WO2014108028A1 - 无线通信方法和无线通信设备 - Google Patents

无线通信方法和无线通信设备 Download PDF

Info

Publication number
WO2014108028A1
WO2014108028A1 PCT/CN2013/090507 CN2013090507W WO2014108028A1 WO 2014108028 A1 WO2014108028 A1 WO 2014108028A1 CN 2013090507 W CN2013090507 W CN 2013090507W WO 2014108028 A1 WO2014108028 A1 WO 2014108028A1
Authority
WO
WIPO (PCT)
Prior art keywords
epdcch
interference
interference coordination
wireless communication
cell
Prior art date
Application number
PCT/CN2013/090507
Other languages
English (en)
French (fr)
Inventor
崔琪楣
李晓娜
高苇娟
王辉
韩江
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to KR1020157020880A priority Critical patent/KR20150105377A/ko
Priority to EP13871021.5A priority patent/EP2945444B1/en
Priority to US14/759,534 priority patent/US10021701B2/en
Priority to JP2015551110A priority patent/JP6274220B2/ja
Priority to ES13871021.5T priority patent/ES2655683T3/es
Publication of WO2014108028A1 publication Critical patent/WO2014108028A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present disclosure relates generally to the field of wireless communications, and more particularly to a wireless communication method and a wireless communication device for use in a coordinated multipoint communication system.
  • the Long Term Evolution (LTE) system is a frequency division system based on Orthogonal Frequency Division Multiplexing (OFDM).
  • OFDM Orthogonal Frequency Division Multiplexing
  • this system there is almost no interference problem in the cell because of the complete frequency division orthogonality; however, the interference at the cell edge is serious, so the spectrum efficiency of the cell edge is very concerned.
  • interference randomization there are three main methods for handling interference at the edge of a cell in LTE: interference randomization, interference cancellation, and interference coordination ( «).
  • interference coordination is a mainstream technology for inter-cell interference suppression because it is simple to implement, can be applied to various bandwidths, and has good effects on interference suppression.
  • LTE LTE-A Based on the increasing shortage of spectrum resources and the increasing QoS requirements of users, the subsequent evolution of LTE LTE-A puts forward higher requirements on the average frequency transmission efficiency of cells and the efficiency of cell edge transmission. In the future, wireless communication systems hope to achieve full frequency reuse on the basis of further improving the performance of edge users, so as to obtain higher average cell frequency transmission efficiency at the same time.
  • ePDCCH enhanced physical downlink control channel
  • LTE-A an enhanced physical downlink control channel
  • PDSCH physical downlink shared channel
  • the present invention provides a A wireless communication method and a wireless communication device for ePDCCH interference coordination used in a coordinated multi-point communication system.
  • a wireless communication method for use in a coordinated multipoint communication system, including: identifying an edge user equipment; determining presence of interference to an ePDCCH of an edge user equipment; and responding to interference
  • the determination of the existence determines different interference coordination modes according to different scenarios to control the transmission of the ePDCCH or PDSCH of the neighboring cell related to the interference.
  • a wireless communication device for use in a coordinated multipoint communication system, including: an identification unit for identifying an edge user equipment; and an interference determination unit for determining an edge user
  • the interference of the ePDCCH of the device exists; the interference coordination unit is configured to determine different interference coordination modes according to different scenarios in response to the determination of the interference presence, and control transmission of ePDCCH or PDSCH of the neighboring cell related to the interference .
  • the wireless communication method and the wireless communication device By using the wireless communication method and the wireless communication device according to the present disclosure, it is possible to ensure ePDCCH interference between edge users, ensure accuracy of edge user reception of control information, and significantly improve cell edge user frequency transmission efficiency while ensuring Higher cell average spectral efficiency.
  • FIG. 1 is a flow chart showing a wireless communication method according to an embodiment of the present invention.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • FIG. 3 is a schematic diagram showing an example of different interference coordination modes.
  • FIG. 4 is a schematic diagram showing an example of determining different interference coordination modes according to different scenarios.
  • Figure 5 is a timing diagram showing signaling interactions between neighboring cell base stations and their respective serving user equipments.
  • 6 is a schematic diagram showing a wireless communication network divided into a number of interference coordination clusters according to an embodiment of the present invention.
  • FIG. 7 is a flow chart showing a wireless communication method used in a wireless communication network that can be divided into interference coordination clusters according to an embodiment of the invention.
  • FIG. 8 is a block diagram showing a functional configuration of a wireless communication device according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing a functional configuration of a wireless communication device according to another embodiment of the present invention.
  • FIG. 1 is a diagram showing a wireless communication method according to an embodiment of the present invention.
  • the optimal interference coordination mode can be adopted to control the transmission of the ePDCCH or PDSCH of the neighboring cell according to different scenarios.
  • step S101 the identification of the edge user equipment is performed.
  • the edge user equipment can be defined and identified using any method known in the art. For example, an identification method using channel quality information (CQI) feedback, a method of identifying using reference signal received power (RSRP), and the like. In the following, only the identification method using RSRP will be exemplified.
  • CQI channel quality information
  • RSRP reference signal received power
  • the preset threshold value [alpha] when the RSRP of the serving cell of the user equipment (RSRP S e rving _ C eii ) and RSRP (RSRP adjacent - cell) of a neighbor cell satisfies the formula ( 1), the user device is identified as an edge user device:
  • the setting of threshold ⁇ can be set according to the anti-interference ability and design requirements of the communication system.
  • step S102 it is determined whether there is interference of the ePDCCH of the user equipment.
  • the baseband processing center ie, the central node, or "baseband cloud”
  • the baseband processing center may determine whether there is interference to the ePDCCH of the edge user equipment.
  • the configuration information of the ePDCCH can be shared by the X2 or S1 interface between the macro cell and the micro cell. Since the manner of sharing PDSCH configuration information between cells is well known to those skilled in the art, no further details are provided herein.
  • an ePDCCH configuration for sharing a base station to be scheduled user equipment (UE) may be transmitted between an evolved base station (eNB) and a pico base station (Pico) and between the pico base stations through the X2 interface.
  • eNB evolved base station
  • Pico pico base station
  • the evolved base station, the pico base station, and the home base station (HeNB) can respectively transmit the configuration sharing signaling of the configuration of the shared ePDCCH through the S1 interface with the mobility management device/serving gateway (MME/S-GW).
  • MME/S-GW mobility management device/serving gateway
  • the home base station and the home base station gateway (HeNB-GW) can transmit the configuration shared signaling of the shared ePDCCH through the SI interface.
  • step S102 it is determined whether there is an ePDCCH of the edge user equipment according to the ePDCCH configuration shared by the configuration sharing signaling between the neighboring cells. Interference. If there is no interference, normal scheduling can be performed. If there is interference, in step S103, in response to the determination that the interference exists, different interference coordination modes are determined according to different scenarios.
  • Mode 1 that is, the neighboring cell related to the interference transmits the ePDCCH
  • the second mode that is, one of the neighboring cells related to the interference normally transmits the ePDCCH, and the other cell empties the resource for transmitting the ePDCCH or the PDSCH;
  • Mode 3 that is, one of the neighboring cells related to the interference normally transmits the ePDCCH, and the other cell allocates the resource for transmitting the ePDCCH or the PDSCH to the user equipment in the central area or other sector to transmit the PDSCH And one of the ePDCCHs.
  • FIG. 3 is a schematic diagram showing an example of different interference coordination modes.
  • (a) of FIG. 3 shows an example of the interference coordination mode of the first mode.
  • the ePDCCHs are mutually interfered, and the neighboring cells A and B related to the interference transmit the ePDCCH in an orthogonal manner.
  • neighboring cells A and B can both transmit ePDCCH without interfering with each other.
  • ePDCCH transmissions of cells A and B may be frequency multiplexed in a bitmap manner.
  • This example is basically applicable to various wireless communication scenarios. For example, it can be applied to the case where the adjacent cells A and B transmit powers are the same and both are high power transmission cells.
  • the example of mode 1 may further include that each of cell A and cell B normally transmits an ePDCCH. This example can typically be implemented when cells A and B transmit the same power and are both low power transmitting cells.
