WO2020211687A1 - 一种小区切换测量的指示方法、网络设备及终端 - Google Patents

一种小区切换测量的指示方法、网络设备及终端 Download PDF

Info

Publication number
WO2020211687A1
WO2020211687A1 PCT/CN2020/083632 CN2020083632W WO2020211687A1 WO 2020211687 A1 WO2020211687 A1 WO 2020211687A1 CN 2020083632 W CN2020083632 W CN 2020083632W WO 2020211687 A1 WO2020211687 A1 WO 2020211687A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
terminal
cell
network device
cell handover
Prior art date
Application number
PCT/CN2020/083632
Other languages
English (en)
French (fr)
Inventor
汪宇
罗禾佳
孟贤
乔云飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217036973A priority Critical patent/KR20210146409A/ko
Priority to EP20790619.9A priority patent/EP3952444A4/en
Publication of WO2020211687A1 publication Critical patent/WO2020211687A1/zh
Priority to US17/504,347 priority patent/US20220038964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/326Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by proximity to another entity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/328Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by altitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of mobile communication technology, and in particular to an indication method, network equipment and terminal for cell handover measurement.
  • the network device calculates in advance the handover time of the terminal in different cells based on the terminal location and the terminal motion track and notifies the terminal.
  • the terminal directly performs cell handover.
  • the terminal is easily affected by weather, cloud cover, and changes in the motion state of the terminal, which makes the pre-predicted switching time inaccurate or even invalid, and causes the terminal to switch too early or too late. Therefore, the real-time performance and reliability of cell handover in the above handover scheme are low.
  • embodiments of the present application provide a cell handover measurement indication method, network equipment, and terminal to improve the reliability and real-time performance of cell handover. .
  • an embodiment of the present application provides an indication method for cell handover measurement, including: the network device calculates the measurement time of the cell handover according to the measurement event, and sends a measurement indication, where the measurement event refers to the connection between the terminal and the network device
  • the measurement indication instructs the terminal to perform cell handover measurement.
  • the measurement instruction sent by the aforementioned network device may be the measurement time for notifying the terminal cell handover.
  • the network device calculates the measurement time of the cell handover according to the position relationship between the terminal and the network device, and notifies the terminal to perform the cell handover measurement at the aforementioned measurement time. It is easy to understand that in the method for indicating cell handover measurement in the embodiment of this application, on the one hand, the network device calculates the measurement time according to the position relationship, and on the other hand, the terminal performs cell handover measurement according to the measurement time. The network device and the terminal can participate in the cell handover decision at the same time. Effectively improve the reliability and real-time performance of cell handover.
  • the measurement event in the embodiment of the present application may include at least one of the following two measurement events: a first measurement event or a second measurement event.
  • the first measurement event may be The distance between the terminal and the center point of the serving cell is greater than the first threshold.
  • the serving cell may be a cell that serves the terminal, including but not limited to the current serving cell.
  • the center point of the serving cell described above may also be called a beam The central point or other reference points;
  • the second measurement event may be that the distance between the terminal and the network device is greater than the second threshold.
  • the network device may be a base station or a communication satellite, and the network device is a base station.
  • the second measurement The event is the distance between the terminal and the base station, the network device is a communication satellite, and the above-mentioned second measurement event is the distance between the terminal and the ground mapping point or other reference point of the communication satellite. It can be seen from this implementation manner that by introducing measurement events related to the position relationship between the network equipment and the terminal, triggering the cell handover measurement can simplify the signaling interaction between the network equipment and the terminal and reduce the signaling overhead.
  • the measurement time may include at least one of: measurement start time, measurement end time, or time offset, where the time offset is the difference between the measurement start time and the measurement end time.
  • the measurement time can be composed of the measurement start time and the measurement end time, or can also be composed of the measurement start time and the time offset.
  • the specific sending method for the network device to send the measurement indication may be: sending the measurement indication through a radio resource control message or downlink control information, in other words, carrying the measurement indication carrying the measurement time It is sent in radio resource control messages or downlink control information.
  • the network device can carry the measurement start time and the measurement end time in the radio resource control message or downlink control information and send it to the terminal, or
  • the measurement time may be composed of the measurement start time and the time offset
  • the network device may carry the measurement start time and the time offset in a radio resource control message or downlink control information and send it to the terminal.
  • the measurement instruction can also be sent in a radio resource control message or other messages other than the downlink control information, and this application does not impose any restriction on this. It can be seen from this implementation manner that the measurement indication is sent through the radio resource control message or the downlink control information without adding new signaling, which saves signaling overhead.
  • the manner in which the network device sends the measurement indication may be by multiplexing fields or adding new fields.
  • the network device may multiplex radio resource control messages or multiplex downlinks.
  • the existing field in the control information sends the measurement indication, or the network device can add a new field in the radio resource control message or downlink control information to send the measurement indication, where the new field can use the radio resource control message or downlink Reserved field in the link control message.
  • the measurement indication may include measurement moments of one or more cells, where the cells include serving cells, and multiple refers to two or more.
  • the cell in the base station scenario, the cell can be the cell corresponding to the same base station, or the cell corresponding to different base stations.
  • the cell in the communication satellite scenario, the cell can be the cell corresponding to the same communication satellite, or different communications The cell corresponding to the satellite.
  • the first threshold and the second threshold are determined differently.
  • the first threshold and/or the second threshold may be based on the handover delay of the first cell, the cell diameter corresponding to the serving cell, the orbit height of the communication satellite, the movement speed of the communication satellite, or the terminal service type.
  • the first cell handover delay includes: the handover delay between cells covered by the same communication satellite, or the handover delay between cells covered by different communication satellites.
  • the first threshold and/or the second threshold may be determined according to at least one of the second cell handover delay, the cell diameter corresponding to the serving cell, or the terminal service type, where the first threshold
  • the second cell handover delay includes: the handover delay between cells covered by the same base station, or the handover delay between cells covered by different base stations.
  • the indication method further includes: the network device calculates the measurement time of the cell handover according to the first threshold, specifically: if the network device is a base station, the base station uses the first threshold and serves The location information of the cell center point and the signal coverage of the serving cell are calculated to obtain the location of the switching point corresponding to the first measurement event.
  • the base station calculates the measurement time of the cell switching based on the location of the switching point; if the network equipment is a communication satellite, the communication satellite is based on the first measurement event.
  • a threshold, the location information of the center point of the serving cell, and the signal coverage of the serving cell are calculated to obtain the switching point location corresponding to the first measurement event; the communication satellite calculates the cell switching measurement time according to the switching point location and the communication satellite moving speed.
  • the indication method further includes: the network device calculates the measurement time of the cell handover according to the second threshold, specifically: if the network device is a base station, the base station calculates the measurement time according to the first threshold and the base station The position information of the base station and the signal coverage of the base station are calculated to obtain the position of the switching point corresponding to the first measurement event.
  • the base station calculates the measurement time of the cell switching according to the position of the switching point; if the network equipment is a communication satellite, the communication satellite uses the first threshold and communication The position information of the satellite's ground mapping point and the signal coverage of the communication satellite are calculated to obtain the switching point position corresponding to the first measurement event, and the communication satellite calculates the cell switching measurement time according to the switching point position and the communication satellite moving speed.
  • the embodiments of the present application provide a method for indicating cell handover measurement, including: the terminal receives a measurement indication, where the measurement indication instructs the terminal to perform cell handover measurement, or in other words, the measurement indication instructs the cell to perform a cell measurement operation.
  • the indication carries information about the measurement time of the cell handover.
  • the measurement time is calculated by the network equipment based on the measurement event.
  • the measurement event refers to the positional relationship between the terminal and the network device. It can also be said that the measurement event is based on the terminal and network If the location relationship between the devices is determined, the measurement instructions received by the terminal may be sent by the network device; the terminal performs cell handover measurement based on the measurement time carried in the measurement instruction. Specifically, when the measurement time indicated by the measurement instruction is reached, the terminal performs Cell handover measurement.
  • the terminal may also trigger cell handover according to the measurement moment indicated by the measurement.
  • the terminal performs cell handover measurement according to the measurement time indicated by the measurement instruction, and the measurement time is determined by the measurement event corresponding to the location relationship between the terminal and the network device. Therefore, in the method for indicating cell handover measurement in the embodiment of the present application, on the one hand, the network equipment calculates the measurement time according to the position relationship, and on the other hand, the terminal performs cell handover measurement according to the measurement time. It is effective that the network equipment and the terminal participate in the cell handover decision at the same time. Improve the reliability and real-time performance of cell handover.
  • the terminal after the terminal performs the cell handover measurement, the terminal can either send a measurement report to the network device, and the network device makes the cell handover decision, or, The terminal can also directly trigger the cell handover procedure based on the measurement report to perform cell handover.
  • an embodiment of the present application provides an indication method for cell handover measurement, including: a network device sends a measurement indication, the measurement indication is used to instruct a terminal to perform a cell handover measurement, wherein the measurement indication carries the measurement time of the cell handover The measurement time may be calculated by the network device according to a measurement event determined based on the location relationship between the terminal and the network device.
  • the cell handover decision made by the network device specifically includes: after the network device sends a measurement instruction, the instruction method further includes: the network device receives a measurement report from the terminal, and the network device The measurement report sends a cell handover instruction. Specifically, the network device makes a cell handover decision based on the measurement report. If it is determined that the cell handover needs to be performed, the network device sends a cell handover instruction to the terminal to instruct the terminal to perform cell handover, otherwise the network device sends a cell handover instruction to the terminal A cell handover instruction that instructs the terminal not to perform cell handover.
  • the cell handover decision made by the terminal side includes: after the network device sends the measurement instruction, the network device receives the cell handover instruction, and the cell handover instruction may be sent by the terminal, Alternatively, the cell indication may also be sent by the target network device of the terminal handover, and the cell handover indication is used to instruct the cell handover; finally, the network device performs cell handover to switch the terminal to the target network device.
  • an embodiment of the present application provides an indication method for cell handover measurement, including: the terminal receives a measurement indication, the measurement indication is used to instruct the terminal to perform cell handover measurement, and the measurement indication carries the cell handover measurement time. It is calculated based on the measurement event, which is the positional relationship between the terminal and the network device.
  • the instruction method further includes: the terminal performs cell handover measurement according to the measurement instruction; the terminal sends a measurement report, and the measurement report is generated by the terminal according to the result of the cell handover measurement.
  • the instruction method further includes: the terminal performs cell handover measurement according to the measurement instruction; and the terminal performs cell handover according to the result of the cell handover measurement.
  • an embodiment of the present application provides an indication method for cell handover measurement, including: the terminal calculates the measurement time of the cell handover according to the measurement event, the measurement event is the position relationship between the terminal and the network device, and the terminal performs the measurement according to the measurement time. Cell handover measurement.
