WO2019105329A1 - 一种通信方法和装置以及系统 - Google Patents

一种通信方法和装置以及系统 Download PDF

Info

Publication number
WO2019105329A1
WO2019105329A1 PCT/CN2018/117547 CN2018117547W WO2019105329A1 WO 2019105329 A1 WO2019105329 A1 WO 2019105329A1 CN 2018117547 W CN2018117547 W CN 2018117547W WO 2019105329 A1 WO2019105329 A1 WO 2019105329A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink carrier
message
threshold
uplink
reaches
Prior art date
Application number
PCT/CN2018/117547
Other languages
English (en)
French (fr)
Inventor
邝奕如
徐海博
陈磊
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810028099.4A external-priority patent/CN109842915B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019105329A1 publication Critical patent/WO2019105329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a communication method, apparatus, and system.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • new wireless access network wherein the new wireless system allows to provide higher than LTE network Transmission rate, the new wireless system is also called 5G system, next generation communication system, and the like.
  • RLF radio link failure
  • RRC radio resource control
  • the embodiment of the present application provides a communication method, device, and system, which are used to reduce the time when the uplink service is interrupted after the RLF occurs in the terminal.
  • the embodiment of the present application provides a communication method, including any of the following 1-12 embodiments;
  • the embodiment of the present application provides another communication method, including any of the following 13-18 embodiments;
  • an embodiment of the present application provides an apparatus, including any one of the following 19-30;
  • the embodiment of the present application provides another apparatus, including any one of the following 31-36;
  • the embodiment of the present application provides another apparatus, including the following embodiment 37;
  • the embodiment of the present application provides another apparatus, including the following embodiment 38;
  • the embodiment of the present application provides another apparatus, including any of the following 39-50 embodiments;
  • the embodiment of the present application provides another apparatus, including any one of the following 51-56;
  • the ninth aspect the embodiment of the present application provides a computer readable storage medium, including the following embodiment 57;
  • the embodiment of the present application provides a computer program product including instructions, including the following embodiment 58;
  • the embodiment of the present application provides a communication system, including any one of the following 59 or 60;
  • the embodiment of the present application provides another apparatus, including the following embodiment 61;
  • the embodiment of the present application provides another apparatus, including the following embodiment 62;
  • the embodiment of the present application provides another apparatus, including the following embodiment 63;
  • the embodiment of the present application provides another apparatus, including the following embodiment 64.
  • a communication method comprising:
  • the first device Determining, by the first device, that the number of random access requests sent on the first uplink carrier reaches a first threshold or the number of retransmissions of the radio link layer control protocol RLC layer on the first uplink carrier reaches a second threshold, The first device is switched from the first uplink carrier to the second uplink carrier, where the first uplink carrier and the second uplink carrier belong to the same cell;
  • the first device sends a first message to the second device on the second uplink carrier, where the first message is used to indicate that the random access request times reach a first threshold or the RLC layer retransmits The number of times reaches the second threshold.
  • the first device may determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or the number of RLC layer retransmissions transmitted on the first uplink carrier reaches a second After the threshold, the first device switches from the first uplink carrier to the second uplink carrier, where the first uplink carrier and the second uplink carrier belong to the same cell, and the first device sends the first message to the second device on the second uplink carrier, The first message is used to indicate that the number of random access requests reaches a first threshold or the number of retransmissions of the RLC layer reaches a second threshold.
  • the first device may switch to the second uplink carrier, for example, establish a connection with the network device by using a random access procedure, and obtain an uplink resource to send the first message to the network device, thereby recovering the interrupted data communication, and avoiding
  • the cell reselection and the RRC connection reestablishment process are performed, that is, the long-term cell search and downlink measurement process in the cell reselection process is avoided, thereby reducing the data communication interruption time.
  • the method further includes:
  • the first device triggers to perform the following steps: the first device switches from the first uplink carrier to the second uplink carrier .
  • the first device before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, and only When the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, the first device performs the handover action, and the first device does not need to perform the cell reselection process and the radio resource control RRC connection reestablishment process, so A device does not generate an interrupt when cell reselection and RRC connection reestablishment, and the first device can switch to the second uplink carrier to continue to maintain the connection with the second device and continue to maintain data communication.
  • the method further includes:
  • the first device triggers to perform the following steps: the first device switches from the first uplink carrier to the second uplink carrier.
  • the first device before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than the downlink measurement threshold, and only in the downlink.
  • the first device performs the handover action.
  • the first device does not need to perform the cell reselection process and the radio resource control RRC connection reestablishment process, so the first device does not
  • the first device may switch to the second uplink carrier to continue to maintain the connection with the second device and continue to maintain data communication.
  • the first device When the downlink reference signal measurement value is smaller than the downlink measurement threshold, the first device performs a cell reselection process and a radio resource control RRC connection reestablishment process.
  • the first device Before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, and if the downlink reference signal measurement value Less than the downlink measurement threshold. In this case, the first device does not perform the steps of switching to the second uplink carrier and transmitting the first message on the second uplink carrier as mentioned in Embodiment 1, but performing the cell.
  • the reselection process and the radio resource control RRC connection re-establishment process enable the first device to re-establish a connection with the second device.
  • the first device When the downlink reference signal measurement value is less than or equal to the downlink measurement threshold, the first device performs a cell reselection process and a radio resource control RRC connection reestablishment process.
  • the first device Before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than the downlink measurement threshold, and if the downlink reference signal measurement value is less than or Equal to the downlink measurement threshold. In this case, the first device does not perform the steps of switching to the second uplink carrier and transmitting the first message on the second uplink carrier as mentioned in Embodiment 1, but performing the cell.
  • the reselection process and the radio resource control RRC connection re-establishment process enable the first device to re-establish a connection with the second device.
  • the first message is further used to indicate that the uplink carrier whose number of random access requests reaches a first threshold is the first uplink carrier.
  • an uplink carrier that is used to indicate that the number of retransmissions of the RLC layer reaches a second threshold is the first uplink carrier.
  • the first device may indicate that the uplink carrier whose number of random access requests reaches the first threshold is the first uplink carrier, or the uplink that indicates that the number of retransmissions of the RLC layer reaches the second threshold.
  • the carrier is the first uplink carrier, so that the second device can determine, by using the first message, that the first uplink carrier has an RLF. It can be understood that if the second device only configures one uplink carrier for the first device, the first message does not need to indicate that the uplink carrier where the RLF occurs is the first uplink carrier.
  • the first message may indicate which uplink carrier is the uplink carrier of the RLF, so that the second device performs subsequent operations on the first uplink carrier where the RLF occurs. Processing, for example, when the second device can release the first uplink carrier, or the second device still wants the first device to use the first uplink carrier, the second device can reconfigure the first uplink carrier, so that the first device can be re- The first uplink carrier is used for subsequent communication.
  • the method further includes:
  • the first device releases the first uplink resource configured on the first uplink carrier.
  • the first device may also release the first uplink resource, that is, the first device does not use the first An uplink resource.
  • the first uplink resource may be a physical uplink control channel (PUCCH) resource, but is not limited to a PUCCH resource. If the first uplink resource is not configured on the first uplink carrier, the first device does not need to perform the step of releasing the first uplink resource.
  • PUCCH physical uplink control channel
  • the first device sends the first message to the second device on the second uplink carrier, including:
  • the first device receives a second message sent by the second device according to the SR, where the second message indicates a second uplink resource;
  • the first device sends the first message to the second device by using the second uplink resource.
  • the first device needs to send an uplink resource to the second device when the first device needs to send the first message. For example, if the terminal device has a PUCCH resource or an SR resource, the first device sends the SR on the second uplink carrier. After the second device receives the SR, the second device may configure the second uplink resource for the first device, and the second device indicates the second uplink resource to the first device by using the second message, where the first device determines by using the second message. After the second uplink resource is sent, the first device may send the first message to the second uplink resource, so that the second device can receive the first message.
  • the method further includes:
  • the first device uses the third uplink resource to send the SR to the second device on the second uplink carrier.
  • the first device may initiate a random access on the second uplink carrier, and after the second device receives the random access request, the second device may configure a third uplink resource for the first device, and the second device passes the third message. And indicating, by the first device, the third uplink resource, where the third uplink resource may be a PUCCH resource or an SR resource, where the first device sends the SR to the third uplink resource configured by the first device, so that the first device may succeed. Send SR.
  • the first device may generate an RRC message at the RRC layer, where the RRC message may be used as the first message to indicate that the random access request times reach a first threshold or the RLC layer retransmission times reach a second threshold.
  • the communication between the first device and the second device may also adopt other message formats, depending on the implementation scenario.
  • the first uplink carrier is a non-supplemental uplink non-SUL carrier
  • the second uplink carrier is a SUL carrier
  • the first uplink carrier may be referred to as a non-SUL carrier, and the second uplink carrier may be referred to as a SUL carrier.
  • the first uplink carrier and the second uplink carrier may have different frequency bands or may have the same or similar frequency bands.
  • the coverage of the first uplink carrier and the second uplink carrier partially overlap, for example, the frequency band of the first uplink carrier is higher than the frequency band of the second uplink carrier,
  • the coverage of the first uplink carrier is smaller than the coverage of the second uplink carrier, and the coverage of the first uplink carrier is within the coverage of the second uplink carrier.
  • the terminal may select the first uplink carrier to initiate the network connection.
  • the second uplink carrier may also be selected to initiate network access.
  • the frequency band of the first uplink carrier and the frequency band of the second uplink carrier are the same or similar, the coverage ranges of the first uplink carrier and the second uplink carrier are the same or substantially the same.
  • a communication method comprising:
  • the second device receives the first message sent by the first device on the second uplink carrier, where the first message is that the first device determines that the number of random access requests sent on the first uplink carrier reaches a first threshold or After the number of retransmissions of the radio link layer control protocol RLC layer on the first uplink carrier reaches the second threshold, the first device switches from the first uplink carrier to the second uplink carrier, and then sends the first device to the second uplink carrier.
  • the first uplink carrier and the second uplink carrier belong to the same cell;
  • the second device determines, according to the first message, that the first device does not use the first uplink carrier.
  • the second device receives the first message sent by the first device on the second uplink carrier, where the first message is that the first device determines that the number of random access requests sent on the first uplink carrier reaches After the first threshold or the number of retransmissions of the RLC layer transmitted on the first uplink carrier reaches the second threshold, the first device switches from the first uplink carrier to the second uplink carrier, where the first uplink carrier and the second The uplink carrier belongs to the same cell; the second device determines, according to the first message, that the first device does not use the first uplink carrier.
  • the second device may determine, according to the first message sent by the first device, that the first device does not use the first uplink carrier, and therefore the second device does not use the first uplink carrier to receive the first device. Uplink signal, thereby saving overhead on the second device side.
  • the second device sends a fourth message to the first device, where the fourth message includes: a downlink measurement threshold.
  • the first device determines whether the downlink reference signal measurement value is greater than the downlink measurement threshold, or the first device determines whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, and the value of the downlink measurement threshold may be Obtaining, by the second device, the fourth message is sent by the second device to the first device when the first device is initially accessed, so that the first device can obtain the downlink measurement threshold. .
  • the first device may indicate that the uplink carrier whose number of random access requests reaches the first threshold is the first uplink carrier, or the uplink that indicates that the number of retransmissions of the RLC layer reaches the second threshold.
  • the carrier is the first uplink carrier, so that the second device can determine, by using the first message, that the first uplink carrier has an RLF. It can be understood that if the second device only configures one uplink carrier for the first device, the first message does not need to indicate that the uplink carrier where the RLF occurs is the first uplink carrier.
  • the first message may indicate which uplink carrier is the uplink carrier of the RLF, so that the second device performs the first uplink carrier on which the RLF occurs. For example, when the second device can release the first uplink carrier, or the second device still wants the first device to use the first uplink carrier, the second device can reconfigure the first uplink carrier, so that the first device can The first uplink carrier is reused for subsequent communication.
  • the method further includes:
  • the second device sends a second message to the first device according to the SR, where the second message indicates a second uplink resource, and the second uplink resource is used by the first device to use the second
  • the uplink resource sends the first message to the second device.
  • the first device When the first device needs to send the first message, the first device needs to request the uplink resource from the second device, for example, the first device sends the SR on the second uplink carrier, and after the second device receives the SR, the second device
  • the second uplink resource may be configured for the first device, and the second device may indicate the second uplink resource to the first device by using the second message.
  • the first device After the first device determines the second uplink resource by using the second message, the first device may The second uplink resource sends the first message, so that the second device can receive the first message.
  • the method further comprises: before the second device receives the scheduling request SR sent by the first device, the method further includes:
  • the second device sends a third message to the first device according to the random access request, where the third message indicates a third uplink resource, and the third uplink resource is used by the first device
  • the third uplink resource is configured to send the SR to the second device on the second uplink carrier.
  • the first device may initiate a random access on the second uplink carrier, and after the second device receives the random access request, the second device may configure a third uplink resource for the first device, where the third uplink resource may be a PUCCH And the second device indicates the third uplink resource to the first device by using the third device, where the first device uses the second device to send the SR for the third uplink resource configured by the first device, so that the first device can succeed.
  • Send SR may initiate a random access on the second uplink carrier, and after the second device receives the random access request, the second device may configure a third uplink resource for the first device, where the third uplink resource may be a PUCCH And the second device indicates the third uplink resource to the first device by using the third device, where the first device uses the second device to send the SR for the third uplink resource configured by the first device, so that the first device can succeed.
  • Send SR Send SR.
  • the method further includes :
  • the second device reconfigures the first uplink carrier
  • the second device releases the first uplink carrier.
  • the second device may indicate that the uplink carrier where the RLF occurs is the first uplink carrier, and the second device performs subsequent processing on the first uplink carrier where the RLF occurs, for example, the second device may release the first uplink carrier, or When the second device still wants the first device to use the first uplink carrier, the second device may reconfigure the first uplink carrier, so that the first device may reuse the first uplink carrier for subsequent communication.
  • a first device, applied to a terminal device comprising:
  • the processing module is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or the number of retransmissions of the radio link layer control protocol RLC layer transmitted on the first uplink carrier reaches a second threshold;
  • a transceiver module configured to switch from the first uplink carrier to the second uplink carrier, where the first uplink carrier and the second uplink carrier belong to the same cell;
  • the transceiver module is further configured to send, by using the second uplink carrier, a first message to the second device, where the first message is used to indicate that the number of random access requests reaches a first threshold or the RLC The number of layer retransmissions reaches a second threshold.
  • the first device wherein the processing module is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or on the first uplink carrier. After the number of retransmissions of the radio link layer control protocol RLC layer reaches the second threshold, determining whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold; when the downlink reference signal measurement value is greater than or equal to the downlink When the threshold is measured, the transceiver module is triggered to perform the following steps: switching from the first uplink carrier to the second uplink carrier.
  • the first device wherein the processing module is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or on the first uplink carrier. After the retransmission of the radio link layer control protocol, the RLC layer retransmission times reaches the second threshold, determining whether the downlink reference signal measurement value is greater than the downlink measurement threshold; and when the downlink reference signal measurement value is greater than the downlink measurement threshold.
  • the transmitting and receiving module is triggered to perform the following steps: switching from the first uplink carrier to the second uplink carrier.
  • the first device wherein the processing module is further configured to: when the downlink reference signal measurement value is smaller than the downlink measurement threshold, trigger the transceiver module to perform a cell The reselection process and the radio resource control RRC connection re-establishment process.
  • the first device wherein the processing module is further configured to trigger the transceiver module when the measured value of the downlink reference signal is less than or equal to the downlink measurement threshold. Perform a cell reselection process and a radio resource control RRC connection re-establishment process.
  • the first device according to any one of the embodiments 19-23, wherein the first message is further used to indicate that the uplink carrier whose number of random access requests reaches a first threshold is the first uplink.
  • the carrier, or an uplink carrier that is further used to indicate that the number of retransmissions of the RLC layer reaches a second threshold is the first uplink carrier.
  • the first device according to any one of the embodiments 19-24, wherein the processing module is further configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or After the number of retransmissions of the radio link layer control protocol RLC layer on the first uplink carrier reaches the second threshold, the first uplink resource configured on the first uplink carrier is released.
  • the transceiver module is further configured to send a scheduling request SR to the second device on the second uplink carrier;
  • the transceiver module is further configured to receive a second message that is sent by the second device according to the SR, where the second message indicates a second uplink resource;
  • the transceiver module is further configured to send the first message to the second device by using the second uplink resource.
  • the transceiver module is further configured to receive a third message sent by the second device, where the third message indicates a third uplink resource;
  • the transceiver module is configured to send the SR to the second device by using the third uplink resource on the second uplink carrier.
  • the first device according to any one of embodiments 19-28, wherein the first uplink carrier is a non-supplemental uplink non-SUL carrier, and the second uplink carrier is a SUL carrier.
  • the modules of the first device may also perform the steps described in any of the foregoing embodiments 1 to 12, as described in the foregoing implementation manners of the embodiments 1 to 12. .
  • a second device which is applied to a network device, and includes:
  • a receiving module configured to receive, by using a second device, a first message sent by the first device, where the first message is that the first device determines that the number of random access requests sent on the first uplink carrier reaches a first threshold Or after the number of retransmissions of the radio link layer control protocol RLC layer on the first uplink carrier reaches a second threshold, after the first device switches from the first uplink carrier to the second uplink carrier,
  • the first uplink carrier and the second uplink carrier belong to the same cell;
  • the processing module is configured to determine, according to the first message, that the first device does not use the first uplink carrier.
  • the second device further includes: a sending module, configured to send a fourth message to the first device, where the fourth message includes: downlink measurement Threshold.
  • the second device wherein the processing module is further configured to determine, according to the first message, that an uplink carrier whose number of random access requests reaches a first threshold is An uplink carrier, or an uplink carrier whose number of retransmissions of the RLC layer reaches a second threshold is a first uplink carrier.
  • the second device according to any one of embodiments 31-33, wherein the receiving module is further configured to receive the first uplink carrier on the second uplink carrier before receiving the first message.
  • the sending module is further configured to send, according to the SR, a second message to the first device, where the second message indicates a second uplink resource, and the second uplink resource is used by the first device
  • the second uplink resource sends the first message to the second device.
  • the second device wherein the receiving module is further configured to: before receiving the scheduling request SR sent by the first device, receive the random access sent by the first device request;
  • the sending module is further configured to send a third message to the first device according to the random access request, where the third message indicates a third uplink resource, and the third uplink resource is used by the first The device uses the third uplink resource to send the SR to the second device on the second uplink carrier.
  • each module of the second device may also perform the steps described in any of the foregoing embodiments 13 to 18, as described in the foregoing implementation manners of the embodiments 13 to 18. .
  • a first device is applied to a terminal device, where the first device includes: at least one processor, a memory; and the at least one processor and the memory communicate with each other;
  • the memory is for storing instructions
  • the at least one processor is operative to execute the instructions in the memory, and the method of any one of embodiments 1 to 12 is performed.
  • each module of the first device may also perform the steps described in any of the foregoing embodiments 1 to 12, as described in the foregoing implementations of the embodiments 1 to 12.
  • a second device applied to a network device, the second device includes: at least one processor, a memory; and the at least one processor and the memory communicate with each other;
  • the memory is for storing instructions
  • the at least one processor is operative to execute the instructions in the memory, and the method of any one of embodiments 13 to 18 is performed.
  • each module of the first device may also perform the steps described in any of the foregoing embodiments 13 to 18, as described in the foregoing implementation manners of the embodiments 13 to 18.
  • a first device which is applied to a terminal device, where the first device includes:
  • the processor is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or the number of radio link layer control protocol RLC layer retransmissions transmitted on the first uplink carrier reaches a second threshold;
  • a transceiver configured to switch from the first uplink carrier to a second uplink carrier, where the first uplink carrier and the second uplink carrier belong to the same cell;
  • the transceiver is further configured to send a first message to the second device on the second uplink carrier, where the first message is used to indicate that the number of random access requests reaches a first threshold or the RLC The number of layer retransmissions reaches a second threshold.
  • the first device wherein the processor is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or on the first uplink carrier. After the number of retransmissions of the radio link layer control protocol RLC layer reaches the second threshold, determining whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold; when the downlink reference signal measurement value is greater than or equal to the downlink When the threshold is measured, the transceiver is triggered to perform the following steps: switching from the first uplink carrier to the second uplink carrier.
  • the first device wherein the processor is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or on the first uplink carrier. After the retransmission of the radio link layer control protocol, the RLC layer retransmission times reaches the second threshold, determining whether the downlink reference signal measurement value is greater than the downlink measurement threshold; and when the downlink reference signal measurement value is greater than the downlink measurement threshold.
  • the triggering of the transceiver performs the following steps: switching from the first uplink carrier to the second uplink carrier.
  • the first device wherein the processor is further configured to: when the downlink reference signal measurement value is smaller than the downlink measurement threshold, trigger the transceiver to execute a cell.
  • the first device wherein the processor is further configured to trigger the transceiver when the downlink reference signal measurement value is less than or equal to the downlink measurement threshold value. Perform a cell reselection process and a radio resource control RRC connection re-establishment process.
  • the first device according to any one of the embodiments 39-43, wherein the first message is further used to indicate that the uplink carrier whose number of random access requests reaches a first threshold is the first uplink.
  • the carrier, or an uplink carrier that is further used to indicate that the number of retransmissions of the RLC layer reaches a second threshold is the first uplink carrier.
  • the first device according to any one of embodiments 39-44, wherein the processor is further configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or After the number of retransmissions of the radio link layer control protocol RLC layer on the first uplink carrier reaches the second threshold, the first uplink resource configured on the first uplink carrier is released.
  • the first device according to any one of the embodiments 39-45, wherein the transceiver is further configured to send a scheduling request SR to the second device on the second uplink carrier;
  • the transceiver is further configured to receive a second message that is sent by the second device according to the SR, where the second message indicates a second uplink resource;
  • the transceiver is further configured to send the first message to the second device by using the second uplink resource.
  • the transceiver is further configured to receive a third message sent by the second device, where the third message indicates a third uplink resource;
  • the transceiver is specifically configured to send the SR to the second device by using the third uplink resource on the second uplink carrier.
  • the first device according to any one of embodiments 39-48, wherein the first uplink carrier is a non-supplemental uplink non-SUL carrier, and the second uplink carrier is a SUL carrier.
  • the modules of the first device may also perform the steps described in any of the foregoing embodiments 1 to 12, as described in the foregoing implementation manners of the embodiments 1 to 12. .
  • a second device which is applied to a network device, where the second device includes:
  • a receiver configured to receive, by the first uplink carrier, a first message sent by the first device, where the first message is that the first device determines that the number of random access requests sent on the first uplink carrier reaches a first threshold Or after the number of retransmissions of the radio link layer control protocol RLC layer on the first uplink carrier reaches a second threshold, after the first device switches from the first uplink carrier to the second uplink carrier,
  • the first uplink carrier and the second uplink carrier belong to the same cell;
  • the processor is configured to determine, according to the first message, that the first device does not use the first uplink carrier.
  • the second device further includes: a transmitter, configured to send a fourth message to the first device, where the fourth message includes: downlink measurement Threshold.
  • the second device wherein the processor is further configured to determine, according to the first message, that an uplink carrier whose number of random access requests reaches a first threshold is An uplink carrier, or an uplink carrier whose number of retransmissions of the RLC layer reaches a second threshold is a first uplink carrier.
  • the second device according to any one of embodiments 51-53, wherein the receiver is further configured to receive the first uplink carrier on the second uplink carrier before receiving the first message.
  • the transmitter is further configured to send a second message to the first device according to the SR, where the second message indicates a second uplink resource, and the second uplink resource is used by the first device
  • the second uplink resource sends the first message to the second device.
  • the second device wherein the receiver is further configured to: before receiving the scheduling request SR sent by the first device, receive the random access sent by the first device request;
  • the transmitter is further configured to send a third message to the first device according to the random access request, where the third message indicates a third uplink resource, and the third uplink resource is used by the first
  • the device uses the third uplink resource to send the SR to the second device on the second uplink carrier.
  • the second device according to any one of the embodiments 51-55, wherein the processor is further configured to: when the second device receives the After the first message, the first uplink carrier is reconfigured; or the first uplink carrier is released.
  • the modules of the second device may also perform the steps described in any of the foregoing embodiments 13 to 18, as described in the foregoing implementation manners of the embodiments 13 to 18. .
  • a computer readable storage medium comprising instructions which, when run on a computer, cause the computer to perform the method of any of embodiments 1-12, or 13-18.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of embodiments 1-12, or 13-18.
  • a communication system characterized in that the system comprises:
  • a second device for performing the method of any of embodiments 13-18.
  • a communication system characterized in that the system comprises: the first device as described in any one of embodiments 19-30, 37, 39-50, and as in embodiments 31-36, 38, 51-56 Any of the second devices described.
  • a first device for use in a terminal device characterized in that the first device is configured to perform the method of any of embodiments 1-12.
  • a second device for use in a network device wherein the second device is configured to perform the method of any of embodiments 13-18.
  • a first device applied to a terminal device, the first device comprising: at least one processor, configured to perform the method of any one of embodiments 1 to 12; The at least one processor coupled memory.
  • a second device applied to a network device, the second device comprising: at least one processor for performing the method of any one of embodiments 13 to 18; At least one processor coupled memory.
  • FIG. 1 is a schematic structural diagram of a possible radio access network according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a communication system according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication system according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of a communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a first device according to an embodiment of the present application.
  • FIG. 10-a is a schematic structural diagram of a second device according to an embodiment of the present application.
  • FIG. 10-b is a schematic structural diagram of a second device according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a first device according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second device according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a first device according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a second device according to another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the embodiment of the present application provides a communication method, device, and system, which are used to reduce the time when the uplink service is interrupted after the RLF occurs in the terminal.
  • first, second, third, etc. may be used to describe various messages/frames, requests, and terminals in the embodiments of the present application, these messages/frames, requests, and terminals should not be limited to these terms. . These terms are only used to distinguish messages/frames, requests, and terminals from each other.
  • the first terminal may also be referred to as a second terminal without departing from the scope of the embodiments of the present application.
  • the second terminal may also be referred to as a first terminal.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • a conventional cell is composed of one downlink carrier and one uplink carrier, and the frequency of the uplink carrier and the downlink carrier are the same or similar in the conventional cell.
  • the current spectrum resources have been difficult to meet the user's demand for capacity growth.
  • the high frequency band with larger available bandwidth is called the candidate band of the 5G system; at the same time, in order to satisfy most users (especially Edge users) Signal transmission coverage and high communication quality requirements.
  • the frequency band in the high-frequency cell is higher and the transmission power of the terminal is lower, so that the terminal in the cell edge area can receive the signal of the base station in the cell, but the base station cannot receive the signal.
  • the signal of the terminal in the edge region has the problem that the uplink and downlink coverage is asymmetric.
  • an additional lower frequency uplink frequency band may be introduced outside the original high frequency uplink frequency band of the cell to send an uplink signal.
  • the lower frequency uplink frequency band is referred to as a supplementary uplink.
  • said high frequency uplink frequency band is a normal uplink (Normal Uplink) carrier or a non-supplementary uplink (non-SUL) carrier or a non-supplementary uplink (non-SUL) carrier.
  • the uplink handover of the terminal is based on the network side, for example, the measurement result is reported to the base station in the terminal period, and the base station determines whether the terminal needs to perform uplink handover according to the measurement result, and if the uplink handover is required, the downlink control information is sent.
  • Downlink Control Information (DCI) is given to the terminal, indicating that the terminal wants to switch to the time-frequency resource location of the new uplink carrier, and the terminal can continue to send data on the new uplink carrier.
  • DCI Downlink Control Information
  • RLF Radio Link Failure
  • FIG. 1 is a schematic structural diagram of a possible radio access network (RAN) according to an embodiment of the present application.
  • the RAN includes one or more second devices 20.
  • the radio access network can be connected to a core network (CN).
  • the second device 20 can be any device having a wireless transceiving function.
  • the second device 20 includes but is not limited to: a base station (for example, a base station BS, a base station NodeB, an evolved base station eNodeB or eNB, a base station gNodeB or gNB in a fifth generation 5G communication system, a base station in a future communication system, and a WiFi system) Access node, wireless relay node, wireless backhaul node, etc.
  • a base station for example, a base station BS, a base station NodeB, an evolved base station eNodeB or eNB, a base station gNodeB or gNB in a fifth generation 5G communication system, a base station in a
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like.
  • a plurality of base stations may support a network of one or more of the techniques mentioned above, or a future evolved network.
  • the core network may support the above mentioned network of one or more technologies, or a future evolved network.
  • the base station may include one or more co-site or non-co-located transmission receiving points (TRPs).
  • the second device 20 may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the second device may also be a server, a wearable device, or an in-vehicle device or the like.
