WO2016045312A1 - 干扰调节处理方法及装置 - Google Patents

干扰调节处理方法及装置 Download PDF

Info

Publication number
WO2016045312A1
WO2016045312A1 PCT/CN2015/073272 CN2015073272W WO2016045312A1 WO 2016045312 A1 WO2016045312 A1 WO 2016045312A1 CN 2015073272 W CN2015073272 W CN 2015073272W WO 2016045312 A1 WO2016045312 A1 WO 2016045312A1
Authority
WO
WIPO (PCT)
Prior art keywords
abs
macro cell
utilization rate
cell
micro
Prior art date
Application number
PCT/CN2015/073272
Other languages
English (en)
French (fr)
Inventor
徐海荣
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2017516361A priority Critical patent/JP2017532891A/ja
Priority to US15/513,745 priority patent/US10305665B2/en
Priority to EP15844615.3A priority patent/EP3200540B1/en
Publication of WO2016045312A1 publication Critical patent/WO2016045312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of communications, and in particular to an interference adjustment processing method and apparatus.
  • the Enhanced Inter-Cell Interference Coordination (eICIC) technology is an enhanced inter-cell interference coordination technology and is mainly applicable to heterogeneous networks.
  • the traditional macro cell network has the characteristics of “heavy outdoor, light indoor”, “reorganization network, light hotspot”, etc., which is insufficient for the application of the growing hotspot users. Therefore, it is necessary to add low power nodes in the macro cell, and these nodes include A pico, a femto, a relay, etc., which collectively form a heterogeneous network.
  • a new interference scenario is introduced. How to provide high-quality services in these interference scenarios is a common concern of operators and equipment vendors.
  • the 3GPP organization has carried out research on heterogeneous network interference solutions.
  • the more mature ones are time-domain quasi-blank sub-frames (ABS) and micro-area (HeNB) power auto-adjustment technology.
  • ABS time-domain quasi-blank sub-frames
  • HeNB micro-area
  • the ABS technology is called Almost Blank Subframe.
  • it When it is configured as an ABS frame, it does not send a control channel and does not send data. It only needs to send CRS (except in special cases).
  • the interference received by other cells in this subframe will be compared.
  • the core idea of ABS technology is that the macro cell configures the ABS subframe, and the relevant micro cell schedules data in this subframe, thereby reducing the interference.
  • the macro cell (MeNB) interferes with the terminal (UE) under the HeNB.
  • the ABS is configured on the MeNB, and the HeNB allocates the UE interfered by the MeNB to the corresponding subframe for scheduling, so that the UE can be reduced. degree.
  • the Long Term Evolution (LTE) micro cell reports the load information and the utilization of the Almost Blank Subframe (ABS) to the macro cell through the X2 port.
  • the macro cell combines the macro cell according to the load condition of the macro cell.
  • the utilization and load information of the ABS subframes covering all the micro cells are dynamically adjusted to the ratio of the ABS subframes of the macro cell, and the adjusted ABS subframe information is transmitted to the micro cells through the X2 port.
  • the micro cell uses the ABS subframe of the macro cell to schedule the UE that is seriously interfered by the macro cell.
  • the micro cell may be allocated to the UE that is strongly interfered by the macro cell on the ABS subframe, and the remaining ABS subframe resources may be allocated to the UE.
  • the micro cell is reported to the macro cell through the X2 port.
  • the ABS subframe utilization cannot truly reflect the actual ABS utilization.
  • the micro cell has no interfered UE, and the PRB of the ABS subframe is all occupied by the non-interfering UE.
  • the macro cell should not adjust the ABS subframe ratio to 0 to ensure that the interfered UE has an ABS subframe available. .
  • the present invention provides an interference adjustment processing method and apparatus to solve at least the problem that the ABS subframe utilization reported by the micro cell to the macro cell in the prior art cannot truly reflect the actual ABS utilization.
  • an interference adjustment processing method including: receiving, by a macro cell, a number of interfered terminals from a micro cell covered by the macro cell and a quasi-blank subframe ABS utilization; Adjusting the ABS ratio according to the load information of the macro cell, the number of the interfered terminals under the micro cell, and the utilization of the quasi-blank subframe ABS, where the load information includes: GBR PRB utilization rate And GBR DL PRB utilization; the ABS ratio is a ratio of the number of ABSs in the ABS pattern period to the number of all downlink subframes in the ABS Pattern period.
  • the adjusting, by the macro cell, the ABS ratio according to the load information of the macro cell, the number of the interfered terminals, and the utilization of the quasi-blank subframe ABS the macro cell receiving the micro cell a call indication request sent by the area; the macro cell determines whether the call indication request is received for the first time; if the determination is yes, the macro cell sends the initial value of the ABS ratio that is pre-configured to the micro If the determination is no, the macro cell sends the minimum value of the ABS ratio to the micro cell.
  • the adjusting, by the macro cell, the ABS ratio according to the load information of the macro cell, the number of the interfered terminals, and the utilization of the quasi-blank subframe ABS including: all the coverage of the macro cell ABS PRB utilization rate of the micro cell and the number of interfered terminals are averaged to obtain an average ABS PRB utilization rate of all the micro cells; an average ABS PRB utilization rate of all the micro cells is greater than a first threshold, and the When the number of interfering terminals is greater than 1, the macro cell increases the ABS ratio; the micro cell that needs to increase the ABS is recorded as M; and when the average ABS PRB utilization rate of all the micro cells is not greater than the second threshold, Whether M is 0; if the determination is yes, the macro cell adjusts the ABS ratio to 0; if the determination is no, and the GBR DL PRB utilization rate of the macro cell is not greater than the second a threshold value, the macro cell increases the ABS ratio; and when the determination is negative, and the GBR DL PRB utilization rate
  • the macro cell receiving the number of the interfered terminals from the micro cell covered by the macro cell and the utilization rate of the quasi-blank subframe ABS includes: receiving, by the macro cell, the ABS utilization rate by using a resource status update message The number of interfered terminals.
  • the macro cell after adjusting the ABS ratio according to the load information of the macro cell, the number of the interfered terminals under the micro cell, and the utilization rate of the quasi-blank subframe ABS, includes: the macro The cell sends a load message to the micro cell, where the load message carries an ABS mode of the macro cell, and the ABS mode is used to indicate the ABS ratio.
  • an interference adjustment processing apparatus configured to apply to a macro cell, comprising: a first receiving module, configured to receive an interfered terminal from a micro cell covered by the macro cell a quantity and quasi-blank subframe ABS utilization; an adjustment module, configured to adjust according to load information of the macro cell, the number of the interfered terminals under the micro cell, and the utilization rate of the quasi-blank sub-frame ABS
  • the ABS ratio wherein the load information includes: GBR PRB utilization rate and GBR DL PRB utilization rate; the ABS ratio is a ratio of the number of ABSs in the ABS mode Pattern period to the number of all downlink subframes in the ABS Pattern period.
  • the device further includes: a second receiving module, configured to receive a call indication request sent by the micro cell; and a determining module, configured to determine whether the call indication request is received for the first time; the first sending module is set to If the determination is yes, the initial value of the ABS ratio that is configured in advance is sent to the micro cell; and the second sending module is configured to set the minimum value of the ABS ratio if the determination is negative. Send to the micro cell.
  • a second receiving module configured to receive a call indication request sent by the micro cell
  • a determining module configured to determine whether the call indication request is received for the first time
  • the first sending module is set to If the determination is yes, the initial value of the ABS ratio that is configured in advance is sent to the micro cell
  • the second sending module is configured to set the minimum value of the ABS ratio if the determination is negative. Send to the micro cell.
  • the adjusting module is configured to: average ABS PRB utilization rate of all micro cells covered by the macro cell and the number of interfered terminals, to obtain an average ABS PRB utilization rate of all the micro cells;
  • the macro cell increases the ABS ratio; and the micro cell that needs to increase the ABS is recorded as M;
  • the average ABS PRB utilization rate of all the micro cells is not greater than the second threshold, it is determined whether the M is 0; if the determination is yes, the macro cell adjusts the ABS ratio to 0; In the case where the GBR DL PRB utilization rate of the macro cell is not greater than the second threshold, the macro cell increases the ABS ratio; and if the determination is negative, and the GBR DL PRB of the macro cell When the utilization ratio is greater than the second threshold and less than the first threshold, the macro cell increases the ABS ratio; the GBR DL in the macro cell The macro cell increases the ABS ratio when the PRB
  • the first receiving module is configured to: receive the ABS utilization rate and the number of the interfered terminals by using a resource status update message.
  • the device further includes: a third sending module, configured to send a load message to the micro cell, where the load message carries an ABS mode of the macro cell, where the ABS mode is used to indicate the ABS ratio.
  • a third sending module configured to send a load message to the micro cell, where the load message carries an ABS mode of the macro cell, where the ABS mode is used to indicate the ABS ratio.
