WO2024026832A1 - 无线通信的方法及装置 - Google Patents

无线通信的方法及装置 Download PDF

Info

Publication number
WO2024026832A1
WO2024026832A1 PCT/CN2022/110557 CN2022110557W WO2024026832A1 WO 2024026832 A1 WO2024026832 A1 WO 2024026832A1 CN 2022110557 W CN2022110557 W CN 2022110557W WO 2024026832 A1 WO2024026832 A1 WO 2024026832A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
indication
mac
indicate
status
Prior art date
Application number
PCT/CN2022/110557
Other languages
English (en)
French (fr)
Inventor
史志华
方昀
曹建飞
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/110557 priority Critical patent/WO2024026832A1/zh
Publication of WO2024026832A1 publication Critical patent/WO2024026832A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a wireless communication method and device.
  • the protocol does not consider the multi-transmission point (transmitting and receiving point, TRP) transmission scenario, and only supports the single TRP scenario. In other words, for multi-TRP transmission scenarios, there is currently no clear solution on how to configure and indicate the unified TCI status.
  • This application provides a wireless communication method and device. Various aspects in the embodiments of this application are introduced below.
  • a wireless communication method including: a terminal device receiving first indication information sent by a network device, where the first indication information is used to indicate multiple unified transmission configuration indication TCI states.
  • a wireless communication method including: a network device sending first indication information to a terminal device, where the first indication information is used to indicate multiple unified transmission configuration indication TCI states.
  • a terminal device including: a receiving unit configured to receive first indication information sent by a network device, where the first indication information is used to indicate multiple unified transmission configuration indication TCI states.
  • a network device including: a sending unit configured to send first indication information to a terminal device, where the first indication information is used to indicate multiple unified transmission configuration indication TCI states.
  • a fifth aspect provides a terminal device, including a transceiver, a memory and a processor.
  • the memory is used to store programs, and the processor is used to call the program in the memory to execute the method as described in the first aspect. .
  • a network device including a transceiver, a memory and a processor, the memory is used to store a program, and the processor is used to call the program in the memory to execute the method described in the second aspect.
  • a device including a processor for calling a program from a memory to execute the method described in the first aspect.
  • a device including a processor for calling a program from a memory to execute the method described in the second aspect.
  • a chip including a processor for calling a program from a memory, so that a device equipped with the chip executes the method described in the first aspect.
  • a chip including a processor for calling a program from a memory, so that a device installed with the chip executes the method described in the second aspect.
  • a computer-readable storage medium is provided, with a program stored thereon, and the program causes a computer to execute the method described in the first aspect.
  • a computer-readable storage medium is provided, with a program stored thereon, and the program causes the computer to execute the method described in the second aspect.
  • a computer program product including a program that causes a computer to execute the method described in the first aspect.
  • a fourteenth aspect provides a computer program product, including a program that causes a computer to execute the method described in the second aspect.
  • a computer program is provided, the computer program causing a computer to execute the method described in the first aspect.
  • a computer program is provided, the computer program causing a computer to execute the method described in the second aspect.
  • the network device can indicate multiple unified TCI states to the terminal device through the first indication information, so that the terminal device can obtain multiple unified TCI states corresponding to multiple TRPs, thus providing unified TCI states in a multiple TRP scenario.
  • the way TCI status is indicated provides a clear solution.
  • Figure 1 is a schematic diagram of a wireless communication system applicable to embodiments of the present application.
  • FIG. 2 is a schematic diagram of a TCI status indication method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of multi-TRP transmission provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of multi-beam transmission provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a wireless communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a first MAC CE frame structure provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of yet another second MAC CE frame structure or a third MAC CE frame structure provided by an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • the communication device involved in this application may be a network device or a terminal device.
  • the first communication device is a network device
  • the second communication device is a terminal device.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the first communication device and the second communication device are both network devices, or both are terminal devices.
  • the design goals of communication systems include large-bandwidth communications in high frequency bands (eg, frequency bands above 6 GHz).
  • high frequency bands eg, frequency bands above 6 GHz.
  • the path loss during transmission will increase, thus affecting the coverage capability of the high-frequency system. Therefore, in order to effectively ensure the coverage of high-frequency bands, an effective technical solution is based on massive antenna array (Massive multiple-in multipleout, Massive MIMO) to form a shaped beam with greater gain and overcome propagation loss. , ensure the coverage of the communication system.
  • Massive MIMO Massive MIMO
  • a cell In some communication systems (such as 2G, 3G or 4G systems), a cell (or sector) uses a wider beam to cover the entire cell. Therefore, at every moment, terminal equipment within the cell coverage has the opportunity to obtain the resources allocated by the system.
  • Some communication systems can cover the entire cell through different beams, that is, each beam covers a smaller range, and the effect of multiple beams covering the entire cell is achieved through time scanning (sweeping).
  • Different beams can be identified by the differences in the signals carried on the beams.
  • the synchronization signals and physical broadcast channel blocks (synchronization signal/physical boardcast channel block, SS block, also called SS/PBCH block or SSB) transmitted on different beams are different, and the terminal equipment can identify them through different SS blocks.
  • different beams For another example, the channel state information reference signal (CSI-RS) transmitted on different beams is different, and the terminal device can identify different beams through CSI-RS and/or CSI-RS resources.
  • CSI-RS channel state information reference signal
  • downlink signals or downlink channels can be transmitted through different downlink beams.
  • terminal equipment generally does not have analog beams. Therefore, the terminal equipment can use an omnidirectional antenna (or a nearly omnidirectional antenna) to receive downlink signals sent by network equipment.
  • Network equipment can send downlink signals to terminal equipment through different downlink transmission beams.
  • the terminal device may have an analog beam, and the terminal device may receive signals using a downlink receive beam corresponding to the downlink transmit beam. In this case, the terminal device can determine the transmit beam-related information on the network device side or the corresponding receive beam-related information on the terminal device side based on the beam indication information.
  • the beam indication information may not directly indicate the beam itself, but may be indicated by quasi co-colated (QCL) information (or QCL assumption) between signals.
  • QCL quasi co-colated
  • the terminal device can determine the corresponding received signal or channel based on the QCL information, where the QCL information can be indicated by the TCI state.
  • QCL information and TCI status will be introduced in detail below.
  • the beam used by the transmitting end to send signals is called the “transmitting beam”
  • the beam used by the receiving end to receive signals is called the “receiving beam”.
  • the above-mentioned transmit beam may also be called a spatial domain transmission filter (spatial domain transmission filter), and correspondingly, the above-mentioned receive beam may also be called a spatial domain reception filter (spatial domain reception filter).
  • the above-mentioned transmit beam may also be called a spatial domain transmission parameter (spatial domain transmission parameter), and correspondingly, the above-mentioned receive beam may also be called a spatial domain reception parameter (spatial domain reception parameter).
  • the embodiments of this application are mainly introduced using beams as an example.
  • the transmission environment characteristics corresponding to the data transmission can be used to improve the reception algorithm.
  • the terminal device can utilize the statistical characteristics of the channel to optimize the design and parameters of the channel estimation.
  • the transmission environment characteristics corresponding to data transmission can be represented by QCL information.
  • QCL information can be indicated by TCI status.
  • the network device can indicate the corresponding QCL information to the terminal device through the TCI status.
  • the network device will indicate the corresponding QCL information to the terminal device through the TCI state.
  • the TCI status may contain the identity (ID) and/or QCL information of the TCI status.
  • the identifier of the TCI state is used to identify the TCI state.
  • QCL information may include QCL type configuration and QCL reference signal configuration.
  • the above QCL type configuration may include QCL type A, QCL type B, QCL type C or QCL type D.
  • QCL type configurations are defined as follows.
  • QCL Type A (QCL-TypeA): ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • QCL Type B (QCL-TypeB): ⁇ Doppler shift, Doppler extension ⁇
  • QCL Type C (QCL-TypeC): ⁇ Doppler shift, average delay ⁇
  • QCL type D (QCL-TypeD): ⁇ Air domain receiving parameters ⁇ .
  • the above QCL reference signal configuration may include the identification of the bandwidth part (BWP) where the reference signal is located and the identification of the reference signal, where the identification of the reference signal may be a synchronization signal and physical broadcast channel block (synchronization signal and physical broadcast channel block) , SSB) index and/or resource identification of CSI-RS.
  • BWP bandwidth part
  • SSB synchronization signal and physical broadcast channel block index
  • the communication protocol stipulates that the pseudocode for the above TCI status can be as follows.
  • the network device can indicate the corresponding TCI status for the downlink signal or downlink channel. If the network device is configured through the TCI state to be quasi-colocated with the signal to be transmitted (such as the downlink channel or downlink signal), the identifier of the reference signal is 1 (such as SSB or CSI-RS), and the QCL type is type A, type B or type C. , then the terminal device can assume that the above-mentioned signal to be transmitted and the reference signal identified as 1 have the same large-scale channel parameters, and the large-scale channel parameters can be determined by the QCL type in the TCI state.
  • the signal to be transmitted such as the downlink channel or downlink signal
  • the identifier of the reference signal is 1 (such as SSB or CSI-RS)
  • the QCL type is type A, type B or type C.
  • the network device configures the identification of the reference signal that is quasi-colocated with the signal to be transmitted (such as the downlink channel or downlink signal) through the TCI state to 1 (such as the reference signal is SSB or CSI-RS), and the QCL type is QCL type D, then
  • the receiving beam used by the terminal equipment to receive the signal to be transmitted is the same as the receiving beam used to receive the reference signal with the identifier 1 (such as spatial Rx parameter).
  • the signal to be transmitted and the reference signal quasi-colocated with it can be sent by the same TRP or the same panel or the same beam. If the transmission TRP or transmission panel or transmission beam of two signals to be transmitted are different, the network device usually configures different TCI states for the two signals to be transmitted.
  • Network devices can configure TCI status in different ways.
  • the following examples illustrate three TCI status configuration methods. It can be understood that the way of configuring the TCI state may be related to the type of the reference signal indicated by the TCI state.
  • the TCI status can be obtained in different situations to obtain the QCL information of the reference signal.
  • the TCI status can be configured through method 1 or method 2.
  • the downlink data channel you can configure the TCI status through method three.
  • Method 1 Configure the TCI status through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the QCL information of periodic CSI-RS/TRS can be configured through RRC signaling.
  • Method 2 Through RRC configuration, the TCI state is activated by medium access control control element (MAC CE) signaling.
  • MAC CE medium access control control element
  • QCL information of periodic CSI-RS/tracking reference signal (TRS) or demodulation reference signal (DMRS) of PDCCH can indicate activation and deactivation through MAC CE.
  • TRS periodic CSI-RS/tracking reference signal
  • DMRS demodulation reference signal
  • Method three through RRC configuration, activated by MAC-CE, and using downlink control information (DCI) to indicate the TCI status. That is to say, in this way, you can go through three steps of RRC configuration, MAC-CE activation and DCI indication to configure the TCI state.
  • the DCI may include a TCI status indication field (TCI domain for short) to indicate the TCI status. For example, QCL information of aperiodic CSI-RS/TRS or DMRS of PDSCH can be obtained in this way.
  • the DCI can indicate one or more TCI states from the TCI activated by the MAC CE.
  • the solution for DCI to indicate multiple TCI states is mainly for the multiple TRPs introduced later.
  • the plurality of TCI states may include 2 TCI states.
  • DCI indicating one or more TCI states can be understood as a code point (codepoint) of the TCI domain in DCI corresponding to one or more TCI states indicated or activated by MAC CE.
  • the code point can be understood as the value of the TCI domain in DCI.
  • the method may include steps S210 to S230.
  • Step S210 The network device configures N candidate TCI states through RRC signaling.
  • N can be an integer greater than 0, and the value of N can be determined according to the capabilities of the terminal device.
  • Step S220 The network device can activate K TCI states through MAC-CE.
  • the maximum value of K can be 8, which corresponds to the 3-bit TCI field in DCI.
  • Step S230 The network device sends DCI to the terminal device.
  • This DCI can be used to indicate one or two TCI states among the K TCI states activated by the MAC-CE.
  • the terminal device can determine one or two TCI states to use based on the DCI.
  • Multi-TRP transmission can mean that on the same carrier, multiple TRPs can communicate with a certain terminal device at the same time. As shown in Figure 3, the terminal device can communicate with TRP1 and TRP2 at the same time. Multi-beam transmission, multi-panel transmission and multi-TRP transmission are similar. Multi-beam transmission can mean that on the same carrier, the terminal device can receive signals from multiple beams at the same time. As shown in Figure 4, the terminal device can communicate with the network device through beam 1 and beam 2 at the same time. Multi-panel transmission can refer to the same carrier, and the terminal device can receive signals from multiple panels at the same time. Multi-TRP, multi-beam, and multi-panel can use the same solution, so they are usually not distinguished in description.
  • the above transmission method can be called multi-TRP transmission, mTRP transmission, or M-TRP transmission, or multiple TRP/panel/beam transmission. The following uses multiple TRPs as an example to introduce the solution of the embodiment of the present application.
  • the solution for multiple TRPs to send downlink data to terminal devices at the same time can support the following two methods.
  • Method 1 Single-PDCCH based scheme.
  • the terminal equipment only detects one PDCCH.
  • the terminal equipment can detect a DCI on the PDCCH, and the DCI can be used to indicate relevant indication information of data transmitted simultaneously on multiple TRPs. That is to say, the DCI can correspond to multiple TCI states, and multiple TCI states can implicitly indicate that multiple TRP transmissions are supported.
  • Method 2 Multiple-PDCCH based scheme.
  • the terminal equipment can receive different PDCCHs from different TRPs.
  • Each PDCCH can contain a DCI, and the DCI can be used to indicate relevant indication information for a corresponding data transmission. That is to say, multiple DCIs on multiple PDCCHs can be used to indicate multiple TCI states, and one DCI is used to indicate one TCI state.
  • the control resource set (CORESET) corresponding to the DCI can be associated with different CORESET resource pool (CORESET pool) numbers, that is, corresponding to different CORESET pool indexes. Support for multiple TRP transmissions can be implicitly indicated through different CORESET pools.
  • Mode 1 the terminal equipment only needs to detect one PDCCH, so the PDCCH detection complexity can be lower than Mode 2.
  • Method 1 requires the ability to quickly exchange information between different TRPs.
  • the terminal equipment needs to detect multiple PDCCHs on the same carrier at the same time.
  • the detection complexity will increase, but the flexibility and robustness will be improved.
  • the application scenarios of Mode 2 may include one or more of the following:
  • TRPs belong to the same cell, and the connection (backhaul) between TRPs is ideal (that is, information can be exchanged quickly, such as dynamic information exchange can be carried out).
  • TRPs belong to the same cell, and the connection (backhaul) between TRPs is non-ideal (that is, TRPs cannot exchange information quickly and can only exchange relatively slow data).
  • TRPs belong to different cells, and the connection (backhaul) between TRPs is ideal.
  • TRPs belong to different cells, and the connection (backhaul) between TRPs is not ideal.
  • the above application scenarios are introduced using multiple TRPs as an example. It should be noted that by replacing the above TRPs with beams, a multi-beam application scenario can be obtained. Or, replace the above TRP with panel to get application scenarios corresponding to multiple panels.
  • method 1 can be considered to be only applicable to ideal connection scenarios, that is, applicable to S1-1 and S1-3 scenarios.
  • the multiple TRP transmissions in the embodiments of this application are all aimed at the situation of transmission on the same carrier.
  • the terminal equipment can detect multiple DCIs (such as 2 DCIs) on the same carrier at the same time.
  • Each DCI can schedule the corresponding PDSCH, and multiple PDSCHs are also transmitted on the same carrier.
  • the multiple PDSCHs may also overlap in the time domain.
  • R16 only multi-TRP transmission for downlink data transmission is studied and supported.
  • R17 multi-TRP transmission of PDCCH, physical uplink shared channel (PUSCH), and physical uplink control channel (PUCCH) was studied and supported to increase the reliability of corresponding channel transmission.
  • PDCCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • Unified TCI state (unified TCI state)
  • the TCI status indication mechanism introduced earlier was introduced in R15 and is only applicable to downlink signals or downlink channels, and has many limitations when applied in newer communication systems (such as NR systems).
  • a unified TCI state was introduced in the 3rd generation partnership project (3GPP) protocol.
  • the unified TCI status includes two modes, which are introduced below.
  • the joint TCI state includes a type of TCI state, which can be applied to uplink signals and channels and downlink channels and signals.
  • the independent TCI state includes two types of TCI states, namely uplink TCI state (UL TCI state) and downlink TCI state (downlink TCI state, DL TCI state).
  • uplink TCI state UL TCI state
  • downlink TCI state downlink TCI state
  • the uplink TCI status applies only to uplink signals and channels
  • the downlink TCI status only applies to downlink signals and channels.
  • the downlink channel may be, for example, PDCCH, PDSCH, etc., and the downlink signal may be, for example, CSI-RS.
  • the uplink channel may be, for example, PUCCH, PUSCH, etc., and the uplink signal may be, for example, a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the uplink TCI state or joint TCI state can be used. If the downlink signal and channel use the same downlink transmit beam, the downlink TCI state and the joint TCI state can be used.
  • the uplink beam indication can be indicated simultaneously with the uplink power control parameter through the uplink TCI state or the joint TCI state.
  • unified TCI status may be dynamically indicated and updated using MAC CE and/or DCI.
  • the solution of the embodiment of the present application can be applied to the scenario of carrier aggregation, and the beam indication on a single carrier can be applied to multiple different carriers. In some embodiments, the solutions of the embodiments of the present application may be applied to beam management between cells.
  • some communication protocols (such as the NR R17 protocol) also introduce 4 CORESETs, namely CORESET A, CORESET B, CORESET C and CORESET 0.
  • the search space associated with CORESET A is a search space exclusive to the terminal equipment and is used to transmit PDCCH exclusive to the terminal equipment.
  • CORESET A can be considered as a downlink control channel resource exclusive to the terminal equipment and can work according to a unified TCI state architecture.
  • the search space associated with CORESET B is the community's public search space.
  • the terminal device can determine whether CORESET B works according to the unified TCI status architecture based on the RRC configuration of the network device.
  • the search space associated with CORESET C can include a search space exclusive to the terminal device and a public search space in the community.
  • the terminal device can determine whether CORESET C works according to the unified TCI status architecture based on the RRC configuration of the network device.
  • the search space associated with CORESET 0 includes the cell search space.
  • the search space associated with CORESET 0 may also include a terminal device-specific search space.
  • the terminal device can determine whether CORESET C works according to the unified TCI status architecture based on the RRC configuration of the network device.
  • the protocol does not consider the scenario of multiple TRP transmission, and only supports the scenario of single TRP. In other words, for multi-TRP transmission scenarios, there is currently no clear solution on how to configure and indicate the unified TCI status.
  • embodiments of the present application provide a wireless communication method, which provides a clear solution for a unified TCI status indication method in a multi-TRP scenario.
  • the solution of the embodiment of the present application will be introduced below with reference to Figure 5 .
  • step S510 the network device sends first indication information to the terminal device.
  • the first indication information is used to indicate multiple unified TCI states.
  • the multiple unified TCI states can be understood as TCI states used by the terminal device.
  • the network device can indicate multiple unified TCI states to the terminal device through the first indication information, so that the terminal device can obtain multiple unified TCI states corresponding to multiple TRPs, thus providing unified TCI states in a multiple TRP scenario.
  • the way TCI status is indicated provides a clear solution.
  • the plurality of TCI states may include one type of TCI state.
  • the multiple unified TCI states may be joint TCI states or independent TCI states.
  • the multiple unified TCI states may be uplink TCI states or downlink TCI states.
  • the plurality of unified TCI states may include multiple types of TCI states.
  • the plurality of unified TCI states may include at least two TCI states among a joint TCI state, an independent TCI state, an uplink TCI state, and a downlink TCI state.
  • At least part of the multiple unified TCI states may be used to determine the transmit spatial filter corresponding to uplink transmission and/or the QCL information corresponding to downlink transmission. That is to say, at least part of the multiple unified TCI states can be used to determine the transmit spatial filter corresponding to the uplink transmission, and/or, at least part of the multiple unified TCI states can be used to determine the QCL corresponding to the downlink transmission. information.
  • the multiple unified TCI states can be used to determine the transmit spatial filter corresponding to the uplink transmission and the QCL information corresponding to the downlink transmission.
  • the multiple unified TCI states are independent TCI states
  • the independent TCI states may include uplink TCI states and/or downlink TCI states. That is to say, the multiple unified TCI states include both uplink TCI states and/or downlink TCI states. or downlink TCI state, then part of the TCI states among the multiple unified TCI states can be used to determine the transmit spatial filter corresponding to the uplink transmission, and part of the TCI states among the multiple unified TCI states can be used to determine the QCL corresponding to the downlink transmission.
  • the multiple unified TCI states can be used to determine the transmit spatial filter corresponding to the uplink transmission.
  • the multiple unified TCI states can be used to determine QCL information corresponding to downlink transmission.
  • the spatial filter in the embodiment of the present application can also be understood as QCL information, or beam, or spatial domain parameter, or spatial domain filter, etc.
  • the first indication information may be carried in DCI signaling. That is to say, the network device can indicate multiple unified TCI states to the terminal device through DCI signaling. The terminal device may determine multiple unified TCI states according to the first indication information in the DCI signaling.
  • the first indication information may be carried in any one or more indication fields in DCI signaling.
  • the first indication information can be carried in the transmission configuration indication (TCI) field in DCI signaling, that is, the first indication information can be transmitted through the TCI field in DCI signaling.
  • TCI transmission configuration indication
  • one code point in the TCI domain can correspond to multiple unified TCI states.
  • the terminal device After receiving the DCI signaling sent by the network device, the terminal device can determine the multiple unified TCIs based on the code points of the TCI domain in the DCI signaling and the correspondence between the code points and multiple unified TCI states. state.
  • the first indication information may be carried in the MAC CE. That is to say, the network device can indicate multiple unified TCI states to the terminal device through MAC CE. The terminal device can determine multiple unified TCI states based on the first indication information in the MAC CE.
  • the first indication information can be carried in any one or more indication fields in the MAC CE.
  • the first indication information may be carried in the TCI status indication field of the MAC CE.
  • the TCI status indication field may be used to indicate TCI status.
  • the TCI status indication field may include a TCI status ID, and the terminal device may determine the corresponding TCI status based on the TCI status ID. Since MAC CE has lower transmission delay and better transmission reliability, the first indication information is carried through MAC CE, so that the network device can quickly instruct the terminal device to perform corresponding operations.
  • the terminal device can use the multiple unified TCI states corresponding to the one code point as multiple unified TCI states in step S510.
  • the terminal device can determine multiple unified TCI states as TCI state X1 and TCI state X2.
  • the terminal device can also receive second indication information sent by the network device, and the terminal device can determine multiple unified TCI states based on the second indication information. In some embodiments, the terminal device may determine multiple unified TCI states based on the first indication information and the second indication information.
  • the second indication information may be carried in the MAC CE.
  • the second indication information can be carried in any one or more indication fields in the MAC CE.
  • the second indication information may be carried in the TCI status indication field of the MAC CE.
  • the TCI status indication field may be used to indicate TCI status.
  • the TCI status indication field may include a TCI status ID, and the terminal device may determine the corresponding TCI status based on the TCI status ID. Since MAC CE has lower transmission delay and better transmission reliability, the second instruction information is carried through MAC CE, so that the network device can quickly instruct the terminal device to perform corresponding operations.
  • the embodiment of the present application does not specifically limit the transmission method of the first indication information and the second indication information.
  • the second indication information may be carried in the MAC CE, and the first indication information may be carried in the DCI.
  • the second indication information is carried in the MAC CE, and the first indication information is carried in the MAC CE.
  • the network device may activate or indicate a part of unified TCI states through the second indication information, and then dynamically indicate multiple unified TCI states through the first indication information.
  • the following takes the second indication information being carried in the MAC CE and the first indication information being carried in the DCI as an example to illustrate the solution of the embodiment of the present application.
  • the terminal device can determine multiple The unified TCI states are TCI state X1 and TCI state X2.
  • a unified TCI state may include multiple types of TCI states.
  • the unified TCI state may include a joint TCI state, an independent TCI state, an uplink TCI state, and a downlink TCI state.
  • the second indication information corresponding to different types of TCI states can be carried in the same MAC CE or in different MAC CEs. If different types of TCI states are carried in the same MAC CE, only one MAC CE frame structure needs to be designed, which helps reduce the complexity of MAC CE design. If different types of TCI states are carried in different MAC CEs, the MAC CE frame structure can be flexibly designed for different types of TCI states, and it is also helpful to avoid the waste of bytes or bits in the MAC CE frame structure.
  • the same MAC CE in the embodiment of this application may mean that the frame structures of the MAC CEs are the same, and different MAC CEs may mean that the frame structures of the MAC CEs are different.
  • the following uses two examples as an example to introduce the frame structure of MAC CE.
  • Example 1 Different types of TCI states are carried in different MAC CEs
  • the second indication information may be carried in the first MAC CE. If multiple unified TCI states are independent TCI states, the second indication information can be carried in the second MAC CE. Among them, the first MAC CE and the second MAC CE are different.
  • the network device may also send fifth indication information to the terminal device. If the fifth indication information indicates that the unified TCI state is the joint TCI state, in this case, the second indication information is carried on the first MAC CE , or in other words, the fifth indication information indicates that the TCI state indicated by the first MAC CE is the joint TCI state.
  • the network device may also send fifth indication information to the terminal device. If the fifth indication information indicates that the unified TCI state is an independent TCI state, in this case, the second indication information is carried on the second MAC CE , or in other words, the fifth indication information indicates that the TCI state indicated by the second MAC CE is an independent TCI state.
  • the first MAC CE and the second MAC CE are introduced separately below.
  • the second indication information is carried in the first MAC CE
  • the network device Before sending the first MAC CE, the network device may send fifth indication information to the terminal device, the fifth indication information indicating that the unified TCI state is the joint TCI state.
  • the joint TCI state can be used for both uplink operation (UL operation) or uplink transmission (UL transmission), downlink operation (DL operation) or downlink transmission or reception (DL transmission/reception).
  • UL operation uplink operation
  • DL operation downlink operation
  • DL transmission/reception downlink transmission/reception
  • the fifth indication information may be carried in the RRC information elements (IE) parameter unifiedTCI-StateType. If the value of unifiedTCI-StateType is "joint", it means that the unified TCI state is the joint TCI state.
  • the fifth indication information may be carried in the RRC IE parameter ServingCellConfig.
  • the fifth indication information may be configured for a serving cell.
  • the network device may configure corresponding fifth indication information for different serving cells.
  • the network device may also send sixth indication information to the terminal device, where the sixth indication information is used to configure or indicate a set of TCI states.
  • this group of TCI states is referred to as the third TCI state group below.
  • the third TCI status group may include one or more TCI statuses.
  • the TCI status in the third TCI status group is a combined TCI status.
  • the sixth indication information and the fifth indication information may be sent together, or the sixth indication information and the fifth indication information may be carried in the same message.
  • the fifth indication information and the sixth indication information can be configured through the same RRC IE.
  • the third TCI status group may be used for uplink transmission or downlink transmission.
  • the sixth indication information may be carried in RRC signaling, or the sixth indication information may be configured through RRC parameters.
  • the sixth indication information may be carried in the RRC IE parameter PDSCH-Config.
  • the sixth indication information may be carried in the RRC IE parameter dl-OrJoint-TCIStateList.
  • the first MAC CE may include one or more of the following indication fields: a serving cell indication field, a BWP indication field, a TCI status indication field, and one or more first indication fields.
  • the first MAC CE may include one or more of a BWP indication field and one or more first indication fields.
  • the first MAC CE may include a BWP indication field.
  • the first MAC CE may include one or more first indication fields.
  • the first MAC CE may include a BWP indication field and one or more first indication fields.
  • the above indication fields are introduced respectively below.
  • the first MAC CE includes a serving cell indication field, which can be understood as the first MAC CE includes serving cell information.
  • the serving cell indication field may be used to indicate the serving cell to which the first MAC CE is applicable.
  • the serving cell indication field may include a serving cell ID, and the serving cell ID may be used to indicate the corresponding serving cell.
  • the embodiment of this application does not specifically limit the length of the serving cell indication field.
  • the length of the serving cell indication field may be 5 bits.
  • the first MAC CE includes the BWP indication field, which can be understood as the first MAC CE includes BWP information.
  • the BWP indication field can be used to indicate the applicable UL BWP and DL BWP of the first MAC CE.
  • UL BWP can be used for uplink transmission
  • DL BWP can be used for downlink transmission.
  • the BWP indication field may be one indication field, or the BWP indication field may include multiple indication fields.
  • the BWP indication field may include a UL BWP indication field and a DL BWP indication field.
  • the first MAC CE includes a UL BWP indication field, which can be understood as the first MAC CE includes UL BWP information.
  • the UL BWP indication field may be used to indicate the applicable UL BWP of the first MAC CE.
  • the UL BWP indication field may include a UL BWP ID, and the UL BWP ID may be used to indicate the corresponding UL BWP.
  • the indication field indicates a UL BWP
  • the MAC CE can use the UL BWP as the code point specified in TS 38.212 [9] as the DCI bandwidth part indication field (This field indicates a UL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9]).
  • the embodiment of this application does not specifically limit the length of the UL BWP indication field.
  • the length of the UL BWP ID field can be 2 bits (The length of the BWP ID field is 2bits).
  • the first MAC CE includes a DL BWP indication field, which can be understood as the first MAC CE includes DL BWP information.
  • the DL BWP indication field may be used to indicate the applicable DL BWP of the first MAC CE.
  • the DL BWP indication field may include a DL BWP ID, which may be used to indicate the corresponding DL BWP.
  • the indication field indicates a DL BWP
  • the MAC CE can use the DL BWP as the code point specified in TS 38.212 [9] as the DCI bandwidth part indication field (This field indicates a DL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9]).
  • the embodiment of this application does not specifically limit the length of the DL BWP indication field.
  • the length of the DL BWP indication field can be 2 bits (The length of the BWP ID field is 2bits).
  • the first MAC CE may include a TCI status indication field, which may be used to indicate the TCI status. In some embodiments, the first MAC CE may include multiple TCI status indication fields, each TCI status indication field being used to indicate one TCI status.
  • the one TCI state may be a TCI state in the third TCI state group described above, that is, the one TCI state belongs to one of the third TCI state group.
  • the first MAC CE may include one or more first indication fields.
  • a first indication field may be associated with a code point (such as the code point of the TCI field in DCI).
  • Each first indication field can be used to indicate the number of TCI states (or combined TCI states) corresponding to one code point, or in other words, each first indication field can be used to determine the number of TCI states corresponding to one code point.
  • each first indication field may include one or more first subfields, a code point may be associated with the one or more first subfields, and a first subfield may be used to indicate a code Whether a TCI state corresponding to the point exists. If a first subfield indicates that the corresponding TCI state exists, the number of TCI states corresponding to a code point is increased by one.
  • the first indication field will be introduced in detail below with reference to specific embodiments.
  • the first MAC CE may include one or more first indication fields.
  • the first indication field may correspond to a TCI status, or in other words, the first indication field may correspond to a TCI status indication field.
  • Each first indication field may be used to indicate whether the corresponding TCI state exists. If the first indication field indicates that the corresponding TCI state exists, the number of TCI states corresponding to the associated code point is increased by one.
  • the first MAC CE may include a serving cell ID, which may be used to indicate serving cell information.
  • the first MAC CE may include DL BWP ID, which is used to indicate downlink bandwidth part information.
  • the first MAC CE may include the UL BWP ID, which is used to indicate the uplink bandwidth part information.
  • R represents a reserved bit, and the value of the R bit may be 0, for example.
  • the first MAC CE may include a TCI state indication field TCI state ID i,j .
  • TCI state ID i,j corresponds to the code point number of the TCI field in DCI signaling (i is the index of the codepoint of the DCI Transmission configuration indication field).
  • TCI state ID i, j denotes the j th TCI state indicated for the ith codepoint in the DCI Transmission Configuration Indication field).
  • the value or index of the code point corresponding to TCI state ID i,j is i.
  • the value or index (index) of the code point corresponding to TCI state ID 0,1 and TCI state ID 0,2 is 0, and the code point corresponding to TCI state ID 1,1 and TCI state ID 1,2 is The value or index is 1, and so on.
  • TCI state ID i,j is optional for j greater than or equal to 2.
  • TCI state ID i,2 is optional. Whether the TCI state ID i,j exists depends on the value of the indication field C i,j described below.
  • the first MAC CE may include an indication field Ci ,j , which is used to indicate whether the byte where the TCI state ID i,j is located exists, or to indicate whether the TCI state corresponding to the TCI state ID i,j exists.
  • TCI state ID i,j can be used to indicate the j-th TCI state corresponding to the i-th code point. Among them, the value of j can be an integer greater than or equal to 2.
  • the terminal device can determine whether the corresponding byte of TCI status ID i, j exists according to the value of C i, j . For example, if the value of this indication field is 1, it means that the byte containing TCI status ID i,j exists. In this case, the number of TCI states corresponding to the i-th code point is increased by one. If the value of this indication field is 0, it means that the byte containing TCI status ID i, j does not exist. For another example, if the value of this indication field is 0, it means that the byte containing TCI status ID i,j exists; if the value of this indication field is 1, it means that the byte containing TCI status ID i,j does not exist. exist.
  • the first MAC CE may include an indication field C i , which may be used to indicate whether the byte of TCI state ID i,2 exists, or in other words, to indicate the TCI state . Whether the TCI status corresponding to ID i,2 exists.
  • the terminal device can determine whether the corresponding byte of TCI status ID i,2 exists based on the value of C i . For example, if the value of this indication field is 1, it means that the byte containing TCI status ID i,2 exists. If the value of this indication field is 0, it means that the byte containing TCI status ID i,2 does not exist.
  • this field is set to 1, the octet containing TCI state ID i,2 is present. If this field is set to 0, the octet containing TCI state ID i,2 is not present). For another example, if the value of this indication field is 0, it means that the byte containing TCI status ID i,2 exists; if the value of this indication field is 1, it means that the byte containing TCI status ID i,2 does not exist. exists (If this field is set to 0, the octet containing TCI state ID i,2 is present. If this field is set to 1, the octet containing TCI state ID i,2 is not present).
  • the indication field C i,j+1 may be located in the same byte as the TCI status ID i,j , see FIG. 6 . That is to say, the indication field C i,j+1 can indicate whether the TCI status ID i,j in the next byte of the byte in which it is located exists.
  • the second indication information is carried in the second MAC CE
  • the terminal device may receive fifth indication information sent by the network device, where the fifth indication information indicates that the unified TCI state is an independent TCI state.
  • the independent TCI state may include an uplink TCI state and/or a downlink TCI state.
  • the uplink TCI status can be used for uplink operation (UL operation) or uplink transmission (UL transmission).
  • This downlink TCI status can be used for downlink operation (DL operation) or downlink transmission (DL transmission).
  • DL operation downlink transmission
  • DL operation downlink transmission
  • the following uses uplink transmission and downlink transmission as examples to introduce the solution of the embodiment of the present application.
  • the embodiment of the present application does not specifically limit the transmission method of the fifth indication information.
  • the fifth indication information may be carried in the RRC IE parameter unifiedTCI-StateType. If the value of unifiedTCI-StateType is "Separate", it means that the unified TCI state is an independent TCI state.
  • the fifth indication information may be carried in the RRC IE parameter ServingCellConfig.
  • the fifth indication information may be configured for a serving cell.
  • the network device may configure corresponding fifth indication information for different serving cells.
  • the network device may also send sixth indication information to the terminal device, where the sixth indication information is used to configure or indicate a set of TCI states.
  • this group of TCI states is referred to as the first TCI state group below.
  • the first TCI status group may include one or more TCI statuses.
  • the TCI status in the first TCI status group is the downlink TCI status.
  • the sixth indication information and the fifth indication information may be sent together, or the sixth indication information and the fifth indication information may be carried in the same message.
  • the fifth indication information and the sixth indication information can be configured through the same RRC IE.
  • the first TCI status group may be used for downlink transmission.
  • the sixth indication information may be carried in RRC signaling, or the sixth indication information may be configured through RRC parameters.
  • the sixth indication information may be carried in the RRC IE parameter PDSCH-Config.
  • the sixth indication information may be carried in the RRC IE parameter dl-OrJoint-TCIStateList-r17.
  • the network device may also send sixth indication information to the terminal device, where the sixth indication information is used to configure or indicate a set of TCI states.
  • this group of TCI states is referred to as the second TCI state group below.
  • the second TCI status group may include one or more TCI statuses.
  • the TCI status in the first TCI status group is the uplink TCI status.
  • the second TCI status group may be used for uplink transmission.
  • the sixth indication information may be carried in RRC signaling, or the sixth indication information may be configured through RRC parameters.
  • the sixth indication information may be carried in the RRC IE parameter PDSCH-Config.
  • the sixth indication information may be carried in the RRC IE parameter ul-TCI-ToAddModList.
  • the sixth indication information used to indicate the first TCI status group and the sixth indication information used to indicate the second TCI status group may be the same indication information, or may be different indication information.
  • the network device may send an indication message to the terminal device to indicate the first TCI status group.
  • the network device may also send another indication information to the terminal device to indicate the second TCI status group.
  • the network device may send an indication information to the terminal device, and the indication information is used to indicate the first TCI status group and the second TCI status group.
  • the second MAC CE may include one or more of the following indication fields: serving cell indication field, BWP indication field, TCI status indication field, one or more second indication fields, third indication field , the fourth indication domain.
  • the second MAC CE may include one or more of a BWP indication field, one or more second indication fields, a third indication field, and a fourth indication field.
  • the second MAC CE may include any one of a BWP indication field, one or more second indication fields, a third indication field, and a fourth indication field.
  • the second MAC CE may include a BWP indication field.
  • the second MAC CE may include one or more second indication fields.
  • the second MAC CE may include a third indication field.
  • the second MAC CE may include a fourth indication field.
  • the second MAC CE may include any two of the BWP indication field, one or more second indication fields, third indication fields, and fourth indication fields.
  • the second MAC CE may include a BWP indication field and one or more second indication fields.
  • the second MAC CE may include a BWP indication field and a third indication field.
  • the second MAC CE may include a BWP indication field and a fourth indication field.
  • the second MAC CE may include one or more second indication fields and third indication fields.
  • the second MAC CE may include one or more second indication fields and fourth indication fields.
  • the second MAC CE may include a third indication field and a fourth indication field.
  • the second MAC CE may include any three of a BWP indication field, one or more second indication fields, a third indication field, and a fourth indication field.
  • the second MAC CE may include a BWP indication field, one or more second indication fields, and a third indication field.
  • the second MAC CE may include one or more second indication fields, third indication fields, and fourth indication fields.
  • the second MAC CE may include a BWP indication field, a third indication field, and a fourth indication field.
  • the second MAC CE may include a BWP indication field, one or more second indication fields, and a fourth indication field.
  • the second MAC CE may include a BWP indication field, one or more second indication fields, a third indication field, and a fourth indication field.
  • the second MAC CE includes a serving cell indication field, which can be understood as the second MAC CE includes serving cell information.
  • the serving cell indication field may be used to indicate the serving cell to which the second MAC CE is applicable.
  • the serving cell indication field may include a serving cell ID, and the serving cell ID may be used to indicate the corresponding serving cell.
  • the embodiment of this application does not specifically limit the length of the serving cell indication field.
  • the length of the serving cell indication field may be 5 bits.
  • the second MAC CE includes the BWP indication field, which can be understood as the second MAC CE includes BWP information.
  • the BWP indication field can be used to indicate the applicable UL BWP and DL BWP of the second MAC CE.
  • UL BWP can be used for uplink transmission
  • DL BWP can be used for downlink transmission.
  • the BWP indication field may be one indication field, or the BWP indication field may include multiple indication fields.
  • the BWP indication field may include a UL BWP indication field and a DL BWP indication field.
  • the second MAC CE includes a UL BWP indication field, which can be understood as the second MAC CE includes UL BWP information.
  • the UL BWP indication field may be used to indicate the applicable UL BWP of the second MAC CE.
  • the UL BWP indication field may include a UL BWP ID, and the UL BWP ID may be used to indicate the corresponding UL BWP.
  • the indication field indicates a UL BWP
  • the MAC CE can use the UL BWP as the code point specified in TS 38.212 [9] as the DCI bandwidth part indication field (This field indicates a UL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9]).
  • the embodiment of this application does not specifically limit the length of the UL BWP indication field.
  • the length of the UL BWP ID field can be 2 bits (The length of the BWP ID field is 2bits).
  • the second MAC CE includes a DL BWP indication field, which can be understood as the second MAC CE includes DL BWP information.
  • the DL BWP indication field may be used to indicate the applicable DL BWP of the second MAC CE.
  • the DL BWP indication field may include a DL BWP ID, which may be used to indicate the corresponding DL BWP.
  • the indication field indicates a DL BWP
  • the MAC CE can use the DL BWP as the code point specified in TS 38.212 [9] as the DCI bandwidth part indication field (This field indicates a DL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9]).
  • the embodiment of this application does not specifically limit the length of the DL BWP indication field.
  • the length of the DL BWP indication field can be 2 bits (The length of the BWP ID field is 2bits).
  • the second MAC CE may include a TCI status indication field, which may be used to indicate the TCI status. In some embodiments, the second MAC CE may include multiple TCI status indication fields, each TCI status indication field being used to indicate one TCI status.
  • the TCI state may be a TCI state in the second TCI state group described above, that is, the TCI state belongs to one of the first TCI state group.
  • the one TCI state may be a TCI state in the second TCI state group described above, that is, the one TCI state belongs to one of the second TCI state group.
  • the embodiment of the present application does not specifically limit the length of the TCI status indication field.
  • the length of the TCI status indication field may be 7 bits.
  • the length of the TCI status indication field may be 6 bits. The longer the length of the TCI status indication field, the more TCI statuses the TCI status indication field can indicate, thereby improving the flexibility of network scheduling.
  • the most significant bit of the TCI status indication field may be a reserved bit. For example, if the length of the TCI status indication field is 7 bits, the remaining 6 bits in the TCI status indication field may be used to indicate the TCI status.
  • the uplink TCI status and the downlink TCI status are introduced separately below.
  • the length of the TCI status indication field may be 7 bits. Or, if the TCI status indication field is used to indicate the DL TCI status, the highest bit (the most significant bit) of the TCI status indication field can be a reserved bit, and the remaining 6 bits are used to indicate the DL TCI status.
  • the length of the TCI status indication field may be 7 bits. If the TCI status indication field is used to indicate the UL TCI status, the highest bit of the TCI status indication field can be a reserved bit, and the remaining 6 bits are used to indicate the UL TCI status.
  • the second MAC CE may include one or more second indication fields.
  • a second indication field may be associated with a code point.