  • the second device 20 will be described as an example of a base station.
  • the plurality of second devices 20 may be the same type of base station or different types of base stations.
  • the base station can communicate with the terminal device 10 or with the terminal device 10 through the relay station.
  • the terminal 10 can support communication with multiple base stations of different technologies.
  • the terminal device can support communication with a base station supporting the LTE network, can also support communication with a base station supporting the 5G network, and can also support a base station with an LTE network and a 5G network. Dual connectivity of the base station.
  • a terminal device also called a user equipment (UE), a mobile station (MS), a mobile terminal (MT), a terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the device for example, a handheld device, an in-vehicle device, or the like that has wireless connection capabilities.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR equipment
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid
  • a wireless terminal in a wireless terminal a wireless terminal in a transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, or the like.
  • the second device may be a network device, such as a radio access network (RAN) node that accesses the terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (AP).
  • the second device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • the RAN may be a base station access system of a 2G network (ie, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (ie, the RAN includes a base station and an RNC), or may be 4G.
  • the base station access system of the network ie, the RAN includes an eNB and an RNC
  • the CN may be an MME and/or an S-GW of a 4G network, or may be an SGSN or GGSN of a 3G network, or may be a Next Generation Core Network (NG-Core) of a 5G network.
  • NG-Core Next Generation Core Network
  • the gNB generally includes the following functions of at least one protocol layer: a Radio Resource Control (RRC) layer, a Packet Data Convergence Protocol (PDCP) layer, and a Radio Link Control (RLC). Layer, Media Access Control (MAC) layer and Physical Layer (PHY).
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Layer Media Access Control
  • PHY Physical Layer
  • the gNB may adopt a Centralized Unit (CU) and a Distributed Unit (DU) architecture, and the CU and the DU communicate by wire or wireless, and the DU communicates with the terminal through an air interface, and the terminal Move in different cells under the same or different DUs.
  • CU Centralized Unit
  • DU Distributed Unit
  • the gNB adopts the CU-DU architecture, there are multiple allowable partitions of the CU and the DU function.
  • One of the work allowed partitioning modes may be: the CU includes an RRC layer and a PDCP layer, and the DU includes an RLC layer, a MAC layer, and a PHY. Floor.
  • the second device in the radio access network RAN is a base station (such as gNB) of a CU and a DU separation architecture.
  • the RAN can be connected to the core network (for example, it can be the core network of LTE, or the core network of 5G, etc.).
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • CUs and DUs can be physically separated or deployed together.
  • the function of the RAN terminates at the CU. Multiple DUs can share one.
  • a DU can also be connected to multiple CUs (not shown).
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • the CU and DU can be divided according to the protocol layer of the wireless network.
  • the CU includes functions of an RRC layer and a PDCP layer
  • the DU includes functions of an RLC layer, a MAC layer, and a PHY layer.
  • the division of the CU and DU processing functions according to this protocol layer is merely an example, and may be divided in other manners.
  • a CU or a DU can be divided into functions having more protocol layers.
  • a CU or a DU can also be divided into partial processing functions with a protocol layer.
  • some functions of the RLC layer and functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to the type of service or other system requirements. For example, according to the delay division, the function that needs to meet the delay requirement in the processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the network architecture shown in Figure 2 can be applied to a 5G communication system, which can also share one or more components or resources with an LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally and also separated.
  • the CU can be set to facilitate centralized management on the network side.
  • the DU can have multiple RF functions or remotely set the RF function.
  • FIG. 3 is a schematic diagram of a communication system according to another embodiment of the present application.
  • the communication system includes a second device 310 and a terminal 320, where the second device 310 is configured to connect the terminal 320 to the wireless network.
  • one cell has one downlink download wave and two uplink carriers, and the two uplink carriers have different frequency bands, that is, the coverage ranges are different, and the uplink carrier coverage range with the higher frequency band is smaller than the lower one.
  • the uplink carrier of the frequency band is referred to as a first uplink carrier or a normal carrier or a non-SUL carrier
  • the uplink carrier of the lower frequency band is referred to as a second uplink carrier or an auxiliary uplink carrier or a SUL carrier
  • the terminal 320 may allow selection of the first uplink carrier or the
  • the second uplink carrier accesses the second device 310, where the terminal 320 camps on a boundary (eg, a non-SUL boundary) of the first uplink carrier and a boundary of the second uplink carrier (eg, SUL)
  • the terminal 320 by a second uplink carrier of the second access device 310.
  • FIG. 4 is a schematic flowchart diagram of a communication method according to an embodiment of the present application.
  • Step 401 The first device determines that the number of random access requests sent on the first uplink carrier reaches a first threshold or a Radio Link Control (RLC) layer retransmission transmitted on the first uplink carrier. After the number of times reaches the second threshold, the first uplink carrier and the second uplink carrier belong to the same cell.
  • RLC Radio Link Control
  • the first device determines that the number of random access requests reaches a first threshold, and the first threshold may be a maximum value of the number of random access requests, for example, the maximum value is four times. Or, the first device determines that the number of retransmissions of the RLC layer reaches a second threshold, where the second threshold may be a maximum value of the number of retransmissions of the RLC layer, for example, the maximum value is four times, and the first device may consider that the wireless occurs in the foregoing case.
  • Link Failure (RLF).
  • the first device When the first device enters or camps on the cell, the first device receives the carrier configuration information sent by the second device of the cell through the broadcast channel or the dedicated channel, for example, the configuration information includes the first uplink carrier and the second uplink carrier.
  • the carrier configuration information further includes downlink carrier information.
  • the first uplink carrier is a non-SUL carrier and the second uplink carrier is a SUL carrier.
  • the frequency of the first uplink carrier is higher than the frequency of the second uplink carrier.
  • the first uplink carrier and the second uplink carrier belong to the same cell.
  • the first uplink carrier may be referred to as a non-SUL carrier
  • the second uplink carrier may be referred to as a SUL carrier
  • the first uplink carrier and the second uplink carrier may have different frequency bands, or may be Have the same or similar frequency bands.
  • the coverage of the first uplink carrier and the second uplink carrier partially overlap, for example, the frequency band of the first uplink carrier is higher than the frequency band of the second uplink carrier, The coverage of the first uplink carrier is smaller than the coverage of the second uplink carrier, and the coverage of the first uplink carrier is within the coverage of the second uplink carrier.
  • the terminal may select the first uplink carrier to initiate the network connection.
  • the second uplink carrier may also be selected to initiate network access.
  • the frequency band of the first uplink carrier and the frequency band of the second uplink carrier are the same or similar, the coverage ranges of the first uplink carrier and the second uplink carrier are the same or substantially the same.
  • the coverage of the first uplink carrier is smaller than the coverage of the second uplink carrier.
  • the first device is located in the range of the first uplink carrier, and is connected to the second device by using the first uplink carrier, that is, the first device is in the connected state, and when the first device moves to the boundary of the first uplink coverage, the first uplink is performed.
  • the signal of the carrier will continue to weaken, and the first device will continuously initiate a random access request on the first uplink carrier or perform radio link control (RLC) layer retransmission.
  • RLC radio link control
  • the random access request may be referred to as MSG1.
  • the reason why the high frequency is introduced in the 5G system is that the current spectrum resources are difficult to meet the user's demand for capacity growth.
  • the high frequency band with larger available bandwidth is called the candidate band of the 5G system.
  • the low frequency band is used for uplink transmission. Therefore, a combination of high frequency and low frequency occurs, that is, a cell has both a high frequency uplink carrier and a low frequency uplink carrier.
  • the terminal may consider that the random access failure occurs on the first uplink carrier.
  • the first device determines in step 401 that the number of random access requests sent on the first uplink carrier reaches a first threshold or the radio link layer control protocol RLC layer transmitted on the first uplink carrier After the number of transmissions reaches the second threshold, the communication method provided by the embodiment of the present application further includes:
  • the first device triggers to perform the following step 402: the first device switches to the second uplink carrier.
  • the downlink reference signal may be one or more of a synchronization signal and channel state information reference signals (CSI-RS). It should be noted that the downlink reference signal may also be other downlink signals, which is not limited in this embodiment.
  • the downlink reference signal measurement value may be understood as a result of measuring the downlink reference signal.
  • the downlink reference signal measurement value may include reference signal receiving power (RSRP) and reference signal receiving power. , RSRQ) and one or more of signal to interference plus noise ratio (SINR).
  • the downlink measurement threshold may be, for example, one or more of an RSRP value, an RSRQ value, or an SINR value.
  • the terminal device may estimate the current coverage of the terminal device by using the downlink reference signal measurement value. For example, when the downlink reference signal measurement value is the measurement value 1, the terminal device may estimate that the current uplink carrier is at the boundary, when the downlink reference is used. When the signal measurement value is the measurement value 2, the terminal device can estimate that the boundary of the second uplink carrier is currently located, and the current available uplink carrier can be estimated by comparing the downlink reference signal measurement value with the measured value 1 or the measured value 2 for The terminal correctly selects an available uplink carrier to access the network device, and avoids erroneous use of the unavailable uplink carrier, resulting in failure to access the network device, causing delay or interruption of data communication.
  • the setting of the downlink measurement value may refer to the boundary of the first uplink carrier and the boundary of the second uplink carrier to some extent. For example, if the measured value of the downlink reference signal is the measured value 1, it indicates that the terminal device is currently at the boundary of the first uplink carrier. If the downlink reference signal measurement value is the measured value 2, it indicates that the terminal device is currently at the boundary of the second uplink carrier, and the downlink measurement threshold device may be greater than the measured value 2 and less than the measured value 1, if the terminal device determines the current If the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, it indicates that the terminal device is still in the coverage of the second uplink carrier, that is, the second uplink carrier is available, so that the terminal correctly selects the available second.
  • the uplink carrier accesses the network device to avoid erroneous use of the unavailable second uplink carrier, resulting in failure to access the network device, causing delay or interruption of data communication.
  • the first device before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, and only When the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, the first device performs the handover action, and the first device does not need to perform the cell reselection process and the radio resource control RRC connection reestablishment process, so A device does not generate an interrupt when cell reselection and RRC connection reestablishment, and the first device can switch to the second uplink carrier to continue to maintain the connection with the second device and continue to maintain data communication.
  • the communication method provided by the embodiment of the present application further includes:
  • the first device When the downlink reference signal measurement value is smaller than the downlink measurement threshold, the first device performs a cell reselection process and a radio resource control RRC connection reestablishment process.
  • the first device Before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, and if the downlink reference signal measurement value If the threshold is less than the downlink measurement threshold, the first device does not perform the step of switching to the second uplink carrier, but performs the cell reselection process and the radio resource control RRC connection re-establishment process, so that the first device can and the second device The device re-establishes the connection.
  • the first device determines in step 401 that the number of random access requests sent on the first uplink carrier reaches a first threshold or the radio link layer control protocol RLC layer transmitted on the first uplink carrier After the number of transmissions reaches the second threshold, the communication method provided by the embodiment of the present application further includes:
  • the first device triggers to perform the following step 402: the first device switches to the second uplink carrier.
  • the downlink reference signal may be one or more of a synchronization signal and a CSI-RS. It should be noted that the downlink reference signal may also be other downlink signals, which is not limited in this embodiment.
  • the downlink reference signal measurement value may be understood as a result of measuring the downlink reference signal, for example, the downlink reference signal measurement value may include one or more of RSRP, RSRQ, and SINR.
  • the downlink measurement threshold may be, for example, one or more of an RSRP value, an RSRQ value, or an SINR value.
  • the communication method provided by the embodiment of the present application further includes:
  • the first device When the downlink reference signal measurement value is less than or equal to the downlink measurement threshold, the first device performs a cell reselection process and a radio resource control RRC connection reestablishment process.
  • the first device before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than the downlink measurement threshold, and only in the downlink.
  • the first device performs the handover action.
  • the first device does not need to perform the cell reselection process and the radio resource control RRC connection reestablishment process, so the first device does not
  • the first device may switch to the second uplink carrier to continue to maintain the connection with the second device and continue to maintain data communication.
  • the first device Before the step of performing the handover to the second uplink carrier, the first device needs to determine the downlink reference signal measurement value to determine whether the downlink reference signal measurement value is greater than the downlink measurement threshold, and if the downlink reference signal measurement value is less than or Equal to the downlink measurement threshold, the first device does not perform the step of switching to the second uplink carrier, but performs the cell reselection process and the radio resource control RRC connection re-establishment process, so that the first device can and the second device The device re-establishes the connection.
  • whether the first device determines whether the downlink reference signal measurement value is greater than the downlink measurement threshold, or whether the first device determines whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold may be determined by Application scenarios, not limited here.
  • the value of the value of the downlink measurement threshold may be determined according to a specific scenario, and the first device may obtain a downlink measurement threshold from the second device, for example, receiving a broadcast message or a dedicated message sent by the network device to obtain a downlink.
  • the threshold value is measured, and the first device may also pre-configure the downlink measurement threshold locally in the first device, which is not limited herein.
  • the first device determines in step 401 that the number of random access requests sent on the first uplink carrier reaches a first threshold or the radio link layer control protocol RLC layer transmitted on the first uplink carrier After the number of transmissions reaches the second threshold, the communication method provided by the embodiment of the present application further includes:
  • the first device releases the first uplink resource configured on the first uplink carrier.
  • the first device may also release the first uplink resource, that is, the first device does not use the first An uplink resource.
  • the first uplink resource may be a physical uplink control channel (PUCCH) resource, but is not limited to a PUCCH resource. If the first uplink resource is not configured on the first uplink carrier, the first device does not need to perform the step of releasing the first uplink resource. For example, the first device may instruct the MAC layer to perform reset or partial reset through the RRC layer.
  • the partial reset includes, for example, releasing the uplink related configuration, such as releasing the PUCCH resource. In the scenario where the two uplink carriers (the first uplink carrier and the second uplink carrier) are configured in the cell, if the PUCCH resource is not configured on the first uplink carrier, the step of releasing the PUCCH resource is not required.
  • the number of random access requests of the first uplink carrier of the first device reaches a first threshold or the number of retransmissions of the RLC layer of the first uplink carrier reaches a second threshold, indicating that the first uplink carrier cannot be used by the first device. If the first uplink carrier and the second uplink carrier are in the same cell, the first device can be switched from the first uplink carrier to the second uplink carrier, so that the first device can use the second uplink carrier. Continue to communicate with the second device.
  • the first device sends a first message to the second device on the second uplink carrier, where the first message is used to indicate that the number of random access requests reaches a first threshold or the number of retransmissions of the RLC layer reaches a second threshold.
  • the first device may communicate with the second device by using the second uplink carrier, for example, the first device may generate a first message, where the first message is used. Indicates that the number of random access requests reaches the first threshold or the number of retransmissions of the RLC layer reaches the second threshold, and then the first device sends the first message on the second uplink carrier, so that the second device can receive the second uplink carrier.
  • the first message, the second device can obtain the indication content carried by the first message by parsing the first message.
  • the first message is further used to indicate that the uplink carrier whose number of random access requests reaches the first threshold is the first uplink carrier, or is also used to indicate that the number of RLC layer retransmissions reaches the second threshold.
  • the carrier is the first uplink carrier.
  • the first device may indicate that the uplink carrier whose number of random access requests reaches the first threshold is the first uplink carrier, or the uplink that indicates that the number of retransmissions of the RLC layer reaches the second threshold.
  • the carrier is the first uplink carrier, so that the second device can determine, by using the first message, that the first uplink carrier has an RLF. It can be understood that if the second device only configures one uplink carrier for the first device, the first message does not need to indicate that the uplink carrier where the RLF occurs is the first uplink carrier.
  • the first message may indicate which uplink carrier is the uplink carrier of the RLF, so that the second device performs subsequent operations on the first uplink carrier where the RLF occurs. Processing, for example, when the second device can release the first uplink carrier, or the second device still wants the first device to use the first uplink carrier, the second device can reconfigure the first uplink carrier, so that the first device can be re- The first uplink carrier is used for subsequent communication.
  • the step 402 the first device sends the first message to the second device on the second uplink carrier, including:
  • the first device sends a scheduling request (Scheduling Request, SR) to the second device on the second uplink carrier;
  • SR scheduling request
  • the first device receives the second message sent by the second device according to the SR, where the second message indicates the second uplink resource;
  • the first device sends the first message to the second device by using the second uplink resource.
  • the first device needs to send an uplink resource to the second device when the first device needs to send the first message. For example, if the terminal device has a PUCCH resource or an SR resource, the first device sends the SR on the second uplink carrier. After the second device receives the SR, the second device may configure the second uplink resource for the first device, and the second device indicates the second uplink resource to the first device by using the second message, where the first device determines by using the second message. After the second uplink resource is sent, the first device may send the first message to the second uplink resource, so that the second device can receive the first message.
  • the communication method provided by the embodiment of the present application further includes:
  • the first device sends a random access request to the second device on the second uplink carrier
  • the first device receives the third message sent by the second device, where the third message indicates the third uplink resource.
  • the first device sends the SR to the second device on the second uplink carrier, including:
  • the first device uses the third uplink resource, and sends the SR to the second device on the second uplink carrier.
  • the first device may initiate a random access on the second uplink carrier, and after the second device receives the random access request, the second device may configure a third uplink resource for the first device, and the second device passes the third message. And indicating, by the first device, the third uplink resource, where the third uplink resource may be a PUCCH resource or an SR resource, where the first device sends the SR to the third uplink resource configured by the first device, so that the first device may succeed. Send SR.
  • the first message sent by the first device may specifically be an RRC message.
  • the first device may generate an RRC message at the RRC layer, where the RRC message may be used as the first message to indicate that the random access request times reach a first threshold or the RLC layer retransmission times reach a second threshold.
  • the communication between the first device and the second device may also adopt other message formats, depending on the implementation scenario.
  • the first device may determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or the number of retransmissions of the RLC layer transmitted on the first uplink carrier is reached. a second threshold, the first device switches to the second uplink carrier, the first uplink carrier and the second uplink carrier belong to the same cell, and the first device sends a first message to the second device on the second uplink carrier, the first message And indicating that the number of random access requests reaches a first threshold or the number of retransmissions of the RLC layer reaches a second threshold. Therefore, in the embodiment of the present application, the first device switches to the second uplink carrier, avoiding the cell reselection and the RRC connection reestablishment process, thereby reducing the data communication interruption time.
  • FIG. 5 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • the communication method provided by the embodiment of the present application is introduced from the second device side, and the method includes the following steps:
  • the second device receives the first message sent by the first device on the second uplink carrier, where the first message is that the first device determines that the number of random access requests sent on the first uplink carrier reaches a first threshold or is first. After the number of retransmissions of the RLC layer of the radio link layer control protocol transmitted on the uplink carrier reaches the second threshold, the first device switches from the first uplink carrier to the second uplink carrier, where the first uplink carrier and the second uplink are sent.
  • the carriers belong to the same cell.
  • the first device determines that the number of random access requests reaches a first threshold, and the first threshold may be a maximum value of the number of random access requests, for example, the maximum value is four times. Or, the first device determines that the number of retransmissions of the RLC layer reaches a second threshold, where the second threshold may be a maximum value of the number of retransmissions of the RLC layer, for example, the maximum value is four times, and the first device may consider that the RLF occurs in the foregoing case. .
  • the first device may communicate with the second device by using the second uplink carrier, for example, the first device may generate a first message, where the first message is used to indicate that the number of random access requests is reached.
  • the first threshold or the number of retransmissions of the RLC layer reaches a second threshold, and then the first device sends the first message on the second uplink carrier.
  • the second device can receive the first message on the second uplink carrier.
  • the communication method provided by the embodiment of the present application may include the following steps in addition to the foregoing steps:
  • the second device sends a fourth message to the first device, where the fourth message includes: a downlink measurement threshold.
  • the first device determines whether the downlink reference signal measurement value is greater than the downlink measurement threshold, or the first device determines whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, and the value of the downlink measurement threshold may be Obtaining, by the second device, the fourth message may be sent by the second device to the first device when the first device is initially accessed, so that the first device can obtain the downlink measurement threshold. .
  • the communication method provided by the embodiment of the present application may include the following steps in addition to the foregoing steps:
  • the second device determines, according to the first message, that the uplink carrier whose number of random access requests reaches the first threshold is the first uplink carrier, or the uplink carrier whose RLC layer retransmission times reaches the second threshold is the first uplink carrier.
  • the first device may indicate that the uplink carrier whose number of random access requests reaches the first threshold is the first uplink carrier, or the uplink that indicates that the number of retransmissions of the RLC layer reaches the second threshold.
  • the carrier is the first uplink carrier, so that the second device can determine, by using the first message, that the first uplink carrier has an RLF. It can be understood that if the second device only configures one uplink carrier for the first device, the first message does not need to indicate that the uplink carrier where the RLF occurs is the first uplink carrier.
  • the first message may indicate which uplink carrier is the uplink carrier of the RLF, so that the second device performs the first uplink carrier on which the RLF occurs. For example, when the second device can release the first uplink carrier, or the second device still wants the first device to use the first uplink carrier, the second device can reconfigure the first uplink carrier, so that the first device can The first uplink carrier is reused for subsequent communication.
  • the communication method provided by the embodiment of the present application further includes: in addition to performing the foregoing steps, before the second device receives the first message in step 501, the communication method provided by the embodiment of the present application further includes:
  • the second device receives the SR sent by the first device on the second uplink carrier
  • the second device sends a second message to the first device according to the SR, where the second message indicates the second uplink resource, and the second uplink resource is used by the first device to send the first message to the second device by using the second uplink resource.
  • the first device When the first device needs to send the first message, the first device needs to request the uplink resource from the second device, for example, the first device sends the SR on the second uplink carrier, and after the second device receives the SR, the second device
  • the second uplink resource may be configured for the first device, and the second device may indicate the second uplink resource to the first device by using the second message.
  • the first device After the first device determines the second uplink resource by using the second message, the first device may The second uplink resource sends the first message, so that the second device can receive the first message.
  • the communication method provided by the embodiment of the present application in addition to performing the foregoing steps, before the second device receives the scheduling request SR sent by the first device, the communication method provided by the embodiment of the present application further includes:
  • the second device sends a third message to the first device according to the random access request, where the third message indicates the third uplink resource, and the third uplink resource is used by the first device to use the third uplink resource, and the second uplink carrier is used to The second device sends the SR.
  • the first device may initiate a random access on the second uplink carrier, and after the second device receives the random access request, the second device may configure a third uplink resource for the first device, where the third uplink resource may be a PUCCH And the second device indicates the third uplink resource to the first device by using the third device, where the first device uses the second device to send the SR for the third uplink resource configured by the first device, so that the first device can succeed.
  • Send SR may initiate a random access on the second uplink carrier, and after the second device receives the random access request, the second device may configure a third uplink resource for the first device, where the third uplink resource may be a PUCCH And the second device indicates the third uplink resource to the first device by using the third device, where the first device uses the second device to send the SR for the third uplink resource configured by the first device, so that the first device can succeed.
  • Send SR Send SR.
  • the communication method provided by the embodiment of the present application includes: in addition to performing the foregoing steps, after the second device receives the first message in step 501, the communication method provided by the embodiment of the present application further includes:
  • the second device reconfigures the first uplink carrier
  • the second device releases the first uplink carrier.
  • the second device may indicate that the uplink carrier where the RLF occurs is the first uplink carrier, and the second device performs subsequent processing on the first uplink carrier where the RLF occurs, for example, the second device may release the first uplink carrier, or When the second device still wants the first device to use the first uplink carrier, the second device may reconfigure the first uplink carrier, so that the first device may reuse the first uplink carrier for subsequent communication.
  • the second device determines, according to the first message, that the first device does not use the first uplink carrier.
  • the second device may obtain the indication content carried in the first message by parsing the first message, and the second device may determine that the first device indicates that the number of random access requests reaches the first threshold or the RLC layer. The number of retransmissions reaches a second threshold. The second device may determine that the first device has an RLF on the first uplink carrier, and the second device may further determine that the first device does not use the first uplink. Carrier.
  • the second device receives the first message sent by the first device on the second uplink carrier, where the first message is that the first device determines the random access request sent on the first uplink carrier.
  • the first device switches from the first uplink carrier to the second uplink carrier, where the first uplink carrier and The second uplink carrier belongs to the same cell; the second device determines, according to the first message, that the first device does not use the first uplink carrier.
  • the second device may determine, according to the first message sent by the first device, that the first device does not use the first uplink carrier, and therefore the second device does not use the first uplink carrier to receive the first device. Uplink signal, thereby saving overhead on the second device side.
  • the quality of the non-SUL carrier drops sharply, which may result in the maximum number of random access requests or the number of retransmissions of the RLC layer. The maximum value is reached, and the RLF is generated on the non-SUL carrier.
  • the first device may be a user equipment, and the first device is specifically a user equipment.
  • the quality of the SUL carrier may still ensure normal data communication, and the SUL carrier can quickly re-access the network and resume data communication.
  • the user equipment is triggered to enter the RRC connection re-establishment process, causing a long-term data interruption of the user equipment.
  • the user equipment resides in a cell capable of configuring a SUL carrier and a non-SUL carrier, and the user equipment determines that the number of random access requests on the non-SUL reaches a maximum value or the number of retransmissions of the RLC layer at the radio link layer reaches a maximum value, and the user equipment determines the downlink.
  • the threshold value is configured by the base station or is pre-configured.
  • the user equipment If the threshold value is greater than or equal to the threshold value, the user equipment generates a first message and releases the PUCCH resource, where the first message is used to indicate The number of random access requests reaches the maximum value or the number of retransmissions of the RLC layer reaches a maximum value, and the user equipment sends the first message to the second device on the SUL carrier.
  • the user equipment resides in a cell capable of configuring the SUL carrier and the non-SUL carrier.
  • the quality of the SUL carrier may still ensure normal data communication, and may pass the SUL.
  • the carrier quickly re-accesses the network and resumes data communication. Therefore, the user equipment determines whether the downlink reference signal measurement value is greater than or equal to a threshold value, and the threshold value is configured by the base station or is pre-configured. If the threshold value is greater than or equal to the threshold value, the user equipment is still in the coverage of the SUL carrier.
  • the RRC connection re-establishment process is not performed at this time, but the first message is generated and the PUCCH resource is released.
  • the first message is used to indicate that the number of random access requests reaches the maximum value or the number of retransmissions of the RLC layer reaches the maximum value.
  • the user equipment may perform the random access procedure on the SUL carrier to request the uplink resource, and use the uplink resource to send the first message to the second device, to prevent the second device from reconfiguring the user equipment according to the current RLF condition of the user equipment;
  • the threshold value indicates that the user equipment may not be in the coverage of the SUL carrier, and the quality of the SUL carrier may not ensure normal data communication.
  • the RRC connection reestablishment process is directly entered.
  • the embodiment of the present application provides a radio link failure indication method, including:
  • the user equipment determines that the number of random access requests reaches a maximum value or the number of retransmissions of the RLC layer of the radio link layer control reaches a maximum value.
  • the cell that the user equipment accesses includes a first uplink carrier and a second uplink carrier, where the user equipment determines that the number of random access requests on the first uplink carrier reaches a maximum value or wireless on the first uplink carrier.
  • the link layer controls the number of retransmissions of the RLC layer to a maximum.
  • the user equipment determines whether the downlink reference signal measurement value is greater than or equal to the threshold value.
  • the threshold may be configured by the second device, that is, the user equipment receives a second message sent by the second device, where the second message includes a threshold.
  • the threshold may also be pre-configured in the user equipment.
  • the user equipment determines that the downlink reference signal measurement value is less than the threshold, the user equipment enters an RRC connection re-establishment process. If the user equipment determines that the measured value of the downlink reference signal is greater than or equal to the threshold, the user equipment generates a first message, where the first message is used to indicate that the number of random access requests reaches a maximum value or the number of retransmissions of the RLC layer reaches a maximum value, and the user The device releases the physical uplink control channel PUCCH resource. In another possible manner, if the user equipment determines that the downlink reference signal measurement value is less than or equal to the threshold, the user equipment enters an RRC connection re-establishment process.
  • the user equipment determines that the measured value of the downlink reference signal is greater than or equal to the threshold, the user equipment generates a first message, where the first message is used to indicate that the number of random access requests reaches a maximum value or the number of retransmissions of the RLC layer reaches a maximum value, and the user The device releases the physical uplink control channel PUCCH resource.
  • the user equipment sends a first message to the second device. Specifically, the user equipment sends the first message to the second device on the second uplink carrier.
  • an additional lower frequency uplink frequency band is introduced to send an uplink signal in addition to the original high frequency uplink frequency band of the cell, and the lower frequency uplink carrier is called A supplementary uplink (SUL) carrier is used, and the high-frequency uplink carrier is a normal uplink carrier or a non-Supplemental Uplink (non-SUL) carrier. It can be considered that there are two uplink carriers in the cell.
  • SUL supplementary uplink
  • non-SUL non-Supplemental Uplink
  • the base station may configure a Physical Uplink Shared Channel (PUSCH) resource of the user equipment on one of the uplink carriers, and the user equipment may only send uplink data on the uplink carrier configured with the PUSCH resource; or, the base station may be in two
  • the PUSCH resource of the user equipment is configured on the uplink carrier, and the base station indicates, on the uplink carrier, the uplink data by the base station.
  • PUSCH Physical Uplink Shared Channel
  • FIG. 1 it is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a second device 20 and a user equipment 10 , where the second device 20 is configured to access the user equipment 10 to the wireless network.