  • FIG. 3 shows an example of the interference coordination mode of the second mode.
  • the mutual interference of the ePDCCH occurs between the neighboring cells A and B.
  • the ePDCCH of the cell A may interfere with the PDSCH of the cell B.
  • cell A normally transmits ePDCCH
  • cell B empties resources for transmitting ePDCCH (which may also be PDSCH).
  • This example is basically applicable to various wireless communication scenarios. For example, it can be applied to the case where the transmission powers of the adjacent cells A and B are different. For example, the cell A with low transmission power is normally transmitted to the ePDC CH, so that the cell B with high transmission power is emptied for the resource for transmitting the ePDCCH.
  • (c) of FIG. 3 shows an example of the interference coordination mode of the third mode.
  • mutual interference of ePDCCH occurs between cells A and B, or the ePDCCH of cell A interferes with the PDSCH of cell B.
  • cell A normally transmits ePDCCH
  • cell B allocates resources for transmitting ePDCCH (or PDSCH) to user equipments in its central area or other sectors to transmit PDSCH and ePDCCH.
  • the cell B allocates resources for transmitting the ePDCCH (or PDSCH) to the user equipments of its central area to transmit the PDSCH.
  • the interference coordination mode of mode 3 is applicable to various wireless communication scenarios. For example, it can be applied to the case where the neighboring cells A and B have the same transmission power and both are high-power transmission cells.
  • step S103 of the wireless communication method shown in FIG. 1 will be described in conjunction with the specific embodiment and FIG. 4, that is, how to determine different interference coordination modes according to different scenarios is exemplarily described.
  • the transmission priority of the ePDCCH is generally higher than the transmission priority of the PDSCH, as shown in FIG. 4, it may be first determined whether the interference occurs between the ePDCCH transmissions or between the transmission of the ePDCCH and the PDSCH (401).
  • the interference coordination mode may be selected according to the preset setting, so that the ePDCCH is normally transmitted. Input, and the corresponding resources of the PDSCH are emptied (402, which is an example of the coordination mode 2 described above).
  • the interference coordination mode may be selected such that the ePDCCH is normally transmitted, and the corresponding resource of the PDSCH is allocated to the user equipment in the central area of the cell using the resource or other sectors to transmit the PDSCH or the ePDCCH (403, which is An example of coordination mode three described above).
  • the interference coordination mode may be determined according to the transmission power of the neighboring cell. For example, when the neighboring cells have the same transmit power and are both low-power transmit cells, the inter-cell interference is weak, so the interference coordination mode can be determined such that the neighbor cells normally transmit the ePDCCH (405, which is described above). An example of coordination mode one).
  • the inter-cell ePDCCH is to be time-division or space-division.
  • the transmission is separated.
  • the interference coordination mode may be determined such that the neighboring cell transmits the ePDCCH in an orthogonal manner (407, which is an example of the coordination mode one described above).
  • the ePDCCH transmission of the neighboring cell may be frequency multiplexed by using a bitmap.
  • the interference coordination mode may be determined, so that one of the two high-power transmitting cells normally transmits the ePDCCH, and the corresponding resource of the e-zone of the other 'J, the area is emptied (408, which is the coordination mode described above) An example of two).
  • the cell of the normal transmission ePDCCH may be determined according to the fairness factor of the user equipment in which the ePDCCH interference occurs. More specifically, a cell in which a user equipment having a higher fairness factor is located may be used as a cell that normally transmits an ePDCCH.
  • the determination of the fairness factor of the user equipment is well known to those skilled in the art, and a detailed description thereof is omitted herein.
  • the interference coordination mode may be determined, so that one of the two high power transmitting cells normally transmits the ePDCCH, and the other cell allocates the resource for transmitting the ePDCCH to the central area thereof. Or user equipment in other sectors to transmit PDSCH or ePDCCH (408, which is an example of coordination mode three described above).
  • a cell that normally transmits an ePDCCH may be determined according to a fairness factor of a user equipment in which ePDCCH interference occurs. More specifically, a cell in which a user equipment having a higher fairness factor is located may be used as a cell that normally transmits an ePDCCH.
  • the transmission priority of the ePDCCH is set to be higher than that of the high-power transmit cell. Transmission priority. Therefore, determine the interference coordination method so that The ePDCCH of the low power transmitting cell is normally transmitted, and the corresponding resource of the ePDCCH of the high power transmitting cell is emptied (406, which is an example of the coordination mode 2 described above).
  • step S104 the transmission of the ePDCCH or PDSCH of the neighboring cell is controlled according to the determined interference coordination mode.
  • the baseband processing center determines the interference coordination according to the ePDCCH configuration of each cell that it grasps and other information such as the cell transmission power, the user equipment fairness factor, and the like. the way. It is not necessary to inform the base station of any cell of the determination result of the interference coordination mode by transmitting new signaling.
  • the interference coordination mode informs the neighboring cell with the final determination result.
  • 2 bits of signaling can be defined to inform the interference coordination mode to determine the result.
  • the interference coordination signaling for informing the coordination mode determination result may be transmitted through the X2 or S1 interface between the macro cell and the micro cell. .
  • FIG. 5 is a timing diagram illustrating the signaling interaction between neighboring cell base stations BS1 and BS2 and their respective serving user equipments, including such as UE1 and UE2.
  • user equipments including user equipments UE1 and UE2 respectively calculate reference signal received power (RSRP) of their primary cell (serving cell) and neighboring cells, and feed back the calculation result to the respective serving base station BS. 1 and BS2.
  • the base stations BS 1 and BS 2 determine whether the user equipment is an edge user based on the obtained RSRP, respectively.
  • RSRP reference signal received power
  • the user equipment including UE 1 and UE 2 also feeds back channel state information (CSI) to the respective serving base stations BS 1 and BS2.
  • CSI channel state information
  • the base stations BS1 and BS2 are enabled to determine the users to be scheduled based on information such as CSI provided by the user equipment, respectively.
  • the base stations BS1 and BS2 determine whether there is an edge user in the user equipment to be scheduled. If there is an edge user, the base stations BS 1 and BS 2 transmit the determined ePDCCH configuration information of the edge user equipment in the to-be-scheduled user equipment through the X2 interface between them. In the embodiment shown in FIG. 5, the base station BS1 transmits the ePDCCH configuration information to the base station BS2. Then, the base station BS2 determines an appropriate interference coordination mode according to the received ePDCCH configuration information and the ePDCCH configuration information itself.
  • the base station BS2 In determining After the appropriate interference coordination mode, the base station BS2 feeds back the determination result to the base station BS 1 through the X2 interface. Finally, the base stations BS 1 and BS 2 schedule the user equipment according to the determination result of the interference coordination mode, and control the transmission of the ePDCCH and the PDSCH.
  • the wireless communication network can be divided into a number of interference coordination clusters.
  • Fig. 6 is a diagram showing a wireless communication network capable of being divided into a plurality of interference coordination clusters according to the present embodiment.
  • each interference coordination cluster includes a macro cell and a micro cell covered by four radio remote units (RRHs).
  • RRHs radio remote units
  • An example of a wireless communication network that can be divided into a number of interference coordination clusters is, for example, a wireless communication network in which base stations in each cluster are connected to a baseband processing center (central node) via optical fibers.
  • the wireless communication network is divided into a plurality of interference coordination clusters and interferes with the common baseband of each transmission point in the coordination cluster
  • the ePDCCH may interfere with each other according to different interferences.
  • the intra-cluster system throughput T t and the cluster fairness factor P t estimated in a coordinated manner are used to perform interference coordination between adjacent cells.
  • the intra-cluster system throughput (system estimated throughput) T t is defined as the sum of the throughputs of the user equipments in the interference coordination cluster, as shown in equation (2).
  • the cluster fairness factor (system fairness factor) Pt is defined as the average of the fairness factors of the user equipment in the interference coordination cluster, as shown in equation (3).
  • ⁇ ( 3 )
  • Pi and respectively are the fairness factor and throughput of the user i to be scheduled within the interference coordination cluster
  • n is the number of users to be scheduled.