  • the indication method provided by the fifth aspect of the embodiments of the present application is different from the indication method described in the second aspect in that: the subject of the measurement moment of extreme cell handover according to the measurement event is the terminal, not the network device; Therefore, the description of other relevant parts of the fifth aspect is similar to the foregoing first aspect. For specific description, please refer to the foregoing description of the first aspect, which is not repeated here.
  • an embodiment of the present application provides a network device, including: a processing module and a sending module, wherein the processing module is used to calculate the measurement time of cell handover according to a measurement event, and the measurement event refers to the connection between the terminal and the network device.
  • the sending module is used to send a measurement indication, the measurement indication carries the measurement time, and the measurement indication is used to instruct the terminal to perform cell handover measurement. Because the network equipment calculates the measurement time of the cell handover according to the position relationship between the terminal and the network equipment, and notifies the terminal to perform the cell handover measurement at the above measurement time.
  • the network equipment calculates the measurement time according to the position relationship, and on the other hand, the terminal performs cell handover measurement according to the measurement time. It is effective that the network equipment and the terminal participate in the cell handover decision at the same time. Improve the reliability and real-time performance of cell handover.
  • the component modules of the network equipment in the sixth aspect can be used to perform the steps described in the various implementations of the cell handover measurement indication method in the first aspect.
  • the cell handover measurement indication method in the first aspect refer to the foregoing description of the cell handover measurement indication method in the first aspect. Instructions in various implementations.
  • an embodiment of the present application provides a terminal, including: a receiving module and a processing module, the receiving module is configured to receive a measurement instruction, the measurement instruction is used to instruct the terminal to perform cell handover measurement, the measurement instruction The measurement time of the cell handover is carried in the measurement time. The measurement time is calculated by the network device according to the measurement event, and the measurement event is the position relationship between the terminal and the network device; the processing module is configured to Measurement instructions, cell handover measurement.
  • the component modules of the terminal in the seventh aspect can be used to execute the steps described in the various implementations of the cell handover measurement indication method in the second aspect.
  • the foregoing description of the cell handover measurement indication method in the second aspect Description in this implementation.
  • an embodiment of the present application provides a network device, including: a sending module, configured to send a measurement instruction, the measurement instruction is used to instruct a terminal to perform cell handover measurement, wherein the measurement indication carries the cell handover measurement time,
  • the measurement time may be calculated by the network device according to a measurement event determined based on the position relationship between the terminal and the network device.
  • the component modules of the network equipment in the eighth aspect can be used to perform the steps described in the various implementations of the cell handover measurement indication method in the third aspect.
  • the foregoing description of the cell handover measurement indication method in the third aspect Instructions in various implementations.
  • the specific description please refer to the related description in the third aspect above, which will not be repeated here.
  • an embodiment of the present application provides a terminal, including: a receiving module, configured to receive a measurement indication, the measurement indication is used to instruct the terminal to perform cell handover measurement, the measurement indication carries the cell handover measurement time, and the measurement time is Calculated according to the measurement event, the measurement event is the positional relationship between the terminal and the network device.
  • the component modules of the terminal in the sixth aspect can be used to execute the steps described in the various implementations of the cell handover measurement indication method in the first aspect.
  • the foregoing description of the cell handover measurement indication method in the fourth aspect Description in this implementation.
  • an embodiment of the present application provides a terminal, including: a processing module, configured to calculate a measurement time of cell handover according to a measurement event, where the measurement event is a positional relationship between the terminal and a network device; Perform cell handover measurement.
  • the component modules of the terminal in the sixth aspect can be used to execute the steps described in the various implementations of the cell handover measurement indication method in the first aspect.
  • the foregoing description of the cell handover measurement indication method in the first aspect Description in this implementation.
  • the specific description please refer to the related description in the above-mentioned first aspect, which will not be repeated here.
  • an embodiment of the present application provides a device.
  • the device may be an entity such as a network device or a chip.
  • the device includes a processor; the processor is used to execute the instruction in the memory so that the device Perform the method as described in the aforementioned first aspect or third aspect.
  • the memory may be provided outside or inside the device.
  • an embodiment of the present application provides a device, which may be an entity such as a terminal or a chip.
  • the device includes a processor; the processor is used to execute the instructions in the memory so that the device executes The method as described in the aforementioned second, fourth or fifth aspect.
  • the memory may be provided outside or inside the device.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes the computer to execute the first to fifth aspects above The method described in any aspect.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method described in any one of the first to fifth aspects.
  • this application provides a chip system that includes a processor, which is used to support network devices to implement the functions involved in the first aspect or the third aspect, or to support terminals to implement the first The functions involved in the second, fourth, or fifth aspect, for example, sending or processing the data and/or information involved in the above methods.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data for the network device or the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the chip system may also include an interface for sending and receiving data.
  • FIG. 1 is a schematic structural diagram of a communication system to which a method for indicating cell handover measurement according to an embodiment of the application is applicable;
  • FIG. 2 is a schematic diagram of an embodiment of a method for indicating cell handover measurement provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of another embodiment of the method for indicating cell handover measurement according to an embodiment of the application
  • FIG. 4 is a schematic diagram of an embodiment in which a terminal makes a cell handover decision according to an embodiment of the application
  • FIG. 5 is a schematic diagram of an embodiment in which a network device performs a cell handover decision according to an embodiment of the application
  • FIG. 6 is a flowchart of an embodiment of a terminal for calculating a measurement time according to an embodiment of the application
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another terminal provided by an embodiment of the application.
  • the embodiments of the present application provide an indication method, network equipment, and terminal for cell handover measurement to improve the reliability and real-time performance of cell handover.
  • first, second, etc. in the description and claims of the present application and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It should be understood that the terms used in this way can be interchanged under appropriate circumstances, and this is merely a way of distinguishing objects with the same attributes in the description of the embodiments of the present application. Sometimes the first and second can be the same or different.
  • the terms “including” and “having” and any variations of them are intended to cover non-exclusive inclusion, so that a process, method, system, product, or device including a series of units is not necessarily limited to those units, but may include Listed or inherent to these processes, methods, products or equipment.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the term "system” can be replaced with "network”.
  • the CDMA system can implement wireless technologies such as universal terrestrial radio access (UTRA) and CDMA2000.
  • UTRA can include wideband CDMA (WCDMA) technology and other CDMA variants.
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement wireless technologies such as the global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • OFDMA system can realize such as evolved universal wireless terrestrial access (UTRA, E-UTRA), ultra mobile broadband (ultra mobile broadband, UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS using E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • the Fifth Generation (5 Generation, "5G”) communication system, and New Radio (“NR”) are the next generation communication systems under study.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and business scenarios described in the embodiments of this application are intended to illustrate the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided in the embodiments of this application.
  • Those of ordinary skill in the art will know that with the network With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • Fig. 1 shows a schematic structural diagram of a communication system to which the method for indicating cell handover measurement in an embodiment of the present application is applicable.
  • the areas described by the thick black line are the signal coverage of the first network device and the signal coverage of the second network device.
  • the signal coverage of the first network device includes cell 1
  • cell 2 includes cell 3
  • cell 5 includes cell 6 in the signal coverage of the second network device.
  • the terminal moves along the path shown by the dashed arrow in FIG. 1, in order to ensure the signal quality of the terminal during the movement of the terminal, the terminal needs to constantly switch between cells.
  • the terminal moves to the overlapping signal coverage of cell 1 and cell 2, that is, at point A in Figure 1, the terminal needs to be handed over from cell 1 to cell 2, because cell 1 and cell 2 belong to the first network equipment. Therefore, when the terminal moves to the overlapped signal coverage of cell 3 and cell 2, that is, at point B in Figure 1, the terminal needs to switch from cell 1 to cell 2 in the same network equipment.
  • the cell 3 under the coverage of one network equipment is switched to the cell 5 under the coverage of the second network, which is a cell handover between different network equipment; similarly, when the terminal moves to the overlapping signal coverage of cell 5 and cell 6, as shown in Figure 1
  • the terminal needs to be handed over from cell 5 to cell 6, which belongs to the cell handover in the second network device.
  • the method for indicating cell handover measurement in the embodiment of the present application is suitable for indicating the two cell handover modes shown in FIG. 1 above, so as to achieve the purpose of improving the reliability and real-time performance of cell handover.
  • the communication system shown in FIG. 1 may be a base station access system of a 2G network (that is, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (that is, the RAN includes a base station and an RNC), Or it may be a base station access system of a 4G network (that is, the RAN includes an eNB and an RNC), or may be a base station access system of a 5G network.
  • the RAN includes one or more network devices.
  • the network device may be any device with a wireless transceiver function, or a chip set in a device with a specific wireless transceiver function.
  • the network equipment includes, but is not limited to: base stations (such as base stations BS, base stations NodeB, evolved base stations eNodeB or eNB, base stations gNodeB or gNB in the fifth generation 5G communication system, base stations in future communication systems, and connections in WiFi systems. Ingress node, wireless relay node, wireless backhaul node), etc.
  • the base station may be: macro base station, micro base station, pico base station, small station, relay station, etc. Multiple base stations can support the network of one or more technologies mentioned above, or the future evolution network.
  • the core network may support the network of one or more technologies mentioned above, or a future evolution network.
  • the base station may include one or more co-site or non co-site transmission receiving points (transmission receiving points, TRP).
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment 1-6, and can also communicate with the terminal equipment 1-6 through a relay station.
  • the terminal device 1-6 can support communication with multiple base stations of different technologies.
  • the terminal device can support communication with a base station supporting an LTE network, a base station supporting a 5G network, and a base station supporting an LTE network.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Figure 1 is an example of satellite communication, which can of course be used in other communication systems.
  • the communication system shown in Figure 1 may also be a mobile satellite communication system in satellite communication.
  • the network equipment in the mobile satellite communication system includes but is not limited to: non-geostationary earth (NGEO) communication satellites, NGEO A device with a wireless transceiver function in a communication satellite, or a chip set in a device with a specific wireless transceiver function in an NGEO communication satellite.
  • NGEO non-geostationary earth
  • the terminal described in the embodiments of this application is also called user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), terminal equipment, etc., which are provided to users
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal equipment etc.
  • a device with voice and/or data connectivity, or a chip set in the device for example, a handheld device with a wireless connection power permission, a vehicle-mounted device, etc.
  • Terminals can include, but are not limited to: handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, other processing devices connected to wireless modems, mobile phones, tablets, laptops, palmtop computers, Mobile internet device (MID), machine type communication terminal, virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminal in industrial control (industrial control), driverless Wireless terminals in (self driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, and smart city (smart city) Wireless terminals, wireless terminals in smart homes, etc.
  • MID Mobile internet device
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control industrial control
  • driverless Wireless terminals in self driving
  • wireless terminals in remote medical surgery wireless terminals in smart grid, wireless terminals in transportation safety, and smart city (smart city) Wireless terminals, wireless terminals in smart homes, etc.