  • one cell has one downlink download wave and two uplink carriers, and the two uplink carriers have different frequency bands, that is, the coverage ranges are different, and the uplink carrier coverage range with the higher frequency band is smaller than the lower one.
  • the range of uplink carrier coverage of the frequency band, the uplink carrier of the higher frequency band is referred to as a non-SUL carrier, and the uplink carrier of the lower frequency band is referred to as a SUL carrier.
  • the user equipment 10 may send uplink data to the second device 20 through a non-SUL carrier or a SUL carrier, when the user equipment 10 is stationed
  • the user equipment 10 can transmit uplink data to the second device 20 through the SUL carrier, leaving the coverage between the illustrated non-SUL boundary and the SUL boundary.
  • FIG. 6 is a schematic flowchart diagram of a radio link failure indication method according to an embodiment of the present application.
  • Step 601 The user equipment determines that the number of random access requests reaches a maximum value or the number of retransmissions of the radio link layer control RLC layer reaches a maximum value.
  • the user equipment determines that the number of random access requests reaches a maximum value (for example, the maximum value is 4 times), or the user equipment determines that the number of retransmissions of the radio link layer control RLC layer reaches a maximum value (for example, The maximum value is 4 times), and the user equipment can consider that the radio link failure RLF occurs.
  • the medium access control (MAC) layer of the user equipment determines that the number of random access requests reaches a maximum value, and the MAC layer of the user equipment indicates to the RRC layer that a random access failure occurs, or The user equipment determines that the radio link layer controls the number of retransmissions of the RLC layer to reach a maximum value, and the RLC layer of the user equipment indicates to the RRC layer that the number of retransmissions of the RLC layer reaches a maximum.
  • the cell accessed by the user equipment includes a first uplink carrier and a second uplink carrier.
  • the first uplink carrier is a non-SUL carrier
  • the second uplink carrier is a SUL carrier
  • the first uplink carrier is a SUL carrier
  • the second uplink carrier is a non-SUL carrier.
  • the user equipment receives a broadcast message or a dedicated message sent by the second device, where the broadcast message or the dedicated message includes a first uplink carrier and a second uplink carrier of the cell.
  • the broadcast message or the dedicated message further includes downlink carrier information of the cell.
  • the user equipment determines that the number of random access requests on the first uplink carrier reaches a maximum value or the radio link layer controls the number of retransmissions of the RLC layer on the first uplink carrier. Reaches the maximum value.
  • the first uplink carrier may be a non-SUL carrier, that is, the number of random access requests of the user equipment on a non-SUL carrier reaches a maximum value, or the user equipment retransmits on an RLC layer on a non-SUL carrier. The number of times reached the maximum.
  • Step 602 The user equipment determines whether the downlink reference signal measurement value is greater than or equal to a threshold value.
  • the downlink reference signal may be one or more of a synchronization signal and channel state information reference signals (CSI-RS). It should be noted that the downlink reference signal may also be other downlink signals, which is not limited in this embodiment.
  • the downlink reference signal measurement value may be understood as a result of measuring the downlink reference signal.
  • the downlink reference signal measurement value may include reference signal receiving power (RSRP) and reference signal receiving power. , RSRQ) and one or more of signal to interference plus noise ratio (SINR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving power
  • SINR signal to interference plus noise ratio
  • the user equipment receives a configuration message (or a second message) sent by the second device, where the second message includes a threshold.
  • the threshold is a value that the second device configures for the user equipment.
  • the second message is a broadcast message, or the second message is a dedicated message.
  • the threshold is pre-configured in the user equipment. It can be understood that the user equipment stores the threshold value locally.
  • the user equipment determines whether the downlink reference signal measurement value is greater than or equal to a threshold value. If the downlink reference signal measurement value is greater than or equal to the threshold value, the user equipment performs step 604. Otherwise, the user equipment performs step 603.
  • the user equipment determines whether the downlink reference signal measurement value is greater than a threshold. If the downlink reference signal measurement value is greater than the threshold value, the user equipment performs step 604. Otherwise, the user equipment performs step 603.
  • Step 603 The user equipment enters an RRC connection re-establishment process.
  • Step 604 The user equipment generates a first message, where the first message is used to indicate that the number of random access requests reaches a maximum value or the number of RLC layer retransmissions reaches a maximum value.
  • the user equipment when the user equipment determines that the number of random access requests reaches a maximum value, the user equipment generates a first message, where the first message is used to indicate that the number of random access requests reaches a maximum value, or The user equipment determines that the radio link layer controls the RLC layer retransmission times to reach a maximum value, and the user equipment generates a first message, where the first message is used to indicate that the radio link layer controls the RLC layer retransmission times to reach a maximum value.
  • the first message may be an RRC message.
  • the user equipment resets or partially resets the MAC layer, for example, the user equipment releases the physical uplink control channel PUCCH resource.
  • the RRC layer of the user equipment receives the indication of the random access failure or the indication that the number of retransmissions of the RLC layer reaches a maximum value
  • the RRC layer of the user equipment instructs the MAC layer to release the physical uplink control channel PUCCH resource.
  • the MAC layer finds that the number of random access requests reaches a maximum, the MAC layer of the user equipment releases the physical uplink control channel PUCCH resource.
  • Step 605 The user equipment sends the first message to the second device.
  • the user equipment sends the first message to the second device on the second uplink carrier.
  • the second uplink carrier may be a SUL carrier, that is, the user equipment sends the first message to the second device on the SUL carrier. Since the SUL carrier can provide a larger uplink coverage than the non-SUL carrier, the uplink coverage of the non-SUL carrier may still be within the uplink coverage of the SUL carrier when the user equipment moves out, and the channel quality of the non-SUL carrier is insufficient. The data is transmitted normally, but the channel quality of the SUL carrier may still guarantee data transmission.
  • the user equipment has a first message that needs to be sent, and the user equipment has released the physical uplink control channel PUCCH resource, if the uplink resource does not currently transmit the first message, because the user equipment
  • the physical uplink control channel PUCCH resource is not used to perform a scheduling request (SR).
  • the user equipment initiates a random access procedure to request an uplink resource.
  • the user equipment sends the first message to the second device on the SUL carrier. It can be understood that the user equipment initiates a random access procedure on the SUL carrier, and receives the SUL indicated by the second device.
  • An uplink resource on the carrier where the user equipment sends the first message by using an uplink resource on the SUL carrier.
  • the user equipment sends the first message on the SUL carrier, the number of random access requests on the non-SUL carrier reaches a maximum value, or the number of retransmission times of the RLC layer reaches a maximum value, and the user equipment sends the first message on the SUL carrier.
  • the user equipment initiates a random access procedure to request an uplink resource to send the first message, and if the user equipment initiates the random access request to reach a maximum number of transmissions, The radio link failure RLF occurs, and the user equipment enters an RRC connection re-establishment process.
  • the radio link failure indication method provided by the embodiment of the present application, when the user equipment determines that the number of random access requests reaches a maximum value or the radio link layer controls the RLC layer retransmission times to reach a maximum value, and determines whether the downlink reference signal measurement value is greater than or And equal to the threshold, determining whether to perform the RRC connection re-establishment process.
  • the user equipment When the downlink reference signal measurement value is greater than or equal to the threshold, the user equipment generates the first message and sends the first message to the second device, thereby avoiding the RRC connection re-establishment process. This reduces the data communication interruption time.
  • FIG. 7 is a schematic flowchart diagram of another radio link failure indication method according to an embodiment of the present application.
  • Step 701 The user equipment determines that the number of random access requests reaches a maximum value or the number of retransmissions of the radio link layer control RLC layer reaches a maximum value.
  • step 601 of FIG. 6 is implemented in step 701 and will not be described again.
  • Step 702 The user equipment generates a first message, where the first message is used to indicate that the number of random access requests reaches a maximum value or the number of RLC layer retransmissions reaches a maximum value.
  • step 604 of FIG. 6 is implemented in step 702, and details are not described herein again.
  • Step 703 The user equipment sends the first message to the second device.
  • step 605 of FIG. 6 is implemented in step 703, and details are not described herein again.
  • the radio link failure indication method provided by the embodiment of the present application, when the user equipment determines that the random access request times reach the maximum value or the radio link layer controls the RLC layer retransmission times to reach the maximum value, the user equipment generates the first message and goes to the second The device sends the first message and avoids the RRC connection re-establishment process, thereby reducing the data communication interruption time.
  • FIG. 8 is a signaling diagram of a radio link failure indication method according to an embodiment of the present application.
  • Step 801 The user equipment determines that the number of random access requests reaches a maximum value or the number of retransmissions of the radio link layer control RLC layer reaches a maximum value.
  • step 601 of FIG. 6 is implemented in step 801 and will not be described again.
  • Step 802 The user equipment determines that the downlink reference signal measurement value is greater than or equal to the threshold value.
  • the user equipment needs to determine whether the downlink reference signal measurement value is greater than or equal to a threshold value, or the user equipment needs to determine whether the downlink reference signal measurement value is greater than a threshold value.
  • the downlink reference signal may be one or more of a synchronization signal and channel state information reference signals (CSI-RS). It should be noted that the downlink reference signal may also be other downlink signals, which is not limited in this embodiment.
  • the downlink reference signal measurement value may be understood as a result of measuring the downlink reference signal.
  • the downlink reference signal measurement value may include reference signal receiving power (RSRP) and reference signal receiving power. , RSRQ) and one or more of signal to interference plus noise ratio (SINR).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving power
  • SINR signal to interference plus noise ratio
  • the user equipment receives a configuration message (or a second message) sent by the second device, where the second message includes a threshold.
  • the threshold is a value that the second device configures for the user equipment.
  • the second message is a broadcast message, or the second message is a dedicated message.
  • the threshold is pre-configured in the user equipment. It can be understood that the user equipment stores the threshold value locally.
  • the user equipment determines that the downlink reference signal measurement value is greater than or equal to the threshold value, and then the user equipment performs step 803.
  • the user equipment determines that the downlink reference signal measurement value is greater than a threshold, and the user equipment performs step 803.
  • the user equipment may not perform the step, and the user equipment may perform step 803 after performing step 801. That is, when the user equipment determines that the number of random access requests reaches a maximum value or the radio link layer controls the number of retransmissions of the RLC layer to reach a maximum value, the user equipment generates a first message, where the first message is used to indicate the number of random access requests. The maximum value is reached or the number of retransmissions of the RLC layer reaches a maximum.
  • Step 803 The user equipment generates a first message, where the first message is used to indicate that the number of random access requests reaches a maximum value or the number of retransmissions of the RLC layer reaches a maximum value.
  • step 604 of FIG. 6 is implemented in step 803, and details are not described herein again.
  • Step 804 The user equipment sends the first message to the second device.
  • step 605 of FIG. 6 is implemented in step 804, and details are not described herein again.
  • the radio link failure indication method determines that the downlink reference signal measurement value is greater than or equal to the threshold when the user equipment determines that the random access request times reach a maximum value or the radio link layer controls the RLC layer retransmission times to reach a maximum value.
  • the limit value the user equipment generates the first message and sends the first message to the second device, and avoids the RRC connection re-establishment process, thereby reducing the data communication interruption time.
  • the quality of the non-SUL carrier drops sharply, which may result in the maximum number of random access requests or the number of retransmissions of the RLC layer.
  • the maximum value which in turn causes RLF to occur on non-SUL carriers.
  • the quality of the SUL carrier may still ensure normal data communication, and the SUL carrier can quickly re-access the network and resume data communication.
  • the method provided in this embodiment avoids the long-term data interruption time caused by the direct entry into the RRC connection re-establishment process, and triggers the user equipment to perform the random access request uplink resource on the SUL carrier by generating the first message and releasing the PUCCH resource, and the first The message is sent to the second device, reducing the data communication interruption time.
  • the embodiment of the present application provides a radio link failure indication method.
  • the user equipment When a non-SUL carrier fails to generate a radio link, the user equipment generates a first message and releases the PUCCH resource, and sends the first message on the SUL carrier.
  • the second device For the second device, the second device can also be made aware that the user device has an RLF.
  • the user equipment may further determine whether to generate the first message or directly perform the RRC connection re-establishment process by comparing the downlink reference channel measurement value and the threshold value.
  • the technical solution of the present application can avoid long-term data interruption time caused by directly entering the RRC connection re-establishment process.
  • a first device 900 may include: a processing module 901 and a transceiver module 902, where
  • the processing module 901 is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or the number of retransmissions of the radio link layer control protocol RLC layer transmitted on the first uplink carrier reaches a second threshold ;
  • the transceiver module 902 is configured to switch from the first uplink carrier to the second uplink carrier, where the first uplink carrier and the second uplink carrier belong to the same cell;
  • the transceiver module 902 is further configured to send a first message to the second device on the second uplink carrier, where the first message is used to indicate that the number of random access requests reaches a first threshold or The number of retransmissions of the RLC layer reaches a second threshold.
  • the processing module 901 is configured to determine, according to the radio link layer that the number of random access requests sent on the first uplink carrier reaches a first threshold or is transmitted on the first uplink carrier. After the control protocol RLC layer retransmission times reaches the second threshold, determining whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold; when the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, triggering The transceiver module performs the following steps: switching from the first uplink carrier to the second uplink carrier.
  • the processing module 901 is configured to determine, according to the radio link layer that the number of random access requests sent on the first uplink carrier reaches a first threshold or is transmitted on the first uplink carrier. After the control protocol RLC layer retransmission times reaches the second threshold, determining whether the downlink reference signal measurement value is greater than the downlink measurement threshold; and when the downlink reference signal measurement value is greater than the downlink measurement threshold, triggering the transceiver module Performing the following steps: switching from the first uplink carrier to the second uplink carrier.
  • the processing module 901 is further configured to: when the downlink reference signal measurement value is less than the downlink measurement threshold, trigger the transceiver module to perform a cell reselection process and radio resource control. RRC connection re-establishment process.
  • the processing module 901 is further configured to: when the downlink reference signal measurement value is less than or equal to the downlink measurement threshold, trigger the transceiver module to perform a cell reselection process and wireless The resource controls the RRC connection re-establishment process.
  • the first message is further used to indicate that the uplink carrier whose number of random access requests reaches a first threshold is the first uplink carrier, or is further used to indicate that the RLC layer is heavy.
  • the uplink carrier whose number of transmissions reaches the second threshold is the first uplink carrier.
  • the processing module 901 is further configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or a wireless link that is transmitted on the first uplink carrier. After the number of retransmissions of the layer control protocol RLC layer reaches the second threshold, the first uplink resource configured on the first uplink carrier is released.
  • the transceiver module 902 is further configured to send a scheduling request SR to the second device on the second uplink carrier;
  • the transceiver module 902 is further configured to receive a second message that is sent by the second device according to the SR, where the second message indicates a second uplink resource;
  • the transceiver module 902 is further configured to send the first message to the second device by using the second uplink resource.
  • the transceiver module 902 is further configured to send the second device to the second device on the second uplink carrier before sending the SR to the second device on the second uplink carrier. Send a random access request;
  • the transceiver module 902 is further configured to receive a third message sent by the second device, where the third message indicates a third uplink resource;
  • the transceiver module 902 is specifically configured to send the SR to the second device by using the third uplink resource on the second uplink carrier.
  • the first message is an RRC message.
  • the first uplink carrier is a non-supplemental uplink non-SUL carrier
  • the second uplink carrier is a SUL carrier
  • the frequency of the first uplink carrier is higher than the frequency of the second uplink carrier.
  • a second device 1000 provided by the embodiment of the present application may include: a receiving module 1001 and a processing module 1002, where
  • the receiving module 1001 is configured to receive, by the first uplink carrier, a first message sent by the first device, where the first message is that the first device determines that the number of random access requests sent on the first uplink carrier reaches the first After the threshold or the number of radio link layer control protocol RLC layer retransmissions transmitted on the first uplink carrier reaches a second threshold, the first device transmits after switching from the first uplink carrier to the second uplink carrier.
  • the first uplink carrier and the second uplink carrier belong to the same cell;
  • the processing module 1002 is configured to determine, according to the first message, that the first device does not use the first uplink carrier.
  • the second device further includes: a sending module 1003, configured to send a fourth message to the first device, where the fourth message includes: Measure the threshold.
  • the processing module 1002 is further configured to determine, according to the first message, that the uplink carrier whose number of random access requests reaches a first threshold is a first uplink carrier, or the RLC layer.
  • the uplink carrier whose number of retransmissions reaches the second threshold is the first uplink carrier.
  • the receiving module 1001 is further configured to: before receiving the first message, receive a scheduling request SR sent by the first device on the second uplink carrier;
  • the sending module 1003 is further configured to send, according to the SR, a second message to the first device, where the second message indicates a second uplink resource, and the second uplink resource is used by the first device The second uplink resource sends the first message to the second device.
  • the receiving module 1001 is further configured to: before receiving the scheduling request SR sent by the first device, receive a random access request sent by the first device;
  • the sending module 1003 is further configured to send a third message to the first device according to the random access request, where the third message indicates a third uplink resource, and the third uplink resource is used by the sending The device uses the third uplink resource to send the SR to the second device on the second uplink carrier.
  • the processing module 1002 is further configured to: after the first device receives the first message sent by the first device on the second uplink carrier, the first uplink The carrier is reconfigured; or the first uplink carrier is released.
  • the embodiment of the present application provides a first device 1100, where the first device 1100 includes: at least one processor 1103, a memory 1104; and between the at least one processor 1103 and the memory 1104.
  • the first device 1100 includes: at least one processor 1103, a memory 1104; and between the at least one processor 1103 and the memory 1104.
  • the memory 1104 is configured to store an instruction
  • the at least one processor 1103 is configured to execute the instructions in the memory to perform a communication method performed by the first device as described above.
  • the first device 1100 includes: a receiver 1101, a transmitter 1102, a processor 1103, and a memory 1104 (wherein the number of processors 1103 in the first device 1100 may be one or more, one in FIG. 11
  • the processor is an example).
  • the receiver 1101, the transmitter 1102, the processor 1103, and the memory 1104 may be connected by a bus or other means, wherein FIG. 11 is exemplified by a bus connection.
  • Memory 1104 can include read only memory and random access memory and provides instructions and data to processor 1103. A portion of the memory 1104 may also include a non-volatile random access memory (English name: Non-Volatile Random Access Memory, English abbreviation: NVRAM).
  • the memory 1104 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1103 controls the operation of the first device, and the processor 1103 may also be referred to as a central processing unit (English: Central Processing Unit, English abbreviation: CPU).
  • the components of the first device are coupled together by a bus system.
  • the bus system may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 1103 or implemented by the processor 1103.
  • the processor 1103 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1103 or an instruction in a form of software.
  • the processor 1103 may be a general-purpose processor, a digital signal processor (English full name: digital signal processing, English abbreviation: DSP), an application specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), field programmable Gate array (English name: Field-Programmable Gate Array, English abbreviation: FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1104, and the processor 1103 reads the information in the memory 1104 and performs the steps of the above method in combination with its hardware.
  • the receiver 1101 can be configured to receive input digital or character information, and generate signal inputs related to related settings and function control of the first device, the transmitter 1102 can include a display device such as a display screen, and the transmitter 1102 can be configured to output through an external interface. Number or character information.
  • a second device 1200 includes: at least one processor 1203, a memory 1204; and the at least one processor 1203 and the memory 1204 communicate with each other;
  • the memory 1204 is configured to store an instruction
  • the at least one processor 1203 is configured to execute the instructions in the memory to perform a communication method performed by the second device as described above.
  • the second device 1200 includes a receiver 1201, a transmitter 1202, a processor 1203, and a memory 1204 (wherein the number of processors 1203 in the second device 1200 may be one or more, and one processor in FIG. 12 is taken as an example).
  • the receiver 1201, the transmitter 1202, the processor 1203, and the memory 1204 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • Memory 1204 can include read only memory and random access memory and provides instructions and data to processor 1203. A portion of the memory 1204 may also include an NVRAM.
  • the memory 1204 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1203 controls the operation of the second device, and the processor 1203 may also be referred to as a CPU.
  • the components of the second device may be coupled together by a bus system, wherein the bus system may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 1203 or implemented by the processor 1203.
  • the processor 1203 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1203 or an instruction in a form of software.
  • the processor 1203 described above may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1204, and the processor 1203 reads the information in the memory 1204 and completes the steps of the above method in combination with its hardware.
  • FIG. 13 is a schematic structural diagram of still another device according to an embodiment of the present application.
  • the device is a first device, and the first device may include: a processor 131 (eg, a CPU), a memory 132, a transmitter 134, and a receiving device.
  • the transmitter 134 and the receiver 133 are coupled to the processor 131, and the processor 131 controls the transmission operation of the transmitter 134 and the reception operation of the receiver 133.
  • the memory 132 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the first device involved in the embodiment of the present application may further include one or more of a power source 135, a communication bus 136, and a communication port 1313.
  • the receiver 133 and the transmitter 134 may be integrated in the transceiver of the first device, or may be separate receiving and transmitting antennas on the first device.
  • Communication bus 136 is used to implement a communication connection between components.
  • the communication port 1313 is configured to implement connection communication between the first device and other peripheral devices.
  • the foregoing memory 132 is configured to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 131 to perform the processing action of the first device in the foregoing method embodiment.
  • the transmitter 134 is configured to perform the sending operation of the first device in the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the embodiment of the present application provides a first device, where the first device includes:
  • the processor 131 is configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or the number of retransmissions of the radio link layer control protocol RLC layer transmitted on the first uplink carrier reaches a second threshold. ;
  • a transceiver (which may include a receiver 133 and a transmitter 134) for switching from the first uplink carrier to a second uplink carrier, where the first uplink carrier and the second uplink carrier belong to the same cell;
  • the transceiver is further configured to send a first message to the second device on the second uplink carrier, where the first message is used to indicate that the number of random access requests reaches a first threshold or the RLC The number of layer retransmissions reaches a second threshold.
  • the processor 131 is configured to determine that a random access request sent on the first uplink carrier reaches a first threshold or a radio link layer transmitted on the first uplink carrier. After the control protocol RLC layer retransmission times reaches the second threshold, determining whether the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold; when the downlink reference signal measurement value is greater than or equal to the downlink measurement threshold, triggering The transceiver performs the steps of switching from the first uplink carrier to the second uplink carrier.
  • the processor 131 is configured to determine that a random access request sent on the first uplink carrier reaches a first threshold or a radio link layer transmitted on the first uplink carrier. After the control protocol RLC layer retransmission times reaches the second threshold, determining whether the downlink reference signal measurement value is greater than the downlink measurement threshold; and when the downlink reference signal measurement value is greater than the downlink measurement threshold, triggering the transceiver Performing the following steps: switching from the first uplink carrier to the second uplink carrier.
  • the processor 131 is further configured to: when the downlink reference signal measurement value is less than the downlink measurement threshold, trigger the transceiver to perform a cell reselection process and radio resource control. RRC connection re-establishment process.
  • the processor 131 is further configured to: when the downlink reference signal measurement value is less than or equal to the downlink measurement threshold, trigger the transceiver to perform a cell reselection process and wireless The resource controls the RRC connection re-establishment process.
  • the first message is further used to indicate that the uplink carrier whose number of random access requests reaches a first threshold is the first uplink carrier, or is further used to indicate that the RLC layer is heavy.
  • the uplink carrier whose number of transmissions reaches the second threshold is the first uplink carrier.
  • the processor 131 is further configured to determine that the number of random access requests sent on the first uplink carrier reaches a first threshold or a wireless link that is transmitted on the first uplink carrier. After the number of retransmissions of the layer control protocol RLC layer reaches the second threshold, the first uplink resource configured on the first uplink carrier is released.
  • the transceiver is further configured to send a scheduling request SR to the second device on the second uplink carrier;
  • the transceiver is further configured to receive a second message that is sent by the second device according to the SR, where the second message indicates a second uplink resource;
  • the transceiver is further configured to send the first message to the second device by using the second uplink resource.
  • the transceiver is further configured to send the second on the second uplink carrier to the second device before sending the SR to the second device.
  • the device sends a random access request
  • the transceiver is further configured to receive a third message sent by the second device, where the third message indicates a third uplink resource;
  • the transceiver is specifically configured to send the SR to the second device by using the third uplink resource on the second uplink carrier.
  • the first message is an RRC message.
  • the first uplink carrier is a non-supplemental uplink non-SUL carrier
  • the second uplink carrier is a SUL carrier
  • the frequency of the first uplink carrier is higher than the frequency of the second uplink carrier.
  • FIG. 14 is a schematic structural diagram of still another device according to an embodiment of the present application.
  • the device is a second device, and the second device may include: a processor (eg, a CPU) 141, a memory 142, a receiver 143, and a sending device.
  • the receiver 143 and the transmitter 144 are coupled to the processor 141, which controls the receiving action of the receiver 143 and the transmitting action of the transmitter 144.
  • the memory 142 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • NVM non-volatile memory
  • the second device involved in the embodiment of the present application may further include one or more of a power source 145, a communication bus 146, and a communication port 147.
  • the receiver 143 and the transmitter 144 may be integrated in the transceiver of the second device, or may be separate receiving and transmitting antennas on the second device.
  • Communication bus 146 is used to implement a communication connection between components.
  • the communication port 147 is used to implement connection communication between the second device and other peripheral devices.
  • the foregoing memory 142 is configured to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 141 to perform the processing action of the second device in the foregoing method embodiment.
  • the transmitter 144 is configured to perform the sending operation of the second device in the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the embodiment of the present application provides a second device, where the second device includes:
  • the receiver 143 is configured to receive, by using the second uplink carrier, the first message sent by the first device, where the first message is that the first device determines that the number of random access requests sent on the first uplink carrier reaches the first After the threshold or the number of radio link layer control protocol RLC layer retransmissions transmitted on the first uplink carrier reaches a second threshold, the first device transmits after switching from the first uplink carrier to the second uplink carrier.
  • the first uplink carrier and the second uplink carrier belong to the same cell;
  • the processor 141 is configured to determine, according to the first message, that the first device does not use the first uplink carrier.
  • the second device further includes: a transmitter 144, configured to send a fourth message to the first device, where the fourth message includes: a downlink measurement threshold.
  • the processor 141 is further configured to determine, according to the first message, that the uplink carrier whose number of random access requests reaches a first threshold is a first uplink carrier, or the RLC layer.
  • the uplink carrier whose number of retransmissions reaches the second threshold is the first uplink carrier.
  • the receiver 143 is further configured to: before receiving the first message, receive a scheduling request SR sent by the first device on the second uplink carrier;
  • the transmitter 144 is further configured to send, according to the SR, a second message to the first device, where the second message indicates a second uplink resource, and the second uplink resource is used by the first device
  • the second uplink resource sends the first message to the second device.
  • the receiver 143 is further configured to: before receiving the scheduling request SR sent by the first device, receive a random access request sent by the first device;
  • the transmitter 144 is further configured to send, by using the random access request, a third message to the first device, where the third message indicates a third uplink resource, and the third uplink resource is used by the The device uses the third uplink resource to send the SR to the second device on the second uplink carrier.
  • the processor 141 is further configured to: after the first device receives the first message sent by the first device on the second uplink carrier, the first uplink The carrier is reconfigured; or the first uplink carrier is released.
  • the embodiment of the present application provides a communication system 1500, where the system 1500 includes:
  • a first device 1501 configured to perform a communication method performed by the foregoing first device
  • the second device 1502 is configured to execute a communication method performed by the foregoing second device.
  • the embodiment of the present application provides a communication system 1500, which includes: the first device 1501 as described in any of FIG. 9, FIG. 11, and FIG. 13, and FIG. 10-a, FIG. The second device 1502 of any of 10-b, 12, and 14.
  • the chip when the device (such as the first device) is a chip in the terminal device, the chip may include: a processing unit and a communication unit, and the processing unit may be, for example, a processor, the communication unit For example, it can be an input/output interface, a pin or a circuit.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the chip within the terminal device to perform the method of any of the above aspects.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc., or the storage unit may also be a storage unit located outside the chip in the terminal device, such as a read-only memory (read). -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the chip when the device (such as the second device) is a chip in the network device, the chip may include: a processing unit and a communication unit, and the processing unit may be, for example, a processor, the communication unit For example, it can be an input/output interface, a pin or a circuit.
  • the processing unit may execute computer-executable instructions stored by the storage unit to cause the chip within the network device to perform the method of any of the second aspect described above and the second aspect.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc., or the storage unit may also be a storage unit located outside the chip in the network device, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • a storage unit in the chip such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the network device, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • read read-only memory
  • ROM read-only memory
  • RAM random access memory
  • the first device described herein may be a terminal device in one possible design, and may be a chip in the terminal device in another possible design.
  • the second device described herein may be a network device in one possible design, and may be a chip within the network device in another possible design.
  • the chip described herein may be a SoC (System on Chip, also referred to as a chip-scale system, also referred to as a system on chip) in one possible design.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the integrated circuit of the program execution of the first aspect wireless communication method may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the memory referred to herein may be integrated into the processor or may be independent of the processor.
  • each device embodiment may refer to related methods in the related method embodiments. Partially understood; the device embodiments can also be referred to each other.
  • the apparatus may include any number of transceivers (which may include a transmitter and a receiver), a transmitter, a receiver, a processor, a memory, etc., to implement the apparatus in the apparatus embodiments of the present application. Function or operation, and all devices that can implement the present application are within the scope of the present application.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or second device, etc.) performs the methods described in various embodiments of the present application.
  • a computer device may be A personal computer, server, or second device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法和装置以及系统,用于减少终端出现RLF后上行业务中断的时间。本申请实施例提供一种通信方法,包括:第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;所述第一设备在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。