  • Each second indication field can be used to indicate the number of TCI states (or independent TCI states) corresponding to one code point, or in other words, each second indication field is used to indicate the number of uplink TCI states and downlink TCI states corresponding to one code point. quantity.
  • each second indication field is used to indicate the number of uplink TCI states and the number of downlink TCI states corresponding to one code point, or each second indication field is used to indicate the number of uplink TCI corresponding to one code point. The sum of the number of states and the number of downlink TCI states. If the second indication field is used to indicate the sum of the number of uplink TCI states and the number of downlink TCI states, the number of bits required in the second indication field can be reduced, thereby reducing the signaling overhead of the MAC CE.
  • the embodiment of the present application does not specifically limit the number of second indication fields.
  • the number of the second indication fields may be related to the number of bits of the TCI field in the DCI.
  • the number of second indication fields may be equal to the number of code points that the TCI field can indicate. For example, if the TCI field in DCI is 3 bits, the number of second indication fields may be 8, that is, the second MAC CE may include 8 second indication fields.
  • the embodiment of the present application does not specifically limit the length of the second indication field.
  • the length of the second indication field may be associated with the number of TCI states corresponding to one code point. The greater the number of TCI states corresponding to one code point, the longer the length of the second indication field.
  • the length of the second indication field may be, for example, 2 bits or 3 bits. If the length of the second indication field is 2 bits, the number of TCI states corresponding to one code point is at most 4. If the length of the second indication field is 3 bits, the number of TCI states corresponding to one code point is at most 8.
  • the number of downlink TCI states may be greater than the number of uplink TCI states, or the number of downlink TCI states may be equal to the number of uplink TCI states, or the number of downlink TCI states may be It is less than the number of uplink TCI states, and the embodiment of the present application does not specifically limit this.
  • the type of TCI status (such as uplink TCI status, downlink TCI status) can be indicated through the third indication field described below.
  • N the number of TCI states corresponding to one code point indicated by each second indication field.
  • the embodiment of this application does not specifically limit the value of N.
  • the following is an example of the value of N.
  • the value of N can be a value among 1, 2, 3, and 4, or the value of N can be a value among 0, 1, 2, 3, and 4, or the value of N can be is a value among 0,1,2,3.
  • This method is relatively simple for protocol design and system implementation, can obtain most of the performance gains of multiple TRPs, and has good flexibility for network configuration and scheduling.
  • the number of downstream TCI states may be less than or equal to 2. In some implementations, the number of upstream TCI states may be less than or equal to 2. Of course, in some embodiments, the number of downlink TCI states and the number of uplink TCI states can also be other values.
  • the value of N can be a value among 1,2,3,4,5,6, or the value of N can be a value among 0,1,2,3,4,5,6 value, or the value of N can be a value among 0, 1, 2, 3, 4, and 5.
  • This approach can support more TRPs for uplink transmission and/or downlink transmission. In some scenarios, downlink transmission performance can be improved, providing greater freedom for network optimization.
  • the number of downstream TCI states may be less than or equal to 4. In some implementations, the number of upstream TCI states may be less than or equal to 2. By indicating more downlink TCI states, downlink transmission performance can be improved. Of course, in some embodiments, the number of downlink TCI states and the number of uplink TCI states can also be other values. For example, the number of downlink TCI states is less than or equal to 2, and the number of uplink TCI states is less than or equal to 4. For another example, the number of downlink TCI states is less than or equal to 3, and the number of uplink TCI states is less than or equal to 3.
  • the value of N can be a value among 1,2,3,4,5,6,7,8, or the value of N can be 0,1,2,3,4,5,
  • the value of N can be a value among 6, 7, and 8, or the value of N can be a value among 0, 1, 2, 3, 4, 5, 6, and 7.
  • This approach can support more TRPs for uplink transmission and/or downlink transmission. In some scenarios, downlink transmission performance can be improved, providing greater freedom for network optimization.
  • the number of downstream TCI states may be less than or equal to 4. In some implementations, the number of upstream TCI states may be less than or equal to 4. By indicating more downlink TCI states, downlink transmission performance can be improved.
  • the number of downlink TCI states and the number of uplink TCI states can also be other values. For example, the number of downlink TCI states is less than or equal to 6, and the number of uplink TCI states is less than or equal to 2. For another example, the number of downlink TCI states is less than or equal to 5, and the number of uplink TCI states is less than or equal to 3.
  • the second indication field includes a second subfield and a third subfield.
  • the independent TCI status includes the uplink TCI status and/or the downlink TCI status.
  • the second subfield is used to indicate the number of uplink TCI status corresponding to one code point
  • the third subfield is used to indicate the number of downlink TCI status corresponding to one code point.
  • the length of the second indication field may be 2 bits.
  • the length of the second indication field may be 3 bits.
  • the length of the second indication field may be 4 bits.
  • This embodiment of the present application does not specifically limit the lengths of the second subfield and the third subfield.
  • the length of the second subfield may be greater than the length of the third subfield.
  • the length of the second subfield may be smaller than the length of the third subfield.
  • the length of the second subfield may be equal to the length of the third subfield. It can be understood that the length of the second subfield is shorter than the length of the second indication field, and the length of the third subfield is also shorter than the length of the second indication field.
  • the number of uplink TCI states corresponding to one code point indicated by each second subfield is recorded as N1
  • the number of downlink TCI states corresponding to one code point indicated by each second subfield is recorded as N2.
  • the embodiments of this application do not specifically limit the values of N1 and N2. The following is an example of the values of N1 and N2.
  • the value of N1 can be a value among 1 and 2, or the value of N1 can be a value among 0, 1, and 2, or the value of N1 can be a value among 0 and 1.
  • the value of N2 can be a value among 1 and 2, or the value of N2 can be a value among 0, 1, and 2, or the value of N2 can be a value among 0 and 1. In this case, both the second subfield and the third subfield are 1 bit.
  • the value of N1 can be a value among 1, 2, 3, and 4, or the value of N1 can be a value among 0, 1, 2, 3, and 4, or the value of N1
  • the value can be a value from 0,1,2,3.
  • the value of N2 can be a value among 1 and 2, or the value of N2 can be a value among 0, 1, and 2, or the value of N2 can be a value among 0 and 1.
  • the second subfield is 2 bits and the third subfield is 1 bit.
  • the value of N1 can be a value among 1 and 2, or the value of N1 can be a value among 0, 1, and 2, or the value of N1 can be a value among 0 and 1. value.
  • the value of N2 can be a value among 1, 2, 3, and 4, or the value of N2 can be a value among 0, 1, 2, 3, and 4, or the value of N1 can be 0, Values in 1,2,3.
  • the second subfield is 1 bit and the third subfield is 2 bits.
  • the value of N1 can be a value among 1, 2, 3, and 4, or the value of N1 can be a value among 0, 1, 2, 3, and 4, or the value of N1
  • the value can be a value from 0,1,2,3.
  • the value of N2 can be a value among 1, 2, 3, and 4, or the value of N2 can be a value among 0, 1, 2, 3, and 4, or the value of N2 can be 0, Values in 1,2,3.
  • the second subfield is 2 bits and the third subfield is 2 bits.
  • the second MAC CE may include a third indication field.
  • the third indication field is used to indicate the type of TCI status.
  • the third indication field may be used to indicate the type of the corresponding independent TCI state.
  • the types of independent TCI states may include uplink TCI states and downlink TCI states. That is to say, the third indication field may be used to indicate whether the corresponding TCI state is the uplink TCI state or the downlink TCI state.
  • embodiments of the present application may include one or more third indication fields.
  • a third indication field may correspond to a TCI state or a TCI status indication field.
  • the third indication field may be used to indicate the corresponding TCI state. type.
  • the third indication field may be used to indicate the type of TCI status indicated by the TCI status indication field located in the same byte as the third indication field.
  • the third indication field is used to indicate whether the TCI status indication field located in the same byte as the third indication field indicates the uplink TCI status or the downlink TCI status.
  • the third indication field may be used to indicate the type of the TCI status group in which the TCI status group indicated by the TCI status indication field located in the same byte as the third indication domain is located.
  • the category of the TCI status group may include the first TCI status group and the second TCI status group.
  • the TCI state in the first TCI state group is the downlink TCI state
  • the TCI state in the second TCI state group is the downlink TCI state. Therefore, the type of TCI state can be identified by the TCI state group in which the TCI state is located. If the third indication field indicates that the corresponding TCI state belongs to the first TCI state group, it indicates that the corresponding TCI state is the downlink TCI state. If the third indication field indicates that the corresponding TCI state belongs to the second TCI state group, it means that the corresponding TCI state is the uplink TCI state.
  • the second MAC CE may include a fourth indication field.
  • the fourth indication field may be used to indicate the number of code points corresponding to the indicated or activated TCI state in the second MAC CE.
  • the fourth indication field may also be called a TCI state subset number indication field or a DCI code point indication field.
  • the number of code points indicated by the fourth indication field is less than or equal to the number of the second indication field, or in other words, the number of code points indicated by the fourth indication field is less than or equal to the number of code points that can be indicated by the TCI field in DCI. For example, if the TCI field is 3 bits, the number of code points that the TCI field can indicate is 8.
  • the number of code points indicated by the fourth indication field can be understood as the number of code points in the first field in the DCI corresponding to the TCI status indicated in the second MAC CE.
  • the first domain is the TCI domain in DCI.
  • the embodiment of this application does not specifically limit the maximum number of TCI states indicated or activated by the second MAC CE.
  • the maximum number of secondary MAC CE indications or activated TCI states may be 32.
  • the maximum number of TCI states indicated or activated by the second MAC CE may be 48.
  • the implementation complexity of the terminal device can be controlled within a certain range.
  • the maximum number of TCI states indicated or activated by the second MAC CE may be 64.
  • the second MAC CE may include a serving cell ID, and the serving cell ID may be used to indicate serving cell information.
  • the second MAC CE may include DL BWP ID, which is used to indicate downlink bandwidth part information.
  • the second MAC CE may include the UL BWP ID to indicate the uplink bandwidth part information.
  • R represents a reserved bit, and the value of the R bit may be 0, for example.
  • the second MAC CE may include a D/U indication field, and the D/U indication field may be understood as the third indication field described above.
  • the D/U indication field can be used to indicate whether the same byte indicates the uplink TCI state or the downlink TCI state (This field indicates whether the TCI state ID in the same octet is for downlink or uplink TCI state).
  • the TCI state ID in the same byte indicates the downlink TCI state (If this field is set to 1, the TCI state ID in the same octet is for downlink) .
  • the TCI state ID in the same byte indicates the uplink TCI state (If this field is set to 0, the TCI state ID in the same octet is for uplink).
  • the second MAC CE may include a TCI status ID field, and the TCI status ID field may be understood as the TCI status indication field described above.
  • the TCI status ID field can indicate a TCI status, which can be an uplink TCI status or a downlink TCI status.
  • the TCI status ID field of the same byte is used to indicate the downlink TCI status.
  • the TCI status ID field of the same byte is used to indicate the uplink TCI status.
  • the TCI status ID field used to indicate the downlink TCI status can be 7 bits, thereby supporting a greater number of downlink TCI statuses and providing space and flexibility for the network to optimize transmission configuration.
  • the TCI status ID field used to indicate the uplink TCI status can be 7 bits, thereby supporting a greater number of uplink TCI statuses and providing space and flexibility for the network to optimize transmission configuration.
  • the highest bit of the TCI state can be a reserved bit, and the remaining 6 bits can be used to indicate the uplink TCI state (the most significant bit of TCI state ID is considered as the reserved bit and remainder 6bits indicate the UL-TCIState -Id).
  • Pi ,0 and Pi ,1 in Figure 7- Figure 14 can form a subset of bits, which can be used to indicate the number of TCI states corresponding to the i-th code point (denoted as N). It should be noted that this bit subset can be understood as the second indication field described above.
  • the value of N can be a value among 1,2,3,4, or the value of N can be a value among 0,1,2,3,4, or the value of N can be 0,1, Values in 2,3.
  • the embodiment of the present application does not specifically limit the correspondence between the values of Pi ,0 and Pi ,1 and N.
  • the values of Pi ,0 and Pi ,1 can be understood as the values of the bit subgroup composed of Pi ,0 and Pi ,1 .
  • the following is an example of the correspondence between the values of Pi ,0 and Pi ,1 and N.
  • the values of N corresponding to the values 00, 01, 10, and 11 of Pi ,0 and Pi ,1 can be 1, 2, 3, and 4 respectively.
  • the values of N corresponding to the values 00, 10, 01, and 11 of Pi ,0 and Pi,1 can be 1, 2, 3, and 4 respectively.
  • Pi ,0 and Pi ,1 are each 1 bit, and the embodiment of the present application is not limited thereto.
  • Pi ,0 and Pi ,1 may also include other numbers of bits, for example, Pi ,0 and Pi ,1 may each include 2 bits.
  • the embodiment of the present application does not specifically limit the number of uplink TCI states and the number of downlink TCI states among the N TCI states.
  • the number of uplink TCI states among the N TCI states is no more than 2.
  • the number of downlink TCI states among the N TCI states is no more than 2. In this way, the configuration of the uplink TCI state and/or the downlink TCI state can be restricted, and the implementation complexity of the terminal device can be reduced.
  • Pi ,0 and Pi ,1 may respectively indicate the number of uplink TCI states and the number of downlink TCI states corresponding to the i-th code point. That is to say, Pi ,0 may indicate the i-th code point.
  • the number of uplink TCI states corresponding to the code point (denoted as N1), Pi ,1 can indicate the number of downlink TCI states corresponding to the i-th code point (denoted as N2).
  • P i,0 and P i,1 may respectively indicate the number of downlink TCI states and the number of uplink TCI states corresponding to the i-th code point. That is to say, P i,0 may indicate the i-th code point.
  • the number of downlink TCI states corresponding to the i-th code point (denoted as N2), Pi,1 can indicate the number of uplink TCI states corresponding to the i-th code point (denoted as N1).
  • the embodiments of this application do not specifically limit the values of N1 and N2.
  • the value of N1 can be a value among 1 and 2, or the value of N1 can be a value among 0, 1, and 2, or the value of N1 can be a value among 0 and 1.
  • the value of N2 can be a value among 1 and 2, or the value of N2 can be a value among 0, 1, and 2, or the value of N2 can be a value among 0 and 1.
  • FIG 7 shows a schematic diagram of an arrangement position of Pi ,0 and Pi ,1 .
  • Pi ,0 can be located to the left of Pi ,1 , that is, the bits of Pi ,0 are higher than the bits of Pi,1 .
  • the positions of Pi ,0 and Pi ,1 can also have other forms.
  • the position of Pi ,0 can be interchanged with the position of Pi ,1, and Pi ,0 can be located on the right side of Pi ,1 , that is, the bit position of Pi ,1 is higher than that of Pi , 0 bits.
  • Pi ,0 and Pi ,1 shown in Figure 7 and Figure 8 are sorted starting from the left (or the highest bit).
  • Pi ,0 and Pi ,1 can also be sorted starting from the right (or lowest bit), as shown in Figure 9 and Figure 10.
  • Pi ,0 and Pi,1 shown in Figures 7-10 are adjacent bits located in the same byte.
  • Pi ,0 and Pi ,1 may also be located in different bytes.
  • Pi ,0 and Pi ,1 can be bits at corresponding positions in adjacent bytes, that is, 2 bits at corresponding positions of two adjacent bytes constitute Pi ,0 and Pi ,1 .
  • the lowest bits in byte 3 and byte 4 are P 0,0 and P 0,1 respectively
  • the second lowest bits in byte 3 and byte 4 are P 1,0 and P 1 respectively. ,1 , and so on.
  • the second MAC CE may indicate the number of code points corresponding to the second MAC CE indication or activated TCI state, that is, the second MAC CE may include the fourth indication field described above.
  • the bits of (i>T) can be ignored, or considered as reserved bits, or considered as fixed values.
  • the terminal device can be reduced from reading or parsing some bits of information, thereby reducing the terminal implementation complexity.
  • Figure 12 shows a schematic structural diagram of a second MAC CE including a fourth indication field.
  • the structure of the second MAC CE shown in Figure 12 is an improvement based on Figure 10.
  • the embodiment of the present application can also add a fourth indication field to the second MAC CE structure in other figures. To simplify the description, they will not be listed one by one.
  • the second MAC CE frame structure shown in Figure 12 is based on the second MAC CE frame structure shown in Figure 10 and adds parts A 2 , A 1 , and A 0 . That is to say, the length of the fourth indication field may be 3 bits, and these three bits are A 2 , A 1 , and A 0 respectively.
  • the three bits A 2 , A 1 , and A 0 may be used to indicate that the second MAC CE indicates T code points (code points of the TCI domain in DCI).
  • the values of the three bits A 2 , A 1 , and A 0 can be values among 1, 2,...,8.
  • the embodiment of the present application does not specifically limit the placement positions of A 2 , A 1 , and A 0 .
  • the positions of A 2 , A 1 , and A 0 may be continuous, as shown in Figure 12.
  • the positions of A 2 , A 1 , and A 0 may also be discontinuous, as shown in Figure 13 .
  • the positions of A 2 , A 1 , and A 0 may be in the form of A 2 A 1 A 0 as shown in Figure 12 , that is, A 2 may be located before A 1 , and A 1 may be located before A 0 .
  • a 2 , A 1 , and A 0 can also be interchanged, as shown in Figure 14 , and the positions of A 2 , A 1 , and A 0 can be A 0 A 1 as shown in Figure 12 A 2 , i.e. A 0 can come before A 1 , and A 1 can come before A 2 .
  • the above description takes the fourth indication field including 3 bits as an example.
  • the fourth indication field may also include other numbers of bits, such as 4 bits, that is, the fourth indication field may include A 3 , A 2 , A 1 , A 0 , which will be described in detail below.
  • a 2 , A 1 , and A 0 may also use other reserved bits, which are not specifically limited in this embodiment of the present application.
  • Figures 7 to 14 show a solution in which the length of the second indication field (ie, Pi ,0 and Pi,1 in the above embodiment) is 2 bits.
  • the length of the second indication field can also be other values. , such as 3 bits, 4 bits, etc. Some possible implementations in which the length of the second indication field is 3 bits and 4 bits are given below.
  • the scheme in which the length of the second indication field is 3 bits and 4 bits can be directly expanded on the basis of Figures 7 to 14. For simplicity, each case is not listed one by one.
  • the following takes the solution shown in Figure 9 as an example to introduce the second MAC CE expanded on the basis of the solution shown in Figure 9 .
  • the length of the second indication field may be 4 bits, and Pi ,0 , Pi,1 , Pi ,2 , and Pi,3 may form a subset of bits.
  • the group can be used to indicate the number of TCI states corresponding to the i-th code point (denoted as N). It should be noted that this bit subset can be understood as the second indication field described above.
  • the value of N can be a value among 1,2,3,4,5,6,7,8, or the value of N can be 0,1,2,3,4,5,6,7,8
  • the value in , or the value of N can be a value among 0,1,2,3,4,5,6,7.
  • some of the above 4 bits may be reserved bits, or the values of some of the bits may be fixed values.
  • some of the bits in Pi ,0 , Pi,1 , Pi ,2 , and Pi,3 may be used to indicate the number of uplink TCI states corresponding to the i-th code point (denoted as N1), Another part of the bits can be used to indicate the number of downlink TCI states corresponding to the i-th code point (denoted as N2). Examples are given below.
  • Pi ,0 and Pi ,1 can be used to indicate the number of uplink TCI states corresponding to the i-th code point
  • Pi ,2 and Pi ,3 can be used to indicate the number of downlink TCI states corresponding to the i-th code point.
  • Pi ,2 and Pi ,3 can be used to indicate the number of uplink TCI states corresponding to the i-th code point
  • Pi ,0 and Pi ,1 can be used to indicate the downlink TCI state corresponding to the i-th code point.
  • the value of N1 can be a value among 1,2,3,4, or the value of N1 can be a value among 0,1,2,3,4, or the value of N can be 0,1, Values in 2,3.
  • the value of N2 can be a value among 1,2,3,4, or the value of N2 can be a value among 0,1,2,3,4, or the value of N2 can be 0,1, Values in 2,3.
  • the positions of Pi ,0 , Pi ,1 , Pi ,2 and Pi,3 shown in Figure 15 are Pi ,3 Pi ,2 Pi,1 Pi ,0 , but the embodiment of the present application does not Not limited to this.
  • the positions of Pi ,0 , Pi ,1 , Pi,2 and Pi ,3 can be interchanged, that is, the positions of these 4 bits can be Pi ,0 Pi ,1 Pi ,2 Pi , 3 .
  • Pi ,0 , Pi,1 , Pi,2 , and Pi,3 may also occupy other bits, which are not specifically limited in the embodiments of the present application.
  • the length of the second indication field may be 3 bits, and Pi ,0 , Pi,1 , and Pi ,2 may form a subset of bits.
  • This bit subset may be used to indicate the The number of TCI states corresponding to i code points (denoted as N). It should be noted that this bit subset can be understood as the second indication field described above.
  • the value of N can be a value among 1,2,3,4,5,6,7,8, or the value of N can be 0,1,2,3,4,5,6,7,8 value in .
  • the embodiment of the present application does not specifically limit the corresponding relationship between the values of Pi ,0 , Pi,1 , Pi ,2 and N.
  • the values of Pi ,0 , Pi ,1 and Pi,2 can be understood as the values of the bit subgroup composed of Pi ,0 , Pi ,1 and Pi ,2 .
  • the correspondence between the values of P i,0 , P i,1 , P i,2 and N will be illustrated below with an example.
  • the values of N corresponding to the values 000,001,010,011,100,101,110,111 of Pi ,0 , Pi ,1 and Pi ,2 respectively can be 1,2,3,4,5,6,7,8.
  • the values of N corresponding to the values 000, 100, 010, 110,001, 101,011, and 111 of Pi ,0 , Pi ,1, and Pi ,2 respectively can be 1, 2, 3, 4, 5, 6, 7, and 8.
  • the embodiment of the present application does not specifically limit the number of uplink TCI states and the number of downlink TCI states among the N TCI states.
  • the number of uplink TCI states among the N TCI states is no more than 4.
  • the number of downlink TCI states among the N TCI states is no more than 4. In this way, the configuration of the uplink TCI state and/or the downlink TCI state can be restricted, and the implementation complexity of the terminal device can be reduced.
  • some of the bits in Pi ,0 , Pi ,1 , and Pi ,2 may be used to indicate the number of uplink TCI states corresponding to the i-th code point, and the other part of the bits may be used to indicate the i-th code point.
  • 2 bits in Pi ,0 , Pi ,1 , and Pi ,2 (such as Pi ,0 Pi,1 , or Pi ,1 Pi ,2 , or Pi ,0 Pi ,2 ) is used to indicate the number of downlink TCI states corresponding to the i-th code point (recorded as N2), and the other 1 bit (such as Pi ,2 , Pi ,0 , Pi ,1 ) is used to indicate the i-th code point
  • the number of corresponding uplink TCI states (recorded as N1).
  • MAC CE signaling can be designed more flexibly to facilitate future solution expansion.
  • the embodiments of this application do not specifically limit the values of N1 and N2.
  • the value of N1 can be a value among 1 and 2, or the value of N1 can be a value among 0,1, and 2, or the value of N1 can be a value among 0 and 1.
  • the value of N2 can be a value among 1,2,3,4, or the value of N2 can be a value among 0,1,2,3,4, or the value of N2 can be 0,1 , the value in 2,3.
  • the embodiments of the present application do not specifically limit the positions of Pi ,0 , Pi,1 , and Pi ,2 .
  • the positions of Pi ,0 , Pi ,1 , and Pi,2 shown in Figure 16 are Pi ,2 Pi ,1 Pi ,0 , but the embodiment of the present application is not limited thereto.
  • the positions of Pi ,0 , Pi ,1 and Pi ,2 can be interchanged, that is, the positions of these 3 bits can be Pi ,0 Pi ,1 Pi ,2 .
  • the reserved bits in Byte 3 to Byte 6 shown in Figure 16 are located on the far left, but the embodiment of the present application is not limited to this.
  • the reserved bits in Byte 3 to Byte 6 may also be located on the rightmost side.
  • the reserved bits may also be located between indication fields corresponding to different code points.
  • the bits in a byte can be arranged like this, RXXXRXX, or XXXRXXR, where R represents the reserved bits, and XXX represents the Pi ,0 , Pi ,1 , Pi,2 bits corresponding to a certain code point. This way It is beneficial to expand the indication field to 4 bits to provide flexibility for future signaling expansion.
  • the indication fields Pi ,0 , Pi ,1 , and Pi,2 corresponding to the i-th code point are located in the same byte.
  • this embodiment of the present application does not Limited to this.
  • the indication fields Pi ,0 , Pi ,1 , and Pi,2 corresponding to the i-th code point may be located in different bytes, which is beneficial to saving MAC CE overhead.
  • Pi ,0 , Pi ,1 , and Pi ,2 can be the bits at the corresponding positions in three adjacent bytes, that is, the 3 bits at the corresponding positions of the three adjacent bytes form P i,0 , Pi ,1 , Pi ,2 .
  • the lowest bits in Bytes 3 to 5 are P 0,0 , P 0,1 , and P 0,2 respectively, and the second lowest bits in Bytes 3 to 5 are P 1 respectively. ,0 ,P 1,1 ,P 1,2 , and so on.
  • this solution can save 1 byte, thereby reducing the signaling overhead of MAC CE.
  • FIG 17 shows that Pi ,0 , Pi,1 , and Pi ,2 are arranged in order from large to small i and from right to left.
  • Pi ,0 , Pi ,1 , and Pi ,2 can also be arranged in the order of i from large to small and from left to right.
  • Example 2 Different types of TCI status are carried in the same MAC CE
  • the frame structure of the third MAC CE is similar to the frame structure of the second MAC CE.
  • the main difference is that the frame structure of the second MAC CE only needs to consider the independent TCI state (ie, uplink TCI state and/or downlink TCI state), while the third MAC CE
  • the frame structure of MAC CE must consider both independent TCI status and joint TCI status. In other words, the frame structure of the third MAC CE must be applicable to both the joint TCI state and the independent TCI state.
  • the terminal device may receive fifth indication information sent by the network device, and the fifth indication information indicates that the unified TCI state is the joint TCI state.
  • the joint TCI state can be used for both uplink operation (UL operation) or uplink transmission (UL transmission), downlink operation (DL operation) or downlink transmission or reception (DL transmission/reception).
  • UL operation uplink operation
  • DL operation downlink operation
  • DL transmission/reception downlink transmission/reception
  • the embodiment of the present application does not specifically limit the transmission method of the fifth indication information.
  • the fifth indication information may be carried in the RRC IE parameter unifiedTCI-StateType. If the value of unifiedTCI-StateType is "joint", it means that the unified TCI state is the joint TCI state.
  • the fifth indication information may be carried in the RRC IE parameter ServingCellConfig.
  • the fifth indication information may be configured for a serving cell.
  • the network device may configure corresponding fifth indication information for different serving cells.
  • the network device may also send sixth indication information to the terminal device, where the sixth indication information is used to configure or indicate a set of TCI states.
  • this group of TCI states is referred to as the third TCI state group below.
  • the third TCI status group may include one or more TCI statuses.
  • the TCI status in the third TCI status group is a combined TCI status.
  • the sixth indication information and the fifth indication information may be sent together, or the sixth indication information and the fifth indication information may be carried in the same message.
  • the fifth indication information and the sixth indication information can be configured through the same RRC IE.
  • the third TCI status group may be used for uplink transmission or downlink transmission.
  • the sixth indication information may be carried in RRC signaling, or the sixth indication information may be configured through RRC parameters.
  • the sixth indication information may be carried in the RRC IE parameter PDSCH-Config.
  • the sixth indication information may be carried in the RRC IE parameter dl-OrJoint-TCIStateList.
  • the terminal device may receive fifth indication information sent by the network device, and the fifth indication information indicates that the unified TCI state is the independent TCI state.
  • the independent TCI state may include an uplink TCI state and/or a downlink TCI state.
  • the uplink TCI status can be used for uplink operation (UL operation) or uplink transmission (UL transmission).
  • This downlink TCI status can be used for downlink operation (DL operation) or downlink transmission (DL transmission).
  • DL operation downlink transmission
  • the following uses uplink transmission and downlink transmission as examples to introduce the solution of the embodiment of the present application.
  • the embodiment of the present application does not specifically limit the transmission method of the fifth indication information.
  • the fifth indication information may be carried in the IE parameter unifiedTCI-StateType of RRC. If the value of unifiedTCI-StateType is "Separate", it means that the unified TCI state is an independent TCI state.
  • the fifth indication information may be carried in the IE parameter ServingCellConfig of RRC.
  • the fifth indication information may be configured for a serving cell.
  • the network device may configure corresponding fifth indication information for different serving cells.
  • the network device may also send sixth indication information to the terminal device, where the sixth indication information is used to configure or indicate a set of TCI states.
  • this group of TCI states is referred to as the first TCI state group below.
  • the first TCI status group may include one or more TCI statuses.
  • the TCI status in the first TCI status group is the downlink TCI status.
  • the sixth indication information and the fifth indication information may be sent together, or the sixth indication information and the fifth indication information may be carried in the same message.
  • the fifth indication information and the sixth indication information can be configured through the same RRC IE.
  • the first TCI status group may be used for downlink transmission.
  • the sixth indication information may be carried in RRC signaling, or the sixth indication information may be configured through RRC parameters.
  • the sixth indication information may be carried in the RRC IE parameter PDSCH-Config.
  • the sixth indication information may be carried in the RRC IE parameter dl-OrJoint-TCIStateList-r17.
  • the network device may also send sixth indication information to the terminal device, where the sixth indication information is used to configure or indicate a set of TCI states.
  • this group of TCI states is referred to as the second TCI state group below.
  • the second TCI status group may include one or more TCI statuses.
  • the TCI status in the first TCI status group is the uplink TCI status.
  • the second TCI status group may be used for uplink transmission.
  • the sixth indication information may be carried in RRC signaling, or the sixth indication information may be configured through RRC parameters.
  • the sixth indication information may be carried in the RRC IE parameter PDSCH-Config.
  • the sixth indication information may be carried in the RRC IE parameter ul-TCI-ToAddModList.
  • the sixth indication information used to indicate the first TCI status group and the sixth indication information used to indicate the second TCI status group may be the same indication information, or may be different indication information.
  • the network device may send an indication message to the terminal device to indicate the first TCI status group.
  • the network device may also send another indication information to the terminal device to indicate the second TCI status group.
  • the network device may send an indication information to the terminal device, and the indication information is used to indicate the first TCI status group and the second TCI status group.
  • the frame structure of the second MAC CE shown in Figure 7- Figure 17 is also applicable to the frame structure of the third MAC CE.
  • the difference lies in the meaning of each indication field in the MAC CE frame structure.
  • contents not described in detail please refer to the previous description.
  • the indication field in the third MAC CE is introduced below.
  • the third MAC CE may include one or more of the following indication fields: serving cell indication field, BWP indication field, TCI status indication field, one or more fifth indication fields, sixth indication field , the seventh indication domain.
  • the third MAC CE may include one or more of a BWP indication field, one or more fifth indication fields, a sixth indication field, and a seventh indication field.
  • the third MAC CE may include any one of a BWP indication field, one or more fifth indication fields, a sixth indication field, and a seventh indication field.
  • the third MAC CE may include a BWP indication field.
  • the third MAC CE may include one or more fifth indication fields.
  • the third MAC CE may include a sixth indication field.
  • the third MAC CE may include a seventh indication field.
  • the third MAC CE may include any two of the BWP indication field, one or more fifth indication fields, sixth indication fields, and seventh indication fields.
  • the third MAC CE may include a BWP indication field and one or more fifth indication fields.
  • the third MAC CE may include a BWP indication field and a sixth indication field.
  • the third MAC CE may include a BWP indication field and a seventh indication field.
  • the third MAC CE may include one or more fifth indication fields and sixth indication fields.
  • the third MAC CE may include one or more fifth indication fields and seventh indication fields.
  • a third MAC CE may be included.
  • the third MAC CE may include a sixth indication field and a seventh indication field.
  • the third MAC CE may include any three of the BWP indication field, one or more fifth indication fields, sixth indication fields, and seventh indication fields.
  • the third MAC CE may include a BWP indication field, one or more fifth indication fields, and a sixth indication field.
  • the third MAC CE may include a BWP indication field, one or more fifth indication fields, and a seventh indication field.
  • the third MAC CE may include a BWP indication field, a sixth indication field, and a seventh indication field.
  • the third MAC CE may include one or more fifth indication fields, sixth indication fields, and seventh indication fields.
  • the third MAC CE may include a BWP indication field, one or more fifth, sixth, and seventh indication fields.
  • the third MAC CE includes the serving cell indication field, which can be understood as the third MAC CE includes the serving cell information.
  • the serving cell indication field can be used to indicate the serving cell to which the third MAC CE can be applied.
  • the serving cell indication field may include a serving cell ID, and the serving cell ID may be used to indicate the corresponding serving cell.
  • the embodiment of this application does not specifically limit the length of the serving cell indication field.
  • the length of the serving cell indication field may be 5 bits.
  • the third MAC CE includes the BWP indication field, which can be understood as the third MAC CE includes BWP information.
  • the BWP indication field can be used to indicate the applicable UL BWP and DL BWP of the third MAC CE.
  • UL BWP can be used for uplink transmission
  • DL BWP can be used for downlink transmission.
  • the BWP indication field is one indication field, or the BWP indication field may include multiple indication fields.
  • the BWP indication field may include a UL BWP indication field and a DL BWP indication field.
  • the third MAC CE includes a UL BWP indication field, which can be understood as the third MAC CE includes UL BWP information.
  • the UL BWP indication field may be used to indicate the applicable UL BWP of the third MAC CE.
  • the UL BWP indication field may include a UL BWP ID, and the UL BWP ID may be used to indicate the corresponding UL BWP.
  • the indication field indicates a UL BWP
  • the MAC CE can use the UL BWP as the code point specified in TS 38.212 [9] as the DCI bandwidth part indication field (This field indicates a UL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9]).
  • the embodiment of this application does not specifically limit the length of the UL BWP indication field.
  • the length of the UL BWP ID field can be 2 bits (The length of the BWP ID field is 2bits).
  • the third MAC CE includes a DL BWP indication field, which can be understood as the third MAC CE includes DL BWP information.
  • the DL BWP indication field may be used to indicate the applicable DL BWP of the third MAC CE.
  • the DL BWP indication field may include a DL BWP ID, which may be used to indicate the corresponding DL BWP.
  • the indication field indicates a DL BWP
  • the MAC CE can use the DL BWP as the code point specified in TS 38.212 [9] as the DCI bandwidth part indication field (This field indicates a DL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9]).
  • the embodiment of this application does not specifically limit the length of the DL BWP indication field.
  • the length of the DL BWP indication field can be 2 bits (The length of the BWP ID field is 2bits).
  • the third MAC CE may include a TCI status indication field, which may be used to indicate the TCI status. In some embodiments, the third MAC CE may include multiple TCI status indication fields, each TCI status indication field being used to indicate one TCI status.
  • the one TCI state may be a TCI state in the third TCI state group described above, that is, the one TCI state belongs to one of the third TCI state group.
  • the TCI state may be a TCI state in the first TCI state group described above, that is, the TCI state belongs to one of the first TCI state group.
  • the one TCI state may be a TCI state in the second TCI state group described above, that is, the one TCI state belongs to one of the second TCI state group.
  • the embodiment of the present application does not specifically limit the length of the TCI status indication field.
  • the length of the TCI status indication field may be 7 bits.
  • the length of the TCI status indication field may be 6 bits. The longer the length of the TCI status indication field, the more TCI statuses the TCI status indication field can indicate, thereby improving the flexibility of network scheduling.
  • the most significant bit of the TCI status indication field may be a reserved bit. For example, if the length of the TCI status indication field is 7 bits, the remaining 6 bits in the TCI status indication field can be used to indicate the TCI status.
  • the uplink TCI status and the downlink TCI status are introduced separately below.
  • the length of the TCI state indication field may be 7 bits.
  • the highest bit (the most significant bit) of the TCI status indication field may be a reserved bit, and the remaining 6 bits are used to indicate the DL TCI status or joint TCI status.
  • the length of the TCI status indication field may be 7 bits. If the TCI status indication field is used to indicate the UL TCI status, the highest bit of the TCI status indication field can be a reserved bit, and the remaining 6 bits are used to indicate the UL TCI status.
  • the third MAC CE may include one or more fifth indication fields.
  • a fifth indication field may be associated with a code point.
  • Each fifth indication field may be used to indicate the number of TCI states corresponding to one code point, or in other words, each fifth indication field is used to indicate the number of uplink TCI states and downlink TCI states corresponding to one code point.
  • the embodiment of the present application does not specifically limit the number of fifth indication fields.
  • the number of fifth indication fields may be related to the number of bits of the TCI field in the DCI.
  • the number of fifth indication fields may be equal to the number of code points that the TCI field can indicate. For example, if the TCI field in DCI is 3 bits, the number of fifth indication fields may be 8, that is, the third MAC CE may include 8 fifth indication fields.
  • the embodiment of the present application does not specifically limit the length of the fifth indication field.
  • the length of the fifth indication field is associated with the number of TCI states corresponding to one code point. The greater the number of TCI states corresponding to one code point, the longer the length of the fifth indication field.
  • the length of the fifth indication field may be, for example, 2 bits or 3 bits. If the length of the fifth indication field is 2 bits, the number of TCI states corresponding to one code point is at most 4. If the length of the fifth indication field is 3 bits, the number of TCI states corresponding to one code point is at most 8.
  • the number of downlink TCI states may be greater than the number of uplink TCI states, or the number of downlink TCI states may be equal to the number of uplink TCI states, or the number of downlink TCI states may be It is less than the number of uplink TCI states, and the embodiment of the present application does not specifically limit this.
  • the type of TCI status (such as uplink TCI status, downlink TCI status) may be indicated through the sixth indication field described below.
  • N the number of TCI states corresponding to one code point indicated by each fifth indication field.
  • the embodiment of this application does not specifically limit the value of N.
  • the following is an example of the value of N for the independent TCI state and the joint TCI state respectively.
  • the following takes the third MAC CE to indicate the independent TCI status as an example to introduce the value of N.
  • the value of N can be a value among 1, 2, 3, and 4, or the value of N can be a value among 0, 1, 2, 3, and 4, or the value of N can be is a value among 0,1,2,3.
  • This method is relatively simple for protocol design and system implementation, can obtain most of the performance gains of multiple TRPs, and has good flexibility for network configuration and scheduling.
  • the number of downstream TCI states may be less than or equal to 2. In some implementations, the number of upstream TCI states may be less than or equal to 2. Of course, in some embodiments, the number of downlink TCI states and the number of uplink TCI states can also be other values.
  • the value of N can be a value among 1,2,3,4,5,6, or the value of N can be a value among 0,1,2,3,4,5,6 value, or the value of N can be a value among 0, 1, 2, 3, 4, and 5.
  • This approach can support more TRPs for uplink transmission and/or downlink transmission. In some scenarios, downlink transmission performance can be improved, providing greater freedom for network optimization.
  • the number of downstream TCI states may be less than or equal to 4. In some implementations, the number of upstream TCI states may be less than or equal to 2. By indicating more downlink TCI states, downlink transmission performance can be improved. Of course, in some embodiments, the number of downlink TCI states and the number of uplink TCI states can also be other values. For example, the number of downlink TCI states is less than or equal to 2, and the number of uplink TCI states is less than or equal to 4. For another example, the number of downlink TCI states is less than or equal to 3, and the number of uplink TCI states is less than or equal to 3.
  • the value of N can be a value among 1,2,3,4,5,6,7,8, or the value of N can be 0,1,2,3,4,5,
  • the value of N can be a value among 6, 7, and 8, or the value of N can be a value among 0, 1, 2, 3, 4, 5, 6, and 7.
  • This approach can support more TRPs for uplink transmission and/or downlink transmission. In some scenarios, downlink transmission performance can be improved, providing greater freedom for network optimization.
  • the number of downstream TCI states may be less than or equal to 4. In some implementations, the number of upstream TCI states may be less than or equal to 4. By indicating more downlink TCI states, downlink transmission performance can be improved.
  • the number of downlink TCI states and the number of uplink TCI states can also be other values. For example, the number of downlink TCI states is less than or equal to 6, and the number of uplink TCI states is less than or equal to 2. For another example, the number of downlink TCI states is less than or equal to 5, and the number of uplink TCI states is less than or equal to 3.
  • the following takes the third MAC CE indication joint TCI status as an example to introduce the value of N.
  • the value of N can be a value among 1 and 2, or the value of N can be a value among 0, 1, and 2, or the value of N can be a value among 0 and 1.
  • a fifth indication field can be used to indicate 1 or 2 joint TCI states corresponding to a code point.
  • the value of N can be a value among 1, 2, 3, and 4, or the value of N can be a value among 0, 1, 2, 3, and 4, or the value of N Can be a value among 0,1,2,3.
  • a fifth indication field can be used to indicate 1 or 2 or 3 or 4 joint TCI states corresponding to one code point. This method can support more TRPs for uplink transmission and downlink transmission. In some scenarios, downlink transmission performance can be improved, providing greater freedom for network optimization.
  • the third MAC CE may include a sixth indication field.
  • the sixth indication field is used to indicate the type of TCI status.
  • the types of TCI status may include uplink TCI status, downlink TCI status and joint TCI status. That is to say, the sixth indication field may be used to indicate whether the corresponding TCI state is an uplink TCI state, a downlink TCI state, or a joint TCI state.
  • the values of the sixth indication field corresponding to the downlink TCI state and the combined TCI state are the same.
  • the sixth indication field can be used to indicate whether the corresponding TCI state is the downlink or combined TCI state, or the uplink TCI. state.
  • the solution of the embodiment of the present application is introduced below, taking as an example that the value of the sixth indication field corresponding to the downstream TCI state and the joint TCI state is the same.
  • embodiments of the present application may include one or more sixth indication fields.
  • a sixth indication field may correspond to a TCI state or a TCI status indication field.
  • the sixth indication field may be used to indicate the corresponding TCI state. type.
  • the sixth indication field may be used to indicate the type of TCI status indicated by the TCI status indication field located in the same byte as the sixth indication field.
  • the sixth indication field is used to indicate whether the TCI status indication field located in the same byte as the sixth indication field indicates the uplink TCI status, the downlink TCI status, or the combined TCI status.
  • the sixth indication field may be used to indicate the type of the TCI status group in which the TCI status group indicated by the TCI status indication field located in the same byte as the sixth indication domain is located.
  • the categories of TCI status groups may include a third TCI status group, a first TCI status group, and a second TCI status group.
  • the TCI state in the third TCI state group is the combined TCI state
  • the TCI state in the first TCI state group is the downlink TCI state
  • the TCI state in the second TCI state group is the downlink TCI state. Therefore, the type of TCI state can be identified by the TCI state group in which the TCI state is located.
  • the sixth indication field indicates that the corresponding TCI state belongs to the third TCI state group, it means that the corresponding TCI state is a joint TCI state. If the sixth indication field indicates that the corresponding TCI state belongs to the first TCI state group, it means that the corresponding TCI state is the downlink TCI state. If the sixth indication field indicates that the corresponding TCI state belongs to the second TCI state group, it means that the corresponding TCI state is the uplink TCI state.
  • the third MAC CE may include a seventh indication field.
  • the seventh indication field may be used to indicate the number of code points corresponding to the indicated or activated TCI state in the third MAC CE.
  • the seventh indication field may also be called a TCI state subset number indication field or a DCI code point indication field.
  • the number of code points indicated by the seventh indication field is less than or equal to the number of the second indication field, or in other words, the number of code points indicated by the seventh indication field is less than or equal to the number of code points that can be indicated by the TCI field in DCI.
  • the number of code points indicated by the seventh indication field can be understood as the number of code points in the first field in the DCI corresponding to the TCI status indicated in the third MAC CE.
  • the first domain is the TCI domain in DCI.
  • the embodiment of the present application does not specifically limit the maximum number of TCI states that the third MAC CE indicates or activates.
  • the maximum number of third MAC CE indications or activated TCI states may be 32.
  • the maximum number of TCI states indicated or activated by the third MAC CE may be 48.
  • the implementation complexity of the terminal device can be controlled within a certain range.
  • the maximum number of TCI states indicated or activated by the third MAC CE may be 64.
  • the embodiment of the present application does not specifically limit the maximum number of TCI states that the third MAC CE indicates or activates.
  • the maximum number of joint TCI states indicated or activated by the third MAC CE may be 16 or 32.
  • the third MAC CE may include a serving cell ID, and the serving cell ID may be used to indicate serving cell information.
  • the third MAC CE may include DL BWP ID, which is used to indicate downlink bandwidth part information.
  • the third MAC CE may include the UL BWP ID to indicate the uplink bandwidth part information.
  • R represents a reserved bit, and the value of the R bit may be 0, for example.
  • the third MAC CE may include a D/U indication field, and the D/U indication field may be understood as the sixth indication field described above.
  • the D/U indication field can be used to indicate whether the same byte indicates the downlink TCI state or joint TCI state, or the uplink TCI state (This field indicates whether the TCI state ID in the same octet is for downlink/joint or uplink TCI state ).
  • the TCI state ID in the same byte indicates the downlink TCI state or the joint TCI state (If this field is set to 1, the TCI state ID in the same octet is for downlink/joint).
  • the TCI state ID in the same byte indicates the uplink TCI state (If this field is set to 0, the TCI state ID in the same octet is for uplink).
  • the third MAC CE may include a TCI status ID field, and the TCI status ID field may be understood as the TCI status indication field described above.
  • the TCI status ID field can indicate a TCI status, which can be an uplink TCI status, a downlink TCI status or a combined TCI status.
  • the TCI status ID field of the same byte is used to indicate the downlink TCI status or the joint TCI status.
  • the TCI status ID field of the same byte is used to indicate the uplink TCI status.
  • the TCI status ID field used to indicate the downlink TCI status or joint TCI status can be 7 bits, thereby supporting a greater number of downlink TCI statuses and providing space and flexibility for the network to optimize transmission configuration.
  • the TCI status ID field used to indicate the uplink TCI status can be 7 bits, thereby supporting a greater number of uplink TCI statuses and providing space and flexibility for the network to optimize transmission configuration.
  • the highest bit of the TCI state can be a reserved bit, and the remaining 6 bits can be used to indicate the uplink TCI state (the most significant bit of TCI state ID is considered as the reserved bit and remainder 6bits indicate the UL-TCIState -Id).
  • the length of the fifth indication field may be 2 bits.
  • Pi ,0 and Pi,1 in Figures 7 to 10 may form a subset of bits.
  • the bit subset Can be used to indicate the number of TCI states corresponding to the i-th code point (denoted as N). It should be noted that this bit subset can be understood as the fifth indication field described above.
  • the value of N can be a value among 1,2,3,4, or the value of N can be a value among 0,1,2,3,4, or the value of N can be 0,1, Values in 2,3.
  • the embodiment of the present application does not specifically limit the correspondence between the values of Pi ,0 and Pi ,1 and N.
  • the values of Pi ,0 and Pi ,1 can be understood as the values of the bit subgroup composed of Pi ,0 and Pi ,1 .