  • the macro cell receives the number of interfered terminals and the quasi-blank subframe ABS utilization from the micro cell covered by the macro cell; the macro cell according to the load information of the macro cell, the number of interfered terminals in the micro cell, and the quasi- The utilization of the blank subframe ABS adjusts the ABS ratio, wherein the load information includes: GBR PRB utilization rate and GBR DL PRB utilization rate; the ABS ratio is the number of ABSs in the ABS Pattern period and the ABS Pattern period The ratio of the number of all the downlink sub-frames, so as to solve the problem that the ABS subframe utilization reported by the micro cell to the macro cell in the prior art cannot truly reflect the actual ABS utilization rate, thereby achieving the micro cell covered by the macro cell. Accurately provide the effect of the ABS ratio.
  • FIG. 2 is a block diagram showing the structure of an interference adjustment processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram 1 of a structure of an interference adjustment processing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram 2 of a structure of an interference adjustment processing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an ABS subframe and an ABS technology adopted by an MeNB and a HeNB according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a heterogeneous network networking in an LTE system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a macro cell micro zone X2 port message interaction according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of an ABS Pattern dynamic adjustment algorithm according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of an interference adjustment processing method according to an embodiment of the present invention. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 The macro cell receives the number of interfered terminals and the quasi-blank subframe ABS utilization rate from the micro cell covered by the macro cell.
  • Step S104 The macro cell adjusts the ABS ratio according to the load information of the macro cell, the number of interfered terminals in the micro cell, and the utilization rate of the quasi-blank subframe ABS, where the load information includes: GBR PRB utilization rate and GBR DL PRB utilization rate.
  • the ABS ratio is the ratio of the number of ABSs in the ABS Pattern period to the number of all downlink subframes in the ABS Pattern period.
  • the basis for the macro cell to adjust the ABS ratio for the micro cell includes: the load information of the macro cell, the number of the interfered terminals in the micro cell, and the utilization rate of the quasi-blank subframe ABS, compared to the prior art.
  • the macro cell adjusts the ABS ratio for the micro cell according to the load condition of the macro cell, the utilization of the ABS subframe of the micro cell, and the load information.
  • the above steps increase the ABS ratio by using the number of the interfered terminals.
  • the problem that the ABS subframe utilization reported by the micro cell to the macro cell cannot truly reflect the actual ABS utilization rate, thereby achieving the effect of accurately providing the ABS ratio for the micro cell covered by the macro cell.
  • the macro cell Before the cell adjusts the ABS ratio according to the load information of the macro cell, the number of the interfered terminals, and the utilization of the quasi-blank subframe ABS, the macro cell receives the call indication request sent by the micro cell, and the macro cell determines whether it is the first time to receive the call indication request. When the determination is yes, the macro cell transmits the initial value of the ABS ratio that is pre-configured to the micro cell, and if the determination is negative, the macro cell transmits the minimum value of the ABS ratio to the micro cell. Therefore, it is ensured that the micro cell can acquire the ABS from the macro cell, and then adjust the interfered terminal.
  • the above step S104 involves the macro cell adjusting the ABS ratio according to the load information of the macro cell, the number of the interfered terminals, and the utilization rate of the quasi-blank subframe ABS. It should be noted that the macro cell can adjust the ABS ratio according to the above information.
  • the ABS PRB utilization rate of all micro cells covered by the macro cell and the number of interfered terminals are averaged to obtain the average ABS PRB utilization rate of all micro cells; in all micro cells
  • the average ABS PRB utilization is greater than the first threshold and the number of interfered terminals
  • the macro cell increases the ABS ratio; the micro cell that needs to increase the ABS is recorded as M; and when the average ABS PRB utilization rate of all the micro cells is not greater than the second threshold, it is determined whether the M is 0; In the case where the macro cell adjusts the ABS ratio to 0; if the determination is negative, and the GBR DL PRB utilization rate of the macro cell is not greater than the second threshold, the macro cell increases the ABS ratio; and if the determination is negative And, when the GBR DL PRB utilization rate of the macro cell is greater than the second threshold and less than the first threshold, the macro cell increases the ABS ratio; the GBR DL PRB utilization rate of the macro cell is not less than the first threshold, and the macro
  • the macro cell can dynamically and accurately adjust the ABS ratio.
  • the macro cell may receive the number of the interfered terminals from the micro cell covered by the macro cell and the utilization of the quasi-blank sub-frame ABS.
  • the macro cell receives the micro cell from the macro cell coverage.
  • the number of interfered terminals and the utilization of the quasi-blank subframe ABS include: the macro cell receives the ABS utilization rate and the number of interfered terminals through the resource status update message.
  • the manner in which the macro cell receives the number of the interfered terminals from the micro cell covered by the macro cell and the utilization of the quasi-blank sub-frame ABS can be flexibly selected according to the actual information exchange between the macro cell and the micro cell.
  • the macro cell after the macro cell adjusts the ABS ratio according to the load information of the macro cell, the number of interfered terminals under the micro cell, and the utilization of the quasi-blank subframe ABS, the macro cell sends a load message to the micro cell, where The load message carries an ABS mode of the macro cell, where the ABS mode is used to indicate the ABS ratio.
  • an interference adjustment processing device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the method includes: a first receiving module 22 configured to receive a micro cell from the coverage of the macro cell.
  • the adjusting module 24 is configured to adjust the ABS ratio according to the load information of the macro cell, the number of the interfered terminals in the micro cell, and the utilization rate of the quasi-blank subframe ABS, where
  • the load information includes: GBR PRB utilization rate and GBR DL PRB utilization rate;
  • the ABS ratio is the ratio of the number of ABSs in the ABS Pattern period to the number of all downlink subframes in the ABS Pattern period.
  • FIG. 3 is a block diagram showing the structure of an interference adjustment processing apparatus according to an embodiment of the present invention.
  • the apparatus further includes: a second receiving module 26 configured to receive a call indication request sent by the micro cell; and a determining module 28, Set to determine whether it is the first time to receive the call indication request; the first sending module 30 is set to determine that it is true In this case, the initial value of the pre-configured ABS ratio is transmitted to the micro cell; and the second transmitting module 32 is configured to transmit the minimum unit value of the ABS ratio to the micro cell when the determination is negative.
  • the adjustment module 24 is configured to average the ABS PRB utilization rate of all the micro cells covered by the macro cell and the number of the interfered terminals to obtain the average ABS PRB utilization rate of all the micro cells; the average ABS in all the micro cells
  • the macro cell increases the ABS ratio; the micro cell that needs to increase the ABS is recorded as M; the average ABS PRB utilization rate in all the micro cells is not greater than the second
  • M it is determined whether M is 0; if the determination is yes, the macro cell adjusts the ABS ratio to 0; if the determination is negative, and the GBR DL PRB utilization rate of the macro cell is not greater than the second threshold, The macro cell increases the ABS ratio; and if the judgment is negative, and the GBR DL PRB utilization rate of the macro cell is greater than the second threshold and less than the first threshold, the macro cell increases the ABS ratio; the GBR DLPRB utilization rate in the macro cell is not When the PRB utilization rate is greater than the first threshold, and the number of interfered terminals is greater than 1, the macro cell increases the ABS
  • the first receiving module 22 is configured to receive the ABS utilization rate and the number of interfered terminals through the resource status update message.
  • the apparatus further includes: a third sending module 34 configured to send a load message to the micro cell, where the load The message carries the ABS mode of the macro cell, and the ABS mode is used to indicate the ABS ratio.
  • An object of the preferred embodiment is to provide a method for adjusting a dynamic ABS subframe ratio.
  • the method for adjusting the dynamic ABS subframe ratio provided by the preferred embodiment is characterized in that the number of interfered UEs and the ABS subframe utilization are reported to the macro cell through the X2 port by using the micro cell, and the macro cell can be based on the number of interfered UEs in the micro cell.
  • the ratio of the ABS subframe utilization and the PRB resource utilization of the macro cell is adjusted to adjust the ratio of the ABS subframe.
  • Step 1 The macro cell sends a resource status request message (RESOURCE STATUS REQUEST) to the micro cell to request ABS resource utilization and interference user number information;
  • REQUEST resource status request message