Description

一种通信方法和装置以及系统
本申请要求于2017年11月29日提交中国国家知识产权局、申请号为201711222929.9、发明名称为“一种无线链路失败指示方法和装置”的中国专利申请的优先权,以及于2018年1月11日提交中国国家知识产权局、申请号为201810028099.4、申请名称为“一种通信方法和装置以及系统”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种通信方法和装置以及系统。
背景技术
目前的通信系统存在各种制式,例如第二代(2G)、第三代(3G)、第四代(4G)通信系统和新无线(New radio,NR)系统,例如全球移动通信(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),频分多址(Frequency Division Multiple Access,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS)以及新无线接入网络,其中,新无线系统允许够提供比LTE网络更高的传输速率,新无线系统也称为5G系统、下一代通信系统等。
现有技术中,终端出现无线链路失败(Radio Link Failure,RLF)后,就会进行小区重选和无线资源控制(Radio Resource Control,RRC)连接重建,这将导致该终端长时间的上行业务中断。
发明内容
本申请实施例提供了一种通信方法和装置以及系统,用于减少终端出现RLF后上行业务中断的时间。
本申请提供的实施例包括以下任一个:
第一方面,本申请实施例提供一种通信方法,包括如下1-12任一实施例;
第二方面,本申请实施例提供另一种通信方法,包括如下13-18任一实施例;
第三方面,本申请实施例提供一种装置,包括如下19-30任一实施例;
第四方面,本申请实施例提供另一种装置,包括如下31-36任一实施例;
第五方面,本申请实施例提供另一种装置,包括如下实施例37;
第六方面,本申请实施例提供另一种装置,包括如下实施例38;
第七方面,本申请实施例提供另一种装置,包括如下39-50任一实施例;
第八方面,本申请实施例提供另一种装置,包括如下51-56任一实施例;
第九方面,本申请实施例提供一种计算机可读存储介质,包括如下实施例57;
第十方面,本申请实施例提供一种包含指令的计算机程序产品,包括如下实施例58;
第十一方面,本申请实施例提供一种通信系统,包括如下59或60任一实施例;
第十二方面,本申请实施例提供另一种装置,包括如下实施例61;
第十三方面,本申请实施例提供另一种装置,包括如下实施例62;
第十四方面,本申请实施例提供另一种装置,包括如下实施例63;
第十五方面,本申请实施例提供另一种装置,包括如下实施例64。
1、一种通信方法,其特征在于,包括:
第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
所述第一设备在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
在本申请的一些实施例中,第一设备可以确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的RLC层重传次数达到第二阈值后,第一设备从第一上行载波切换到第二上行载波,第一上行载波和第二上行载波属于同一个小区,第一设备在第二上行载波上向第二设备发送第一消息,该第一消息用于指示所述随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值。因此本申请实施例中第一设备会切换到第二上行载波,例如通过随机接入过程与网络设备建立连接,并获取上行资源向网络设备发送第一消息,即可恢复中断的数据通信,避免进行小区重选和RRC连接重建过程,即避免了小区重选过程中长时间的小区搜索和下行测量过程,从而减少了数据通信中断时间。
2、根据实施例1所述的方法,其特征在于,所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,所述方法还包括:
所述第一设备确定下行参考信号测量值是否大于或等于下行测量门限值;
当所述下行参考信号测量值大于或等于所述下行测量门限值时,所述第一设备触发执行如下步骤:所述第一设备从所述第一上行载波切换到所述第二上行载波。
在本申请实施例中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于或等于下行测量门限值,只有在下行参考信号测量值大于或等于下行测量门限值时,该第一设备才会执行切换的动作,此时第一设备不需要执行小区重选过程和无线资源控制RRC连接重建过程,因此第一设备不会产生小区重选和RRC连接重建时的中断,第一设备可以切换到第二上行载波,以继续保持与第二设备的连接,继续保持数据通信。
3、根据实施例1所述的方法,其特征在于,所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,所述方法还包括:
所述第一设备确定下行参考信号测量值是否大于下行测量门限值;
当所述下行参考信号测量值大于所述下行测量门限值时,所述第一设备触发执行如下步骤:所述第一设备从所述第一上行载波切换到所述第二上行载波。
在本申请实施例中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于下行测量门限值,只有在下行参考信号测量值大于下行测量门限值时,该第一设备才会执行切换的动作,此时第一设备不需要执行小区重 选过程和无线资源控制RRC连接重建过程,因此第一设备不会产生小区重选和RRC连接重建时的中断,第一设备可以切换到第二上行载波,以继续保持与第二设备的连接,继续保持数据通信。
4、根据实施例2所述的方法,其特征在于,所述方法还包括:
当所述下行参考信号测量值小于所述下行测量门限值时,所述第一设备执行小区重选过程和无线资源控制RRC连接重建过程。
其中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于或等于下行测量门限值,若下行参考信号测量值小于下行测量门限值,这种情况下,第一设备不会执行如实施例1中提到的切换到第二上行载波以及在第二上行载波上发送第一消息的步骤,而是执行小区重选过程和无线资源控制RRC连接重建过程,以使得该第一设备能够和第二设备重新建立连接。
5、根据实施例3所述的方法,其特征在于,所述方法还包括:
当所述下行参考信号测量值小于或等于所述下行测量门限值时,所述第一设备执行小区重选过程和无线资源控制RRC连接重建过程。
其中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于下行测量门限值,若下行参考信号测量值小于或等于下行测量门限值,这种情况下,第一设备不会执行如实施例1中提到的切换到第二上行载波以及在第二上行载波上发送第一消息的步骤,而是执行小区重选过程和无线资源控制RRC连接重建过程,以使得该第一设备能够和第二设备重新建立连接。
6、根据实施例1-5任一所述的方法,其特征在于,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
其中,第一设备生成第一消息时,还可以在第一消息中指示随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者指示RLC层重传次数达到第二阈值的上行载波为第一上行载波,从而第二设备可以通过第一消息确定出是第一上行载波出现了RLF。可以理解的是,若第二设备只为第一设备配置一条上行载波,那第一消息就不需要指示出现RLF的上行载波是第一上行载波。若第二设备为第一设备配置两条或者两条以上的上行载波,第一消息可以指示出现RLF的上行载波是哪一条上行载波,以使得第二设备对出现RLF的第一上行载波进行后续处理,例如第二设备可以释放掉第一上行载波,或者第二设备仍希望第一设备使用该第一上行载波时,第二设备可以重配置该第一上行载波,以使得第一设备可以重新使用第一上行载波进行后续通信。
7、根据实施例1-6任一所述的方法,其特征在于,所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,所述方法还包括:
所述第一设备释放所述第一上行载波上配置的第一上行资源。
其中,第一设备确定第一上行载波出现RLF时,当第一上行载波上配置有第一上行资源时,第一设备还可以释放掉该第一上行资源,即第一设备不再使用该第一上行资源。第一上行资源具体可以是物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源,但不限于PUCCH资源。若第一上行载波上没有配置第一上行资源,此时第一设备不需要执行释放该第一上行资源的步骤。
8、根据实施例1-7任一所述的方法,其特征在于,所述第一设备在所述第二上行载波上向所 述第二设备发送所述第一消息,包括:
所述第一设备在所述第二上行载波上向所述第二设备发送调度请求SR;
所述第一设备接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
其中,第一设备需要发送第一消息时,第一设备需要向第二设备请求上行资源,例如,若终端设备有PUCCH资源或SR资源时,第一设备在第二上行载波上发送SR,第二设备接收到该SR后,第二设备可以为第一设备配置第二上行资源,第二设备再通过第二消息向第一设备指示该第二上行资源,当第一设备通过第二消息确定出第二上行资源之后,第一设备可以该第二上行资源发送第一消息,从而使得第二设备可以接收到该第一消息。
9、根据实施例8所述的方法,其特征在于,所述第一设备在所述第二上行载波上向所述第二设备发送所述SR之前,所述方法还包括:
所述第一设备在所述第二上行载波上向所述第二设备发送随机接入请求;
所述第一设备接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
所述第一设备在所述第二上行载波上向所述第二设备发送调度请求SR,包括:
所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
其中,第一设备可以在第二上行载波发起随机接入,第二设备接收到该随机接入请求后,第二设备可以为第一设备配置第三上行资源,第二设备再通过第三消息向第一设备指示该第三上行资源,该第三上行资源可以为PUCCH资源或SR资源,第一设备使用第二设备为第一设备配置的第三上行资源发送SR,从而第一设备可以成功发送SR。
10、根据实施例1-9任一所述的方法,其特征在于,所述第一消息为RRC消息。
第一设备可以在RRC层生成RRC消息,该RRC消息可以作为前述的第一消息,来指示所述随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值。不限定的是,第一设备和第二设备之间的通信,还可以采用其它消息格式,具体取决于实现场景。
11、根据实施例1-10任一所述的方法,其特征在于,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
12、根据实施例1-11任一所述的方法,其特征在于,所述第一上行载波的频率高于所述第二上行载波的频率。
其中,第一上行载波可以称为non-SUL载波,第二上行载波可以称为SUL载波,第一上行载波和第二上行载波既可以具有不同的频段,也可以具有相同或相近的频段。当第一上行载波的频段和第二上行载波的频段不同时,第一上行载波和第二上行载波覆盖的范围有部分重叠,例如,第一上行载波的频段高于第二上行载波的频段,则第一上行载波覆盖的范围小于第二上行载波覆盖的范围,且第一上行载波覆盖的范围位于第二上行载波覆盖的范围内,在重叠区域,终端既可以选择第一上行载波发起网络接入,也可以选择第二上行载波发起网络接入。当第一上行载波的频段和第二上行载波的频段相同或相近时,第一上行载波和第二上行载波覆盖的范围相同或基本相同。
13、一种通信方法,其特征在于,包括:
第二设备在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无 线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从所述第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
所述第二设备根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
在本申请的一些实施例中,第二设备在第二上行载波上接收第一设备发送的第一消息,第一消息是第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在第一上行载波上传输的RLC层重传次数达到第二阈值后,第一设备从第一上行载波切换到第二上行载波后发送的,其中,第一上行载波和第二上行载波属于同一个小区;第二设备根据第一消息,确定第一设备不再使用第一上行载波。由于本申请实施例中第二设备可以根据第一设备发送的第一消息确定出该第一设备不再使用第一上行载波,因此第二设备不在使用第一上行载波来接收第一设备发送的上行信号,从而节省第二设备侧的开销。
14、根据实施例13所述的方法,其特征在于,所述方法还包括:
所述第二设备向所述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
其中,第一设备确定下行参考信号测量值是否大于下行测量门限值,或者第一设备确定下行参考信号测量值是否大于或等于下行测量门限值,该下行测量门限值的取值大小可以从第二设备发送的第四消息中获取到,该第四消息可以由第二设备在第一设备初始接入时发送给该第一设备,从而使得第一设备可以获取到下行测量门限值。
15、根据实施例13或14所述的方法,其特征在于,所述方法还包括:
所述第二设备根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
其中,第一设备生成第一消息时,还可以在第一消息中指示随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者指示RLC层重传次数达到第二阈值的上行载波为第一上行载波,从而第二设备可以通过第一消息确定出是第一上行载波出现了RLF。可以理解的是,若第二设备只为第一设备配置一条上行载波,那第一消息就不需要指示出现RLF的上行载波是第一上行载波。若第二设备为第一设备配置两条或者两条以上的上行载波,那第一消息可以指示出现RLF的上行载波是哪一条上行载波,以使得第二设备对出现RLF的第一上行载波进行后续处理,例如第二设备可以释放掉第一上行载波,或者第二设备仍希望第一设备使用该第一上行载波时,第二设备可以重配置该第一上行载波,以使得第一设备可以重新使用第一上行载波进行后续通信。
16、根据实施例13-15任一所述的方法,其特征在于,所述第二设备在第二上行载波上接收第一设备发送的第一消息之前,所述方法还包括:
所述第二设备在所述第二上行载波上接收所述第一设备发送的调度请求SR;
所述第二设备根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
其中,第一设备需要发送第一消息时,第一设备需要向第二设备请求上行资源,例如第一设备在第二上行载波上发送了SR,第二设备接收到该SR后,第二设备可以为第一设备配置第二上行资源,第二设备再通过第二消息向第一设备指示该第二上行资源,当第一设备通过第二消息确定出第二上行资源之后,第一设备可以该第二上行资源发送第一消息,从而使得第二设备可以接收到该第一消息。
17、根据实施例16所述的方法,其特征在于,所述第二设备接收所述第一设备发送的调度请求SR之前,所述方法还包括:
所述第二设备接收所述第一设备发送的随机接入请求;
所述第二设备根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
其中,第一设备可以在第二上行载波发起随机接入,第二设备接收到该随机接入请求后,第二设备可以为第一设备配置第三上行资源,该第三上行资源可以为PUCCH资源或SR资源,第二设备再通过第三消息向第一设备指示该第三上行资源,第一设备使用第二设备为第一设备配置的第三上行资源发送SR,从而第一设备可以成功发送SR。
18、根据实施例13-17任一所述的方法,其特征在于,在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,所述方法还包括:
所述第二设备对所述第一上行载波进行重配置;或,
所述第二设备释放掉所述第一上行载波。
其中,第二设备通过第一消息可以指示出现RLF的上行载波是第一上行载波,第二设备对出现RLF的第一上行载波进行后续处理,例如第二设备可以释放掉第一上行载波,或者第二设备仍希望第一设备使用该第一上行载波时,第二设备可以重配置该第一上行载波,以使得第一设备可以重新使用第一上行载波进行后续通信。
19、一种第一设备,应用于终端设备中,其特征在于,包括:
处理模块,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值;
收发模块,用于从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
所述收发模块,还用于在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
20、根据实施例19所述的第一设备,其特征在于,所述处理模块,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于或等于下行测量门限值;当所述下行参考信号测量值大于或等于所述下行测量门限值时,触发所述收发模块执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
21、根据实施例19所述的第一设备,其特征在于,所述处理模块,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于下行测量门限值;当所述下行参考信号测量值大于所述下行测量门限值时,触发所述收发模块执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
22、根据实施例20所述的第一设备,其特征在于,所述处理模块,还用于当所述下行参考信号测量值小于所述下行测量门限值时,触发所述收发模块执行小区重选过程和无线资源控制RRC连接重建过程。
23、根据实施例21所述的第一设备,其特征在于,所述处理模块,还用于当所述下行参考信号测量值小于或等于所述下行测量门限值时,触发所述收发模块执行小区重选过程和无线资源控制RRC连接重建过程。
24、根据实施例19-23任一所述的第一设备,其特征在于,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
25、根据实施例19-24任一所述的第一设备,其特征在于,所述处理模块,还用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,释放所述第一上行载波上配置的第一上行资源。
26、根据实施例19-25任一所述的第一设备,其特征在于,
所述收发模块,还用于在所述第二上行载波上向所述第二设备发送调度请求SR;
所述收发模块,还用于接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
所述收发模块,还用于使用所述第二上行资源向所述第二设备发送所述第一消息。
27、根据实施例26所述的第一设备,其特征在于,所述收发模块,还用于在所述第二上行载波上向所述第二设备发送所述SR之前,在所述第二上行载波上向所述第二设备发送随机接入请求;
所述收发模块,还用于接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
所述收发模块,具体用于使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
28、根据实施例19-27任一所述的第一设备,其特征在于,所述第一消息为RRC消息。
29、根据实施例19-28任一所述的第一设备,其特征在于,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
30、根据实施例19-29任一所述的第一设备,其特征在于,所述第一上行载波的频率高于所述第二上行载波的频率。
在本申请的实施例19至30中,第一设备的各模块还可以执行前述实施例1至12任一实现方式中所描述的步骤,详见前述实施例1至12的实现方式中的说明。
31、一种第二设备,应用于网络设备中,其特征在于,包括:
接收模块,用于在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
处理模块,用于根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
32、根据实施例31所述的第二设备,其特征在于,所述第二设备还包括:发送模块,用于向所述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
33、根据实施例31或32所述的第二设备,其特征在于,所述处理模块,还用于根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为第一上行载波。
34、根据实施例31-33任一所述的第二设备,其特征在于,所述接收模块,还用于在接收所述第一消息之前,在所述第二上行载波上接收所述第一设备发送的调度请求SR;
所述发送模块,还用于根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述 第一消息。
35、根据实施例34所述的第二设备,其特征在于,所述接收模块,还用于在接收所述第一设备发送的调度请求SR之前,接收所述第一设备发送的随机接入请求;
所述发送模块,还用于根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
36、根据实施例31-35任一所述的第二设备,其特征在于,所述处理模块,还用于在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,对所述第一上行载波进行重配置;或,释放掉所述第一上行载波。
在本申请的实施例31至36中,第二设备的各模块还可以执行前述实施例13至18任一实现方式中所描述的步骤,详见前述实施例13至18的实现方式中的说明。
37、一种第一设备,应用于终端设备中,其特征在于,所述第一设备包括:至少一个处理器,存储器;所述至少一个处理器、所述存储器之间进行相互的通信;
所述存储器用于存储指令;
所述至少一个处理器用于执行所述存储器中的所述指令,执行如实施例1至12中任一项所述的方法。
在本申请的实施例37中,第一设备的各模块还可以执行前述实施例1至12任一实现方式中所描述的步骤,详见前述实施例1至12的实现方式中的说明。
38、一种第二设备,应用于网络设备中,其特征在于,所述第二设备包括:至少一个处理器,存储器;所述至少一个处理器、所述存储器之间进行相互的通信;
所述存储器用于存储指令;
所述至少一个处理器用于执行所述存储器中的所述指令,执行如实施例13至18中任一项所述的方法。
在本申请的实施例38中,第一设备的各模块还可以执行前述实施例13至18任一实现方式中所描述的步骤,详见前述实施例13至18的实现方式中的说明。
39、一种第一设备,应用于终端设备中,其特征在于,所述第一设备包括:
处理器,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值;
收发器,用于从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
所述收发器,还用于在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
40、根据实施例39所述的第一设备,其特征在于,所述处理器,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于或等于下行测量门限值;当所述下行参考信号测量值大于或等于所述下行测量门限值时,触发所述收发器执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
41、根据实施例39所述的第一设备,其特征在于,所述处理器,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议 RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于下行测量门限值;当所述下行参考信号测量值大于所述下行测量门限值时,触发所述收发器执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
42、根据实施例40所述的第一设备,其特征在于,所述处理器,还用于当所述下行参考信号测量值小于所述下行测量门限值时,触发所述收发器执行小区重选过程和无线资源控制RRC连接重建过程。
43、根据实施例41所述的第一设备,其特征在于,所述处理器,还用于当所述下行参考信号测量值小于或等于所述下行测量门限值时,触发所述收发器执行小区重选过程和无线资源控制RRC连接重建过程。
44、根据实施例39-43任一所述的第一设备,其特征在于,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
45、根据实施例39-44任一所述的第一设备,其特征在于,所述处理器,还用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,释放所述第一上行载波上配置的第一上行资源。
46、根据实施例39-45任一所述的第一设备,其特征在于,所述收发器,还用于在所述第二上行载波上向所述第二设备发送调度请求SR;
所述收发器,还用于接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
所述收发器,还用于使用所述第二上行资源向所述第二设备发送所述第一消息。
47、根据实施例46所述的第一设备,其特征在于,所述收发器,还用于在所述第二上行载波上向所述第二设备发送所述SR之前,在所述第二上行载波上向所述第二设备发送随机接入请求;
所述收发器,还用于接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
所述收发器,具体用于使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
48、根据实施例39-47任一所述的第一设备,其特征在于,所述第一消息为RRC消息。
49、根据实施例39-48任一所述的第一设备,其特征在于,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
50、根据实施例39-49任一所述的第一设备,其特征在于,所述第一上行载波的频率高于所述第二上行载波的频率。
在本申请的实施例39至50中,第一设备的各模块还可以执行前述实施例1至12任一实现方式中所描述的步骤,详见前述实施例1至12的实现方式中的说明。
51、一种第二设备,应用于网络设备中,其特征在于,所述第二设备包括:
接收器,用于在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
处理器,用于根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
52、根据实施例51所述的第二设备,其特征在于,所述第二设备还包括:发送器,用于向所 述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
53、根据实施例51或52所述的第二设备,其特征在于,所述处理器,还用于根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为第一上行载波。
54、根据实施例51-53任一所述的第二设备,其特征在于,所述接收器,还用于在接收所述第一消息之前,在所述第二上行载波上接收所述第一设备发送的调度请求SR;
所述发送器,还用于根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
55、根据实施例54所述的第二设备,其特征在于,所述接收器,还用于在接收所述第一设备发送的调度请求SR之前,接收所述第一设备发送的随机接入请求;
所述发送器,还用于根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
56、根据实施例51-55任一所述的第二设备,其特征在于,所述处理器,还用于在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,对所述第一上行载波进行重配置;或,释放掉所述第一上行载波。
在本申请的实施例51至56中,第二设备的各模块还可以执行前述实施例13至18任一实现方式中所描述的步骤,详见前述实施例13至18的实现方式中的说明。
57、一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如实施例1-12、或13-18任一所述的方法。
58、一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如实施例1-12、或13-18任一所述的方法。
59、一种通信系统,其特征在于,所述系统包括:
第一设备,用于执行如实施例1-12任一所述的方法;
第二设备,用于执行如实施例13-18任一所述的方法。
60、一种通信系统,其特征在于,所述系统包括:如实施例19-30、37、39-50任一所述的第一设备,和如实施例31-36、38、51-56任一所述的第二设备。
61、一种第一设备,应用于终端设备中,其特征在于,所述第一设备被配置为执行如实施例1-12任一所述的方法。
62、一种第二设备,应用于网络设备中,其特征在于,所述第二设备被配置为执行如实施例13-18任一所述的方法。
63、一种第一设备,应用于终端设备中,其特征在于,所述第一设备包括:至少一个处理器,用于执行如实施例1至12中任一项所述的方法;和与所述至少一个处理器耦合的存储器。
64、一种第二设备,应用于网络设备中,其特征在于,所述第二设备包括:至少一个处理器用于执行如实施例13至18中任一项所述的方法;和与所述至少一个处理器耦合的存储器。
附图说明
图1为本发明实施例的一种可能的无线接入网的结构示意图;
图2为本发明实施例的通信系统的结构示意图;
图3为本申请另一实施例提供的一种通信系统的示意图;
图4为本申请实施例的一种通信方法的流程示意图;
图5为本申请一实施例的一种通信方法的流程示意图;
图6为本申请另一实施例的一种通信方法的流程示意图;
图7为本申请另一实施例提供的一种通信系统的结构示意图;
图8为本申请另一实施例的一种通信方法的流程示意图;
图9为本申请一实施例的一种第一设备的结构示意图;
图10-a为本申请一实施例的一种第二设备的结构示意图;
图10-b为本申请另一实施例的一种第二设备的结构示意图;
图11为本申请另一实施例的一种第一设备的结构示意图;
图12为本申请另一实施例的一种第二设备的结构示意图;
图13为本申请另一实施例的一种第一设备的结构示意图;
图14为本申请另一实施例的一种第二设备的结构示意图
图15为本申请一实施例的一种通信系统的结构示意图。
具体实施方式
本申请实施例提供了一种通信方法和装置以及系统,用于减少终端出现RLF后上行业务中断的时间。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述各种报文/帧、请求和终端,但这些报文/帧、请求和终端不应限于这些术语。这些术语仅用来将报文/帧、请求和终端彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一终端也可以被称为第二终端,类似地,第二终端也可以被称为第一终端。