  • FIG. 7 is a flow chart showing a wireless communication method used in a wireless communication network divided into interference coordination clusters as shown in Fig. 6.
  • step S701 it is determined whether the corresponding user equipment is an edge user by using an RSRP value between the cell and other cells in the cluster.
  • the method of defining and determining the edge user can employ the method as described above in connection with equation (1).
  • n users to be scheduled are determined according to a scheduling algorithm. For example, using the proportional fair algorithm as an example, the fairness factor of the user equipment in the interference coordination cluster is calculated as shown in the equation (4).
  • r represents the throughput of user i on the current time-frequency resource and represents the average throughput of user i over a certain period of time.
  • step S702 if it is determined that there are edge users in the n user equipments, and the edge users and other edge users in the interference coordination cluster have ePDCCH interference, proceed to step S703. Otherwise, it is scheduled directly according to the scheduling result.
  • step S703 it is determined whether the ePDCCH interference that occurs is whether the ePDCCH interferes with each other or the interference between the ePDCCH and the PDSCH.
  • step S704 the interference coordination mode is determined, so that the ePDCCH is normally transmitted, and the corresponding resources of the PDSCH are emptied.
  • the corresponding resources of the PDSCH can also be used for users in the central user or other sectors of the cell.
  • step S705 a method for calculating the estimated throughput T t and the interference coordination cluster fairness factor P to calculating the estimated throughput T t and the interference coordination cluster fairness factor P t for all the interference coordination modes set in advance is, for example, the above combination ( 2) and equation (3) are explained.
  • the interference coordination mode is determined according to equation (5).
  • the threshold Th can be set according to the optimal simulation result.
  • Maximum estimate of cluster fairness factor When the difference between the minimum estimated value and the minimum estimated value is greater than the threshold value of 7z, it means that the coordination mode corresponding to the cluster fairness factor having the largest value has a long time without being compared to the coordination mode corresponding to the cluster fairness factor having the smallest value. Users, the resource blocks occupied by these users are often left blank. In order to ensure the fairness of the scheduling, the interference coordination mode is determined as the target interference coordination mode. Otherwise, the base station selects the interference coordination mode with the highest throughput.
  • the wireless communication device 800 includes: an identification unit 810, an interference determination unit 820, and an interference coordination unit 830.
  • the identification unit 810 is used to identify the edge user equipment.
  • the recognition unit 810 performs processing corresponding to step S101 in Fig. 1 .
  • the identification unit 810 can identify the edge user equipment by RSRP than the traffic cell and the neighboring cell.
  • the interference determining unit 820 is configured to determine the presence of interference to the ePDCCH of the edge user equipment.
  • the interference determination unit 820 performs processing corresponding to step S102 in Fig. 1 to determine whether or not there is ePDCCH interference.
  • the interference coordination unit 830 is configured to determine, according to different scenarios, different interference coordination modes according to different scenarios, and control transmission of the ePDCCH or PDSCH of the neighboring cell related to the interference. In other words, the interference coordination unit 830 performs processing corresponding to steps S103 and S 104 in Fig. 1.
  • the interference coordination unit 830 can empt the transmission of the corresponding resource of the PDSCH.
  • the interference coordination unit 830 may also allocate the corresponding resource of the PDSCH to the user equipment in the central area or other sectors in the cell using the resource, To transmit PDSCH or ePDCCH.
  • the interference coordination unit 830 may determine the interference coordination mode according to the transmission power of the neighboring cells. For example, when the neighboring cells transmit the same power and are all low-power transmitting cells, the interference coordination unit 830 can enable the neighboring cells to normally transmit the ePDCCH. When the neighboring cells have the same transmit power and are both high-power transmit cells, the interference coordination unit 830 may enable the neighbor cells to transmit the ePDCCH in an orthogonal manner. For example, the interference coordination unit 830 may perform frequency multiplexing by using a bitmap in the ePDCCH transmission of the neighboring cell.
  • the interference coordinating unit 830 may enable one of the two high-power transmitting cells to normally transmit the ePDCCH, and cause another 'j, The corresponding resources of the ePDCCH of the zone are emptied.
  • the interference coordination unit 830 may determine a cell that normally transmits the ePDCCH according to a fairness factor of the user equipment in which the ePDCCH interference occurs. More specifically, a cell in which a user equipment with a higher fairness factor is located may be used as a cell that normally transmits an ePDCCH.
  • the interference coordinating unit 830 may enable one of the neighboring cells to normally transmit the ePDCCH, and the other cell will be used for the transmission.
  • the resources of the ePDCCH are allocated to user equipments in its central area or other sectors to transmit PDSCH or ePDCCH.
  • the interference coordination unit 830 can determine the cell of the normal transmission ePDCCH according to the fairness factor of the user equipment in which the ePDCCH interference occurs. More specifically, a cell in which a user equipment having a higher fairness factor is located may be determined as a cell that normally transmits an ePDCCH.
  • the interference coordination unit 830 may enable the cell with low transmit power in the neighboring cell to transmit the ePDCCH normally, and the cell with the high transmit power is emptied for transmitting the ePDCCH. Resources.
  • the coordinating unit 830 can determine the interference coordination mode between adjacent cells according to the in-cluster system throughput and the cluster fairness factor estimated for different interference coordination modes.
  • the reachable intra-cluster system throughput is defined as the sum of the throughputs of the users in the interference coordination cluster
  • the cluster fairness factor is defined as the average of the fairness factors of the users in the interference coordination cluster.
  • the interference coordination unit 830 determines to adopt an interference coordination manner that maximizes the estimated value of the cluster fairness factor. .
  • the interference coordination unit 830 determines the interference coordination mode that maximizes the estimated value of the system throughput within the reachable cluster.
  • the threshold may be set such that: when the difference between the maximum value and the minimum value of the cluster fairness factor is greater than the threshold value, it means that the cluster fairness factor having the largest value is compared with the coordination mode corresponding to the cluster fairness factor having the minimum value There are users in the corresponding coordination mode that have not been scheduled for a long time.
  • FIG. 9 is a diagram showing a wireless communication device according to another embodiment. A block diagram of the functional structure of the 900.
  • the wireless communication device 900 includes: an identification unit 910, an interference determination unit 920, an interference coordination unit 930, and an information sharing unit 940.
  • the functions and structures of the identification unit 910, the interference determination unit 920, and the interference coordination unit 930 are the same as those of the identification unit 810, the interference determination unit 820, and the interference coordination unit 830 described in connection with FIG. A detailed description thereof is omitted here.
  • the information sharing unit 940 can share the configuration of the ePDCCH by transmitting configuration sharing signaling between adjacent cells in the case where the neighboring cells performing the interference coordination do not have a common baseband.
  • the information sharing unit 940 can inform the interference coordination unit of the determination result by transmitting interference coordination signaling between adjacent cells via, for example, an X2 or S1 interface.
  • 2-bit signaling can be used as the interference coordination signal.
  • a wireless communication device in accordance with the present disclosure may employ at least one of, for example, the following interference coordination methods, depending on different scenarios.
  • the above examples are specific examples of the following three methods. Interference coordination methods are:
  • [81] mode 1 that is, the neighboring cell related to the interference transmits the ePDCCH
  • the second mode that is, one of the neighboring cells related to the interference normally transmits the ePDCCH, and the other cell empties the resource used for transmitting the ePDCCH or the PDSCH;
  • Mode 3 that is, one of the neighboring cells related to the interference normally transmits the ePDCCH, and the other cell allocates the resource for transmitting the ePDCCH or the PDSCH to the user equipment in the central area or other sector to transmit the PDSCH And one of the ePDCCHs.
  • a wireless communication device in accordance with the present disclosure may be a base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种无线通信方法和无线通信设备。该无线通信方法用于协作多点通信系统中,包括:识别边缘用户设备;确定对边缘用户设备的增强物理下行控制信道(ePDCCH)的干扰的存在;以及响应于该干扰存在的确定,根据不同的场景确定不同的干扰协调方式,以对与该干扰相关的相邻小区的ePDCCH或物理下行共享信道(PDSCH)的传输进行控制。