  • the following is an example of the correspondence between the values of Pi ,0 and Pi ,1 and N.
  • the following takes the third MAC CE to indicate the independent TCI state as an example to introduce the corresponding relationship between the values of P i,0 and P i,1 and N.
  • the values of N corresponding to the values 00, 01, 10, and 11 of Pi ,0 and Pi ,1 can be 1, 2, 3, and 4 respectively.
  • the values of N corresponding to the values 00, 10, 01, and 11 of Pi ,0 and Pi,1 can be 1, 2, 3, and 4 respectively.
  • Pi ,0 and Pi ,1 are each 1 bit, and the embodiment of the present application is not limited thereto.
  • Pi ,0 and Pi ,1 may also include other numbers of bits, for example, Pi ,0 and Pi ,1 may each include 2 bits.
  • the embodiment of the present application does not specifically limit the number of uplink TCI states and the number of downlink TCI states among the N TCI states.
  • the number of uplink TCI states among the N TCI states is no more than 2.
  • the number of downlink TCI states among the N TCI states is no more than 2. In this way, the configuration of the uplink TCI state and/or the downlink TCI state can be restricted, and the implementation complexity of the terminal device can be reduced.
  • P i,0 and P i,1 may respectively indicate the number of uplink TCI states and the number of downlink TCI states corresponding to the i-th code point, that is, P i, 0 can indicate the number of uplink TCI states corresponding to the i-th code point (denoted as N1), and Pi ,1 can indicate the number of downlink TCI states corresponding to the i-th code point (denoted as N2).
  • P i,0 and P i,1 may respectively indicate the number of downlink TCI states and the number of uplink TCI states corresponding to the i-th code point. That is to say, P i,0 may indicate the i-th code point.
  • the number of downlink TCI states corresponding to the i-th code point (denoted as N2), Pi,1 can indicate the number of uplink TCI states corresponding to the i-th code point (denoted as N1).
  • the embodiments of this application do not specifically limit the values of N1 and N2.
  • the value of N1 can be a value among 1 and 2, or the value of N1 can be a value among 0,1, and 2, or the value of N1 can be a value among 0 and 1.
  • the value of N2 can be a value among 1 and 2, or the value of N2 can be a value among 0, 1, and 2, or the value of N2 can be a value among 0 and 1.
  • Pi ,0 and Pi ,1 indicate that the number of joint TCI states corresponding to the i-th codepoint can be 1 or 2.
  • the length of the fifth indication field may be 4 bits.
  • Pi ,0 , Pi ,1 , Pi ,2 and Pi,3 can form a subset of bits, which can be used to indicate the i-th code point corresponding to The number of TCI states (denoted as N). It should be noted that this bit subset can be understood as the second indication field described above.
  • the value of N can be a value among 1,2,3,4,5,6,7,8, or the value of N can be 0,1,2,3,4,5,6,7,8
  • the value in , or the value of N1 can be a value among 0,1,2,3,4,5,6,7.
  • some of the above 4 bits may be reserved bits, or the values of some of the bits may be fixed values.
  • Pi ,0 , Pi ,1 , Pi,2 , Pi ,3 can be used to indicate that the number of joint TCI states corresponding to the i-th code point is 1 One or two or three or four.
  • a part of the bits in Pi ,0 , Pi,1 , Pi,2 , and Pi,3 may be used to indicate the i-th code
  • the number of uplink TCI states corresponding to the point (denoted as N1), and another part of the bits can be used to indicate the number of downlink TCI states corresponding to the i-th code point (denoted as N2). Examples are given below.
  • Pi ,0 and Pi ,1 can be used to indicate the number of uplink TCI states corresponding to the i-th code point
  • Pi ,2 and Pi ,3 can be used to indicate the number of downlink TCI states corresponding to the i-th code point.
  • Pi ,2 and Pi ,3 can be used to indicate the number of uplink TCI states corresponding to the i-th code point
  • Pi ,0 and Pi ,1 can be used to indicate the downlink TCI state corresponding to the i-th code point.
  • the value of N1 can be a value among 1,2,3,4, or the value of N1 can be a value among 0,1,2,3,4, or the value of N1 can be 0,1, Values in 2,3.
  • the value of N2 can be a value among 1,2,3,4, or the value of N2 can be a value among 0,1,2,3,4, or the value of N2 can be 0,1, Values in 2,3.
  • the length of the fifth indication field may be 3 bits.
  • Pi ,0 , Pi ,1 and Pi,2 can form a subset of bits, which can be used to indicate the number of TCI states corresponding to the i-th code point ( denoted as N). It should be noted that this bit subset can be understood as the fifth indication field described above.
  • the value of N can be a value among 1,2,3,4,5,6,7,8, or the value of N can be 0,1,2,3,4,5,6,7,8
  • the value in , or the value of N can be a value among 0,1,2,3,4,5,6,7.
  • Pi ,0 , Pi ,1 , Pi ,2 can be used to indicate that the number of joint TCI states corresponding to the i-th code point is 1 or 2 or 3 or 4.
  • the following introduces the scheme used by the third MAC CE to indicate the independent TCI status.
  • the embodiment of the present application does not specifically limit the corresponding relationship between the values of Pi ,0 , Pi,1 , Pi ,2 and N.
  • the values of Pi ,0 , Pi ,1 and Pi,2 can be understood as the values of the bit subgroup composed of Pi ,0 , Pi ,1 and Pi ,2 .
  • the correspondence between the values of P i,0 , P i,1 , P i,2 and N will be illustrated below with an example.
  • the values of N corresponding to the values 000,001,010,011,100,101,110,111 of Pi ,0 , Pi ,1 and Pi ,2 respectively can be 1,2,3,4,5,6,7,8.
  • the values of N corresponding to the values 000, 100, 010, 110,001, 101,011, and 111 of Pi ,0 , Pi ,1, and Pi ,2 respectively can be 1, 2, 3, 4, 5, 6, 7, and 8.
  • the embodiment of the present application does not specifically limit the number of uplink TCI states and the number of downlink TCI states among the N TCI states.
  • the number of uplink TCI states among the N TCI states is no more than 4.
  • the number of downlink TCI states among the N TCI states is no more than 4. In this way, the configuration of the uplink TCI state and/or the downlink TCI state can be restricted, and the implementation complexity of the terminal device can be reduced.
  • some of the bits in Pi ,0 , Pi ,1 , and Pi ,2 may be used to indicate the number of uplink TCI states corresponding to the i-th code point, and the other part of the bits may be used to indicate the i-th code point.
  • 2 bits in Pi ,0 , Pi ,1 , and Pi ,2 (such as Pi ,0 Pi,1 , or Pi ,1 Pi ,2 , or Pi ,0 Pi ,2 ) is used to indicate the number of downlink TCI states corresponding to the i-th code point (recorded as N2), and the other 1 bit (such as Pi ,2 , Pi ,0 , Pi ,1 ) is used to indicate the i-th code point
  • the number of corresponding uplink TCI states (recorded as N1).
  • MAC CE signaling can be designed more flexibly to facilitate future solution expansion.
  • the embodiments of this application do not specifically limit the values of N1 and N2.
  • the value of N1 can be a value among 1 and 2, or the value of N1 can be a value among 0, 1, and 2, or the value of N1 can be a value among 0 and 1.
  • the value of N2 can be a value among 1, 2, 3, and 4, or the value of N2 can be a value among 0, 1, 2, 3, and 4, or the value of N2 can be 0, value in 1.
  • the embodiment of this application does not specifically limit the value of i.
  • the value of i can start from 0, as shown in Figure 6- Figure 17.
  • the value of i can also start from other values.
  • the value of i can also start from 1.
  • the terminal device in the embodiment of the present application can receive the first indication information sent by the network device.
  • the terminal device may determine one or more of the following information according to the first indication information: QCL information corresponding to the PDSCH DMRS, QCL information corresponding to the PDCCH DMRS, QCL information corresponding to the DMRS corresponding to part of the CORESET, and at least part of the CSI-RS corresponding
  • QCL information corresponding to the PDSCH DMRS QCL information corresponding to the PDCCH DMRS
  • QCL information corresponding to the DMRS corresponding to part of the CORESET QCL information corresponding to the DMRS corresponding to part of the CORESET
  • the QCL information, the uplink transmission spatial filter of the PUSCH, the uplink transmission spatial filter of at least part of the PUCCH, and the uplink transmission spatial filter of at least part of the SRS The QCL information, the uplink transmission spatial filter of the PUSCH, the uplink transmission spatial filter of at least part of the PUCCH,
  • the RRC parameter followUnifiedTCIstateSRS-r17 is configured in the SRS resource set corresponding to at least part of the SRS.
  • the first indication information may be transmitted through DCI signaling.
  • the first indication information may be transmitted through the TCI domain in DCI.
  • the format of DCI can be DCI format 1_1 and/or DCI format 1_2.
  • DCI format 1_1/1_2 can schedule data at the same time or not schedule downlink transmission (with or without, if applicable, DL assignment).
  • the format of DCI may be DCI format 1_1 and/or DCI format 1_2 and/or DCI format 0_1 and/or DCI format 0_2.
  • DCI format 1_1/1_2 can schedule data at the same time or not schedule downlink transmission (with or without, if applicable, DL assignment)
  • DCI format 0_1/0_2 can schedule data at the same time or not schedule uplink transmission (with or without, if applicable, UL assignment).
  • TCI state X if at least one TCI state (denoted as TCI state X) among the one or more TCI states indicated by the first indication information is different from any one of the previously indicated (the previously indicated) TCI states, Or, if at least one of the one or more TCI states indicated by the first indication information (recorded as TCI state If different, starting from the first time slot (slot) at least BeamAppTime symbols after the last symbol of the first PUCCH, the TCI state X indicated by the first indication information takes effect.
  • the terminal equipment can determine the uplink transmission spatial filter and/or the QCL information corresponding to the downlink transmission according to the TCI state X, where the first PUCCH transmission carries the HARQ-ACK information corresponding to the DCI where the first indication information is located (When the UE WOULD Transmit the Last Symbol of a Pucch with Harq-Ack Information Corresponding to the DCI CARRERING The TCI State Indication and Without Dl Assignment, OR CORRESPON Ding to the pdsch everything by the dci carrying the tci state indication, and if the indicated tci state is different from the previously indicated one, the indicated DLorJointTCIState or UL-TCIstate should be applied starting from the first slot that is at least symbols after the last symbol of the PUCCH.The first slot and the symbols are both determined on the carrier with the smallest SCS among the carrier(s)applying the beam indication).
  • TCI states are for the same transmission direction. For example, if TCI state If state X is used for downlink transmission or reception, the previously indicated TCI state for downlink transmission or reception is considered different from TCI state X; if TCI state The TCI status for uplink transmission and downlink transmission or reception is different from TCI status X.
  • a DCI can indicate up to 2 TCI states for downlink transmission or reception (DL operation or DL transmission/reception).
  • TCI state for uplink, or for both uplink and downlink TCI status can be expanded similarly.
  • the network device has previously indicated TCI status A1 and TCI status A2 for downlink transmission, and the current DCI indication signal contains TCI status X, and TCI status X is different from TCI status A1 and TCI status A2, you need to consider The above process is used to determine when TCI status X can be applied.
  • the terminal equipment currently uses two TCI states (recorded as TCI state A1 and TCI state A2) to determine the QCL information corresponding to the downlink transmission.
  • the current DCI indication signal contains TCI state X, and TCI state X and TCI status A1 and TCI status A2 are different, so you need to consider the above process to determine when TCI status X can be applied (can be applied).
  • the solution of the embodiment of the present application can also support multi-TRP transmission of some channels/signals, and single-TRP transmission of other channels/signals.
  • the terminal device can use one of the multiple unified TCI states indicated by the first indication information to perform uplink transmission or downlink transmission, thereby reducing the processing complexity of the terminal device. Reduce power consumption.
  • the embodiment of the present application can also support single TRP transmission of some downlink channels/signals or all channels/signals (referred to as downlink single TRP transmission), and can also support partial uplink channels.
  • downlink single TRP transmission single TRP transmission of some downlink channels/signals or all channels/signals
  • uplink single TRP transmission single TRP transmission of signal or all channels/signals
  • the multiple unified TCI states indicated by the first indication information may include multiple TCI states for downlink transmission.
  • the terminal device may determine the QCL information corresponding to the downlink transmission based on the first TCI state among the plurality of TCI states used for downlink transmission. That is to say, the terminal device can perform downlink single TRP transmission when the first condition is met.
  • the network device may perform a first operation related to a first condition for determining a first TCI state from a plurality of TCI states for downlink transmission.
  • the first operation may include any one of the following: the network device sends third indication information to the terminal device; the network device does not send the third indication information to the terminal device; the network device sends the third indication information to the terminal device, and the The value of the third indication information is the first value.
  • the first condition may include any one of the following: the terminal device receives the third indication information sent by the network device; the terminal device does not receive the third indication information sent by the network device; the terminal device receives the third indication information sent by the network device. three indication information, and the value of the third indication information is the first value.
  • the network device uses the third instruction information to allow part of the downlink transmission signals and/or part of the downlink transmission channel to be transmitted using a single TRP, thereby reducing terminal processing requirements and reducing power consumption of the terminal equipment.
  • the terminal device when the terminal device receives the third indication information sent by the network device and the value of the third indication information is the first value, the terminal device may use the first TCI state for downlink transmission.
  • the network device when the network device needs the terminal device to perform downlink single TRP transmission, the network device may send the third indication information whose value is the first value to the terminal device.
  • the terminal device may use the first TCI state to perform downlink transmission after receiving the third indication information sent by the network device.
  • the network device may send the third indication information to the terminal device when the terminal device is required to perform downlink single TRP transmission. As long as the terminal device receives the third indication information, regardless of the value of the third indication information, the terminal device can use the first TCI state for downlink transmission.
  • the terminal device may use the first TCI state for downlink transmission without receiving the third indication information sent by the network device.
  • the network device may not send the third indication information to the terminal device when the terminal device is required to perform downlink single TRP transmission.
  • the third indication information may be transmitted through RRC signaling, that is, the third indication information may be carried in RRC signaling.
  • the third indication information is carried through RRC signaling, which can be configured separately for different channels or channels, which can increase the flexibility of the system.
  • the third indication information may be configured for the first parameter. That is to say, the network device may configure the third indication information to the terminal device respectively for different first parameters.
  • the first parameter may include one or more of the following: CORESET, CSI-RS resource, CSI-RS resource set, PDSCH, and PDCCH.
  • the third indication information may be configured for CORESET, and optionally, the corresponding CORESET configuration information carries the third indication information.
  • the third indication information may be configured for CSI-RS resources, and optionally, the corresponding CSI-RS resource configuration information carries the third indication information.
  • the third indication information may be configured for a CSI-RS resource set, and optionally, the corresponding CSI-RS resource set configuration information carries the third indication information.
  • the third indication information may be configured for PDSCH, and optionally, the corresponding PDSCH configuration information carries the third indication information.
  • the third indication information may be configured for PDCCH, and optionally, the corresponding PDCCH configuration information carries the third indication information.
  • third indication information there may be multiple third indication information, and different third indication information may be configured for different first parameters.
  • some third indication information is configured for CORESET, and some third indication information is configured for CSI-RS resources.
  • some third indication information is configured for one CORESET, and some third indication information is configured for another CORESET.
  • some third indication information is configured for PDSCH, and some third indication information is configured for PDCCH.
  • the terminal device can use the first TCI state among the two TCI states for downlink transmission to determine the corresponding QCL information for the corresponding downlink transmission or downlink reception.
  • the embodiment of the present application does not specifically limit the method of determining the first TCI state.
  • the first TCI state may be determined based on one or more of the following: predefined rules, MAC CE, RRC signaling.
  • the first TCI state may be determined based on predefined rules. This approach can simplify the protocol and reduce the implementation complexity of the terminal device.
  • Predefined rules can be associated with uniform TCI status ID sizes.
  • the predefined rule may be that the TCI state with the smallest corresponding ID (the TCI state with the smallest TCI state ID) is the first TCI state, or the predefined rule may be that the TCI state with the corresponding largest ID (the TCI state with the largest TCI state ID) is the first TCI state. TCI state) is the first TCI state.
  • the first TCI state may be determined based on the MAC CE (such as the first MAC CE or the second MAC CE or the third MAC CE in the above).
  • the first TCI state may be determined based on the indication information (or indication field) in the MAC CE. Determining the first TCI status through MAC CE can increase system flexibility and improve system performance.
  • the first TCI state may be determined based on the location of the indication field used to determine the TCI state in the MAC CE.
  • the indication field used to determine the TCI status may be the TCI status indication field in the MAC CE.
  • the terminal device may determine the first TCI state based on the position of the TCI state indication field in the MAC CE.
  • the first TCI state may be the TCI state indicated by the preceding TCI state indication field in the MAC CE.
  • the first TCI state may be the TCI state indicated by the later TCI state indication field in the MAC CE.
  • the first TCI state may be determined based on RRC signaling (such as indication information in RRC signaling).
  • the network device may send RRC signaling to the terminal device, so that the terminal device determines the first TCI state according to the RRC signaling. Determining the first TCI state through the indication information in RRC signaling can increase system flexibility and improve system performance.
  • the indication information in the RRC signaling may be the third indication information described above, and the terminal device may determine the first TCI state according to the first value of the third indication information.
  • the RRC signaling may be dedicated RRC signaling.
  • the network device may send eighth indication information to the terminal device through RRC signaling, and the terminal device may determine the first TCI state according to the eighth indication information.
  • the multiple unified TCI states indicated by the first indication information may include multiple TCI states for uplink transmission.
  • the terminal device may determine the transmit spatial filter corresponding to the uplink transmission according to the second TCI state among the plurality of TCI states used for uplink transmission. That is to say, the terminal device can perform uplink single TRP transmission when the second condition is met.
  • the network device may perform a second operation, the first operation being related to a second condition for determining a second TCI state from a plurality of TCI states for uplink transmission.
  • the second operation may include any one of the following: the network device sends fourth instruction information to the terminal device; the network device does not send the fourth instruction information to the terminal device; the network device sends the fourth instruction information to the terminal device, and the The value of the fourth indication information is the second value.
  • the second condition may include any one of the following: the terminal device receives the fourth instruction information sent by the network device; the terminal device does not receive the fourth instruction information sent by the network device; the terminal device receives the fourth instruction information sent by the network device.
  • Four indication information and the value of the fourth indication information is the second value.
  • the network device uses the fourth instruction information to allow part of the uplink transmission signals and/or part of the uplink transmission channel to be transmitted using a single TRP, thereby reducing terminal processing requirements and reducing power consumption of the terminal equipment.
  • the terminal device when the terminal device receives the fourth indication information sent by the network device and the value of the fourth indication information is the second value, the terminal device may use the second TCI state for uplink transmission.
  • the network device when the network device needs the terminal device to perform uplink single TRP transmission, the network device may send the fourth indication information with the second value to the terminal device.
  • the terminal device may use the second TCI state for uplink transmission after receiving the fourth indication information sent by the network device.
  • the network device may send the fourth indication information to the terminal device when the terminal device is required to perform uplink single TRP transmission. As long as the terminal device receives the fourth indication information, regardless of the value of the fourth indication information, the terminal device can use the second TCI state for uplink transmission.
  • the terminal device may use the second TCI state for uplink transmission without receiving the fourth indication information sent by the network device.
  • the network device may not send the fourth indication information to the terminal device when the terminal device is required to perform uplink single TRP transmission.
  • the fourth indication information may be transmitted through RRC signaling, that is, the fourth indication information may be carried in RRC signaling.
  • the fourth indication information is carried through RRC signaling, which can be configured separately for different channels or channels, which can increase the flexibility of the system.
  • the fourth indication information may be configured for the second parameter. That is to say, the network device may configure the fourth indication information to the terminal device respectively for different second parameters.
  • the second parameter may include one or more of the following: PUCCH, PUCCH resource, PUCCH resource set, SRS resource, SRS resource set, PUSCH, part or all of the configuration grant PUSCH.
  • the fourth indication information may be configured for PUCCH, and optionally, the corresponding PUCCH configuration information carries the fourth indication information.
  • the fourth indication information may be configured for PUCCH resources, and optionally, the corresponding PUCCH resource configuration information carries the fourth indication information.
  • the fourth indication information may be configured for SRS resources, and optionally, the corresponding SRS resource configuration information carries the fourth indication information.
  • the fourth indication information may be configured for an SRS resource set, and optionally, the corresponding SRS resource set configuration information carries the fourth indication information.
  • the fourth indication information may be configured for PUSCH, and optionally, the corresponding PUSCH configuration information carries the fourth indication information.
  • the fourth indication information may be configured to authorize PUSCH for part or all of the configurations.
  • the corresponding PUSCH configuration information carries the fourth indication information.
  • some fourth indication information is configured for PUCCH, and some fourth indication information is configured for SRS.
  • some fourth indication information is configured for one SRS resource set, and some fourth indication information is configured for another SRS resource set.
  • some fourth indication information is configured for PUSCH, and some fourth indication information is configured for PUCCH.
  • the terminal device can use the second TCI state of the two TCI states for uplink transmission to determine the transmit spatial filter (UL TX spatial filter) corresponding to the uplink transmission.
  • the transmit spatial filter UL TX spatial filter
  • the embodiment of the present application does not specifically limit the method for determining the second TCI state.
  • the second TCI state may be determined based on one or more of the following: predefined rules, MAC CE, RRC signaling.
  • the second TCI state may be determined based on predefined rules.
  • Predefined rules can be associated with uniform TCI status ID sizes.
  • the predefined rule can be that the TCI state with the smallest ID (TCI state with the smallest TCI state ID) is the second TCI state, or the predefined rule can be that the TCI state with the largest ID (TCI state with the largest TCI state ID) is the second TCI state. TCI state) is the second TCI state.
  • the second TCI state may be determined based on the MAC CE (such as the first MAC CE or the second MAC CE or the third MAC CE in the above).
  • the second TCI state may be determined based on the indication information (or indication field) in the MAC CE. Determining the second TCI status through MAC CE can increase system flexibility and improve system performance.
  • the second TCI state may be determined based on the location of the indication field used to determine the TCI state in the MAC CE.
  • the indication field used to determine the TCI status may be the TCI status indication field in the MAC CE.
  • the terminal device can determine the second TCI status based on the position of the TCI status indication field in the MAC CE.
  • the second TCI state may be the TCI state indicated by the preceding TCI state indication field in the MAC CE.
  • the second TCI status may be the TCI status indicated by the later TCI status indication field in the MAC CE.
  • the second TCI state may be determined based on RRC signaling (such as indication information in RRC signaling).
  • the network device may send RRC signaling to the terminal device, so that the terminal device determines the second TCI state according to the RRC signaling. Determining the second TCI state through the indication information in RRC signaling can increase system flexibility and improve system performance.
  • the indication information in the RRC signaling may be the fourth indication information described above, and the terminal device may determine the second TCI state according to the first value of the fourth indication information.
  • the RRC signaling may be dedicated RRC signaling.
  • the network device may send ninth indication information to the terminal device through RRC signaling, and the terminal device may determine the second TCI state according to the ninth indication information.
  • the terminal device may also send the first capability information to the network device.
  • the terminal device may send the first capability information to the network device.
  • the first capability information may be used to indicate the number of unified TCI states (denoted as Z) supported by the terminal device for simultaneous downlink transmission and/or uplink transmission, or the first capability information may be used to indicate that the terminal device supports one code point.
  • a maximum number of unified TCI states (denoted as Z) can be activated or indicated for downlink transmission and/or uplink transmission.
  • the terminal device in the embodiment of the present application uses multiple unified TCI states for uplink transmission at the same time, which may mean that the terminal device uses the multiple unified TCI states for uplink transmission at the same time, or it may mean that the terminal device uses the multiple unified TCI states for uplink transmission at the same time.
  • Z can be any integer greater than 1.
  • the value of Z can be 2, or the value of Z can be 4.
  • the terminal device may report the capability information of the terminal device separately for uplink transmission and downlink transmission, or may report the capability information of the terminal device at the same time. For example, for uplink transmission, the terminal device can send one capability information to the network device; for downlink transmission, the terminal device can send another capability information to the network device.
  • the terminal equipment's capabilities for downlink transmission and its capabilities for uplink transmission may be the same or different. Assume that the value of Z corresponding to downlink transmission is Z1, and the value of Z corresponding to uplink transmission is Z2.
  • the values of Z1 and Z2 can be the same or different. In some embodiments, the value of Z1 may be greater than the value of Z2.
  • the embodiment of this application does not specifically limit the transmission method of the first capability information.
  • the first capability information may be carried in RRC signaling.
  • the first capability information may be carried in the MAC CE.
  • the first capability information may be capability information for the second parameter.
  • the second parameter may include one or more of the following: frequency band; frequency band combination; frequency band in the frequency band combination; carrier on the frequency band in the frequency band combination; carrier; frequency band range; terminal equipment.
  • the first capability information may be reported for a frequency band.
  • terminal equipment can independently report corresponding capability information.
  • an end device may support multi-TRP transmission on some frequency bands but not on other frequency bands.
  • capability information in different frequency bands terminal equipment can have greater freedom in implementation, allowing more terminal equipment to support multi-TRP transmission.
  • the first capability information may be reported for a band combination.
  • terminal equipment can independently report corresponding capability information.
  • a terminal device may support multi-TRP transmission under certain frequency band combinations but not under other frequency band combinations. Independently reporting capability information through different frequency band combinations allows terminal equipment to have greater freedom in implementation, allowing more terminal equipment to support multi-TRP transmission.
  • the first capability information may be independently reported for each frequency band in the frequency band combination.
  • the terminal device can independently report the corresponding capability information.
  • the terminal equipment may have different capabilities in different frequency band combinations. For example, taking frequency band A as an example, when frequency band A is combined with frequency band B, the terminal equipment supports multi-TRP transmission for frequency band A; when frequency band A is combined with frequency band C, the terminal equipment does not need to support multi-TRP transmission for frequency band A.
  • capability information for each frequency band in different frequency band combinations terminal equipment can have greater freedom in implementation, allowing more terminal equipment to support multi-TRP transmission.
  • the first capability information may be reported independently according to each carrier on each frequency band in the frequency band combination.
  • the terminal device can independently report capability information.
  • different frequency band combinations can be reported independently, and different carriers on one frequency band can also be reported independently, which allows terminal equipment to have greater freedom in implementation and allows more terminal equipment to support multiple TRPs. transmission.
  • the first capability information may be reported according to frequency band range.
  • terminal equipment can independently report corresponding capability information.
  • the frequency range can be, for example, a frequency range (FR), and the terminal device can independently report corresponding capability information for each FR.
  • FR may include FR1 and FR2.
  • the terminal device may report capability information for FR1 and capability information for FR2.
  • the terminal device may not support multi-TRP transmission on FR1, but support multi-TRP transmission on FR2.
  • capability information in different frequency band ranges terminal equipment can have greater freedom in implementation, allowing more terminal equipment to support multi-TRP transmission.
  • the frequency ranges corresponding to FR1 and FR2 can be shown in Table 1 below.
  • the first capability information may be reported for the terminal device. If the terminal device reports a capability information, it means that the terminal device supports this capability in all frequency bands. This method can reduce the signaling overhead reported by the terminal device.
  • the TCI state in the embodiment of the present application may be a unified TCI state.
  • the TCI state may be a combined TCI state, an independent TCI state, an uplink TCI state, or a downlink TCI state.
  • Figure 18 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1800 shown in Figure 18 may be any terminal device described above.
  • the terminal device 1800 may include a receiving unit 1810.
  • the receiving unit 1800 is configured to receive first indication information sent by a network device, where the first indication information is used to indicate multiple unified transmission configuration indication TCI states.
  • the first indication information is carried in downlink control information DCI signaling, or the first indication information is carried in the media access control unit MAC CE.
  • the first indication information is carried in the TCI domain in DCI signaling.
  • At least part of the multiple unified TCI states is used to determine the uplink transmission spatial filter corresponding to the uplink transmission, and/or at least part of the multiple unified TCI states is used to determine The corresponding quasi-co-located QCL information is transmitted in the downlink.
  • the receiving unit is further configured to receive second indication information sent by the network device; the terminal device further includes a determining unit 1820, configured to determine the plurality of Unified TCI status.
  • the second indication information is carried in MAC CE.
  • the second indication information corresponding to different types of unified TCI states is carried in the same MAC CE, or the second indication information corresponding to different types of unified TCI states is carried in different MAC CEs.
  • the second indication information is carried in the first MAC CE; and/or, if the multiple unified TCI states are independent TCI state, the second indication information is carried in the second MAC CE.
  • the first MAC CE includes one or more of the following indication fields: a bandwidth part BWP indication field, used to indicate the uplink bandwidth part UL BWP and downlink bandwidth applicable to the first MAC CE Partial DL BWP; one or more first indication fields, each first indication field is used to indicate the number of TCI states corresponding to a code point.
  • each of the first indication fields includes one or more first subfields, and one first subfield is used to indicate whether a TCI state corresponding to the one code point exists.
  • the second MAC CE includes one or more of the following indication fields: a BWP indication field, used to indicate the UL BWP and DL BWP applicable to the second MAC CE; one or more The second indication field is used to indicate the number of TCI states corresponding to one code point; the third indication field is used to indicate the type of the corresponding independent TCI state.
  • the independent TCI state includes the uplink TCI state and /or downlink TCI status; the fourth indication field is used to indicate the number of code points corresponding to the second MAC CE indication or activated TCI status.
  • the independent TCI state includes an uplink TCI state and/or a downlink TCI state
  • the second indication field includes a second subfield and a third subfield
  • the second subfield is used to indicate a code
  • the third subfield is used to indicate the number of downlink TCI states corresponding to a code point.
  • the third indication field is used to indicate the type of independent TCI status indicated by the TCI status indication field located in the same byte as the third indication field.
  • the third indication field is used to indicate the category of the TCI status group in which the TCI status indicated by the TCI status indication field located in the same byte as the third indication domain is located, and the TCI status group includes The first TCI status group and the second TCI status group, the TCI status in the first TCI status group is the uplink TCI status, and the TCI status in the second TCI status group is the downlink TCI status.
  • the same MAC CE is a third MAC CE
  • the third MAC CE includes one or more of the following indication fields: a BWP indication field, used to indicate that the third MAC CE can The applied UL BWP and DL BWP; one or more fifth indication fields, each fifth indication field is used to indicate the number of TCI states corresponding to a code point; the sixth indication field is used to indicate the type of the corresponding TCI state , the TCI status includes one or more of uplink TCI status, downlink TCI status, and joint TCI status; the seventh indication field is used to indicate the code point corresponding to the third MAC CE indication or activated TCI status. quantity.
  • each fifth indication field is used to indicate the number of joint TCI states corresponding to one code point; and/or, if the unified TCI state is The TCI state is an independent TCI state, and each fifth indication field is used to indicate the number of independent TCI states corresponding to one code point.
  • the sixth indication field is used to indicate the type of TCI status indicated by the TCI status indication field located in the same byte as the sixth indication field.
  • the sixth indication field is used to indicate the category of the TCI status group in which the TCI status indicated by the TCI status indication field located in the same byte as the sixth indication domain is located, and the TCI status group includes The first state TCI group, the second state TCI group and the third state TCI group, the TCI state in the first TCI state group is the uplink TCI state, and the TCI state in the second state TCI group is the downlink TCI state, The TCI state in the third state TCI group is a combined TCI state.
  • the multiple unified TCI states include multiple TCI states for downlink transmission
  • the terminal device further includes: a determining unit 1820, configured to determine according to the first condition if the first condition is met.
  • the first TCI state among multiple TCI states used for downlink transmission determines the QCL information corresponding to the downlink transmission.
  • the first condition includes any one of the following: the terminal device receives the third indication information sent by the network device; the terminal device does not receive the third indication information sent by the network device.
  • Three indication information the terminal device receives the third indication information sent by the network device, and the value of the third indication information is the first value.
  • the third indication information is configured for a first parameter
  • the first parameter includes one or more of the following: control resource set CORESET, channel state information reference signal CSI-RS resource , CSI-RS resource set, physical downlink shared channel PDSCH, physical downlink control channel PDCCH.
  • the third indication information is carried in Radio Resource Control RRC signaling.
  • the first TCI state is determined based on one or more of the following: predefined rules, MAC CE, RRC signaling.
  • the predefined rule is associated with the identification ID size of the unified TCI state.
  • the first TCI state is determined based on the location of the indication field used to determine the TCI state in the MAC CE.
  • the multiple unified TCI states include multiple TCI states for uplink transmission
  • the terminal device further includes: a determining unit 1820, configured to determine according to the second condition if the second condition is met.
  • the second TCI state among the plurality of TCI states used for uplink transmission determines the uplink transmission spatial filter corresponding to the uplink transmission.
  • the second condition includes any one of the following: the terminal device receives the fourth indication information sent by the network device; the terminal device does not receive the third indication information sent by the network device.
  • Four indication information the terminal device receives the fourth indication information sent by the network device, and the value of the fourth indication information is the second value.
  • the fourth indication information is configured for second parameters, and the second parameters include one or more of the following: physical uplink control channel PUCCH, PUCCH resources, PUCCH resource set, detection Reference signal SRS resource, SRS resource set, physical uplink shared channel PUSCH, part or all configuration grant PUSCH.
  • the fourth indication information is carried in RRC signaling.
  • the second TCI state is determined based on one or more of the following information: predefined rules, MAC CE, RRC signaling.
  • the predefined rules are associated with the ID size of the unified TCI state.
  • the second TCI state is determined based on the location of the indication field used to determine the TCI state in the MAC CE.
  • the terminal device further includes: a sending unit 1830, configured to send first capability information to the network device, where the first capability information is used to indicate that the terminal device supports simultaneous use for downlink transmission. and/or the number of unified TCI states for uplink transmission, and/or the first capability information is used to indicate that the terminal device supports one code point that can be activated at most or indicates the unified number for downlink transmission and/or uplink transmission. The number of TCI states.
  • the first capability information is carried in RRC signaling or MAC CE.
  • the first capability information is capability information for a second parameter
  • the second parameter includes one or more of the following: frequency band; frequency band combination; frequency band in a frequency band combination; frequency band combination Carrier on the frequency band; carrier; frequency band range; terminal equipment.
  • Figure 19 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the network device 1900 shown in Figure 19 can be any network device described above.
  • the network device 1900 may include a sending unit 1910.
  • the sending unit 1900 is configured to send first indication information to the terminal device, where the first indication information is used to indicate multiple unified transmission configuration indication TCI states.
  • the first indication information is carried in downlink control information DCI signaling, or the first indication information is carried in the media access control unit MAC CE.
  • the first indication information is carried in the TCI domain in DCI signaling.
  • At least part of the multiple unified TCI states is used to determine the uplink transmission spatial filter corresponding to the uplink transmission, and/or at least part of the multiple unified TCI states is used to determine The corresponding quasi-co-located QCL information is transmitted in the downlink.
  • the sending unit 1910 is further configured to send second indication information to the terminal device, where the second indication information is used to determine the multiple unified TCI states.
  • the second indication information is carried in MAC CE.
  • the second indication information corresponding to different types of unified TCI states is carried in the same MAC CE, or the second indication information corresponding to different types of unified TCI states is carried in different MAC CEs.
  • the second indication information is carried in the first MAC CE; and/or, if the multiple unified TCI states are independent TCI state, the second indication information is carried in the second MAC CE.
  • the first MAC CE includes one or more of the following indication fields: a bandwidth part BWP indication field, used to indicate the uplink bandwidth part UL BWP and downlink bandwidth applicable to the first MAC CE Partial DL BWP; one or more first indication fields, each first indication field is used to indicate the number of TCI states corresponding to a code point.
  • each of the first indication fields includes one or more first subfields, and one first subfield is used to indicate whether a TCI state corresponding to the one code point exists.
  • the second MAC CE includes one or more of the following indication fields: a BWP indication field, used to indicate the UL BWP and DL BWP applicable to the second MAC CE; one or more The second indication field is used to indicate the number of TCI states corresponding to one code point; the third indication field is used to indicate the type of the corresponding independent TCI state.
  • the independent TCI state includes the uplink TCI state and Downlink TCI status; the fourth indication field is used to indicate the number of code points corresponding to the second MAC CE indication or activated TCI status.
  • the second indication field includes a second subfield and a third subfield.
  • the second subfield is used to indicate the number of uplink TCI states corresponding to one code point.
  • the third subfield is used Indicates the number of downlink TCI states corresponding to a code point.
  • the third indication field is used to indicate the type of independent TCI status indicated by the TCI status indication field located in the same byte as the third indication field.
  • the third indication field is used to indicate the category of the TCI status group in which the TCI status indicated by the TCI status indication field located in the same byte as the third indication domain is located, and the TCI status group includes The first TCI status group and the second TCI status group, the TCI status in the first TCI status group is the uplink TCI status, and the TCI status in the second TCI status group is the downlink TCI status.
  • the same MAC CE is a third MAC CE
  • the third MAC CE includes one or more of the following indication fields: a BWP indication field, used to indicate that the third MAC CE can The applied UL BWP and DL BWP; one or more fifth indication fields, each fifth indication field is used to indicate the number of TCI states corresponding to a code point; the sixth indication field is used to indicate the type of the corresponding TCI state , the TCI status includes one or more of uplink TCI status, downlink TCI status, and joint TCI status; the seventh indication field is used to indicate the code point corresponding to the third MAC CE indication or activated TCI status. quantity.
  • each fifth indication field is used to indicate the number of joint TCI states corresponding to one code point; and/or, if the unified TCI state is The TCI state is an independent TCI state, and each fifth indication field is used to indicate the number of independent TCI states corresponding to one code point.
  • the sixth indication field is used to indicate the type of TCI status indicated by the TCI status indication field located in the same byte as the sixth indication field.
  • the sixth indication field is used to indicate the category of the TCI status group in which the TCI status indicated by the TCI status indication field located in the same byte as the sixth indication domain is located, and the TCI status group includes The first state TCI group, the second state TCI group and the third state TCI group, the TCI state in the first TCI state group is the uplink TCI state, and the TCI state in the second state TCI group is the downlink TCI state, The TCI state in the third state TCI group is a combined TCI state.
  • the multiple unified TCI states include multiple TCI states for downlink transmission
  • the network device further includes: an execution unit 1920, configured to perform a first operation, the first operation being the same as the first operation.
  • a condition is associated, and the first condition is used to determine a first TCI state from a plurality of TCI states used for downlink transmission.
  • the first operation includes any one of the following: the network device sends third indication information to the terminal device; the network device does not send the third indication information to the terminal device; The network device sends third indication information to the terminal device, and the value of the third indication information is the first value.
  • the third indication information is configured for a first parameter
  • the first parameter includes one or more of the following: control resource set CORESET, channel state information reference signal CSI-RS resource , CSI-RS resource set, physical downlink shared channel PDSCH, physical downlink control channel PDCCH.
  • the third indication information is carried in Radio Resource Control RRC signaling.
  • the first TCI state is determined based on one or more of the following: predefined rules, MAC CE, RRC signaling.
  • the predefined rule is associated with the identification ID size of the unified TCI state.
  • the first TCI state is determined based on the location of the indication field used to determine the TCI state in the MAC CE.
  • the plurality of unified TCI states include multiple TCI states for uplink transmission
  • the network device further includes: an execution unit 1920, configured to perform a second operation, the second operation being the same as the first operation. Two conditions are associated, and the second condition is used to determine a second TCI state from a plurality of TCI states used for uplink transmission.
  • the second operation includes any one of the following: the network device sends fourth indication information to the terminal device; the network device does not send the fourth indication information to the terminal device; The network device sends fourth indication information to the terminal device, and the value of the fourth indication information is a second value.
  • the fourth indication information is configured for second parameters, and the second parameters include one or more of the following: physical uplink control channel PUCCH, PUCCH resources, PUCCH resource set, detection Reference signal SRS resource, SRS resource set, physical uplink shared channel PUSCH, part or all configuration grant PUSCH.
  • the fourth indication information is carried in RRC signaling.
  • the second TCI state is determined based on one or more of the following information: predefined rules, MAC CE, RRC signaling.
  • the predefined rules are associated with the ID size of the unified TCI state.
  • the second TCI state is determined based on the location of the indication field used to determine the TCI state in the MAC CE.
  • the network device further includes: a receiving unit 1930, configured to receive first capability information sent by the terminal device, where the first capability information is used to indicate that the terminal device supports simultaneous downlink
  • the first capability information is carried in RRC signaling or MAC CE.
  • the first capability information is capability information for a second parameter
  • the second parameter includes one or more of the following: frequency band; frequency band combination; frequency band in a frequency band combination; frequency band combination Carrier on the frequency band; carrier; frequency band range; terminal equipment.
  • Figure 20 is a schematic structural diagram of an online training device according to an embodiment of the present application.
  • the dashed line in Figure 20 indicates that the unit or module is optional.
  • the device 2000 can be used to implement the method described in the above method embodiment.
  • the device 2000 may be a chip, a terminal device or a network device.
  • Apparatus 2000 may include one or more processors 2010.
  • the processor 2010 can support the device 2000 to implement the method described in the foregoing method embodiments.
  • the processor 2010 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 2000 may also include one or more memories 2020.
  • the memory 2020 stores a program, which can be executed by the processor 2010, so that the processor 2010 executes the method described in the foregoing method embodiment.
  • the memory 2020 may be independent of the processor 2010 or integrated in the processor 2010.
  • Apparatus 2000 may also include a transceiver 2030.
  • Processor 2010 may communicate with other devices or chips through transceiver 2030.
  • the processor 2010 can transmit and receive data with other devices or chips through the transceiver 2030.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种无线通信的方法及装置。该方法包括:终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。本申请实施例中,网络设备可以通过第一指示信息向终端设备指示多个统一的TCI状态,使得终端设备可以获得多TRP对应的多个统一的TCI状态,从而为多TRP场景下的统一的TCI状态的指示方式提供了一种明确的方案。