  • FIG. 2 is a schematic diagram of an embodiment of the method for indicating cell handover measurement according to an embodiment of the present application.
  • an embodiment of the cell handover measurement indication in the embodiment of the present application includes:
  • the network device calculates the measurement time of the cell handover according to the measurement event.
  • the measurement event refers to the positional relationship between the terminal and the network device.
  • the measurement event may include one of the first measurement event or the second measurement event.
  • the first measurement event may be the relationship between the terminal and the center point of the serving cell.
  • the distance between the terminal and the network device is greater than the first threshold; the second measurement event may be that the distance between the terminal and the network device is greater than the second threshold.
  • the first measurement event may specifically be: the distance between the terminal and the beam center point is greater than the first threshold
  • the second measurement event may specifically be: the ground mapping point between the terminal and the communication satellite The distance between is greater than the second threshold.
  • the communication satellite calculates the switching point position corresponding to the cell according to the first threshold, the location information of the serving cell center point and the signal coverage of the serving cell; the communication satellite calculates the cell switching according to the switching point position and the communication satellite moving speed Measurement moment.
  • the first threshold may be determined by at least one of the delay of handover between cells covered by the same communication satellite, the cell diameter corresponding to the serving cell, the orbit height of the communication satellite, the speed of the communication satellite, or the type of terminal service.
  • the second threshold may be determined by at least one of the delay of handover between cells covered by different communication satellites, the cell diameter corresponding to the serving cell, the orbit height of the communication satellite, the speed of the communication satellite, or the type of terminal service.
  • the first measurement event is applicable to cell handovers between cells under the coverage of the same communication satellite, and can also be referred to as intra-satellite handover; the second measurement event is applicable to between cells under the coverage of different communication satellites
  • the cell handover can also be called inter-satellite handover.
  • the first measurement event may specifically be: the distance between the terminal and the central point of the serving cell is greater than the first threshold, and the second measurement event may specifically be the distance between the terminal and the base station is greater than the second threshold.
  • the base station can calculate the location of the switching point corresponding to the cell based on the first threshold, the location information of the center point of the serving cell, and the signal coverage of the serving cell.
  • the base station calculates the location of the cell switching based on the location of the switching point corresponding to the cell. Measure the moment.
  • the first threshold may be determined by at least one of the delay of handover between cells covered by the same base station, the cell diameter corresponding to the serving cell, or the terminal service type.
  • the second threshold may be determined by different
  • the time delay for handover between cells covered by the base station is determined by at least one of the cell diameter or the terminal service type corresponding to the cell. It should be understood that the first measurement event is applicable to cell handover between cells under the coverage of the same base station; the second measurement event is applicable to cell handover between cells under the coverage of different communication satellites.
  • the foregoing location information may include, but is not limited to, longitude and latitude information.
  • the above-mentioned cell diameter can be determined according to the long and short semi-axes of the cell's oval coverage, or it can be the cell coverage. Approximately obtained after a perfect circle.
  • the first threshold and/or the second threshold may be dynamically changed to adapt to cell handover requirements of terminals of different scenarios or different service types.
  • both the first threshold and the second threshold may adopt but are not limited to the threshold configuration in Table 1.
  • first thresholds and/or second thresholds may also be set to adjust the measurement time of the terminal.
  • the threshold value can be larger to reduce the measurement time of the terminal to save energy consumption; for mobile devices, the threshold value needs to be reduced to reduce UE motion Uncertainty.
  • both the first threshold and the second threshold may adopt but are not limited to the threshold configuration in Table 2.
  • the first threshold and the second threshold (R is the cell diameter) IoT devices 0.95*R Fixed access equipment 0.9*R Mobile devices 0.8*R ... ...
  • the network device sends a measurement instruction, and the measurement instruction carries the measurement time of the cell handover.
  • the measurement time of the cell handover includes but is not limited to at least one of the measurement start time, the measurement end time, or the time offset, where the time offset is the time difference between the measurement start time and the measurement end time.
  • the measurement time can be composed of the measurement start time and the measurement end time, or can also be composed of the measurement start time and the time offset.
  • the network device may send measurement instructions through but not limited to radio resource control messages or downlink control information, in other words, carry the measurement instructions carrying the measurement time in the radio resource control messages or downlink control information for transmission.
  • the measurement instruction can be sent periodically according to a certain period, and the measurement time can be updated in time. The size of the period can be determined according to the motion state of the terminal and the terminal service type, etc., and there is no limitation here.
  • the network device can carry the measurement start time and the measurement end time in the radio resource control message or downlink control information and send it to the terminal, or
  • the measurement time may be composed of the measurement start time and the time offset
  • the network device may carry the measurement start time and the time offset in a radio resource control message or downlink control information and send it to the terminal.
  • the measurement instruction can also be sent in a radio resource control message or other messages other than the downlink control information, and this application does not impose any restriction on this.
  • the manner in which the network device sends the measurement indication may be by multiplexing fields or adding fields.
  • the foregoing measurement instruction may also include instruction information instructing the terminal to turn on or turn off measurement.
  • the instruction information instructing the terminal to turn on or off the measurement can also be sent separately, and this application does not impose any restrictions on this.
  • the network device can multiplex the radio resource control message or reuse the existing field in the downlink control information to send measurement instructions, or the network device can add a new one in the radio resource control message or the downlink control information Fields are used to send measurement instructions, and the newly added fields can use reserved fields in radio resource control messages or downlink control messages.
  • the following two implementation modes can be adopted to send the measurement indication.
  • the base station or the communication satellite can add corresponding fields to the measurement configuration information element MeasConfig information carried in the radio resource connection (RRC) message transmitted by the system, and send the measurement start time and measurement end time To the terminal.
  • RRC radio resource connection
  • the RRC message is typically an RRC Reconfiguration message.
  • the number of bits that can occupy the RRC message at the beginning of the measurement includes but is not limited to: 32 bits; the number of bits that can also occupy the RRC message at the end of the measurement includes but is not limited to: 32 bits.
  • the second implementation mode the base station or the communication satellite can add corresponding fields to the measurement configuration information element MeasConfig information carried in the radio resource connection (RRC) message transmitted by the system to set the measurement start time and time offset Send to the terminal.
  • the number of bits that can occupy the RRC message at the start of the measurement includes but is not limited to: 32 bits; the number of bits that can be occupied by the time offset in the RRC message includes but is not limited to: 12 bits.
  • This method is suitable for communication satellites with a height of 600-1500km, a minimum speed of 7km/s, and a typical cell diameter of 200km.
  • the maximum residence time of the terminal in the cell is about 30s, and the time accuracy of 10ms is adopted.
  • the maximum time offset is 3000, so it can be characterized by 12 bits.
  • the RRC message is one of the radio resource control messages.
  • the measurement instruction sent in the first implementation manner or the second implementation manner may also carry instruction information that instructs the terminal to turn on or off measurement.
  • a corresponding field is added to the measurement configuration information element MeasConfig information element to send to the terminal the indication information instructing the terminal to turn on or off the measurement, for example, a new bit is added to instruct the terminal to turn on or off For measurement, a bit of 1 indicates that the terminal starts measurement, and a bit of 0 indicates that the terminal closes measurement.
  • the above-mentioned instruction information for instructing the terminal to turn on or off the measurement can also be sent by adding a new field in the downlink control information.
  • any one bit can be added to the original downlink control information field of the satellite broadcast signal or the base station broadcast signal as the indication information to turn on or off the measurement.
  • the bit is 1 to indicate the terminal to start the measurement, and the bit is 0. Instruct the terminal to close the measurement.
  • the measurement indication may include measurement moments of one or more cells, where a cell includes a serving cell, and multiple cells refer to two or more cells.
  • multiple cells can be cells corresponding to the same base station, and/or cells corresponding to different base stations.
  • multiple cells can be cells corresponding to the same communication satellite. Cells, and/or cells corresponding to different communication satellites.
  • the terminal performs cell handover measurement according to the measurement instruction or directly triggers the cell handover.
  • the terminal determines the measurement start time and measurement end time corresponding to the cell according to the measurement instruction. Furthermore, the terminal can perform cell handover measurement according to the measurement start time and measurement end time corresponding to the cell, or the terminal can perform cell handover measurement according to the measurement start time and measurement end time corresponding to the cell The cell handover is directly triggered at any moment between times to execute the corresponding cell handover procedure.
  • the terminal when the measurement corresponding to the cell is turned on, the terminal starts the cell handover measurement, such as triggering at least one of the existing new radio (NR) measurement events A1-A6 and B1-B2; when the measurement corresponding to the cell is turned off In time, the terminal may close the NR measurement event that was opened at the time of measurement start, or the terminal may also delay the close of the NR measurement event that was opened at the time of measurement start according to the actual situation.
  • NR measurement events A1-A6 and B1-B2 please refer to the relevant materials, and will not be repeated here.
  • the network device calculates the measurement time of the cell handover according to the position relationship between the terminal and the network device, and notifies the terminal to perform the cell handover measurement at the above-mentioned measurement time. It is easy to understand that in the method for indicating cell handover measurement in the embodiment of this application, on the one hand, the network device calculates the measurement time according to the position relationship, and on the other hand, the terminal performs cell handover measurement according to the measurement time. The network device and the terminal can participate in the cell handover decision at the same time. Effectively improve the reliability and real-time performance of cell handover.
  • Fig. 3 is a schematic diagram of another embodiment of the method for indicating cell handover measurement provided by an embodiment of the application.
  • another embodiment of the cell handover measurement indication in the embodiment of the present application includes:
  • the network device sends a measurement instruction, and the measurement instruction carries the measurement time of the cell handover.
  • the terminal performs cell handover measurement or directly triggers cell handover according to the measurement instruction.
  • Steps 301 and 302 are similar to the above steps 202 and 203, respectively.
  • step 301 please refer to the description of the above step 202.
  • step 302 refer to the description of the above step 203, which will not be repeated here.
  • Step 1 The network device calculates the first threshold value according to the terminal service type, the handover delay between the cells in the same communication satellite, and the communication satellite movement speed. For example, if a cell handover is performed between cells covered by the same communication satellite, the average delay from the terminal sending a handover request to the completion of the cell handover processing is t1, the satellite moving speed is v, and the cell diameter is R, then the first The threshold TH1 can be (Rv*t1). According to the different terminal service types in Table 2 above, if the terminal is an IoT device, the first threshold TH1 can be (0.95Rv*t1). If the terminal is a fixed access device, the first threshold TH1 A threshold TH1 may be (0.9*Rv*t1). If the terminal is a mobile device, the first threshold TH1 may be (0.9*Rv*t1).
  • Step 2 According to the first threshold, use the first calculation formula to calculate the latitude and longitude positions (long ho , lat ho ) of the switching points corresponding to one or more cells.