Description

无线通信方法和无线通信设备 技术领域
[01] 本公开一般地涉及无线通信领域, 尤其涉及一种在协作多点通信系 统中使用的无线通信方法和无线通信设备。
背景技术
[02] 长期演进(LTE ) 系统是以正交频分复用 (OFDM )为基本多址复 用方式的频分系统。 在该系统中, 小区内部因为完全频分正交, 几乎没有 干扰问题;但小区边缘处的干扰较为严重, 因此小区边缘的频谱效率很受 关注。 目前, LTE 中对小区边缘处干扰的处理主要有三种方法: 干扰随 机化、 干扰消除、 干扰协调(«)。 其中, 干扰协调因实现简单、 能够应 用于各种带宽以及对于干扰抑制有良好效果,成为小区间干扰抑制的主流 技术。
[03] 干扰协调目前普遍采用部分频率复用和软频率复用等频率复用方 案, 在小区边缘用户间的同频干扰抑制上起到了明显的效果。
[04] 基于频谱资源的日益短缺以及用户逐渐提高的 QoS需求现状, LTE 的后续演进 LTE-A对小区平均频傳效率和小区边缘频傳效率均提出了更 高的要求。未来无线通信系统希望在进一步提高边缘用户性能的基础上实 现全频率复用, 以同时得到较高的小区平均频傳效率。 此外, 在 LTE-A 中引入了增强物理下行控制信道(ePDCCH ), 即允许在原来的物理下行 共享信道(PDSCH ) 中用一部分资源来传输 ePDCCH。
发明内容
[05] ePDCCH的引入使得进一步减小边缘用户间干扰势在必行。 然而, 由于部分频率复用的边缘复用因子为 3, 小区的平均频谱效率会严重下 降; 而软频率复用的性能会随着系统负载量的增加迅速下降。 可见, 传统 的基于频率复用的干扰协调技术已经不能满足需要,新的干扰协調方案亟 待提出。
[06] 为了在引入 ePDCCH的 LTE-A系统中进一步减小边缘用户间的干 扰,进而在提高边缘用户性能的基础上实现全频率复用,本发明提供一种 在多点协作通信系统中使用的、 用于 ePDCCH干扰协调的无线通信方法 和无线通信设备。
[07] 根据本发明的一方面, 提供了一种无线通信方法, 用于协作多点通 信系统中, 包括: 识别边缘用户设备; 确定对边缘用户设备的 ePDCCH 的干扰的存在; 以及响应于干扰存在的确定,根据不同的场景确定不同的 干扰协调方式, 以对与干扰相关的相邻小区的 ePDCCH或 PDSCH的传 输进行控制。
[08] 根据本发明的另一方面, 提供了一种无线通信设备, 用于协作多点 通信系统中, 包括: 识别单元, 用于识别边缘用户设备; 干扰确定单元, 用于确定对边缘用户设备的 ePDCCH的干扰的存在; 干扰协调单元, 用 于响应于干扰存在的确定,才艮据不同的场景确定不同的干扰协调方式,对 与干扰相关的相邻小区的 ePDCCH或 PDSCH的传输进行控制。
[09] 通过使用根据本公开的无线通信方法和无线通信设备, 能够在减小 边缘用户间的 ePDCCH干扰、 确保边缘用户接收控制信息的准确性、 显 著改善小区边缘用户频傳效率的同时, 保证较高的小区平均频谱效率。
[10] 应当理解, 前述的一般说明和下面的详细说明都是示例性和说明性 的, 而不是对请求保护的本发明的限制。
附图说明
[11] 参照下面结合附图对本发明实施例的说明, 会更加容易地理解本发 明的以上和其它目的、特点和优点。 在附图中, 相同的或对应的技术特征 或部件将采用相同或对应的附图标记来表示。在附图中不必依照比例绘制 出单元的尺寸和相对位置。
[12] 图 1是示出根据本发明实施例的无线通信方法的流程图。
[13] 图 2是示出可以应用根据本发明实施例的方法的、 作为非共基带的 网络实例的演进通用陆地无线接入网 (E-UTRAN )的示意图。
[14] 图 3是示出不同干扰协调方式的实例的示意图。
[15] 图 4是示出才艮据不同场景确定不同干扰协调方式的实例的示意图。
[16] 图 5是示出相邻小区基站以及它们各自正在服务的用户设备之间的 信令交互的时序图。 [17] 图 6是示出根据本发明实施例的被划分为若干个干扰协调簇的无线 通信网络的示意图。
[18] 图 7是示出根据发明实施例的、 在能够划分为干扰协调簇的无线通 信网络中使用的无线通信方法的流程图。
[19] 图 8是示出根据本发明实施例的无线通信设备的功能结构的框图。
[20] 图 9是示出根据本发明另一实施例的无线通信设备的功能结构的框 图。
具体实施方式
[21] 下面参照附图来说明本发明的实施例。应当注意, 为了清楚的目的, 附图和说明中省略了与本发明无关的、本领域技术人员已知的部件和处理 的表示和描述。
[22] 图 1是示出根据本发明实施例的无线通信方法的 图。 通过使用 该方法, 可以依据不同的场景采取最优的干扰协调方式对相邻小区的 ePDCCH或 PDSCH的传输进行控制。
[23] 在步骤 S101中, 进行边缘用户设备的识别。 具体地, 可以采用本领 域公知的任何方法来定义和识别边缘用户设备。例如, 利用信道质量信息 ( CQI )反馈的识别方法、 利用参考信号接收功率(RSRP )的识别方法 等。 下面, 只以利用 RSRP的识别方法来举例说明。
[24] 在利用 RSRP的识别方法中, 预先设置阈值 α, 当用户设备的服务 小区的 RSRP ( RSRPServing_Ceii )与某个相邻小区的 RSRP ( RSRPadjacentcell ) 满足式(1 ) 时, 识别出该用户设备是边缘用户设备:
R S R P Ser ving_cell ~ RSRPadjacent— cell < α ( 1 )
[25] 阈值 α的设置可以依据通信系统的抗扰能力和设计需要等因素来设
[26] 当识别出用户设备是边缘用户设备时,在步骤 S102中, 确定是否存 在对该用户设备的 ePDCCH的干扰。
[27] 对于相邻小区之间共基带的情况, 由于基带处理中心 (即, 中心节 点, 或称为 "基带云") 已经掌握各小区的 ePDCCH配置情况, 所以各小 区之间无需在彼此间对 ePDCCH配置信息进行共享。 换句话说, 在相邻 小区之间共基带的情况下,基带处理中心可以确定是否存在对边缘用户设 备的 ePDCCH的干扰。
[28] 对于非共基带的情况, 则需要通过在相邻小区之间传输用于共享 ePDCCH配置信息的配置共享信令来在相邻小区之间共享 ePDCCH的配 置信息。 例如, 在网络拓朴结构不规则, 诸如存在宏小区与微小区的情况 下, 可以通过宏小区与微小区之间的 X2或 S1接口来共享 ePDCCH的配 置信息。由于各小区之间对 PDSCH配置信息的共享方式已被本领域技术 人员熟知, 因而这里不再赘述。
[29] 图 2是示出可以应用根据本发明实施例的方法的、 作为非共基带的 网络实例的演进通用陆地无线接入网 (E-UTRAN )的示意图。 在图 2所 示的例子中, 在演进型基站 ( eNB )与微微基站(Pico )之间以及微微基 站彼此之间可以通过 X2接口传输用于共享各基站待调度用户设备 ( UE ) 的 ePDCCH配置的配置共享信令。 而演进型基站、 微微基站和家庭基站 ( HeNB )可以分别与移动性管理设备 /服务网关(MME/S-GW )通过 S1 接口传输共享 ePDCCH的配置的配置共享信令。 相似地, 家庭基站与家 庭基站网关(HeNB-GW )可以通过 SI接口传输共享 ePDCCH的配置的 配置共享信令。
[30] 返回图 1, 在非共基带的情况下, 在步骤 S102中, 才艮据通过在相邻 小区之间传输配置共享信令所共享的 ePDCCH配置, 来确定是否存在边 缘用户设备的 ePDCCH的干扰。 如果不存在干扰, 则可以进行正常的调 度。 如果存在干扰, 则在步骤 S103中, 响应于存在该干扰的确定, 根据 不同的场景确定不同的干扰协调方式。
[31] 具体地, 可以根据不同的场景采用例如下面的干扰协调方式中至少 之一:
[32] 方式一, 即与干扰相关的相邻小区均传输 ePDCCH;
[33] 方式二, 即与干扰相关的相邻小区之一正常传输 ePDCCH, 且另一 小区放空用于传输 ePDCCH或 PDSCH的资源;
[34] 方式三, 即与干扰相关的相邻小区之一正常传输 ePDCCH, 且另一 小区将用于传输 ePDCCH或 PDSCH的资源分配给其中心区域或其它扇 区中的用户设备, 以传输 PDSCH和 ePDCCH之一。
[35] 图 3是示出不同干扰协调方式的实例的示意图。 图 3的(a )示出方 式一的干扰协调方式的一个实例。 在该实例中, 相邻小区 A和 B之间发 生 ePDCCH的相互干扰,且与干扰相关的相邻小区 A和 B采用正交的方 式传输 ePDCCH。 以此方式, 相邻小区 A和 B均可以传输 ePDCCH, 而 不会相互干扰。 例如, 小区 A和 B的 ePDCCH传输可以采用位图的方式 进行频率复用。 该实例基本适用于各种无线通信场景。 例如, 可以适用于 相邻小区 A和 B发送功率相同且都是高功率发送小区的情况。
[36] 方式一的实例还可以包括小区 A 和小区 B 均各自正常传输 ePDCCH。 该实例通常可以在小区 A和 B发送功率相同且都是低功率发 送小区时实现。
[37] 图 3的 (b )示出方式二的干扰协调方式的一个实例。 在该实例中, 相邻小区 A和 B之间发生 ePDCCH的相互干扰, 可选择地, 也可以是小 区 A的 ePDCCH与小区 B的 PDSCH发生干扰。 如图 3的 (b )所示, 小区 A正常传输 ePDCCH, 且小区 B放空用于传输 ePDCCH (也可以是 PDSCH ) 的资源。 该实例基本适用于各种无线通信场景。 例如, 可以适 用于相邻小区 A和 B发送功率不同的情况。 例如, 使得发送功率低的小 区 A正常传输 ePDC CH,使得发送功率高的小区 B放空用于传输 ePDCCH 的资源。