Description

无线通信的方法及装置 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种无线通信的方法及装置。
背景技术
针对统一的传输配置指示(transmission configuration indicator,TCI)状态,协议中没有考虑多传输点(transmitting and receiving point,TRP)传输的场景,只支持了单TRP的场景。也就是说,针对多TRP传输场景,统一的TCI状态如何配置和指示,目前还没有明确的方案。
发明内容
本申请提供一种无线通信的方法及装置。下面对本申请实施例中的各个方面进行介绍。
第一方面,提供了一种无线通信的方法,包括:终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
第二方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
第三方面,提供了一种终端设备,包括:接收单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
第四方面,提供了一种网络设备,包括:发送单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
第五方面,提供一种终端设备,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如第一方面所述的方法。
第六方面,提供一种网络设备,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行第二方面所述的方法。
第七方面,提供一种装置,包括处理器,用于从存储器中调用程序,以执行第一方面所述的方法。
第八方面,提供一种装置,包括处理器,用于从存储器中调用程序,以执行第二方面所述的方法。
第九方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第一方面所述的方法。
第十方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第二方面所述的方法。
第十一方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第一方面所述的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第二方面所述的方法。
第十三方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第一方面所述的方法。
第十四方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第二方面所述的方法。
第十五方面,提供一种计算机程序,所述计算机程序使得计算机执行第一方面所述的方法。
第十六方面,提供一种计算机程序,所述计算机程序使得计算机执行第二方面所述的方法。
本申请实施例中,网络设备可以通过第一指示信息向终端设备指示多个统一的TCI状态,使得终端设备可以获得多TRP对应的多个统一的TCI状态,从而为多TRP场景下的统一的TCI状态的指示方式提供了一种明确的方案。
附图说明
图1是可应用于本申请实施例的无线通信系统的示意图。
图2是本申请实施例提供的一种TCI状态指示方式的示意图。
图3是本申请实施例提供的一种多TRP传输的示意图。
图4是本申请实施例提供的一种多波束传输的示意图。
图5是本申请实施例提供的一种无线通信方法的示意性流程图。
图6是本申请实施例提供的一种第一MAC CE帧结构的示意图。
图7是本申请实施例提供的一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图8是本申请实施例提供的另一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图9是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图10是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图11是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图12是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图13是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图14是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图15是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图16是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图17是本申请实施例提供的又一种第二MAC CE帧结构或第三MAC CE帧结构的示意图。
图18是本申请实施例提供的一种终端设备的示意性框图。
图19是本申请实施例提供的一种网络设备的示意性框图。
图20是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine, M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中涉及到的通信设备,可以为网络设备,或者也可以为终端设备。例如,第一通信设备为网络设备,第二通信设备为终端设备。又如,第一通信设备为终端设备,第二通信设备为网络设备。又如,第一通信设备和第二通信设备均为网络设备,或者均为终端设备。
还应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
NR系统中的多波束系统
通信系统(例如,NR)的设计目标包括高频段(例如6GHz以上的频段)的大带宽通信。当工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。因此,为了能够有效地保证高频段的覆盖范围,一种有效的技术方案便是基于大规模天线阵列(Massive multiple-in multipleout,Massive MIMO),以形成增益更大的赋形波束,克服传播损耗,确保通信系统的覆盖范围。
某些通信系统(如2G、3G或4G系统)中,一个小区(或扇区)使用一个较宽的波束(beam)来覆盖整个小区。因此,在每个时刻,小区覆盖范围内的终端设备都有机会获得系统分配的资源。
一些通信系统(如NR或5G系统)可以通过不同的波束来覆盖整个小区,即每个波束覆盖一个较小的范围,通过时间上的扫描(sweeping)来实现多个波束覆盖整个小区的效果。
不同的波束可以通过波束上承载的信号的不同来进行识别。例如,不同波束上传输的同步信号和物理广播信道块(synchronization signal/physical boardcast channe block,SS block,也可以称为SS/PBCH block或SSB)不同,终端设备可以通过不同的SS block来识别出不同的波束。又例如,不同波束上传输的信道状态信息参考信号(channel state information reference signal,CSI-RS)不同,终端设备可以通过CSI-RS和/或CSI-RS资源来识别出不同的波束。
对于不同的通信系统,下行信号或下行信道(如物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH))可以通过不同的下行波束来传输。例如,对于6G以下通信系统,终端设备一般没有模拟波束,因此,终端设备可以使用全向天线(或接近全向的天线)来接收网络设备发送的下行信号。网络设备可以通过不同的下行发送波束向终端设备发送下行信号。又例如,对于毫米波系统,终端设备可能具有模拟波束,终端设备可以使用与下行发送波束对应的下行接收波束接收信号。在该情况下,终端设备可以根据波束指示信息(beam indication),确定网络设备侧的发送波束相关信息或终端设备侧对应的接收波束相关信息。
在一些实施例中,波束指示信息可以不直接指示波束本身,而是通过信号之间的准共址(quasi co-colated,QCL)信息(或QCL假设)进行指示。终端设备可以基于QCL信息,确定相应的接收信号或信道,其中,QCL信息可以通过TCI状态(state)进行指示。下文将会对QCL信息和TCI状态进行详细介绍。
通常,将发送端用于发送信号的波束称为“发送波束”,将接收端用于接收信号的波束称为“接收波束”。
在一些情况下,上述发送波束也可以称为空域发送滤波器(spatial domain transmission filter),相应地,上述接收波束也可以称为空域接收滤波器(spatial domain reception filter)。在另一些情况下,上述发送波束也可以称为空域发送参数(spatial domain transmission parameter),相应地,上述接收波束也可以称为空域接收参数(spatial domain reception parameter)。为了便于理解,本申请实施例主要还是以波束为例介绍。
TCI状态
终端设备在进行信号接收时,为了提高接收性能,可以利用数据传输所对应的传输环境特性来改进接收算法。例如,终端设备可以利用信道的统计特性来优化信道估计其的设计和参数。在一些通信 系统(如NR系统)中,数据传输所对应的传输环境特性可以通过QCL信息来表示。QCL信息可以通过TCI状态进行指示。网络设备可以通过TCI状态将对应的QCL信息指示给终端设备。
下行传输如果来自不同的TRP或波束或面板(panel),则数据传输所对应的传输环境特性也可能会发生变化。因此,网络设备在进行下行传输(如传输下行控制信道或下行数据信道)之前,会通过TCI状态将对应的QCL信息指示给终端设备。
通常,TCI状态可以包含TCI状态的标识(identity,ID)和/或QCL信息。其中,TCI状态的标识用于标识TCI状态。QCL信息又可以包含QCL类型配置以及QCL参考信号配置。
上述QCL类型配置可以包括QCL类型A,QCL类型B,QCL类型C或QCL类型D。其中,不同QCL类型配置的定义如下。
QCL类型A(QCL-TypeA):{多普勒偏移,多普勒扩展,平均时延,时延扩展}
QCL类型B(QCL-TypeB):{多普勒偏移,多普勒扩展}
QCL类型C(QCL-TypeC):{多普勒偏移,平均时延}
QCL类型D(QCL-TypeD):{空域接收参数}。
上述QCL参考信号配置可以包括参考信号所在的带宽部分(bandwidth part,BWP)的标识以及参考信号的标识,其中,参考信号的标识可以为同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)索引和/或CSI-RS的资源标识。
目前,通信协议规定上述TCI状态的伪代码可以如下所示。
Figure PCTCN2022110557-appb-000001
如上文介绍,以NR系统为例,网络设备可以为下行信号或下行信道指示相应的TCI状态。如果网络设备通过TCI状态配置与待传输信号(如下行信道或下行信号)准共址的参考信号的标识为1(如SSB或CSI-RS),且QCL类型为类型A,类型B或类型C,则终端设备可以假设上述待传输信号与标识为1的参考信号具有相同的大尺度信道参数,并且大尺度信道参数可以通过TCI状态中的QCL类型来确定。
如果网络设备通过TCI状态配置与待传输信号(如下行信道或下行信号)准共址的参考信号的标识为1(如参考信号为SSB或CSI-RS),且QCL类型为QCL类型D,则终端设备接收待传输信号采用的接收波束,与接收标识为1的参考信号采用的接收波束(如spatial Rx parameter)相同。
通常,在网络设备侧,待传输信号和与其准共址的参考信号可以由同一个TRP或同一个panel或相同的波束来发送。如果两个待传输信号的传输TRP或传输panel或发送波束不同,则网络设备通常会为这两个待传输信号配置不同的TCI状态。
网络设备可以通过不同的方式配置TCI状态。下文举例说明了三种TCI状态配置方式。可以理解的是,配置TCI状态的方式可以与TCI状态指示的参考信号的类型有关。对于不同的参考信号的类型,可以通过不同的情况获取TCI状态,从而获取该参考信号的QCL信息。例如,对于下行控制信道,可以通过方式一或方式二来配置TCI状态。对于下行数据信道,可以通过方式三来配置TCI状态。
方式一:通过无线资源控制(radio resource control,RRC)信令配置TCI状态。例如,周期性CSI-RS/TRS的QCL信息可以通过RRC信令配置。
方式二:通过RRC配置,再由媒体接入控制控制单元(medium access control control element,MAC CE)信令激活TCI状态。例如,周期性CSI-RS/跟踪参考信号(tracking reference signal,TRS)或PDCCH的解调参考信号(demodulation reference signal,DMRS)的QCL信息可以通过MAC CE指示激活和去 激活。
方式三:通过RRC配置,由MAC-CE激活,并利用下行控制信息(downlink control information,DCI)进行指示TCI状态。也就是说,在这种方式下,可以经历RRC配置、MAC-CE激活以及DCI指示三个步骤以配置TCI状态。DCI可以包括TCI状态指示域(简称TCI域),以指示TCI状态。例如,非周期CSI-RS/TRS或PDSCH的DMRS的QCL信息可以通过这种方式获取。
对于方式三,DCI可以从MAC CE激活的TCI中指示一个或多个TCI状态。DCI指示多个TCI状态的方案主要是针对后文介绍的多TRP而言的。该多个TCI状态可以包括2个TCI状态。DCI指示一个或多个TCI状态可以理解为,DCI中的TCI域的一个码点(codepoint)与MAC CE指示或激活的一个或多个TCI状态对应。码点可以理解为DCI中的TCI域的取值。
下面以NG系统R15/16标准为例,举例说明基于方式三获取TCI状态的方法。参见图2,该方法可以包括步骤S210~S230。
步骤S210,网络设备通过RRC信令配置N个候选TCI状态。其中,N可以为大于0的整数,N的数值可以根据终端设备的能力确定。
步骤S220,网络设备可以通过MAC-CE激活K个TCI状态。K的取值最大可以为8,对应于DCI中的3bit的TCI域。
步骤S230,网络设备向终端设备发送DCI。该DCI可用于指示MAC-CE激活的K个TCI状态中的一个或两个TCI状态。终端设备可以根据DCI确定一个或2个使用的TCI状态。
多TRP/多波束/多panel传输
多TRP传输可以指在同一个载波上,多个TRP可以同时与某个终端设备进行通信。如图3所示,终端设备可以同时与TRP1和TRP2进行通信。多波束传输、多panel传输与多TRP传输类似。多波束传输可以指在同一个载波上,终端设备可以同时接收来自多个波束的信号。如图4所示,终端设备可以同时通过波束1和波束2与网络设备进行通信。多panel传输可以指在同一个载波上,终端设备可以同时接收来自多个panel的信号。多TRP、多波束、多panel可以采用相同的方案,因此在描述上通常不加以区分。上述传输方式可以称为多TRP传输,mTRP传输,或者M-TRP传输,或者多个TRP/panel/beam传输。下文以多TRP为例,对本申请实施例的方案进行介绍。
多个TRP同时给终端设备发送下行数据的方案,可以支持以下两种方式。
方式1、基于单PDCCH的方案(single-PDCCH based scheme)。终端设备只检测一个PDCCH。终端设备可以在该PDCCH上检测得到的一个DCI,该DCI可用于指示多个TRP上同时传输的数据的相关指示信息。也就是说,该DCI可以对应多个TCI状态,通过多个TCI状态可以隐式地指示支持多TRP传输。
方式2、基于多PDCCH的方案(multiple-PDCCH based scheme)。终端设备可以接收来自不同TRP的不同PDCCH,每个PDCCH均可包含一个DCI,该DCI可用于指示一个对应的数据传输的相关指示信息。也就是说,多个PDCCH上的多个DCI可用于指示多个TCI状态,一个DCI用于指示一个TCI状态。在一些实施例中,DCI对应的控制资源集(control resource set,CORESET)可以关联到不同的CORESET资源池(CORESET pool)编号,即对应不同的CORESET pool索引(index)。通过不同的CORESET pool可以隐式地指示支持多TRP传输。
对于方式1,终端设备只需要检测一个PDCCH,因此PDCCH的检测复杂度可以低于方式2。但是,方式1需要在不同的TRP之间能够快速交互信息。
对于方式2,终端设备需要在同一个载波上同时去检测多个PDCCH,检测复杂度会有所增加,但是灵活性和鲁棒性会有所改善。
方式2的应用场景可以包括以下中的一种或多种:
S1-1:多个TRP属于同一个小区,TRP之间的连接(backhaul)是理想的(即可以快速进行信息交互,如能够进行动态信息交互)。
S1-2:多个TRP属于同一个小区,TRP之间的连接(backhaul)是非理想的(即TRP之间无法快速交互信息,只能进行相对较慢的数据交互)。
S1-3:多个TRP属于不同的小区,TRP之间的连接(backhaul)是理想的。
S1-4:多个TRP属于不同的小区,TRP之间的连接(backhaul)是非理想的。
上述应用场景是以多TRP为例进行介绍的,需要说明的是,将上述TRP换成波束,即可得到多波束的应用场景。或者,将上述TRP换成panel,即可得到多panel对应的应用场景。
通常,方式1可以认为只适用于理想连接的场景,即适用于S1-1和S1-3的场景。
需要说明的是,本申请实施例的多TRP传输都是针对在同一个载波上进行传输的情况。例如,以方式2为例,终端设备可以在同一个载波上同时检测多个DCI(如2个DCI),每个DCI可以调度对 应的PDSCH,多个PDSCH也是在同一个载波上进行传输。在一些实施例中,该多个PDSCH也可以在时域上有交叠。
在R16中,只研究和支持了下行数据传输的多TRP传输。在R17中,研究和支持了PDCCH、物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)的多TRP传输,以增加相应信道传输的可靠性。
统一的TCI状态(unified TCI state)
前面介绍的TCI状态的指示机制是在R15引入的,仅适用于下行信号或下行信道,且在较新的通信系统(如NR系统)中应用起来有诸多的限制。为了给通信系统提供一个更统一的上下行波束管理机制,第三代合作伙伴计划(3rd generation partnership project,3GPP)协议中引入了统一TCI状态。
统一的TCI状态包括两种模式,下面对这两种模式进行介绍。
模式一、联合(joint)TCI状态。联合TCI状态包含一类TCI状态,这类TCI状态可以适用于上行的信号和信道、下行的信道和信号。
模式二、独立(separate)TCI状态。独立TCI状态包含两类TCI状态,分别为上行TCI状态(uplink TCI state,UL TCI state)和下行TCI状态(downlink TCI state,DL TCI state)。上行TCI状态仅适用于上行的信号和信道,下行TCI状态仅适用于下行的信号和信道。
下行的信道例如可以为PDCCH、PDSCH等,下行的信号例如可以为CSI-RS。上行的信道例如可以为PUCCH、PUSCH等,上行的信号例如可以为探测参考信号(sounding reference signal,SRS)。
如果上行的信号和信道使用相同的上行发射波束,则可以使用上行TCI状态或联合TCI状态。如果下行的信号和信道使用相同的下行发射波束,则可以使用下行TCI状态和联合TCI状态。可选地,上行的波束指示可以和上行的功率控制参数同时通过上行TCI状态或联合TCI状态进行指示。
在一些实施例中,统一TCI状态可以使用MAC CE和/或DCI进行动态指示和更新。
本申请实施例的方案可适用于载波聚合的场景,单载波上的波束指示可以适用于多个不同的载波。在一些实施例中,本申请实施例的方案可适用于小区间的波束管理。
为了支持统一的TCI状态架构,一些通信协议(例如NR R17协议)还引入了4种CORESET,分别为CORESET A、CORESET B、CORESET C以及CORESET 0。
CORESET A所关联的搜索空间都是终端设备专属的搜索空间,用来传输终端设备专用的PDCCH。CORESET A可以认为是终端设备专属的下行控制信道资源,可以按照统一的TCI状态架构进行工作。
CORESET B所关联的搜索空间为小区公共的搜索空间。终端设备可以基于网络设备的RRC配置,确定CORESET B是否按照统一的TCI状态架构进行工作。
CORESET C所关联的搜索空间可以包括终端设备专属的搜索空间,也包括小区公共的搜索空间。终端设备可以基于网络设备的RRC配置,确定CORESET C是否按照统一的TCI状态架构进行工作。
CORESET 0所关联的搜索空间包括小区搜索空间。在一些实施例中,CORESET 0关联的搜索空间也可以包括终端设备专属的搜索空间。终端设备可以基于网络设备的RRC配置,确定CORESET C是否按照统一的TCI状态架构进行工作。
针对统一的TCI状态,协议中没有考虑多TRP传输的场景,只支持了单TRP的场景。也就是说,针对多TRP传输场景,统一的TCI状态如何配置和指示,目前还没有明确的方案。
基于此,本申请实施例提供一种无线通信的方法,为多TRP场景下的统一的TCI状态的指示方式提供了一种明确的方案。下面结合图5,对本申请实施例的方案进行介绍。
参见图5,在步骤S510、网络设备向终端设备发送第一指示信息。该第一指示信息用于指示多个统一的TCI状态。该多个统一的TCI状态可以理解为终端设备使用的TCI状态。
本申请实施例中,网络设备可以通过第一指示信息向终端设备指示多个统一的TCI状态,使得终端设备可以获得多TRP对应的多个统一的TCI状态,从而为多TRP场景下的统一的TCI状态的指示方式提供了一种明确的方案。
本申请实施例对该多个统一的TCI状态的类型不做具体限定。在一些实施例中,该多个TCI状态可以包括一种类型的TCI状态。例如,该多个统一的TCI状态可以为联合TCI状态,也可以为独立TCI状态。或者,该多个统一的TCI状态可以为上行TCI状态,也可以为下行TCI状态。在一些实施例中,该多个统一的TCI状态可以包括多种类型的TCI状态。例如,该多个统一的TCI状态可以包括联合TCI状态、独立TCI状态、上行TCI状态、下行TCI状态中的至少两种TCI状态。
在一些实施例中,该多个统一的TCI状态中的至少部分可用于确定上行传输对应的发送空间滤波器和/或下行传输对应的QCL信息。也就是说,该多个统一的TCI状态中的至少部分可用于确定上行传输对应的发送空间滤波器,和/或,该多个统一的TCI状态中的至少部分可用于确定下行传输对应的QCL信息。
例如,如果该多个统一的TCI状态为联合TCI状态,则该多个统一的TCI状态可用于确定上行传输对应的发送空间滤波器和下行传输对应的QCL信息。又例如,如果该多个统一的TCI状态为独立TCI状态,该独立TCI状态可以包括上行TCI状态和/或下行TCI状态,也就是说,该多个统一的TCI状态既包括上行TCI状态和/或下行TCI状态,则该多个统一的TCI状态中的部分TCI状态可用于确定上行传输对应的发送空间滤波器,该多个统一的TCI状态中的部分TCI状态可用于确定下行传输对应的QCL信息。又例如,如果该多个统一的TCI状态为上行TCI状态,则该多个统一的TCI状态可用于确定上行传输对应的发送空间滤波器。再例如,如果该多个统一的TCI状态为下行TCI状态,则该多个统一的TCI状态可用于确定下行传输对应的QCL信息。需要说明的是,本申请实施例的空间滤波器也可以理解为QCL信息,或波束,或空域参数,或空域滤波器等。
本申请实施例对第一指示信息的传输方式不做具体限定。作为一个示例,第一指示信息可以承载于DCI信令中。也就是说,网络设备可以通过DCI信令向终端设备指示多个统一的TCI状态。终端设备可以根据DCI信令中的第一指示信息,确定多个统一的TCI状态。在一些实施例中,第一指示信息可以承载于DCI信令中的任意一个或多个指示域中。例如,第一指示信息可以承载于DCI信令中的传输配置指示(transmission configuration indication,TCI)域中,即第一指示信息可以通过DCI信令中的TCI域进行传输。
以DCI信令中的TCI域为例,TCI域的一个码点可以与多个统一的TCI状态对应。终端设备接收到网络设备发送的DCI信令后,可以根据DCI信令中的TCI域的码点,以及码点与多个统一的TCI状态之间的对应关系,确定出该多个统一的TCI状态。
作为另一个示例,第一指示信息可以承载于MAC CE中。也就是说,网络设备可以通过MAC CE向终端设备指示多个统一的TCI状态。终端设备可以根据MAC CE中的第一指示信息,确定多个统一的TCI状态。
可选地,第一指示信息可以承载于MAC CE中的任意一个或多个指示域中。例如,第一指示信息可以承载于MAC CE的TCI状态指示域中。TCI状态指示域可用于指示TCI状态。例如,TCI状态指示域可以包括TCI状态ID,终端设备根据TCI状态ID,可以确定对应的TCI状态。由于MAC CE具有较低的传输时延以及较好的传输可靠性,通过MAC CE承载第一指示信息,使得网络设备可以快速指示终端设备进行相应的操作。
例如,如果MAC CE中仅指示了一个码点对应的多个统一的TCI状态,则终端设备可以将该一个码点对应的多个统一的TCI状态作为步骤S510中的多个统一的TCI状态。
举例说明,如果MAC CE仅指示了第一码点(codepoint)对应的TCI状态,没有指示其他码点对应的TCI状态,并且第一码点指示的TCI状态为TCI状态X1和TCI状态X2,则终端设备可以确定多个统一的TCI状态为TCI状态X1和TCI状态X2。
在一些实施例中,终端设备还可以接收网络设备发送的第二指示信息,终端设备可以根据该第二指示信息,确定出多个统一的TCI状态。在一些实施例中,终端设备可以根据第一指示信息和第二指示信息,确定多个统一的TCI状态。
本申请实施例对第二指示信息的传输方式不做具体限定。在一些实施例中,第二指示信息可以承载于MAC CE中。可选地,第二指示信息可以承载于MAC CE中的任意一个或多个指示域中。例如,第二指示信息可以承载于MAC CE的TCI状态指示域中。TCI状态指示域可用于指示TCI状态。例如,TCI状态指示域可以包括TCI状态ID,终端设备根据TCI状态ID,可以确定对应的TCI状态。由于MAC CE具有较低的传输时延以及较好的传输可靠性,通过MAC CE承载第二指示信息,使得网络设备可以快速指示终端设备进行相应的操作。
本申请实施例对第一指示信息和第二指示信息的传输方式不做具体限定。例如,第二指示信息可以承载于MAC CE中,第一指示信息可以承载于DCI中。又例如,第二指示信息承载于MAC CE中,第一指示信息承载于MAC CE中。
在一些实施例中,网络设备可以通过第二指示信息激活或指示一部分统一的TCI状态,然后再通过第一指示信息动态指示多个统一的TCI状态。
下面以第二指示信息承载于MAC CE中,第一指示信息承载于DCI中为例,对本申请实施例的方案进行举例说明。
例如,如果MAC CE指示第一码点(codepoint)对应TCI状态X1和TCI状态X2,第二码点(codepoint)对应TCI状态X3,且DCI指示了第一码点,则终端设备可以确定多个统一的TCI状态为TCI状态X1和TCI状态X2。
由上文的描述可知,统一的TCI状态可以包括多种类型的TCI状态。例如,统一的TCI状态可以包括联合TCI状态、独立TCI状态、上行TCI状态、下行TCI状态。在本申请实施例中,不同类型的 TCI状态对应的第二指示信息可以承载于相同的MAC CE中,也可以承载于不同的MAC CE中。如果不同类型的TCI状态承载于相同的MAC CE中,则仅需要设计一种MAC CE帧结构,有利于降低MAC CE设计的复杂度。如果不同类型的TCI状态承载于不同的MAC CE中,则可以针对不同类型的TCI状态,灵活设计MAC CE帧结构,且也有利于避免MAC CE帧结构中字节或比特的浪费。
需要说明的是,本申请实施例中的相同的MAC CE可以指MAC CE的帧结构相同,不同的MAC CE可以指MAC CE的帧结构不同。
下面以两个示例为例,对MAC CE的帧结构进行介绍。
示例一、不同类型的TCI状态承载于不同的MAC CE中
在一些实施例中,如果多个统一的TCI状态为联合TCI状态,则第二指示信息可以承载于第一MAC CE中。如果多个统一的TCI状态为独立TCI状态,则第二指示信息可以承载于第二MAC CE中。其中,第一MAC CE和第二MAC CE不同。
在一些实施例中,网络设备还可以向终端设备发送第五指示信息,若该第五指示信息指示统一的TCI状态为联合TCI状态,这种情况下,第二指示信息承载于第一MAC CE中,或者说,该第五指示信息指示第一MAC CE所指示的TCI状态为联合TCI状态。
在一些实施例中,网络设备还可以向终端设备发送第五指示信息,若该第五指示信息指示统一的TCI状态为独立TCI状态,这种情况下,第二指示信息承载于第二MAC CE中,或者说,该第五指示信息指示第二MAC CE所指示的TCI状态为独立TCI状态。
下面对第一MAC CE和第二MAC CE分别进行介绍。
Case 1、第二指示信息承载于第一MAC CE中
在发送第一MAC CE之前,网络设备可以向终端设备发送第五指示信息,该第五指示信息指示统一的TCI状态为联合TCI状态。该联合TCI状态既可用于上行操作(UL operation)或上行传输(UL transmission),也可用于下行操作(DL operation)或下行传输或接收(DL transmission/reception)。为方便描述,下文以上行传输和下行传输为例,对本申请实施例的方案进行介绍。
本申请实施例对第五指示信息的传输方式不做具体限定。例如,第五指示信息可以承载于RRC信息元素(information elements,IE)参数unifiedTCI-StateType中。如果unifiedTCI-StateType的取值为“joint”,则表示统一的TCI状态为联合TCI状态。又例如,第五指示信息可以承载于RRC IE参数ServingCellConfig中。
在一些实施例中,第五指示信息可以是针对服务小区(serving cell)进行配置的。网络设备可以为不同的服务小区分别配置对应的第五指示信息。
在一些实施例中,网络设备还可以向终端设备发送第六指示信息,该第六指示信息用于配置或指示一组TCI状态。为方便描述,下文将该组TCI状态记为第三TCI状态组。该第三TCI状态组可以包括一个或多个TCI状态。该第三TCI状态组中的TCI状态为联合TCI状态。在一些实施例中,第六指示信息和第五指示信息可以是一起发送的,或者第六指示信息和第五指示信息可以承载于相同的消息中。例如,第五指示信息和第六指示信息可以通过同一个RRC IE进行配置。
在一些实施例中,该第三TCI状态组可用于上行传输,也可用于下行传输。
在一些实施例中,该第六指示信息可以承载于RRC信令中,或者说,该第六指示信息可以通过RRC参数进行配置。例如,该第六指示信息可以承载于RRC IE参数PDSCH-Config中。又例如,该第六指示信息可以承载于RRC IE参数dl-OrJoint-TCIStateList中。
在一些实施例中,第一MAC CE可以包括以下指示域中的一种或多种:服务小区指示域、BWP指示域、TCI状态指示域、一个或多个第一指示域。例如,第一MAC CE可以包括BWP指示域、一个或多个第一指示域中的一种或多种。例如,第一MAC CE可以包括BWP指示域。又例如,第一MAC CE可以包括一个或多个第一指示域。再例如,第一MAC CE可以包括BWP指示域、一个或多个第一指示域。下面对上述指示域分别进行介绍。
第一MAC CE包括服务小区指示域,可以理解为第一MAC CE包括服务小区信息。服务小区指示域可用于指示第一MAC CE可应用的服务小区。例如,服务小区指示域可以包括服务小区ID,该服务小区ID可用于指示对应的服务小区。
本申请实施例对服务小区指示域的长度不做具体限定。例如,服务小区指示域的长度可以为5比特(5bits)。
第一MAC CE包括BWP指示域,可以理解为第一MAC CE包括BWP信息。该BWP指示域可用于指示第一MAC CE可应用的UL BWP和DL BWP。UL BWP可用于上行传输,DL BWP可用于下行传输。
在一些实施例中,BWP指示域可以为一个指示域,或者,BWP指示域可以包括多个指示域。例 如,BWP指示域可以包括UL BWP指示域和DL BWP指示域。
在一些实施例中,第一MAC CE包括UL BWP指示域,可以理解为第一MAC CE包括UL BWP信息。UL BWP指示域可用于指示第一MAC CE可应用的UL BWP。UL BWP指示域可以包括UL BWP ID,该UL BWP ID可用于指示对应的UL BWP。或者说,该指示域指示一个UL BWP,MAC CE可以将该UL BWP作为TS 38.212[9]中规定的作为DCI带宽部分指示域的码点(This field indicates a UL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9])。
本申请实施例对UL BWP指示域的长度不做具体限定。例如,UL BWP指示域的长度可以为2比特(The length of the BWP ID field is 2bits)。
在一些实施例中,第一MAC CE包括DL BWP指示域,可以理解为第一MAC CE包括DL BWP信息。DL BWP指示域可用于指示第一MAC CE可应用的DL BWP。DL BWP指示域可以包括DL BWP ID,该DL BWP ID可用于指示对应的DL BWP。或者说,该指示域指示一个DL BWP,MAC CE可以将该DL BWP作为TS 38.212[9]中规定的作为DCI带宽部分指示域的码点(This field indicates a DL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9])。
本申请实施例对DL BWP指示域的长度不做具体限定。例如,DL BWP指示域的长度可以为2比特(The length of the BWP ID field is 2bits)。
在一些实施例中,第一MAC CE可以包括TCI状态指示域,该TCI状态指示域可用于指示TCI状态。在一些实施例中,第一MAC CE可以包括多个TCI状态指示域,每个TCI状态指示域用于指示一个TCI状态。该一个TCI状态可以为上文描述的第三TCI状态组中的TCI状态,即该一个TCI状态属于第三TCI状态组的一个。
在一些实施例中,第一MAC CE可以包括一个或多个第一指示域。一个第一指示域可以与一个码点(如DCI中的TCI域的码点)相关联。每个第一指示域可用于指示一个码点对应的TCI状态(或联合TCI状态)的数量,或者说,每个第一指示域可用于确定一个码点对应的TCI状态的数量。
在一些实施例中,每个第一指示域可以包括一个或多个第一子域,一个码点可以与该一个或多个第一子域相关联,一个第一子域可用于指示一个码点对应的一个TCI状态是否存在。如果一个第一子域指示对应的TCI状态存在,则一个码点对应的TCI状态的数量增加1。下文会结合具体实施例对第一指示域进行详细介绍。
在一些实施例中,第一MAC CE可以包括一个或多个第一指示域。该第一指示域可以与一个TCI状态对应,或者说,该第一指示域可以与一个TCI状态指示域对应。每个第一指示域可用于指示对应的TCI状态是否存在。如果第一指示域指示对应的TCI状态存在,则关联的码点对应的TCI状态的数量增加1。
下面结合图6,给出一些第一MAC CE的具体实现方式,需要说明的是,图6的方案仅是为了便于理解进行的举例说明,不应对本申请实施例的方案造成限定。图6中的Oct表示字节。
参见图6,第一MAC CE可以包括服务小区ID,该服务小区ID可用于指示服务小区信息。第一MAC CE可以包括DL BWP ID,用于指示下行带宽部分信息。第一MAC CE可以包括UL BWP ID,用于指示上行带宽部分信息。R表示保留比特位,R比特位的取值例如可以为0。
第一MAC CE可以包括TCI状态指示域TCI state ID i,j。其中,i对应DCI信令中TCI域的码点的编号(i is the index of the codepoint of the DCI Transmission configuration indication field)。TCI state ID i, j指示了DCI信令中TCI域的第i个码点对应的第j个TCI状态(TCI state ID i,j denotes the j th TCI state indicated for the ith codepoint in the DCI Transmission Configuration Indication field)。
TCI状态与码点之间的对应关系可以有多种,本申请实施例对此不做具体限定。作为一个示例,TCI状态ID i,j对应的码点的取值(value)或索引(index)为i。例如,TCI状态ID 0,1and TCI状态ID 0,2对应的码点的取值(value)或索引(index)为0,TCI状态ID 1,1and TCI状态ID 1,2对应码点的取值或索引为1,依次类推。
在一些实施例中,对于j大于或等于2的情况,TCI状态ID i,j是可选的。例如,TCI状态ID i,2是可选的。TCI状态ID i,j是否存在取决于下文描述的指示域C i,j的取值。
第一MAC CE可以包括指示域C i,j,用于指示TCI状态ID i,j所在的字节是否存在,或者说,用于指示TCI状态ID i,j对应的TCI状态是否存在。TCI状态ID i,j可用于指示第i个码点对应的第j个TCI状态。其中,j的取值可以为大于或等于2的整数。
在一些实施例中,终端设备可以根据C i,j的取值,确定对应的TCI状态ID i,j的字节是否存在。例如,如果这个指示域的取值为1,则表示包含TCI状态ID i,j的字节存在。在该情况下,第i个码点对应的TCI状态的数量增加1。如果这个指示域的取值为0,则表示包含TCI状态ID i,j的字节不存在。 又例如,如果这个指示域的取值为0,则表示包含TCI状态ID i,j的字节存在;如果这个指示域的取值为1,则表示包含TCI状态ID i,j的字节不存在。
以一个码点对应最多两个TCI状态为例,第一MAC CE可以包括指示域C i,该C i可用于指示TCI状态ID i,2的字节是否存在,或者说,用于指示TCI状态ID i,2对应的TCI状态是否存在。在一些实施例中,终端设备可以根据C i的取值,确定对应的TCI状态ID i,2的字节是否存在。例如,如果这个指示域的取值为1,则表示包含TCI状态ID i,2的字节存在,如果这个指示域的取值为0,则表示包含TCI状态ID i,2的字节不存在(If this field is set to 1,the octet containing TCI state ID i,2 is present.If this field is set to 0,the octet containing TCI state ID i,2 is not present)。又例如,如果这个指示域的取值为0,则表示包含TCI状态ID i,2的字节存在;如果这个指示域的取值为1,则表示包含TCI状态ID i,2的字节不存在(If this field is set to 0,the octet containing TCI state ID i,2 is present.If this field is set to 1,the octet containing TCI state ID i,2 is not present)。
在一些实施例中,指示域C i,j+1可以和TCI状态ID i,j位于同一个字节,参见图6。也就是说,指示域C i,j+1可以指示其所在字节的下一个字节中的TCI状态ID i,j是否存在。
Case 2、第二指示信息承载于第二MAC CE中
终端设备可以接收网络设备发送的第五指示信息,该第五指示信息指示统一的TCI状态为独立TCI状态。该独立TCI状态可以包括上行TCI状态和/或下行TCI状态。该上行TCI状态可用于上行操作(UL operation)或上行传输(UL transmission)。该下行TCI状态可用于下行操作(DL operation)或下行传输(DL transmission)。为方便描述,下文以上行传输和下行传输为例,对本申请实施例的方案进行介绍。
本申请实施例对第五指示信息的传输方式不做具体限定。例如,第五指示信息可以承载于RRC IE参数unifiedTCI-StateType中。如果unifiedTCI-StateType的取值为“Separate”,则表示统一的TCI状态为独立TCI状态。又例如,第五指示信息可以承载于RRC IE参数ServingCellConfig中。
在一些实施例中,第五指示信息可以是针对服务小区(serving cell)进行配置的。网络设备可以为不同的服务小区分别配置对应的第五指示信息。
在一些实施例中,网络设备还可以向终端设备发送第六指示信息,该第六指示信息用于配置或指示一组TCI状态。为方便描述,下文将该组TCI状态记为第一TCI状态组。该第一TCI状态组可以包括一个或多个TCI状态。该第一TCI状态组中的TCI状态为下行TCI状态。在一些实施例中,第六指示信息和第五指示信息可以是一起发送的,或者第六指示信息和第五指示信息可以承载于相同的消息中。例如,第五指示信息和第六指示信息可以通过同一个RRC IE进行配置。
在一些实施例中,该第一TCI状态组可用于下行传输。
在一些实施例中,该第六指示信息可以承载于RRC信令中,或者说,该第六指示信息可以通过RRC参数进行配置。例如,该第六指示信息可以承载于RRC IE参数PDSCH-Config中。又例如,该第六指示信息可以承载于RRC IE参数dl-OrJoint-TCIStateList-r17中。
在一些实施例中,网络设备还可以向终端设备发送第六指示信息,该第六指示信息用于配置或指示一组TCI状态。为方便描述,下文将该组TCI状态记为第二TCI状态组。该第二TCI状态组可以包括一个或多个TCI状态。该第一TCI状态组中的TCI状态为上行TCI状态。
在一些实施例中,该第二TCI状态组可用于上行传输。
在一些实施例中,该第六指示信息可以承载于RRC信令中,或者说,该第六指示信息可以通过RRC参数进行配置。例如,该第六指示信息可以承载于RRC IE参数PDSCH-Config中。又例如,该第六指示信息可以承载于RRC IE参数ul-TCI-ToAddModList中。
需要说明的是,用于指示第一TCI状态组的第六指示信息和用于指示第二TCI状态组的第六指示信息可以为同一个指示信息,也可以为不同的指示信息。例如,网络设备可以向终端设备发送一个指示信息,以指示第一TCI状态组。网络设备还可以向终端设备发送另一个指示信息,以指示第二TCI状态组。又例如,网络设备可以向终端设备发送一个指示信息,该指示信息用于指示第一TCI状态组和第二TCI状态组。
在一些实施例中,第二MAC CE可以包括以下指示域中的一种或多种:服务小区指示域、BWP指示域、TCI状态指示域、一个或多个第二指示域、第三指示域、第四指示域。例如,第二MAC CE可以包括BWP指示域、一个或多个第二指示域、第三指示域、第四指示域中的一种或多种。
在一些实施例中,第二MAC CE可以包括BWP指示域、一个或多个第二指示域、第三指示域、第四指示域中的任意一种。例如,第二MAC CE可以包括BWP指示域。又例如,第二MAC CE可以包括一个或多个第二指示域。又例如,第二MAC CE可以包括第三指示域。又例如,第二MAC CE可以包括第四指示域。
在一些实施例中,第二MAC CE可以包括BWP指示域、一个或多个第二指示域、第三指示域、第四指示域中的任意两种。例如,第二MAC CE可以包括BWP指示域、一个或多个第二指示域。又例如,第二MAC CE可以包括BWP指示域和第三指示域。又例如,第二MAC CE可以包括BWP指示域和第四指示域。又例如,第二MAC CE可以包括一个或多个第二指示域和第三指示域。又例如,第二MAC CE可以包括一个或多个第二指示域和第四指示域。又例如,第二MAC CE可以包括第三指示域和第四指示域。
在一些实施例中,第二MAC CE可以包括BWP指示域、一个或多个第二指示域、第三指示域、第四指示域中的任意三种。例如,第二MAC CE可以包括BWP指示域、一个或多个第二指示域、第三指示域。又例如,第二MAC CE可以包括一个或多个第二指示域、第三指示域、第四指示域。又例如,第二MAC CE可以包括BWP指示域、第三指示域、第四指示域。又例如,第二MAC CE可以包括BWP指示域、一个或多个第二指示域、第四指示域。
在一些实施例中,第二MAC CE可以包括BWP指示域、一个或多个第二指示域、第三指示域、第四指示域。
下面对上述指示域分别进行介绍。
第二MAC CE包括服务小区指示域,可以理解为第二MAC CE包括服务小区信息。服务小区指示域可用于指示第二MAC CE可应用的服务小区。例如,服务小区指示域可以包括服务小区ID,该服务小区ID可用于指示对应的服务小区。
本申请实施例对服务小区指示域的长度不做具体限定。例如,服务小区指示域的长度可以为5比特(5bits)。
第二MAC CE包括BWP指示域,可以理解为第二MAC CE包括BWP信息。该BWP指示域可用于指示第二MAC CE可应用的UL BWP和DL BWP。UL BWP可用于上行传输,DL BWP可用于下行传输。
在一些实施例中,BWP指示域可以为一个指示域,或者,BWP指示域可以包括多个指示域。例如,BWP指示域可以包括UL BWP指示域和DL BWP指示域。
在一些实施例中,第二MAC CE包括UL BWP指示域,可以理解为第二MAC CE包括UL BWP信息。UL BWP指示域可用于指示第二MAC CE可应用的UL BWP。UL BWP指示域可以包括UL BWP ID,该UL BWP ID可用于指示对应的UL BWP。或者说,该指示域指示一个UL BWP,MAC CE可以将该UL BWP作为TS 38.212[9]中规定的作为DCI带宽部分指示域的码点(This field indicates a UL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9])。