  • the first calculation formula is: Among them, long bc is the dimensional position of the beam center point, lat bc is the latitude position of the beam center point, a c is the semi-major axis length of the cell coverage, and b c is the semi-minor axis length of the cell coverage.
  • the signal coverage area corresponding to the distance from the beam center point greater than the first threshold is the protection area.
  • the signal coverage area corresponding to a threshold is a non-protected area, and when the terminal is located in the non-protected area, cell handover measurement may not be required.
  • Step 3 According to the initial position of the terminal (long u , lat u ), the initial time Tu, the latitude and longitude position of the switching point (long ho , lat ho ), and the satellite moving speed as v, use the second calculation formula to calculate the time corresponding to the switching point t_meas.
  • the second calculation formula is:
  • Step 1 The network device calculates the second threshold value according to the terminal service type, the handover delay between cells in different communication satellites, and the movement speed of the communication satellite. For example, assuming that cell handover is performed between cells covered by different communication satellites, the average delay from the terminal sending a handover request to the completion of the cell handover processing is t2, the satellite moving speed is v, and the cell diameter is R, then the second threshold TH2 can be (Rv*t2). According to the different terminal service types in Table 2 above, if the terminal is an IoT device, the second threshold TH2 can be (0.95Rv*t2). If the terminal is a fixed access device, the second threshold The threshold TH2 may be (0.9*Rv*t2). If the terminal is a mobile device, the second threshold TH2 may be (0.9*Rv*t2).
  • Step 2 According to the second threshold, use a third calculation formula to calculate the latitude and longitude positions (long ho , lat ho ) of the switching points corresponding to one or more cells.
  • the third calculation formula is: Among them, long sc is the dimensional position of the beam center point, lat sc is the latitude position of the ground mapping point of the communication satellite, a s is the semi-major axis length of the communication satellite coverage, and b c is the semi-minor axis length of the communication satellite coverage .
  • the signal coverage area corresponding to the distance from the ground mapping point of the communication satellite greater than the second threshold is the protection area.
  • the terminal When the terminal is located in the protection area, cell handover measurement is required to connect to the ground mapping point of the communication satellite.
  • the signal coverage area corresponding to the distance not greater than the second threshold is a non-protected area, and cell handover measurement may not be required when the terminal is located in the non-protected area.
  • Step 3 According to the initial position of the terminal (long u , lat u ), the initial time Tu, the latitude and longitude position of the switching point (long ho , lat ho ), and the satellite moving speed as v, use the second calculation formula to calculate the time corresponding to the switching point t_meas.
  • the second calculation formula is:
  • the calculation method of the measurement event in the base station access system scenario can be obtained by referring to the calculation method of the measurement event in the mobile satellite communication system scenario described above, and will not be repeated here.
  • Figure 4 is a schematic diagram of an embodiment in which a terminal makes a cell handover decision according to an embodiment of the application.
  • the network device sends a measurement instruction, and the measurement instruction carries the measurement time of the cell handover.
  • the terminal performs cell handover measurement according to the measurement instruction.
  • Steps 401 and 402 are similar to the above steps 202 and 203 respectively.
  • step 401 please refer to the description of the above step 202, and for the description of step 402, refer to the description of the above step 203, which will not be repeated here.
  • the terminal performs cell handover according to the result of the cell handover measurement.
  • the terminal performing cell handover according to the result of the cell handover measurement includes: the terminal initiates the cell handover procedure, or the terminal does not initiate the cell handover procedure.
  • the terminal will determine another cell with higher signal strength under the same communication satellite or the same base station as the target cell according to the result of cell handover measurement, and send The target cell initiates a cell switching request to switch the terminal to the target cell; otherwise, the terminal does not initiate a cell switching procedure.
  • the terminal performing cell handover according to the result of the cell handover measurement includes: the terminal initiates the cell handover procedure, or the terminal does not initiate the cell handover procedure.
  • the terminal initiates a cell handover request to a new base station or a new communication satellite according to the result of cell handover measurement to switch to the new base station or new communication satellite; Otherwise, the terminal does not initiate the cell handover procedure.
  • FIG. 5 is a schematic diagram of an embodiment in which a network device makes a cell handover decision according to an embodiment of the application.
  • the network device sends a measurement instruction, and the measurement instruction carries the measurement time of the cell handover.
  • the terminal performs cell handover measurement according to the measurement instruction.
  • Steps 501 and 502 are similar to the above steps 202 and 203 respectively.
  • step 501 please refer to the description of the above step 202, and for the description of step 502, refer to the description of the above step 203, which will not be repeated here.
  • the terminal sends a measurement report.
  • the network device sends a cell handover instruction.
  • the network device makes a cell handover decision based on the measurement report. If it is determined that a cell handover needs to be performed, the network device sends a cell handover instruction to the terminal to instruct the terminal to perform cell handover; otherwise, the network device sends a cell handover instruction to the terminal to instruct the terminal not to perform cell handover.
  • the calculation process of the measurement time in the embodiments corresponding to the indication methods described in FIGS. 2 to 5 are all implemented on the network device side. In fact, the calculation process of the measurement time can also be implemented on the terminal side, which will be described in detail below.
  • FIG. 6 is a flowchart of an embodiment of the terminal for calculating the measurement time provided by the embodiment of the application.
  • the terminal calculates the measurement time of the cell handover according to the measurement event.
  • the calculation method of the measurement time for the terminal to perform cell handover according to the measurement event in step 601 is the same as the calculation method for the measurement time for the network device to perform cell handover according to the measurement event in step 201, and will not be repeated here.
  • the terminal needs to know the network side information related to the measurement time of the cell handover in advance.
  • the method further includes: the terminal receiving the network side information related to the measurement time of the cell handover sent by the network device.
  • the terminal performs cell handover measurement or directly triggers cell handover according to the measurement moment.
  • Step 602 is similar to the above step 203, and the description of step 602 can refer to the description in the above step 203, which will not be repeated here.
  • the network device 700 includes: a processing module 701 and a sending module 702;
  • the processing module 701 is configured to calculate the measurement moment of the cell handover according to a measurement event, the measurement event being the position relationship between the terminal and the network device;
  • the sending module 702 is configured to send a measurement instruction, the measurement instruction carries the measurement time, and the measurement instruction is used to instruct the terminal to perform cell handover measurement.
  • the measurement event includes at least one of the following: a first measurement event or a second measurement event; the first measurement event is: the distance between the terminal and the center point of the serving cell If greater than the first threshold, the serving cell is a cell that provides services for the terminal; the second measurement event is: the distance between the terminal and the network device is greater than a second threshold.
  • the measurement time includes at least one of the following: a measurement start time, a measurement end time, or a time offset, where the time offset is the measurement start time and the measurement end The time difference between moments.
  • the sending module 702 is specifically configured to send the measurement instruction through a radio resource control message or downlink control information.
  • the sending module 702 is specifically configured to send the measurement instruction by multiplexing fields or adding new fields.
  • the measurement indication includes the measurement moment of one or more cells, wherein the cell includes a serving cell.
  • the first threshold and/or the second threshold may be based on the first cell handover delay, the cell diameter corresponding to the serving cell, and the communication satellite orbit. At least one of altitude, communication satellite movement speed, or terminal service type is determined, wherein the first cell handover delay includes: the handover delay between cells covered by the same communication satellite, or the delay between different communication satellites The delay of handover between cells.
  • the first threshold and/or the second threshold may be based on the second cell handover delay, the cell diameter corresponding to the serving cell, or the terminal service type.
  • the second cell handover delay includes: the handover delay between cells covered by the same base station, or the handover delay between cells covered by different base stations.
  • the network device 700 further includes a receiving module 703 configured to receive a measurement report sent by the terminal, the measurement report being generated according to the result of the cell handover measurement.
  • FIG. 8 is a schematic structural diagram of a terminal in an embodiment of this application.
  • the terminal 800 includes: a receiving module 801 and a processing module 802;
  • the receiving module 801 is configured to receive a measurement instruction, the measurement instruction is used to instruct the terminal to perform a cell handover measurement, the measurement instruction carries a cell handover measurement time, and the measurement time is calculated by the network device according to a measurement event , The measurement event is the position relationship between the terminal and the network device;
  • the processing module 802 is configured to perform cell handover measurement according to the measurement instruction.
  • the measurement event includes at least one of the following: a first measurement event or a second measurement event; the first measurement event is: the distance between the terminal and the center point of the serving cell If greater than the first threshold, the serving cell is a cell that provides services for the terminal; the second measurement event is: the distance between the terminal and the network device is greater than a second threshold.
  • the measurement time includes at least one of the following: a measurement start time, a measurement end time, or a time offset, where the time offset is the measurement start time and the measurement end The time difference between moments.
  • the receiving module 801 is specifically configured to send the measurement instruction through a radio resource control message or downlink control information.
  • the receiving module 801 is specifically configured to send the measurement instruction in a manner of multiplexing fields or adding fields.
  • the measurement indication includes the measurement moment of one or more cells, wherein the cell includes a serving cell.
  • the first threshold and/or the second threshold may be based on the first cell handover delay, the cell diameter corresponding to the serving cell, and the communication satellite orbit. At least one of altitude, communication satellite movement speed, or terminal service type is determined, wherein the first cell handover delay includes: the handover delay between cells covered by the same communication satellite, or the delay between different communication satellites The delay of handover between cells.
  • the first threshold and/or the second threshold may be based on the second cell handover delay, the cell diameter corresponding to the serving cell, or the terminal service type.
  • the second cell handover delay includes: the handover delay between cells covered by the same base station, or the handover delay between cells covered by different base stations.
  • the terminal 800 further includes: a sending module 803, configured to send a measurement report, the measurement report is generated according to the result of the cell handover measurement; or, the processing module 802 further Used to: perform cell handover according to the result of the cell handover measurement.
  • An embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes a part or all of the steps recorded in the foregoing method embodiment.
  • the network device 900 includes:
  • the receiver 901, the transmitter 902, the processor 903, and the memory 904 (the number of the processors 903 in the network device 900 may be one or more, and one processor is taken as an example in FIG. 9).
  • the receiver 901, the transmitter 902, the processor 903, and the memory 904 may be connected by a bus or in other ways, wherein the connection by a bus is taken as an example in FIG. 9.
  • the memory 904 may include a read-only memory and a random access memory, and provides instructions and data to the processor 903. A part of the memory 904 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 904 stores an operating system and operating instructions, executable modules or data structures, or a subset of them, or an extended set of them.
  • the operating instructions may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 903 controls the operation of the network device, and the processor 903 may also be referred to as a central processing unit (CPU).
  • the various components of the network device are coupled together through a bus system.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are referred to as bus systems in the figure.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 903 or implemented by the processor 903.