[38] 图 3的 (c )示出方式三的干扰协调方式的一个实例。 在该实例中, 小区 A和 B之间发生 ePDCCH的相互干扰, 或者小区 A的 ePDCCH与 小区 B的 PDSCH发生干扰。如图 3的( c )所示,小区 A正常传输 ePDCCH, 且小区 B将用于传输 ePDCCH (或者 PDSCH )的资源分配给其中心区域 或其它扇区中的用户设备, 以传输 PDSCH和 ePDCCH之一。 图 3的(c ) 的实例中, 小区 B将用于传输 ePDCCH (或者 PDSCH )的资源分配给其 中心区域的用户设备, 以传输 PDSCH。 方式三的干扰协调方式适用于各 种无线通信场景。 例如, 可以适用于相邻小区 A和 B发送功率相同且都 是高功率发送小区的情况。
[39] 下文中, 将结合具体实施例以及图 4对图 1中所示无线通信方法的 步骤 S103, 即如何才艮据不同的场景确定不同的干扰协调方式进行示例性 描述。
[40] 图 4是示出才艮据不同场景确定不同干扰协调方式的实例的示意图。 由于 ePDCCH的传输优先级一般高于 PDSCH的传输优先级,所以如图 4 所示, 可以首先确定干扰是发生在 ePDCCH传输之间,还是 ePDCCH与 PDSCH的传输之间( 401 )。 当确定发生的是 ePDCCH与 PDSCH之间的 干扰时, 可以依据预先的设定选择干扰协调方式, 使得 ePDCCH正常传 输, 而将 PDSCH的相应资源放空(402, 此为上面描述的协调方式二的 一个实例)。可选择地,可以选择干扰协调方式,使得 ePDCCH正常传输, 而将 PDSCH 的相应资源分配给使用该资源的小区的中心区域或其它扇 区中的用户设备, 以传输 PDSCH或 ePDCCH ( 403, 此为上面描述的协 调方式三的一个实例)。
[41] 当确定相邻小区间发生 ePDCCH相互干扰时,根据一个实施例, 可 以根据相邻小区的发送功率来确定干扰协调方式。例如, 当相邻小区发送 功率相同且都是低功率发送小区时, 由于小区间相互干扰较弱,所以可以 将干扰协调方式确定为使相邻小区均正常传输 ePDCCH ( 405, 此为上面 描述的协调方式一的一个实例)。
[42] 在另外的实例中, 当相邻小区发送功率相同且都是高功率发送小区 时, 由于相邻小区之间的干扰较大, 所以要以时分或空分的方式, 将小区 间 ePDCCH的传输分隔开。 在一个实施例中, 可以确定干扰协調方式, 使相邻小区采用正交的方式传输 ePDCCH ( 407, 此为上面描述的协调方 式一的一个实例)。具体地,相邻小区的 ePDCCH传输可以采用位图的方 式进行频率复用。
[43] 可选择地, 可以确定干扰协调方式, 使两个高功率发送小区之一正 常传输 ePDCCH, 并使另一' J、区的 ePDCCH的相应资源放空(408, 此 为上面描述的协调方式二的一个实例)。 在该实施例中, 例如, 可以根据 发生 ePDCCH干扰的用户设备的公平因子确定正常传输 ePDCCH的小 区。更具体地,可以将公平因子更高的用户设备所在的小区作为正常传输 ePDCCH 的小区。 用户设备的公平因子的求取是本领域技术人员熟知的 内容, 在此省略其详细描述。
[44] 可选择地, 在另一个实施例中, 可以确定干扰协调方式, 使两个高 功率发送小区之一正常传输 ePDCCH , 并使另一小区将用于传输 ePDCCH 的资源分配给其中心区域或其它扇区中的用户设备, 以传输 PDSCH或 ePDCCH ( 408, 此为上面描述的协调方式三的一个实例)。 在 该实施例中, 例如, 可以根据发生 ePDCCH干扰的用户设备的公平因子 确定正常传输 ePDCCH的小区。 更具体地, 可以将公平因子更高的用户 设备所在的小区作为正常传输 ePDCCH的小区。
[45] 在另外的实例中, 当相邻小区发送功率不同时, 考虑到低功率发送 小区通常是热点或盲点覆盖, 将其 ePDCCH的传输优先级设定为高于高 功率发送小区的 ePDCCH的传输优先级。 因而, 确定干扰协调方式, 使 得低功率发送小区的 ePDCCH 正常传输, 而将高功率发送小区的 ePDCCH的相应资源放空( 406,此为上面描述的协调方式二的一个实例)。
[46] 返回图 1, 当在步骤 S 103中响应于 ePDCCH的干扰存在的确定, 根据不同的场景确定不同的干扰协调方式后, 进行到步骤 S 104中。 在步 骤 S 104中, 根据确定的干扰协调方式对相邻小区的 ePDCCH或 PDSCH 的传输进行控制。
[47] 需要注意的是: 对于相邻小区之间共基带的情况, 由基带处理中心 根据其掌握的各小区的 ePDCCH配置情况以及诸如小区发送功率、 用户 设备公平因子等的其它信息确定干扰协调方式。无需通过传输新的信令将 干扰协调方式的确定结果告知任何小区的基站。
[48] 相反, 对于非共基带的情况, 则需要确定干扰协调方式的基站将最 终确定结果告知与之干扰的相邻小区。例如,在具有三种协调方式的情况 下, 可以定义 2bit 的信令来通知干扰协调方式确定结果。 例如, 在网络 拓朴结构不规则,诸如存在宏小区与微小区的情况下,可以通过宏小区与 微小区之间的 X2或 S 1接口来传输用于告知协调方式确定结果的干扰协 调信令。
[49] 对于非共基带的情况, 图 5是例示相邻小区基站 BS 1和 BS2以及它 们各自正在服务的用户设备 (包括诸如 UE 1和 UE2 )之间的信令交互的 时序图。 如图 5所示, 包括诸如用户设备 UE 1和 UE2的用户设备分别计 算其主小区(服务小区)和相邻小区的参考信号接收功率( RSRP ), 并将 计算结果反馈给各自的服务基站 BS 1和 BS2。 基站 BS 1和 BS2分别根据 获得的 RSRP确定用户设备是否为边缘用户。
[50] 此外, 包括 UE 1和 UE2的用户设备还将信道状态信息( CSI )反馈 给各自的服务基站 BS 1和 BS2。 从而, 使得基站 BS1和 BS2能够分别根 据用户设备提供的 CSI 等信息确定待调度的用户。 本领域技术人员熟知 如何确定待调度的用户设备, 这里省略其详细描述。
[51] 在确定待调度的用户设备后,基站 BS 1和 BS2确定待调度用户设备 中是否存在边缘用户。 如果存在边缘用户, 则基站 BS 1和 BS2通过它们 之间的 X2 接口传输所确定的待调度用户设备中的边缘用户设备的 ePDCCH配置信息。在图 5所示的实施例中,基站 BS1将 ePDCCH配置 信息发送给基站 BS2。 然后, 由基站 BS2依据接收到的 ePDCCH配置信 息和其本身掌握的 ePDCCH配置信息确定适当的干扰协调方式。 在确定 了适当的干扰协调方式后,基站 BS2通过 X2接口将确定结果反馈给基站 BS 1。 最后, 基站 BS 1和 BS2依据干扰协调方式的确定结果对用户设备 进行调度, 并控制 ePDCCH和 PDSCH的传输。
[52] 下面结合图 6和图 7描述根据本公开的无线通信方法的另一个实施 例。 在该实施例中, 无线通信网络能够被划分为若干个干扰协調簇。 图 6 是示出根据本实施例的、能够被划分为若干个干扰协调簇的无线通信网络 的示意图。在图 6所示的实例中,每个干扰协蜩簇包括一个宏小区和四个 射频拉远单元(RRH )覆盖的微小区。 能够被划分为若干个干扰协调簇 的无线通信网络的实例例如是每个簇中的基站都通过光纤连接到基带处 理中心(中心节点) 的无线通信网络。
[53] 在无线通信网络被划分为若干个干扰协调簇, 且干扰协调簇内各发 送点共基带的情况下, 当簇内相邻小区的边缘用户发生 ePDCCH相互干 扰时, 可以根据针对不同干扰协调方式估算的可达簇内系统吞吐量 Tt和 簇公平因子 Pt来进行相邻小区间的干扰协调。 这里, 可达簇内系统吞吐 量(系统估计吞吐量) Tt被定义为干扰协调簇内用户设备的吞吐量之和, 如式(2 )所示。 簇公平因子(系统公平因子) Pt被定义为干扰协调簇内 用户设备的公平因子的平均值, 如式(3 )所示。
Tt = Throughput t ( 2 )
^ = ∑ ( 3 ) 其中, Pi和 分别为干扰协蜩簇内将被调度用户 i的公平 因子与吞吐量, n为将被调度用户的数目。
[54] 以图 7为例进行详细说明。 图 7是示出在如图 6中所示的被划分为 干扰协调簇的无线通信网络中使用的无线通信方法的流程图。
[55] 在步骤 S701中,通过比 ^^务小区与簇内其它小区之间的 RSRP值 来确定相应用户设备是否为边缘用户。定义和确定边缘用户的方法可以采 用如上面结合式(1 )所说明的方法。
[56] 在步骤 S702中, 根据调度算法确定 n个将要被调度的用户。 例如, 采用比例公平算法为例, 如式( 4 )所示计算干扰协调簇内用户设备的公 平因子 。
Figure imgf000011_0001
其中, r,代表当前时频资源上用户 i的吞吐量, 代表用户 i在某个 时间段上的平均吞吐量。
[57] 根据用户的公平因子确定 n个将要被调度的用户设备。 在步骤 S702 中,如果确定该 n个用户设备中存在边缘用户,且边缘用户与干扰协调簇 内的其它边缘用户发生 ePDCCH干扰, 则进行到步骤 S703。 否则, 直接 按照调度结果进行调度。