本申请实施例对UL BWP指示域的长度不做具体限定。例如,UL BWP指示域的长度可以为2比特(The length of the BWP ID field is 2bits)。
在一些实施例中,第二MAC CE包括DL BWP指示域,可以理解为第二MAC CE包括DL BWP信息。DL BWP指示域可用于指示第二MAC CE可应用的DL BWP。DL BWP指示域可以包括DL BWP ID,该DL BWP ID可用于指示对应的DL BWP。或者说,该指示域指示一个DL BWP,MAC CE可以将该DL BWP作为TS 38.212[9]中规定的作为DCI带宽部分指示域的码点(This field indicates a DL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9])。
本申请实施例对DL BWP指示域的长度不做具体限定。例如,DL BWP指示域的长度可以为2比特(The length of the BWP ID field is 2bits)。
在一些实施例中,第二MAC CE可以包括TCI状态指示域,该TCI状态指示域可用于指示TCI状态。在一些实施例中,第二MAC CE可以包括多个TCI状态指示域,每个TCI状态指示域用于指示一个TCI状态。该一个TCI状态可以为上文描述的第二TCI状态组中的TCI状态,即该一个TCI状态属于第一TCI状态组的一个。或者,该一个TCI状态可以为上文描述的第二TCI状态组中的TCI状态,即该一个TCI状态属于第二TCI状态组的一个。
本申请实施例对TCI状态指示域的长度不做具体限定。例如,该TCI状态指示域的长度可以为7比特。又例如,该TCI状态指示域的长度可以为6比特。TCI状态指示域的长度越长,TCI状态指示域能够指示的TCI状态就越多,从而可以提高网络调度的灵活性。
在一些实施例中,TCI状态指示域的最高位(the most significant bit)可以为保留比特。例如,如果TCI状态指示域的长度为7比特,则TCI状态指示域中剩余的6比特可用于指示TCI状态。
下面针对上行TCI状态和下行TCI状态分别进行介绍。
如果TCI状态指示域用于指示DL TCI状态,则TCI状态指示域长度可以为7比特。或者,如果TCI状态指示域用于指示DL TCI状态,该TCI状态指示域的最高位(the most significant bit)可以为 保留比特,则剩余的6比特用于指示DL TCI状态。
如果所述TCI状态指示域用于指示UL TCI状态,则TCI状态指示域长度可以为7比特。如果TCI状态指示域用于指示UL TCI状态,该TCI状态指示域的最高位可以为保留比特,则剩余的6比特用于指示UL TCI状态。
在一些实施例中,第二MAC CE可以包括一个或多个第二指示域。一个第二指示域可以与一个码点相关联。每个第二指示域可用于指示一个码点对应的TCI状态(或独立TCI状态)的数量,或者说,每个第二指示域用于指示一个码点对应的上行TCI状态和下行TCI状态的数量。在一些实施例中,每个第二指示域用于指示一个码点对应的上行TCI状态的数量和下行TCI状态的数量,或者,每个第二指示域用于指示一个码点对应的上行TCI状态的数量和下行TCI状态的数量之和。如果第二指示域用于指示上行TCI状态的数量和下行TCI状态的数量之和,则可以减少第二指示域需要的比特数,从而可以降低MAC CE的信令开销。
本申请实施例对第二指示域的数量不作具体限定。第二指示域的数量可以与DCI中的TCI域的比特数相关。第二指示域的数量可以与TCI域能够指示的码点数量相等。例如,如果DCI中TCI域为3个比特,则第二指示域的数量可以为8,即第二MAC CE可以包括8个第二指示域。
本申请实施例对第二指示域的长度不作具体限定。第二指示域的长度可以与一个码点对应的TCI状态的数量相关联。一个码点对应的TCI状态的数量越多,则第二指示域的长度越长。第二指示域的长度例如可以为2比特或3比特。如果第二指示域的长度为2比特,则一个码点对应的TCI状态的数量最多为4个。如果第二指示域的长度为3比特,则一个码点对应的TCI状态的数量最多为8个。
在一些实施例,一个码点对应的TCI状态中,下行TCI状态的数量可以大于上行TCI状态的数量,或者,下行TCI状态的数量可以等于上行TCI状态的数量,或者,下行TCI状态的数量可以小于上行TCI状态的数量,本申请实施例对此不做具体限定。TCI状态的类型(如上行TCI状态、下行TCI状态)可以通过下文描述的第三指示域进行指示。
为方便描述,下文将每个第二指示域指示的一个码点对应的TCI状态的数量记为N。本申请实施例对N的取值不做具体限定。下面对N的取值进行举例说明。
作为一个示例,N的取值可以为1,2,3,4中的值,或者,N的取值可以为0,1,2,3,4中的取值,或者,N的取值可以为0,1,2,3中的值。这种方式对协议设计和系统实现来说比较简单,能够获得多TRP的绝大部分性能增益,以及对于网络配置和调度来说,具有较好的灵活性。
在一些实现方式中,下行TCI状态的数量可以小于或等于2。在一些实现方式中,上行TCI状态的数量可以小于或等于2。当然,在一些实施例中,下行TCI状态的数量、上行TCI状态的数量也可以为其他值。
作为另一个示例,N的取值可以为1,2,3,4,5,6中的值,或者,N的取值可以为0,1,2,3,4,5,6中的取值,或者,N的取值可以为0,1,2,3,4,5中的值。这种方式可以支持更多TRP进行上行传输和/或下行传输。在部分场景下,下行传输性能可以得到提升,可以为网络优化提供更大的自由度。
在一些实现方式中,下行TCI状态的数量可以小于或等于4。在一些实现方式中,上行TCI状态的数量可以小于或等于2。通过指示更多的下行TCI状态,可以使得下行传输性能得到提升。当然,在一些实施例中,下行TCI状态的数量、上行TCI状态的数量也可以为其他值。例如,下行TCI状态的数量小于或等于2,上行TCI状态的数量小于或等于4。又例如,下行TCI状态的数量小于或等于3,上行TCI状态的数量小于或等于3。
作为又一个示例,N的取值可以为1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7,8中的取值,或者,N的取值可以为0,1,2,3,4,5,6,7中的值。这种方式可以支持更多TRP进行上行传输和/或下行传输。在部分场景下,下行传输性能可以得到提升,可以为网络优化提供更大的自由度。
在一些实现方式中,下行TCI状态的数量可以小于或等于4。在一些实现方式中,上行TCI状态的数量可以小于或等于4。通过指示更多的下行TCI状态,可以使得下行传输性能得到提升。当然,在一些实施例中,下行TCI状态的数量、上行TCI状态的数量也可以为其他值。例如,下行TCI状态的数量小于或等于6,上行TCI状态的数量小于或等于2。又例如,下行TCI状态的数量小于或等于5,上行TCI状态的数量小于或等于3。
在一些实施例中,第二指示域包括第二子域和第三子域。独立TCI状态包括上行TCI状态和/或下行TCI状态,第二子域用于指示一个码点对应的上行TCI状态的数量,第三子域用于指示一个码点对应的下行TCI状态的数量。通过分别指示上行TCI状态的数量和下行TCI状态的数量,能够更加灵活地设计MAC CE信令。
本申请实施例对第二指示域的长度不做具体限定。例如,第二指示域的长度可以为2比特。又例如,第二指示域的长度可以为3比特。又例如,第二指示域的长度可以为4比特。
本申请实施例对第二子域和第三子域的长度不做具体限定。例如,第二子域的长度可以大于第三子域的长度。又例如,第二子域的长度可以小于第三子域的长度。再例如,第二子域的长度可以等于第三子域的长度。可以理解的是,第二子域的长度小于第二指示域的长度,第三子域的长度也小于第二指示域的长度。
为方便描述,下文将每个第二子域指示的一个码点对应的上行TCI状态的数量记为N1,将每个第二子域指示的一个码点对应的下行TCI状态的数量记为N2。本申请实施例对N1和N2的取值不做具体限定。下面对N1和N2的取值进行举例说明。
作为一个示例,N1的取值可以为1,2中的取值,或者,N1的取值可以为0,1,2中的取值,或者,N1的取值可以为0,1中的值。N2的取值可以为1,2中的取值,或者,N2的取值可以为0,1,2中的取值,或者,N2的取值可以为0,1中的值。在该情况下,第二子域和第三子域均为1比特。
作为另一个示例,N1的取值可以为1,2,3,4中的取值,或者,N1的取值可以为0,1,2,3,4中的取值,或者,N1的取值可以为0,1,2,3中的值。N2的取值可以为1,2中的取值,或者,N2的取值可以为0,1,2中的取值,或者,N2的取值可以为0,1中的值。在该情况下,第二子域为2比特,第三子域为1比特。
作为另一个示例,N1的取值可以为1,2中的取值,或者,N1的取值可以为0,1,2中的取值,或者,N1的取值可以为0,1中的值。N2的取值可以为1,2,3,4中的取值,或者,N2的取值可以为0,1,2,3,4中的取值,或者,N1的取值可以为0,1,2,3中的值。在该情况下,第二子域为1比特,第三子域为2比特。
作为又一个示例,N1的取值可以为1,2,3,4中的取值,或者,N1的取值可以为0,1,2,3,4中的取值,或者,N1的取值可以为0,1,2,3中的值。N2的取值可以为1,2,3,4中的取值,或者,N2的取值可以为0,1,2,3,4中的取值,或者,N2的取值可以为0,1,2,3中的值。在该情况下,第二子域为2比特,第三子域为2比特。
在一些实施例中,第二MAC CE可以包括第三指示域。第三指示域用于指示TCI状态的类型。例如,第三指示域可用于指示对应的独立TCI状态的类型。独立TCI状态的类型可以包括上行TCI状态、下行TCI状态。也就是说,第三指示域可用于指示对应的TCI状态是上行TCI状态还是下行TCI状态。
在一些实现方式中,本申请实施例可以包括一个或多个第三指示域,一个第三指示域可以与一个TCI状态或一个TCI状态指示域对应,第三指示域可用于指示对应的TCI状态的类型。
例如,第三指示域可用于指示与第三指示域位于同一字节的TCI状态指示域指示的TCI状态的类型。或者说,第三指示域用于指示与第三指示域位于同一字节的TCI状态指示域指示的是上行TCI状态还是下行TCI状态。
又例如,第三指示域可用于指示与第三指示域位于同一字节的TCI状态指示域指示的TCI状态组所在的TCI状态组的类别。由上文可知,TCI状态组的类别可以包括第一TCI状态组和第二TCI状态组。第一TCI状态组中的TCI状态为下行TCI状态,第二TCI状态组中的TCI状态为下行TCI状态。因此,TCI状态的类型可通过TCI状态所在的TCI状态组进行识别。如果第三指示域指示对应的TCI状态属于第一TCI状态组,则表示对应的TCI状态为下行TCI状态。如果第三指示域指示对应的TCI状态属于第二TCI状态组,则表示对应的TCI状态为上行TCI状态。
在一些实施例中,第二MAC CE可以包括第四指示域。第四指示域可用于指示第二MAC CE中指示或激活的TCI状态对应的码点的数量。第四指示域也可以称为TCI状态子集数目指示域或DCI码点指示域。第四指示域指示的码点数量小于或等于第二指示域的数量,或者说,第四指示域指示的码点数量小于或等于DCI中TCI域能够指示的码点数量。例如,如果TCI域为3比特,则TCI域能够指示的码点数量为8。通过设置第四指示域可以减少终端设备读取或解析的比特数量,降低终端设备的实现复杂度。
在一些实现方式中,第四指示域指示的码点数量可以理解为第二MAC CE中指示的TCI状态对应的DCI中第一域的码点数量。可选地,第一域为DCI中的TCI域。
本申请实施例对第二MAC CE指示或激活的TCI状态的最大数量不做具体限定。例如,第二MAC CE指示或激活的TCI状态的最大数量可以为32。在该情况下,终端设备可以支持上行2个TRP传输和下行2个TRP传输,即(2+2)*8=32。又例如,第二MAC CE指示或激活的TCI状态的最大数量可以为48。在该情况下,终端设备可以支持上行2个TRP传输和下行4个TRP传输,即(2+4)*8=48,从而可以提高下行传输能力,提高网络配置和调度的灵活性,同时也可以将终端设备的实现复杂度控制在一定范围内。再例如,第二MAC CE指示或激活的TCI状态的最大数量可以为64。在该情况下,终端设备可以支持上行4个TRP传输和下行4个TRP传输,即(4+4)*8=64,从而可以提高下行传输能力和上行传输能力,提高网络配置和调度的灵活性。
下面结合图7-图17,给出一些第二MAC CE的具体实现方式,需要说明的是,图7-图17的方案仅是为了便于理解进行的举例说明,不应对本申请实施例的方案造成限定。例如,图7-图17中的指示 域的位置可以调整,只要第二MAC CE能够包括下文所述的指示域即可。又例如,第二MAC CE也可以仅包括下文所述指示域中的部分指示域,而不是全部指示域。图7-图17中的Oct表示字节。
参见图7-图17,第二MAC CE可以包括服务小区ID,该服务小区ID可用于指示服务小区信息。第二MAC CE可以包括DL BWP ID,用于指示下行带宽部分信息。第二MAC CE可以包括UL BWP ID,用于指示上行带宽部分信息。R表示保留比特位,R比特位的取值例如可以为0。
第二MAC CE可以包括D/U指示域,该D/U指示域可以理解为上文描述的第三指示域。D/U指示域可用于指示同一个字节中指示的是上行TCI状态还是下行TCI状态(This field indicate whether the TCI state ID in the same octet is for downlink or uplink TCI state)。可选地,如果该指示域的取值为1,则同一字节中的TCI状态ID指示的是下行TCI状态(If this field is set to 1,the TCI state ID in the same octet is for downlink)。如果该指示域的取值为0,则同一字节中的TCI状态ID指示的是上行TCI状态(If this field is set to 0,the TCI state ID in the same octet is for uplink)。
第二MAC CE可以包括TCI状态ID域,该TCI状态ID域可以理解为上文描述的TCI状态指示域。TCI状态ID域可以指示一个TCI状态,该TCI状态可以是上行TCI状态,也可以是下行TCI状态。可选地,如果D/U指示域的取值为1,则同一字节的TCI状态ID域用于指示下行TCI状态。可选地,如果D/U指示域的取值为0,则同一字节的TCI状态ID域用于指示上行TCI状态。
可选地,用于指示下行TCI状态的TCI状态ID域可以为7比特,从而能够支持更多的下行TCI状态的数量,为网络优化传输配置提供空间和灵活性。
可选地,用于指示上行TCI状态的TCI状态ID域可以为7比特,从而能够支持更多的上行TCI状态的数量,为网络优化传输配置提供空间和灵活性。在一些实现方式中,TCI状态的最高位可以为保留比特位,剩余的6比特可用于指示上行TCI状态(the most significant bit of TCI state ID is considered as the reserved bit and remainder 6bits indicate the UL-TCIState-Id)。
图7-图14中的P i,0和P i,1可以组成一个比特子组(a subset of bits),该比特子组可用于指示第i个码点对应的TCI状态的数量(记为N)。需要说明的是,该比特子组可以理解为上文描述的第二指示域。N的取值可以为1,2,3,4中的值,或者,N的取值可以为0,1,2,3,4中的值,或者,N的取值可以为0,1,2,3中的值。
本申请实施例对P i,0和P i,1的取值与N之间的对应关系不做具体限定。P i,0和P i,1的取值可以理解为P i,0和P i,1组成的比特子组的取值。下面对P i,0和P i,1的取值与N之间的对应关系进行举例说明。
例如,P i,0和P i,1的取值00,01,10,11分别对应的N取值可以为1,2,3,4。又例如,P i,0和P i,1的取值00,10,01,11分别对应的N取值可以为1,2,3,4。
上文是以P i,0和P i,1分别为1比特为例进行描述的,本申请实施例并不限于此。P i,0和P i,1也可以包括其他数量的比特,如P i,0和P i,1可以分别包括2比特。
本申请实施例对N个TCI状态中的上行TCI状态的数量和下行TCI状态的数量不做具体限定。例如,N个TCI状态中的上行TCI状态的数量不多于2个。又例如,N个TCI状态中的下行TCI状态的数量不多于2个。这样可以限制上行TCI状态和/或下行TCI状态的配置,降低终端设备的实现复杂度。
在一些实施例中,P i,0和P i,1可以分别指示第i个码点对应的上行TCI状态的数量和下行TCI状态的数量,也就是说,P i,0可以指示第i个码点对应的上行TCI状态的数量(记为N1),P i,1可以指示第i个码点对应的下行TCI状态的数量(记为N2)。在另一些实施例中,P i,0和P i,1可以分别指示第i个码点对应的下行TCI状态的数量和上行TCI状态的数量,也就是说,P i,0可以指示第i个码点对应的下行TCI状态的数量(记为N2),P i,1可以指示第i个码点对应的上行TCI状态的数量(记为N1)。通过分别指示上行TCI状态的数量和下行TCI状态的数量,能够更加灵活地设计MAC CE信令,便于未来方案的扩展。
本申请实施例对N1和N2的取值不做具体限定。例如,N1的取值可以为1,2中的值,或者N1的取值可以为0,1,2中的值,或者,N1的取值可以为0,1中的值。又例如,N2的取值可以为1,2中的值,或者N2的取值可以为0,1,2中的值,或者,N2的取值可以为0,1中的值。
图7示出了P i,0和P i,1的一种设置位置的示意图。P i,0可以位于P i,1的左边,即P i,0的比特位高于P i,1的比特位。当然,P i,0和P i,1的位置还可以有其他的形式。例如,如图8所示,P i,0的位置可以和P i,1的位置互换,P i,0可以位于P i,1的右边,即P i,1的比特位高于P i,0的比特位。
图7和图8所示的P i,0和P i,1是从左边(或最高位)开始进行排序的,当然,P i,0和P i,1还可以从右边开始进行排序(或最低位),如图9和图10所示。
图7-图10所示的P i,0和P i,1是位于同一字节中的相邻比特。在一些实施例中,P i,0和P i,1也可以位于不同的字节中。例如,如图11所示,P i,0和P i,1可以为相邻字节中对应位置的比特,即相邻两个字节对应位置的2个比特组成P i,0和P i,1。参见图11,字节3和字节4中的最低比特位分别为P 0,0和P 0,1, 字节3和字节4中的次低比特位分别为P 1,0和P 1,1,以此类推。
在图7-图11所示的方案中,第二MAC CE可以指示第二MAC CE指示或激活的TCI状态对应的码点数量,即第二MAC CE可以包括上文描述的第四指示域。假设第二MAC CE中指示了T个码点对应的TCI状态,则终端设备可以只考虑前T组的P i,0和P i,1(i=0,1,…,T-1)指示的TCI状态,其他的P i,0和P i,1(i≥T)的比特可以忽略,或者认为是保留比特位,或者认为是固定取值。需要说明的是,这里是以i从0开始计数为例进行的描述。如果i从1开始计数,终端设备可以仅考虑前T组的P i,0和P i,1(i=1,…,T)指示的TCI状态,其他的P i,0和P i,1(i>T)的比特可以忽略,或者认为是保留比特位,或者认为是固定取值。通过设置第四指示域可以减少终端设备读取或解析部分比特的信息,从而可以降低终端实现复杂度。
图12示出了一种包含第四指示域的第二MAC CE的结构示意图。图12所示的第二MAC CE的结构是在图10的基础上的改进。当然,本申请实施例也可以在其他图中的第二MAC CE结构中增加第四指示域,为了简化描述,不再一一罗列。
图12所示的第二MAC CE帧结构是在图10所示的第二MAC CE帧结构的基础上增加了A 2,A 1,A 0部分。也就是说,第四指示域的长度可以为3比特,这三个比特分别为A 2,A 1,A 0。A 2,A 1,A 0这三个比特可用于指示第二MAC CE指示了T个码点(DCI中的TCI域的码点)。A 2,A 1,A 0这三个比特的取值可以为1,2,…,8中的值。
本申请实施例对A 2,A 1,A 0的设置位置不做具体限定。例如,A 2,A 1,A 0的位置可以是连续的,如图12所示。当然,在一些实施例中,A 2,A 1,A 0的位置也可以是非连续的,如图13所示。又例如,A 2,A 1,A 0的位置可以为图12所示的A 2A 1A 0的形式,即A 2可以位于A 1之前,A 1可以位于A 0之前。当然,在一些实施例中,A 2,A 1,A 0的顺序也可以互换,如图14所示,A 2,A 1,A 0的位置可以为图12所示的A 0A 1A 2的形式,即A 0可以位于A 1之前,A 1可以位于A 2之前。
上文是以第四指示域包括3比特为例进行介绍的,第四指示域也可以包括其他数量的比特,如4比特,即第四指示域可以包括A 3,A 2,A 1,A 0,下文将会进行详细描述。
除了图12-图14所示的位置之外,A 2,A 1,A 0还可以使用其他的保留比特位,本申请实施例对此不做具体限定。
图7-图14示出的是第二指示域(即上面实施例中的P i,0和P i,1)的长度为2比特的方案,第二指示域的长度还可以是其他取值,如3比特、4比特等。下面给出第二指示域的长度为3比特和4比特的一些可能的实现方式。第二指示域的长度为3比特和4比特的方案可以在图7-图14的基础上直接进行扩展,为了简化,不一一罗列每一种情况。下面以图9所示的方案为例,对在图9所示的方案的基础上扩展得到的第二MAC CE进行介绍。
参见图15,第二指示域的长度可以为4比特,P i,0、P i,1、P i,2、P i,3可以组成一个比特子组(a subset of bits),该比特子组可用于指示第i个码点对应的TCI状态的数量(记为N)。需要说明的是,该比特子组可以理解为上文描述的第二指示域。N的取值可以为1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7中的值。通过指示上行TCI状态和下行TCI状态的总数量,能够减少所需要的比特数,从而可以降低MAC CE的信令开销。
在一些实施例中,上述4比特中的部分比特可以为保留比特,或者部分比特的取值为固定值。
在一些实施例中,P i,0、P i,1、P i,2、P i,3中的一部分比特可用于指示第i个码点对应的上行TCI状态的数量(记为N1),另一部分比特可用于指示第i个码点对应的下行TCI状态的数量(记为N2)。下面进行举例说明。
例如,P i,0、P i,1可用于指示第i个码点对应的上行TCI状态的数量,P i,2、P i,3可用于指示第i个码点对应的下行TCI状态的数量。又例如,P i,2、P i,3可用于指示第i个码点对应的上行TCI状态的数量,P i,0、P i,1可用于指示第i个码点对应的下行TCI状态的数量。N1的取值可以为1,2,3,4中的值,或者,N1的取值可以为0,1,2,3,4中的值,或者,N的取值可以为0,1,2,3中的值。N2的取值可以为1,2,3,4中的值,或者,N2的取值可以为0,1,2,3,4中的值,或者,N2的取值可以为0,1,2,3中的值。
图15所示的P i,0、P i,1、P i,2、P i,3的位置为P i,3P i,2P i,1P i,0,但本申请实施例并不限于此。例如,P i,0、P i,1、P i,2、P i,3的位置可以互换,即这4比特的位置可以为P i,0P i,1P i,2P i,3。在一些实施例中,P i,0、P i,1、P i,2、P i,3也可以占用其他的比特位,本申请实施例对此不做具体限定。
参见图16,第二指示域的长度可以为3比特,P i,0、P i,1、P i,2可以组成一个比特子组(a subset of bits),该比特子组可用于指示第i个码点对应的TCI状态的数量(记为N)。需要说明的是,该比特子组可以理解为上文描述的第二指示域。N的取值可以为1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7,8中的值。通过指示上行TCI状态和下行TCI状态的总数量,能够减少所需要的比特数,从而可以降低MAC CE的信令开销。
本申请实施例对P i,0、P i,1、P i,2的取值与N之间的对应关系不做具体限定。P i,0、P i,1、P i,2的取值可以理解为P i,0、P i,1、P i,2组成的比特子组的取值。下面对P i,0、P i,1、P i,2的取值与N之间的对应关系进行举例说明。
例如,P i,0、P i,1、P i,2的取值000,001,010,011,100,101,110,111分别对应的N取值可以为1,2,3,4,5,6,7,8。又例如,P i,0、P i,1、P i,2的取值000,100,010,110,001,101,011,111分别对应的N取值可以为1,2,3,4,5,6,7,8。
本申请实施例对N个TCI状态中的上行TCI状态的数量和下行TCI状态的数量不做具体限定。例如,N个TCI状态中的上行TCI状态的数量不多于4个。又例如,N个TCI状态中的下行TCI状态的数量不多于4个。这样可以限制上行TCI状态和/或下行TCI状态的配置,降低终端设备的实现复杂度。
在一些实施例中,P i,0、P i,1、P i,2中的部分比特可用于指示第i个码点对应的上行TCI状态的数量,另一部分比特可用于指示第i个码点对应的下行TCI状态的数量。例如,P i,0、P i,1、P i,2中的2比特(如P i,0P i,1、或P i,1P i,2、或P i,0P i,2)用于指示第i个码点对应的下行TCI状态的数量(记为N2),另外1比特(如P i,2、P i,0、P i,1)用于指示第i个码点对应的上行TCI状态的数量(记为N1)。通过分别指示上行TCI状态的数量和下行TCI状态的数量,能够更加灵活地设计MAC CE信令,便于未来方案的扩展。
本申请实施例对N1和N2的取值不做具体限定。例如,N1的取值可以为1,2中的值,或者N1的取值可以为0,1,2中的值,或者N1的取值可以为0,1中的值。又例如,N2的取值可以为1,2,3,4中的值,或者N2的取值可以为0,1,2,3,4中的值,或者N2的取值可以为0,1,2,3中的值。
本申请实施例对P i,0、P i,1、P i,2的位置不做具体限定。图16所示的P i,0、P i,1、P i,2的位置为P i,2P i,1P i,0,但本申请实施例并不限于此。例如,P i,0、P i,1、P i,2的位置可以互换,即这3比特的位置可以为P i,0P i,1P i,2。另外,图16所示的字节3~字节6中的保留比特位位于最左边,但本申请实施例并不限于此。例如,字节3~字节6中的保留比特位也可以位于最右边。又例如,保留比特位也可以位于不同的码点对应的指示域之间。如一个字节中的比特可以这样安排,RXXXRXXX,或者XXXRXXXR,其中R表示保留比特,XXX表示对应某个码点对应的P i,0、P i,1、P i,2比特,这种方式有利于将该指示域扩展为4比特,为未来信令扩展提供灵活性。
图16所示的第二MAC CE帧结构中,与第i个码点对应的指示域P i,0、P i,1、P i,2位于同一字节中,但本申请实施例并不限于此。例如,与第i个码点对应的指示域P i,0、P i,1、P i,2可以位于不同的字节中,这样有利于节省MAC CE的开销。
例如,参见图17,P i,0、P i,1、P i,2可以为相邻三个字节中的对应位置的比特,即相邻三个字节对应位置的3个比特组成P i,0、P i,1、P i,2。参见图17,字节3~字节5中的最低比特位分别为P 0,0、P 0,1、P 0,2,字节3~字节5中的次低比特位分别为P 1,0、P 1,1、P 1,2,以此类推。该方案与图16所示的方案相比,可以节约1个字节,从而能够降低MAC CE的信令开销。
图17示出的是P i,0、P i,1、P i,2按照i从大到小的顺序,从右到左进行排列。在一些实现方式中,P i,0、P i,1、P i,2也可以按照i从大到小的顺序,从左到右进行排列。
示例二、不同类型的TCI状态承载于相同的MAC CE中
下面以该相同的MAC CE为第三MAC CE为例,对本申请实施例的方案进行介绍。
第三MAC CE的帧结构与第二MAC CE的帧结构类似,主要区别在于,第二MAC CE的帧结构只需要考虑独立TCI状态(即上行TCI状态和/或下行TCI状态),而第三MAC CE的帧结构既要考虑独立TCI状态,也需要考虑联合TCI状态。也就是说,第三MAC CE的帧结构要能够同时适用于联合TCI状态和独立TCI状态。
下面针对这两种类型的TCI状态分别进行介绍。
对于联合TCI状态,终端设备可以接收网络设备发送的第五指示信息,该第五指示信息指示统一的TCI状态为联合TCI状态。该联合TCI状态既可用于上行操作(UL operation)或上行传输(UL transmission),也可用于下行操作(DL operation)或下行传输或接收(DL transmission/reception)。为方便描述,下文以上行传输和下行传输为例,对本申请实施例的方案进行介绍。
本申请实施例对第五指示信息的传输方式不做具体限定。例如,第五指示信息可以承载于RRC IE参数unifiedTCI-StateType中。如果unifiedTCI-StateType的取值为“joint”,则表示统一的TCI状态为联合TCI状态。又例如,第五指示信息可以承载于RRC IE参数ServingCellConfig中。
在一些实施例中,第五指示信息可以是针对服务小区(serving cell)进行配置的。网络设备可以为不同的服务小区分别配置对应的第五指示信息。
在一些实施例中,网络设备还可以向终端设备发送第六指示信息,该第六指示信息用于配置或指示一组TCI状态。为方便描述,下文将该组TCI状态记为第三TCI状态组。该第三TCI状态组可以包括一个或多个TCI状态。该第三TCI状态组中的TCI状态为联合TCI状态。在一些实施例中,第六指示信息和第五指示信息可以是一起发送的,或者第六指示信息和第五指示信息可以承载于相同的消息 中。例如,第五指示信息和第六指示信息可以通过同一个RRC IE进行配置。
在一些实施例中,该第三TCI状态组可用于上行传输,也可用于下行传输。
在一些实施例中,该第六指示信息可以承载于RRC信令中,或者说,该第六指示信息可以通过RRC参数进行配置。例如,该第六指示信息可以承载于RRC IE参数PDSCH-Config中。又例如,该第六指示信息可以承载于RRC IE参数dl-OrJoint-TCIStateList中。
对于独立TCI状态,终端设备可以接收网络设备发送的第五指示信息,该第五指示信息指示统一的TCI状态为独立TCI状态。该独立TCI状态可以包括上行TCI状态和/或下行TCI状态。该上行TCI状态可用于上行操作(UL operation)或上行传输(UL transmission)。该下行TCI状态可用于下行操作(DL operation)或下行传输(DL transmission)。为方便描述,下文以上行传输和下行传输为例,对本申请实施例的方案进行介绍。
本申请实施例对第五指示信息的传输方式不做具体限定。例如,第五指示信息可以承载于RRC的IE参数unifiedTCI-StateType中。如果unifiedTCI-StateType的取值为“Separate”,则表示统一的TCI状态为独立TCI状态。又例如,第五指示信息可以承载于RRC的IE参数ServingCellConfig中。
在一些实施例中,第五指示信息可以是针对服务小区(serving cell)进行配置的。网络设备可以为不同的服务小区分别配置对应的第五指示信息。
在一些实施例中,网络设备还可以向终端设备发送第六指示信息,该第六指示信息用于配置或指示一组TCI状态。为方便描述,下文将该组TCI状态记为第一TCI状态组。该第一TCI状态组可以包括一个或多个TCI状态。该第一TCI状态组中的TCI状态为下行TCI状态。在一些实施例中,第六指示信息和第五指示信息可以是一起发送的,或者第六指示信息和第五指示信息可以承载于相同的消息中。例如,第五指示信息和第六指示信息可以通过同一个RRC IE进行配置。
在一些实施例中,该第一TCI状态组可用于下行传输。
在一些实施例中,该第六指示信息可以承载于RRC信令中,或者说,该第六指示信息可以通过RRC参数进行配置。例如,该第六指示信息可以承载于RRC IE参数PDSCH-Config中。又例如,该第六指示信息可以承载于RRC IE参数dl-OrJoint-TCIStateList-r17中。
在一些实施例中,网络设备还可以向终端设备发送第六指示信息,该第六指示信息用于配置或指示一组TCI状态。为方便描述,下文将该组TCI状态记为第二TCI状态组。该第二TCI状态组可以包括一个或多个TCI状态。该第一TCI状态组中的TCI状态为上行TCI状态。
在一些实施例中,该第二TCI状态组可用于上行传输。
在一些实施例中,该第六指示信息可以承载于RRC信令中,或者说,该第六指示信息可以通过RRC参数进行配置。例如,该第六指示信息可以承载于RRC IE参数PDSCH-Config中。又例如,该第六指示信息可以承载于RRC IE参数ul-TCI-ToAddModList中。
需要说明的是,用于指示第一TCI状态组的第六指示信息和用于指示第二TCI状态组的第六指示信息可以为同一个指示信息,也可以为不同的指示信息。例如,网络设备可以向终端设备发送一个指示信息,以指示第一TCI状态组。网络设备还可以向终端设备发送另一个指示信息,以指示第二TCI状态组。又例如,网络设备可以向终端设备发送一个指示信息,该指示信息用于指示第一TCI状态组和第二TCI状态组。
需要说明的是,下文描述的内容对联合TCI状态和独立TCI状态均适用。
图7-图17所示的第二MAC CE的帧结构也同样适用于第三MAC CE帧结构,区别在于MAC CE帧结构中各指示域的含义有些区别。未详细描述的内容可以参见前文的描述,为了简洁,此处不再赘述。下面对第三MAC CE中的指示域进行介绍。
在一些实施例中,第三MAC CE可以包括以下指示域中的一种或多种:服务小区指示域、BWP指示域、TCI状态指示域、一个或多个第五指示域、第六指示域、第七指示域。例如,第三MAC CE可以包括BWP指示域、一个或多个第五指示域、第六指示域、第七指示域中的一种或多种。
在一些实施例中,第三MAC CE可以包括BWP指示域、一个或多个第五指示域、第六指示域、第七指示域中的任意一种。例如,第三MAC CE可以包括BWP指示域。又例如,第三MAC CE可以包括一个或多个第五指示域。又例如,第三MAC CE可以包括第六指示域。又例如,第三MAC CE可以包括第七指示域。
在一些实施例中,第三MAC CE可以包括BWP指示域、一个或多个第五指示域、第六指示域、第七指示域中的任意两种。例如,第三MAC CE可以包括BWP指示域、一个或多个第五指示域。又例如,第三MAC CE可以包括BWP指示域、第六指示域。又例如,第三MAC CE可以包括BWP指示域、第七指示域。又例如,第三MAC CE可以包括一个或多个第五指示域、第六指示域。又例如,第三MAC CE可以包括一个或多个第五指示域、第七指示域。又例如,第三MAC CE可以包括。又例 如,第三MAC CE可以包括第六指示域、第七指示域。
在一些实施例中,第三MAC CE可以包括BWP指示域、一个或多个第五指示域、第六指示域、第七指示域中的任意三种。例如,第三MAC CE可以包括BWP指示域、一个或多个第五指示域、第六指示域。又例如,第三MAC CE可以包括BWP指示域、一个或多个第五指示域、第七指示域。又例如,第三MAC CE可以包括BWP指示域、第六指示域、第七指示域。又例如,第三MAC CE可以包括一个或多个第五指示域、第六指示域、第七指示域。
在一些实施例中,第三MAC CE可以包括BWP指示域、一个或多个第五指示域、第六指示域、第七指示域。
下面对上述指示域分别进行介绍。
第三MAC CE包括服务小区指示域,可以理解为第三MAC CE包括服务小区信息。服务小区指示域可用于指示第三MAC CE可应用的服务小区。例如,服务小区指示域可以包括服务小区ID,该服务小区ID可用于指示对应的服务小区。
本申请实施例对服务小区指示域的长度不做具体限定。例如,服务小区指示域的长度可以为5比特(5bits)。
第三MAC CE包括BWP指示域,可以理解为第三MAC CE包括BWP信息。该BWP指示域可用于指示第三MAC CE可应用的UL BWP和DL BWP。UL BWP可用于上行传输,DL BWP可用于下行传输。
在一些实施例中,BWP指示域为一个指示域,或者,BWP指示域可以包括多个指示域。例如,BWP指示域可以包括UL BWP指示域和DL BWP指示域。
在一些实施例中,第三MAC CE包括UL BWP指示域,可以理解为第三MAC CE包括UL BWP信息。UL BWP指示域可用于指示第三MAC CE可应用的UL BWP。UL BWP指示域可以包括UL BWP ID,该UL BWP ID可用于指示对应的UL BWP。或者说,该指示域指示一个UL BWP,MAC CE可以将该UL BWP作为TS 38.212[9]中规定的作为DCI带宽部分指示域的码点(This field indicates a UL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9])。
本申请实施例对UL BWP指示域的长度不做具体限定。例如,UL BWP指示域的长度可以为2比特(The length of the BWP ID field is 2bits)。
在一些实施例中,第三MAC CE包括DL BWP指示域,可以理解为第三MAC CE包括DL BWP信息。DL BWP指示域可用于指示第三MAC CE可应用的DL BWP。DL BWP指示域可以包括DL BWP ID,该DL BWP ID可用于指示对应的DL BWP。或者说,该指示域指示一个DL BWP,MAC CE可以将该DL BWP作为TS 38.212[9]中规定的作为DCI带宽部分指示域的码点(This field indicates a DL BWP for which the MAC CE applies as the codepoint of the DCI bandwidth part indicator field as specified in TS 38.212[9])。
本申请实施例对DL BWP指示域的长度不做具体限定。例如,DL BWP指示域的长度可以为2比特(The length of the BWP ID field is 2bits)。
在一些实施例中,第三MAC CE可以包括TCI状态指示域,该TCI状态指示域可用于指示TCI状态。在一些实施例中,第三MAC CE可以包括多个TCI状态指示域,每个TCI状态指示域用于指示一个TCI状态。该一个TCI状态可以为上文描述的第三TCI状态组中的TCI状态,即该一个TCI状态属于第三TCI状态组的一个。或者,该一个TCI状态可以为上文描述的第一TCI状态组中的TCI状态,即该一个TCI状态属于第一TCI状态组的一个。或者,该一个TCI状态可以为上文描述的第二TCI状态组中的TCI状态,即该一个TCI状态属于第二TCI状态组的一个。
本申请实施例对TCI状态指示域的长度不做具体限定。例如,该TCI状态指示域的长度可以为7比特。又例如,该TCI状态指示域的长度可以为6比特。TCI状态指示域的长度越长,TCI状态指示域能够指示的TCI状态就越多,从而可以提高网络调度的灵活性。
在一些实施例中,TCI状态指示域的最高位(the most significant bit)可以为保留比特。例如,如果TCI状态指示域的长度为7比特,则TCI状态指示域中剩余的6比特可用于指示TCI状态。
下面针对上行TCI状态和下行TCI状态分别进行介绍。
如果所述TCI状态指示域用于指示DL TCI状态或联合TCI状态(DL/Joint TCI state),则TCI状态指示域长度可以为7比特。或者,如果TCI状态指示域用于指示DL TCI状态,该TCI状态指示域的最高位(the most significant bit)可以为保留比特,则剩余的6比特用于指示DL TCI状态或联合TCI状态。
如果所述TCI状态指示域用于指示UL TCI状态,则TCI状态指示域长度可以为7比特。如果TCI状态指示域用于指示UL TCI状态,该TCI状态指示域的最高位可以为保留比特,则剩余的6比特用 于指示UL TCI状态。
在一些实施例中,第三MAC CE可以包括一个或多个第五指示域。一个第五指示域可以与一个码点相关联。每个第五指示域可用于指示一个码点对应的TCI状态的数量,或者说,每个第五指示域用于指示一个码点对应的上行TCI状态和下行TCI状态的数量。通过指示上行TCI状态和下行TCI状态的数量之和,可以减少第五指示域需要的比特数,从而可以降低MAC CE的信令开销。
本申请实施例对第五指示域的数量不作具体限定。第五指示域的数量可以与DCI中的TCI域的比特数相关。第五指示域的数量可以与TCI域能够指示的码点数量相等。例如,如果DCI中TCI域为3个比特,则第五指示域的数量可以为8,即第三MAC CE可以包括8个第五指示域。
本申请实施例对第五指示域的长度不作具体限定。第五指示域的长度与一个码点对应的TCI状态的数量相关联。一个码点对应的TCI状态的数量越多,则第五指示域的长度越长。第五指示域的长度例如可以为2比特或3比特。如果第五指示域的长度为2比特,则一个码点对应的TCI状态的数量最多为4个。如果第五指示域的长度为3比特,则一个码点对应的TCI状态的数量最多为8个。
在一些实施例,一个码点对应的TCI状态中,下行TCI状态的数量可以大于上行TCI状态的数量,或者,下行TCI状态的数量可以等于上行TCI状态的数量,或者,下行TCI状态的数量可以小于上行TCI状态的数量,本申请实施例对此不做具体限定。TCI状态的类型(如上行TCI状态、下行TCI状态)可以通过下文描述的第六指示域进行指示。
为方便描述,下文将每个第五指示域指示的一个码点对应的TCI状态的数量记为N。本申请实施例对N的取值不做具体限定。下面分别针对独立TCI状态和联合TCI状态,对N的取值进行举例说明。
下面先以第三MAC CE指示独立TCI状态为例,对N的取值进行介绍。
作为一个示例,N的取值可以为1,2,3,4中的值,或者,N的取值可以为0,1,2,3,4中的取值,或者,N的取值可以为0,1,2,3中的值。这种方式对协议设计和系统实现来说比较简单,能够获得多TRP的绝大部分性能增益,以及对于网络配置和调度来说,具有较好的灵活性。
在一些实现方式中,下行TCI状态的数量可以小于或等于2。在一些实现方式中,上行TCI状态的数量可以小于或等于2。当然,在一些实施例中,下行TCI状态的数量、上行TCI状态的数量也可以为其他值。
作为另一个示例,N的取值可以为1,2,3,4,5,6中的值,或者,N的取值可以为0,1,2,3,4,5,6中的取值,或者,N的取值可以为0,1,2,3,4,5中的值。这种方式可以支持更多TRP进行上行传输和/或下行传输。在部分场景下,下行传输性能可以得到提升,为网络优化提供更大的自由度。
在一些实现方式中,下行TCI状态的数量可以小于或等于4。在一些实现方式中,上行TCI状态的数量可以小于或等于2。通过指示更多的下行TCI状态,可以使得下行传输性能得到提升。当然,在一些实施例中,下行TCI状态的数量、上行TCI状态的数量也可以为其他值。例如,下行TCI状态的数量小于或等于2,上行TCI状态的数量小于或等于4。又例如,下行TCI状态的数量小于或等于3,上行TCI状态的数量小于或等于3。
作为又一个示例,N的取值可以为1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7,8中的取值,或者,N的取值可以为0,1,2,3,4,5,6,7中的值。这种方式可以支持更多TRP进行上行传输和/或下行传输。在部分场景下,下行传输性能可以得到提升,为网络优化提供更大的自由度。
在一些实现方式中,下行TCI状态的数量可以小于或等于4。在一些实现方式中,上行TCI状态的数量可以小于或等于4。通过指示更多的下行TCI状态,可以使得下行传输性能得到提升。当然,在一些实施例中,下行TCI状态的数量、上行TCI状态的数量也可以为其他值。例如,下行TCI状态的数量小于或等于6,上行TCI状态的数量小于或等于2。又例如,下行TCI状态的数量小于或等于5,上行TCI状态的数量小于或等于3。
下面以第三MAC CE指示联合TCI状态为例,对N的取值进行介绍。
作为一个示例,N的取值可以为1,2中的值,或者,N的取值可以为0,1,2中的取值,或者,N的取值可以为0,1中的值。例如,一个第五指示域可用于指示一个码点对应的1个或2个联合TCI状态。
作为另一个示例,N的取值可以为1,2,3,4中的值,或者,N的取值可以为0,1,2,3,4中的取值,或者,N的取值可以为0,1,2,3中的值。例如,一个第五指示域可用于指示一个码点对应的1个或2个或3个或4个联合TCI状态。种方式可以支持更多TRP进行上行传输和下行传输。在部分场景下,下行传输性能可以得到提升,可以为网络优化提供更大的自由度。
在一些实施例中,第三MAC CE可以包括第六指示域。第六指示域用于指示TCI状态的类型。TCI状态的类型可以包括上行TCI状态、下行TCI状态和联合TCI状态。也就是说,第六指示域可用于指示对应的TCI状态是上行TCI状态还是下行TCI状态还是联合TCI状态。在一些实施例中,下行TCI状态和联合TCI状态对应的第六指示域的取值相同,在该情况下,第六指示域可用于指示对应的TCI 状态是下行或联合TCI状态,还是上行TCI状态。下文以下行TCI状态和联合TCI状态对应的第六指示域的取值相同为例,对本申请实施例的方案进行介绍。
在一些实现方式中,本申请实施例可以包括一个或多个第六指示域,一个第六指示域可以与一个TCI状态或一个TCI状态指示域对应,第六指示域可用于指示对应的TCI状态的类型。
例如,第六指示域可用于指示与第六指示域位于同一字节的TCI状态指示域指示的TCI状态的类型。或者说,第六指示域用于指示与第六指示域位于同一字节的TCI状态指示域指示的是上行TCI状态,还是下行TCI状态,还是联合TCI状态。
又例如,第六指示域可用于指示与第六指示域位于同一字节的TCI状态指示域指示的TCI状态组所在的TCI状态组的类别。由上文可知,TCI状态组的类别可以包括第三TCI状态组、第一TCI状态组和第二TCI状态组。第三TCI状态组中的TCI状态为联合TCI状态,第一TCI状态组中的TCI状态为下行TCI状态,第二TCI状态组中的TCI状态为下行TCI状态。因此,TCI状态的类型可通过TCI状态所在的TCI状态组进行识别。如果第六指示域指示对应的TCI状态属于第三TCI状态组,则表示对应的TCI状态为联合TCI状态。如果第六指示域指示对应的TCI状态属于第一TCI状态组,则表示对应的TCI状态为下行TCI状态。如果第六指示域指示对应的TCI状态属于第二TCI状态组,则表示对应的TCI状态为上行TCI状态。