  • the processor 903 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 903 or instructions in the form of software.
  • the aforementioned processor 903 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 904, and the processor 903 reads the information in the memory 904, and completes the steps of the foregoing method in combination with its hardware.
  • the receiver 901 can be used to receive input digital or character information, and to generate signal input related to the relevant settings and function control of the network device.
  • the transmitter 902 can include display devices such as a display screen.
  • the transmitter 902 can be used to output numbers through an external interface. Or character information.
  • the processor 903 is configured to execute the aforementioned method for indicating cell handover measurement performed by the network device.
  • the terminal 1000 includes:
  • the receiver 1001, the transmitter 1002, the processor 1003, and the memory 1004 (the number of processors 1003 in the terminal 1000 may be one or more, and one processor is taken as an example in FIG. 10).
  • the receiver 1001, the transmitter 1002, the processor 1003, and the memory 1004 may be connected by a bus or in other ways. In FIG. 10, a bus connection is taken as an example.
  • the memory 1004 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1003. A part of the memory 1004 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1004 stores an operating system and operating instructions, executable modules or data structures, or a subset of them, or an extended set of them, where the operating instructions may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 1003 controls the operation of the terminal, and the processor 1003 may also be referred to as a central processing unit (CPU).
  • the various components of the terminal are coupled together through a bus system.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are referred to as bus systems in the figure.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 1003 or implemented by the processor 1003.
  • the processor 1003 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1003 or instructions in the form of software.
  • the above-mentioned processor 1003 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1004, and the processor 1003 reads information in the memory 1004, and completes the steps of the foregoing method in combination with its hardware.
  • the receiver 1001 can be used to receive input digital or character information, and to generate signal input related to terminal settings and function control.
  • the transmitter 1002 can include display devices such as a display screen.
  • the transmitter 1002 can be used to output digital or character information through an external interface. Character information.
  • the processor 1003 is configured to execute the aforementioned method for indicating cell handover measurement performed by the terminal.
  • the chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip in the terminal executes the aforementioned cell handover measurement instruction method executed by the terminal or network device.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (read-only memory). -only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the processor mentioned in any of the above can be a general-purpose central processing unit, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the method in the first aspect.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate
  • the physical unit can be located in one place or distributed across multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • this application can be implemented by means of software plus necessary general hardware.
  • it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memory, Dedicated components and so on to achieve.
  • all functions completed by computer programs can be easily implemented with corresponding hardware.
  • the specific hardware structure used to achieve the same function can also be diverse, such as analog circuits, digital circuits or dedicated Circuit etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of this application essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk. , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute the methods described in each embodiment of this application .
  • a computer device which can be a personal computer, server, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种小区切换测量的指示方法、网络设备及终端,用于提高小区切换的可靠性和实时性。一种小区切换测量的指示方法,包括:网络设备根据测量事件进行小区切换的测量时刻计算,并发送测量指示,其中测量事件是指终端与网络设备之间的位置关系,测量指示指示终端进行小区切换测量。上述网络设备发送的测量指示可以是通知终端小区切换的测量时刻。

Description

一种小区切换测量的指示方法、网络设备及终端
本申请要求于2019年04月17日提交中国专利局、申请号为201910309135.9、发明名称为“一种小区切换测量的指示方法、网络设备及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种小区切换测量的指示方法、网络设备及终端。
背景技术
在移动通信技术领域中,为了保证处于移动状态下的终端可以保持通信畅通,终端需要频繁地执行小区切换操作。目前的移动通信切换技术中通常采用基于终端位置进行小区切换。
在基于终端位置的切换方案中,网络设备基于终端位置以及终端运动轨迹等信息提前计算出终端在不同小区的切换时刻并通知终端。到达切换时刻,终端直接进行小区切换。
在上述切换方案中,由于终端容易受到天气、云雾遮挡以及终端运动状态变化等的影响使得提前预测的切换时刻不准确甚至失效,并导致终端过早或者过晚地切换。因此,在上述切换方案中小区切换的实时性和可靠性较低。
发明内容
为了弥补上述基于终端位置切换方案中可靠性和实时性低的技术缺陷,本申请实施例提供了一种小区切换测量的指示方法、网络设备及终端,用于提高小区切换的可靠性和实时性。
第一方面,本申请实施例提供了一种小区切换测量的指示方法,包括:网络设备根据测量事件进行小区切换的测量时刻计算,并发送测量指示,其中测量事件是指终端与网络设备之间的位置关系,测量指示指示终端进行小区切换测量。上述网络设备发送的测量指示可以是通知终端小区切换的测量时刻。
从上述小区切换测量的指示方法中,可以看出:网络设备根据终端与网络设备之间的位置关系计算小区切换的测量时刻,并通知终端在上述测量时刻进行小区切换测量。容易理解,在本申请实施例小区切换测量的指示方法中一方面网络设备根据位置关系进行测量时刻计算,另一方面终端根据测量时刻进行小区切换测量,通过网络设备和终端同时参与小区切换决策可以有效地提高小区切换的可靠性和实时性。