  • Step 2 The micro cell sends a call indication (Invoke Indication) request to the macro cell by using a download message (Load Information);
  • Step 3 The macro cell returns a Load Information message to the micro cell to carry the initial value of the ABS Pattern of the macro cell.
  • Step 4 The micro cell periodically reports the ABS utilization rate and the number of interference users to the macro cell by using a RESOURCE STATUS UPDATE message.
  • Step 5 The macro cell dynamically adjusts the ratio of the ABS subframe according to the ABS PRB utilization rate of the micro cell and the number of interference users and the PRB utilization rate of the macro cell.
  • Step 6 The macro cell carries the ABS Pattern of the macro cell through the Load Information message, and notifies the micro cell to change the ABS Pattern.
  • FIG. 5 is a schematic diagram of an ABS subframe and an MeNB and a HeNB adopting an ABS technology according to an embodiment of the present invention. As shown in FIG. 5, the MeNB leaves a part of a subframe as an ABS subframe to be used by an MeNB with a heavily interfered UE by the MeNB. .
  • FIG. 6 is a schematic diagram of a heterogeneous network networking in an LTE system according to an embodiment of the present invention.
  • the figure includes a MeNB, a PeNB, a HeNB, and a PUE, an HUE, where the MeNB is a macro cell, and the PeNB is a PICO cell and a HeNB. It is a femto cell, and both the PeNB and the HeNB belong to a micro cell. Both the PeNB and the HeNB in the figure are within the coverage of the MeNB.
  • the specific embodiment of the present invention will be described below by taking the structure shown in the figure as an example.
  • the positioning method of the mobile station includes the following steps:
  • Step 1 The macro cell sends a resource status request message (RESOURCE STATUS REQUEST) to the micro cell to request ABS status information (ABS resource utilization and interference user number information);
  • REQUEST resource status request message
  • ABS status information ABS resource utilization and interference user number information
  • FIG. 7 is a flow chart of a macro cell X2 port message interaction according to an embodiment of the present invention.
  • the macro cell sends a RESOURCE STATUS REQUEST message request to the micro cell.
  • ABS Status information ABS resource utilization and interference user number information.
  • the micro cell After receiving the RESOURCE STATUS REQUEST message, the micro cell will reply the resource status response message (RESOURCE STATUS RESPONSE) to the macro cell, and then the micro cell periodically gives the macro cell. Reports the ABS Status and the number of UEs interfered by the macro cell.
  • Step 2 The micro cell sends a call indication (Invoke Indication) request to the macro cell by using a download message (Load Information);
  • the micro cell After establishing the X2 interface with the macro cell, the micro cell immediately sends a Load Information message to the macro cell, and the message carries an Invoke Indication request; and if the subsequent ABS pattern is adjusted to all 0s by the macro cell, if the macro area receives the macro After the number of UEs that have interfered with the cell changes from 0 to non-zero, the Invoke Indication request is immediately sent to the macro cell.
  • Step 3 The macro cell returns a Load Information message to the micro cell, and carries an initial value of the ABS Pattern configured by the high-level cell;
  • the macro cell After receiving the Invoke Indication request of the micro cell for the first time, the macro cell returns a Load Information message to the micro cell to carry the initial value of the ABS Pattern configured by the macro cell; if it is not the first time to receive the Invoke Indication request of the micro cell, The smallest set of ABS Patterns is returned to the microcell.
  • Step 4 The micro cell periodically reports the ABS utilization rate and the number of interference users to the macro cell by using a RESOURCE STATUS UPDATE message.
  • the micro cell periodically reports the ABS utilization rate and the number of users interfered by the macro station to the macro cell through the RESOURCE STATUS UPDATE message, and the macro cell can adjust the ABS used by the micro area according to the ABS utilization rate and the number of users interfered by the macro station. Pattern. If the ABS utilization rate is 0, but there is a user interfered by the macro cell, the macro station will not adjust the ABS Pattern to all 0s to ensure that the user affected by the macro station in the micro area has an ABS subframe available at any time; On the other hand, since the central user of the micro cell can also be scheduled in the ABS subframe, if the ABS utilization is high, but there is no user interfered by the macro station, the macro station can adjust ABSPattern to all zeros.
  • the preferred embodiment adds a Number of DL Edge User field (shown in Table 1) to the ABS Status IE so that the macro station can adjust the ABS Pattern in conjunction with the Number of DL Edge User information.
  • Step 5 The macro cell dynamically adjusts the ratio of the ABS subframe according to the ABS PRB utilization rate of the micro cell and the number of interference users and the PRB utilization rate of the macro cell.
  • FIG. 8 is a flowchart of an ABS Pattern dynamic adjustment algorithm according to an embodiment of the present invention. As shown in FIG. 8, the macro cell adjustment ABS processing process includes:
  • Step S802 does the ABS adjust the period timer expires? If yes, go to step S806; otherwise, go to step S804;
  • Step S804 the macro cell collects the ABS measurement result reported by the micro cell
  • Step S806 The macro cell collects load-related measurement results reported by the micro-cells under its coverage and performs statistics.
  • the macro cell receives the X2 port message Resource Status update->ABS Status->DL ABS status cell reported by the micro cell under its coverage, and averages the ABS PRB utilization rate of all micro cells and the number of users interfered by the macro cell.
  • the macro cell receives the X2 port message Resource Status update->Radio Resource Status cell of the micro cell report under its coverage, and averages the DL total PRB of all the micro cells.
  • Step S808 the PRB utilization rate and the DL PRB utilization rate of the GBR (including the PBR) of the macro cell are counted;
  • the macro cell If the average ABS PRB utilization rate of the micro cell covered by the macro cell is >Th1 and the number of interfered users is greater than 1, the macro cell considers that the micro cell needs to add an ABS subframe, and the macro cell statistics need to increase the number of micro cells of the ABS subframe. , recorded as m.
  • Step S812 the macro cell adjusts the ABS subframe configuration according to its own statistical information and the average statistical information of all the micro cells covered by the macro cell;
  • Step S814 the ABS subframe ratio of the ABS Pattern period is increased by one level, and is not greater than the maximum level;
  • Step S816 it is determined whether the macro cell DL PRB utilization ⁇ Th1 is established, if yes, step S818 is performed, if not, step S822 is performed;
  • Step S820 the ABS subframe ratio is unchanged
  • Step S822 it is determined whether the macro cell meets the GBR (including PBR) PRB utilization rate ⁇ Th3 is established, if yes, step S824 is performed, if not, step S826 is performed;
  • step S824 the ABS subframe ratio is reduced by one level. If m is not 0, it can only be adjusted to the minimum level, and cannot be adjusted to 0, and then step S830 is performed;
  • Step S826 it is determined whether the micro cell satisfies the average DL Total PRB utilization rate > Th1 or whether the number of micro cells m>M of the ABS subframe needs to be increased, if yes, step S828 is performed, if not, step S820 is performed;
  • the ABS Pattern state remains unchanged.
  • the ABS Pattern state remains unchanged.
  • ABS Pattern state remains unchanged.
  • Step S830 after the macro cell determines the ABS Pattern information, notifying the micro cell to update
  • Step 6 The macro cell carries the ABS Pattern of the macro cell through the Load Information message, and notifies the micro cell to change the ABS Pattern.
  • the X2 port is triggered, and the ABS Pattern is notified to all the micro cells through the Load Information message of the X2 port.
  • the micro cell updates the configured ABS Pattern and assigns the ABS sub-frame priority to the macro station.
  • the interfered UE is used, and the UE interfered by the macro station is not used up, and can be allocated to the central user of the micro cell.
  • ABS Pattern information has not changed, no processing is performed.
  • the problem that the ABS subframe utilization reported by the micro cell to the macro cell in the prior art cannot truly reflect the actual ABS utilization rate is solved by the embodiment of the present invention, and the macro cell is covered by the macro cell.
  • the area accurately provides the effect of the ABS ratio.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the macro cell receives the number of the interfered terminals from the micro cell covered by the macro cell and the ABS utilization rate of the quasi-blank subframe; the macro cell according to the load information of the macro cell and the micro cell
  • the ABS ratio is adjusted by the number of interfered terminals and the utilization of the quasi-blank subframe ABS, wherein the load information includes: GBR PRB utilization rate and GBR DL PRB utilization rate;
  • the ABS ratio is the number of ABSs in the ABSPattern period and The ratio of the number of all downlink subframes in the ABS Pattern period, thereby solving the problem that the ABS subframe utilization reported by the micro cell to the macro cell in the prior art cannot truly reflect the actual ABS utilization rate, thereby achieving the macro cell
  • the microcells covered by it accurately provide the effect of the ABS ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种干扰调节处理方法及装置,其中,该方法包括,宏小区接收来自宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;宏小区根据该宏小区的负荷信息、微小区下受干扰终端的数量以及准空白子帧ABS的利用率调整ABS比率,其中,负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;ABS比率为ABS模式周期内ABS的数量与所述ABS模式周期内所有下行子帧数量的比值。通过本发明解决了现有技术中微小区上报给宏小区的ABS子帧利用率不能真正反映实际的ABS利用率的问题,进而达到了宏小区为其覆盖下的微小区准确的提供ABS比率的效果。

