预配置的转发功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的转发功率信息,W表示第i个第一信号对应的带宽,Por表示第i个第一信号对应的端口数。
一种实现方式中,对于多个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的路损;多个第一信号中的第i个第一信号对应转发功率信息,转发功率信息满足以下形式:Gi=P0i+PLi-PRxi
其中,P0i表示第i个第一信号预配置的目标接收功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的转发功率信息,PLi表示第i个第一信号的路损。
一种实现方式中,该方法还包括:第一网络设备向中继设备发送第一信息,第一信息用于指示转发功率信息对应的功率偏移值。
第三方面,本申请提供一种通信方法,该方法包括:中继设备根据多个第一信号确定多个测量信息,多个测量信息中的每个测量信息对应多个第一信号中的一个第一信号,多个第一信号中的一个第一信号 来自至少一个网络设备中的一个网络设备;中继设备根据多个测量信息确定转发功率信息;转发功率信息根据一个或多个测量信息确定;转发功率信息用于中继设备转发来自网络设备或终端设备的信号。
一种实现方式中,该方法还包括:中继设备接收来自网络设备的第二信号,并根据转发功率信息将第二信号转发至终端设备。
一种实现方式中,转发功率信息和中继设备接收第二信号所使用的传输方向、中继设备转发第二信号所使用的传输方向、第一网络设备发送第二信号所使用的传输方向中的至少一项存在关联关系。
一种实现方式中,该方法还包括:中继设备接收来自网络设备的第一信息,第一信息用于指示功率偏移值;根据转发功率信息将第二信号转发至终端设备,包括:中继设备根据转发功率信息以及功率偏移值将第二信号转发至终端设备。
一种实现方式中,对于多个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的接收功率;多个第一信号中的第i个第一信号对应转发功率信息,转发功率信息满足以下任一形式:
PTxi=PRxi+Gi;
PTxi=PRxi+Gi+10log10W;
PTxi=PRxi+Gi+10log10W+10log10Por;
其中,PTxi表示第i个第一信号预配置的转发功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的转发功率信息,W表示第i个第一信号对应的带宽,Por表示第i个第一信号对应的端口数。
一种实现方式中,对于多个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的路损;多个第一信号中的第i个第一信号对应转发功率信息,转发功率信息满足以下形式:Gi=P0i+PLi-PRxi
其中,P0i表示第i个第一信号预配置的目标接收功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的转发功率信息,PLi表示第i个第一信号的路损。
第四方面,本申请提供一种通信方法,该方法包括:中继设备根据K1个第一信号确定K1个测量信息,K1个测量信息中的每个测量信息对应K1个第一信号中的一个第一信号,K1为大于0的整数;中继设备向第一网络设备发送K1个测量信息,并接收来自第一网络设备的K2个第一转发功率信息;K2个第一转发功率信息中的每个第一转发功率信息根据一个或多个测量信息确定,K2大于或等于K1。
一种实现方式中,中继设备接收来自第一网络设备的第二信号,并根据第二转发功率信息将第二信号转发至终端设备,第二转发功率信息为K2个第一转发功率信息中的一个第一转发功率信息。
一种实现方式中,K1个第一信号来自至少一个网络设备,第一网络设备为至少一个网络设备中的一个;第二转发功率信息为K2个第一转发功率信息中,根据来自第一网络设备的第一信号对应的测量信息确定的。
一种实现方式中,第二转发功率信息和中继设备接收第二信号所使用的传输方向、中继设备转发第二信号所使用的传输方向、第一网络设备发送第二信号所使用的传输方向中的至少一项存在关联关系。
一种实现方式中,该方法还包括:中继设备接收来自第二网络设备的第三信号,并根据第三转发功率信息将第三信号转发至终端设备,第三转发功率信息为K2个第一转发功率信息中的一个第一转发功率信息。
一种实现方式中,第二转发功率信息和第三转发功率信息为同一个转发功率信息,第二转发功率信息和以下至少一项存在关联关系:中继设备接收第二信号所使用的传输方向;中继设备转发第二信号所使用的传输方向;第一网络设备发送第二信号所使用的传输方向;中继设备接收第三信号所使用的传输方向;中继设备转发第三信号所使用的传输方向;第二网络设备发送第三信号所使用的传输方向。
一种实现方式中,K1个第一信号中的每个第一信号通过K1个载波中的一个载波传输;
中继设备根据第二转发功率信息将第二信号转发至终端设备之前,该方法还包括:中继设备根据第二信号占用的载波数量以及K1个第一转发功率信息确定第二转发功率信息。
一种实现方式中,第二转发功率信息满足以下形式:
G_2=G_1+10×log10(C/K1),或者G_2=G_1-10×log10(C/K1);
其中,G_1表示第一转发功率信息,G_2表示第二转发功率信息,C表示第二信号占用的载波数量。
一种实现方式中,K1大于1,且K1小于Q,Q为中继设备支持的最大载波数,K1个第一转发功率信息与Q个载波存在预设对应关系;第二转发功率信息满足以下形式:
其中,G表示第二转发功率信息,C表示第二信号占用的载波数量,Gi表示第二信号占用的第i个载波对应的第一转发功率信息。
一种实现方式中,该方法还包括:中继设备接收来自第一网络设备的第一信息,第一信息用于指示功率偏移值;中继设备根据第二转发功率信息将第二信号转发至终端设备,包括:中继设备根据第二转发功率信息以及功率偏移值将第二信号转发至终端设备。
一种实现方式中,该方法还包括:中继设备接收来自第一网络设备的第二信息,第二信息用于指示K2个第一转发功率信息中每个第一转发功率信息对应的功率偏移值;中继设备根据第二转发功率信息将第二信号转发至终端设备,包括:中继设备根据第二转发功率信息以及第二转发功率信息对应的功率偏移值将第二信号转发至第三设备。
一种实现方式中,对于K1个第一信号中的每个第一信号,第一信号对应的测量信息包括第一信号的接收功率;K1个第一信号中的第i个第一信号对应的第一转发功率信息满足以下任一形式:
PTxi=PRxi+Gi;
PTxi=PRxi+Gi+10log10W;
PTxi=PRxi+Gi+10log10W+10log10Por;
其中,PTxi表示第i个第一信号预配置的转发功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的第一转发功率信息,W表示第i个第一信号对应的带宽,Por表示第i个第一信号对应的端口数。
一种实现方式中,对于K1个第一信号中的每个第一信号,第一信号对应的测量信息包括第一信号的路损以及接收功率;K1个第一信号中的第i个第一信号对应的第一转发功率信息满足以下形式:Gi=P0i+PLi-PRxi
其中,P0i表示第i个第一信号预配置的目标接收功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的第一转发功率信息,PLi表示第i个第一信号的路损。
第五方面,本申请提供一种通信方法,该方法包括:第一网络设备接收来自中继设备的K1个测量信息;K1个测量信息中的每个测量信息对应K1个第一信号中的一个第一信号,K1为大于0的整数;第一网络设备根据K1个测量信息确定K2个第一转发功率信息;K2个第一转发功率信息中的每个第一转发功率信息根据至少一个测量信息确定,K2大于或等于K1;第一转发功率信息用于中继设备向终端设备转发信号;第一网络设备向中继设备发送K2个第一转发功率信息。
第六方面,本申请提供一种通信方法,该方法包括:中继设备根据K1个第一信号确定K1个测量信息,K1个测量信息中的每个测量信息对应K1个第一信号中的一个第一信号,K1个第一信号中的一个第一信号来自至少一个网络设备中的一个网络设备,K1为大于1的整数;中继设备根据K1个测量信息确定K2个第一转发功率信息;K2个第一转发功率信息中的每个第一转发功率信息根据一个或多个测量信息确定,至少一个测量信息对应不同的网络设备,K2大于或等于K1;中继设备接收来自网络设备的第二信号,并根据第二转发功率信息将第二信号转发至终端设备,第二转发功率信息为K2个第一转发功率信息中的一个第一转发功率信息。
一种实现方式中,第二信号来自多个网络设备中的第i个网络设备;
第二转发功率信息为K2个第一转发功率信息中,根据来自第i个网络设备的第一信号确定的Ki个第一转发功率信息中的一个第一转发功率信息,Ki位大于0的整数。
一种实现方式中,K1个第一信号中的每个第一信号对应中继设备的一个波束和/或网络设备的一个波束;第二信号对应第一终端设备的第一波束和/或网络设备的第二波束,第二转发功率信息为Ki个第一转发功率信息中对应第一波束和/或第二波束的第一转发功率。
一种实现方式中,该方法还包括:中继设备接收来自网络设备的第一信息,第一信息用于指示功率偏移值;根据第二转发功率信息将第二信号转发至终端设备,包括:中继设备根据第二转发功率信息以及功率偏移值将第二信号转发至终端设备。
一种实现方式中,该方法还包括:中继设备接收来自网络设备的第一信息,第一信息用于指示K2个第一转发功率信息中每个第一转发功率信息对应的功率偏移值;根据第二转发功率信息将第二信号转发至终端设备,包括:中继设备根据第二转发功率信息以及第二转发功率信息对应的功率偏移值将第二信号转发至终端设备。
一种实现方式中,对于K1个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的 接收功率;K1个第一信号中的第i个第一信号对应的第一转发功率信息满足以下任一形式:
PTxi=PRxi+Gi;
PTxi=PRxi+Gi+10log10W;
PTxi=PRxi+Gi+10log10W+10log10Por;
其中,PTxi表示第i个第一信号预配置的转发功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的第一转发功率信息,W表示第i个第一信号对应的带宽,Por表示第i个第一信号对应的端口数。
一种实现方式中,对于K1个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的路损;K1个第一信号中的第i个第一信号对应的第一转发功率信息满足以下形式:Gi=P0i+PLi-PRxi
其中,P0i表示第i个第一信号预配置的目标接收功率,PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的第一转发功率信息,PLi表示第i个第一信号的路损。
第七方面,本申请提供一种通信方法,该方法包括:中继设备根据K个第一信号确定K个测量信息,K个第一信号中的每个第一信号通过K个载波中的一个载波传输,K为大于0的整数;K个测量信息中的每个测量信息根据K个第一信号中的一个第一信号确定;
中继设备根据K个测量信息确定K个第一转发功率信息;K个第一转发功率信息中的每个第一转发功率信息对应K个载波中的一个载波;中继设备接收来自网络设备的第二信号,根据第二信号占用的载波数量以及K个第一转发功率信息确定转发第二信号所使用的第二转发功率信息。
一种实现方式中,第二转发功率信息满足以下形式:
G2=G1+10×log10(C/K),或者G2=G1-10×log10(C/K);
其中,G1表示第一转发功率信息,G2表示第二转发功率信息,C表示第二信号占用的载波数量。
一种实现方式中,K小于Q时,该方法还包括:根据K个第一转发功率信息确定Q个载波中除K个载波之外的每个载波对应的第一转发功率信息,Q为中继设备支持的最大载波数。
一种实现方式中,第二转发功率信息满足以下形式:
其中,G表示第二转发功率信息,C表示第二信号占用的载波数量,Gi表示第二信号占用的第i个载波对应的第一转发功率信息。
一种实现方式中,对于K个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的接收功率;K个载波中的第i个载波对应的第一转发功率信息满足以下任一形式:PTxi=PRxi+Gi;
PTxi=PRxi+Gi+10log10W;
PTxi=PRxi+Gi+10log10W+10log10Por;
其中,PTxi表示第i个载波中的第一信号预配置的转发功率,PRxi表示第i个载波中的第一信号的接收功率,Gi表示第i个载波对应的第一转发功率信息,W表示第二信号对应的带宽,Por表示第一信号对应的端口数。
一种实现方式中,对于K个第一信号中的每个第一信号,第一信号对应的测量信息为第一信号的路损;K个载波中的第i个载波对应的第一转发功率信息满足以下形式:
Gi=P0i+PLi-PRxi
其中,P0i表示第i个载波中的第一信号预配置的目标接收功率,PRxi表示第i个载波中的第一信号的接收功率,Gi表示第i个载波对应的第一转发功率信息,PLi表示第i个载波对应的第一信号的路损。
第八方面,本申请提供一种通信方法,该方法包括:中继设备对来自终端设备或网络设备的至少一个第一信号进行测量,获得至少一个测量信息;中继设备根据至少一个测量信息确定转发功率信息;转发功率信息根据一个或多个测量信息确定,转发功率信息用于中继设备转发来自网络设备或终端设备的信号。
一种实现方式中,中继设备接收来自网络设备的信号,并根据转发功率信息将来自网络设备的信号转发至终端设备。
一种实现方式中,中继设备接收来自终端设备的信号,并根据转发功率信息将来自终端设备的信号转发至网络设备。