在一些实施例中,第三MAC CE可以包括第七指示域。第七指示域可用于指示第三MAC CE中指示或激活的TCI状态对应的码点的数量。第七指示域也可以称为TCI状态子集数目指示域或DCI码点指示域。第七指示域指示的码点数量小于或等于第二指示域的数量,或者说,第七指示域指示的码点数量小于或等于DCI中TCI域能够指示的码点数量。通过设置第七指示域可以减少终端设备读取或解析的比特数量,降低终端设备的实现复杂度。
在一些实现方式中,第七指示域指示的码点数量可以理解为第三MAC CE中指示的TCI状态对应的DCI中第一域的码点数量。可选地,第一域为DCI中的TCI域。
对于第三MAC CE用于指示或激活独立TCI状态而言,本申请实施例对第三MAC CE指示或激活的TCI状态的最大数量不做具体限定。例如,第三MAC CE指示或激活的TCI状态的最大数量可以为32。在该情况下,终端设备可以支持上行2个TRP传输和下行2个TRP传输,即(2+2)*8=32。又例如,第三MAC CE指示或激活的TCI状态的最大数量可以为48。在该情况下,终端设备可以支持上行2个TRP传输和下行4个TRP传输,即(2+4)*8=48,从而可以提高下行传输能力,提高网络配置和调度的灵活性,同时也可以将终端设备的实现复杂度控制在一定范围内。再例如,第三MAC CE指示或激活的TCI状态的最大数量可以为64。在该情况下,终端设备可以支持上行4个TRP传输和下行4个TRP传输,即(4+4)*8=64,从而可以提高下行传输能力和上行传输能力,提高网络配置和调度的灵活性。
对于第三MAC CE用于指示或激活联合TCI状态而言,本申请实施例对第三MAC CE指示或激活的TCI状态的最大数量不做具体限定。例如,第三MAC CE指示或激活的联合TCI状态的最大数量可以为16个或32个。
下面结合图7-图17,给出一些第三MAC CE的具体实现方式,需要说明的是,图7-图17的方案仅是为了便于理解进行的举例说明,不应对本申请实施例的方案造成限定。例如,图7-图17中的指示域的位置可以调整,只要第三MAC CE能够包括下文所述的指示域即可。又例如,第三MAC CE也可以仅包括下文所述指示域中的部分指示域,而不是全部指示域。
参见图7-图17,第三MAC CE可以包括服务小区ID,该服务小区ID可用于指示服务小区信息。第三MAC CE可以包括DL BWP ID,用于指示下行带宽部分信息。第三MAC CE可以包括UL BWP ID,用于指示上行带宽部分信息。R表示保留比特位,R比特位的取值例如可以为0。
第三MAC CE可以包括D/U指示域,该D/U指示域可以理解为上文描述的第六指示域。D/U指示域可用于指示同一个字节中指示的是下行TCI状态或联合TCI状态,还是上行TCI状态(This field indicate whether the TCI state ID in the same octet is for downlink/joint or uplink TCI state)。可选地,如果该指示域的取值为1,则同一字节中的TCI状态ID指示的是下行TCI状态或联合TCI状态(If this field is set to 1,the TCI state ID in the same octet is for downlink/joint)。如果该指示域的取值为0,则同一字节中的TCI状态ID指示的是上行TCI状态(If this field is set to 0,the TCI state ID in the same octet is for uplink)。
第三MAC CE可以包括TCI状态ID域,该TCI状态ID域可以理解为上文描述的TCI状态指示域。TCI状态ID域可以指示一个TCI状态,该TCI状态可以是上行TCI状态,也可以是下行TCI状态或联合TCI状态。可选地,如果D/U指示域的取值为1,则同一字节的TCI状态ID域用于指示下行TCI状态或联合TCI状态。可选地,如果D/U指示域的取值为0,则同一字节的TCI状态ID域用于指示上 行TCI状态。
可选地,用于指示下行TCI状态或联合TCI状态的TCI状态ID域可以为7比特,从而能够支持更多的下行TCI状态的数量,为网络优化传输配置提供空间和灵活性。
可选地,用于指示上行TCI状态的TCI状态ID域可以为7比特,从而能够支持更多的上行TCI状态的数量,为网络优化传输配置提供空间和灵活性。在一些实现方式中,TCI状态的最高位可以为保留比特位,剩余的6比特可用于指示上行TCI状态(the most significant bit of TCI state ID is considered as the reserved bit and remainder 6bits indicate the UL-TCIState-Id)。
在一些实施例中,第五指示域的长度可以为2比特,图7-图10中的P i,0和P i,1可以组成一个比特子组(a subset of bits),该比特子组可用于指示第i个码点对应的TCI状态的数量(记为N)。需要说明的是,该比特子组可以理解为上文描述的第五指示域。N的取值可以为1,2,3,4中的值,或者,N的取值可以为0,1,2,3,4中的值,或者,N的取值可以为0,1,2,3中的值。
本申请实施例对P i,0和P i,1的取值与N之间的对应关系不做具体限定。P i,0和P i,1的取值可以理解为P i,0和P i,1组成的比特子组的取值。下面对P i,0和P i,1的取值与N之间的对应关系进行举例说明。
下面先以第三MAC CE指示独立TCI状态为例,对P i,0和P i,1的取值与N之间的对应关系进行举例进行介绍。
例如,P i,0和P i,1的取值00,01,10,11分别对应的N取值可以为1,2,3,4。又例如,P i,0和P i,1的取值00,10,01,11分别对应的N取值可以为1,2,3,4。
上文是以P i,0和P i,1分别为1比特为例进行描述的,本申请实施例并不限于此。P i,0和P i,1也可以包括其他数量的比特,如P i,0和P i,1可以分别包括2比特。
本申请实施例对N个TCI状态中的上行TCI状态的数量和下行TCI状态的数量不做具体限定。例如,N个TCI状态中的上行TCI状态的数量不多于2个。又例如,N个TCI状态中的下行TCI状态的数量不多于2个。这样可以限制上行TCI状态和/或下行TCI状态的配置,降低终端设备的实现复杂度。
在一些实施例中,在一些实施例中,P i,0和P i,1可以分别指示第i个码点对应的上行TCI状态的数量和下行TCI状态的数量,也就是说,P i,0可以指示第i个码点对应的上行TCI状态的数量(记为N1),P i,1可以指示第i个码点对应的下行TCI状态的数量(记为N2)。在另一些实施例中,P i,0和P i,1可以分别指示第i个码点对应的下行TCI状态的数量和上行TCI状态的数量,也就是说,P i,0可以指示第i个码点对应的下行TCI状态的数量(记为N2),P i,1可以指示第i个码点对应的上行TCI状态的数量(记为N1)。通过分别指示上行TCI状态的数量和下行TCI状态的数量,能够更加灵活地设计MAC CE信令,便于未来方案的扩展。
本申请实施例对N1和N2的取值不做具体限定。例如,N1的取值可以为1,2中的值,或者N1的取值可以为0,1,2中的值,或者N1的取值可以为0,1中的值。又例如,N2的取值可以为1,2中的值,或者N2的取值可以为0,1,2中的值,或者N2的取值可以为0,1中的值。
对于第三MAC CE指示联合TCI状态的情况,P i,0和P i,1指示第i个codepoint对应的联合TCI状态的数量可以为1个或2个。
在一些实施例中,第五指示域的长度可以为4比特。参见图15,P i,0、P i,1、P i,2、P i,3可以组成一个比特子组(a subset of bits),该比特子组可用于指示第i个码点对应的TCI状态的数量(记为N)。需要说明的是,该比特子组可以理解为上文描述的第二指示域。N的取值可以为1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7,8中的值,或者,N1的取值可以为0,1,2,3,4,5,6,7中的值。通过指示上行TCI状态和下行TCI状态的总数量,能够减少所需要的比特数,从而可以降低MAC CE的信令开销。
在一些实施例中,上述4比特中的部分比特可以为保留比特,或者部分比特的取值为固定值。
对于第三MAC CE用于指示联合TCI状态来说,P i,0、P i,1、P i,2、P i,3可用于指示第i个码点对应的联合TCI状态的数量为1个或2个或3个或4个。
在一些实施例中,对于第三MAC CE用于指示独立TCI状态来说,P i,0、P i,1、P i,2、P i,3中的一部分比特可用于指示第i个码点对应的上行TCI状态的数量(记为N1),另一部分比特可用于指示第i个码点对应的下行TCI状态的数量(记为N2)。下面进行举例说明。
例如,P i,0、P i,1可用于指示第i个码点对应的上行TCI状态的数量,P i,2、P i,3可用于指示第i个码点对应的下行TCI状态的数量。又例如,P i,2、P i,3可用于指示第i个码点对应的上行TCI状态的数量,P i,0、P i,1可用于指示第i个码点对应的下行TCI状态的数量。N1的取值可以为1,2,3,4中的值,或者,N1的取值可以为0,1,2,3,4中的值,或者,N1的取值可以为0,1,2,3中的值。N2的取值可以为1,2,3,4中的值,或者,N2的取值可以为0,1,2,3,4中的值,或者,N2的取值可以为0,1,2,3中的值。
在一些实施例中,第五指示域的长度可以为3比特。参见图16,P i,0、P i,1、P i,2可以组成一个比特 子组(a subset of bits),该比特子组可用于指示第i个码点对应的TCI状态的数量(记为N)。需要说明的是,该比特子组可以理解为上文描述的第五指示域。N的取值可以为1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7,8中的值,或者,N的取值可以为0,1,2,3,4,5,6,7中的值。通过指示上行TCI状态和下行TCI状态的总数量,能够减少所需要的比特数,从而可以降低MAC CE的信令开销。
对于第三MAC CE用于指示联合TCI状态来说,P i,0、P i,1、P i,2可用于指示第i个码点对应的联合TCI状态的数量为1个或2个或3个或4个。
下面对第三MAC CE用于指示独立TCI状态的方案进行介绍。
本申请实施例对P i,0、P i,1、P i,2的取值与N之间的对应关系不做具体限定。P i,0、P i,1、P i,2的取值可以理解为P i,0、P i,1、P i,2组成的比特子组的取值。下面对P i,0、P i,1、P i,2的取值与N之间的对应关系进行举例说明。
例如,P i,0、P i,1、P i,2的取值000,001,010,011,100,101,110,111分别对应的N取值可以为1,2,3,4,5,6,7,8。又例如,P i,0、P i,1、P i,2的取值000,100,010,110,001,101,011,111分别对应的N取值可以为1,2,3,4,5,6,7,8。
本申请实施例对N个TCI状态中的上行TCI状态的数量和下行TCI状态的数量不做具体限定。例如,N个TCI状态中的上行TCI状态的数量不多于4个。又例如,N个TCI状态中的下行TCI状态的数量不多于4个。这样可以限制上行TCI状态和/或下行TCI状态的配置,降低终端设备的实现复杂度。
在一些实施例中,P i,0、P i,1、P i,2中的部分比特可用于指示第i个码点对应的上行TCI状态的数量,另一部分比特可用于指示第i个码点对应的下行TCI状态的数量。例如,P i,0、P i,1、P i,2中的2比特(如P i,0P i,1、或P i,1P i,2、或P i,0P i,2)用于指示第i个码点对应的下行TCI状态的数量(记为N2),另外1比特(如P i,2、P i,0、P i,1)用于指示第i个码点对应的上行TCI状态的数量(记为N1)。通过分别指示上行TCI状态的数量和下行TCI状态的数量,能够更加灵活地设计MAC CE信令,便于未来方案的扩展。
本申请实施例对N1和N2的取值不做具体限定。例如,N1的取值可以为1,2中的值,或者N1的取值可以为0,1,2中的值,或者,N1的取值可以为0,1中的值。又例如,N2的取值可以为1,2,3,4中的值,或者N2的取值可以为0,1,2,3,4中的值,或者,N2的取值可以为0,1中的值。
本申请实施例对i的取值不做具体限定。例如,i的取值可以从0开始,如图6-图17所示。当然,i的取值也可以从其他数值开始,例如,i的取值也可以从1开始。
如前文所述,本申请实施例中的终端设备可以接收网络设备发送的第一指示信息。终端设备可以根据第一指示信息,确定以下信息中的一种或多种:PDSCH DMRS对应的QCL信息、PDCCH DMRS对应的QCL信息、部分CORESET对应的DMRS对应的QCL信息、至少部分CSI-RS对应的QCL信息、PUSCH的上行发送空间滤波器、至少部分PUCCH的上行发送空间滤波器、至少部分SRS的上行发送空间滤波器。
可选地,至少部分SRS对应的SRS资源集中配置了RRC参数followUnifiedTCIstateSRS-r17。
如前文所述,第一指示信息可以通过DCI信令传输。例如,第一指示信息可以通过DCI中的TCI域进行传输。
本申请实施例对DCI的格式不做具体限定。例如,DCI的格式可以为DCI format 1_1和/或DCI format 1_2。其中,DCI format 1_1/1_2可以同时调度数据或者不调度下行传输(with or without,if applicable,DL assignment)。
又例如,DCI的格式可以为DCI format 1_1和/或DCI format 1_2和/或DCI format 0_1和/或DCI format 0_2。其中DCI format 1_1/1_2可以同时调度数据或者不调度下行传输(with or without,if applicable,DL assignment),DCI format 0_1/0_2可以同时调度数据或者不调度上行传输(with or without,if applicable,UL assignment)。
在一些实施例中,如果DCI不调度下行传输(without DL assignment),对于DCI format 1_1/1_2,终端设备可以进行如下假设(或者说,DCI format 1_1/1_2可以满足如下条件):CS-RNTI用于对DCI的CRC进行加扰;以下DCI字段的值可以设置为如下:RV=全1(RV=all '1's),MCS=全1(MCS=all '1's),NDI=0,为FDRA类型0设置为全“0”,或为FDRA类型1设置为全“1”,或为dynamicSwitch设置为全“0”(Set to all '0's for FDRA Type 0,or all '1's for FDRA Type 1,or all '0's for dynamicSwitch)。
在一些实施例中,如果第一指示信息指示的一个或多个TCI状态中的至少一个TCI状态(记为TCI状态X)与先前指示的(the previously indicated)TCI状态中的任意一个都不同,或者,如果第一指示信息指示的一个或多个TCI状态中的至少一个TCI状态(记为TCI状态X)与终端设备当前使用或激活的(activated,或者applied)所有TCI状态中的任意一个都不同,则从第一PUCCH的最后一个符号起之后的至少间隔BeamAppTime个符号后的第一个时隙(slot)开始,第一指示信息所指示的TCI状 态X生效。换句话说,终端设备可以根据TCI状态X来确定上行发送空间滤波器,和/或下行传输对应的QCL信息,其中第一PUCCH传输承载第一指示信息所在DCI对应的HARQ-ACK信息(When the UE would transmit the last symbol of a PUCCH with HARQ-ACK information corresponding to the DCI carrying the TCI State indication and without DL assignment,or corresponding to the PDSCH scheduling by the DCI carrying the TCI State indication,and if the indicated TCI State is different from the previously indicated one,the indicated DLorJointTCIState or UL-TCIstate should be applied starting from the first slot that is at least symbols after the last symbol of the PUCCH.The first slot and the symbols are both determined on the carrier with the smallest SCS among the carrier(s)applying the beam indication)。
需要说明的是,上述TCI状态不同是针对同一个传输方向而言的,例如,如果TCI state X用于上行传输,则考虑先前指示的用于上行传输的TCI状态与TCI状态X不同;如果TCI状态X用于下行传输或接收,则考虑先前指示的用于下行传输或接收的TCI状态与TCI状态X不同;如果TCI状态X用于上行传输以及下行传输或接收,则考虑先前指示的用于上行传输以及下行传输或接收的TCI状态与TCI状态X不同。
举例说明,以一个DCI最多能指示2个用于下行传输或接收(DL operation或者DL transmission/reception)的TCI状态为例,其他情况(用于上行的TCI状态,或者同时用于上行和下行的TCI状态)可以类似扩展。假设网络设备先前指示了TCI状态A1和TCI状态A2用于下行传输,当前这次DCI指示的信号中包含了TCI状态X,并且TCI状态X和TCI状态A1、TCI状态A2都不同,则需要考虑上面的流程,来确定TCI状态X在什么时候可以使用(can be applied)。再例如,目前终端设备使用2个TCI状态(记为TCI状态A1、TCI状态A2)来确定下行传输对应的QCL信息,当前这次DCI指示的信号中包含了TCI状态X,并且TCI状态X和TCI状态A1、TCI状态A2都不同,则需要考虑上面的流程,来确定TCI状态X在什么时候可以使用(can be applied)。
单TRP传输
本申请实施例的方案还可以支持部分信道/信号多TRP传输,另外部分信道/信号单TRP传输。对于支持部分信道/信号单TRP传输的方案,终端设备可以使用第一指示信息指示的多个统一的TCI状态中一个TCI状态,进行上行传输或下行传输,从而可以降低终端设备的处理复杂度,降低功耗。
当存在部分信道/信号单TRP传输时,本申请实施例还可以支持下行的部分信道/信号或全部的信道/信号的单TRP传输(简称为下行单TRP传输),也可以支持上行的部分信道/信号或全部的信道/信号的单TRP传输(简称为上行单TRP传输)。下面针对下行单TRP传输和上行单TRP传输分别进行介绍。
下文先对进行下行单TRP传输的方案进行介绍。
可选地,第一指示信息指示的多个统一的TCI状态可以包括多个用于下行传输的TCI状态。
在一些实施例中,终端设备可以在满足第一条件的情况下,根据多个用于下行传输的TCI状态中的第一TCI状态,确定下行传输对应的QCL信息。也就是说,终端设备可以在满足第一条件的情况下,进行下行的单TRP传输。
在一些实施例中,网络设备可以执行第一操作,该第一操作与第一条件相关,第一条件用于从多个用于下行传输的TCI状态中确定第一TCI状态。
第一操作可以包括以下中的任意一种:网络设备向终端设备发送第三指示信息;网络设备不向终端设备发送第三指示信息;网络设备向所述终端设备发送第三指示信息,且第三指示信息的取值为第一值。
本申请实施例对第一条件不做具体限定。例如,第一条件可以包括以下中的任意一种:终端设备接收到网络设备发送的第三指示信息;终端设备未接收到网络设备发送的第三指示信息;终端设备接收到网络设备发送的第三指示信息,且第三指示信息的取值为第一值。网络设备通过第三指示信息让部分下行传输信号和/或部分下行传输信道采用单TRP传输,从而降低终端处理要求,降低终端设备的功耗。
作为一个示例,终端设备可以在接收到网络设备发送的第三指示信息,且第三指示信息的取值为第一值的情况下,使用第一TCI状态进行下行传输。对应地,网络设备可以在需要终端设备进行下行单TRP传输时,向终端设备发送取值为第一值的第三指示信息。
作为另一个示例,终端设备可以在接收到网络设备发送的第三指示信息的情况下,使用第一TCI状态进行下行传输。对应地,网络设备可以在需要终端设备进行下行单TRP传输时,向终端设备发送第三指示信息。只要终端设备接收到第三指示信息,不论第三指示信息的取值是多少,终端设备都可以使用第一TCI状态进行下行传输。
作为又一个示例,终端设备可以在未接收到网络设备发送的第三指示信息的情况下,使用第一TCI状态进行下行传输。对应地,网络设备可以在需要终端设备进行下行单TRP传输时,不向终端设备发 送第三指示信息。
第三指示信息可以通过RRC信令传输,也就是说,第三指示信息可以承载于RRC信令中。通过RRC信令承载第三指示信息,可以针对不同的信道或信道进行分别配置,可以增加系统的灵活性。
第三指示信息可以是针对第一参数进行配置的,也就是说,网络设备可以针对不同的第一参数分别向终端设备配置第三指示信息。第一参数可以包括以下中的一种或多种:CORESET、CSI-RS资源、CSI-RS资源集(CSI-RS resource set)、PDSCH、PDCCH。
例如,第三指示信息可以是针对CORESET进行配置的,可选地,对应的CORESET配置信息中携带有所述第三指示信息。又例如,第三指示信息可以是针对CSI-RS资源进行配置的,可选地,对应的CSI-RS资源配置信息中携带有所述第三指示信息。又例如,第三指示信息可以是针对CSI-RS资源集进行配置的,可选地,对应的CSI-RS资源集配置信息中携带有所述第三指示信息。又例如,第三指示信息可以是针对PDSCH进行配置的,可选地,对应的PDSCH配置信息中携带有所述第三指示信息。又例如,第三指示信息可以是针对PDCCH进行配置的,可选地,对应的PDCCH配置信息中携带有所述第三指示信息。
在一些实施例中,可以存在多个第三指示信息,不同的第三指示信息可以针对不同的第一参数进行配置。例如,有的第三指示信息是针对CORESET进行配置的,有的第三指示信息是针对CSI-RS资源进行配置的。又例如,有的第三指示信息是针对一个CORESET进行配置的,有的第三指示信息是针对另一个CORESET进行配置的。再例如,有的第三指示信息是针对PDSCH进行配置的,有的第三指示信息是针对PDCCH进行配置的。
假设多个用于下行传输的TCI状态的数量为2,如第一指示信息指示的多个统一的TCI状态包含了2个用于下行传输的TCI状态(如2个下行TCI状态或2个联合TCI状态),则终端设备可以使用该2个用于下行传输的TCI状态中的第一TCI状态来确定对应的下行传输或下行接收对应的QCL信息。
本申请实施例对第一TCI状态的确定方式不做具体限定。例如,第一TCI状态可以基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
作为一个示例,第一TCI状态可以基于预定义的规则确定。这种方式可以简化协议,降低终端设备的实现复杂度。预定义的规则可以与统一的TCI状态的ID大小相关联。例如,预定义的规则可以为对应的ID最小的TCI状态(TCI状态ID最小的TCI状态)为第一TCI状态,或者,预定义的规则可以为对应的ID最大的TCI状态(TCI状态ID最大的TCI状态)为第一TCI状态。
作为另一个示例,第一TCI状态可以基于MAC CE(如前文中的第一MAC CE或第二MAC CE或第三MAC CE)确定。例如,第一TCI状态可以基于MAC CE中的指示信息(或指示域)确定。通过MAC CE确定第一TCI状态,可以增加系统的灵活性,提高系统性能。
在一些实施例中,第一TCI状态可以基于用于确定TCI状态的指示域在MAC CE中的位置确定。用于确定TCI状态的指示域可以为MAC CE中的TCI状态指示域。终端设备可以基于TCI状态指示域在MAC CE中的位置,确定第一TCI状态。例如,第一TCI状态可以为MAC CE中位置在前的TCI状态指示域所指示的TCI状态。又例如,第一TCI状态可以为MAC CE中位置在后的TCI状态指示域所指示的TCI状态。
作为又一个示例,第一TCI状态可以基于RRC信令(如RRC信令中的指示信息)确定。网络设备可以通过向终端设备发送RRC信令,以使终端设备根据RRC信令,确定第一TCI状态。通过RRC信令中的指示信息确定第一TCI状态,可以增加系统的灵活性,提高系统性能。可选地,该RRC信令中的指示信息可以为上文描述的第三指示信息,终端设备可以根据第三指示信息的第一取值,确定第一TCI状态。又例如,该RRC信令可以为专属的RRC信令。网络设备可以通过RRC信令向终端设备发送第八指示信息,终端设备可以根据该第八指示信息,确定第一TCI状态。
接下来对进行上行单TRP传输的方案进行介绍。
可选地,第一指示信息指示的多个统一的TCI状态可以包括多个用于上行传输的TCI状态。
在一些实施例中,终端设备可以在满足第二条件的情况下,根据多个用于上行传输的TCI状态中的第二TCI状态,确定上行传输对应的发送空间滤波器。也就是说,终端设备可以在满足第二条件的情况下,进行上行的单TRP传输。
在一些实施例中,网络设备可以执行第二操作,该第一操作与第二条件相关,第二条件用于从多个用于上行传输的TCI状态中确定第二TCI状态。
第二操作可以包括以下中的任意一种:网络设备向终端设备发送第四指示信息;网络设备不向终端设备发送第四指示信息;网络设备向所述终端设备发送第四指示信息,且第四指示信息的取值为第二值。
本申请实施例对第二条件不做具体限定。例如,第二条件可以包括以下中的任意一种:终端设备 接收到网络设备发送的第四指示信息;终端设备未接收到网络设备发送的第四指示信息;终端设备接收到网络设备发送的第四指示信息,且第四指示信息的取值为第二值。网络设备通过第四指示信息让部分上行传输信号和/或部分上行传输信道采用单TRP传输,从而降低终端处理要求,降低终端设备的功耗。
作为一个示例,终端设备可以在接收到网络设备发送的第四指示信息,且第四指示信息的取值为第二值的情况下,使用第二TCI状态进行上行传输。对应地,网络设备可以在需要终端设备进行上行单TRP传输时,向终端设备发送取值为第二值的第四指示信息。
作为另一个示例,终端设备可以在接收到网络设备发送的第四指示信息的情况下,使用第二TCI状态进行上行传输。对应地,网络设备可以在需要终端设备进行上行单TRP传输时,向终端设备发送第四指示信息。只要终端设备接收到第四指示信息,不论第四指示信息的取值是多少,终端设备都可以使用第二TCI状态进行上行传输。
作为又一个示例,终端设备可以在未接收到网络设备发送的第四指示信息的情况下,使用第二TCI状态进行上行传输。对应地,网络设备可以在需要终端设备进行上行单TRP传输时,不向终端设备发送第四指示信息。
第四指示信息可以通过RRC信令传输,也就是说,第四指示信息可以承载于RRC信令中。通过RRC信令承载第四指示信息,可以针对不同的信道或信道进行分别配置,可以增加系统的灵活性。
第四指示信息可以是针对第二参数进行配置的,也就是说,网络设备可以针对不同的第二参数分别向终端设备配置第四指示信息。第二参数可以包括以下中的一种或多种:PUCCH、PUCCH资源、PUCCH资源集、SRS资源、SRS资源集、PUSCH、部分或全部配置授权PUSCH。
例如,第四指示信息可以是针对PUCCH进行配置的,可选地,对应的PUCCH配置信息中携带有该第四指示信息。又例如,第四指示信息可以是针对PUCCH资源进行配置的,可选地,对应的PUCCH资源配置信息中携带有该第四指示信息。又例如,第四指示信息可以是针对SRS资源进行配置的,可选地,对应的SRS资源配置信息中携带有该第四指示信息。又例如,第四指示信息可以是针对SRS资源集进行配置的,可选地,对应的SRS资源集配置信息中携带有该第四指示信息。又例如,第四指示信息可以是针对PUSCH进行配置的,可选地,对应的PUSCH配置信息中携带有该第四指示信息。又例如,第四指示信息可以是针对部分或全部配置授权PUSCH进行配置的,可选地,对应的PUSCH配置信息中携带有该第四指示信息。
在一些实施例中,可以存在多个第四指示信息,不同的第四指示信息可以针对不同的第一参数进行配置。例如,有的第四指示信息是针对PUCCH进行配置的,有的第四指示信息是针对SRS进行配置的。又例如,有的第四指示信息是针对一个SRS资源集进行配置的,有的第四指示信息是针对另一个SRS资源集进行配置的。再例如,有的第四指示信息是针对PUSCH进行配置的,有的第四指示信息是针对PUCCH进行配置的。
假设多个用于上行传输的TCI状态的数量为2,如第一指示信息指示的多个统一的TCI状态包含了2个用于上行传输的TCI状态(如2个上行TCI状态或2个联合TCI状态),则终端设备可以使用该2个用于上行传输的TCI状态中的第二TCI状态来确定上行传输对应的发送空间滤波器(UL TX spatial filter)。
本申请实施例对第二TCI状态的确定方式不做具体限定。例如,第二TCI状态可以基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
作为一个示例,第二TCI状态可以基于预定义的规则确定。这种方式可以简化协议,降低终端设备的实现复杂度。预定义的规则可以与统一的TCI状态的ID大小相关联。例如,预定义的规则可以为对应的ID最小的TCI状态(TCI状态ID最小的TCI状态)为第二TCI状态,或者,预定义的规则可以为对应的ID最大的TCI状态(TCI状态ID最大的TCI状态)为第二TCI状态。
作为另一个示例,第二TCI状态可以基于MAC CE(如前文中的第一MAC CE或第二MAC CE或第三MAC CE)确定。例如,第二TCI状态可以基于MAC CE中的指示信息(或指示域)确定。通过MAC CE确定第二TCI状态,可以增加系统的灵活性,提高系统性能。
在一些实施例中,第二TCI状态可以基于用于确定TCI状态的指示域在MAC CE中的位置确定。用于确定TCI状态的指示域可以为MAC CE中的TCI状态指示域。终端设备可以基于TCI状态指示域在MAC CE中的位置,确定第二TCI状态。例如,第二TCI状态可以为MAC CE中位置在前的TCI状态指示域所指示的TCI状态。又例如,第二TCI状态可以为MAC CE中位置在后的TCI状态指示域所指示的TCI状态。
作为又一个示例,第二TCI状态可以基于RRC信令(如RRC信令中的指示信息)确定。网络设备可以通过向终端设备发送RRC信令,以使终端设备根据RRC信令,确定第二TCI状态。通过RRC 信令中的指示信息确定第二TCI状态,可以增加系统的灵活性,提高系统性能。可选地,该RRC信令中的指示信息可以为上文描述的第四指示信息,终端设备可以根据第四指示信息的第一取值,确定第二TCI状态。又例如,该RRC信令可以为专属的RRC信令。网络设备可以通过RRC信令向终端设备发送第九指示信息,终端设备可以根据该第九指示信息,确定第二TCI状态。
能力上报
在一些实施例中,终端设备还可以向网络设备发送第一能力信息。例如,在步骤S810之前,终端设备可以向网络设备发送第一能力信息。该第一能力信息可用于指示终端设备支持的同时用于下行传输和/或上行传输的统一的TCI状态的数量(记为Z),或,第一能力信息用于指示终端设备支持一个码点最多可以激活或指示用于下行传输和/或上行传输的统一的TCI状态的数量(记为Z)。
需要说明的是,本申请实施例中的终端设备使用多个统一的TCI状态同时进行上行传输,可以指终端设备在同一时刻使用该多个统一的TCI状态进行上行传输,也可以指终端设备先使用一个统一的TCI状态进行上行传输,然后再使用另一个统一的TCI状态进行上行传输,也就是说,不同的统一的TCI状态的使用可以是有时间间隔的。
Z可以为大于1的任意一个整数。例如,Z的取值可以为2,或者,Z的取值可以为4。
终端设备可以针对上行传输和下行传输分别上报终端设备的能力信息,也可以同时上报终端设备的能力信息。例如,针对上行传输,终端设备可以向网络设备发送一个能力信息;针对下行传输,终端设备可以向网络设备发送另一个能力信息。
终端设备针对下行传输的能力和针对上行传输的能力可以相同,也可以不同。假设与下行传输对应的Z的取值为Z1,与上行传输对应的Z的取值为Z2。Z1与Z2的取值可以相同,也可以不同。在一些实施例中,Z1的取值可以大于Z2的取值。
本申请实施例对第一能力信息的传输方式不做具体限定。例如,第一能力信息可以承载于RRC信令中。又例如,第一能力信息可以承载于MAC CE中。
在一些实施例中,第一能力信息可以为针对第二参数的能力信息。第二参数可以包括以下中的一种或多种:频段;频段组合;频段组合中的频段;频段组合中的频段上的载波;载波;频段范围;终端设备。
作为一个示例,第一能力信息可以是针对频段进行上报的。针对不同的频段,终端设备可以独立上报对应的能力信息。例如,终端设备可以在某些频段上支持多TRP传输,而在其他频段上不支持多TRP传输。通过不同的频段独立上报能力信息,可以让终端设备在实现上具有更大的自由度,可以让更多的终端设备支持多TRP传输。
作为另一个示例,第一能力信息可以是针对频段组合(band combination)进行上报的。针对不同的频段组合,终端设备可以独立上报对应的能力信息。例如,终端设备可以在某些频段组合下支持多TRP传输,而在其他频段组合下不支持多TRP传输。通过不同的频段组合独立上报能力信息,可以让终端设备在实现上具有更大的自由度,可以让更多的终端设备支持多TRP传输。
作为有一个示例,第一能力信可以是按照频段组合中的每个频段独立上报的。针对每个频段组合中的频段(per band per band combination),终端设备可以独立上报对应的能力信息。例如,对于相同的频段,其在不同的频段组合中,终端设备的能力可以不同。举例说明,以频段A为例,当频段A与频段B组合时,终端设备针对频段A支持多TRP传输;当频段A与频段C组合时,终端设备针对频段A可以不支持多TRP传输。通过不同的频段组合中的每个频段独立上报能力信息,可以让终端设备在实现上具有更大的自由度,可以让更多的终端设备支持多TRP传输。
作为又一个示例,第一能力信息可以是按照频段组合中的每个频段上的每个载波独立上报的。针对每个频段组合中的每个频段上的每个载波(per CC per band per band combination,或者FSPC),终端设备可以独立上报能力信息。在该实施例中,不同的频段组合可以独立上报,并且一个频段上的不同载波也可以独立上报,可以让终端设备在实现上具有更大的自由度,可以让更多的终端设备支持多TRP传输。
作为又一个示例,第一能力信息可以是按照频段范围上报的。针对不同的频段范围,终端设备可以独立上报对应的能力信息。频段范围例如可以为频段范围(frequency range,FR),终端设备可以针对每个FR,独立上报对应的能力信息。FR例如可以包括FR1和FR2,终端设备可以针对FR1上报一个能力信息,针对FR2上报一个能力信息。举例说明,终端设备可以在FR1上不支持多TRP传输,而在FR2上支持多TRP传输。通过不同的频段范围独立上报能力信息,可以让终端设备在实现上具有更大的自由度,可以让更多的终端设备支持多TRP传输。
FR1和FR2对应的频率范围可以如下表1所示。
表1
频段范围的定义 对应的频段范围
FR1 410MHz–7125MHz
FR2 24250MHz–52600MHz
作为又一个示例,第一能力信息可以是针对终端设备上报的。如果终端设备上报了一个能力信息,则表示终端设备在所有的频段上都支持该能力。这种方式可以降低终端设备上报的信令开销。
需要说明的是,如果未做特别说明,本申请实施例中的TCI状态可以为统一的TCI状态。例如,TCI状态可以为联合TCI状态,或独立TCI状态,或上行TCI状态,或下行TCI状态。
上文结合图1至图17,详细描述了本申请的方法实施例,下面结合图18至图20,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图18是本申请实施例提供的一种终端设备的示意性框图。图18所示的终端设备1800可以是前文描述的任意一种终端设备。该终端设备1800可以包括接收单元1810。
参见图18,接收单元1800,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
在一些实施例中,所述第一指示信息承载于下行控制信息DCI信令中,或所述第一指示信息承载于媒体接入控制控制单元MAC CE中。
在一些实施例中,第一指示信息承载于DCI信令中的TCI域。
在一些实施例中,所述多个统一的TCI状态中的至少部分用于确定上行传输对应的上行发送空间滤波器,和/或,所述多个统一的TCI状态中的至少部分用于确定下行传输对应的准共址QCL信息。
在一些实施例中,所述接收单元还用于接收所述网络设备发送的第二指示信息;所述终端设备还包括确定单元1820,用于根据所述第二指示信息,确定所述多个统一的TCI状态。
在一些实施例中,所述第二指示信息承载于MAC CE中。
在一些实施例中,不同类型的统一的TCI状态对应的第二指示信息承载于相同的MAC CE中,或,不同类型的统一的TCI状态对应的第二指示信息承载于不同的MAC CE中。
在一些实施例中,如果所述多个统一的TCI状态为联合TCI状态,则所述第二指示信息承载于第一MAC CE中;和/或,如果所述多个统一的TCI状态为独立TCI状态,则所述第二指示信息承载于第二MAC CE中。
在一些实施例中,所述第一MAC CE包括以下指示域中的一种或多种:带宽部分BWP指示域,用于指示所述第一MAC CE可应用的上行带宽部分UL BWP和下行带宽部分DL BWP;一个或多个第一指示域,每个第一指示域用于指示一个码点对应的TCI状态的数量。
在一些实施例中,所述每个第一指示域包括一个或多个第一子域,一个第一子域用于指示所述一个码点对应的一个TCI状态是否存在。
在一些实施例中,所述第二MAC CE包括以下指示域中的一种或多种:BWP指示域,用于指示所述第二MAC CE可应用的UL BWP和DL BWP;一个或多个第二指示域,每个第二指示域用于指示一个码点对应的TCI状态的数量;第三指示域,用于指示对应的独立TCI状态的类型,所述独立TCI状态包括上行TCI状态和/或下行TCI状态;第四指示域,用于指示所述第二MAC CE指示或激活的TCI状态对应的码点的数量。
在一些实施例中,所述独立TCI状态包括上行TCI状态和/或下行TCI状态,所述第二指示域包括第二子域和第三子域,所述第二子域用于指示一个码点对应的上行TCI状态的数量,所述第三子域用于指示一个码点对应的下行TCI状态的数量。
在一些实施例中,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的独立TCI状态的类型。
在一些实施例中,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一TCI状态组和第二TCI状态组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二TCI状态组中的TCI状态为下行TCI状态。
在一些实施例中,所述相同的MAC CE为第三MAC CE,所述第三MAC CE包括以下指示域中的一种或多种:BWP指示域,用于指示所述第三MAC CE可应用的UL BWP和DL BWP;一个或多个第五指示域,每个第五指示域用于指示一个码点对应的TCI状态的数量;第六指示域,用于指示对应的TCI状态的类型,所述TCI状态包括上行TCI状态、下行TCI状态、联合TCI状态中的一种或多种;第七指示域,用于指示所述第三MAC CE指示或激活的TCI状态对应的码点的数量。
在一些实施例中,如果所述统一的TCI状态为联合TCI状态,则所述每个第五指示域用于指示一个码点对应的联合TCI状态的数量;和/或,如果所述统一的TCI状态为独立TCI状态,则所述每个第五指示域用于指示一个码点对应的独立TCI状态的数量。
在一些实施例中,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态的类型。
在一些实施例中,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一状态TCI组、第二状态TCI组和第三状态TCI组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二状态TCI组中的TCI状态为下行TCI状态,所述第三状态TCI组中的TCI状态为联合TCI状态。
在一些实施例中,所述多个统一的TCI状态包括多个用于下行传输的TCI状态,所述终端设备还包括:确定单元1820,用于在满足第一条件的情况下,根据所述多个用于下行传输的TCI状态中的第一TCI状态,确定下行传输对应的QCL信息。
在一些实施例中,所述第一条件包括以下中的任意一种:所述终端设备接收到所述网络设备发送的第三指示信息;所述终端设备未接收到所述网络设备发送的第三指示信息;所述终端设备接收到所述网络设备发送的第三指示信息,且所述第三指示信息的取值为第一值。
在一些实施例中,所述第三指示信息是针对第一参数进行配置的,所述第一参数包括以下中的一种或多种:控制资源集CORESET、信道状态信息参考信号CSI-RS资源、CSI-RS资源集、物理下行共享信道PDSCH、物理下行控制信道PDCCH。
在一些实施例中,所述第三指示信息承载于无线资源控制RRC信令中。
在一些实施例中,所述第一TCI状态基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
在一些实施例中,所述预定义的规则与所述统一的TCI状态的标识ID大小相关联。
在一些实施例中,所述第一TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
在一些实施例中,所述多个统一的TCI状态包括多个用于上行传输的TCI状态,所述终端设备还包括:确定单元1820,用于在满足第二条件的情况下,根据所述多个用于上行传输的TCI状态中的第二TCI状态,确定上行传输对应的上行发送空间滤波器。
在一些实施例中,所述第二条件包括以下中的任意一种:所述终端设备接收到所述网络设备发送的第四指示信息;所述终端设备未接收到所述网络设备发送的第四指示信息;所述终端设备接收到所述网络设备发送的第四指示信息,且所述第四指示信息的取值为第二值。
在一些实施例中,所述第四指示信息是针对第二参数进行配置的,所述第二参数包括以下中的一种或多种:物理上行控制信道PUCCH、PUCCH资源、PUCCH资源集、探测参考信号SRS资源、SRS资源集、物理上行共享信道PUSCH、部分或全部配置授权PUSCH。
在一些实施例中,所述第四指示信息承载于RRC信令中。
在一些实施例中,所述第二TCI状态基于以下信息中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
在一些实施例中,所述预定义的规则与所述统一的TCI状态的ID大小相关联。
在一些实施例中,所述第二TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
在一些实施例中,所述终端设备还包括:发送单元1830,用于向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持的同时用于下行传输和/或上行传输的统一的TCI状态的数量,和/或,所述第一能力信息用于指示所述终端设备支持一个码点最多可以激活或指示用于下行传输和/或上行传输的统一的TCI状态的数量。
在一些实施例中,所述第一能力信息承载于RRC信令或MAC CE中。
在一些实施例中,所述第一能力信息为针对第二参数的能力信息,所述第二参数包括以下中的一种或多种:频段;频段组合;频段组合中的频段;频段组合中的频段上的载波;载波;频段范围;终端设备。
图19是本申请实施例提供的一种网络设备的示意性框图。图19所示的网络设备1900可以是前文描述的任意一种网络设备。该网络设备1900可以包括发送单元1910。
参见图19,发送单元1900,用于向终端设备发送第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
在一些实施例中,所述第一指示信息承载于下行控制信息DCI信令中,或所述第一指示信息承载于媒体接入控制控制单元MAC CE中。
在一些实施例中,第一指示信息承载于DCI信令中的TCI域。
在一些实施例中,所述多个统一的TCI状态中的至少部分用于确定上行传输对应的上行发送空间滤波器,和/或,所述多个统一的TCI状态中的至少部分用于确定下行传输对应的准共址QCL信息。
在一些实施例中,所述发送单元1910还用于:向所述终端设备发送第二指示信息,所述第二指示信息用于确定所述多个统一的TCI状态。
在一些实施例中,所述第二指示信息承载于MAC CE中。
在一些实施例中,不同类型的统一的TCI状态对应的第二指示信息承载于相同的MAC CE中,或,不同类型的统一的TCI状态对应的第二指示信息承载于不同的MAC CE中。
在一些实施例中,如果所述多个统一的TCI状态为联合TCI状态,则所述第二指示信息承载于第一MAC CE中;和/或,如果所述多个统一的TCI状态为独立TCI状态,则所述第二指示信息承载于第二MAC CE中。
在一些实施例中,所述第一MAC CE包括以下指示域中的一种或多种:带宽部分BWP指示域,用于指示所述第一MAC CE可应用的上行带宽部分UL BWP和下行带宽部分DL BWP;一个或多个第一指示域,每个第一指示域用于指示一个码点对应的TCI状态的数量。
在一些实施例中,所述每个第一指示域包括一个或多个第一子域,一个第一子域用于指示所述一个码点对应的一个TCI状态是否存在。
在一些实施例中,所述第二MAC CE包括以下指示域中的一种或多种:BWP指示域,用于指示所述第二MAC CE可应用的UL BWP和DL BWP;一个或多个第二指示域,每个第二指示域用于指示一个码点对应的TCI状态的数量;第三指示域,用于指示对应的独立TCI状态的类型,所述独立TCI状态包括上行TCI状态和下行TCI状态;第四指示域,用于指示所述第二MAC CE指示或激活的TCI状态对应的码点的数量。
在一些实施例中,所述第二指示域包括第二子域和第三子域,所述第二子域用于指示一个码点对应的上行TCI状态的数量,所述第三子域用于指示一个码点对应的下行TCI状态的数量。