Description

干扰调节处理方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种干扰调节处理方法及装置。
背景技术
小区间干扰(Enhanced Inter-Cell Interference Coordination,简称eICIC)技术是增强型的小区间干扰协调技术,主要适用于异构网络。传统的宏小区网络,存在“重室外,轻室内”、“重组网,轻热点”等特点,对于日益发展的热点用户的应用考虑不够,因此需要在宏小区中增加低功率节点,这些节点包括微微小区(pico),家庭基站(femto),中继站(relay)等,这些节点共同组网构成了异构网络。在异构网络中,会引入新的干扰场景,如何在这些干扰场景下尽可能的提供高质量的服务是运营商和设备商共同关注的话题。
3GPP组织开展了异构网络干扰解决方案的研究,目前较为成熟的是时域准空白子帧(Almost Blank Subframe,简称为ABS)和微小区(HeNB)功率自动调节技术。
ABS技术称为Almost Blank Subframe,当配置为ABS帧时,不发送控制信道,也不发送数据,只需要发送CRS(特殊情况除外),其他小区在这个子帧发送数据收到的干扰就会比较小,因此ABS技术的核心思想就是宏小区配置ABS子帧,相关微小区在此子帧调度数据,从而起到降低干扰的作用。如下图,宏小区(MeNB)干扰了HeNB下的终端(UE),此时在MeNB上配置ABS,HeNB将受MeNB干扰的UE放到对应的子帧进行调度,这样可以降低这些UE受干扰的程度。
长期演进(Long Term Evolution,简称LTE)微小区通过X2口向宏小区报告负荷信息及准空白子帧(Almost Blank Subframe,简称ABS)的利用率,宏小区根据宏小区的负荷情况并结合宏小区覆盖下所有微小区的ABS子帧的利用率和负荷信息动态地调整宏小区的ABS子帧的比率,并通过X2口传递调整后的ABS子帧信息给微小区。微小区收到宏小区传递的ABS子帧信息后,使用宏小区的ABS子帧来对受宏小区干扰严重的UE进行调度。
为了提高物理资源块(Physical Resource Block,简称为PRB)资源的利用率,微小区在ABS子帧上调度受宏小区强干扰的UE后,其ABS子帧资源还有剩余的情况下可以分配给未受宏小区强干扰的UE。这样的话微小区通过X2口上报给宏小区的 ABS子帧利用率就不能真正反映实际的ABS利用率,极端情况下,微小区无受干扰UE,ABS子帧的PRB全部被无干扰UE所占用。另外一种情况是,存在受干扰UE但是没有做业务,ABS子帧利用率为0的情况,此时宏小区不应把ABS子帧比率调整为0,得保证受干扰UE有ABS子帧可用。
针对相关技术中,微小区上报给宏小区的ABS子帧利用率不能真正反映实际的ABS利用率的问题,还未提出有效的解决方案。
发明内容
本发明提供了一种干扰调节处理方法及装置,以至少解决现有技术中微小区上报给宏小区的ABS子帧利用率不能真正反映实际的ABS利用率的问题。
根据本发明的一个实施例,提供了一种干扰调节处理方法,包括:宏小区接收来自所述宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;所述宏小区根据所述宏小区的负荷信息、所述微小区下所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率,其中,所述负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;所述的ABS比率为ABS模式(Pattern)周期内ABS的数量与所述ABS Pattern周期内所有下行子帧数量的比值。
优选地,所述宏小区根据所述宏小区的负荷信息、所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率之前包括:所述宏小区接收所述微小区发送的调用指示请求;所述宏小区判断是否是首次接收所述调用指示请求;在判断为是的情况下,所述宏小区将预先配置的所述ABS比率的初始值发送给所述微小区;在判断为否的情况下,所述宏小区将所述ABS比率的最小取值发送给所述微小区。
优选地,所述宏小区根据所述宏小区的负荷信息、所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率包括:将所述宏小区覆盖下的所有微小区的ABS PRB利用率和受干扰终端的数量进行平均,得到所述所有微小区的平均ABS PRB利用率;在所述所有微小区的平均ABS PRB利用率大于第一阈值,并且所述受干扰终端的数量大于1时,所述宏小区增加所述ABS比率;将需要增加ABS的微小区记为M;在所述所有微小区的平均ABS PRB利用率不大于第二阈值时,判断所述M是否为0;在判断为是的情况下,所述宏小区将所述ABS比率调整为0;在判断为否的情况下,并且所述宏小区的GBR DL PRB利用率不大于第二阈值时,所述宏小区增加所述ABS比率;以及在判断为否的情况下,并且所述宏小区的GBR DL PRB利用率大于第二阈值且小于所述第一阈值时,所述宏小区增加所述ABS比率;在所述 宏小区的GBR DL PRB利用率不小于所述第一阈值,且所述宏小区的GBR DL PRB利用率小于所述第三阈值或者所述M大于预设阈值时,所述宏小区增加所述ABS比率。
优选地,所述宏小区接收来自所述宏小区覆盖下微小区的受干扰终端数量和准空白子帧ABS的利用率包括:所述宏小区通过资源状态更新消息接收所述ABS利用率和所述受干扰终端数量。
优选地,所述宏小区根据所述宏小区的负荷信息、所述微小区下所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率之后包括:所述宏小区向所述微小区发送负载消息,其中,该负载消息中携带所述宏小区的ABS模式,该ABS模式用于指示所述ABS比率。
根据本发明的另一个实施例,还提供了一种干扰调节处理装置,该装置应用于宏小区,包括:第一接收模块,设置为接收来自所述宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;调整模块,设置为根据所述宏小区的负荷信息、所述微小区下所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率,其中,所述负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;所述的ABS比率为ABS模式Pattern周期内ABS的数量与所述ABS Pattern周期内所有下行子帧数量的比值。
优选地,所述装置还包括:第二接收模块,设置为接收所述微小区发送的调用指示请求;判断模块,设置为判断是否是首次接收所述调用指示请求;第一发送模块,设置为在判断为是的情况下,将预先配置的所述ABS比率的初始值发送给所述微小区;第二发送模块,设置为在判断为否的情况下,将所述ABS比率的最小取值发送给所述微小区。
优选地,所述调整模块设置为:将所述宏小区覆盖下的所有微小区的ABS PRB利用率和受干扰终端的数量进行平均,得到所述所有微小区的平均ABS PRB利用率;在所述所有微小区的平均ABS PRB利用率大于第一阈值,并且所述受干扰终端的数量大于1时,所述宏小区增加所述ABS比率;将需要增加ABS的微小区记为M;在所述所有微小区的平均ABS PRB利用率不大于第二阈值时,判断所述M是否为0;在判断为是的情况下,所述宏小区将所述ABS比率调整为0;在判断为否的情况下,并且所述宏小区的GBR DL PRB利用率不大于第二阈值时,所述宏小区增加所述ABS比率;以及在判断为否的情况下,并且所述宏小区的GBR DL PRB利用率大于第二阈值且小于所述第一阈值时,所述宏小区增加所述ABS比率;在所述宏小区的GBR DL PRB利用率不小于所述第一阈值,且所述宏小区的GBR DL PRB利用率小于所述第三阈值或者所述M大于预设阈值时,所述宏小区增加所述ABS比率。
优选地,所述第一接收模块设置为:通过资源状态更新消息接收所述ABS利用率和所述受干扰终端数量。
优选地,所述装置还包括:第三发送模块,向所述微小区发送负载消息,其中,该负载消息中携带所述宏小区的ABS模式,该ABS模式用于指示所述ABS比率。
通过本发明,采用宏小区接收来自宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;宏小区根据该宏小区的负荷信息、微小区下受干扰终端的数量以及准空白子帧ABS的利用率调整ABS比率,其中,所述负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;所述的ABS比率为ABS Pattern周期内ABS的数量与所述ABS Pattern周期内所有下行子帧数量的比值,从而解决了现有技术中微小区上报给宏小区的ABS子帧利用率不能真正反映实际的ABS利用率的问题,进而达到了宏小区为其覆盖下的微小区准确的提供ABS比率的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的干扰调节处理方法的流程图;