第九方面,本申请提供一种通信方法,该方法包括:中继设备对来自第一网络设备的至少一个第一参考信号进行测量,获得至少一个第一测量信息;中继设备对来自第二网络设备的至少一个第二参考信号进行测量,获得至少一个第二测量信息;中继设备根据至少一个第一测量信息和至少一个第二测量信 息中的至少一项确定转发功率信息;转发功率信息用于中继设备转发来自网络设备或终端设备的信号。其中,该网络设备为第一网络设备或第二网络设备。
第十方面,本申请实施提供一种通信装置,该装置可应用于中继设备,具有实现上述第一方面至第九方面中由中继设备执行的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。比如包括收发单元和处理单元,所述收发单元还可以称为通信单元或收发模块,所述收发单元可以具体包括接收单元和发送单元,所述处理单元又可称为处理模块。
在一种设计中,通信装置为通信芯片,收发单元可以为通信芯片的输入输出电路或者端口、接口电路、输出电路、输入电路、管脚或相关电路等。处理单元可以为通信芯片的处理电路或逻辑电路。
第十一方面,本申请实施提供一种通信装置,该装置可应用于网络设备,具有实现上述第一方面至第九方面中由网络设备或第一网络设备执行的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。比如包括收发单元和处理单元,所述收发单元还可以称为通信单元或收发模块,所述收发单元可以具体包括接收单元和发送单元,所述处理单元又可称为处理模块。
在一种设计中,通信装置为通信芯片,收发单元可以为通信芯片的输入输出电路或者端口、接口电路、输出电路、输入电路、管脚或相关电路等。处理单元可以为通信芯片的处理电路或逻辑电路。
第十二方面,本申请实施提供一种通信装置,该通信装置包括:处理器和存储器。该存储器中存储有计算机程序或计算机指令,该处理器用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第一方面至第九方面中任一种可能的实施方式。
可选的,该通信装置还包括接口电路,该处理器用于控制该接口电路收发信号和/或信息和/或数据等。
第十三方面,本申请实施提供一种通信装置,该通信装置包括处理器。该处理器用于调用存储起中的计算机程序或计算机指令,使得处理器实现如第一方面至第九方面中任一种可能的实施方式。
可选的,该通信装置还包括接口电路,该处理器用于控制该接口电路收发信号和/或信息和/或数据等。
第十四方面,本申请实施还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如第一方面至第九方面中任一种可能的实施方式。
第十五方面,本申请实施还提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得计算机执行如第一方面至第九方面中任一种可能的实施方式。
第十六方面,本申请实施还提供一种芯片装置,包括处理器,用于调用该存储器中的计算机程序或计算机指令,以使得该处理器执行上述如第一方面至第九方面中任一种可能的实施方式。
可选的,该处理器通过接口与该存储器耦合。
第十七方面,本申请实施例提供一种通信系统,该通信系统包括上述第十方面所述的通信装置(如中继设备)和上述第十一方面所述的通信装置(如网络设备)。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种多站传输模式示意图;
图2为本申请实施例提供的另一种多站传输模式示意图;
图3(a)为适用于本申请实施例的一种网络架构示意图;
图3(b)为适用于本申请实施例的一种网络架构示意图;
图4为本申请实施例提供的一种通信方法流程示意图;
图5为本申请实施例提供的一种信号传输示意图;
图6为本申请实施例提供的一种信号传输示意图;
图7为本申请实施例提供的一种通信方法流程示意图;
图8为本申请实施例提供的一种通信方法流程示意图;
图9为本申请实施例提供的一种通信方法流程示意图;
图10为本申请实施例提供的一种通信方法流程示意图;
图11为本申请实施例提供的一种通信方法流程示意图;
图12为本申请实施例提供的一种信号传输示意图;
图13为本申请实施例提供的一种信号传输示意图;
图14为本申请实施例提供的一种信号传输示意图;
图15为本申请实施例提供的一种信号传输示意图;
图16为本申请实施例提供的一种通信装置结构示意图;
图17为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例提供的通信方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE),也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统,例如,第六代(6th generation,6G)通信系统。
本申请实施例提供的方法和装置是基于同一或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,首先对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)波束(beam)
波束是一种通信资源,或者理解为信号传输的一种空域行为。具体可以是指信号经天线发射出去后在空间不同传输方向上形成的信号强度的分布,一个波束可以对应一个传输方向。本申请中,为了描述方便,将波束和传输方向视为同一个术语,两者可以相互替换。波束可以是宽波束,或者窄波束,或者其他类型波束,形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术、模拟波束成形技术和混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。
波束可以称为空域滤波器(spatial domain filter),空间滤波器(spatial filter),空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),准共址(quasi-colocation,QCL)信息,QCL假设,或QCL指示等。波束可以通过传输配置指示(transmission configuration indicator,TCI)状态(state)参数来指示,或者通过空间关系(spatial relation)参数来指示。因此,本申请中,波束可以替换为传输方向、传输资源、空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI状态(包括上行TCI状态,下行TCI状态),或空间关系等。波束也可以替换为其他表示波束的术语,本申请在此不作限定。
本申请中,用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter),空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting),或者空间发送设置(spatial transmission setting)。
本申请中,用于接收信号的波束可以称为接收波束(reception beam,Rx beam),空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或者空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting),或者空间接收设置(spatial reception setting)。上行发送波束可以通过空间关系、上行TCI-state、探测参考信号(sounding reference signal,SRS)资源(表示使用该SRS的发送波束)中任一种来指示。上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型的波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术、混合数字波束赋形技术或者混合模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。当数据传输时,波束信息也是通过其对应的资源来进行指示的。例如,网络设备通过下行控制信息(downlink control information,DCI)中的TCI字段指示终端设备的波束的信息。
可选的,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或者多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或者多个天线端口也可以看作是一个天线端口集。
(2)参考信号
参考信号可以为以下信号中的任一种信号:同步信号、广播信道、广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、SRS、终端专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号、下行数据信道解调参考信号、下行相位噪声跟踪信号等。发送或者接收参考信号所使用的资源可以称为参考信号资源。
(3)发送接收点(transmission and reception point,TRP)
TRP为网络设备进行信号收发的物理单元,一个网络设备可能包括一个或多个TRP。每个TRP都有能力独立进行下行数据传输和上行数据接收。网络侧通过一个或多个TRP向终端设备发送参考信号和数据信号,并接受来自终端设备的上行信号。一个TRP可能包含一个或多个天线。
(4)多站传输模式
终端设备同时与多个TRP通信的模式,称为多站传输模式或多TRP传输模式。
当终端设备支持同时与多个TRP通信,多个TRP可能是属于同一小区的,也可能属于不同小区的。如图1所示,示出了本申请实施例提供的一种多站传输模式示意图,图中以2个TRP为例,分别为TRP1和TRP2。图1中的TRP1和TRP2属于不同小区,TRP1属于第一网络设备,TRP2属于第二网络设备。
如图2所示,示出了本申请实施例提供的另一种多站传输模式示意图,图中以2个TRP为例,分别为TRP1和TRP2。图2中的TRP1和TRP2属于同一个小区,即TRP1和TRP2属于同一个网络设备。
本申请实施例中涉及的网络设备,可以为无线网络中的设备。例如,网络设备可以是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:TRP、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,NR系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point,TRP),TP;或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,BBU,或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、MAC层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请实施例中涉及的终端设备,可以是能够接收网络设备调度和指示信息的无线终端设备。终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端设备,简称终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备是包括无线通信功能(向用户提供语音/数据连通性)的设备。例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端设备的举例为:手机 (mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为摄像头、机器人等。智慧家庭中的无线终端可以为电视、空调、扫地机、音箱、机顶盒等。
中继设备,能够将网络设备的信号转发至终端设备,也能够将终端设备的信号转发至网络设备。中继设备的具体实现方式并不限定,只要具有上述功能的设备都可以作为中继设备。中继设备也可以称为网络控制中继器(network-controlled repeater,NCR)等名称,本申请中统称为中继设备。一种实现方式中,如图3(a)所示,以中继设备为NCR为例,中继设备可以包括NCR移动终端(NCR-mobile termination,NCR-MT)实体和NCR转发(NCR-forwarding,NCR-Fwd)实体。NCR中的NCR-MT实体与网络设备之间的链路可以称为控制链路(control link),NCR-MT实体为通过控制链路与网络设备通信的功能实体,以实现信息交换(例如侧控制信息(side control information),或者控制信息)。一种实现方式中,控制链路对应网络设备的NR Uu接口。
通过回传链路(backhaul link)和接入链路(accessl link),NCR-Fwd实体在网络设备和终端设备之间执行上行/下行射频信号放大和转发。NCR-MT实体从网络设备接收的控制信息,可以用于控制NCR-Fwd实体的行为。其中,NCR中的NCR-Fwd实体与网络设备之间的链路可以称为回传链路,NCR中的NCR-Fwd实体与终端设备之间的链路可以称为接入链路。
中继设备至少包括两个天线面板,其中一个天线面板用于与网络设备通信;另一个天线面板用于与终端设备通信。中继设备的一个天线面板用于接收信号,接收的信号经过放大后,由另外一个天线面板转发。
一种实现方式中,中继设备与网络设备通信所使用的波束可以称为中继回传侧波束,中继设备与终端设备通信所使用的波束可以称为中继接入侧波束。如果中继设备转发下行信号,那么可以使用中继回传侧波束接收该下行信号,并使用中继接入侧波束转发该下行信号;如果中继设备转发上行信号,那么可以使用中继接入侧波束接收该上行信号,并使用中继回传侧波束转发该上行信号。