在一些实施例中,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的独立TCI状态的类型。
在一些实施例中,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一TCI状态组和第二TCI状态组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二TCI状态组中的TCI状态为下行TCI状态。
在一些实施例中,所述相同的MAC CE为第三MAC CE,所述第三MAC CE包括以下指示域中的一种或多种:BWP指示域,用于指示所述第三MAC CE可应用的UL BWP和DL BWP;一个或多个第五指示域,每个第五指示域用于指示一个码点对应的TCI状态的数量;第六指示域,用于指示对应的TCI状态的类型,所述TCI状态包括上行TCI状态、下行TCI状态、联合TCI状态中的一种或多种;第七指示域,用于指示所述第三MAC CE指示或激活的TCI状态对应的码点的数量。
在一些实施例中,如果所述统一的TCI状态为联合TCI状态,则所述每个第五指示域用于指示一个码点对应的联合TCI状态的数量;和/或,如果所述统一的TCI状态为独立TCI状态,则所述每个第五指示域用于指示一个码点对应的独立TCI状态的数量。
在一些实施例中,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态的类型。
在一些实施例中,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一状态TCI组、第二状态TCI组和第三状态TCI组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二状态TCI组中的TCI状态为下行TCI状态,所述第三状态TCI组中的TCI状态为联合TCI状态。
在一些实施例中,所述多个统一的TCI状态包括多个用于下行传输的TCI状态,所述网络设备还包括:执行单元1920,用于执行第一操作,所述第一操作与第一条件相关联,所述第一条件用于从多个用于下行传输的TCI状态中确定第一TCI状态。
在一些实施例中,所述第一操作包括以下中的任意一种:所述网络设备向所述终端设备发送第三指示信息;所述网络设备不向所述终端设备发送第三指示信息;所述网络设备向所述终端设备发送第三指示信息,且所述第三指示信息的取值为第一值。
在一些实施例中,所述第三指示信息是针对第一参数进行配置的,所述第一参数包括以下中的一种或多种:控制资源集CORESET、信道状态信息参考信号CSI-RS资源、CSI-RS资源集、物理下行共享信道PDSCH、物理下行控制信道PDCCH。
在一些实施例中,所述第三指示信息承载于无线资源控制RRC信令中。
在一些实施例中,所述第一TCI状态基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
在一些实施例中,所述预定义的规则与所述统一的TCI状态的标识ID大小相关联。
在一些实施例中,所述第一TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
在一些实施例中,所述多个统一的TCI状态包括多个用于上行传输的TCI状态,所述网络设备还包括:执行单元1920,用于执行第二操作,所述第二操作与第二条件相关联,所述第二条件用于从多个用于上行传输的TCI状态中确定第二TCI状态。
在一些实施例中,所述第二操作包括以下中的任意一种:所述网络设备向所述终端设备发送第四指示信息;所述网络设备不向所述终端设备发送第四指示信息;所述网络设备向所述终端设备发送第四指示信息,且所述第四指示信息的取值为第二值。
在一些实施例中,所述第四指示信息是针对第二参数进行配置的,所述第二参数包括以下中的一种或多种:物理上行控制信道PUCCH、PUCCH资源、PUCCH资源集、探测参考信号SRS资源、SRS资源集、物理上行共享信道PUSCH、部分或全部配置授权PUSCH。
在一些实施例中,所述第四指示信息承载于RRC信令中。
在一些实施例中,所述第二TCI状态基于以下信息中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
在一些实施例中,所述预定义的规则与所述统一的TCI状态的ID大小相关联。
在一些实施例中,所述第二TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
在一些实施例中,所述网络设备还包括:接收单元1930,用于接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备支持的同时用于下行传输和/或上行传输的统一的TCI状态的数量,和/或,所述第一能力信息用于指示所述终端设备支持一个码点最多可以激活或指示用于下行传输和/或上行传输的统一的TCI状态的数量。
在一些实施例中,所述第一能力信息承载于RRC信令或MAC CE中。
在一些实施例中,所述第一能力信息为针对第二参数的能力信息,所述第二参数包括以下中的一种或多种:频段;频段组合;频段组合中的频段;频段组合中的频段上的载波;载波;频段范围;终端设备。
图20是本申请实施例的在线训练的装置的示意性结构图。图20中的虚线表示该单元或模块为可选的。该装置2000可用于实现上述方法实施例中描述的方法。装置2000可以是芯片、终端设备或网络设备。
装置2000可以包括一个或多个处理器2010。该处理器2010可支持装置2000实现前文方法实施例所描述的方法。该处理器2010可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置2000还可以包括一个或多个存储器2020。存储器2020上存储有程序,该程序可以被处理器2010执行,使得处理器2010执行前文方法实施例所描述的方法。存储器2020可以独立于处理器2010也可以集成在处理器2010中。
装置2000还可以包括收发器2030。处理器2010可以通过收发器2030与其他设备或芯片进行通信。例如,处理器2010可以通过收发器2030与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字 符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (152)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息承载于下行控制信息DCI信令中,或所述第一指示信息承载于媒体接入控制控制单元MAC CE中。
  3. 根据权利要求2所述的方法,其特征在于,第一指示信息承载于DCI信令中的TCI域。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述多个统一的TCI状态中的至少部分用于确定上行传输对应的上行发送空间滤波器,和/或,所述多个统一的TCI状态中的至少部分用于确定下行传输对应的准共址QCL信息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二指示信息;
    所述终端设备根据所述第二指示信息,确定所述多个统一的TCI状态。
  6. 根据权利要求5所述的方法,其特征在于,所述第二指示信息承载于MAC CE中。
  7. 根据权利要求6所述的方法,其特征在于,不同类型的统一的TCI状态对应的第二指示信息承载于相同的MAC CE中,或,不同类型的统一的TCI状态对应的第二指示信息承载于不同的MAC CE中。
  8. 根据权利要求7所述的方法,其特征在于,如果所述多个统一的TCI状态为联合TCI状态,则所述第二指示信息承载于第一MAC CE中;和/或,
    如果所述多个统一的TCI状态为独立TCI状态,则所述第二指示信息承载于第二MAC CE中。
  9. 根据权利要求8所述的方法,其特征在于,所述第一MAC CE包括以下指示域中的一种或多种:
    带宽部分BWP指示域,用于指示所述第一MAC CE可应用的上行带宽部分UL BWP和下行带宽部分DL BWP;
    一个或多个第一指示域,每个第一指示域用于指示一个码点对应的TCI状态的数量。
  10. 根据权利要求9所述的方法,其特征在于,所述每个第一指示域包括一个或多个第一子域,一个第一子域用于指示所述一个码点对应的一个TCI状态是否存在。
  11. 根据权利要求8所述的方法,其特征在于,所述第二MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第二MAC CE可应用的UL BWP和DL BWP;
    一个或多个第二指示域,每个第二指示域用于指示一个码点对应的TCI状态的数量;
    第三指示域,用于指示对应的独立TCI状态的类型,所述独立TCI状态包括上行TCI状态和下行TCI状态;
    第四指示域,用于指示所述第二MAC CE指示或激活的TCI状态对应的码点的数量。
  12. 根据权利要求11所述的方法,其特征在于,所述第二指示域包括第二子域和第三子域,所述第二子域用于指示一个码点对应的上行TCI状态的数量,所述第三子域用于指示一个码点对应的下行TCI状态的数量。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的独立TCI状态的类型。
  14. 根据权利要求13所述的方法,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一TCI状态组和第二TCI状态组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二TCI状态组中的TCI状态为下行TCI状态。
  15. 根据权利要求7所述的方法,其特征在于,所述相同的MAC CE为第三MAC CE,所述第三MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第三MAC CE可应用的UL BWP和DL BWP;
    一个或多个第五指示域,每个第五指示域用于指示一个码点对应的TCI状态的数量;
    第六指示域,用于指示对应的TCI状态的类型,所述TCI状态包括上行TCI状态、下行TCI状态、联合TCI状态中的一种或多种;
    第七指示域,用于指示所述第三MAC CE指示或激活的TCI状态对应的码点的数量。
  16. 根据权利要求15所述的方法,其特征在于,如果所述统一的TCI状态为联合TCI状态,则所述每个第五指示域用于指示一个码点对应的联合TCI状态的数量;和/或,
    如果所述统一的TCI状态为独立TCI状态,则所述每个第五指示域用于指示一个码点对应的独立TCI状态的数量。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态的类型。
  18. 根据权利要求17所述的方法,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一状态TCI组、第二状态TCI组和第三状态TCI组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二状态TCI组中的TCI状态为下行TCI状态,所述第三状态TCI组中的TCI状态为联合TCI状态。
  19. 根据权利要求1-18中任一项所述的方法,其特征在于,所述多个统一的TCI状态包括多个用于下行传输的TCI状态,所述方法还包括:
    所述终端设备在满足第一条件的情况下,根据所述多个用于下行传输的TCI状态中的第一TCI状态,确定下行传输对应的QCL信息。
  20. 根据权利要求19所述的方法,其特征在于,所述第一条件包括以下中的任意一种:
    所述终端设备接收到所述网络设备发送的第三指示信息;
    所述终端设备未接收到所述网络设备发送的第三指示信息;
    所述终端设备接收到所述网络设备发送的第三指示信息,且所述第三指示信息的取值为第一值。
  21. 根据权利要求20所述的方法,其特征在于,所述第三指示信息是针对第一参数进行配置的,所述第一参数包括以下中的一种或多种:控制资源集CORESET、信道状态信息参考信号CSI-RS资源、CSI-RS资源集、物理下行共享信道PDSCH、物理下行控制信道PDCCH。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第三指示信息承载于无线资源控制RRC信令中。
  23. 根据权利要求19-22中任一项所述的方法,其特征在于,所述第一TCI状态基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  24. 根据权利要求23所述的方法,其特征在于,所述预定义的规则与所述统一的TCI状态的标识ID大小相关联。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第一TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  26. 根据权利要求1-25中任一项所述的方法,其特征在于,所述多个统一的TCI状态包括多个用于上行传输的TCI状态,所述方法还包括:
    所述终端设备在满足第二条件的情况下,根据所述多个用于上行传输的TCI状态中的第二TCI状态,确定上行传输对应的上行发送空间滤波器。
  27. 根据权利要求26所述的方法,其特征在于,所述第二条件包括以下中的任意一种:
    所述终端设备接收到所述网络设备发送的第四指示信息;
    所述终端设备未接收到所述网络设备发送的第四指示信息;
    所述终端设备接收到所述网络设备发送的第四指示信息,且所述第四指示信息的取值为第二值。
  28. 根据权利要求27所述的方法,其特征在于,所述第四指示信息是针对第二参数进行配置的,所述第二参数包括以下中的一种或多种:物理上行控制信道PUCCH、PUCCH资源、PUCCH资源集、探测参考信号SRS资源、SRS资源集、物理上行共享信道PUSCH、部分或全部配置授权PUSCH。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第四指示信息承载于RRC信令中。
  30. 根据权利要求26-29中任一项所述的方法,其特征在于,所述第二TCI状态基于以下信息中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  31. 根据权利要求30所述的方法,其特征在于,所述预定义的规则与所述统一的TCI状态的ID大小相关联。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第二TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  33. 根据权利要求1-32中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持的同时用于下行传输和/或上行传输的统一的TCI状态的数量,和/或,
    所述第一能力信息用于指示所述终端设备支持一个码点最多可以激活或指示用于下行传输和/或上行传输的统一的TCI状态的数量。
  34. 根据权利要求33所述的方法,其特征在于,所述第一能力信息承载于RRC信令或MAC CE 中。
  35. 根据权利要求33或34所述的方法,其特征在于,所述第一能力信息为针对第二参数的能力信息,所述第二参数包括以下中的一种或多种:频段;频段组合;频段组合中的频段;频段组合中的频段上的载波;载波;频段范围;终端设备。
  36. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
  37. 根据权利要求36所述的方法,其特征在于,所述第一指示信息承载于下行控制信息DCI信令中,或所述第一指示信息承载于媒体接入控制控制单元MAC CE中。
  38. 根据权利要求37所述的方法,其特征在于,第一指示信息承载于DCI信令中的TCI域。
  39. 根据权利要求36-38中任一项所述的方法,其特征在于,所述多个统一的TCI状态中的至少部分用于确定上行传输对应的上行发送空间滤波器,和/或,所述多个统一的TCI状态中的至少部分用于确定下行传输对应的准共址QCL信息。
  40. 根据权利要求36-39中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于确定所述多个统一的TCI状态。
  41. 根据权利要求40所述的方法,其特征在于,所述第二指示信息承载于MAC CE中。
  42. 根据权利要求41所述的方法,其特征在于,不同类型的统一的TCI状态对应的第二指示信息承载于相同的MAC CE中,或,不同类型的统一的TCI状态对应的第二指示信息承载于不同的MAC CE中。
  43. 根据权利要求42所述的方法,其特征在于,如果所述多个统一的TCI状态为联合TCI状态,则所述第二指示信息承载于第一MAC CE中;和/或,
    如果所述多个统一的TCI状态为独立TCI状态,则所述第二指示信息承载于第二MAC CE中。
  44. 根据权利要求43所述的方法,其特征在于,所述第一MAC CE包括以下指示域中的一种或多种:
    带宽部分BWP指示域,用于指示所述第一MAC CE可应用的上行带宽部分UL BWP和下行带宽部分DL BWP;
    一个或多个第一指示域,每个第一指示域用于指示一个码点对应的TCI状态的数量。
  45. 根据权利要求44所述的方法,其特征在于,所述每个第一指示域包括一个或多个第一子域,一个第一子域用于指示所述一个码点对应的一个TCI状态是否存在。
  46. 根据权利要求43所述的方法,其特征在于,所述第二MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第二MAC CE可应用的UL BWP和DL BWP;
    一个或多个第二指示域,每个第二指示域用于指示一个码点对应的TCI状态的数量;
    第三指示域,用于指示对应的独立TCI状态的类型,所述独立TCI状态包括上行TCI状态和下行TCI状态;
    第四指示域,用于指示所述第二MAC CE指示或激活的TCI状态对应的码点的数量。
  47. 根据权利要求46所述的方法,其特征在于,所述第二指示域包括第二子域和第三子域,所述第二子域用于指示一个码点对应的上行TCI状态的数量,所述第三子域用于指示一个码点对应的下行TCI状态的数量。
  48. 根据权利要求46或47所述的方法,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的独立TCI状态的类型。
  49. 根据权利要求48所述的方法,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一TCI状态组和第二TCI状态组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二TCI状态组中的TCI状态为下行TCI状态。
  50. 根据权利要求42所述的方法,其特征在于,所述相同的MAC CE为第三MAC CE,所述第三MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第三MAC CE可应用的UL BWP和DL BWP;
    一个或多个第五指示域,每个第五指示域用于指示一个码点对应的TCI状态的数量;
    第六指示域,用于指示对应的TCI状态的类型,所述TCI状态包括上行TCI状态、下行TCI状态、联合TCI状态中的一种或多种;
    第七指示域,用于指示所述第三MAC CE指示或激活的TCI状态对应的码点的数量。
  51. 根据权利要求50所述的方法,其特征在于,如果所述统一的TCI状态为联合TCI状态,则所述每个第五指示域用于指示一个码点对应的联合TCI状态的数量;和/或,
    如果所述统一的TCI状态为独立TCI状态,则所述每个第五指示域用于指示一个码点对应的独立TCI状态的数量。
  52. 根据权利要求50或51所述的方法,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态的类型。
  53. 根据权利要求52所述的方法,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一状态TCI组、第二状态TCI组和第三状态TCI组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二状态TCI组中的TCI状态为下行TCI状态,所述第三状态TCI组中的TCI状态为联合TCI状态。
  54. 根据权利要求36-53中任一项所述的方法,其特征在于,所述多个统一的TCI状态包括多个用于下行传输的TCI状态,所述方法还包括:
    所述网络设备执行第一操作,所述第一操作与第一条件相关联,所述第一条件用于从多个用于下行传输的TCI状态中确定第一TCI状态。
  55. 根据权利要求54所述的方法,其特征在于,所述第一操作包括以下中的任意一种:
    所述网络设备向所述终端设备发送第三指示信息;
    所述网络设备不向所述终端设备发送第三指示信息;
    所述网络设备向所述终端设备发送第三指示信息,且所述第三指示信息的取值为第一值。
  56. 根据权利要求55所述的方法,其特征在于,所述第三指示信息是针对第一参数进行配置的,所述第一参数包括以下中的一种或多种:控制资源集CORESET、信道状态信息参考信号CSI-RS资源、CSI-RS资源集、物理下行共享信道PDSCH、物理下行控制信道PDCCH。
  57. 根据权利要求55或56所述的方法,其特征在于,所述第三指示信息承载于无线资源控制RRC信令中。
  58. 根据权利要求54-57中任一项所述的方法,其特征在于,所述第一TCI状态基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  59. 根据权利要求58所述的方法,其特征在于,所述预定义的规则与所述统一的TCI状态的标识ID大小相关联。
  60. 根据权利要求58或59所述的方法,其特征在于,所述第一TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  61. 根据权利要求36-60中任一项所述的方法,其特征在于,所述多个统一的TCI状态包括多个用于上行传输的TCI状态,所述方法还包括:
    所述网络设备执行第二操作,所述第二操作与第二条件相关联,所述第二条件用于从多个用于上行传输的TCI状态中确定第二TCI状态。
  62. 根据权利要求61所述的方法,其特征在于,所述第二操作包括以下中的任意一种:
    所述网络设备向所述终端设备发送第四指示信息;
    所述网络设备不向所述终端设备发送第四指示信息;
    所述网络设备向所述终端设备发送第四指示信息,且所述第四指示信息的取值为第二值。
  63. 根据权利要求62所述的方法,其特征在于,所述第四指示信息是针对第二参数进行配置的,所述第二参数包括以下中的一种或多种:物理上行控制信道PUCCH、PUCCH资源、PUCCH资源集、探测参考信号SRS资源、SRS资源集、物理上行共享信道PUSCH、部分或全部配置授权PUSCH。
  64. 根据权利要求62或63所述的方法,其特征在于,所述第四指示信息承载于RRC信令中。
  65. 根据权利要求61-64中任一项所述的方法,其特征在于,所述第二TCI状态基于以下信息中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  66. 根据权利要求65所述的方法,其特征在于,所述预定义的规则与所述统一的TCI状态的ID大小相关联。
  67. 根据权利要求65或66所述的方法,其特征在于,所述第二TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  68. 根据权利要求36-67中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备支持的同时用于下行传输和/或上行传输的统一的TCI状态的数量,和/或,
    所述第一能力信息用于指示所述终端设备支持一个码点最多可以激活或指示用于下行传输和/或上行传输的统一的TCI状态的数量。
  69. 根据权利要求68所述的方法,其特征在于,所述第一能力信息承载于RRC信令或MAC CE中。
  70. 根据权利要求68或69所述的方法,其特征在于,所述第一能力信息为针对第二参数的能力信息,所述第二参数包括以下中的一种或多种:频段;频段组合;频段组合中的频段;频段组合中的频段上的载波;载波;频段范围;终端设备。
  71. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
  72. 根据权利要求71所述的终端设备,其特征在于,所述第一指示信息承载于下行控制信息DCI信令中,或所述第一指示信息承载于媒体接入控制控制单元MAC CE中。
  73. 根据权利要求72所述的终端设备,其特征在于,第一指示信息承载于DCI信令中的TCI域。
  74. 根据权利要求71-73中任一项所述的终端设备,其特征在于,所述多个统一的TCI状态中的至少部分用于确定上行传输对应的上行发送空间滤波器,和/或,所述多个统一的TCI状态中的至少部分用于确定下行传输对应的准共址QCL信息。
  75. 根据权利要求71-74中任一项所述的终端设备,其特征在于,
    所述接收单元还用于接收所述网络设备发送的第二指示信息;
    所述终端设备还包括确定单元,用于根据所述第二指示信息,确定所述多个统一的TCI状态。
  76. 根据权利要求75所述的终端设备,其特征在于,所述第二指示信息承载于MAC CE中。
  77. 根据权利要求76所述的终端设备,其特征在于,不同类型的统一的TCI状态对应的第二指示信息承载于相同的MAC CE中,或,不同类型的统一的TCI状态对应的第二指示信息承载于不同的MAC CE中。
  78. 根据权利要求77所述的终端设备,其特征在于,如果所述多个统一的TCI状态为联合TCI状态,则所述第二指示信息承载于第一MAC CE中;和/或,
    如果所述多个统一的TCI状态为独立TCI状态,则所述第二指示信息承载于第二MAC CE中。
  79. 根据权利要求78所述的终端设备,其特征在于,所述第一MAC CE包括以下指示域中的一种或多种:
    带宽部分BWP指示域,用于指示所述第一MAC CE可应用的上行带宽部分UL BWP和下行带宽部分DL BWP;
    一个或多个第一指示域,每个第一指示域用于指示一个码点对应的TCI状态的数量。
  80. 根据权利要求79所述的终端设备,其特征在于,所述每个第一指示域包括一个或多个第一子域,一个第一子域用于指示所述一个码点对应的一个TCI状态是否存在。
  81. 根据权利要求78所述的终端设备,其特征在于,所述第二MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第二MAC CE可应用的UL BWP和DL BWP;
    一个或多个第二指示域,每个第二指示域用于指示一个码点对应的TCI状态的数量;
    第三指示域,用于指示对应的独立TCI状态的类型,所述独立TCI状态包括上行TCI状态和下行TCI状态;
    第四指示域,用于指示所述第二MAC CE指示或激活的TCI状态对应的码点的数量。
  82. 根据权利要求81所述的终端设备,其特征在于,所述第二指示域包括第二子域和第三子域,所述第二子域用于指示一个码点对应的上行TCI状态的数量,所述第三子域用于指示一个码点对应的下行TCI状态的数量。
  83. 根据权利要求81或82所述的终端设备,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的独立TCI状态的类型。
  84. 根据权利要求83所述的终端设备,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一TCI状态组和第二TCI状态组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二TCI状态组中的TCI状态为下行TCI状态。
  85. 根据权利要求77所述的终端设备,其特征在于,所述相同的MAC CE为第三MAC CE,所述第三MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第三MAC CE可应用的UL BWP和DL BWP;
    一个或多个第五指示域,每个第五指示域用于指示一个码点对应的TCI状态的数量;
    第六指示域,用于指示对应的TCI状态的类型,所述TCI状态包括上行TCI状态、下行TCI状态、联合TCI状态中的一种或多种;
    第七指示域,用于指示所述第三MAC CE指示或激活的TCI状态对应的码点的数量。
  86. 根据权利要求85所述的终端设备,其特征在于,如果所述统一的TCI状态为联合TCI状态,则所述每个第五指示域用于指示一个码点对应的联合TCI状态的数量;和/或,
    如果所述统一的TCI状态为独立TCI状态,则所述每个第五指示域用于指示一个码点对应的独立TCI状态的数量。
  87. 根据权利要求85或86所述的终端设备,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态的类型。
  88. 根据权利要求87所述的终端设备,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一状态TCI组、第二状态TCI组和第三状态TCI组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二状态TCI组中的TCI状态为下行TCI状态,所述第三状态TCI组中的TCI状态为联合TCI状态。
  89. 根据权利要求71-88中任一项所述的终端设备,其特征在于,所述多个统一的TCI状态包括多个用于下行传输的TCI状态,所述终端设备还包括:
    确定单元,用于在满足第一条件的情况下,根据所述多个用于下行传输的TCI状态中的第一TCI状态,确定下行传输对应的QCL信息。
  90. 根据权利要求89所述的终端设备,其特征在于,所述第一条件包括以下中的任意一种:
    所述终端设备接收到所述网络设备发送的第三指示信息;
    所述终端设备未接收到所述网络设备发送的第三指示信息;
    所述终端设备接收到所述网络设备发送的第三指示信息,且所述第三指示信息的取值为第一值。
  91. 根据权利要求90所述的终端设备,其特征在于,所述第三指示信息是针对第一参数进行配置的,所述第一参数包括以下中的一种或多种:控制资源集CORESET、信道状态信息参考信号CSI-RS资源、CSI-RS资源集、物理下行共享信道PDSCH、物理下行控制信道PDCCH。
  92. 根据权利要求90或91所述的终端设备,其特征在于,所述第三指示信息承载于无线资源控制RRC信令中。
  93. 根据权利要求89-92中任一项所述的终端设备,其特征在于,所述第一TCI状态基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  94. 根据权利要求93所述的终端设备,其特征在于,所述预定义的规则与所述统一的TCI状态的标识ID大小相关联。
  95. 根据权利要求93或94所述的终端设备,其特征在于,所述第一TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  96. 根据权利要求71-95中任一项所述的终端设备,其特征在于,所述多个统一的TCI状态包括多个用于上行传输的TCI状态,所述终端设备还包括:
    确定单元,用于在满足第二条件的情况下,根据所述多个用于上行传输的TCI状态中的第二TCI状态,确定上行传输对应的上行发送空间滤波器。
  97. 根据权利要求96所述的终端设备,其特征在于,所述第二条件包括以下中的任意一种:
    所述终端设备接收到所述网络设备发送的第四指示信息;
    所述终端设备未接收到所述网络设备发送的第四指示信息;
    所述终端设备接收到所述网络设备发送的第四指示信息,且所述第四指示信息的取值为第二值。
  98. 根据权利要求97所述的终端设备,其特征在于,所述第四指示信息是针对第二参数进行配置的,所述第二参数包括以下中的一种或多种:物理上行控制信道PUCCH、PUCCH资源、PUCCH资源集、探测参考信号SRS资源、SRS资源集、物理上行共享信道PUSCH、部分或全部配置授权PUSCH。
  99. 根据权利要求97或98所述的终端设备,其特征在于,所述第四指示信息承载于RRC信令中。
  100. 根据权利要求96-99中任一项所述的终端设备,其特征在于,所述第二TCI状态基于以下信息中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  101. 根据权利要求100所述的终端设备,其特征在于,所述预定义的规则与所述统一的TCI状态的ID大小相关联。
  102. 根据权利要求100或101所述的终端设备,其特征在于,所述第二TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  103. 根据权利要求71-102中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    发送单元,用于向所述网络设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持的同时用于下行传输和/或上行传输的统一的TCI状态的数量,和/或,
    所述第一能力信息用于指示所述终端设备支持一个码点最多可以激活或指示用于下行传输和/或上行传输的统一的TCI状态的数量。
  104. 根据权利要求103所述的终端设备,其特征在于,所述第一能力信息承载于RRC信令或MAC CE中。
  105. 根据权利要求103或104所述的终端设备,其特征在于,所述第一能力信息为针对第二参数的能力信息,所述第二参数包括以下中的一种或多种:频段;频段组合;频段组合中的频段;频段组合中的频段上的载波;载波;频段范围;终端设备。
  106. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示多个统一的传输配置指示TCI状态。
  107. 根据权利要求106所述的网络设备,其特征在于,所述第一指示信息承载于下行控制信息DCI信令中,或所述第一指示信息承载于媒体接入控制控制单元MAC CE中。
  108. 根据权利要求107所述的网络设备,其特征在于,第一指示信息承载于DCI信令中的TCI域。
  109. 根据权利要求106-108中任一项所述的网络设备,其特征在于,所述多个统一的TCI状态中的至少部分用于确定上行传输对应的上行发送空间滤波器,和/或,所述多个统一的TCI状态中的至少部分用于确定下行传输对应的准共址QCL信息。
  110. 根据权利要求106-109中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送第二指示信息,所述第二指示信息用于确定所述多个统一的TCI状态。
  111. 根据权利要求110所述的网络设备,其特征在于,所述第二指示信息承载于MAC CE中。
  112. 根据权利要求111所述的网络设备,其特征在于,不同类型的统一的TCI状态对应的第二指示信息承载于相同的MAC CE中,或,不同类型的统一的TCI状态对应的第二指示信息承载于不同的MAC CE中。
  113. 根据权利要求112所述的网络设备,其特征在于,如果所述多个统一的TCI状态为联合TCI状态,则所述第二指示信息承载于第一MAC CE中;和/或,
    如果所述多个统一的TCI状态为独立TCI状态,则所述第二指示信息承载于第二MAC CE中。
  114. 根据权利要求113所述的网络设备,其特征在于,所述第一MAC CE包括以下指示域中的一种或多种:
    带宽部分BWP指示域,用于指示所述第一MAC CE可应用的上行带宽部分UL BWP和下行带宽部分DL BWP;
    一个或多个第一指示域,每个第一指示域用于指示一个码点对应的TCI状态的数量。
  115. 根据权利要求114所述的网络设备,其特征在于,所述每个第一指示域包括一个或多个第一子域,一个第一子域用于指示所述一个码点对应的一个TCI状态是否存在。
  116. 根据权利要求113所述的网络设备,其特征在于,所述第二MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第二MAC CE可应用的UL BWP和DL BWP;
    一个或多个第二指示域,每个第二指示域用于指示一个码点对应的TCI状态的数量;
    第三指示域,用于指示对应的独立TCI状态的类型,所述独立TCI状态包括上行TCI状态和下行TCI状态;
    第四指示域,用于指示所述第二MAC CE指示或激活的TCI状态对应的码点的数量。
  117. 根据权利要求116所述的网络设备,其特征在于,所述第二指示域包括第二子域和第三子域,所述第二子域用于指示一个码点对应的上行TCI状态的数量,所述第三子域用于指示一个码点对应的下行TCI状态的数量。
  118. 根据权利要求116或117所述的网络设备,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的独立TCI状态的类型。
  119. 根据权利要求118所述的网络设备,其特征在于,所述第三指示域用于指示与所述第三指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一TCI状态组和第二TCI状态组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二TCI状态组中的TCI状态为下行TCI状态。
  120. 根据权利要求112所述的网络设备,其特征在于,所述相同的MAC CE为第三MAC CE,所述第三MAC CE包括以下指示域中的一种或多种:
    BWP指示域,用于指示所述第三MAC CE可应用的UL BWP和DL BWP;
    一个或多个第五指示域,每个第五指示域用于指示一个码点对应的TCI状态的数量;
    第六指示域,用于指示对应的TCI状态的类型,所述TCI状态包括上行TCI状态、下行TCI状态、联合TCI状态中的一种或多种;
    第七指示域,用于指示所述第三MAC CE指示或激活的TCI状态对应的码点的数量。
  121. 根据权利要求120所述的网络设备,其特征在于,如果所述统一的TCI状态为联合TCI状态,则所述每个第五指示域用于指示一个码点对应的联合TCI状态的数量;和/或,
    如果所述统一的TCI状态为独立TCI状态,则所述每个第五指示域用于指示一个码点对应的独立TCI状态的数量。
  122. 根据权利要求120或121所述的网络设备,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态的类型。
  123. 根据权利要求122所述的网络设备,其特征在于,所述第六指示域用于指示与所述第六指示域位于同一字节的TCI状态指示域所指示的TCI状态所在的TCI状态组的类别,所述TCI状态组包括第一状态TCI组、第二状态TCI组和第三状态TCI组,所述第一TCI状态组中的TCI状态为上行TCI状态,所述第二状态TCI组中的TCI状态为下行TCI状态,所述第三状态TCI组中的TCI状态为联合TCI状态。
  124. 根据权利要求106-123中任一项所述的网络设备,其特征在于,所述多个统一的TCI状态包括多个用于下行传输的TCI状态,所述网络设备还包括:
    执行单元,用于执行第一操作,所述第一操作与第一条件相关联,所述第一条件用于从多个用于下行传输的TCI状态中确定第一TCI状态。
  125. 根据权利要求124所述的网络设备,其特征在于,所述第一操作包括以下中的任意一种:
    所述网络设备向所述终端设备发送第三指示信息;
    所述网络设备不向所述终端设备发送第三指示信息;
    所述网络设备向所述终端设备发送第三指示信息,且所述第三指示信息的取值为第一值。
  126. 根据权利要求125所述的网络设备,其特征在于,所述第三指示信息是针对第一参数进行配置的,所述第一参数包括以下中的一种或多种:控制资源集CORESET、信道状态信息参考信号CSI-RS资源、CSI-RS资源集、物理下行共享信道PDSCH、物理下行控制信道PDCCH。
  127. 根据权利要求125或126所述的网络设备,其特征在于,所述第三指示信息承载于无线资源控制RRC信令中。
  128. 根据权利要求124-127中任一项所述的网络设备,其特征在于,所述第一TCI状态基于以下中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  129. 根据权利要求128所述的网络设备,其特征在于,所述预定义的规则与所述统一的TCI状态的标识ID大小相关联。
  130. 根据权利要求128或129所述的网络设备,其特征在于,所述第一TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  131. 根据权利要求106-130中任一项所述的网络设备,其特征在于,所述多个统一的TCI状态包括多个用于上行传输的TCI状态,所述网络设备还包括:
    执行单元,用于执行第二操作,所述第二操作与第二条件相关联,所述第二条件用于从多个用于上行传输的TCI状态中确定第二TCI状态。
  132. 根据权利要求131所述的网络设备,其特征在于,所述第二操作包括以下中的任意一种:
    所述网络设备向所述终端设备发送第四指示信息;
    所述网络设备不向所述终端设备发送第四指示信息;
    所述网络设备向所述终端设备发送第四指示信息,且所述第四指示信息的取值为第二值。
  133. 根据权利要求132所述的网络设备,其特征在于,所述第四指示信息是针对第二参数进行配置的,所述第二参数包括以下中的一种或多种:物理上行控制信道PUCCH、PUCCH资源、PUCCH资源集、探测参考信号SRS资源、SRS资源集、物理上行共享信道PUSCH、部分或全部配置授权PUSCH。
  134. 根据权利要求132或133所述的网络设备,其特征在于,所述第四指示信息承载于RRC信令中。
  135. 根据权利要求131-134中任一项所述的网络设备,其特征在于,所述第二TCI状态基于以下信息中的一种或多种确定:预定义的规则、MAC CE、RRC信令。
  136. 根据权利要求135所述的网络设备,其特征在于,所述预定义的规则与所述统一的TCI状态的ID大小相关联。
  137. 根据权利要求135或136所述的网络设备,其特征在于,所述第二TCI状态基于用于确定TCI状态的指示域在MAC CE中的位置确定。
  138. 根据权利要求106-137中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    接收单元,用于接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备支持的同时用于下行传输和/或上行传输的统一的TCI状态的数量,和/或,
    所述第一能力信息用于指示所述终端设备支持一个码点最多可以激活或指示用于下行传输和/或上行传输的统一的TCI状态的数量。
  139. 根据权利要求138所述的网络设备,其特征在于,所述第一能力信息承载于RRC信令或MAC CE中。
  140. 根据权利要求138或139所述的网络设备,其特征在于,所述第一能力信息为针对第二参数的能力信息,所述第二参数包括以下中的一种或多种:频段;频段组合;频段组合中的频段;频段组合中的频段上的载波;载波;频段范围;终端设备。
  141. 一种终端设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求1-35中任一项所述的方法。
  142. 一种网络设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求36-70中任一项所述的方法。
  143. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1-35中任一项所述的方法。
  144. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求36-70中任一项所述的方法。
  145. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-35中任一项所述的方法。
  146. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求36-70中任一项所述的方法。
  147. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-35中任一项所述的方法。
  148. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求36-70中任一项所述的方法。
  149. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-35中任一项所述的方法。
  150. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求36-70中任一项所述的方法。
  151. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-35中任一项所述的方法。
  152. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求36-70中任一项所述的方法。
PCT/CN2022/110557 2022-08-05 2022-08-05 无线通信的方法及装置 WO2024026832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110557 WO2024026832A1 (zh) 2022-08-05 2022-08-05 无线通信的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110557 WO2024026832A1 (zh) 2022-08-05 2022-08-05 无线通信的方法及装置