[58] 在步骤 S703中, 确定发生的 ePDCCH干扰是 ePDCCH相互干扰, 还是 ePDCCH与 PDSCH之间的干扰。
[59] 当确定为是 ePDCCH与 PDSCH之间的干扰时, 在本实例中, 处理 进行到步骤 S704。 在步骤 S704中, 确定干扰协调方式, 使得 ePDCCH 正常传输, 并且将 PDSCH的相应资源放空。 当然, 可选择地, 也可以将 PDSCH的相应资源用于该小区的中心用户或其它扇区中的用户。
[60] 当确定为是 ePDCCH相互之间的干扰时, 在本实例中, 处理进行到 步骤 S705。 在步骤 S705中, 针对预先设定的全部干扰协调方式计算估计 吞吐量 Tt和干扰协调簇公平因子 Pto 计算估计吞吐量 Tt和干扰协调簇公 平因子 Pt的方法例如是上面结合式(2 )和式(3 )说明的。
[61] 当针对全部干扰协调方式计算出估计吞吐量 Tt和干扰协调簇公平因 子 Pt之后, 在步骤 S706中, 根据式(5 )确定干扰协调方式。
fare max R ,如果 (max R - min R ) > Th Γ , / ^ \
ν = 6 f ' ^ 1 1 [1,2,3] ( 5 )
Larg maxT^,其匕 其中, V表示最终确定的干扰协调方式; t表示预定干扰协调方式, 在此 例中共有 3种预定干扰协调方式; Th可以是根据仿真结果选定的阈值。
[62] 如式(5 )所示, 如果针对不同干扰协调方式估算出的簇公平因子两 两之间的差值的至少之一大于阈值 Th , 换句话说, 如果簇公平因子的最 大估算值和最小估算值之差大于阈值 Th , 则确定采用使簇公平因子的估 算值最大的干扰协调方式。如果针对不同干扰协调方式估算出的簇公平因 子两两之间的差值的最大值,即簇公平因子的最大估算值和最小估算值之 差小于等于阈值 Th , 则确定采用使可达簇内系统吞吐量的估算值最大的 干扰协调方式。
[63] 阈值 Th可以依据最优仿真结果来设置。当簇公平因子的最大估算值 和最小估算值之差大于阈值 7z时, 意味着与具有最小值的簇公平因子所 对应的协调方式相比,具有最大值的簇公平因子所对应的协调方式下存在 长时间未被蜩度到的用户,这些用户所占的资源块经常被留空。为了保证 调度的公平性, 将该干扰协调模式确定为目标干扰协调模式。 否则, 基站 就选择具有最大吞吐量的干扰协调模式。
[64] 下文中, 将结合图 8和图 9描述用于执行根据本公开的无线通信方 法的无线通信设备。
[65] 图 8是示出根据本发明实施例的无线通信设备 800的功能结构的框 图。 无线通信设备 800包括: 识别单元 810、 干扰确定单元 820和干扰协 调单元 830。
[66] 识别单元 810用于识别边缘用户设备。 识别单元 810执行与图 1中 的步骤 S101相对应的处理。 例如, 识别单元 810可以通过比 艮务小区 和相邻小区的 RSRP来识别边缘用户设备。
[67] 干扰确定单元 820用于确定对边缘用户设备的 ePDCCH的干扰的存 在。 干扰确定单元 820执行与图 1中的步骤 S102相对应的处理, 以确定 是否存在 ePDCCH干扰。
[68] 干扰协调单元 830用于响应于干扰存在的确定, 根据不同的场景确 定不同的干扰协调方式,对与干扰相关的相邻小区的 ePDCCH或 PDSCH 的传输进行控制。换句话说,干扰协调单元 830执行与图 1中的步骤 S103 和 S 104相对应的处理。
[69] 在一个实例中, 当相邻小区发生 ePDCCH与 PDSCH的干扰时, 干 扰协调单元 830可以放空 PDSCH的相应资源的传输。
[70] 可选择地, 当相邻小区发生 ePDCCH与 PDSCH的干扰时, 干扰协 调单元 830也可以将 PDSCH的相应资源分配给使用该资源的小区中的中 心区域或其它扇区中的用户设备, 以传输 PDSCH或 ePDCCH。
[71] 在一个实例中, 当相邻小区发生 ePDCCH相互干扰时, 干扰协调单 元 830可以根据相邻小区的发送功率来确定干扰协调方式。例如, 当相邻 小区发送功率相同且都是低功率发送小区时,干扰协调单元 830可以使相 邻小区均正常传输 ePDCCH。 而当相邻小区发送功率相同且都是高功率 发送小区时, 干扰协调单元 830 可以使相邻小区采用正交的方式传输 ePDCCH。 例如, 干扰协调单元 830可以^ ί吏相邻小区的 ePDCCH传输采 用位图的方式进行频率复用。 [72] 在另外的例子中, 当相邻小区发送功率相同且都是高功率发送小区 时, 干扰协调单元 830 可以使两个高功率发送小区之一正常传输 ePDCCH, 并使另一' j、区的 ePDCCH的相应资源放空。 例如, 干扰协调 单元 830可以根据发生 ePDCCH干扰的用户设备的公平因子确定正常传 输 ePDCCH的小区。 更具体地, 可以将公平因子更高的用户设备所在的 小区作为正常传输 ePDCCH的小区。
[73] 在另外的例子中, 当相邻小区发送功率相同且都是高功率发送小区 时, 干扰协調单元 830可以使相邻小区之一正常传输 ePDCCH, 并使另 一小区将用于传输 ePDCCH的资源分配给其中心区域或其它扇区中的用 户设备, 以传输 PDSCH或 ePDCCH。例如, 干扰协调单元 830可以根据 发生 ePDCCH干扰的用户设备的公平因子确定正常传输 ePDCCH的小 区。更具体地,可以将公平因子更高的用户设备所在的小区确定为正常传 输 ePDCCH的小区。
[74] 在另外一个实例中, 当相邻小区发送功率不同时,干扰协调单元 830 可以使相邻小区中发送功率低的小区正常传输 ePDCCH, 并使发送功率 高的小区放空用于传输 ePDCCH的资源。
[75] 在另外一个实例中, 在无线通信网络被划分为若干个干扰协调簇, 且簇内各发送点共基带的情况下, 当簇内相邻小区的边缘用户发生 ePDCCH相互干扰时, 干扰协调单元 830可以根据针对不同干扰协调方 式估算的可达簇内系统吞吐量和簇公平因子来确定相邻小区间的干扰协 调方式。其中,可达簇内系统吞吐量定义为干扰协调簇内用户的吞吐量之 和, 且簇公平因子定义为干扰协调簇内用户的公平因子的平均值。
[76] 在一个实例中, 当针对不同干扰协调方式估算出的簇公平因子的最 大值与最小值之差大于阈值时,干扰协调单元 830确定采用使簇公平因子 的估算值最大的干扰协调方式。而当针对不同干扰协调方式估算出的簇公 平因子的最大值与最小值之差小于等于阈值时,干扰协调单元 830确定采 用使可达簇内系统吞吐量的估算值最大的干扰协调方式。该阈值可以被设 置为使得: 当簇公平因子的最大值与最小值之差大于阈值时, 意味着与具 有最小值的簇公平因子所对应的协调方式相比,具有最大值的簇公平因子 所对应的协调方式下存在长时间未被调度到的用户。
[77] 上述各种例子的具体实施例已经结合本公开的无线通信方法进行了 介绍, 这里省略其详细说明。 下面, 参考图 9说明根据本公开无线通信设 备的另一个实施例。 图 9是示出根据^开另一实施例的无线通信设备 900的功能结构的框图。
[78] 无线通信设备 900包括: 识别单元 910、 干扰确定单元 920、 干扰协 调单元 930以及信息共享单元 940。 其中, 识别单元 910、 干扰确定单元 920和干扰协调单元 930的功能和结构与结合图 8描述的识别单元 810、 干扰确定单元 820和干扰协调单元 830的功能和结构相同。这里省略其详 细描述。
[79] 信息共享单元 940可以在进行干扰协蜩的相邻小区不共基带的情况 下, 通过在相邻小区之间传输配置共享信令来共享 ePDCCH的配置。 另 外, 信息共享单元 940可以通过在相邻小区之间, 经由诸如 X2或 S1接 口, 传输干扰协调信令来告知干扰协调单元的确定结果。 在包括例如 3 个预定的干扰协调方式的情况下, 可以使用 2bit 的信令作为干扰协调信 令。
[80] 在一个实例中, 根据本公开的无线通信设备可以根据不同的场景采 用例如下面的干扰协調方式中至少之一。上面所举例子分别是下列三种方 式的具体示例。 干扰协调方式有:
[81] 方式一, 即与干扰相关的相邻小区均传输 ePDCCH;
[82] 方式二, 即与干扰相关的相邻小区之一正常传输 ePDCCH, 且另一 小区放空用于传输 ePDCCH或 PDSCH的资源;
[83] 方式三, 即与干扰相关的相邻小区之一正常传输 ePDCCH, 且另一 小区将用于传输 ePDCCH或 PDSCH的资源分配给其中心区域或其它扇 区中的用户设备, 以传输 PDSCH和 ePDCCH之一。
[84] 在一个实施例中, 根据本公开的无线通信设备可以是基站。
[85] 通过使用上述无线通信方法和无线通信设备, 在减小边缘用户间的 ePDCCH 干扰、 确保边缘用户接收控制信息的准确性、 显著改善小区边 缘用户频谱效率的同时, 保证了较高的小区平均频谱效率。
[86] 在上面对本发明具体实施例的描述中, 针对一种实施例描述和 /或示 出的特征可以以相同或类似的方式在一个或更多个其它实施例中使用,与 其它实施例中的特征相组合, 或替代其它实施例中的特征。
[87] 应该强调, 术语"包括 /"在本文使用时指特征、 要素、 步骤或组件的 存在, 但并不排除一个或更多个其它特征、要素、 步骤或组件的存在或附 加。 [88] 此外, 本发明的各实施例的方法不限于按照说明书中描述的或者附 图中示出的时间顺序来执行,也可以按照其它的时间顺序、并行地或独立 地执行。 因此,本说明书中描述的方法的执行顺序不对本发明的技术范围 构成限制。