取决于语境,如在此所使用的词语“如果”或“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
传统的小区由一个下行载波和一个上行载波组成,并且,在传统小区中上行载波与下行载波的频率是相同的或相近的。
当前的频谱资源已经难以满足用户对容量需求的增长,在频段资源匮乏的情况下,具有更大的可用带宽的高频频段称为5G系统的候选频段;同时,为了满足大部分用户(尤其是边缘用户)信号传输覆盖性以及高通信质量的需求,在5G系统中,又希望采用低频频段进行上行传输。
但是,由于新无线系统在部署高频小区时,高频小区中运行频段较高且终端的发射功率较低,使得处于小区边缘区域的终端可以接收到小区中基站的信号,但是基站无法接收到边缘区域中的 终端的信号,即存在上下行覆盖不对称的问题。为了解决这个问题,可以在小区原有的一个高频上行频段之外,引入一个额外的更低频率的上行频段来发送上行信号,为了描述的方便,称该更低频率的上行频段为补充上行(Supplemental Uplink,SUL)载波或辅助上行载波,称高频上行频段为普通上行(Normal Uplink)载波或非补充上行(non-SUL)载波或非辅助上行(non-SUL)载波。
当前,终端的上行切换基于网络侧进行判决,例如,终端周期的向基站上报测量结果,基站根据测量结果判决该终端是否需要进行上行切换,如果需要进行上行切换,就发送下行链路控制信息(Downlink Control Information,DCI)给终端,指示终端要切换到新上行载波的时频资源位置,终端可以在新的上行载波上继续发送数据。
对于配置有SUL载波和non-SUL载波的小区,当终端从中心区域走向边缘区域时,non-SUL载波质量会急剧下降,会出现无线链路失败(RadioLink Failure,RLF)。终端出现RLF后,会进行小区重选和无线资源控制(Radio Resource Control,RRC)连接重建,这将导致该终端长时间的上行业务中断。
图1示出了本申请实施例的一种可能的无线接入网(radio access network,简称RAN)的结构示意图。所述RAN包括一个或多个第二设备20。所述无线接入网可以与核心网络(core network,CN)相连。所述第二设备20可以是任意一种具有无线收发功能的设备。所述第二设备20包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。第二设备20还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。第二设备还可以是服务器,可穿戴设备,或车载设备等。以下以第二设备20为基站为例进行说明。所述多个第二设备20可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备10进行通信,也可以通过中继站与终端设备10进行通信。终端10可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智允许电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
第二设备可以是一种网络设备,例如将终端接入到无线网络的无线接入网(radio access  network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,第二设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
所述RAN可以为2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。所述CN可以为4G网络的MME和/或S-GW,或可以为3G网络的SGSN或GGSN,或可以为5G网络的下一代核心网(NG-Core)。
所述gNB一般包括以下至少一个协议层的功能:无线资源控制(Radio Resource Control,RRC)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制(Radio Link Control,RLC)层、媒体介入控制(Media Access Control,MAC)层和物理层(Physical Layer,PHY)。
所述gNB可以采用采用集中式单元(Centralized Unit,CU)和分布式单元(Distributed Unit,DU)架构,所述CU和DU通过有线或无线通信,所述DU与终端通过空口通信,所述终端在同一个或不同的DU下的不同小区进行移动。
如果所述gNB采用CU-DU架构,CU和DU功允许的划分存在多种可允许,其中一种功允许划分方式可以是:CU包括RRC层和PDCP层,DU包括RLC层、MAC层和PHY层。
图2示出的通信系统的一种架构举例,如图2所示无线接入网RAN中的第二设备是CU和DU分离架构的基站(如gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的,也可以部署在一起。RAN的功能终止于CU。多个DU可以共用一个。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如CU包括RRC层和PDCP层的功能,DU包括RLC层、MAC层和PHY层的功能。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
如图3所示,为本申请另一实施例提供的一种通信系统的示意图,该通信系统包括第二设备310和终端320,其中第二设备310用于将终端320接入到无线网络,在SUL配置下,一个小区有一个下行下载波和两个上行载波,所述两个上行载波具有不同的频段,也即覆盖的范围不同,具有较高频段的上行载波覆盖的范围小于具有较低频段的上行载波覆盖的范围,所述较高频段的上 行载波称为第一上行载波或普通载波或non-SUL载波,所述较低频段的上行载波称为第二上行载波或辅助上行载波或SUL载波,当所述终端320驻留所示第一上行载波的覆盖范围(即靠近所述第二设备310的中心区域)时,所述终端320可以允许选择所述第一上行载波或所述第二上行载波接入所述第二设备310,当所述终端320驻留所述第一上行载波的边界(例如non-SUL边界)与所述第二上行载波的边界(例如SUL边界)之间的区域(即远离所述第二设备310的边缘区域)时,所述终端320通过第二上行载波接入所述第二设备310。
如图4所示,为本申请实施例的一种通信方法的流程示意图。
步骤401,第一设备确定在第一上行载波上发送的随机接入请求的次数达到第一阈值或者在第一上行载波上传输的无线链路层控制协议(Radio Link Control,RLC)层重传次数达到第二阈值后,从第一上行载波切换到第二上行载波,其中,第一上行载波和第二上行载波属于同一个小区。
在本申请实施例中,第一设备确定随机接入请求次数达到第一阈值,该第一阈值可以是随机接入请求次数的最大值,例如该最大值为4次。或者,第一设备确定RLC层重传次数达到第二阈值,该第二阈值可以是RLC层重传次数的最大值,例如最大值为4次,第一设备在前述情况下可以认为发生了无线链路失败(Radio Link Failure,RLF)。
当第一设备进入或驻留小区时,第一设备通过广播信道或专用信道接收小区的第二设备发送的载波配置信息,例如,配置信息包括第一上行载波和第二上行载波。在本申请的另一实施例中,载波配置信息还包括下行载波信息。
在本申请的一些实施例中,第一上行载波为non-SUL载波,第二上行载波为SUL载波。
在本申请的一些实施例中,第一上行载波的频率高于第二上行载波的频率。
在本申请的另一实施例中,第一上行载波和第二上行载波属于同一小区。
在本申请的另一实施例中,第一上行载波可以称为non-SUL载波,第二上行载波可以称为SUL载波,第一上行载波和第二上行载波既可以具有不同的频段,也可以具有相同或相近的频段。当第一上行载波的频段和第二上行载波的频段不同时,第一上行载波和第二上行载波覆盖的范围有部分重叠,例如,第一上行载波的频段高于第二上行载波的频段,则第一上行载波覆盖的范围小于第二上行载波覆盖的范围,且第一上行载波覆盖的范围位于第二上行载波覆盖的范围内,在重叠区域,终端既可以选择第一上行载波发起网络接入,也可以选择第二上行载波发起网络接入。当第一上行载波的频段和第二上行载波的频段相同或相近时,第一上行载波和第二上行载波覆盖的范围相同或基本相同。
本实施例中,第一上行载波的频段高于第二上行载波的频段,则第一上行载波覆盖的范围小于第二上行载波覆盖的范围。第一设备位于第一上行载波覆盖的范围内,且通过第一上行载波连接第二设备,即第一设备处于连接态,当第一设备向第一上行载覆盖的边界移动时,第一上行载波的信号会不断变弱,第一设备会不断在第一上行载波上发起随机接入请求(random access request)或进行无线链路层控制协议(radio link control,RLC)层重传。其中,随机接入请求可以称为MSG1。
5G系统中引入高频的原因是:当前的频谱资源已经难以满足用户对容量需求的增长,在频段资源匮乏的情况下,具有更大的可用带宽的高频频段称为5G系统的候选频段。但是由于高频存在较大的信号衰减,比低频提供的覆盖范围小,因此为了满足大部分用户(尤其是边缘用户)信号传输覆盖性以及高通信质量的需求,在5G系统中,又希望采用低频频段进行上行传输。因此,出 现高频和低频结合的场景,即一个小区同时有高频上行载波和低频上行载波。
第一设备确定在第一上行载波上发送随机接入请求次数达到第一阈值(例如第一阈值为5次)或者在第一上行载波上传输RLC层重传次数达到第二阈值(例如,第二阈值为最大重传次数,例如为6次)。举例说明,第一设备确定在第一上行载波发送随机接入请求次数达到第一阈值时,终端可以认为在第一上行载波发生随机接入失败。
在本申请的一些实施例中,步骤401第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,本申请实施例提供的通信方法还包括:
第一设备确定下行参考信号测量值是否大于或等于下行测量门限值;
当下行参考信号测量值大于或等于下行测量门限值时,第一设备触发执行如下步骤402:第一设备切换到第二上行载波。
需要说明的是,所述下行参考信号可以为同步信号和信道状态信息参考信号(channel state information reference signals,CSI-RS)中的一个或多个。需要说明的是,所述下行参考信号还可以为其他下行信号,本实施例不做限定。所述下行参考信号测量值可以理解为对下行参考信号进行测量的结果,例如,下行参考信号测量值可以包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving power,RSRQ)和信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一个或多个。下行测量门限值例如可以为RSRP值、RSRQ值或SINR值中的一个或多个。
终端设备可以通过下行参考信号测量值估计终端设备当前所处的覆盖范围,例如,当下行参考信号测量值为测量值1时,终端设备可以估计出当前处于第一上行载波的边界,当下行参考信号测量值为测量值2时,终端设备可以估计出当前处于第二上行载波的边界,并且通过下行参考信号测量值与测量值1或测量值2比较可以估计出当前可用的上行载波,以供终端正确地选择可用的上行载波接入网络设备,避免错误地使用不可用的上行载波导致无法接入网络设备造成数据通信的延迟或中断。
下行测量值的设定一定程度上可以参考第一上行载波的边界和第二上行载波的边界,例如,若下行参考信号测量值为测量值1时表示终端设备当前处于第一上行载波的边界,若下行参考信号测量值为测量值2时表示终端设备当前处于第二上行载波的边界,则可以将下行测量门限值设备为大于测量值2且小于测量值1的值,若终端设备判断当前下行参考信号测量值大于或等于下行测量门限值,则表示终端设备当前仍在处于第二上行载波的覆盖范围内,即第二上行载波是可用的,以供终端正确地选择可用的第二上行载波接入网络设备,避免错误地使用不可用的第二上行载波导致无法接入网络设备造成数据通信的延迟或中断。
在本申请实施例中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于或等于下行测量门限值,只有在下行参考信号测量值大于或等于下行测量门限值时,该第一设备才会执行切换的动作,此时第一设备不需要执行小区重选过程和无线资源控制RRC连接重建过程,因此第一设备不会产生小区重选和RRC连接重建时的中断,第一设备可以切换到第二上行载波,以继续保持与第二设备的连接,继续保持数据通信。在本申请的另一些实施例中,本申请实施例提供的通信方法还包括:
当下行参考信号测量值小于下行测量门限值时,第一设备执行小区重选过程和无线资源控制RRC连接重建过程。
其中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于或等于下行测量门限值,若下行参考信号测量值小于下行测量门限值,此时第一设备不会执行切换到第二上行载波的步骤,而是执行小区重选过程和无线资源控制RRC连接重建过程,以使得该第一设备能够和第二设备重新建立连接。
在本申请的一些实施例中,步骤401第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,本申请实施例提供的通信方法还包括:
第一设备确定下行参考信号测量值是否大于下行测量门限值;
当下行参考信号测量值大于下行测量门限值时,第一设备触发执行如下步骤402:第一设备切换到第二上行载波。
需要说明的是,所述下行参考信号可以为同步信号和CSI-RS中的一个或多个。需要说明的是,所述下行参考信号还可以为其他下行信号,本实施例不做限定。所述下行参考信号测量值可以理解为对下行参考信号进行测量的结果,例如,下行参考信号测量值可以包括RSRP、RSRQ和SINR中的一个或多个。下行测量门限值例如可以为RSRP值、RSRQ值或SINR值中的一个或多个。
在本申请的另一些实施例中,本申请实施例提供的通信方法还包括:
当下行参考信号测量值小于或等于下行测量门限值时,第一设备执行小区重选过程和无线资源控制RRC连接重建过程。
在本申请实施例中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于下行测量门限值,只有在下行参考信号测量值大于下行测量门限值时,该第一设备才会执行切换的动作,此时第一设备不需要执行小区重选过程和无线资源控制RRC连接重建过程,因此第一设备不会产生小区重选和RRC连接重建时的中断,第一设备可以切换到第二上行载波,以继续保持与第二设备的连接,继续保持数据通信。
其中,第一设备执行切换到第二上行载波的步骤之前,还需要对下行参考信号测量值进行判断,以确定下行参考信号测量值是否大于下行测量门限值,若下行参考信号测量值小于或等于下行测量门限值,此时第一设备不会执行切换到第二上行载波的步骤,而是执行小区重选过程和无线资源控制RRC连接重建过程,以使得该第一设备能够和第二设备重新建立连接。
需要说明的是,在实际应用中,第一设备确定下行参考信号测量值是否大于下行测量门限值,或者第一设备确定下行参考信号测量值是否大于或等于下行测量门限值,可以取决于应用场景,此处不做限定。另外,对于下行测量门限值的取值大小可以根据具体场景来确定,第一设备可以从第二设备获取到下行测量门限值,例如,接收网络设备发送的广播消息或专用消息获取到下行测量门限值,该第一设备还可以在第一设备的本地预先配置出该下行测量门限值,此处也不做限定。
在本申请的一些实施例中,步骤401第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,本申请实施例提供的通信方法还包括:
第一设备释放第一上行载波上配置的第一上行资源。
其中,第一设备确定第一上行载波出现RLF时,当第一上行载波上配置有第一上行资源时,第一设备还可以释放掉该第一上行资源,即第一设备不再使用该第一上行资源。第一上行资源具体可以是物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源,但不限于PUCCH 资源。若第一上行载波上没有配置第一上行资源,此时第一设备不需要执行释放该第一上行资源的步骤。举例说明,第一设备可以通过RRC层指示MAC层进行重置或部分重置。其中,该部分重置包括,MAC释放与上行相关的配置,如释放PUCCH资源。在小区配置了两条上行载波(即第一上行载波和第二上行载波)的场景中,若第一上行载波上没有配置PUCCH资源,此时则不需要执行释放PUCCH资源这一步骤。
其中,第一设备在第一上行载波的随机接入请求次数达到第一阈值或者在第一上行载波的RLC层重传次数达到第二阈值,此时说明第一上行载波已经无法被第一设备所使用,若在同一个小区内存在有第一上行载波和第二上行载波,该第一设备可以从第一上行载波切换到第二上行载波,以使得该第一设备能够使用第二上行载波继续与第二设备进行通信。
402、第一设备在第二上行载波上向第二设备发送第一消息,第一消息用于指示随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值。
在本申请实施例中,第一设备切换到第二上行载波之后,第一设备可以使用第二上行载波与第二设备进行通信,例如第一设备可以生成第一消息,该第一消息用于指示随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值,然后第一设备在第二上行载波上发送第一消息,从而第二设备可以在第二上行载波上接收到该第一消息,第二设备通过解析该第一消息可以获取到第一消息携带的指示内容。
在本申请的一些实施例中,第一消息还用于指示随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者还用于指示RLC层重传次数达到第二阈值的上行载波为第一上行载波。
其中,第一设备生成第一消息时,还可以在第一消息中指示随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者指示RLC层重传次数达到第二阈值的上行载波为第一上行载波,从而第二设备可以通过第一消息确定出是第一上行载波出现了RLF。可以理解的是,若第二设备只为第一设备配置一条上行载波,那第一消息就不需要指示出现RLF的上行载波是第一上行载波。若第二设备为第一设备配置两条或者两条以上的上行载波,第一消息可以指示出现RLF的上行载波是哪一条上行载波,以使得第二设备对出现RLF的第一上行载波进行后续处理,例如第二设备可以释放掉第一上行载波,或者第二设备仍希望第一设备使用该第一上行载波时,第二设备可以重配置该第一上行载波,以使得第一设备可以重新使用第一上行载波进行后续通信。
在本申请的一些实施例中,步骤402第一设备在第二上行载波上向第二设备发送第一消息,包括:
第一设备在第二上行载波上向第二设备发送调度请求(Scheduling Request,SR);
第一设备接收第二设备根据SR发送的第二消息,第二消息指示了第二上行资源;
第一设备使用第二上行资源向第二设备发送第一消息。
其中,第一设备需要发送第一消息时,第一设备需要向第二设备请求上行资源,例如,若终端设备有PUCCH资源或SR资源时,第一设备在第二上行载波上发送SR,第二设备接收到该SR后,第二设备可以为第一设备配置第二上行资源,第二设备再通过第二消息向第一设备指示该第二上行资源,当第一设备通过第二消息确定出第二上行资源之后,第一设备可以该第二上行资源发送第一消息,从而使得第二设备可以接收到该第一消息。
在本申请的另一些实施例中,若第一设备想要发送第一消息但没有PUCCH资源或SR资源时,即无法直接发送SR来请求第二上行资源,因此第一设备将会触发随机接入过程来请求第三上行资源。例如,第一设备在第二上行载波上向第二设备发送SR之前,本申请实施例提供的通信方法还 包括:
第一设备在第二上行载波上向第二设备发送随机接入请求;
第一设备接收第二设备发送的第三消息,第三消息指示了第三上行资源。
在这种实现场景下,第一设备在第二上行载波上向第二设备发送SR,包括:
第一设备使用第三上行资源,在第二上行载波上向第二设备发送SR。
其中,第一设备可以在第二上行载波发起随机接入,第二设备接收到该随机接入请求后,第二设备可以为第一设备配置第三上行资源,第二设备再通过第三消息向第一设备指示该第三上行资源,该第三上行资源可以为PUCCH资源或SR资源,第一设备使用第二设备为第一设备配置的第三上行资源发送SR,从而第一设备可以成功发送SR。
在本申请的一些实施例中,第一设备发送的第一消息具体可以为RRC消息。其中,第一设备可以在RRC层生成RRC消息,该RRC消息可以作为前述的第一消息,来指示所述随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值。不限定的是,第一设备和第二设备之间的通信,还可以采用其它消息格式,具体取决于实现场景。
通过前述实施例对本申请的举例说明可知,第一设备可以确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的RLC层重传次数达到第二阈值,第一设备切换到第二上行载波,第一上行载波和第二上行载波属于同一个小区,第一设备在第二上行载波上向第二设备发送第一消息,该第一消息用于指示所述随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值。因此本申请实施例中第一设备会切换到第二上行载波,避免进行小区重选和RRC连接重建过程,从而减少了数据通信中断时间。
如图5所示,为本申请另一实施例的一种通信方法流程示意图,接下来从第二设备侧介绍本申请实施例提供的通信方法,主要包括如下步骤:
501、第二设备在第二上行载波上接收第一设备发送的第一消息,第一消息是第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,第一设备从第一上行载波切换到第二上行载波后发送的,其中,第一上行载波和第二上行载波属于同一个小区。
在本申请实施例中,第一设备确定随机接入请求次数达到第一阈值,该第一阈值可以是随机接入请求次数的最大值,例如该最大值为4次。或者,第一设备确定RLC层重传次数达到第二阈值,该第二阈值可以是RLC层重传次数的最大值,例如最大值为4次,第一设备在前述情况下可以认为发生了RLF。
第一设备切换到第二上行载波之后,第一设备可以使用第二上行载波与第二设备进行通信,例如第一设备可以生成第一消息,该第一消息用于指示随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值,然后第一设备在第二上行载波上发送第一消息。第二设备可以在第二上行载波上接收到该第一消息。
在本申请的一些实施例中,本申请实施例提供的通信方法除了执行前述步骤之外,还可以包括如下步骤:
第二设备向第一设备发送第四消息,第四消息包括:下行测量门限值。
其中,第一设备确定下行参考信号测量值是否大于下行测量门限值,或者第一设备确定下行参考信号测量值是否大于或等于下行测量门限值,该下行测量门限值的取值大小可以从第二设备发送的第四消息中获取到,该第四消息可以由第二设备在第一设备初始接入时发送给该第一设备, 从而使得第一设备可以获取到下行测量门限值。
在本申请的一些实施例中,本申请实施例提供的通信方法除了执行前述步骤之外,还可以包括如下步骤:
第二设备根据第一消息确定随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者RLC层重传次数达到第二阈值的上行载波为第一上行载波。
其中,第一设备生成第一消息时,还可以在第一消息中指示随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者指示RLC层重传次数达到第二阈值的上行载波为第一上行载波,从而第二设备可以通过第一消息确定出是第一上行载波出现了RLF。可以理解的是,若第二设备只为第一设备配置一条上行载波,那第一消息就不需要指示出现RLF的上行载波是第一上行载波。若第二设备为第一设备配置两条或者两条以上的上行载波,那第一消息可以指示出现RLF的上行载波是哪一条上行载波,以使得第二设备对出现RLF的第一上行载波进行后续处理,例如第二设备可以释放掉第一上行载波,或者第二设备仍希望第一设备使用该第一上行载波时,第二设备可以重配置该第一上行载波,以使得第一设备可以重新使用第一上行载波进行后续通信。
在本申请的一些实施例中,本申请实施例提供的通信方法除了执行前述步骤之外,在步骤501第二设备接收第一消息之前,本申请实施例提供的通信方法还包括:
第二设备在第二上行载波上接收第一设备发送的SR;
第二设备根据SR向第一设备发送第二消息,第二消息指示了第二上行资源,第二上行资源用于第一设备使用第二上行资源向第二设备发送第一消息。
其中,第一设备需要发送第一消息时,第一设备需要向第二设备请求上行资源,例如第一设备在第二上行载波上发送了SR,第二设备接收到该SR后,第二设备可以为第一设备配置第二上行资源,第二设备再通过第二消息向第一设备指示该第二上行资源,当第一设备通过第二消息确定出第二上行资源之后,第一设备可以该第二上行资源发送第一消息,从而使得第二设备可以接收到该第一消息。
在本申请的一些实施例中,本申请实施例提供的通信方法除了执行前述步骤之外,在第二设备接收第一设备发送的调度请求SR之前,本申请实施例提供的通信方法还包括:
第二设备接收第一设备发送的随机接入请求;
第二设备根据随机接入请求向第一设备发送第三消息,第三消息指示了第三上行资源,第三上行资源用于第一设备使用第三上行资源,在第二上行载波上向第二设备发送SR。
其中,第一设备可以在第二上行载波发起随机接入,第二设备接收到该随机接入请求后,第二设备可以为第一设备配置第三上行资源,该第三上行资源可以为PUCCH资源或SR资源,第二设备再通过第三消息向第一设备指示该第三上行资源,第一设备使用第二设备为第一设备配置的第三上行资源发送SR,从而第一设备可以成功发送SR。
在本申请的一些实施例中,本申请实施例提供的通信方法除了执行前述步骤之外,在步骤501第二设备接收第一消息之后,本申请实施例提供的通信方法还包括:
第二设备对第一上行载波进行重配置;或,
第二设备释放掉第一上行载波。
其中,第二设备通过第一消息可以指示出现RLF的上行载波是第一上行载波,第二设备对出现RLF的第一上行载波进行后续处理,例如第二设备可以释放掉第一上行载波,或者第二设备仍希望第一设备使用该第一上行载波时,第二设备可以重配置该第一上行载波,以使得第一设备可 以重新使用第一上行载波进行后续通信。
502、第二设备根据第一消息,确定第一设备不再使用第一上行载波。
在本申请实施例中,第二设备通过解析该第一消息可以获取到第一消息携带的指示内容,第二设备可以确定出第一设备指示了随机接入请求次数达到第一阈值或者RLC层重传次数达到第二阈值,第二设备基于该第一消息可以确定出第一设备在第一上行载波上出现了RLF,第二设备进一步的可以确定出该第一设备不再使用第一上行载波。
通过前述实施例对本申请的举例说明可知,第二设备在第二上行载波上接收第一设备发送的第一消息,第一消息是第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在第一上行载波上传输的RLC层重传次数达到第二阈值后,第一设备从第一上行载波切换到第二上行载波后发送的,其中,第一上行载波和第二上行载波属于同一个小区;第二设备根据第一消息,确定第一设备不再使用第一上行载波。由于本申请实施例中第二设备可以根据第一设备发送的第一消息确定出该第一设备不再使用第一上行载波,因此第二设备不在使用第一上行载波来接收第一设备发送的上行信号,从而节省第二设备侧的开销。
为便于更好的理解和实施本申请实施例的上述方案,下面举例相应的应用场景来进行具体说明。
对于能够配置SUL载波和非SUL载波的小区,当第一设备从中心区域走向边缘区域时,非SUL载波的质量会急剧下降,可能导致随机接入请求的次数达到最大值或者RLC层重传次数达到最大值,进而导致非SUL载波出现RLF,该第一设备具体可以为用户设备,接下来以第一设备具体为用户设备为例进行说明。然而,由于SUL载波的覆盖范围大于非SUL载波,可能SUL载波的质量仍然可以保证正常的数据通信,可以通过SUL载波快速重新接入网络、恢复数据通信。但根据现有技术,会触发用户设备进入RRC连接重建过程,导致该用户设备出现长时间的数据中断。
用户设备驻留在能够配置SUL载波和非SUL载波的小区,用户设备确定在非SUL上随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值,用户设备判断下行参考信号测量值是否大于或等于门限值,门限值为基站配置的或者为预配置的,若大于或等于门限值,用户设备生成第一消息并释放PUCCH资源,第一消息用于指示随机接入请求的次数达到最大值或者RLC层重传次数达到最大值,用户设备在SUL载波上将第一消息发送给第二设备。
用户设备驻留在能够配置SUL载波和非SUL载波的小区,当非SUL载波出现RLF,由于SUL载波的覆盖范围大于非SUL载波,可能SUL载波的质量仍然可以保证正常的数据通信,可以通过SUL载波快速重新接入网络、恢复数据通信。因此,用户设备判断下行参考信号测量值是否大于或等于门限值,该门限值为基站配置的或者为预配置的,若大于或等于门限值,则表示用户设备还处于SUL载波的覆盖范围内,此时不进入RRC连接重建过程,而是生成第一消息并释放PUCCH资源,第一消息用于指示随机接入请求的次数达到最大值或者RLC层重传次数达到最大值,此时用户设备可以在SUL载波上进行随机接入过程请求上行资源,使用该上行资源将第一消息发送给第二设备,避免第二设备根据用户设备当前RLF的情况对用户设备进行重配置;若低于门限值,则表示用户设备可能不处于SUL载波的覆盖范围内,SUL载波的质量可能不能保证正常的数据通信,此时直接进入RRC连接重建过程。
本申请实施例提供一种无线链路失败指示方法,包括:
用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值。所述用户设备接入的小区包括第一上行载波和第二上行载波,所述用户设备确定在所述第一上行 载波上随机接入请求次数达到最大值或者在所述第一上行载波上无线链路层控制RLC层重传次数达到最大值。
用户设备确定下行参考信号测量值是否大于或等于门限值。所述门限值可以为第二设备配置,即所述用户设备接收第二设备发送的第二消息,所述第二消息包括门限值。所述门限值还可以为预配置在所述用户设备中。
一种可能的方式,若用户设备确定下行参考信号测量值小于门限值,用户设备进入RRC连接重建过程。若用户设备确定下行参考信号测量值大于或等于门限值,用户设备生成第一消息,所述第一消息用于指示随机接入请求次数达到最大值或者RLC层重传次数达到最大值,用户设备释放物理上行控制信道PUCCH资源。另一种可能的方式,若用户设备确定下行参考信号测量值小于或等于门限值,用户设备进入RRC连接重建过程。若用户设备确定下行参考信号测量值大于或等于门限值,用户设备生成第一消息,所述第一消息用于指示随机接入请求次数达到最大值或者RLC层重传次数达到最大值,用户设备释放物理上行控制信道PUCCH资源。
用户设备向第二设备发送第一消息。具体的,用户设备在所述第二上行载波上向第二设备发送所述第一消息。
接下来对本申请实施例的应用场景进行举例说明,可以用于但是不限于以下场景:
为解决高频小区的上行覆盖小于下行覆盖的问题,在小区原有的高频上行频段之外,引入一个额外的更低频率的上行频段来发送上行信号,该更低频率的上行载波称为补充上行(Supplemental Uplink,SUL)载波,高频上行载波为普通上行(normal UL)载波或非补充上行(non-Supplemental Uplink,non-SUL)载波。可以认为,该小区存在两个上行载波。基站可以在其中一个上行载波上配置用户设备的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源,用户设备只能在配置了PUSCH资源的上行载波上发送上行数据;或者,基站可以在两个上行载波上都配置用户设备的PUSCH资源,基站通过动态调度指示用户设备在哪一上行载波上发送上行数据。