本申请中,中继回传侧波束,也可以替换为中继回传侧资源;中继接入侧波束,也可以替换为中继接入侧资源。
中继设备可以同时将多个网络设备的信号转发至终端设备,也可以将终端设备的信号转发至多个网络设备。如图3(b)所示,为适用于本申请的一种网络架构示意图。图3(b)中包括2个网络设备,分别为网络设备1和网络设备2,中继设备可以将网络设备1和网络设备2的信号转发至终端设备,也可以将终端设备的信号转发网络设备1和网络设备2。
在中继设备工作时,对于来自网络设备的信号,中继设备将回传侧天线面板接收的信号放大后,通过接入侧天线面板转发至终端设备。如果中继设备接入侧有多个波束的能力,则中继设备转发信号时,将接入侧的波束对准终端设备,以获得比较好的传输性能。
中继设备的放大电路会给转发信号带来噪声,当中继设备的噪声传输到接收端时,会对接收端带来噪声干扰。如果中继设备对信号放大倍数过高,一方面,使得中继设备转发信号输出功率比较大,带来的负面效果则是带来干扰;另一方面,会导致中继设备的功放进入饱和区,导致转发信号发生畸变,使得接收端无法正确解调。因此,本申请提供一种方法,使得中继设备在进行信号转发时,能够准确的确定转发功率。
本申请中,中继设备进行信号转发时使用的转发功率和信号的放大增益之间存在关联。一种实现方式中,放大增益可以与功率控制(或者中继放大转发功率、中继发送功率)对应。例如,接收信号的接收功率为PR(单位:分贝毫瓦dBm),放大增益为G(单位:分贝dB),则信号的发送功率为PT=G+PR(单位:分贝毫瓦dBm)。在反射面涉及的通信系统中,放大增益可以对应为反射损耗。
可以理解,本申请实施例中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据本申请实施例提供的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,在本申请的各实施例中涉及到一些消息名称,如第一消息等,其命名不对本申请实施例的保护范围造成限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请以下各个实施例中,各个流程中的步骤仅是示例性说明,对此不作严格限定。各个流程中的步骤,可以根据实际情况保留其中一部分步骤,和/或者调整部分步骤之间的先后顺序。此外,上述各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请中,波束,也可以替换为传输方向、传输资源、空域参数、空间参数等术语,本申请对此并不限定。
本申请以下各个实施例之间可以互相结合,本申请对此并不限定。
如图4所示,为本申请实施例提供的一种通信方法流程示意图,该流程以一个网络设备向中继设备发送参考信号,中继设备将参考信号的测量结果转发至网络设备为例进行描述,该方法包括:
S401:网络设备向中继设备发送第一信号。
本申请中,网络设备可以将确定第一转发功率信息所需要的参数,例如第一信号预配置的转发功率和第一信号带宽W等参数,配置给中继设备,具体配置过程,本申请并不限定。
第一信号可以为参考信号,例如第一信号为解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、或同步信号广播信道块(synchronous signal/physical broadcast channel block,SS/PBCH block,SSB)中的任一项。
一种实现方式中,网络设备在发送第一信号之前,可以向中继设备发送第一信号的配置信息,该配置信息指示第一信号的发送功率、时频资源位置以及传输方向(即波束)等信息。其中,配置信息可以承载在物理广播信道(physical broadcast channel,PBCH)、剩余最小系统信息(remaining minimum system information,RMSI)、系统信息块(system information block,SIB)1、SIB2、SIB3,媒体接入控制(medium access control,MAC)控制元素(control element,CE)、DCI、RRC信令以及系统信息中的任意一项。
本申请中,网络设备可以向中继设备发送多个第一信号。一种实现方式中,如图5所示,中继设备包括X1个波束,即X1个传输方向,分别为波束1_1至波束X1_1,网络设备发送至少X1个第一信号。中继设备采用每个波束接收至少一个第一信号。
一种实现方式中,如图6所示,中继设备包括X1个波束,分别为波束1_1至波束X1_1,网络设备包括X2个波束,分别为波束1_2至波束X2_2,那么网络设备可以发送至少X1*X2个第一信号,网络设备采用每个波束发送至少X1个第一信号,中继设备采用每个波束接收至少X2个第一信号,实现中继设备采用每个波束接收网络设备的每个波束发送的第一信号。例如,网络设备采用波束1_2发送X1个第一信号,中继设备采用波束1_1接收这X1个第一信号;然后网络设备采用波束1_2发送X1个第一信号,中继设备采用波束2_1接收这X1个第一信号;重复上述过程,直至网络设备的每个波束都发送X1个第一信号。
S402:中继设备对第一信号进行测量,获得测量信息。
一种实现方式中,中继设备使用中继回传侧波束接收该第一信号。
可以理解,中继设备为NCR时,由NCR-MT实体对第一信号进行测量。
如果网络设备发送多个第一信号,中继设备能够获得多个测量信息,一个测量信息根据一个或多个第一信号确定。例如,一个信号对应2个测量信息,可以通过在一个信号上进行多次接收,获取多个测量信息;或者通过多个波束同时发送一个信号的不同端口,不同波束对应的不同测量值;或者同时发送不同频率位置信号,不同频率位置的信号对应的不同测量值。这种方式,可以用于全文中所有实施例。
一种实现方式中,测量信息包括以下一项或多项:
第一信号的接收功率;第一信号的信道质量指示(channel quality indicator,CQI);第一信号的参考信号接收信号功率(reference signal received power,RSRP);第一信号的参考信号接收信号质量(reference signal received quality,RSRQ);第一信号的接收信号强度指示(received signal strength indicator,RSSI);第一信号的路损;回传侧的信道信息(channel state information,CSI),例如,接收天线之间观测到的相位差。
其中,第一信号的路损为网络设备的发送第一信号的发送功率与中继设备接收第一信号的接收功率之间的差值。
S403:中继设备向网络设备发送第一信号的测量信息。
可以理解,中继设备为NCR时,由NCR-MT实体发送测量信息。
如果网络设备发送多个第一信号,中继设备向网络设备发送多个第一信号中每个第一信号的测量信息,也可以向网络设备发送多个第一信号中至少一个第一信号的测量信息,本申请对此并不限定。
S404:网络设备根据测量信息确定第一转发功率信息,并向中继设备发送第一转发功率信息。
如果中继设备向网络设备发送多个测量信息,那么网络设备可以确定多个第一转发功率信息,每个第一转发功率信息根据至少一个测量信息确定。
一种实现方式中,网络设备可以通过RRC、媒体接入控制(medium access control,MAC)控制元素(control element,CE)、DCI中的任一项发送第一转发功率信息。
第一转发功率信息具体如何确定,本申请对此并不限定。第一转发功率信息可以根据第一信号预配置的转发功率、第一信号的接收功率、第一信号对应的带宽、第一信号对应的端口数、回传侧天线增益GBH、接入侧天线增益GAC、控制器天线增益PMT中的至少一项确定。下面给出可能的几种实现方式。第一种可能的实现方式,如果测量信息包括第一信号的接收功率,那么第一信号对应的第一转发功率信息满足以下任一形式:
PTx=PRx+G;
PTx=PRx+G+10log10W;
PTx=PRx+G+10log10W+10log10Por;
其中,PTx表示第一信号预配置的转发功率,该转发功率可以由网络设备配置的,其单位为分贝毫(dBm);PRx表示第一信号的接收功率,其单位为dBm;G表示第一信号对应的第一转发功率信息,其单位为分贝(dB);W表示第一信号对应的带宽,Por表示第一信号对应的端口数。
第二种可能的实现方式,如果测量信息包括第一信号的路损以及接收功率,那么第一信号对应的第一转发功率信息满足以下形式:
G=P0+PL-PRx
其中,P0表示第一信号预配置的目标接收功率,该目标接收功率可以由网络设备配置的,其单位为dBm;PRx表示第一信号的接收功率,其单位为dBm;G表示第一信号对应的第一转发功率信息,其单位为dB;PL表示第一信号的路损。
第三种可能的实现方式,第一信号对应的第一转发功率信息可以按照前面的实现方式确定,中继上报设备实际使用的转发功率信息GActual满足以下至少一项:
GActual=G-GAC
GActual=G-GBH
GActual=G-GBH-GAC
GActual=G+GMT-GBH-GAC
GActual=G-GMT-GBH-GAC
第四种可能的实现方式,第一信号对应的第一转发功率信息满足以下任一形式:
PTx=PRx+G-GAC
PTx=PRx+G+10log10W-GAC
PTx=PRx+G+10log10W+10log10Por-GAC
G-GAC=P0+PL-PRx
上面各个公式中的GAC还可以替换为GBH,或者GBH+GAC,或者GBH+GAC-GMT,或者GBH+GAC+GMT等,在此不再逐一列举。
S405:第一网络设备发送第二信号。
第二信号承载的具体内容并不限定,可以是数据,也可以是控制信令,本申请对此并不限定。
S406:中继设备根据第一转发功率信息将第二信号转发至终端设备。
一种实现方式中,中继设备使用中继回传侧波束接收该第二信号,并使用中继接入侧波束转发该第二信号。中继设备接收第二信号的中继回传侧波束和/或转发第二信号的中继接入侧波束,可以由网络设备配置,也可以由中继设备自主确定,本申请对此并不限定。如果由网络设备配置,网络设备可以通过控制信息指示中继设备接收第二信号的中继回传侧波束和/或转发第二信号所使用的中继接入侧波束。本申请的以下其它流程中,中继设备转发上行信号以及下行信号所使用的波束,也可以是网络设备通过控制信息指示的,具体不再逐一说明。
中继设备可以根据第一转发功率信息确定第二信号的发送功率(或放大增益),从而按照该发送功率将第二信号转发至终端设备。
中继设备具体如何根据第一转发功率信息确定第二信号的发送功率,本申请对此并不限定。举例来说,第二信号的发送功率PTx2满足以下形式:
PTx2=PRx2+G;
其中,PRx2表示第二信号的接收功率;G表示第一转发功率信息。
另外,第二信号还对应一个最大发送功率,该最大发送功率可以是中继设备上行最大发送能力或者上行允许发送信号的最大功率,如果根据第一转发功率信息确定的发送功率大于最大发送功率,则中继设备按照最大发送功率将第二信号转发至终端设备。
本申请中,网络设备还可以向中继设备发送功率偏移值指示信息,功率偏移值指示信息用于指示至少一个功率偏移值。一种实现方式中,每个功率偏移值对应一个时间单元,时间单元可以为时隙或者子帧等。中继设备在第一时间单元转发第二信号时,可以根据第一转发功率信息以及第一时间单元对应的功率偏移值将第二信号转发至终端设备,即在第一时间单元转发第二信号时,第二信号的发送功率根据第一转发功率信息以及第一时间单元对应的功率偏移值确定。
一种实现方式中,每个功率偏移值对应一个信号类型,信号类型包括但不限于广播信号、数据信号、控制信号等。中继设备在第一时间单元转发第二信号时,可以根据第一转发功率信息以及第二信号的信号类型对应的功率偏移值将第二信号转发至终端设备。例如,广播信号对应第一功率偏移值,数据信号对应第二功率偏移值,控制信号对应第三功率偏移值,如果第二信号为广播信号,那么中继设备根据第一转发功率信息以及第一功率偏移值将第二信号转发至终端设备。
一种实现方式中,每个功率偏移值对应中继设备的一个波束。应该理解,这里的波束可以是指以下至少一项:中继回传侧波束,或者中继接入侧波束,或者配对的中继回传侧波束-接入侧波束,或者网络设备的发送波束。中继设备在第一时间单元转发第二信号时,可以根据第一转发功率信息以及第二信号的波束对应的功率偏移值将第二信号转发至终端设备。例如,中继设备的波束1对应第一功率偏移值,波束2对应第二功率偏移值,如果中继设备采用波束2转发第二信号,那么中继设备根据第一转发功率信息以及第二功率偏移值将第二信号转发至终端设备。
本申请中,中继设备转发第二信号所使用的第一转发功率信息还可以和中继设备接收第二信号所使用的波束以及中继设备转发第二信号所使用的波束中的至少一项存在关联关系,这里的波束可以是指中继回传侧波束,或者中继接入侧波束,或者配对的中继回传侧波束-接入侧波束,或者网络设备的发送波束。举例来说,中继设备转发第二信号所使用的第一转发功率信息和中继设备接收第二信号所使用的波束存在关联关系,如果中继设备采用第一波束(例如,第一波束为中继回传侧波束)接收第二信号,那么中继设备转发第二信号所使用的第一转发功率信息是根据通过第一波束接收到的第一信号确定的。例如,中继设备通过波束0接收信号0,通过波束1接收信号1。信号0对应的测量信息用于确定转发功率信息0,信号1对应的测量信息用于确定转发功率信息1。当中继设备采用波束1接收第二信号时,中继设备根据转发功率信息1转发第二信号。
举例来说,中继设备转发第二信号所使用的第一转发功率信息和中继设备转发第二信号所使用的波束存在关联关系。例如,可以预先建立中继设备的中继回传侧波束和中继接入侧波束之间的对应关系。如果中继设备采用第一波束转发第二信号,第一波束对应的中继回传侧波束为第二波束,那么中继设备转发第二信号所使用的第一转发功率信息是根据通过第二波束接收到的第一信号确定的。例如,波束0和波束1是中继回传侧波束,波束2和波束3是中继接入侧波束,波束0和波束2对应,波束1和波束 3对应,中继设备通过波束0接收信号0,通过波束1接收信号1。信号0对应的测量信息用于确定转发功率信息0,信号1对应的测量信息用于确定转发功率信息1。当中继设备采用波束2转发第二信号时,中继设备根据转发功率信息0转发第二信号;当中继设备采用波束3转发第二信号时,中继设备根据转发功率信息1转发第二信号。