Claims

权利 要求 书
1. 一种无线通信方法, 用于协作多点通信系统中, 包括:
识别边缘用户设备;
确定对所述边缘用户设备的增强物理下行控制信道( ePDCCH )的干 扰的存在; 以及
响应于所述干扰存在的确定,根据不同的场景确定不同的干扰协调方 式, 以对与所述干扰相关的相邻小区的 ePDCCH 或物理下行共享信道 ( PDSCH )的传输进行控制。
2.根据权利要求 1 所述的无线通信方法, 其中, 当所 目邻小区发 生 ePDCCH与 PDSCH的干扰时, 放空所述 PDSCH的相应资源的传输。
3. 根据权利要求 1所述的无线通信方法, 其中, 当所 目邻小区发 生 ePDCCH与 PDSCH的干扰时, 将所述 PDSCH的相应资源分配给使 用该资源的小区中的中心区域或其它扇区中的用户设备, 以传输 PDSCH 或 ePDCCH。
4.根据权利要求 1 所述的无线通信方法, 其中, 当所 目邻小区发 生 ePDCCH相互干扰时, 根据所 目邻小区的发送功率来确定所述干扰 协调方式。
5.根据权利要求 4所述的无线通信方法, 其中, 当所 目邻小区发 送功率相同且都是低功率发送小区时, 使所述相邻小区均正常传输 ePDCCH。
6.根据权利要求 4所述的无线通信方法, 其中, 当所 目邻小区发 送功率相同且都是高功率发送小区时,使所述相邻小区采用正交的方式传 输 ePDCCH。
7. 根据权利要求 6 所述的无线通信方法, 其中, 所述相邻小区的 ePDCCH传输采用位图的方式进行频率复用。
8.根据权利要求 4所述的无线通信方法, 其中, 当所 目邻小区发 送功率相同且都是高功率发送小区时, 使所述相邻小区之一正常传输 ePDCCH, 并使另一' 区将用于传输 ePDCCH的资源分配给其中心区域 或其它扇区中的用户设备, 以传输 PDSCH或 ePDCCH; 其中, 根据发生 ePDCCH干扰的用户设备的公平因子确定正常传输 ePDCCH 的小区, 其中, 确定公平因子更高的用户设备所在的小区作为 正常传输 ePDCCH的小区。
9.根据权利要求 4所述的无线通信方法, 其中, 当所 目邻小区发 送功率不同时, 使所述相邻小区中发送功率低的小区正常传输 ePDCCH, 并使发送功率高的小区放空用于传输 ePDCCH的资源。
10.根据权利要求 1至 9中任一个所述的无线通信方法, 其中, 如果 进行干扰协調的相邻小区之间不共基带,则通过在相邻小区之间传输配置 共享信令来共享 ePDCCH的配置。
11.根据权利要求 10所述的无线通信方法, 其中, 通过在相邻小区 之间传输干扰协调信令来告知干扰协调方式的确定结果。
12.根据权利要求 1所述的无线通信方法, 其中, 当无线通信网络被 划分为若干个干扰协调簇,且所述簇内各发送点共基带, 当所述簇内相邻 小区的边缘用户发生 ePDCCH相互干扰时, 根据针对不同干扰协调方式 估算的可达簇内系统吞吐量和簇公平因子来确定所述相邻小区间的干扰 协调方式;所述可达簇内系统吞吐量定义为干扰协调簇内用户设备的吞吐 量之和,且所述簇公平因子定义为干扰协调簇内用户设备的公平因子的平 均值。
13.根据权利要求 12所述的无线通信方法, 其中, 当针对不同干扰 协调方式估算出的所述簇公平因子的最大值与最小值之差大于阈值时,确 定采用使所述簇公平因子的估算值最大的干扰协调方式。
14.根据权利要求 12所述的无线通信方法, 其中, 当针对不同干扰 协调方式估算出的所述簇公平因子的最大值与最小值之差小于等于所述 阈值时,确定采用使所述可达簇内系统吞吐量的估算值最大的干扰协调方 式。
15.根据权利要求 13或 14所述的无线通信方法, 其中, 所述阈值被 设置为使得: 当所述簇公平因子的最大值与最小值之差大于所述阈值时, 意味着与具有最小值的簇公平因子所对应的协调方式相比,具有最大值的 簇公平因子所对应的协调方式下存在长时间未被調度到的用户。
16.根据权利要求 1所述的无线通信方法, 其中, 所述干扰协调方式 包括以下方式至少之一:
方式一, 即所述相邻小区均传输 ePDCCH; 方式二, 即所述相邻小区之一正常传输 ePDCCH, 且另一小区放空 用于传输 ePDCCH或 PDSCH的资源;
方式三, 即所述相邻小区之一正常传输 ePDCCH, 且另一小区将用 于传输 ePDCCH 或 PDSCH的资源分配给其中心区域或其它扇区中的用 户设备, 以传输 PDSCH和 ePDCCH之一。
17. 一种无线通信设备, 用于协作多点通信系统中, 包括:
识别单元, 用于识别边缘用户设备;
干扰确定单元,用于确定对所述边缘用户设备的增强物理下行控制信 道( ePDCCH )的干扰的存在;
干扰协調单元,用于响应于干扰存在的确定,根据不同的场景确定不 同的干扰协蜩方式, 对与所述干扰相关的相邻小区的 ePDCCH或物理下 行共享信道(PDSCH )的传输进行控制。
18.根据权利要求 17所述的无线通信设备, 其中, 当所 目邻小区 发生 ePDCCH与 PDSCH的干扰时,所述干扰协调单元放空所述 PDSCH 的相应资源的传输。
19.根据权利要求 17所述的无线通信设备, 其中, 当所 目邻小区 发生 ePDCCH与 PDSCH的干扰时, 所述干扰协调单元将所述 PDSCH 的相应资源分配给使用该资源的小区中的中心区域或其它扇区中的用户 设备, 以传输 PDSCH或 ePDCCH。
20.根据权利要求 17所述的无线通信设备, 其中, 当所 目邻小区 发生 ePDCCH相互干扰时, 所述干扰协调单元根据所 目邻小区的发送 功率来确定所述干扰协调方式。
21.根据权利要求 20所述的无线通信设备, 其中, 当所 目邻小区 发送功率相同且都是低功率发送小区时,所述干扰协调单元使所 目邻小 区均正常传输 ePDCCH。
22.根据权利要求 20所述的无线通信设备, 其中, 当所 目邻小区 发送功率相同且都是高功率发送小区时,所述干扰协调单元使所 目邻小 区采用正交的方式传输 ePDCCH。
23.根据权利要求 22所述的无线通信设备, 其中, 所 目邻小区的 ePDCCH传输采用位图的方式进行频率复用。
24.根据权利要求 20所述的无线通信设备, 其中, 当所 目邻小区 发送功率相同且都是高功率发送小区时,所述干扰协调单元使所 目邻小 区之一正常传输 ePDCCH, 并使另一小区将用于传输 ePDCCH的资源分 配给其中心区域或其它扇区中的用户设备, 以传输 PDSCH或 ePDCCH; 其中, 所述干扰协调单元根据发生 ePDCCH干扰的用户设备的公平 因子确定正常传输 ePDCCH的小区, 其中, 确定公平因子更高的用户设 备所在的小区作为正常传输 ePDCCH的小区。
25.根据权利要求 20所述的无线通信设备, 其中, 当所 目邻小区 发送功率不同时,所述干扰协调单元使所述相邻小区中发送功率低的小区 正常传输 ePDCCH, 并使发送功率高的小区放空用于传输 ePDCCH的资 源。
26.根据权利要求 17至 25中任一个所述的无线通信设备, 还包括: 信息共享单元,用于在进行干扰协调的相邻小区不共基带的情况下,通过 在相邻小区之间传输配置共享信令来共享 ePDCCH的配置。
27.根据权利要求 26所述的无线通信设备, 其中, 所述信息共享单 元通过在相邻小区之间传输干扰协调信令来告知干扰协调单元的确定结 果。
28.根据权利要求 17所述的无线通信设备, 其中, 当无线通信网络 被划分为若干个干扰协调簇,且所述簇内各发送点共基带, 当所述簇内相 邻小区的边缘用户发生 ePDCCH相互干扰时, 所述干扰协调单元根据针 对不同干扰协调方式估算的可达簇内系统吞吐量和簇公平因子来确定所 目邻小区间的干扰协调方式;所述可达簇内系统吞吐量定义为所述干扰 协调簇内用户的吞吐量之和,且所述簇公平因子定义为所述干扰协调簇内 用户的公平因子的平均值。
29.根据权利要求 28所述的无线通信设备, 其中, 当针对不同干扰 协调方式估算出的所述簇公平因子的最大值与最小值之差大于阈值时,所 述干扰协调单元确定采用使所述簇公平因子的估算值最大的干扰协调方 式。
30.根据权利要求 28所述的无线通信设备, 其中, 当针对不同干扰 协调方式估算出的所述簇公平因子的最大值与最小值之差小于等于所述 阈值时,所述干扰协调单元确定采用使所述可达簇内系统吞吐量的估算值 最大的干扰协调方式。
31.根据权利要求 29或 30所述的无线通信设备, 其中, 所述阈值被 设置为使得: 当所述簇公平因子的最大值与最小值之差大于所述阈值时, 意味着与具有最小值的簇公平因子所对应的协调方式相比,具有最大值的 簇公平因子所对应的协调方式下存在长时间未被調度到的用户。
32.根据权利要求 17所述的无线通信设备, 其中, 当所 目邻小区 发生 ePDCCH相互干扰时, 所述干扰协调方式包括以下方式至少之一: 方式一, 即所述相邻小区均传输 ePDCCH;
方式二, 即所述相邻小区之一正常传输 ePDCCH, 且另一小区放空 用于传输 ePDCCH或 PDSCH的资源;
方式三, 即所述相邻小区之一正常传输 ePDCCH, 且另一小区将用 于传输 ePDCCH或 PDSCH的资源分配给其中心区域或其它扇区中的用 户设备, 以传输 PDSCH和 ePDCCH之一。
33. 一种包括计算机可读指令的计算机存储介质, 所述计算机指令用 于使计算机执行如权利要求 1至 16中任一项所述的方法。
34. 一种无线通信系统中的装置, 包括存储器与处理器, 其中, 所述 存储器储存计算机指令,所述处理器用于执行存储于所述存储器中的该计 算机指令以执行如权利要求 1至 16中任一项所述的方法。
PCT/CN2013/090507 2013-01-08 2013-12-26 无线通信方法和无线通信设备 WO2014108028A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157020880A KR20150105377A (ko) 2013-01-08 2013-12-26 무선 통신 방법 및 무선 통신 디바이스
EP13871021.5A EP2945444B1 (en) 2013-01-08 2013-12-26 Wireless communication method and wireless communication device
US14/759,534 US10021701B2 (en) 2013-01-08 2013-12-26 Wireless communication method and wireless communication device
JP2015551110A JP6274220B2 (ja) 2013-01-08 2013-12-26 無線通信方法と無線通信デバイス
ES13871021.5T ES2655683T3 (es) 2013-01-08 2013-12-26 Método de comunicación inalámbrica y dispositivo de comunicación inalámbrica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310006494.XA CN103916338B (zh) 2013-01-08 2013-01-08 无线通信方法和无线通信设备
CN201310006494.X 2013-01-08