在第一方面的一种可能的实现方式中,本申请实施例中的测量事件可以包括以下两种测量事件中的至少一种:第一测量事件或者第二测量事件,第一测量事件可以是终端与服务小区的中心点之间的距离大于第一阈值,服务小区可以是为终端提供服务的小区包括但不限于当前服务小区,上文中所述的服务小区的中心点也可以称之为波束中心点或其它参考点;第二测量事件可以是终端与网络设备之间的距离大于第二阈值,其中可选的,网络 设备可以是基站或者通信卫星等,网络设备为基站,上述第二测量事件为终端与基站之间的距离,网络设备为通信卫星,上述第二测量事件为终端与通信卫星的地面映射点或其它参考点之间的距离。从该种实现方式中可以看出:通过引入基于网络设备与终端之间位置关系相关的测量事件,触发小区切换测量可以简化网络设备与终端之间的信令交互,降低信令开销。
在第一方面的一种可能的实现方式中,测量时刻可以包括:测量开始时刻、测量结束时刻或时间偏移量中的至少一项,其中时间偏移量是测量开始时刻与测量结束时刻之间的时间差值。具体来说,测量时刻可以由测量开始时刻和测量结束时刻组成,或者,也可以由测量开始时刻和时间偏移量组成。
在第一方面的一种可能的实现方式中,网络设备发送测量指示的具体发送方式可以是:通过无线资源控制消息或者下行链路控制信息发送测量指示,换言之,将携带测量时刻的测量指示携带在无线资源控制消息或者下行链路控制信息中进行发送。具体来说,在测量时刻可以由测量开始时刻和测量结束时刻组成的情况下,网络设备可以将测量开始时刻和测量结束时刻携带在无线资源控制消息或者下行链路控制信息中发送至终端,或者,在测量时刻可以由测量开始时刻和时间偏移量组成的情况下,网络设备可以将测量开始时刻和时间偏移量携带在无线资源控制消息或者下行链路控制信息中发送至终端。需要说明的是,测量指示还可以通过无线资源控制消息或者下行链路控制信息之外的其他消息中进行发送,对此本申请不做任何限制。从该种实现方式中可以看出:通过无线资源控制消息或者下行链路控制信息发送测量指示,无需新增加信令,节约信令开销。
在第一方面的一种可能的实现方式中,网络设备发送测量指示的方式可以是通过复用字段或者新增字段的方式,例如,网络设备可以复用无线资源控制消息或者复用下行链路控制信息中的现有字段发送测量指示,或者,网络设备可以在无线资源控制消息中或者下行链路控制信息中新增字段进行测量指示的发送,其中新增字段可以使用无线资源控制消息或者下行链路控制消息中的预留字段。
在第一方面的一种可能的实现方式中,测量指示中可以包括一个或者多个小区的测量时刻,其中小区包括服务小区,多个是指两个及两个以上。可选的,在基站场景下,小区可以是同一个基站对应的小区,或者,不同基站对应的小区,同样,在通信卫星场景下,小区可以是同一个通信卫星对应的小区,或者,不同通信卫星对应的小区。
在第一方面的一种可能的实现方式中,在不同的场景下,第一阈值和第二阈值的确定方式有所不同。可选的,网络设备为通信卫星时,第一阈值和/或第二阈值可以根据第一小区切换时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的,其中第一小区切换时延包括:同一个通信卫星覆盖的小区之间切换的时延,或者,不同通信卫星覆盖的小区之间切换的时延。可选的,网络设备为基站时,第一阈值和/或所述第二阈值可以根据第二小区切换时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,其中第二小区切换时延包括:同一个基站覆盖的小区之间切换的时延,或者,不同基站覆盖的小区之间切换的时延。
在第一方面的一种可能的实现方式中,所述指示方法还包括:网络设备根据第一阈值 计算小区切换的测量时刻,具体来说:若网络设备为基站,基站根据第一阈值、服务小区中心点的位置信息和服务小区的信号覆盖范围进行计算得到第一测量事件对应的切换点位置,基站根据切换点位置计算得到小区切换的测量时刻;若网络设备为通信卫星,通信卫星根据第一阈值、服务小区中心点的位置信息和服务小区的信号覆盖范围进行计算得到第一测量事件对应的切换点位置;通信卫星根据切换点位置和通信卫星移动速度计算得到小区切换的测量时刻。
在第一方面的一种可能的实现方式中,所述指示方法还包括:网络设备根据第二阈值计算小区切换的测量时刻,具体来说:若网络设备为基站,基站根据第一阈值、基站的位置信息和基站的信号覆盖范围进行计算得到第一测量事件对应的切换点位置,基站根据切换点位置计算得到小区切换的测量时刻;若网络设备为通信卫星,通信卫星根据第一阈值、通信卫星的地面映射点的位置信息和通信卫星的信号覆盖范围进行计算得到第一测量事件对应的切换点位置,通信卫星根据切换点位置和通信卫星移动速度计算得到小区切换的测量时刻。
第二方面,本申请实施例提供了一种小区切换测量的指示方法,包括:终端接收测量指示,其中测量指示指示终端进行小区切换测量,或者说,测量指示指示小区执行小区测量操作,在测量指示中携带有小区切换的测量时刻的信息,该测量时刻是网络设备根据测量事件计算得到的,测量事件是指终端与网络设备之间的位置关系,也可以说,测量事件是根据终端与网络设备之间的位置关系确定的,终端接收的测量指示可以是网络设备发送的;终端基于上述测量指示中携带的测量时刻进行小区切换测量,具体来说,达到测量指示指示的测量时刻,终端进行小区切换测量。可选的,终端还可以根据测量指示的测量时刻触发小区切换。
从上述小区切换测量的指示方法中,可以看出:终端根据测量指示指示的测量时刻进行小区切换测量,并且,该测量时刻是终端与网络设备之间的位置关系对应的测量事件确定的。因此,在本申请实施例小区切换测量的指示方法中一方面网络设备根据位置关系进行测量时刻计算,另一方面终端根据测量时刻进行小区切换测量,通过网络设备和终端同时参与小区切换决策可以有效地提高小区切换的可靠性和实时性。
在第二方面的一种可能的实现方式中,第二方面所述的指示方法,在终端进行小区切换测量之后,终端既可以向网络设备发送测量报告,由网络设备进行小区切换决策,或者,终端也可以直接基于测量报告触发小区切换流程以进行小区切换。
第二方面中的其他可能的实现方式及其有益效果与上述第一方面相同,其相关描述可参阅上述第一方面中可能的实现方式的描述,此处不再赘述。
第三方面,本申请实施例提供了一种小区切换测量的指示方法,包括:网络设备发送测量指示,该测量指示用于指示终端进行小区切换测量,其中测量指示中携带有小区切换的测量时刻,该测量时刻可以是网络设备根据基于终端与网络设备之间的位置关系确定的测量事件计算得到的。
在第三方面的一种可能的实现方式中,由网络设备进行小区切换决策,具体包括:在网络设备发送测量指示之后,所述指示方法还包括:网络设备接收终端的测量报告,网络 设备根据测量报告发送小区切换指示,具体可以是,网络设备根据测量报告进行小区切换决策,若确定需要执行小区切换,则网络设备向终端发送指示终端进行小区切换的小区切换指示,否则网络设备向终端发送指示终端不进行小区切换的小区切换指示。
在第三方面的一种可能的实现方式中,由终端侧进行小区切换决策,具备包括:在网络设备发送测量指示之后,网络设备接收小区切换指示,该小区切换指示可以是由终端发送的,或者,该小区指示也可以是由终端切换的目标网络设备发送的,该小区切换指示用于指示进行小区切换;最终,网络设备进行小区切换,以将所述终端切换至目标网络设备。
第四方面,本申请实施例提供了一种小区切换测量的指示方法,包括:终端接收测量指示,测量指示用于指示终端执行小区切换测量,测量指示中携带有小区切换的测量时刻,测量时刻是根据测量事件计算得到的,测量事件为终端与网络设备之间的位置关系。
在第四方面的一种可能的实现方式中,所述指示方法还包括:终端根据测量指示进行小区切换测量;终端发送测量报告,测量报告是终端根据小区切换测量的结果生成的。
在第四方面的一种可能的实现方式中,所述指示方法还包括:终端根据测量指示进行小区切换测量;终端根据小区切换测量的结果进行小区切换。
需要说明的是,第三方面和第四方面的其他相关部分的描述与上述第一方面类似,具体描述请参阅上述第一方面的描述,此处不再赘述。
第五方面,本申请实施例提供了一种小区切换测量的指示方法,包括:终端根据测量事件计算小区切换的测量时刻,测量事件为终端与网络设备之间的位置关系,终端根据测量时刻进行小区切换测量。
容易理解,本申请实施例第五方面提供的指示方法与上述第二方面中所述的指示方法的不同之处在于:根据测量事件极端小区切换的测量时刻的主体是终端,而不是网络设备;因此,第五方面的其他相关部分的描述与上述第一方面类似,具体描述请参阅上述第一方面的描述,此处不再赘述。
第六方面,本申请实施例提供了一种网络设备,包括:处理模块和发送模块,其中处理模块用于:根据测量事件进行小区切换的测量时刻计算,测量事件是指终端与网络设备之间的位置关系;发送模块用于:发送测量指示,测量指示中携带有所述测量时刻,测量指示用于指示所述终端进行小区切换测量。由于网络设备根据终端与网络设备之间的位置关系计算小区切换的测量时刻,并通知终端在上述测量时刻进行小区切换测量。因此,在本申请实施例小区切换测量的指示方法中一方面网络设备根据位置关系进行测量时刻计算,另一方面终端根据测量时刻进行小区切换测量,通过网络设备和终端同时参与小区切换决策可以有效地提高小区切换的可靠性和实时性。
第六方面中网络设备的组成模块可以用于执行上述第一方面中小区切换测量的指示方法的各种实现方式中所描的步骤,详见前述对第一方面中小区切换测量的指示方法的各种实现方式中的说明。其具体描述可参阅上述第一方面中的相关描述,此处不再赘述。
第七方面,本申请实施例提供了一种终端,包括:接收模块和处理模块,接收模块用于:接收测量指示,所述测量指示用于指示所述终端进行小区切换测量,所述测量指示中携带有小区切换的测量时刻,所述测量时刻是网络设备根据测量事件计算得到的,所述测 量事件为所述终端与所述网络设备之间的位置关系;处理模块,用于根据所述测量指示,进行小区切换测量。
第七方面中终端的组成模块可以用于执行上述第二方面中小区切换测量的指示方法的各种实现方式中所描的步骤,详见前述对第二方面中小区切换测量的指示方法的各种实现方式中的说明。其具体描述可参阅上述第二方面中的相关描述,此处不再赘述。
第八方面,本申请实施例提供了一种网络设备,包括:发送模块,用于发送测量指示,该测量指示用于指示终端进行小区切换测量,其中测量指示中携带有小区切换的测量时刻,该测量时刻可以是网络设备根据基于终端与网络设备之间的位置关系确定的测量事件计算得到的。
第八方面中网络设备的组成模块可以用于执行上述第三方面中小区切换测量的指示方法的各种实现方式中所描的步骤,详见前述对第三方面中小区切换测量的指示方法的各种实现方式中的说明。其具体描述可参阅上述第三方面中的相关描述,此处不再赘述。
第九方面,本申请实施例提供了一种终端,包括:接收模块,用于接收测量指示,测量指示用于指示终端执行小区切换测量,测量指示中携带有小区切换的测量时刻,测量时刻是根据测量事件计算得到的,测量事件为终端与网络设备之间的位置关系。
第六方面中终端的组成模块可以用于执行上述第一方面中小区切换测量的指示方法的各种实现方式中所描的步骤,详见前述对第四方面中小区切换测量的指示方法的各种实现方式中的说明。其具体描述可参阅上述第四方面中的相关描述,此处不再赘述。
第十方面,本申请实施例提供了一种终端,包括:处理模块,用于根据测量事件计算小区切换的测量时刻,测量事件为终端与网络设备之间的位置关系;还用于根据测量时刻进行小区切换测量。
第六方面中终端的组成模块可以用于执行上述第一方面中小区切换测量的指示方法的各种实现方式中所描的步骤,详见前述对第一方面中小区切换测量的指示方法的各种实现方式中的说明。其具体描述可参阅上述第一方面中的相关描述,此处不再赘述。
第十一方面,本申请实施例提供一种装置,该装置可以是网络设备或者芯片等实体,所述装置包括:处理器;所述处理器用于执行存储器中的所述指令,使得所述装置执行如前述第一方面或第三方面所述的方法。其中,所述存储器可以设置在装置外或者装置内。
第十二方面,本申请实施例提供一种装置,该装置可以是终端或者芯片等实体,所述装置包括:处理器;所述处理器用于执行存储器中的所述指令,使得所述装置执行如前述第二方面、第四方面或第五方面所述的方法。其中,所述存储器可以设置在装置外或者装置内。
第十三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面至第五方面中任一方面中所述的方法。
第十四方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第五方面中任一方面中所述的方法。
第十五方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设 备实现上述第一方面或者第三方面中所涉及的功能,或者,用于支持终端实现上述第二方面、第四方面或者第五方面中所涉及的功能,例如,发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备或者终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。所述芯片系统还可以包括接口,用于收发数据。
附图说明
图1为本申请实施例提供的一种小区切换测量的指示方法所适用的通信系统的结构示意图;
图2为本申请实施例提供的小区切换测量的指示方法的一个实施例示意图;
图3为本申请实施例提供的小区切换测量的指示方法的另一个实施例示意图;