本申请中,中继设备转发第二信号所使用的第一转发功率信息还可以和网络设备发送第二信号所使用的波束存在关联关系。具体的,如果网络设备采用第二波束发送第二信号,那么中继设备转发第二信号所使用的第一转发功率信息是根据通过第二波束发送的第一信号确定的。例如,网络设备通过波束0发送信号0,相应的,中继设备通过波束1接收信号0,信号0对应的测量信息用于确定转发功率信息0;网络设备通过波束2发送信号1,相应的,中继设备通过波束1接收信号1,信号1对应的测量信息用于确定转发功率信息1;网络设备通过波束2发送信号2,相应的,中继设备通过波束4接收信号2,信号2对应的测量信息用于确定转发功率信息3。如果网络设备通过波束2发送第二信号,中继设备通过波束1接收第二信号,那么中继设备根据转发功率信息1转发第二信号。
本申请中,中继设备还可以根据第一转发功率信息将来自终端设备的信号,转发至网络设备,具体可以参考S407至S408中的描述。
S407:终端设备发送第四信号。
第四信号承载的具体内容并不限定,可以是数据,也可以是数据之外的信息或信号,本申请对此并不限定。
S408:中继设备根据第一转发功率信息将第四信号转发至网络设备。
一种实现方式中,中继设备使用中继接入侧波束接收该第四信号,并使用中继回传侧波束转发该第四信号。中继设备转发第四信号的中继回传侧波束,可以由网络设备配置,也可以由中继设备自主确定,本申请对此并不限定。
本申请中,中继设备转发第四信号所使用的第一转发功率信息还可以和中继设备转发第四信号所使用的波束存在关联关系,具体可以参考S406中的描述,在此不再赘述。
本申请中,中继设备转发第四信号所使用的第一转发功率信息还可以和终端设备发送第四信号所使用的波束存在关联关系,具体可以参考S406中的描述,在此不再赘述。
一种实现方式中,中继设备转发第二信号时的转发功率和转发第四信号时的转发功率存在关联。例如,转发功率信息为放大增益,转发第二信号的放大增益G2,转发第四信号的放大增益G3,两者满足G2+O=G3。一种实现方式中,偏移值O大于0,即采取更大的放大增益放大上行信号。基于这种方式,可以使得上行覆盖性能更好,减少网络中下行和上行的覆盖差。
通过上面的方法,中继设备通过对来自网络设备的信号进行测量,获得测量信息,从而使得网络设备根据该测量信息确定转发功率信息。中继设备可以根据该转发功率信息转发网络设备或终端设备的信号,从而实现准确的控制信号的转发功率,避免转发功率较大时导致的转发信号发生畸变等现象的发生。
本申请中,还可以由中继设备根据测量信息(或者第一信号,或者测量参考信号)确定转发功率信息,具体可以参考下面的流程。
如图7所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
S701:网络设备向中继设备发送第一信号。
S702:中继设备对第一信号进行测量,获得测量信息。
S701至S702的具体内容可以参考S401至S402中的描述,在此不再赘述。
S703:中继设备根据测量信息(或者第一信号,或者测量参考信号)确定第一转发功率信息。
本申请中,网络设备可以将确定第一转发功率信息所需要的参数,例如第一信号预配置的转发功率PTx和第一信号带宽W,配置给中继设备。中继设备具体如何根据测量信息(或者第一信号,或者测量参考信号)确定第一转发功率信息,本申请对此并不限定,例如可以参考S404中的描述,在此不再赘述。
S704:第一网络设备发送第二信号。
第二信号承载的具体内容并不限定,可以是数据,也可以是控制信令,本申请对此并不限定。
S705:中继设备根据第一转发功率信息将第二信号转发至终端设备。
一种实现方式中,中继设备使用中继回传侧波束接收该第二信号,并使用中继接入侧波束转发该第二信号。中继设备转发第二信号的中继接入侧波束,可以由网络设备配置,也可以由中继设备自主确定, 本申请对此并不限定。
S706:终端设备发送第四信号。
第四信号承载的具体内容并不限定,可以是数据,也可以是数据之外的信息,本申请对此并不限定。
S707:中继设备根据第一转发功率信息将第四信号转发至网络设备。
一种实现方式中,中继设备使用中继回传侧波束接收该第四信号,并使用中继接入侧波束转发该第四信号。中继设备转发第四信号的中继回传侧波束,可以由网络设备配置,也可以由中继设备自主确定,本申请对此并不限定。
S704至S707的具体内容可以参考S405至S408中的描述或者其它实施例,在此不再赘述。
通过上面的方法,中继设备通过对来自网络设备的信号进行测量,获得测量信息,从而根据该测量信息确定转发功率信息。中继设备可以根据该转发功率信息转发网络设备或终端设备的信号,从而实现准确的控制信号的转发功率,避免转发功率较大时导致的转发信号发生畸变等现象的发生。
前面的流程中,描述的是网络设备发送第一信号,中继设备测量第一信号。本申请中,还可以由终端设备发送第一信号,中继设备测量来自终端设备的第一信号,下面详细描述。
如图8所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
S801:终端设备向中继设备发送第一信号。
终端设备或网络设备可以将确定第一转发功率信息所需要的参数,例如第一信号预配置的转发功率PTx和第一信号带宽W等参数,配置给中继设备,具体配置过程,本申请并不限定。
第一信号可以为参考信号,例如第一信号为信道探测参考信号(Sounding reference signal,SRS)信号、物理随机接入(physical random access channel,PRACH)信号、或者随机接入前导(preamble)中的任一项。
S802:中继设备对第一信号进行测量,获得测量信息。
S803:中继设备向网络设备发送第一信号的测量信息。
S804:网络设备根据测量信息(或者第一信号,或者测量参考信号)确定第一转发功率信息,并向中继设备发送第一转发功率信息。
一种可能的实现方式中,中继设备也可以不向网络设备发送测量信息,中继设备可以自己根据测量信息(或者第一信号,或者测量参考信号)确定第一转发功率信息,具体过程不再赘述。
一种可能的实现方式中,S803至S804也可以替换为:中继设备也可以向终端设备发送测量信息;终端设备根据测量信息(或者第一信号,或者测量参考信号)确定第一转发功率信息,并向中继设备发送第一转发功率信息(或者终端设备首先将第一转发功率信息上报网络设备,然后网络设备向中继设备发送配置信息,该配置信息用于确定所述第一转发功率)。
S802至S804的具体内容可以参考S402至S404中的描述,在此不再赘述。
进一步的,中继设备可以根据第一转发功率信息,将来自网络设备的第二信号转发至终端设备;中继设备可以根据第一转发功率信息,将来自终端设备的第四信号转发至网络设备,具体过程可以参考S405至S408中的描述或者其它实施例,在此不再赘述。
本申请中,还可以由中继设备向网络设备发送第一信号,具体的,如图9所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
S901:中继设备向网络设备发送第一信号。
一种实现方式中,网络设备可以向中继设备配置第一信号的发送功率、时频资源位置等信息,具体配置过程本申请并不限定。
S902:网络设备对第一信号进行测量,获得测量信息。
S903:网络设备根据测量信息(或者第一信号,或者测量参考信号)确定第一转发功率信息,并向中继设备发送第一转发功率信息。
一种实现方式中,网络设备还可以指示中继设备波束信息。例如,网络设备指示中继设备回传侧波束信息(或者指示回传侧第一信号的索引)。进一步指示回传侧波束,使得中继放大转发时,采取更准确的回传侧波束,从而提升信号转发的性能。
S902至S903的具体内容可以参考S402至S403中的描述,在此不再赘述。
进一步的,中继设备可以根据第一转发功率信息,将来自网络设备的第二信号转发至终端设备;中继设备可以根据第一转发功率信息,将来自终端设备的第四信号转发至网络设备,具体过程可以参考 S405至S408中的描述或者其它实施例,在此不再赘述。
本申请中,还可以由中继设备向终端设备发送第一信号,具体的,如图10所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
S1001:中继设备向终端设备发送第一信号。
一种实现方式中,网络设备可以向中继设备配置第一信号的发送功率、时频资源位置等信息,具体配置过程本申请并不限定。
S1002:终端设备对第一信号进行测量,获得测量信息。
S1003:终端设备根据测量信息(或者第一信号,或者测量参考信号)确定第一转发功率信息,并向中继设备发送第一转发功率信息。
S1002至S1003的具体内容可以参考S402至S403中的描述,在此不再赘述。
进一步的,中继设备可以根据第一转发功率信息,将来自网络设备的第二信号转发至终端设备;中继设备可以根据第一转发功率信息,将来自终端设备的第四信号转发至网络设备,具体过程可以参考S405至S408中的描述或者其它实施例,在此不再赘述。
本申请还可以应用于多站点传输模式或者多载波传输模式的场景,下面将详细描述。
如图11所示,为本申请实施例提供的一种通信方法流程示意图,该方法包括:
S1101:中继设备根据K1个第一信号确定K1个测量信息,K1为大于0的整数。一种实现方式中,K1个第一信号来自至少一个网络设备,每个网络设备发送至少一个第一信号。例如,一个网络设备对应一个TRP;再例如,一个网络设备对应一个基站,一个基站对应一个或多个TRP。网络设备可以通过一个或多个TRP发送第一信号。例如本申请应用于多站点传输模式场景中时,可以适用于该实现方式。
网络设备可以将确定第一转发功率信息所需要的参数,例如第一信号预配置的转发功率和第一信号带宽W等参数,配置给中继设备,具体配置过程,本申请并不限定。
应该理解,在本申请中,多个网络设备还可以是指:多个网络发送波束、或者多个资源集合、或者多个资源池、或者多个载波分量(component carrier,CC)、或者多个小区。即以上概念等效。
一种实现方式中,K1个第一信号来自终端设备,具体可以参考前面流程中的描述。
一种实现方式中,K1个第一信号之间是频分复用的。
一种实现方式中,K1个第一信号之间是空分复用的。
一种实现方式中,K1个第一信号之间是同频复用的;即两个信号位于相同频率,或者有部分频率位置重叠,或者两个信号的频率位置可能相同。
一种实现方式中,可以由一个网络设备向中继设备指示K1个第一信号的配置信息,也可以由每个网络设备向中继设备指示该网络设备发送的第一信号的配置信息。其中该配置信息用于指示第一信号的发送功率、时频资源位置以及波束等信息。其中,第一信号的配置信息可以承载在PBCH、RMSI、SIB1、SIB2、SIB3,MAC-CE、DCI、RRC信令以及系统信息中的任意一项。
在另外的实现方式中,K1个信号可以确定Kx个测量信息,其中Kx与K1不相同。例如,一个信号对应2个测量信息,可以通过在一个信号上进行多次接收,获取多个测量信息;或者通过多个波束同时发送一个信号的不同端口,不同波束对应的不同测量值;或者同时发送不同频率位置信号,不同频率位置的信号对应的不同测量值。这种方式,可以用于全文中所有实施例。该实现方式也可以适用于图4至图8中的方法流程。
在该实现方式中,如果至少一个网络设备包括第一网络设备和第二网络设备,第一网络设备和第二网络设备各自分别对应一个参考信号资源集合,每个参考信号资源集合包括至少一个参考信号资源。每个网络设备可以通过参考信号资源集合中的参考信号资源发送第一信号。
在该实现方式中,如果中继设备包括X1个中继回传侧波束,中继设备可以采用每个中继回传侧波束接收至少一个第一信号,此时K1大于或等于X1。
在另一种实现方式中,如果中继设备包括X2个中继回传侧波束,中继设备可以采用部分回传侧波束接收至少一个第一信号,此时K1小于X2。即中继设备可以挑选比较合理的部分波束(例如,X1个)用于接收K1个信号,从而减少需要的第一信号数量。在本发明中,可以认为X1个回传侧波束代表中继从X2个回传侧波束选择用于测量的波束,其中X1可以小于X2。该实现方式也可以适用于图4至图8中的方法流程。
举例来说,如果一个网络设备包括X3个波束,网络设备通过每个波束发送至少X1个第一信号,那么该网络设备发送至少X1*X3个第一信号,中继设备采用X1个中继回传侧波束中的每个中继回传侧波束接收来自该网络设备的至少X3个第一信号。
另一种实现方式中,K1个第一信号中的每个第一信号通过一个载波传输,K1个第一信号对应至少一个载波。例如,K1个第一信号对应K1个载波,K1个第一信号中的每个第一信号通过K1个载波中的一个载波传输。其中,载波也可以称为分量载波(component carrier,CC),本申请中简称为载波;中继设备可以支持M个载波,M大于或等于K1。例如本申请应用于多载波传输模式场景中时,可以适用于该实现方式。
在该实现方式中,K1个第一信号可以来自一个或多个网络设备,本申请对此并不限定。
本申请中,K1个测量信息中的每个测量信息对应K1个第一信号中的一个第一信号,即一个测量信息根据一个第一信号确定,测量信息的具体内容可以参考S402中的描述,在此不再赘述。
本申请中,K1个测量信息可以划分为多组,每组包括至少一个测量信息,例如,每组测量信息包括的测量信息可以为根据同一个网络设备或者同一个网络设备的TRP发送的第一信号确定的。再例如,每组测量信息包括的测量信息可以为根据中继设备采用同一个波束接收的第一信号确定的。一种实现方式中,以测量信息为RSRP,以2个TRP为例,K1个测量信息可以如表1所示。
表1