图2是根据本发明实施例的干扰调节处理装置的结构框图;
图3是根据本发明实施例的干扰调节处理装置的结构框图一;
图4是根据本发明实施例的干扰调节处理装置的结构框图二;
图5是根据本发明实施例的ABS子帧及MeNB和HeNB采用ABS技术示意图;
图6是根据本发明实施例的LTE系统中异构网络组网示意图;
图7是根据本发明实施例的宏小区微小区X2口消息交互流程图;
图8是根据本发明实施例的ABS Pattern动态调整算法流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种干扰调节处理方法,图1是根据本发明实施例的干扰调节处理方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,宏小区接收来自该宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;
步骤S104,宏小区根据该宏小区的负荷信息、微小区下受干扰终端的数量以及准空白子帧ABS的利用率调整ABS比率,其中,负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;ABS比率为ABS Pattern周期内ABS的数量与ABS Pattern周期内所有下行子帧数量的比值。
通过上述步骤,宏小区调整为微小区提供ABS比率的依据包括:该宏小区的负荷信息、微小区下该受干扰终端的数量以及准空白子帧ABS的利用率,相比于现有技术中宏小区调整为微小区提供ABS比率的依据为:宏小区的负荷情况、微小区的ABS子帧的利用率以及负荷信息,上述步骤通过增加受干扰终端的数量作为宏小区调整ABS比率的依据,解决了微小区上报给宏小区的ABS子帧利用率不能真正反映实际的ABS利用率的问题,进而达到了宏小区为其覆盖下的微小区准确的提供ABS比率的效果。
上述步骤的实现依赖于微小区已经周期性的向宏小区上报其ABS利用率和干扰用户的数量,在微小区还未周期性的向宏小区上报上述信息时,在一个优选实施例中,宏小区根据宏小区的负荷信息、受干扰终端的数量以及准空白子帧ABS的利用率调整该ABS比率之前,宏小区接收微小区发送的调用指示请求,宏小区判断是否是首次接收调用指示请求,在判断为是的情况下,宏小区将预先配置的ABS比率的初始值发送给微小区,在判断为否的情况下,宏小区将该ABS比率的最小取值发送给微小区。从而保证了微小区可以从宏小区获取ABS,进而对受干扰的终端进行调整。
上述步骤S104涉及到宏小区根据宏小区的负荷信息、受干扰终端的数量以及准空白子帧ABS的利用率调整ABS比率,需要说明的是,宏小区根据上述信息对ABS比率进行调整的方式可以有很多种,在一个优选实施例中,将宏小区覆盖下的所有微小区的ABS PRB利用率和受干扰终端的数量进行平均,得到所有微小区的平均ABS PRB利用率;在所有微小区的平均ABS PRB利用率大于第一阈值,并且受干扰终端的数量 大于1时,宏小区增加ABS比率;将需要增加ABS的微小区记为M;在所有微小区的平均ABS PRB利用率不大于第二阈值时,判断所述M是否为0;在判断为是的情况下,宏小区将ABS比率调整为0;在判断为否的情况下,并且宏小区的GBR DL PRB利用率不大于第二阈值时,宏小区增加ABS比率;以及在判断为否的情况下,并且宏小区的GBR DL PRB利用率大于第二阈值且小于第一阈值时,宏小区增加所述ABS比率;在宏小区的GBR DL PRB利用率不小于所述第一阈值,且宏小区的GBR DL PRB利用率小于第三阈值或者所述M大于预设阈值时,宏小区增加ABS比率。
通过该方式,宏小区可以动态地、准确地调整ABS比率。
宏小区接收来自宏小区覆盖下微小区的受干扰终端数量和准空白子帧ABS的利用率的方式也可以有很多种,在一个优选实施例中,宏小区接收来自宏小区覆盖下微小区的受干扰终端数量和准空白子帧ABS的利用率包括:宏小区通过资源状态更新消息接收ABS利用率和受干扰终端数量。宏小区接收来自宏小区覆盖下微小区的受干扰终端数量和准空白子帧ABS的利用率的方式可以根据实际宏小区和微小区进行信息交互的情况,灵活选择。在一个优选实施例中,宏小区根据宏小区的负荷信息、微小区下受干扰终端的数量以及准空白子帧ABS的利用率调整所述ABS比率之后,宏小区向微小区发送负载消息,其中,该负载消息中携带宏小区的ABS模式,该ABS模式用于指示ABS比率。
在本实施例中还提供了一种干扰调节处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的干扰调节处理装置的结构框图,该装置应用于宏小区,如图2所示,包括:第一接收模块22,设置为接收来自该宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;调整模块24,设置为根据宏小区的负荷信息、微小区下该受干扰终端的数量以及准空白子帧ABS的利用率调整ABS比率,其中,负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;ABS比率为ABS Pattern周期内ABS的数量与ABS Pattern周期内所有下行子帧数量的比值。
图3是根据本发明实施例的干扰调节处理装置的结构框图一,如图3所示,该装置还包括:第二接收模块26,设置为接收微小区发送的调用指示请求;判断模块28,设置为判断是否是首次接收调用指示请求;第一发送模块30,设置为在判断为是的情 况下,将预先配置的ABS比率的初始值发送给微小区;第二发送模块32,设置为在判断为否的情况下,将ABS比率的最小单位取值发送给微小区。
优选地,调整模块24设置为:将宏小区覆盖下的所有微小区的ABS PRB利用率和受干扰终端的数量进行平均,得到所有微小区的平均ABS PRB利用率;在所有微小区的平均ABS PRB利用率大于第一阈值,并且受干扰终端的数量大于1时,宏小区增加述ABS比率;将需要增加ABS的微小区记为M;在所有微小区的平均ABS PRB利用率不大于第二阈值时,判断M是否为0;在判断为是的情况下,宏小区将ABS比率调整为0;在判断为否的情况下,并且宏小区的GBR DL PRB利用率不大于第二阈值时,宏小区增加ABS比率;以及在判断为否的情况下,并且宏小区的GBR DL PRB利用率大于第二阈值且小于第一阈值时,宏小区增加ABS比率;在宏小区的GBR DLPRB利用率不小于第一阈值,且宏小区的GBR DL PRB利用率小于第三阈值或者M大于预设阈值时,宏小区增加ABS比率。
优选地,第一接收模块22设置为:通过资源状态更新消息接收ABS利用率和受干扰终端数量。
图4是根据本发明实施例的干扰调节处理装置的结构框图二,如图4所示,优选地,该装置还包括:第三发送模块34,设置为向微小区发送负载消息,其中,负载消息中携带宏小区的ABS模式,ABS模式用于指示ABS比率。
针对现有技术中存在的上述技术问题,下面结合优选实施例进行说明,本优选实施例结合了上述优选实施例及其优选实施方式。
本优选实施例的目的在于提供一种动态ABS子帧比率的调整方法。
本优选实施例提供的动态ABS子帧比率的调整方法的特征在于利用微小区通过X2口上报受干扰UE数及ABS子帧利用率给宏小区,宏小区可根据微小区的受干扰UE数及ABS子帧利用率以及宏小区的PRB资源利用率等信息来调整ABS子帧的比率。
本优选实施例提供的动态ABS子帧比率的调整方法包括如下步骤:
步骤1:宏小区向微小区发送资源状态请求消息(RESOURCE STATUS REQUEST)请求ABS资源利用率与干扰用户数信息;
步骤2:微小区用下载消息(Load Information)向宏小区发送调用指示(Invoke Indication)请求;
步骤3:宏小区给微小区回复Load Information消息其携带宏小区的ABS Pattern的初始值;
步骤4:微小区通过资源状态更新(RESOURCE STATUS UPDATE)消息向宏小区周期性上报其ABS利用率与干扰用户数信息;
步骤5:宏小区根据微小区的ABS PRB利用率与干扰用户数信息以及宏小区的PRB利用率动态调整ABS子帧的比率;
步骤6:宏小区通过Load Information消息携带宏小区的ABS Pattern,通知微小区改变ABS Pattern。