Publications (1)

Publication Number Publication Date
WO2024026832A1 true WO2024026832A1 (zh) 2024-02-08

Family

ID=89848230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110557 WO2024026832A1 (zh) 2022-08-05 2022-08-05 无线通信的方法及装置

Country Status (1)

Country Link
WO (1) WO2024026832A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
US20210219327A1 (en) * 2018-09-27 2021-07-15 Zte Corporation Methods and devices for transmitting and receiving data, communication apparatus and system, and storage medium
US20220132526A1 (en) * 2020-10-23 2022-04-28 Qualcomm Incorporated Techniques for deriving a sounding reference signal-based multi-transmission and reception point downlink precoding
US20220225338A1 (en) * 2021-01-14 2022-07-14 Samsung Electronics Co., Ltd. Method and apparatus for configuring and determining default beams in a wireless communication system
CN114938720A (zh) * 2022-04-19 2022-08-23 北京小米移动软件有限公司 Tci状态确定方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219327A1 (en) * 2018-09-27 2021-07-15 Zte Corporation Methods and devices for transmitting and receiving data, communication apparatus and system, and storage medium
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
US20220132526A1 (en) * 2020-10-23 2022-04-28 Qualcomm Incorporated Techniques for deriving a sounding reference signal-based multi-transmission and reception point downlink precoding
US20220225338A1 (en) * 2021-01-14 2022-07-14 Samsung Electronics Co., Ltd. Method and apparatus for configuring and determining default beams in a wireless communication system
CN114938720A (zh) * 2022-04-19 2022-08-23 北京小米移动软件有限公司 Tci状态确定方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-beam operation in Rel-17", 3GPP DRAFT; R1-2005246, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917294 *

Similar Documents

Publication Publication Date Title
US11569949B2 (en) Communication method and communications apparatus
WO2020156174A1 (zh) 波束指示的方法和通信装置
WO2020029725A1 (zh) 接收和发送信号的方法以及通信装置
EP3955678A1 (en) Data receiving and transmitting method and apparatus
US11540267B2 (en) DCI detection method, PDCCH configuration method, and communications apparatus
WO2020034877A1 (zh) 链路失败恢复方法及相关设备
WO2020221349A1 (zh) 波束失败上报的方法和装置
US12010648B2 (en) Method and device for paging
US20230199586A1 (en) Cell State Switching Method and Apparatus
WO2023051188A1 (zh) 分组管理方法和通信装置
WO2022022517A1 (zh) 确定传输功率的方法及装置
WO2023125223A1 (zh) 下行传输的方法及装置
US20240155371A1 (en) Communication method and communication apparatus
US20240056247A1 (en) Enhancements for Beam Group Reporting in Multi-TRP Scenarios
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2020192719A1 (zh) 更新波束的方法与通信装置
JP2023512807A (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
WO2024026832A1 (zh) 无线通信的方法及装置
WO2023029008A1 (zh) 信息传输方法、设备及存储介质
WO2020221040A1 (zh) 通信方法和通信装置
WO2022077351A1 (zh) 通信方法和通信装置
WO2021159398A1 (zh) 波束失败恢复的方法和装置
WO2023123073A1 (zh) 通信方法、终端设备及网络设备
WO2022198521A1 (zh) 传输物理下行控制信道的方法及设备
WO2023241617A1 (zh) 频域资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953639

Country of ref document: EP

Kind code of ref document: A1