其中,RS(i,j)表示中继设备采用波束#j接收来自TRPi的第一信号的索引(或者资源索引),中继设备采用波束#j接收该第一信号,RSRP(i,j)表示该第一信号对应的测量信息,i∈{0,1},j∈{0,1,2,…}。
一种实现方式中,以测量信息为RSRP为例,假设以2个TRP为例,K1个测量信息可以如表2所示。
表2
其中RSi表示网络设备通过第i个TRP发送第一信号,RSRP(i,j)表示中继设备采用波束#j接收来自RSi的第一信号对应的测量信息,i∈{0,1},j∈{0,1,2,…}。
一种实现方式中,以测量信息为RSRP,以2个TRP为例,K1个测量信息可以如表3所示。
表3
其中,网络侧可以为每个TRP配置一个参考信号资源集合,RS(i,j)表示中继设备采用波束#j接收来自参考信号资源集合i的第一信号的索引(或者资源索引),RSRP(i,j)表示该第一信号对应的测量信息,i∈{0,1},j∈{0,1,2,…}。
一种实现方式中,以测量信息为RSRP,以2个TRP为例,K1个测量信息可以如表4所示。
表4
其中,网络侧可以为每个TRP配置一个参考信号资源集合,RS(i,j)表示中继设备采用波束#j接收来自参考信号资源集合i的第一信号的索引(或者资源索引),RSRP(i,j)表示该第一信号对应的测量信息,i∈{0,1},j∈{0,1,2,…}。一个分组表示可以被中继设备同时接收的多个资源(或者TRP信号)的测量信息,即一个分组对应了一个中继设备的波束。
一种实现方式中,以测量信息为RSRP,以2个TRP为例,K1个测量信息还可以按照测量信息的大小进行排序,例如可以如表5所示。
表5
其中,网络侧可以为每个TRP配置一个参考信号资源集合,分组#0、第一组测量结果对应的测量信息(即RSRP(0,0))是中继设备接收到的所有第一信号RSRP中的最大值;分组#0、第二组测量结果对应的测量信息(即RSRP(0,0))是中继设备接收到的所有第一信号RSRP中的第二大值,其它以此类推。或者,第一组测量信息对应的列中,是属于同一个参考信号资源集合(或者同一个TRP发送的)的信号;第二组测量信息对应的列中,是属于另外一个参考信号资源集合(或者另外一个TRP发送的)的信号。
可选地,以上表1至表5中,同一列的测量信息,可以按照从大到小降序排列,也可以按照从小到大排序,本申请对此并不限定。
一种实现方式中,以测量信息为RSRP,以2个TRP为例,K1个测量信息还可以按照测量信息的大小进行排序,例如可以如表6所示。
表6
其中,第三列为综合测量信息组。例如,综合测量信息组中的每个综合测量信息为该综合测量信息所对应的一行中所有测量信息的总和。以表6为例,综合测量结果可以是:RSRPj=10log10(10RSRP(0,j)/10+10RSRP(1,j)/10),j∈{0,1,2,…}。
可选地,以上表1至表4中,可以按照表6中的方式,在每个表格中均可以增加一列综合测量信息组序,本申请对此并不限定。
在另外的实现方式中,本申请中所有表格中的测量信息,可以满足预设条件。例如,测量信息为RSRP,测量到的RSRP大于门限值,该门限值可以是预设的,或者中继根据网络设备配置信息确定,或者网络设备配置的。
本申请中,一种实现方式中,对于每个网络设备,中继设备可以向该网络设备发送根据该网络设备发送的第二信号确定的测量信息。另一种实现方式中,中继设备可以向至少一个网络设备中的一个网络设备发送K1个测量信息,下面以该实现方式为例进行描述,其它情况可以以此类推。
S1102:中继设备向第一网络设备发送K1个测量信息。
其中,如果K1个第一信号来自至少一个网络设备,那么第一网络设备为至少一个网络设备中的一个设备。
中继设备具体如何发送K1个测量信息,本申请对此并不限定。一种实现方式中,中继设备将每个测量信息直接上报至第一网络设备。
一种实现方式中,中继设备向第一网络设备发送第一测量信息以及K1-1个相对测量信息,其中,第一测量信息为K1个测量信息中的一个测量信息,K1-1个相对测量信息中的每个相对测量信息为K1个测量信息中除了第一测量信息之外的一个测量信息与第一测量信息的差值。这样,第一网络设备可以根据K1-1个相对测量信息以及第一测量信息确定K1个测量信息。第一测量信息可以为K1个测量信息中的任一测量信息,例如第一测量信息可以为K1个测量信息中最大的测量信息,也可以为K1个测量信息中最小的测量信息。
一种实现方式中,如前,中继设备可以将K1个测量信息划分为多组,对于每组测量信息,中继设备向第一网络设备发送一个第一测量信息,对于每组测量信息中的其他测量信息,中继设备发送该测量信息的相对测量信息,即该测量信息与第一测量信息的差值。例如,对于表1,可以将表1中的每一行作为一组,中继设备将每行中的第一个测量信息上报至第一网络设备,每行中的其他测量信息,中继设备上报该测量信息与该行中的第一测量信息的差值。
本申请中,中继设备上报的第一测量信息的量化步长可以与相对测量信息的量化步长不相同。例如,第一测量信息的量化步长为2dB,相对测量信息的量化步长为1dB(或者0.5dB)。以比较小的量化步长上报相对测量信息,可以更准确的上报测量信息,从而方便后续增益/功率控制。
本申请中,中继设备可以只上报K1个测量信息中的部分测量信息。例如,上报方式一,中继设备将K1个测量信息划分为多组,中继设备可以只上报其中的一组或多组测量信息。例如,如果K1个测量信息按照表1至表6中的任一方式进行划分,每列测量信息划分为一组,中继设备可以只上报一列或多列测量信息。
上报方式二,如果中继设备根据K1个测量信息确定K3个综合测量信息,例如一个综合测量信息为一个或多个测量信息的和,中继设备可以向第一网络设备发送K3个综合测量信息。例如,结合表6,中继设备可以发送综合测量信息组中的综合测量信息。在该情况下,中继设备可以不发送K1个测量信息。
上报方式三,中继设备将K1个测量信息划分为多组,中继设备可以只上报每组测量信息中的一个或个组测量信息。例如,结合表6,每列测量信息划分为一组,中继设备可以发送第二列中的至少一个测量信息,第三列中的至少一个测量信息,第四列中的至少一个测量信息。
其中,中继设备如何上报测量信息,可以是根据第一网络设备的指示信息确定的。例如,第一网络设备向中继设备发送测量上报指示信息,测量上报指示信息用于指示中继设备采用上报方式一、上报方式二、上报方式三中的至少一种上报方式上报测量信息。测量上报指示信息还可以用于指示中继设备上报的测量信息的数量,或者测量上报指示信息还可以用于指示中继设备采用每种上报方式上报的测量信息的数量。
进一步地,按上报方式一和上报方式二上报时,可能上报的测量信息相同,因此可以只采用其中一种上报方式即可。例如,仅按照上报方式一上报测量信息,或者仅按照上报方式二上报测量信息。
S1103:第一网络设备根据K1个测量信息确定K2个第一转发功率信息,并向中继设备发送K2个第一转发功率信息。
本申请中,K2个第一转发功率信息中的每个第一转发功率信息根据至少一个测量信息确定,K2大于或等于K1。
实现方式一,一个第一转发功率信息根据一个测量信息确定。
一种实现方式中,对于K1个第一信号中的每个第一信号,第一信号对应的测量信息包括第一信号的接收功率,那么K1个第一信号中的第i个第一信号对应的第一转发功率信息满足以下任一形式:
PTxi=PRxi+Gi;
PTxi=PRxi+Gi+10log10W;
PTxi=PRxi+Gi+10log10W+10log10Por;
其中,PTxi表示第i个第一信号预配置的转发功率,该转发功率可以由第一网络设备或者任一网络设备配置,也可以由发送该第一信号的网络设备配置,i∈{0,1,2,…},PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的第一转发功率信息,W表示第i个第一信号对应的带宽,Por表示第i个第一信号对应的端口数。
一种实现方式中,对于K1个第一信号中的每个第一信号,第一信号对应的测量信息包括第一信号的路损以及接收功率,那么K1个第一信号中的第i个第一信号对应的第一转发功率信息满足以下形式:
Gi=P0i+PLi-PRxi
其中,P0i表示第i个第一信号预配置的目标接收功率,该目标接收功率可以由第一网络设备或者任一网络设备配置,也可以由发送该第一信号的网络设备配置,i∈{0,1,2,…},PRxi表示第i个第一信号的接收功率,Gi表示第i个第一信号对应的第一转发功率信息,PLi表示第i个第一信号的路损。
实现方式二,一个第一转发功率信息根据多个测量信息确定。
下面以第一转发功率信息根据两个测量信息确定为例,其它情况可以以此类推,不再赘述。假设第 一转发功率信息根据测量信息一和测量信息二确定,测量信息一对应的第一信号和测量信息二对应的第一信号来自不同的网络设备,或者测量信息一对应的第一信号和测量信息二对应的第一信号来自相同的网络设备,但来自不同的TRP。
如果按照实现方式一的方法,根据测量信息一确定转发功率信息一,根据测量信息二确定转发功率信息二,那么根据测量信息一和测量信息二确定的第一转发功率信息可以根据转发功率信息一和转发功率信息二确定,例如,该第一转发功率信息满足以下形式:
G=max(a0×G0+b0,a1×G1+b1),或者G=min(a0×G0+b0,a1×G1+b1);
再例如,该第一转发功率信息满足以下任一形式:
G=a0×G0+a1×G1;
G=10×log10(10G0/10+10G1/10);
G=10×log10(a0×10G0/10+a1×10G1/10);
其中,G表示第一转发功率信息,G0表示转发功率信息一,G1表示转发功率信息二,max()表示取最大值运算,min()表示取最小值运算;加权因子a0和a1、偏移因子b0和b1可以预定义,或者由网络设备进行配置。进一步地,加权因子a0和a1、偏移因子b0和b1可以体现不同第一信号的调度带宽或者信号优先级的区别。
一种实现方式中,中继设备采用不同的波束接收测量信息一对应的第一信号和测量信息二对应的第一信号,或者中继设备采用相同的波束接收测量信息一对应的第一信号和测量信息二对应的第一信号。
一种实现方式中,测量信息一对应的第一信号和测量信息二对应的第一信号是第一网络设备同时调度的。
一种实现方式中,测量信息一对应的第一信号和测量信息二对应的第一信号之间是频分复用的。
一种实现方式中,测量信息一对应的第一信号和测量信息二对应的第一信号之间是空分复用的。
一种实现方式中,测量信息一对应的第一信号和测量信息二对应的第一信号之间是同频复用的;即两个信号位于相同频率,或者有部分频率位置重叠,或者两个信号的频率位置可能相同。
本申请中,根据K1个测量信息确定K2个第一转发功率信息之后,可以确定第一转发功率信息、第一信号、中继设备接收第一信号的波束以及网络设备发送第一信号的波束中的至少两项之间的对应关系。举例来说,上述对应关系可以如表示7所示。
表7
其中,RSi-j表示中继设备采用波束#j接收来自网络设备i的第一信号的索引(或者资源索引),中继设备采用波束#j接收该第一信号,RSRP(i,j)表示该第一信号对应的测量信息,i∈{0,1,2,…},j∈{0,1,2,…}。
第一网络设备可以向中继设备发送K2个第一转发功率信息时,将上述对应关系的部分或全部也发送至中继设备。例如,第一网络设备指示每个第一转发功率信息对应的第一信号、接收第一信号的波束、发送第一信号的波束中的至少一项。
第一网络设备可以通过RRC信令发送K2个第一转发功率信息,也可以通过其他方式发送K2个第一转发功率信息,本申请对此并不限定。
本申请中,第一网络设备还可能对K2个第一转发功率信息进行更新,例如对K2个第一转发功率信息中的一个或多个第一转发功率信息的取值进行更新,第一网络设备可以通过MAC CE发送更新后的一个或多个第一转发功率信息,也可以通过其他方式进行更新,本申请对此并不限定。
一种可能的实现方式中,第一网络设备还可以向中继设备发送第一信息,第一信息用于指示功率偏移值,例如,第一信息可以具体指示中继设备在时隙k时,基于功率偏移值进行信号转发。其中,第一信息可以通过DCI进行传输,本申请对此并不限定。
一种可能的实现方式中,第一网络设备还可以向中继设备发送第二信息,第二信息用于指示K2个第一转发功率信息中每个第一转发功率信息对应的功率偏移值。举例来说,结合表7,包括第一转发功率信息与功率偏移值的对应关系可以如表示8所示。
表8
一种可能的实现方式中,功率偏移值可以对应一个信号类型,信号类型包括但不限于广播信号、数据信号、控制信号等。中继设备在转发信号时,可以根据待转发的信号的信号类型确定是否使用功率偏移值。例如,功率偏移值对应广播信号,广播信号包括但不限定于SSB、PRACH、SIB1,当中继设备转发广播信号时,根据第一转发功率信息以及该第一转发功率信息对应的功率偏移值转发该广播信号;当中继设备转发数据信号或控制信号时,根据第一转发功率信息转发该数据信号或控制信号。
本申请中,也可以由中继设备确定K2个第一转发功率信息,在该情况下,可以不再执行S1102和S1103,而是由中继设备按照S1103中描述的方法确定K2个第一转发功率信息,具体过程不再赘述。
S1104:中继设备接收来自第一网络设备的第二信号,并根据第二转发功率信息将第二信号转发至终端设备。
可选的,S1105:中继设备接收来自第二网络设备的第三信号,并根据第三转发功率信息将第三信号转发至终端设备。
如果K1个第一信号来自至少一个网络设备,那么第二网络设备为至少一个网络设备中的一个设备。
其中,第二转发功率信息和第三转发功率信息为K2个第一转发功率信息中的转发功率信息。S1104中的终端设备与S1105中的终端设备,可以为同一个终端设备,也可以为不同的终端设备,本申请对此并不限定。
第二转发功率信息和第三转发功率信息之间的关系可能存在以下两种情况:
情况一,中继设备转发第二信号所使用的第二转发功率信息和转发第三信号所使用的第三转发功率信息之间存在关联,例如,第二转发功率信息和第三转发功率信息相等(或者为同一个转发功率信息),第二转发功率信息或第三转发功率信息为根据来自第一网络设备的第一信号对应的测量信息以及来自第二网络设备的第一信号对应的测量信息确定的。