从以上技术方案可以看出,本优选实施例提供的动态干扰协调方法与系统,可以有效解决目前动态ABS存在的问题。
下面结合附图对本优选实施例进行详细说明。
图5是根据本发明实施例的ABS子帧及MeNB和HeNB采用ABS技术示意图,如图5所示,图中MeNB留出一部分子帧作为ABS子帧给HeNB的受MeNB干扰较严重的UE使用。
图6是根据本发明实施例的LTE系统中异构网络组网示意图,如图6所示,图中包括MeNB、PeNB、HeNB以及PUE、HUE,其中MeNB是宏小区、PeNB是PICO小区、HeNB是femto小区,PeNB与HeNB都属于微小区。图中的PeNB、HeNB都在MeNB的覆盖范围内。下面以该图所示结构为例,描述本发明的具体实施方式。
假设HUE1在HeNB1接入,本优选实施例提供的移动台的定位方法包括如下步骤:
步骤1:宏小区向微小区发送资源状态请求消息(RESOURCE STATUS REQUEST)请求ABS状态(ABS Status)信息(ABS资源利用率与干扰用户数信息);
图7是根据本发明实施例的宏小区微小区X2口消息交互流程图,如图7所示,当微小区上电与宏小区建立X2口后,宏小区向微小区发送RESOURCE STATUS REQUEST消息请求ABS Status信息(ABS资源利用率与干扰用户数信息),微小区收到RESOURCE STATUS REQUEST消息后,会给宏小区回复资源状态响应消息(RESOURCE STATUS RESPONSE),然后微小区会周期性地给宏小区上报ABS Status及受宏小区干扰的UE数信息。
步骤2:微小区用下载消息(Load Information)向宏小区发送调用指示(Invoke Indication)请求;
微小区在与宏小区建立X2口后会立即向宏小区发送Load Information消息,消息携带Invoke Indication请求;并且如果后续ABS比率(ABS Pattern)被宏小区调整为全0后,如果微小区的受宏小区干扰的UE数由0变为非0后会立即向宏小区发送Invoke Indication请求。
步骤3:宏小区给微小区回复Load Information消息其携带宏小区高层配置的ABS Pattern的初始值;
宏小区在第一次收到微小区的Invoke Indication请求后,给微小区回复Load Information消息其携带宏小区高层配置的ABS Pattern的初始值;如果不是第一次收到微小区的Invoke Indication请求,则给微小区回复ABS Pattern的最小集。
步骤4:微小区通过资源状态更新消息(RESOURCE STATUS UPDATE)向宏小区周期性上报其ABS利用率与干扰用户数信息;
微小区通过RESOURCE STATUS UPDATE消息向宏小区周期性上报其ABS利用率与受宏站干扰的用户数信息,宏小区可以结合ABS利用率与受宏站干扰的用户数信息来调整微小区使用的ABS Pattern。如果ABS利用率为0,但是存在受宏小区干扰的用户的话,宏站就不会把ABS Pattern调整为全0,以保证微小区的受宏站干扰的用户随时有ABS子帧可用;另一方面,因为微小区的中心用户也可以在ABS子帧调度,所以如果ABS利用率很高,但是不存在受宏站干扰的用户的话,宏站可以把ABSPattern调为全0。
表1:
Figure PCTCN2015073272-appb-000001
Figure PCTCN2015073272-appb-000002
Figure PCTCN2015073272-appb-000003
本优选实施例在ABS Status IE中增加了Number of DL Edge User字段(如表1所示),使得宏站可以结合Number of DL Edge User信息来调整ABS Pattern。
步骤5:宏小区根据微小区的ABS PRB利用率与干扰用户数信息以及宏小区的PRB利用率动态调整ABS子帧的比率;
图8是根据本发明实施例的ABS Pattern动态调整算法流程图,如图8所示,宏小区调整ABS的处理流程包括:
步骤S802,ABS调整周期定时器是否超时?如果是,进入步骤S806;否则,进入步骤S804;
步骤S804,宏小区收集微小区上报的ABS测量结果;
步骤S806,宏小区收集其覆盖下的微小区小区上报的负荷相关的测量结果并进行统计;
宏小区收到其覆盖下的微小区报告的X2口消息Resource Status update->ABS Status->DL ABS status信元,对所有微小区的ABS PRB利用率与受宏小区干扰的用户数进行平均。
宏小区收到其覆盖下的微小区报告的X2口消息Resource Status update->Radio Resource Status信元,对所有微小区的DL total PRB进行平均。
步骤S808,统计宏小区的GBR(包括PBR)的PRB利用率和DL PRB利用率;
如果宏小区覆盖下的微小区的平均ABS PRB利用率>Th1且受干扰的用户数大于1,则宏小区认为该微小区需要增加ABS子帧,宏小区统计需要增加ABS子帧的微小区数,记为m。
步骤S810,判断宏小区覆盖下的所有微小区的平均ABS PRB利用率<Th2,且m=0,是否成立,如果成立执行步骤S824,则ABS Pattern周期里的ABS子帧比例降低一个等级直至调整为0,并转到步骤S830,如果不成立执行步骤S812;
步骤S812,宏小区根据自身的统计信息以及其覆盖下所有微小区的平均统计信息对ABS子帧配置进行调整;
判断宏小区DL PRB利用率≤Th2,是否成立,如果成立,则执行步骤S814,如果不成立则执行步骤S816;
步骤S814,则ABS Pattern周期的ABS子帧比例增加一个等级,且不大于最大等级;
步骤S816,判断宏小区DL PRB利用率<Th1是否成立,如果成立,则执行步骤S818,如果不成立,则执行步骤S822;
步骤S818,在Th1>宏小区DL PRB利用率>Th2的情况下,判断是否需要增加ABS的微小区数m>0,如果是,则执行步骤S814,如果否,执行步骤S820;
步骤S820,ABS子帧比率不变;
步骤S822,判断宏小区满足GBR(包括PBR)的PRB利用率≥Th3是否成立,如果成立,则执行步骤S824,如果不成立,则执行步骤S826;
步骤S824,ABS子帧比例降低一个等级,如果m不为0,则只能调整到最小等级,不能调为0,之后执行步骤S830;
步骤S826,判断当微小区满足平均DL Total PRB利用率>Th1或者需要增加ABS子帧的微小区数m>M是否成立,如果成立,则执行步骤S828,如果不成立,则执行步骤S820;
步骤S828,ABS Pattern周期里的ABS子帧比例增加一个等级;
当宏小区判断出ABS子帧比例需要降低一个等级时,如果已经是保存的最小等级了,则ABS Pattern状态保持不变。
当宏小区判断出ABS子帧比例需要增加一个等级时,如果已经是保存的最大等级了,则ABS Pattern状态保持不变。
其他情况,ABS Pattern状态保持不变。
步骤S830,宏小区确定ABS Pattern信息后,通知微小区进行更新;
步骤6:宏小区通过Load Information消息携带宏小区的ABS Pattern,通知微小区改变ABS Pattern。
如果ABS Pattern信息变化,则触发X2口,通过X2口的Load Information消息通知ABS Pattern给所有微小区,微小区收到ABS Pattern后,更新配置的ABS Pattern,把ABS子帧优先分配给受宏站干扰的UE使用,受宏站干扰的UE未使用完,可以分配给微小区的中心用户使用。
如果ABS Pattern信息没有变化,则不作处理。
综上所述,通过本发明实施例解决了现有技术中微小区上报给宏小区的ABS子帧利用率不能真正反映实际的ABS利用率的问题,进而达到了宏小区为其覆盖下的微小区准确的提供ABS比率的效果。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,采用宏小区接收来自宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;宏小区根据该宏小区的负荷信息、微小区下受干扰终端的数量以及准空白子帧ABS的利用率调整ABS比率,其中,所述负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;所述的ABS比率为ABSPattern周期内ABS的数量与所述ABS Pattern周期内所有下行子帧数量的比值,从而解决了现有技术中微小区上报给宏小区的ABS子帧利用率不能真正反映实际的ABS利用率的问题,进而达到了宏小区为其覆盖下的微小区准确的提供ABS比率的效果。