图4为本申请实施例提供的终端进行小区切换决策的一个实施例示意图;
图5为本申请实施例提供的网络设备进行小区切换决策的一个实施例示意图;
图6为本申请实施例提供的终端进行测量时刻计算的一个实施例流程图;
图7为本申请实施例提供的一种网络设备的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图;
图9为本申请实施例提供的另一种网络设备的结构示意图;
图10为本申请实施例提供的另一种终端的结构示意图。
具体实施方式
本申请实施例提供了一种小区切换测量的指示方法、网络设备及终端,用于提高小区切换的可靠性和实时性。
下面结合附图,对本申请的实施例提供的小区切换测量的指示方法、网络设备及终端进行描述。
为了便于理解本申请实施例中的技术方案,在本申请的实施例提供的小区切换测量的指示方法、网络设备及终端进行描述之前,先对本申请中的相关术语、适用的通信系统、网络设备以及终端进行说明。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。有时第一和第二可以相同或者不同。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请实施例的技术方案可以应用于各种数据处理的通信系统,例如:例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal  frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5 Generation,简称:“5G”)通信系统、新空口(New Radio,简称“NR”)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请实施例中小区切换测量的指示方法所适用的通信系统的结构示意图。如图1所示,粗色黑线所述区域分别为第一网络设备的信号覆盖范围和第二网络设备的信号覆盖范围,在第一网络设备的信号覆盖范围中包括小区1、小区2和小区3,在第二网络设备的信号覆盖范围中包括小区4、小区5和小区6。假设终端沿着图1中虚线箭头所示的路径移动,在终端移动过程中为了保证终端的信号质量,终端需要不停的在各个小区之间进行切换。具体来说,当终端移动至小区1与小区2的重叠信号覆盖范围中即图1中A点处时,终端需要由小区1切换至小区2,由于小区1和小区2同属于第一网络设备的信号覆盖范围内,因此小区1切换至小区2属于同一网络设备内的小区切换;当终端移动至小区3与小区2的重叠信号覆盖范围中即图1中B点处时,终端需要由第一网络设备覆盖下的小区3切换至第二网络覆盖范围下的小区5,属于不同网络设备之间的小区切换;同样,当终端移动至小区5和小区6的重叠信号覆盖范围即图1中C点处时,终端需要由小区5切换至小区6,属于第二网络设备内的小区切换。本申请实施例中的小区切换测量的指示方法适用于对上述图1中所示的两种小区切换方式进行指示,以达到提高小区切换的可靠性和实时性的目的。
图1所示的通信系统可以是2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。所述RAN包括一个或多个网络设备。所述网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。所述网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点) 等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备1-6进行通信,也可以通过中继站与终端设备1-6进行通信。终端设备1-6可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端接入到无线网络的RAN节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
图1是以卫星通信为例进行的介绍,当然可以用于其他通信系统。图1所示的通信系统也可以是卫星通信中的移动卫星通信系统,在移动卫星通信系统中所述网络设备包括但不限于:非静止轨道(non-geostationary earth orbit,NGEO)通信卫星,NGEO通信卫星中具有无线收发功能的设备,或,NGEO通信卫星中设置于具体无线收发功能的设备内的芯片。
本申请实施例中所述的终端又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端设备等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功率允许的手持式设备、车载设备等。终端可以包括但不限于:具有无线通信功能的手持式设备、车载设备、可穿戴设备、计算设备、连接到无线调制解调器的其它处理设备、手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、机器类型通信终端、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
下面结合附图对本申请实施例中的一种小区切换测量的指示方法进行详细说明,图2为本申请实施例提供的小区切换测量的指示方法的一个实施例示意图。
如图2所示,本申请实施例中小区切换测量指示的一个实施例包括:
201、网络设备根据测量事件计算小区切换的测量时刻。
测量事件是指终端与网络设备之间的位置关系,具体来说,测量事件可以包括:第一测量事件或者第二测量事件中的一种,第一测量事件可以是终端与服务小区中心点之间的距离大于第一阈值;第二测量事件可以是终端与网络设备之间的距离大于第二阈值。
具体来说,在移动卫星通信系统中,第一测量事件具体可以是:终端与波束中心点之间的距离大于第一阈值,第二测量事件具体可以是:终端与通信卫星的地面映射点之间的距离大于第二阈值。可选的,通信卫星根据第一阈值、服务小区中心点的位置信息和服务小区的信号覆盖范围进行计算得到小区对应的切换点位置;通信卫星根据切换点位置和通信卫星移动速度计算得到小区切换的测量时刻。可选的,第一阈值可以由同一个通信卫星覆盖的小区之间切换的时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的;第二阈值可以由不同通信卫星覆盖的小区之间切换的时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的。应理解,第一测量事件适用于在同一个通信卫星覆盖范围下的小区之间的小区切换,也可以称之为星内切换;第二测量事件适用于不同通信卫星覆盖范围下的小区之间的小区切换,也可以称之为星间切换。
在基站接入系统中,第一测量事件具体可以是:终端与服务小区中心点之间的距离大于第一阈值,第二测量事件具体可以是终端与基站之间的距离大于第二阈值。可选的,基站可以根据第一阈值、服务小区中心点的位置信息以及服务小区的信号覆盖范围进行计算得到小区对应的切换点位置,最终,基站根据小区对应的切换点位置计算得到小区切换的测量时刻。可选的,第一阈值可以是由同一个基站覆盖的小区之间切换的时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,同样,第二阈值可以是由不同基站覆盖的小区之间切换的时延务小区对应的小区直径或终端业务类型中的至少一项确定的。应理解,第一测量事件适用于在同一个基站覆盖范围下的小区之间的小区切换;第二测量事件适用于不同通信卫星覆盖范围下的小区之间的小区切换。
可选的,上述位置信息可以包括但不限于经纬度信息。
需要说明的是,由于小区覆盖范围一般不是正圆形而是椭圆形,因此,上述的小区直径可以是根据小区椭圆形覆盖范围的长、短半轴确定的,或者,可以是将小区覆盖范围近似为正圆形之后得到的。
在一种实施方式中,可以通过动态改变第一阈值和/或第二阈值,来适应不同的场景或者不同业务类型的终端的小区切换需求。
具体来说,在移动卫星通信系统中的低地球轨道(low earth orbit,LEO)场景下,轨道高度越高,卫星运动速度变慢,阈值可以适当增加;相同轨道高度,小区直径变大,阈值随之增加。可选的,针对LEO场景,第一阈值和第二阈值均可以采用但不限于表1中的阈值配置。
表1
Figure PCTCN2020083632-appb-000001
Figure PCTCN2020083632-appb-000002
此外,针对不同业务类型的终端,也可以设置不同的第一阈值和/或第二阈值,以调整终端的测量时间。例如,对于物联网(internet of things,IoT)设备,其阈值可较大,来减少终端的测量时间,以节约能量开销;对于移动设备,其阈值需减小,以降低由于UE运动所带来的不确定性。针对不同业务类型的终端,第一阈值和第二阈值均可以采用但不限于表2中的阈值配置。
表2
终端类型 第一阈值和第二阈值(R为小区直径)
IoT设备 0.95*R
固定接入设备 0.9*R
移动设备 0.8*R
...... ......
202、网络设备发送测量指示,测量指示中携带有小区切换的测量时刻。
小区切换的测量时刻包括但不限于:测量开始时刻、测量结束时刻或时间偏移量中的至少一项,其中时间偏移量是测量开始时刻与测量结束时刻之间的时间差值。具体来说,测量时刻可以由测量开始时刻和测量结束时刻组成,或者,也可以由测量开始时刻和时间偏移量组成。
可选的,网络设备可以通过但不限于无线资源控制消息或者下行链路控制信息发送测量指示,换言之,将携带测量时刻的测量指示携带在无线资源控制消息或者下行链路控制信息中进行发送。需要说明的是,测量指示可以按照一定的周期进行周期性发送,以及时更新测量时刻,其中周期大小可以根据终端的运动状态以及终端业务类型等进行确定,此处不做任何限定。
具体来说,在测量时刻可以由测量开始时刻和测量结束时刻组成的情况下,网络设备可以将测量开始时刻和测量结束时刻携带在无线资源控制消息或者下行链路控制信息中发送至终端,或者,在测量时刻可以由测量开始时刻和时间偏移量组成的情况下,网络设备可以将测量开始时刻和时间偏移量携带在无线资源控制消息或者下行链路控制信息中发送至终端。需要说明的是,测量指示还可以通过无线资源控制消息或者下行链路控制信息之外的其他消息中进行发送,对此本申请不做任何限制。
可选的,网络设备发送测量指示的方式可以是通过复用字段或者新增字段的方式。
可选的,上述测量指示中还可以包括指示终端开启或者关闭测量的指示信息。指示终 端开启或者关闭测量的指示信息也可以单独发送,对此本申请不做任何限制。
具体来说,网络设备可以复用无线资源控制消息或者复用下行链路控制信息中的现有字段发送测量指示,或者,网络设备可以在无线资源控制消息中或者下行链路控制信息中新增字段进行测量指示的发送,其中新增字段可以使用无线资源控制消息或者下行链路控制消息中的预留字段。
以在无线资源控制消息中新增加字段为例可以采用如下两种实现方式发送测量指示。
第一种实现方式:基站或者通信卫星可以通过在系统传输的无线资源控制(radio resource connection,RRC)消息携带的测量配置信元MeasConfig information element中增加相应字段,将测量开始时刻和测量结束时刻发送至终端。可选的,RRC消息的典型为RRC Reconfiguration消息。可选的,测量开始时刻可以占用RRC消息的比特位数目包括但不限于:32比特;测量结束时刻也可以占用RRC消息的比特位数目包括但不限于:32比特。
第二种实现方式:基站或者通信卫星可以通过在系统传输的无线资源控制(radio resource connection,RRC)消息携带的测量配置信元MeasConfig information element中增加相应字段,将测量开始时刻和时间偏移量发送至终端。可选的,测量开始时刻可以占用RRC消息的比特位数目包括但不限于:32比特;时间偏移量可以占用RRC消息的比特位数目包括但不限于:12比特。此种方式适用于,通信卫星高度在600-1500km,最小速度为7km/s,对应的小区直径典型值为200km,则终端在小区内的最大驻留时间约为30s,采用10ms的时间精度,则时间偏移量最大值为3000,所以用12比特表征即可。需要说明的是,RRC消息是无线资源控制消息中的其中一种。
在通过第一种实现方式或者第二种实现方式中发送的测量指示中还可以携带指示终端开启或者关闭测量的指示信息。
具体来说,在系统广播的系统传输的RRC消息携带的测量配置信元MeasConfig information element中增加相应字段,将测量开始时刻和时间偏移量发送至终端,或者,将测量开始时刻和测量结束时刻发送至终端,同时,在上述测量配置信元MeasConfig information element中再增加相应的字段以将指示终端开启或者关闭测量的指示信息发送至终端,例如,新增加一个比特位用于指示终端开启或者关闭测量,该比特位为1指示终端开启测量,该比特位为0指示终端关闭测量。