在情况一中,假设来自第一网络设备的第一信号对应的测量信息为测量信息一,来自第二网络设备的第一信号对应的测量信息为测量信息二,那么第二转发功率信息或第三转发功率信息满足以下任一形式:
G=max(a0×G0+b0,a1×G1+b1);G=min(a0×G0+b0,a1×G1+b1);
G=a0×G0+a1×G1;
G=10×log10(10G0/10+10G1/10);
G=10×log10(a0×10G0/10+a1×10G1/10);
其中,G表示第二转发功率信息或第三转发功率信息,G0表示根据测量信息一确定的转发功率信息一,G1表示根据测量信息二确定的转发功率信息二,max()表示取最大值运算,min()表示取最小值运算;加权因子a0和a1、偏移因子b0和b1可以预定义,或者由网络设备进行配置。
G0和G1的确定方式可以参考S1102中的描述,在此不再赘述。
一种实现方式中,第二转发功率信息或第三转发功率信息和以下至少一项存在关联关系:中继设备接收第二信号所使用的波束,可以称为波束一;中继设备转发第二信号所使用的波束,可以称为波束二;第一网络设备发送第二信号所使用的波束,可以称为波束三;中继设备接收第三信号所使用的波束,可以称为波束四;中继设备转发第三信号所使用的波束,可以称为波束五;第二网络设备发送第三信号所使用的波束,可以称为波束六。
举例来说,假设来自第一网络设备的第一信号称为信号一,根据信号一确定的测量信息为测量信息一,根据测量信息一确定的转发功率信息为转发功率信息一;来自第二网络设备的第一信号称为信号二,根据信号二确定的测量信息为测量信息二,根据测量信息二确定的转发功率信息为转发功率信息二。如果第二转发功率信息或第三转发功率信息是根据转发功率信息一和转发功率信息二确定的,那么信号一可以满足以下至少一项:
中继设备采用波束一接收该信号一;中继设备采用波束二对应的波束接收信号一,波束二对应的波束为预先约定的;第一网络设备采用波束三发送信号一。
相应的,信号二满足以下至少一项:中继设备采用波束四接收该信号二;中继设备采用波束五对应的波束接收信号二,波束五对应的波束为预先约定的;第二网络设备采用波束六发送信号二。
一种实现方式中,假设第一网络设备发送了多个第一信号,第二网络设备也发送了多个第一信号,测量信息一和测量信息二为根据第一网络设备的多个第一信号和根据第二网络设备的多个第一信号获得的最佳测量结果。
情况二,中继设备转发第二信号所使用的第二转发功率信息和转发第三信号所使用的第三转发功率信息之间相互独立,即第二转发功率信息为根据来自第一网络设备的第一信号对应的测量信息确定的,第三转发功率信息为根据来自第二网络设备的第一信号对应的测量信息确定的。
如果第二转发功率信息和第三转发功率信息之间相互独立,下面分别进行描述如何确定第二转发功率信息,下面的描述也适用于第三转发功率信息,后续不再重复描述。
一种实现方式中,中继设备使用中继回传侧波束接收该第二信号,并使用中继接入侧波束转发该第二信号。中继设备接收第二信号的中继回传侧波束和/或转发第二信号的中继接入侧波束,可以由网络设备配置,也可以由中继设备自主确定,本申请对此并不限定。如果由网络设备配置,网络设备可以通过控制信息指示中继设备接收第二信号的中继回传侧波束以及转发第二信号所使用的中继接入侧波束。上面的描述也适用于第三信号,在此不再赘述。
当中继设备接收第二信号时,中继设备如何从K2个第一转发功率信息确定一个第一转发功率信息作为第二转发功率信息,可能存在多种实现方式,本申请对此并不限定。
一种实现方式中,中继设备将K2个第一转发功率信息中,根据来自第一网络设备的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息。即第二转发功率信息为K2个第一转发功率信息中,根据来自第一网络设备的第一信号对应的测量信息确定的。例如第二转发功率信息对应的测量信息,可以为来自第一网络设备的多个第一信号对应的多个测量信息的最大值。
一种实现方式中,中继设备转发第二信号所使用的第二转发功率信息,和中继设备接收第二信号所使用的波束、中继设备转发第二信号所使用的波束、第一网络设备发送第二信号所使用的波束、第一网络设备发送第一信号所使用的波束中的至少一项存在关联关系。
例如,如果中继设备采用第一波束接收第二信号,中继设备采用第二波束转发第二信号,那么中继设备根据第一波束从K2个第一转发功率信息中确定一个第一转发功率信息作为第二转发功率信息。具体的,中继设备将K2个第一转发功率信息中,根据特定的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息;其中,该特定的第一信号来自第一网络设备,且该特定的第一信号满足以下至少一项:中继设备采用第一波束接收该第一信号;中继设备采用第二波束对应的波束接收该第一信号,第二波束对应的波束为预先约定的。
再例如,可以预先建立中继设备的中继回传侧波束和中继接入侧波束之间的对应关系。如果中继设备采用第一波束(此时该第一波束为中继接入侧波束)发送第二信号,中继设备将K2个第一转发功率信息中,根据采用第二波束接收的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息;其中,该第二波束为中继回传侧波束,且第二波束与第一波束存在对应关系。
再例如,网络设备采取第三波束发送第二信号,中继设备采用第二波束转发第二信号,那么中继设备根据第三波束和/或第二波束,从K2个第一转发功率信息中确定一个第一转发功率信息作为第二转发 功率信息。具体的,中继设备将K2个第一转发功率信息中,根据特定的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息;其中,该特定的第一信号来自第一网络设备,且该特定的第一信号满足以下至少一项:网络设备采用第三波束发送该第一信号;中继设备采用第二波束对应的波束接收该第一信号,第二波束对应的波束为预先约定的。
举例来说,网络设备采用两个参考信号资源集合(分别为第一参考信号资源集合和第二参考信号资源集合)发送第一信号,每个参考信号集合对应一个TRP,这两个参考信号资源集合包括的参考信号资源的数量可以相同,也可以不同,下面以这两个参考信号资源集合均包括X个参考信号资源为例说明,并不代表对参考信号资源集合包括的资源数量的限定。
如图12所示,第一网络设备单独采用第一参考信号资源集合按照时间顺序发送的X个第一信号分别为RS(0,0)、RS(0,1)、RS(0,2)···RS(0,X-1);中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。假设中继设备根据这X个第一信号获得的X个测量信息中,RS(0,0)对应的测量信息最大,对应中继设备的波束#0。
第二网络设备单独采用第二参考信号资源集合按照时间顺序发送的X个第一信号分别为RS(1,0)、RS(1,1)、RS(1,2)···RS(1,X-1);中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。假设中继设备根据这X个第一信号获得的X个测量信息中,RS(1,1)对应的测量信息最大,对应中继设备的波束#1。假设网络设备同时采用第一参考信号集合和第二参考信号资源集合发送上述2X个第一信号时,中继设备根据RS(0,0)和RS(1,0)获得的测量信息最大,对应中继设备的波束#0(实际中,可以是波束#0和波束#1之外的波束,不作限定)。
再例如,假设第一网络设备同时采用第一参考信号集合和第二参考信号资源集合发送上述2X个第一信号时,中继设备根据RS(0,0)和RS(0,1)获得的测量信息最大,对应中继设备的波束#2(实际中,可以是波束#0至波束#(X-1)中的任一波束,不作限定)。
应该理解,以上波束#0、波束#1、RS(0,0),RS(1,1)仅为示例,实际中需根据实际测量结果来确定。
在另外一种实现中,可以根据预设的条件确定波束#0、波束#1、RS(0,0),RS(1,1)。例如,只需要中继设备测量到的信号质量超过门限值即可。其中门限值可以是预设,或者根据网络控制信息确定。
当中继设备接收的第二信号来自第一网络设备的TRP0时,如果中继设备采用波束#0接收第二信号。进一步的,中继设备可以根据RS(0,0)对应的测量信息(或者,RS(0,1))确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
同样的,当中继设备接收的第二信号来自第一网络设备的TRP1时,如果中继设备采用波束#1接收第二信号。中继设备可以将根据RS(1,1)对应的测量信息(或者,RS(1,1))确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
当中继设备接收的第二信号来自网络设备的TRP0以及TRP1时,即网络设备同时发送了2个第二信号,分别通过TRP0以及TRP1发送,如果中继设备采用波束#0接收第二信号(或者第二信号通过两个TRP同时发送),中继设备可以将根据RS(0,0)对应的测量信息(或者,RS(0,0))以及RS(1,0)(或者,RS(1,0))对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
当中继设备接收的第二信号来自网络设备的TRP0以及TRP1时,即网络设备同时发送了2个第二信号,分别通过TRP0以及TRP1发送,如果中继设备采用波束#2接收第二信号,中继设备可以将根据RS(0,2)对应的测量信息(或者,RS(0,2))以及RS(1,2)对应的测量信息(或者,RS(1,2))确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
一种实现方式中,如果中继设备采用第一波束转发第二信号,采用第二波束接收第二信号,第一网络设备采用第三波束发送第二信号,中继设备将K2个第一转发功率信息中,根据特定的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息;其中,该特定的第一信号来自第一网络设备,且该特定的第一信号满足以下至少一项:中继设备采用第二波束接收该第一信号;第一网络设备采用第三波束发送该第一信号;中继设备采用第一波束对应的波束接收该第一信号,第一波束对应的波束为预先约定的。
举例来说,网络设备采用两个参考信号资源集合(分别为第一参考信号资源集合和第二参考信号资源集合)发送第一信号,每个参考信号集合对应一个TRP,这两个参考信号资源集合包括的参考信号资源的数量可以相同,也可以不同,下面以这两个参考信号资源集合均包括X个参考信号资源为例说 明,并不代表对参考信号资源集合包括的资源数量的限定。
如图13所示,网络设备共包括Y个波束,假设Y=2,网络设备包括波束#A和波束#B,Y取值大于2情况可以参考此处的描述,在此不再赘述。网络设备单独采用每个波束通过第一参考信号资源集合按照时间顺序发送的X个第一信号分别为RS(0,0)、RS(0,1)、RS(0,2)···RS(0,X-1);对于每个波束发送的X个第一信号,中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。依此类推,网络设备发送Y个参考信号资源集合,总共XY个第一个信号。假设中继设备根据这XY个第一信号获得的XY个测量信息中,对应中继设备的波束#0,且对应网络设备的波束#A的第一信号对应的测量信息最大。
网络设备单独采用每个波束通过第二参考信号资源集合按照时间顺序发送的X个第一信号分别为RS(1,0)、RS(1,1)、RS(1,2)···RS(1,X-1);对于网络设备的每个波束发送的X个第一信号,中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。假设中继设备根据这XY个第一信号获得的XY个测量信息中,对应中继设备的波束#1,且对应网络设备的波束#B的第一信号对应的测量信息最大。
假设网络设备同时采用波束A和波束B发送第一信号时,中继设备根据波束#0获得的测量信息最大。当中继设备接收的第二信号来自网络设备的TRP0时,如果中继设备采用波束#0接收第二信号,如果网络设备采用波束#A发送第二信号,中继设备可以将根据对应中继设备的波束#0,且对应网络设备的波束#A的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
当中继设备接收的第二信号来自第一网络设备的TRP0以及TRP1时,即第一网络设备发送了2个第二信号(或者第二信号通过两个TRP同时发送),分别通过TRP0以及TRP1发送,如果中继设备采用波束#0接收第二信号,如果第一网络设备采用波束#A和波束#B发送第二信号,中继设备可以将根据对应中继设备的波束#0,且对应第一网络设备的波束#A的第一信号对应的测量信息以及对应中继设备的波束#0,且对应第一网络设备的波束#B的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
本申请应用于多载波传输模式的场景时,分别在K1个载波中对K1个第一信号的测量信息可以用于在Q个载波中进行信号转发,K1小于或等于Q,Q为中继设备支持的最大载波数。具体的,中继设备可以根据第二信号占用的载波数量以及K1个第一转发功率信息确定第二转发功率信息。
实现方式一,第二转发功率信息满足以下形式:
G=G1+10×log10(C/K1),或者G2=G1-10×log10(C/K1);
其中,G1表示根据第一信号确定的第一转发功率信息,G表示第二转发功率信息,C表示第二信号占用的载波数量。
实现方式二,K1个第一转发功率信息与Q个载波存在预设对应关系,该对应关系可以为预设的,也可以为第一网络设备配置的。
举例来说,K个第一转发功率信息的索引分别为{PC#(0),PC#(1),…,PC#(K1-1)},Q个载波的索引分别为{c_0,c_1,…,c_(Q-1)},K1个第一转发功率信息与Q个载波的对应关系可以如表示9所示。
表9