Claims (10)

  1. 一种干扰调节处理方法,包括:
    宏小区接收来自所述宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;
    所述宏小区根据所述宏小区的负荷信息、所述微小区下所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整ABS比率,其中,所述负荷信息包括:保证比特速率GBR物理资源块PRB利用率和GBR上行链路DL PRB利用率;所述ABS比率为ABS模式周期内ABS的数量与所述ABS模式周期内所有下行子帧数量的比值。
  2. 根据权利要求1所述的方法,其中,所述宏小区根据所述宏小区的负荷信息、所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率之前包括:
    所述宏小区接收所述微小区发送的调用指示请求;
    所述宏小区判断是否是首次接收所述调用指示请求;
    在判断为是的情况下,所述宏小区将预先配置的所述ABS比率的初始值发送给所述微小区;
    在判断为否的情况下,所述宏小区将所述ABS比率的最小取值发送给所述微小区。
  3. 根据权利要求1所述的方法,其中,所述宏小区根据所述宏小区的负荷信息、所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率包括:
    将所述宏小区覆盖下的所有微小区的ABS PRB利用率和受干扰终端的数量进行平均,得到所述所有微小区的平均ABS PRB利用率;
    在所述所有微小区的平均ABS PRB利用率大于第一阈值,并且所述受干扰终端的数量大于1时,所述宏小区增加所述ABS比率;将需要增加ABS的微小区记为M;
    在所述所有微小区的平均ABS PRB利用率不大于第二阈值时,判断所述M是否为0;在判断为是的情况下,所述宏小区将所述ABS比率调整为0;在 判断为否的情况下,并且所述宏小区的GBR DL PRB利用率不大于第二阈值时,所述宏小区增加所述ABS比率;以及在判断为否的情况下,并且所述宏小区的GBR DL PRB利用率大于第二阈值且小于所述第一阈值时,所述宏小区增加所述ABS比率;
    在所述宏小区的GBR DL PRB利用率不小于所述第一阈值,且所述宏小区的GBR DL PRB利用率小于所述第三阈值或者所述M大于预设阈值时,所述宏小区增加所述ABS比率。
  4. 根据权利要求1所述的方法,其中,所述宏小区接收来自所述宏小区覆盖下微小区的受干扰终端数量和准空白子帧ABS的利用率包括:
    所述宏小区通过资源状态更新消息接收所述ABS利用率和所述受干扰终端数量。
  5. 根据权利要求1所述的方法,其中,所述宏小区根据所述宏小区的负荷信息、所述微小区下所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整所述ABS比率之后,包括:
    所述宏小区向所述微小区发送负载消息,其中,该负载消息中携带所述宏小区的ABS模式,该ABS模式用于指示所述ABS比率。
  6. 一种干扰调节处理装置,该装置应用于宏小区,包括:
    第一接收模块,设置为接收来自所述宏小区覆盖下的微小区的受干扰终端数量和准空白子帧ABS利用率;
    调整模块,设置为根据所述宏小区的负荷信息、所述微小区下所述受干扰终端的数量以及所述准空白子帧ABS的利用率调整ABS比率,其中,所述负荷信息包括:GBR PRB利用率和GBR DL PRB利用率;所述ABS比率为ABS模式Pattern周期内ABS的数量与所述ABS Pattern周期内所有下行子帧数量的比值。
  7. 根据权利要求6所述的装置,其中,所述装置还包括:
    第二接收模块,设置为接收所述微小区发送的调用指示请求;
    判断模块,设置为判断是否是首次接收所述调用指示请求;
    第一发送模块,设置为在判断为是的情况下,将预先配置的所述ABS比率的初始值发送给所述微小区;
    第二发送模块,设置为在判断为否的情况下,将所述ABS比率的最小取值发送给所述微小区。
  8. 根据权利要求6所述的装置,其中,所述调整模块设置为:
    将所述宏小区覆盖下的所有微小区的ABS PRB利用率和受干扰终端的数量进行平均,得到所述所有微小区的平均ABS PRB利用率;在所述所有微小区的平均ABS PRB利用率大于第一阈值,并且所述受干扰终端的数量大于1时,所述宏小区增加所述ABS比率;将需要增加ABS的微小区记为M;
    在所述所有微小区的平均ABS PRB利用率不大于第二阈值时,判断所述M是否为0;在判断为是的情况下,所述宏小区将所述ABS比率调整为0;在判断为否的情况下,并且所述宏小区的GBR DL PRB利用率不大于第二阈值时,所述宏小区增加所述ABS比率;以及在判断为否的情况下,并且所述宏小区的GBR DL PRB利用率大于第二阈值且小于所述第一阈值时,所述宏小区增加所述ABS比率;
    在所述宏小区的GBR DL PRB利用率不小于所述第一阈值,且所述宏小区的GBR DL PRB利用率小于所述第三阈值或者所述M大于预设阈值时,所述宏小区增加所述ABS比率。
  9. 根据权利要求6所述的装置,其中,所述第一接收模块设置为:
    通过资源状态更新消息接收所述ABS利用率和所述受干扰终端数量。
  10. 根据权利要求6所述的装置,其中,所述装置还包括:
    第三发送模块,设置为向所述微小区发送负载消息,其中,该负载消息中携带所述宏小区的ABS模式,该ABS模式用于指示所述ABS比率。
PCT/CN2015/073272 2014-09-24 2015-02-25 干扰调节处理方法及装置 WO2016045312A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017516361A JP2017532891A (ja) 2014-09-24 2015-02-25 干渉調整処理方法及び装置
US15/513,745 US10305665B2 (en) 2014-09-24 2015-02-25 ABS proportion adjustment method and device
EP15844615.3A EP3200540B1 (en) 2014-09-24 2015-02-25 Interference adjusting and processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410495787.3 2014-09-24
CN201410495787.3A CN105517164A (zh) 2014-09-24 2014-09-24 干扰调节处理方法及装置