如图1所示,为本申请实施例提供的一种通信系统的示意图,该通信系统包括第二设备20和用户设备10,其中第二设备20用于将用户设备10接入到无线网络。在SUL配置下,一个小区有一个下行下载波和两个上行载波,所述两个上行载波具有不同的频段,也即覆盖的范围不同,具有较高频段的上行载波覆盖的范围小于具有较低频段的上行载波覆盖的范围,所述较高频段的上行载波称为non-SUL载波,所述较低频段的上行载波称为SUL载波。当所述用户设备10驻留在所示non-SUL边界内的覆盖范围,所述用户设备10可以通过non-SUL载波或SUL载波向第二设备20发送上行数据,当所述用户设备10驻留在所示non-SUL边界与SUL边界之间的覆盖范围,所述用户设备10可以通过SUL载波向第二设备20发送上行数据。
如图6所示,为本申请实施例的一种无线链路失败指示方法的流程示意图。
步骤601:用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值。
在本实施例中,所述用户设备确定随机接入请求次数达到最大值(例如最大值为4次),或者,所述用户设备确定无线链路层控制RLC层重传次数达到最大值(例如最大值为4次),所述用户设备可以认为发生无线链路失败RLF。可选的,所述用户设备的媒体访问控制(Medium Access Control,MAC)层确定随机接入请求次数达到最大值,所述用户设备的MAC层向RRC层指示出现随机接入失败,或者,所述用户设备确定无线链路层控制RLC层重传次数达到最大值,所述用户 设备的RLC层向RRC层指示出现RLC层重传次数达到最大值。
在可选的一种实施方式中,所述用户设备接入的小区包括第一上行载波和第二上行载波。具体的,所述第一上行载波为非SUL载波,所述第二上行载波为SUL载波;或者,所述第一上行载波为SUL载波,所述第二上行载波为非SUL载波。所述用户设备接收第二设备发送的广播消息或专用消息,所述广播消息或专用消息包括小区的第一上行载波和第二上行载波。可选的,所述广播消息或专用消息还包括小区的下行载波信息。
在可选的一种实施方式中,所述用户设备确定在所述第一上行载波上随机接入请求次数达到最大值或者在所述第一上行载波上无线链路层控制RLC层重传次数达到最大值。可选的,所述第一上行载波可以为非SUL载波,即所述用户设备在非SUL载波上随机接入请求次数达到最大值,或者,所述用户设备在非SUL载波上RLC层重传次数达到最大值。
步骤602:用户设备确定下行参考信号测量值是否大于或等于门限值。
在本实施例中,所述下行参考信号可以为同步信号和信道状态信息参考信号(channel state information reference signals,CSI-RS)中的一个或多个。需要说明的是,所述下行参考信号还可以为其他下行信号,本实施例不做限定。所述下行参考信号测量值可以理解为对下行参考信号进行测量的结果,例如,下行参考信号测量值可以包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving power,RSRQ)和信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一个或多个。
在可选的一种实施方式中,所述用户设备接收第二设备发送的配置消息(或称为第二消息),所述第二消息包括门限值。可以理解为,所述门限值是第二设备为用户设备配置的一个值。可选择,所述第二消息为广播消息,或者,所述第二消息为专用消息。
在可选的一种实施方式中,所述门限值预配置在所述用户设备中。可以理解为,所述用户设备本地储存了所述门限值。
在可选的一种实施方式中,所述用户设备确定下行参考信号测量值是否大于或等于门限值。若下行参考信号测量值大于或等于门限值,则所述用户设备执行步骤604,否则,所述用户设备执行步骤603。
在可选的一种实施方式中,所述用户设备确定下行参考信号测量值是否大于门限值。若下行参考信号测量值大于门限值,则所述用户设备执行步骤604,否则,所述用户设备执行步骤603。
步骤603:用户设备进入RRC连接重建过程。
步骤604:用户设备生成第一消息,所述第一消息用于指示随机接入请求次数达到最大值或者RLC层重传次数达到最大值。
在本实施例中,当所述用户设备确定随机接入请求次数达到最大值,所述用户设备生成第一消息,所述第一消息用于指示随机接入请求次数达到最大值,或者,当用户设备确定无线链路层控制RLC层重传次数达到最大值,所述用户设备生成第一消息,所述第一消息用于指示无线链路层控制RLC层重传次数达到最大值。可选的,所述第一消息可以为RRC消息。
在可选的一种实施方式中,所述用户设备重置或部分重置MAC层,例如包括,所述用户设备释放物理上行控制信道PUCCH资源。可选的,当所述用户设备的RRC层收到随机接入失败的指示或者RLC层重传次数达到最大值的指示,所述用户设备的RRC层指示MAC层释放物理上行控制信道PUCCH资源。可选的,当MAC层发现随机接入请求次数达到最大值,所述用户设备的MAC层释放物理上行控制信道PUCCH资源。
步骤605:用户设备向第二设备发送第一消息。
在可选的一种方式中,所述用户设备在所述第二上行载波上向第二设备发送所述第一消息。可选的,所述第二上行载波可以为SUL载波,即所述用户设备在SUL载波上向第二设备发送所述第一消息。由于SUL载波能够提供比非SUL载波更大的上行覆盖范围,因此当用户设备移出了非SUL载波的上行覆盖范围仍然可能在SUL载波的上行覆盖范围内,此时非SUL载波的信道质量不足以正常传输数据,但是SUL载波的信道质量可能仍可以保证数据传输。
在可选的一种方式中,所述用户设备有第一消息需要发送,而所述用户设备已经释放了物理上行控制信道PUCCH资源,若当前没有上行资源传输第一消息,由于所述用户设备此时没有物理上行控制信道PUCCH资源来进行调度请求(Scheduling Request,SR),此时所述用户设备将发起随机接入过程来请求上行资源。可选择的,所述用户设备在SUL载波上向第二设备发送所述第一消息,可以理解为,所述用户设备在SUL载波上发起随机接入过程,当接收到第二设备指示的SUL载波上的上行资源,所述用户设备使用SUL载波上的上行资源发送所述第一消息。
在可选的一种方式中,所述用户设备在非SUL载波上随机接入请求次数达到最大值或者RLC层重传次数达到最大值,所述用户设备在SUL载波上发送所述第一消息。
在可选的一种方式中,所述用户设备发起随机接入过程来请求上行资源用于发送所述第一消息,若所述用户设备发起该随机接入请求次数到达最大传输次数,则认为出现无线链路失败RLF,所述用户设备进入RRC连接重建立过程。
本申请实施例提供的无线链路失败指示方法,当用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值,通过判断下行参考信号测量值是否大于或等于门限值,确定是否进行RRC连接重建过程,当下行参考信号测量值大于或等于门限值,用户设备生成第一消息并向第二设备发送第一消息,而避免进行RRC连接重建过程,从而减少了数据通信中断时间。
如图7所示,为本申请实施例的另一种无线链路失败指示方法的流程示意图。
步骤701:用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值。
这里,在步骤701实现的是图6的步骤601,不再赘述。
步骤702:所述用户设备生成第一消息,所述第一消息用于指示随机接入请求次数达到最大值或者RLC层重传次数达到最大值。
这里,在步骤702实现的是图6的步骤604,不再赘述。
步骤703:用户设备向第二设备发送第一消息。
这里,在步骤703实现的是图6的步骤605,不再赘述。
本申请实施例提供的无线链路失败指示方法,当用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值,用户设备生成第一消息并向第二设备发送第一消息,而避免进行RRC连接重建过程,从而减少了数据通信中断时间。
如图8所示,为本申请实施例的一种无线链路失败指示方法的信令图。
步骤801:用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值。
这里,在步骤801实现的是图6的步骤601,不再赘述。
步骤802:用户设备确定下行参考信号测量值大于或等于门限值。
在本实施例中,所述用户设备需要判断下行参考信号测量值是否大于或等于门限值,或者,所述用户设备需要判断下行参考信号测量值是否大于门限值。所述下行参考信号可以为同步信号和信道状态信息参考信号(channel state information reference signals,CSI-RS)中的一个或多个。需要说明的是,所述下行参考信号还可以为其他下行信号,本实施例不做限定。所述下行参考信号测量值可以理解为对下行参考信号进行测量的结果,例如,下行参考信号测量值可以包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving power,RSRQ)和信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一个或多个。
在可选的一种实施方式中,所述用户设备接收第二设备发送的配置消息(或称为第二消息),所述第二消息包括门限值。可以理解为,所述门限值是第二设备为用户设备配置的一个值。可选择,所述第二消息为广播消息,或者,所述第二消息为专用消息。
在可选的一种实施方式中,所述门限值预配置在所述用户设备中。可以理解为,所述用户设备本地储存了所述门限值。
在可选的一种实施方式中,所述用户设备确定下行参考信号测量值大于或等于门限值,则用户设备执行步骤803。
在可选的一种实施方式中,所述用户设备确定下行参考信号测量值大于门限值,则用户设备执行步骤803。
在可选的一种实施方式中,所述用户设备可以不执行该步骤,所述用户设备可以在执行步骤801之后,执行步骤803。即当用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值,所述用户设备产生第一消息,所述第一消息用于指示随机接入请求次数达到最大值或者RLC层重传次数达到最大值。
步骤803:所述用户设备生成第一消息,所述第一消息用于指示随机接入请求次数达到最大值或者RLC层重传次数达到最大值。
这里,在步骤803实现的是图6的步骤604,不再赘述。
步骤804:用户设备向第二设备发送第一消息。
这里,在步骤804实现的是图6的步骤605,不再赘述。
本申请实施例提供的无线链路失败指示方法,当用户设备确定随机接入请求次数达到最大值或者无线链路层控制RLC层重传次数达到最大值,确定下行参考信号测量值大于或等于门限值,用户设备生成第一消息并向第二设备发送第一消息,而避免进行RRC连接重建过程,从而减少了数据通信中断时间。
对于能够配置SUL载波和非SUL载波的小区,当用户设备从中心区域走向边缘区域时,非SUL载波的质量会急剧下降,可能导致随机接入请求的次数达到最大值或者RLC层重传次数达到最大值,进而导致非SUL载波出现RLF。然而,由于SUL载波的覆盖范围大于非SUL载波,可能SUL载波的质量仍然可以保证正常的数据通信,可以通过SUL载波快速重新接入网络、恢复数据通信。本实施例提供的方法,避免直接进入RRC连接重建过程导致的长时间的数据中断时间,通过生成第一消息以及释放PUCCH资源,触发用户设备在SUL载波进行随机接入请求上行资源,将第一消息发送给第二设备,减少了数据通信中断时间。
相对于现有技术,本申请实施例提供一种无线链路失败指示方法,当非SUL载波出现无线链路失败,用户设备生成第一消息以及释放PUCCH资源,在SUL载波上将第一消息发送给第二设备, 同样可以使第二设备知道用户设备出现了RLF。另外,用户设备还可以通过比较下行参考信道测量值和门限值,确定是生成第一消息,还是直接进行RRC连接重建过程。本申请技术方案可以避免直接进入RRC连接重建过程导致的长时间的数据中断时间。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图9所示,本申请实施例提供的一种第一设备900,可以包括:处理模块901、收发模块902,其中,
处理模块901,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值;
收发模块902,用于从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
所述收发模块902,还用于在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
在本申请的一些实施例中,所述处理模块901,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于或等于下行测量门限值;当所述下行参考信号测量值大于或等于所述下行测量门限值时,触发所述收发模块执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
在本申请的一些实施例中,所述处理模块901,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于下行测量门限值;当所述下行参考信号测量值大于所述下行测量门限值时,触发所述收发模块执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
在本申请的一些实施例中,所述处理模块901,还用于当所述下行参考信号测量值小于所述下行测量门限值时,触发所述收发模块执行小区重选过程和无线资源控制RRC连接重建过程。
在本申请的一些实施例中,所述处理模块901,还用于当所述下行参考信号测量值小于或等于所述下行测量门限值时,触发所述收发模块执行小区重选过程和无线资源控制RRC连接重建过程。
在本申请的一些实施例中,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
在本申请的一些实施例中,所述处理模块901,还用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,释放所述第一上行载波上配置的第一上行资源。
在本申请的一些实施例中,所述收发模块902,还用于在所述第二上行载波上向所述第二设备发送调度请求SR;
所述收发模块902,还用于接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
所述收发模块902,还用于使用所述第二上行资源向所述第二设备发送所述第一消息
在本申请的一些实施例中,收发模块902,还用于在所述第二上行载波上向所述第二设备发送所述SR之前,在所述第二上行载波上向所述第二设备发送随机接入请求;
所述收发模块902,还用于接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
所述收发模块902,具体用于使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
在本申请的一些实施例中,所述第一消息为RRC消息。
在本申请的一些实施例中,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
在本申请的一些实施例中,所述第一上行载波的频率高于所述第二上行载波的频率。
请参阅图10-a所示,本申请实施例提供的一种第二设备1000,可以包括:接收模块1001、处理模块1002,其中,
接收模块1001,用于在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
处理模块1002,用于根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
在本申请的一些实施例中,如图10-b所示,所述第二设备还包括:发送模块1003,用于向所述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
在本申请的一些实施例中,所述处理模块1002,还用于根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为第一上行载波。
在本申请的一些实施例中,所述接收模块1001,还用于在接收所述第一消息之前,在所述第二上行载波上接收所述第一设备发送的调度请求SR;
所述发送模块1003,还用于根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
在本申请的一些实施例中,所述接收模块1001,还用于在接收所述第一设备发送的调度请求SR之前,接收所述第一设备发送的随机接入请求;
所述发送模块1003,还用于根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
在本申请的一些实施例中,所述处理模块1002,还用于在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,对所述第一上行载波进行重配置;或,释放掉所述第一上行载波。
如图11所示,本申请实施例提供一种第一设备1100,所述第一设备1100包括:至少一个处 理器1103,存储器1104;所述至少一个处理器1103、所述存储器1104之间进行相互的通信;
所述存储器1104用于存储指令;
所述至少一个处理器1103用于执行所述存储器中的所述指令,执行如前述第一设备所执行的通信方法。
如图11所示,第一设备1100包括:接收器1101、发射器1102、处理器1103和存储器1104(其中第一设备1100中的处理器1103的数量可以一个或多个,图11中以一个处理器为例)。在本申请的一些实施例中,接收器1101、发射器1102、处理器1103和存储器1104可通过总线或其它方式连接,其中,图11中以通过总线连接为例。
存储器1104可以包括只读存储器和随机存取存储器,并向处理器1103提供指令和数据。存储器1104的一部分还可以包括非易失性随机存取存储器(英文全称:Non-Volatile Random Access Memory,英文缩写:NVRAM)。存储器1104存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1103控制第一设备的操作,处理器1103还可以称为中央处理单元(英文全称:Central Processing Unit,英文简称:CPU)。具体的应用中,第一设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器1103中,或者由处理器1103实现。处理器1103可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1103中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1103可以是通用处理器、数字信号处理器(英文全称:digital signal processing,英文缩写:DSP)、专用集成电路(英文全称:Application Specific Integrated Circuit,英文缩写:ASIC)、现场可编程门阵列(英文全称:Field-Programmable Gate Array,英文缩写:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1104,处理器1103读取存储器1104中的信息,结合其硬件完成上述方法的步骤。
接收器1101可用于接收输入的数字或字符信息,以及产生与第一设备的相关设置以及功能控制有关的信号输入,发射器1102可包括显示屏等显示设备,发射器1102可用于通过外接接口输出数字或字符信息。
如图12所示,一种第二设备1200,所述第二设备包括:至少一个处理器1203,存储器1204;所述至少一个处理器1203、所述存储器1204之间进行相互的通信;
所述存储器1204用于存储指令;
所述至少一个处理器1203用于执行所述存储器中的所述指令,执行如前述第二设备执行的通信方法。
第二设备1200包括:接收器1201、发射器1202、处理器1203和存储器1204(其中第二设备1200中的处理器1203的数量可以一个或多个,图12中以一个处理器为例)。在本申请的一些 实施例中,接收器1201、发射器1202、处理器1203和存储器1204可通过总线或其它方式连接,其中,图12中以通过总线连接为例。
存储器1204可以包括只读存储器和随机存取存储器,并向处理器1203提供指令和数据。存储器1204的一部分还可以包括NVRAM。存储器1204存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1203控制第二设备的操作,处理器1203还可以称为CPU。在一种具体的应用中,第二设备的各个组件可以通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器1203中,或者由处理器1203实现。处理器1203可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1203中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1203可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1204,处理器1203读取存储器1204中的信息,结合其硬件完成上述方法的步骤。
如图13所示,为本申请实施例的又一种设备的结构示意图,该设备为第一设备,该第一设备可以包括:处理器131(例如CPU)、存储器132、发送器134和接收器133;发送器134和接收器133耦合至处理器131,处理器131控制发送器134的发送动作和接收器133的接收动作。存储器132可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器132中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的第一设备还可以包括:电源135、通信总线136以及通信端口1313中的一个或多个。接收器133和发送器134可以集成在第一设备的收发器中,也可以为第一设备上分别独立的收、发天线。通信总线136用于实现元件之间的通信连接。上述通信端口1313用于实现第一设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器132用于存储计算机可执行程序代码,程序代码包括指令;当处理器131执行指令时,指令使处理器131执行上述方法实施例中第一设备的处理动作,使发送器134执行上述方法实施例中第一设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例提供一种第一设备,所述第一设备包括:
处理器131,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值;
收发器(可以包括接收器133和发送器134),用于从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
所述收发器,还用于在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用 于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
在本申请的一些实施例中,所述处理器131,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于或等于下行测量门限值;当所述下行参考信号测量值大于或等于所述下行测量门限值时,触发所述收发器执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
在本申请的一些实施例中,所述处理器131,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于下行测量门限值;当所述下行参考信号测量值大于所述下行测量门限值时,触发所述收发器执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
在本申请的一些实施例中,所述处理器131,还用于当所述下行参考信号测量值小于所述下行测量门限值时,触发所述收发器执行小区重选过程和无线资源控制RRC连接重建过程。
在本申请的一些实施例中,所述处理器131,还用于当所述下行参考信号测量值小于或等于所述下行测量门限值时,触发所述收发器执行小区重选过程和无线资源控制RRC连接重建过程。
在本申请的一些实施例中,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
在本申请的一些实施例中,所述处理器131,还用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,释放所述第一上行载波上配置的第一上行资源。
在本申请的一些实施例中,所述收发器,还用于在所述第二上行载波上向所述第二设备发送调度请求SR;
所述收发器,还用于接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
所述收发器,还用于使用所述第二上行资源向所述第二设备发送所述第一消息。
在本申请的一些实施例中,所述收发器,还用于在所述第二上行载波上向所述第二设备发送所述SR之前,在所述第二上行载波上向所述第二设备发送随机接入请求;
所述收发器,还用于接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
所述收发器,具体用于使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
在本申请的一些实施例中,所述第一消息为RRC消息。
在本申请的一些实施例中,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
在本申请的一些实施例中,所述第一上行载波的频率高于所述第二上行载波的频率。
如图14所示,为本申请实施例的又一种设备的结构示意图,该设备为第二设备,该第二设备可以包括:处理器(例如CPU)141、存储器142、接收器143和发送器144;接收器143和发送器144耦合至处理器141,处理器141控制接收器143的接收动作和发送器144的发送动作。存储器142可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储 器,存储器142中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的第二设备还可以包括:电源145、通信总线146以及通信端口147中的一个或多个。接收器143和发送器144可以集成在第二设备的收发器中,也可以为第二设备上分别独立的收、发天线。通信总线146用于实现元件之间的通信连接。上述通信端口147用于实现第二设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器142用于存储计算机可执行程序代码,程序代码包括指令;当处理器141执行指令时,指令使处理器141执行上述方法实施例中第二设备的处理动作,使发送器144执行上述方法实施例中第二设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例提供一种第二设备,所述第二设备包括:
接收器143,用于在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
处理器141,用于根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
在本申请的一些实施例中,所述第二设备还包括:发送器144,用于向所述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
在本申请的一些实施例中,所述处理器141,还用于根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为第一上行载波。
在本申请的一些实施例中,所述接收器143,还用于在接收所述第一消息之前,在所述第二上行载波上接收所述第一设备发送的调度请求SR;
所述发送器144,还用于根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
在本申请的一些实施例中,所述接收器143,还用于在接收所述第一设备发送的调度请求SR之前,接收所述第一设备发送的随机接入请求;
所述发送器144,还用于根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
在本申请的一些实施例中,所述处理器141,还用于在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,对所述第一上行载波进行重配置;或,释放掉所述第一上行载波。
如图15所示,本申请实施例提供一种通信系统1500,所述系统1500包括:
第一设备1501,用于执行如前述第一设备执行的通信方法;
第二设备1502,用于执行如前述第二设备执行的通信方法。
如图15所示,本申请实施例提供一种通信系统1500,所述系统1500包括:如图9、图11、图13任一所述的第一设备1501,和如图10-a、图10-b、图12、图14任一所述的第二设备1502。
需要说明的是,上述各装置(如第一设备或第二设备)各模块/单元之间的信息交互、执行过 程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
在另一种可能的设计中,当该装置(如第一设备)为终端设备内的芯片时,芯片可以包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端设备内的芯片执行上述第一方面任意一项的方法。所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,或,所述存储单元也可以是所述终端设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在另一种可能的设计中,当该装置(如第二设备)为网络设备内的芯片时,芯片可以包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该网络设备内的芯片执行上述第二方面以及与第二方面相关的任意一项的方法。所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,或,所述存储单元也可以是所述网络设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
需要说明的是,本文中所述第一设备在一种可能的设计中可以为终端设备,在另一种可能的设计中可以为终端设备内的芯片。本文中所述第二设备在一种可能的设计中可以为网络设备,在另一种可能的设计中可以为网络设备内的芯片。本文中所述芯片在一种可能的设计中可以是SoC(System on Chip,称为芯片级系统,也可称为片上系统)。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。例如,本文中所提到的存储器可以集成在处理器中,也可以独立于处理器之外。
本申请各方法实施例之间相关部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考相关的方法实施例中的相关部分进行理解;各装置实施例之间也可相互参考。
本申请各装置实施例中给出的装置结构图仅示出了对应的装置的简化设计。在实际应用中,该装置可以包含任意数量的收发器(可以包括发送器和接收器)、发送器,接收器,处理器,存储器等,以实现本申请各装置实施例中该装置所执行的功能或操作,而所有可以实现本申请的装置都在本申请的保护范围之内。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必 需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者第二设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (64)