其中,一个第一转发功率信息可以对应一个或多个载波,0≤Kq≤K1-1,0≤q≤Q-1。
当中继设备转发的第二信号占用1个载波时,可以根据K1个第一转发功率信息与Q个载波的对应关系确定转发第二信号的第二转发功率信息,即将第二信号占用的载波对应的第一转发功率信息作为第二转发功率信息。
当中继设备转发的第二信号占用多个载波时,中继设备转发第二信号的第二转发功率信息满足以下形式:
其中,G表示第二转发功率信息,C表示第二信号占用的载波数量,Gi表示第二信号占用的第i个载波对应的第一转发功率信息。
例如,第二信号占用的载波的索引为{0,1,2},其对应的第一转发功率信息分别为G0,G1,G2。那么第二转发功率信息可以为:G=10×log10(10G0/10+10G1/10+10G2/10)。
本申请应用于多载波传输模式的场景时,中继设备转发第二信号所使用的第二转发功率信息,和中继设备接收第二信号所使用的波束以及中继设备转发第二信号所使用的波束中的至少一项存在关联关系。
举例来说,第一网络设备通过两个载波(载波0和载波1)发送第一信号,第一网络设备通过这两个载波发送的第一信号的数量可以相同,也可以不同,下面以通过这两个载波发送的第一信号的数量相同为例说明,并不代表对第一信号的数量的限定。如图14所示,第一网络设备通过载波0按照时间顺序发送的X个第一信号分别为RS(0,0)、RS(0,1)、RS(0,2)···RS(0,X-1);中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。假设中继设备根据这X个第一信号获得的X个测量信息中,RS(0,0)对应的测量信息最大,对应中继设备的波束#0。
第一网络设备通过载波1按照时间顺序发送的X个第一信号分别为RS(1,0)、RS(1,1)、RS(1,2)···RS(1,X-1);中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。假设中继设备根据这X个第一信号获得的X个测量信息中,RS(1,1)对应的测量信息最大,对应中继设备的波束#1。
假设第一网络设备同时通过载波0和载波1发送上述2X个第一信号时,中继设备根据RS(0,0)和RS(1,0)获得的测量信息最大,对应中继设备的波束#0。
当中继设备接收的第二信号对应载波0时,中继设备可以采用波束#0转发第二信号。进一步的,中继设备可以根据RS(0,0)对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
同样的,当中继设备接收的第二信号对应载波1时,如果中继设备采用波束#1转发第二信号,中继设备可以将根据RS(1,1)对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
当中继设备接收的第二信号对应载波0以及载波1时,即第一网络设备发送了2个第二信号,分别通过载波0以及载波1发送,如果中继设备采用波束#0接收第二信号,中继设备可以将根据RS(0,0)对应的测量信息以及RS(1,0)对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
本申请应用于多载波传输模式的场景时,中继设备转发第二信号所使用的第二转发功率信息,还可以和中继设备接收第二信号所使用的波束以及中继设备转发第二信号所使用的波束以及第一网络设备发送第二信号所使用的波束中的至少一项存在关联关系。
举例来说,第一网络设备通过两个载波(载波0和载波1)发送第一信号,第一网络设备通过这两个载波发送的第一信号的数量可以相同,也可以不同,下面以通过这两个载波发送的第一信号的数量相同为例说明,并不代表对第一信号的数量的限定。如图15所示,第一网络设备共包括Y个波束,第一网络设备采用每个波束通过载波0按照时间顺序发送的X个第一信号分别为RS(0,0)、RS(0,1)、RS(0,2)···RS(0,X-1);对于第一网络设备的每个波束发送的X个第一信号,中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。假设中继设备根据这XY个第一信号获得的XY个测量信息中,对应中继设备的波束#0,且对应第一网络设备的波束#A的第一信号对应的测量信息最大。
第一网络设备采用每个波束通过载波1按照时间顺序发送的X个第一信号分别为RS(1,0)、RS(1,1)、RS(1,2)···RS(1,X-1);对于第一网络设备的每个波束发送的X个第一信号,中继设备分别采用波束#0至波束#(X-1)接收上述X个第一信号。假设中继设备根据这XY个第一信号获得的XY个测量信息中,对应中继设备的波束#0,且对应第一网络设备的波束#B的第一信号对应的测量信息最大。
假设第一网络设备同时采用载波0和载波1发送上述2XY个第一信号时,中继设备获得的2XY个测量信息中,根据RS(0,0)和RS(1,0)获得的测量信息最大,其中该RS(0,0)对应中继设备的波束#0,且对应第一网络设备的波束#A;该RS(1,0)对应中继设备的波束#0,且对应第一网络设备的波束#B。
当中继设备接收的第二信号对应载波0时,如果中继设备采用波束#0接收第二信号,如果第一网络设备采用波束#A发送第二信号,中继设备可以将根据对应中继设备的波束#0,且对应第一网络设备的波束#A的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
当中继设备接收的第二信号对应载波0以及载波1时,即第一网络设备发送了2个第二信号,分别通过载波0以及载波1发送,如果中继设备采用波束#0接收第二信号。进一步的,如果第一网络设备采用波束#A和波束#B发送第二信号,中继设备可以将根据对应中继设备的波束#0,且对应第一网络设备的波束#A的第一信号对应的测量信息以及对应中继设备的波束#0,且对应第一网络设备的波束#B的第一信号对应的测量信息确定的第一转发功率信息作为第二转发功率信息,从而根据该第二转发功率信息转发第二信号。
S1106:中继设备接收来自终端设备的第四信号,并根据第四转发功率信息将第四信号转发至第一网络设备,第四转发功率信息为K2个第一转发功率信息中的一个第一转发功率信息。
本申请中,中继设备转发第四信号的过程,可以和中继设备转发第二信号的过程类似,例如第四转发功率信息的确定方式可以和第二转发功率信息的确定方式相同,具体可以参考S1104中的描述,在此不再赘述。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图16所示,本申请实施例还提供一种通信装置用于实现上述方法中网络设备或中继设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置1600可以包括:处理单元1601和通信单元1602。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或中继设备发送和接收的步骤。
以下,结合图16至图17详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为接口电路、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1602中用于实现接收功能的器件视为接收单元,将通信单元1602中用于实现发送功能的器件视为发送单元,即通信单元1602包括接收单元和发送单元。通信单元有时也可以称为收发机、接口电路、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
一种实现方式中,处理单元,用于根据多个第一信号确定多个测量信息,多个测量信息中的每个测量信息对应多个第一信号中的一个第一信号;
通信单元,用于向第一网络设备发送多个测量信息,并接收来自第一网络设备的转发功率信息;转发功率信息根据一个或多个测量信息确定,转发功率信息用于中继设备转发来自网络设备或终端设备的信号。
一种实现方式中,通信单元,用于接收来自中继设备的多个测量信息;多个测量信息中的每个测量信息对应多个第一信号中的一个第一信号;
处理单元,用于根据多个测量信息确定转发功率信息;转发功率信息根据多个测量信息确定;转发功率信息用于中继设备转发来自网络设备或终端设备的信号;
通信单元,用于向中继设备发送转发功率信息。
一种实现方式中,通信单元,用于接收多个第一信号;
处理单元,用于根据多个第一信号确定多个测量信息,多个测量信息中的每个测量信息对应多个第一信号中的一个第一信号,多个第一信号中的一个第一信号来自至少一个网络设备中的一个网络设备;根据多个测量信息确定转发功率信息;转发功率信息根据一个或多个测量信息确定;转发功率信息用于中继设备转发来自网络设备或终端设备的信号。
一种实现方式中,处理单元,用于根据K1个第一信号确定K1个测量信息,K1个测量信息中的每个测量信息对应K1个第一信号中的一个第一信号,K1为大于0的整数;
通信单元,用于向第一网络设备发送K1个测量信息,并接收来自第一网络设备的K2个第一转发功率信息;K2个第一转发功率信息中的每个第一转发功率信息根据一个或多个测量信息确定,K2大于或等于K1。
一种实现方式中,通信单元,用于接收来自中继设备的K1个测量信息;K1个测量信息中的每个测量信息对应K1个第一信号中的一个第一信号,K1为大于0的整数;
处理单元,用于根据K1个测量信息确定K2个第一转发功率信息;K2个第一转发功率信息中的每个第一转发功率信息根据至少一个测量信息确定,K2大于或等于K1;第一转发功率信息用于中继设备向终端设备转发信号;
通信单元,用于向中继设备发送K2个第一转发功率信息。
以上只是示例,处理单元1601和通信单元1602还可以执行其他功能,更详细的描述可以参考图4至图11任一所示的实施例中相关描述,这里不加赘述。
如图17所示为本申请实施例提供的通信装置示意图,图17所示的装置可以为图16所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中中继设备或者网络设备的功能。为了便于说明,图17仅示出了该通信装置的主要部件。
如图17所示,通信装置1700包括处理器1710和接口电路1720。处理器1710和接口电路1720之间相互耦合。可以理解的是,接口电路1720可以为接口电路、管脚、接口电路或输入输出接口。可选的,通信装置1700还可以包括存储器1730,用于存储处理器1710执行的指令或存储处理器1710运行指令所需要的输入数据或存储处理器1710运行指令后产生的数据。
当通信装置1700用于实现图4至图11任一所示的方法时,处理器1710用于实现上述处理单元1601的功能,接口电路1720用于实现上述通信单元1602的功能。
当上述通信装置为应用于中继设备的芯片时,该中继设备芯片实现上述方法实施例中中继设备的功能。该中继设备芯片从中继设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给中继设备的;或者,该中继设备芯片向中继设备中的其它模块(如射频模块或天线)发送信息,该信息是中继设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是中继设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给中继设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元,还可以是其它通用处理器、数字信号处理器、专用集成电路或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘或者本领域熟知的任何其它形式的存储介质中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备 的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    中继设备根据多个第一信号确定多个测量信息,所述多个测量信息中的每个测量信息对应一个第一信号;
    所述中继设备向第一网络设备发送所述多个测量信息,并接收来自所述第一网络设备的转发功率信息;所述转发功率信息根据所述多个测量信息确定,所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自所述第一网络设备的第二信号,并根据所述转发功率信息将所述第二信号转发至终端设备;
    所述转发功率信息和所述中继设备接收所述第二信号所使用的传输方向、所述中继设备转发所述第二信号所使用的传输方向、所述第一网络设备发送所述第二信号所使用的传输方向中的至少一项存在关联关系。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自第二网络设备的第三信号,并根据所述转发功率信息将所述第三信号转发至终端设备;
    所述转发功率信息和以下至少一项存在关联关系:
    所述中继设备接收所述第二信号所使用的传输方向;所述中继设备转发所述第二信号所使用的传输方向;所述第一网络设备发送所述第二信号所使用的传输方向;所述中继设备接收所述第三信号所使用的传输方向;所述中继设备转发所述第三信号所使用的传输方向;所述第二网络设备发送所述第三信号所使用的传输方向。
  4. 根据权利要求1至3任一所述的方法,其特征在于,对于所述多个第一信号中的每个第一信号,所述第一信号对应的所述测量信息为所述第一信号的接收功率;
    所述多个第一信号中的第i个第一信号对应所述转发功率信息,所述转发功率信息满足以下任一形式:
    PTxi=PRxi+Gi;
    PTxi=PRxi+Gi+10log10W;
    PTxi=PRxi+Gi+10log10W+10log10Por;
    其中,PTxi表示所述第i个第一信号预配置的转发功率,PRxi表示所述第i个第一信号的接收功率,Gi表示所述第i个第一信号对应的所述转发功率信息,W表示所述第i个第一信号对应的带宽,Por表示所述第i个第一信号对应的端口数。