Publications (1)

Publication Number Publication Date
WO2016045312A1 true WO2016045312A1 (zh) 2016-03-31

Family

ID=55580216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073272 WO2016045312A1 (zh) 2014-09-24 2015-02-25 干扰调节处理方法及装置

Country Status (5)

Country Link
US (1) US10305665B2 (zh)
EP (1) EP3200540B1 (zh)
JP (1) JP2017532891A (zh)
CN (1) CN105517164A (zh)
WO (1) WO2016045312A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512319B1 (ko) * 2015-10-19 2023-03-22 삼성전자 주식회사 무선 통신 시스템에서 간섭 제어 방법 및 장치
US11968151B2 (en) * 2021-03-02 2024-04-23 Qualcomm Incorporated Spatial inter-cell interference aware downlink coordination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115037A1 (ja) * 2012-01-30 2013-08-08 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、基地局装置、端末装置及び無線通信制御方法
CN103391581A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 干扰协调方法及系统
CN103796239A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 小区间干扰消除的方法及设备
CN103931256A (zh) * 2011-11-14 2014-07-16 高通股份有限公司 用于减少异构网络中的干扰的方法和装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642147B2 (en) * 2011-02-14 2017-05-02 Qualcomm Incorporated Methods and apparatus for evaluating number of protected active users based on QoS requirements, throughput and traffic
CN102761973B (zh) * 2011-04-29 2014-11-26 普天信息技术研究院有限公司 一种异构网中几乎空子帧的调整方法和系统
US9078255B2 (en) * 2011-08-16 2015-07-07 Alcatel Lucent Method and apparatus for allocating almost blank subframes
CN102984767B (zh) * 2011-09-02 2015-07-08 普天信息技术研究院有限公司 一种异构网中abs模式的调整方法
KR101587144B1 (ko) * 2011-09-29 2016-01-20 노키아 솔루션스 앤드 네트웍스 오와이 간섭 관리를 위한 방법 및 장치
CN103313312B (zh) * 2012-03-07 2016-08-03 中兴通讯股份有限公司 异构网络abs的配置方法及装置、系统
JP5960481B2 (ja) * 2012-04-12 2016-08-02 株式会社日立製作所 無線通信システム及び無線通信システムの干渉制御方法
WO2014021762A1 (en) 2012-07-30 2014-02-06 Telefonaktiebolaget L M Ericsson (Publ) Nodes and methods therein for managing time-frequency resources
WO2014040623A1 (en) * 2012-09-13 2014-03-20 Nokia Siemens Networks Oy Fast load balancing by cooperative scheduling for heterogeneous networks with eicic
US20150249530A1 (en) * 2012-09-27 2015-09-03 Broadcom Corporation Method to coordinate resource allocation to address inter-cell interference
US9426804B2 (en) * 2012-11-09 2016-08-23 Nec Corporation Radio resource setting method, base station, radio resource setting system, and non-transitory computer readable medium
GB2510345A (en) * 2013-01-30 2014-08-06 Nec Corp Sharing base station resources among plural network operators
US9642135B2 (en) * 2013-04-15 2017-05-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for management of protected resource in a heterogeneous network
KR102208356B1 (ko) * 2014-01-28 2021-01-28 삼성전자 주식회사 이종망 네트워크 시스템에서 간섭 제어 방법 및 그 장치
KR20150100077A (ko) * 2014-02-24 2015-09-02 삼성전자주식회사 무선 통신 시스템에서 셀의 부하를 측정하는 방법 및 장치
US9325467B2 (en) * 2014-04-10 2016-04-26 Alcatel Lucent Method and system for controlling almost blank subframes (ABS) based on cell border rate ratios
US20170222773A1 (en) * 2014-08-11 2017-08-03 Nokia Solutions And Networks Oy Inter-Cell Interference Coordination in Heterogeneous Networks
KR102301826B1 (ko) * 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931256A (zh) * 2011-11-14 2014-07-16 高通股份有限公司 用于减少异构网络中的干扰的方法和装置
WO2013115037A1 (ja) * 2012-01-30 2013-08-08 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、基地局装置、端末装置及び無線通信制御方法
CN103391581A (zh) * 2012-05-11 2013-11-13 中兴通讯股份有限公司 干扰协调方法及系统
CN103796239A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 小区间干扰消除的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200540A4 *

Also Published As

Publication number Publication date
US10305665B2 (en) 2019-05-28
EP3200540A1 (en) 2017-08-02
EP3200540A4 (en) 2017-10-18
EP3200540B1 (en) 2019-11-13
US20170288840A1 (en) 2017-10-05
CN105517164A (zh) 2016-04-20
JP2017532891A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
US11075738B2 (en) Fractional frequency reuse schemes assigned to radio nodes in an LTE network
US11212820B2 (en) Inter-cell fractional frequency reuse scheduler
Simsek et al. Learning based frequency-and time-domain inter-cell interference coordination in HetNets
KR101618187B1 (ko) Tdd 이종 네트워크에서의 적응성 ul-dl 구성
EP2712231B1 (en) Interference coordination method and base station thereof
US11350405B2 (en) Enabling exchange of information on radio frame configuration in neighbor cells
TW201509162A (zh) 分時雙工(tdd)上行鏈路下行鏈路(ul-dl)重組態
CN106793047B (zh) 一种上行功率控制方法及基站
US20190254043A1 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (noma) scheme
JP5935197B2 (ja) 送信電力を決定するための方法および装置
WO2014159503A1 (en) Methods and systems for load balancing and interference coordination in networks using frank-wolfe algorithm
Wang et al. QoS-aware cooperative power control and resource allocation scheme in LTE femtocell networks
WO2016045312A1 (zh) 干扰调节处理方法及装置
CN107113745B (zh) 用于管理移动蜂窝网络中的数据传输功率的方法
WO2021028025A1 (en) Information exchange between network devices for coordination of sidelink communications
WO2016004630A1 (zh) 资源分配方法、基站及系统
EP4120578A1 (en) Beam optimization based on signal measurements in neighboring cells
WO2017024570A1 (zh) 一种确定小区簇子帧配置的方法及装置
EP3000271B1 (en) Signalling scheme
JP2013183166A (ja) 無線リソース割当装置、及び無線リソース割当プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513745

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017516361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015844615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844615

Country of ref document: EP