  1. 一种通信方法,其特征在于,包括:
    第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
    所述第一设备在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,所述方法还包括:
    所述第一设备确定下行参考信号测量值是否大于或等于下行测量门限值;
    当所述下行参考信号测量值大于或等于所述下行测量门限值时,所述第一设备触发执行如下步骤:所述第一设备从所述第一上行载波切换到所述第二上行载波。
  3. 根据权利要求1所述的方法,其特征在于,所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,所述方法还包括:
    所述第一设备确定下行参考信号测量值是否大于下行测量门限值;
    当所述下行参考信号测量值大于所述下行测量门限值时,所述第一设备触发执行如下步骤:所述第一设备从所述第一上行载波切换到所述第二上行载波。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述下行参考信号测量值小于所述下行测量门限值时,所述第一设备执行小区重选过程和无线资源控制RRC连接重建过程。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    当所述下行参考信号测量值小于或等于所述下行测量门限值时,所述第一设备执行小区重选过程和无线资源控制RRC连接重建过程。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,所述方法还包括:
    所述第一设备释放所述第一上行载波上配置的第一上行资源。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述第一设备在所述第二上行载波上向所述第二设备发送所述第一消息,包括:
    所述第一设备在所述第二上行载波上向所述第二设备发送调度请求SR;
    所述第一设备接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
    所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
  9. 根据权利要求8所述的方法,其特征在于,所述第一设备在所述第二上行载波上向所述第 二设备发送所述SR之前,所述方法还包括:
    所述第一设备在所述第二上行载波上向所述第二设备发送随机接入请求;
    所述第一设备接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
    所述第一设备在所述第二上行载波上向所述第二设备发送调度请求SR,包括:
    所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
  10. 根据权利要求1-9任一所述的方法,其特征在于,所述第一消息为RRC消息。
  11. 根据权利要求1-10任一所述的方法,其特征在于,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
  12. 根据权利要求1-11任一所述的方法,其特征在于,所述第一上行载波的频率高于所述第二上行载波的频率。
  13. 一种通信方法,其特征在于,包括:
    第二设备在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从所述第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
    所述第二设备根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
  16. 根据权利要求13-15任一所述的方法,其特征在于,所述第二设备在第二上行载波上接收第一设备发送的第一消息之前,所述方法还包括:
    所述第二设备在所述第二上行载波上接收所述第一设备发送的调度请求SR;
    所述第二设备根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
  17. 根据权利要求16所述的方法,其特征在于,所述第二设备接收所述第一设备发送的调度请求SR之前,所述方法还包括:
    所述第二设备接收所述第一设备发送的随机接入请求;
    所述第二设备根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
  18. 根据权利要求13-17任一所述的方法,其特征在于,在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,所述方法还包括:
    所述第二设备对所述第一上行载波进行重配置;或,
    所述第二设备释放掉所述第一上行载波。
  19. 一种第一设备,应用于终端设备中,其特征在于,包括:
    处理模块,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值;
    收发模块,用于从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
    所述收发模块,还用于在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
  20. 根据权利要求19所述的第一设备,其特征在于,所述处理模块,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于或等于下行测量门限值;当所述下行参考信号测量值大于或等于所述下行测量门限值时,触发所述收发模块执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
  21. 根据权利要求19所述的第一设备,其特征在于,所述处理模块,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于下行测量门限值;当所述下行参考信号测量值大于所述下行测量门限值时,触发所述收发模块执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
  22. 根据权利要求20所述的第一设备,其特征在于,所述处理模块,还用于当所述下行参考信号测量值小于所述下行测量门限值时,触发所述收发模块执行小区重选过程和无线资源控制RRC连接重建过程。
  23. 根据权利要求21所述的第一设备,其特征在于,所述处理模块,还用于当所述下行参考信号测量值小于或等于所述下行测量门限值时,触发所述收发模块执行小区重选过程和无线资源控制RRC连接重建过程。
  24. 根据权利要求19-23任一所述的第一设备,其特征在于,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
  25. 根据权利要求19-24任一所述的第一设备,其特征在于,所述处理模块,还用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,释放所述第一上行载波上配置的第一上行资源。
  26. 根据权利要求19-25任一所述的第一设备,其特征在于,
    所述收发模块,还用于在所述第二上行载波上向所述第二设备发送调度请求SR;
    所述收发模块,还用于接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
    所述收发模块,还用于使用所述第二上行资源向所述第二设备发送所述第一消息。
  27. 根据权利要求26所述的第一设备,其特征在于,所述收发模块,还用于在所述第二上行载波上向所述第二设备发送所述SR之前,在所述第二上行载波上向所述第二设备发送随机接入请求;
    所述收发模块,还用于接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
    所述收发模块,具体用于使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
  28. 根据权利要求19-27任一所述的第一设备,其特征在于,所述第一消息为RRC消息。
  29. 根据权利要求19-28任一所述的第一设备,其特征在于,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
  30. 根据权利要求19-29任一所述的第一设备,其特征在于,所述第一上行载波的频率高于所述第二上行载波的频率。
  31. 一种第二设备,应用于网络设备中,其特征在于,包括:
    接收模块,用于在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
    处理模块,用于根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
  32. 根据权利要求31所述的第二设备,其特征在于,所述第二设备还包括:发送模块,用于向所述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
  33. 根据权利要求31或32所述的第二设备,其特征在于,所述处理模块,还用于根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为第一上行载波。
  34. 根据权利要求31-33任一所述的第二设备,其特征在于,所述接收模块,还用于在接收所述第一消息之前,在所述第二上行载波上接收所述第一设备发送的调度请求SR;
    所述发送模块,还用于根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
  35. 根据权利要求34所述的第二设备,其特征在于,所述接收模块,还用于在接收所述第一设备发送的调度请求SR之前,接收所述第一设备发送的随机接入请求;
    所述发送模块,还用于根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
  36. 根据权利要求31-35任一所述的第二设备,其特征在于,所述处理模块,还用于在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,对所述第一上行载波进行重配置;或,释放掉所述第一上行载波。
  37. 一种第一设备,应用于终端设备中,其特征在于,所述第一设备包括:至少一个处理器,存储器;所述至少一个处理器、所述存储器之间进行相互的通信;
    所述存储器用于存储指令;
    所述至少一个处理器用于执行所述存储器中的所述指令,执行如权利要求1至12中任一项所述的方法。
  38. 一种第二设备,应用于网络设备中,其特征在于,所述第二设备包括:至少一个处理器,存储器;所述至少一个处理器、所述存储器之间进行相互的通信;
    所述存储器用于存储指令;
    所述至少一个处理器用于执行所述存储器中的所述指令,执行如权利要求13至18中任一项所述的方法。
  39. 一种第一设备,应用于终端设备中,其特征在于,所述第一设备包括:
    处理器,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值;
    收发器,用于从所述第一上行载波切换到第二上行载波,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
    所述收发器,还用于在所述第二上行载波上向所述第二设备发送第一消息,所述第一消息用于指示所述随机接入请求次数达到第一阈值或者所述RLC层重传次数达到第二阈值。
  40. 根据权利要求39所述的第一设备,其特征在于,所述处理器,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于或等于下行测量门限值;当所述下行参考信号测量值大于或等于所述下行测量门限值时,触发所述收发器执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
  41. 根据权利要求39所述的第一设备,其特征在于,所述处理器,用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,确定下行参考信号测量值是否大于下行测量门限值;当所述下行参考信号测量值大于所述下行测量门限值时,触发所述收发器执行如下步骤:从所述第一上行载波切换到所述第二上行载波。
  42. 根据权利要求40所述的第一设备,其特征在于,所述处理器,还用于当所述下行参考信号测量值小于所述下行测量门限值时,触发所述收发器执行小区重选过程和无线资源控制RRC连接重建过程。
  43. 根据权利要求41所述的第一设备,其特征在于,所述处理器,还用于当所述下行参考信号测量值小于或等于所述下行测量门限值时,触发所述收发器执行小区重选过程和无线资源控制RRC连接重建过程。
  44. 根据权利要求39-43任一所述的第一设备,其特征在于,所述第一消息还用于指示所述随机接入请求次数达到第一阈值的上行载波为所述第一上行载波,或者还用于指示所述RLC层重传次数达到第二阈值的上行载波为所述第一上行载波。
  45. 根据权利要求39-44任一所述的第一设备,其特征在于,所述处理器,还用于确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值之后,释放所述第一上行载波上配置的第一上行资源。
  46. 根据权利要求39-45任一所述的第一设备,其特征在于,所述收发器,还用于在所述第二上行载波上向所述第二设备发送调度请求SR;
    所述收发器,还用于接收所述第二设备根据所述SR发送的第二消息,所述第二消息指示了第二上行资源;
    所述收发器,还用于使用所述第二上行资源向所述第二设备发送所述第一消息。
  47. 根据权利要求46所述的第一设备,其特征在于,所述收发器,还用于在所述第二上行载波上向所述第二设备发送所述SR之前,在所述第二上行载波上向所述第二设备发送随机接入请求;
    所述收发器,还用于接收所述第二设备发送的第三消息,所述第三消息指示了第三上行资源;
    所述收发器,具体用于使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
  48. 根据权利要求39-47任一所述的第一设备,其特征在于,所述第一消息为RRC消息。
  49. 根据权利要求39-48任一所述的第一设备,其特征在于,所述第一上行载波为非补充上行non-SUL载波,所述第二上行载波为SUL载波。
  50. 根据权利要求39-49任一所述的第一设备,其特征在于,所述第一上行载波的频率高于所述第二上行载波的频率。
  51. 一种第二设备,应用于网络设备中,其特征在于,所述第二设备包括:
    接收器,用于在第二上行载波上接收第一设备发送的第一消息,所述第一消息是所述第一设备确定在第一上行载波上发送的随机接入请求次数达到第一阈值或者在所述第一上行载波上传输的无线链路层控制协议RLC层重传次数达到第二阈值后,所述第一设备从第一上行载波切换到所述第二上行载波后发送的,其中,所述第一上行载波和所述第二上行载波属于同一个小区;
    处理器,用于根据所述第一消息,确定所述第一设备不再使用所述第一上行载波。
  52. 根据权利要求51所述的第二设备,其特征在于,所述第二设备还包括:发送器,用于向所述第一设备发送第四消息,所述第四消息包括:下行测量门限值。
  53. 根据权利要求51或52所述的第二设备,其特征在于,所述处理器,还用于根据所述第一消息确定所述随机接入请求次数达到第一阈值的上行载波为第一上行载波,或者所述RLC层重传次数达到第二阈值的上行载波为第一上行载波。
  54. 根据权利要求51-53任一所述的第二设备,其特征在于,所述接收器,还用于在接收所述第一消息之前,在所述第二上行载波上接收所述第一设备发送的调度请求SR;
    所述发送器,还用于根据所述SR向所述第一设备发送第二消息,所述第二消息指示了第二上行资源,所述第二上行资源用于所述第一设备使用所述第二上行资源向所述第二设备发送所述第一消息。
  55. 根据权利要求54所述的第二设备,其特征在于,所述接收器,还用于在接收所述第一设备发送的调度请求SR之前,接收所述第一设备发送的随机接入请求;
    所述发送器,还用于根据所述随机接入请求向所述第一设备发送第三消息,所述第三消息指示了第三上行资源,所述第三上行资源用于所述第一设备使用所述第三上行资源,在所述第二上行载波上向所述第二设备发送所述SR。
  56. 根据权利要求51-55任一所述的第二设备,其特征在于,所述处理器,还用于在所述第二设备在第二上行载波上接收到第一设备发送的所述第一消息后,对所述第一上行载波进行重配置;或,释放掉所述第一上行载波。
  57. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-12、或13-18任一所述的方法。
  58. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-12、或13-18任一所述的方法。
  59. 一种通信系统,其特征在于,所述系统包括:
    第一设备,用于执行如权利要求1-12任一所述的方法;
    第二设备,用于执行如权利要求13-18任一所述的方法。
  60. 一种通信系统,其特征在于,所述系统包括:如权利要求19-30、37、39-50任一所述的第一设备,和如权利要求31-36、38、51-56任一所述的第二设备。
  61. 一种第一设备,应用于终端设备中,其特征在于,所述第一设备被配置为执行如权利要求1-12任一所述的方法。
  62. 一种第二设备,应用于网络设备中,其特征在于,所述第二设备被配置为执行如权利要求13-18任一所述的方法。
  63. 一种第一设备,应用于终端设备中,其特征在于,所述第一设备包括:至少一个处理器,用于执行如权利要求1至12中任一项所述的方法;和与所述至少一个处理器耦合的存储器。
  64. 一种第二设备,应用于网络设备中,其特征在于,所述第二设备包括:至少一个处理器用于执行如权利要求13至18中任一项所述的方法;和与所述至少一个处理器耦合的存储器。
PCT/CN2018/117547 2017-11-29 2018-11-27 一种通信方法和装置以及系统 WO2019105329A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711222929 2017-11-29
CN201711222929.9 2017-11-29
CN201810028099.4 2018-01-11
CN201810028099.4A CN109842915B (zh) 2017-11-29 2018-01-11 一种通信方法和装置以及系统