  5. 根据权利要求1至3任一所述的方法,其特征在于,对于所述多个第一信号中的每个第一信号,所述第一信号对应的所述测量信息为所述第一信号的路损;
    所述多个第一信号中的第i个第一信号对应所述转发功率信息,所述转发功率信息满足以下形式:
    Gi=P0i+PLi-PRxi
    其中,P0i表示所述第i个第一信号预配置的目标接收功率,PRxi表示所述第i个第一信号的接收功率,Gi表示所述第i个第一信号对应的所述转发功率信息,PLi表示所述第i个第一信号的路损。
  6. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自所述第一网络设备的第一信息,所述第一信息用于指示功率偏移值;
    所述中继设备根据所述转发功率信息将所述第二信号转发至终端设备,包括:
    所述中继设备根据所述转发功率信息以及所述功率偏移值将所述第二信号转发至所述终端设备。
  7. 一种通信方法,其特征在于,包括:
    第一网络设备接收来自中继设备的多个测量信息;所述多个测量信息中的每个测量信息对应多个第一信号中的一个第一信号;
    所述第一网络设备根据所述多个测量信息确定转发功率信息;所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号;
    所述第一网络设备向所述中继设备发送所述转发功率信息。
  8. 根据权利要求7所述的方法,其特征在于,对于所述多个第一信号中的每个第一信号,所述第一信号对应的所述测量信息为所述第一信号的接收功率;
    所述多个第一信号中的第i个第一信号对应所述转发功率信息,所述转发功率信息满足以下任一形式:
    PTxi=PRxi+Gi;
    PTxi=PRxi+Gi+10log10W;
    PTxi=PRxi+Gi+10log10W+10log10Por;
    其中,PTxi表示所述第i个第一信号预配置的转发功率,PRxi表示所述第i个第一信号的接收功率,Gi表示所述第i个第一信号对应的所述转发功率信息,W表示所述第i个第一信号对应的带宽,Por表示所述第i个第一信号对应的端口数。
  9. 根据权利要求7所述的方法,其特征在于,对于所述多个第一信号中的每个第一信号,所述第一信号对应的所述测量信息为所述第一信号的路损;
    所述多个第一信号中的第i个第一信号对应所述转发功率信息,所述转发功率信息满足以下形式:
    Gi=P0i+PLi-PRxi
    其中,P0i表示所述第i个第一信号预配置的目标接收功率,PRxi表示所述第i个第一信号的接收功率,Gi表示所述第i个第一信号对应的所述转发功率信息,PLi表示所述第i个第一信号的路损。
  10. 根据权利要求7至9任一所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述中继设备发送第一信息,所述第一信息用于指示所述转发功率信息对应的功率偏移值。
  11. 一种通信方法,其特征在于,包括:
    中继设备根据多个第一信号确定多个测量信息,所述多个测量信息中的每个测量信息对应所述多个第一信号中的一个第一信号,所述多个第一信号中的一个第一信号来自至少一个网络设备中的一个网络设备;
    所述中继设备根据所述多个测量信息确定转发功率信息;所述转发功率信息根据多个所述测量信息确定;所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自所述网络设备的第二信号,并根据所述转发功率信息将所述第二信号转发至终端设备。
  13. 根据权利要求12所述的方法,其特征在于,所述转发功率信息和所述中继设备接收所述第二信号所使用的传输方向、所述中继设备转发所述第二信号所使用的传输方向、所述第一网络设备发送所述第二信号所使用的传输方向中的至少一项存在关联关系。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自所述网络设备的第一信息,所述第一信息用于指示功率偏移值;
    所述根据所述转发功率信息将所述第二信号转发至终端设备,包括:
    所述中继设备根据所述转发功率信息以及所述功率偏移值将所述第二信号转发至所述终端设备。
  15. 根据权利要求11至14任一所述的方法,其特征在于,对于所述多个第一信号中的每个第一信号,所述第一信号对应的所述测量信息为所述第一信号的接收功率;
    所述多个第一信号中的第i个第一信号对应所述转发功率信息,所述转发功率信息满足以下任一形式:
    PTxi=PRxi+Gi;
    PTxi=PRxi+Gi+10log10W;
    PTxi=PRxi+Gi+10log10W+10log10Por;
    其中,PTxi表示所述第i个第一信号预配置的转发功率,PRxi表示所述第i个第一信号的接收功率,Gi表示所述第i个第一信号对应的所述转发功率信息,W表示所述第i个第一信号对应的带宽,Por表示所述第i个第一信号对应的端口数。
  16. 根据权利要求11至15任一所述的方法,其特征在于,对于所述多个第一信号中的每个第一信号,所述第一信号对应的所述测量信息为所述第一信号的路损;
    所述多个第一信号中的第i个第一信号对应所述转发功率信息,所述转发功率信息满足以下形式:
    Gi=P0i+PLi-PRxi
    其中,P0i表示所述第i个第一信号预配置的目标接收功率,PRxi表示所述第i个第一信号的接收功率,Gi表示所述第i个第一信号对应的所述转发功率信息,PLi表示所述第i个第一信号的路损。
  17. 一种通信装置,其特征在于,包括:
    处理单元,用于根据多个第一信号确定多个测量信息,所述多个测量信息中的每个测量信息对应所述多个第一信号中的一个第一信号;
    通信单元,用于向第一网络设备发送多个测量信息,并接收来自所述第一网络设备的转发功率信息;所述转发功率信息根据多个所述测量信息确定,所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号。
  18. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自中继设备的多个测量信息;所述多个测量信息中的每个测量信息对应多个第一信号中的一个第一信号;
    处理单元,用于根据所述多个测量信息确定转发功率信息;所述转发功率信息根据多个测量信息确定;所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号;
    所述通信单元,用于向所述中继设备发送所述转发功率信息。
  19. 一种通信装置,其特征在于,包括:
    通信单元,用于接收多个第一信号;
    处理单元,用于根据多个第一信号确定多个测量信息,所述多个测量信息中的每个测量信息对应所述多个第一信号中的一个第一信号,所述多个第一信号中的一个第一信号来自至少一个网络设备中的一个网络设备;根据所述多个测量信息确定转发功率信息;所述转发功率信息根据多个所述测量信息确定;所述转发功率信息用于所述中继设备转发来自网络设备或终端设备的信号。
  20. 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中的计算机程序或指令,使得所述通信装置实现权利要求1至16中任意一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现如权利要求1至16中任意一项所述的方法。
  22. 一种通信系统,其特征在于,包括用于执行如权利要求1至6中任意一项所述的方法的中继设备,以及用于执行如权利要求7至10中任意一项所述的方法的网络设备。
PCT/CN2023/103489 2022-07-29 2023-06-28 一种通信方法及装置 WO2024021981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210910193.9 2022-07-29
CN202210910193.9A CN117528745A (zh) 2022-07-29 2022-07-29 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024021981A1 true WO2024021981A1 (zh) 2024-02-01

Family

ID=89705273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103489 WO2024021981A1 (zh) 2022-07-29 2023-06-28 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117528745A (zh)
WO (1) WO2024021981A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527587A (zh) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 功率控制方法、系统以及中继设备
CN102811469A (zh) * 2012-07-25 2012-12-05 中兴通讯股份有限公司 一种功率控制方法和装置
CN103327593A (zh) * 2012-03-21 2013-09-25 中国移动通信集团公司 一种自适应上行功控方法及移动中继设备
CN114514781A (zh) * 2022-01-14 2022-05-17 北京小米移动软件有限公司 发送功率确定方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527587A (zh) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 功率控制方法、系统以及中继设备
CN103327593A (zh) * 2012-03-21 2013-09-25 中国移动通信集团公司 一种自适应上行功控方法及移动中继设备
CN102811469A (zh) * 2012-07-25 2012-12-05 中兴通讯股份有限公司 一种功率控制方法和装置
CN114514781A (zh) * 2022-01-14 2022-05-17 北京小米移动软件有限公司 发送功率确定方法及装置

Also Published As

Publication number Publication date
CN117528745A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11881917B2 (en) Communications method and apparatus
WO2020134944A1 (zh) 干扰测量的方法和通信装置
US11265921B2 (en) Method and apparatus for non-contention based random access
US20210321349A1 (en) Method and device for processing synchronization signal block information and communication device
WO2021000680A1 (zh) 一种协作传输方法及通信装置
JP2022521719A (ja) 電力制御方法および電力制御装置
WO2021196965A1 (zh) 一种测量间隙的配置方法及装置
US20240040467A1 (en) Signal forwarding method, relay device, and communication system
US20240089916A1 (en) Method and device for paging
WO2023125223A1 (zh) 下行传输的方法及装置
WO2023011188A1 (zh) 一种通信方法及装置
WO2022022517A1 (zh) 确定传输功率的方法及装置
WO2021047485A1 (zh) 一种传输方法、终端设备以及网络设备
WO2024021981A1 (zh) 一种通信方法及装置
WO2021088089A1 (zh) 链路质量监测方法及相关产品
WO2023208166A1 (zh) 一种定时指示的方法及通信装置
EP4319264A1 (en) Signal forwarding method and communication apparatus
WO2023077279A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024032246A1 (zh) 一种能力上报的方法和通信装置
US20230336260A1 (en) Method for signal processing, terminal device, and network device
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2023284649A1 (zh) 信号传输方法及装置、通信系统
WO2022104689A1 (zh) 一种小区频域带宽切换的方法、相关装置以及设备
WO2023208145A1 (zh) 一种信息传输方法及装置
WO2024026832A1 (zh) 无线通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845194

Country of ref document: EP

Kind code of ref document: A1