Publications (1)

Publication Number Publication Date
WO2014108028A1 true WO2014108028A1 (zh) 2014-07-17

Family

ID=51041747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090507 WO2014108028A1 (zh) 2013-01-08 2013-12-26 无线通信方法和无线通信设备

Country Status (7)

Country Link
US (1) US10021701B2 (zh)
EP (1) EP2945444B1 (zh)
JP (1) JP6274220B2 (zh)
KR (1) KR20150105377A (zh)
CN (1) CN103916338B (zh)
ES (1) ES2655683T3 (zh)
WO (1) WO2014108028A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105165101B (zh) * 2013-04-09 2018-10-16 高通股份有限公司 用于小区簇干扰管理的方法和装置
CN104703212B (zh) * 2013-12-06 2019-07-23 索尼公司 无线通信系统中的装置、无线通信系统和方法
ES2768877T3 (es) 2016-09-23 2020-06-23 Alcatel Lucent Método y dispositivo para asignar recursos de radio en un sistema de comunicación por radio
WO2019105329A1 (zh) * 2017-11-29 2019-06-06 华为技术有限公司 一种通信方法和装置以及系统
US10952098B2 (en) * 2018-06-20 2021-03-16 Charter Communications Operating, Llc Capacity management methods and apparatus for use in a citizens broadband radio service network
US11405941B2 (en) * 2020-07-31 2022-08-02 DISH Wireless L.L.C Method and system for traffic shaping at the DU/CU to artificially reduce the total traffic load on the radio receiver so that not all the TTLs are carrying data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118767A (zh) * 2009-12-30 2011-07-06 上海贝尔股份有限公司 识别小区边缘的用户的方法和基站
CN102215533A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种异构系统中控制信道上的干扰协调方法和设备
WO2011137383A1 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Downlink control in heterogeneous networks
CN102291785A (zh) * 2011-09-21 2011-12-21 电信科学技术研究院 小区间资源协调的方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE548870T1 (de) * 2009-01-08 2012-03-15 Mitsubishi Electric Corp Einstellung oder aufrechterhaltung einer bevorzugten bedingung für ein mobiles endgerät
JP5364644B2 (ja) * 2010-05-28 2013-12-11 パナソニック株式会社 基地局、移動通信システム及び干渉抑圧方法
JP5509054B2 (ja) * 2010-12-10 2014-06-04 Kddi株式会社 無線リソース割当装置、基地局装置、無線リソース割当方法、及び無線リソース割当プログラム
WO2013036005A1 (en) * 2011-09-05 2013-03-14 Lg Electronics Inc. Method of indicating a control channel in a wireless access system, base station for the same and user equipment for the same
US9203576B2 (en) * 2012-08-03 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Quasi co-located antenna ports for channel estimation
US20140098754A1 (en) * 2012-10-09 2014-04-10 Qualcomm Incorporated Methods and apparatus for improved resource management in lte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118767A (zh) * 2009-12-30 2011-07-06 上海贝尔股份有限公司 识别小区边缘的用户的方法和基站
CN102215533A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种异构系统中控制信道上的干扰协调方法和设备
WO2011137383A1 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Downlink control in heterogeneous networks
CN102291785A (zh) * 2011-09-21 2011-12-21 电信科学技术研究院 小区间资源协调的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2945444A4 *

Also Published As

Publication number Publication date
KR20150105377A (ko) 2015-09-16
EP2945444A4 (en) 2016-08-10
JP6274220B2 (ja) 2018-02-07
US10021701B2 (en) 2018-07-10
EP2945444A1 (en) 2015-11-18
ES2655683T3 (es) 2018-02-21
EP2945444B1 (en) 2017-11-22
JP2016506194A (ja) 2016-02-25
CN103916338A (zh) 2014-07-09
US20150351108A1 (en) 2015-12-03
CN103916338B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
US9900872B2 (en) Systems and methods for adaptive transmissions in wireless network
US11350405B2 (en) Enabling exchange of information on radio frame configuration in neighbor cells
WO2019170106A1 (zh) 一种功率控制方法及设备
JP6523278B2 (ja) 端末装置、基地局装置、および通信方法
JP5322906B2 (ja) 基地局装置およびスケジューリング方法
KR101612302B1 (ko) 무선통신 시스템에서 협력통신을 수행하기 위한 방법 및 장치
KR20160145112A (ko) 기지국간 조정된 다지점 통신을 위한 이득 메트릭을 제공하는 방법
JP6587612B2 (ja) 端末装置、基地局装置、および通信方法
JP6656150B2 (ja) 端末装置、基地局装置、および通信方法
WO2016047747A1 (ja) 端末装置、基地局装置、および通信方法
WO2014108028A1 (zh) 无线通信方法和无线通信设备
US20190254043A1 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (noma) scheme
TW201540011A (zh) 用於協調小區間干擾之方法與裝置
JP5825421B2 (ja) 通信制御装置、通信制御方法及び通信制御システム
WO2014056149A1 (zh) 干扰协调的方法及装置
WO2017024570A1 (zh) 一种确定小区簇子帧配置的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551110

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14759534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013871021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013871021

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157020880

Country of ref document: KR

Kind code of ref document: A