Publications (1)

Publication Number Publication Date
WO2019105329A1 true WO2019105329A1 (zh) 2019-06-06

Family

ID=66663824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117547 WO2019105329A1 (zh) 2017-11-29 2018-11-27 一种通信方法和装置以及系统

Country Status (1)

Country Link
WO (1) WO2019105329A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149094A (zh) * 2010-02-10 2011-08-10 中兴通讯股份有限公司 一种载波管理的方法和系统
EP2945444A1 (en) * 2013-01-08 2015-11-18 Sony Corporation Wireless communication method and wireless communication device
CN106559793A (zh) * 2015-09-25 2017-04-05 中国电信股份有限公司 一种同构网中跨载波调度规避干扰的方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149094A (zh) * 2010-02-10 2011-08-10 中兴通讯股份有限公司 一种载波管理的方法和系统
EP2945444A1 (en) * 2013-01-08 2015-11-18 Sony Corporation Wireless communication method and wireless communication device
CN106559793A (zh) * 2015-09-25 2017-04-05 中国电信股份有限公司 一种同构网中跨载波调度规避干扰的方法和系统

Similar Documents

Publication Publication Date Title
CN109842915B (zh) 一种通信方法和装置以及系统
WO2020211687A1 (zh) 一种小区切换测量的指示方法、网络设备及终端
JP2023166438A (ja) 情報送信方法および装置
US10609757B2 (en) Method and apparatus for implementing radio resource control of multi-connectivity
CA3062360A1 (en) Handover method, apparatus, system, computer program storage medium and chip system
US20190059029A1 (en) Hybrid Solution for Network Controlled Handover and UE Autonomous Handover
US20230209450A1 (en) Mobility management method and apparatus
JP2022141934A (ja) 無線基地局及びユーザ装置
WO2019096285A1 (zh) 一种接入网络的控制方法和装置
WO2018202777A1 (en) Communication apparatus in dual connectivity, method and computer program
WO2020217539A1 (ja) ユーザ装置
JP7086989B2 (ja) 無線通信システム及び無線基地局
US20240214879A1 (en) Physical cell identity collision resolution for wireless networks
JP7096915B2 (ja) ユーザ装置及び基地局装置
US20230319606A1 (en) User Equipment (UE) Reporting of Non-Cellular Receiver Status
WO2023213140A1 (zh) 通信方法、资源配置方法、设备、网络节点、系统及介质
US20230224741A1 (en) Carrier configuration method and apparatus
JP7098762B2 (ja) ユーザ装置及び基地局装置
CN113728678A (zh) 用户装置以及通信方法
WO2019105329A1 (zh) 一种通信方法和装置以及系统
US20220210852A1 (en) User equipment and radio base station
EP3952594A1 (en) User equipment
JP2018174597A (ja) ベアラ管理装置、方法及び通信システム
US11785512B2 (en) Fallback to conditional handover using SSB reference signal
US20240089812A1 (en) Signaling for Releasing a Secondary Cell Group (SCG) Configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884241

Country of ref document: EP

Kind code of ref document: A1