上述指示终端开启或者关闭测量的指示信息还可以通过下行链路控制信息中新增加字段的方式进行发送。具体来说,可以卫星广播信号或基站广播信号的原下行链路控制信息字段中增加任意1个比特作为开启或者关闭测量的指示信息,该比特位为1指示终端开启测量,该比特位为0指示终端关闭测量。
可选的,测量指示中可以包括一个或者多个小区的测量时刻,其中小区包括服务小区,多个小区是指两个及两个以上小区。
具体来说,在基站场景下,多个小区可以是同一个基站对应的小区,和/或,不同基站对应的小区,同样,在通信卫星场景下,多个小区可以是同一个通信卫星对应的小区,和/或,不同通信卫星对应的小区。
203、终端根据测量指示进行小区切换测量或者直接触发小区切换。
终端根据测量指示确定小区对应的测量开启时间和测量结束时间,进而,终端可以根据小区对应的测量开启时刻和测量结束时刻进行小区切换测量,或者,终端可以根据小区对应的测量开启时间和测量结束时间之间的任意时刻直接触发小区切换,以执行对应的小区切换流程。
具体来说,达到小区对应的测量开启时时,终端开启小区切换测量,例如触发现有新空口(new radio,NR)测量事件A1-A6和B1-B2中的至少一个;达到小区对应的测量关闭时间时,终端可以将在测量开启时刻开启的NR测量事件关闭,或者,终端也可以根据实际情况延迟关闭在测量开启时刻开启的NR测量事件。NR测量事件A1-A6和B1-B2的相关介绍可参阅相关资料,此处不再赘述。
本申请实施例中,网络设备根据终端与网络设备之间的位置关系计算小区切换的测量时刻,并通知终端在上述测量时刻进行小区切换测量。容易理解,在本申请实施例小区切换测量的指示方法中一方面网络设备根据位置关系进行测量时刻计算,另一方面终端根据测量时刻进行小区切换测量,通过网络设备和终端同时参与小区切换决策可以有效地提高小区切换的可靠性和实时性。
图3为本申请实施例提供的小区切换测量的指示方法的另一个实施例示意图。
如图3所示,本申请实施例中小区切换测量指示的另一个实施例包括:
301、网络设备发送测量指示,测量指示中携带有小区切换的测量时刻。
302、终端根据测量指示进行小区切换测量或者直接触发小区切换。
步骤301和302分别与上述步骤202和203类似,其步骤301的描述可参阅上述步骤202中的描述,其步骤302的描述可参阅上述步骤203中的描述,此处不再赘述。
本申请实施例中对应的有益效果也与上述图2对应的实施例的有益效果类似,此处不再赘述。
以移动卫星通信系统场景为例,对基于测量事件对应的测量时刻的一种可能的计算方式进行详细说明:
一、基于第一测量事件记为测量事件C1计算测量时刻
步骤1:网络设备根据终端业务类型、同一个通信卫星内的小区之间的切换时延和通信卫星运动速度计算第一阈值。例如,假设在同一个通信卫星覆盖的小区之间进行小区切换,从终端发送切换请求至小区切换处理完成所需的平均时延为t1,卫星移动速度为v,小区直径为R,则第一阈值TH1可以为(R-v*t1),根据上述表2中不同终端业务类型,若终端为IoT设备,则第一阈值TH1可以为(0.95R-v*t1),若终端为固定接入设备,则第一阈值TH1可以为(0.9*R-v*t1),若终端为移动设备,则第一阈值TH1可以为(0.9*R-v*t1)。
步骤2:根据第一阈值,使用第一计算公式计算一个或者多个小区对应的切换点的经纬度位置(long ho,lat ho)。
第一计算公式为:
Figure PCTCN2020083632-appb-000003
其中,long bc为波束中心点的维度位置,lat bc为波束中心点的纬度位置,a c为小区覆盖范围的半长轴长度,b c为小区覆盖范围的半短轴长度。
需要说明的是,与波束中心点之间的距离大于第一阈值对应的信号覆盖区域为保护区域,终端位于该保护区域内时需要进行小区切换测量,与波束中心点之间的距离不大于第一阈值对应的信号覆盖区域为非保护区域,终端位于该非保护区域内时可以不需要进行小区切换测量。
步骤3:根据终端的初始位置(long u,lat u)、初始时刻Tu、切换点的经纬度位置(long ho,lat ho)和卫星移动速度为v,利用第二计算公式计算切换点对应的时刻t_meas。
第二计算公式为:
Figure PCTCN2020083632-appb-000004
二、基于第二测量事件记为测量事件C2计算测量时刻
步骤1:网络设备根据终端业务类型、不同通信卫星内的小区之间的切换时延和通信卫星运动速度计算第二阈值。例如,假设在不同通信卫星覆盖的小区之间进行小区切换,从终端发送切换请求至小区切换处理完成所需的平均时延为t2,卫星移动速度为v,小区直径为R,则第二阈值TH2可以为(R-v*t2),根据上述表2中不同终端业务类型,若终端为IoT设备,则第二阈值TH2可以为(0.95R-v*t2),若终端为固定接入设备,则第二阈值TH2可以为(0.9*R-v*t2),若终端为移动设备,则第二阈值TH2可以为(0.9*R-v*t2)。
步骤2:根据第二阈值,使用第三计算公式计算一个或者多个小区对应的切换点的经纬度位置(long ho,lat ho)。
第三计算公式为:
Figure PCTCN2020083632-appb-000005
其中,long sc为波束中心点的维度位置,lat sc为通信卫星的地面映射点的纬度位置,a s为通信卫星覆盖范围的半长轴长度,b c为通信卫星覆盖范围的半短轴长度。
同样需要说明的是,与通信卫星的地面映射点之间的距离大于第二阈值对应的信号覆盖区域为保护区域,终端位于该保护区域内时需要进行小区切换测量,与通信卫星的地面映射点之间的距离不大于第二阈值对应的信号覆盖区域为非保护区域,终端位于该非保护区域内时可以不需要进行小区切换测量。
步骤3:根据终端的初始位置(long u,lat u)、初始时刻Tu、切换点的经纬度位置(long ho,lat ho)和卫星移动速度为v,利用第二计算公式计算切换点对应的时刻t_meas。
第二计算公式为:
Figure PCTCN2020083632-appb-000006
还需要说明的是,在基站接入系统场景中的测量事件的计算方式可参阅上述移动卫星通信系统场景中测量事件的计算方式进行相应的变换得到,此处不再赘述。
上面图3和图分别对本申请实施例提供的小区切换测量的指示方法的两种实现方式进行了详细说明,下面基于上述图3和图4的指示方式对终端或者网络设备进行小区切换决策的的实施例进行详细说明。
一、基于小区切换测量的指示方法的终端进行小区切换决策的小区切换方式
图4为本申请实施例提供的终端进行小区切换决策的一个实施例示意图。
401、网络设备发送测量指示,测量指示中携带有小区切换的测量时刻。
402、终端根据测量指示进行小区切换测量。
步骤401和402分别与上述步骤202和203类似,其步骤401的描述可参阅上述步骤202中的描述,其步骤402的描述可参阅上述步骤203中的描述,此处不再赘述。
403、终端根据小区切换测量的结果进行小区切换。
当测量事件为第一测量事件时,终端根据小区切换测量的结果执行小区切换包括:终端发起小区切换流程,或者,终端不发起小区切换流程。
具体来说,若小区切换测量的结果指示需要进行小区切换,则终端根据小区切换测量的结果将同一通信卫星或同一个基站覆盖下的另一个信号强度较高的小区确定为目标小区,并向所述目标小区发起小区切换请求,以将终端切换至所述目标小区;否则,终端不发起小区切换流程。
当测量事件为第二测量事件时,终端根据小区切换测量的结果执行小区切换包括:终端发起小区切换流程,或者,终端不发起小区切换流程。
具体来说,若小区切换测量的结果指示需要进行小区切换,则终端根据小区切换测量的结果向新的基站或者新的通信卫星发起小区切换请求,以切换至新的基站或者新的通信卫星;否则,终端不发起小区切换流程。
二、基于小区切换测量的指示方法的网络设备进行小区切换决策的小区切换方式
图5为本申请实施例提供的网络设备进行小区切换决策的一个实施例示意图。
501、网络设备发送测量指示,测量指示中携带有小区切换的测量时刻。
502、终端根据测量指示进行小区切换测量。
步骤501和502分别与上述步骤202和203类似,其步骤501的描述可参阅上述步骤202中的描述,其步骤502的描述可参阅上述步骤203中的描述,此处不再赘述。
503、终端发送测量报告。
504、网络设备发送小区切换指示。
网络设备根据测量报告进行小区切换决策,若确定需要执行小区切换,则网络设备向终端发送指示终端进行小区切换的小区切换指示,否则网络设备向终端发送指示终端不进行小区切换的小区切换指示。
上述图2至图5中所述的指示方法对应的实施例中测量时刻的计算过程均是在网络设备侧实现的,其实上述测量时刻的计算过程还可以由终端侧实现,下面进行详细说明。
图6为本申请实施例提供的终端进行测量时刻计算的一个实施例流程图。
601、终端根据测量事件计算小区切换的测量时刻。
步骤601中终端根据测量事件进行小区切换的测量时刻的计算方式与上述步骤201中网络设备根据测量事件进行小区切换的测量时刻的计算方式相同,此处不再赘述。
需要说明的是,与上述网络侧进行计算不同的是,终端需要预先获知与小区切换的测量时刻相关的网络侧信息。具体来说,在步骤601之前还包括:终端接收网络设备发送的与小区切换的测量时刻相关的网络侧信息。
602、终端根据测量时刻进行小区切换测量或者直接触发小区切换。
步骤602与上述步骤203类似,其步骤602的描述可参阅上述步骤203中的描述,此处不再赘述。
需要说明的是,对于本申请实施例中提及具体的小区切换流程以及小区切换操作与常规的小区切换流程以及小区切换操作一致,其具体的小区切换流程以及小区切换操作可参阅相关资料,本申请实施例中不做详细描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅如图7所示,为本申请实施例中网络设备的结构示意图,网络设备700包括:处理模块701和发送模块702;
处理模块701,用于根据测量事件计算小区切换的测量时刻,所述测量事件为终端与所述网络设备之间的位置关系;
发送模块702,用于发送测量指示,所述测量指示中携带有所述测量时刻,所述测量指示用于指示所述终端进行小区切换测量。
在本申请的一些实施例中,所述测量事件包括以下至少一种:第一测量事件或第二测量事件;所述第一测量事件为:所述终端与服务小区的中心点之间的距离大于第一阈值,所述服务小区是为所述终端提供服务的小区;所述第二测量事件为:所述终端与所述网络设备之间的距离大于第二阈值。
在本申请的一些实施例中,所述测量时刻包括以下至少一项:测量开始时刻、测量结束时刻或时间偏移量,其中所述时间偏移量为所述测量开始时刻与所述测量结束时刻之间的时间差。
在本申请的一些实施例中,所述发送模块702具体用于:通过无线资源控制消息或者下行链路控制信息发送所述测量指示。
在本申请的一些实施例中,所述发送模块702具体用于:可以通过复用字段或者新增字段的方式发送所述测量指示。
在本申请的一些实施例中,所述测量指示中包括一个或者多个小区的所述测量时刻,其中所述小区包括服务小区。
在本申请的一些实施例中,若所述网络设备为通信卫星,所述第一阈值和/或所述第二阈值可以根据第一小区切换时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的,其中所述第一小区切换时延包括:同一个通信卫星覆盖的小区之间切换的时延,或者,不同通信卫星覆盖的小区之间切换的时延。
在本申请的一些实施例中,若所述网络设备为基站,所述第一阈值和/或所述第二阈值可以根据第二小区切换时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,其中所述第二小区切换时延包括:同一个基站覆盖的小区之间切换的时延,或者,不同基站覆盖的小区之间切换的时延。
在本申请的一些实施例中,网络设备700还包括接收模块703,用于接收终端发送的测量报告,所述测量报告是根据所述小区切换测量的结果生成的。
请参阅如图8所示,为本申请实施例中终端的结构示意图,终端800包括:接收模块801和处理模块802;
接收模块801,用于接收测量指示,所述测量指示用于指示所述终端进行小区切换测量,所述测量指示中携带有小区切换的测量时刻,所述测量时刻是网络设备根据测量事件计算得到的,所述测量事件为所述终端与所述网络设备之间的位置关系;
处理模块802,用于根据所述测量指示,进行小区切换测量。
在本申请的一些实施例中,所述测量事件包括以下至少一种:第一测量事件或第二测量事件;所述第一测量事件为:所述终端与服务小区的中心点之间的距离大于第一阈值,所述服务小区是为所述终端提供服务的小区;所述第二测量事件为:所述终端与所述网络设备之间的距离大于第二阈值。
在本申请的一些实施例中,所述测量时刻包括以下至少一项:测量开始时刻、测量结束时刻或时间偏移量,其中所述时间偏移量为所述测量开始时刻与所述测量结束时刻之间的时间差。
在本申请的一些实施例中,所述接收模块801具体用于:通过无线资源控制消息或者下行链路控制信息发送所述测量指示。
在本申请的一些实施例中,所述接收模块801具体用于:可以通过复用字段或者新增字段的方式发送所述测量指示。
在本申请的一些实施例中,所述测量指示中包括一个或者多个小区的所述测量时刻,其中所述小区包括服务小区。
在本申请的一些实施例中,若所述网络设备为通信卫星,所述第一阈值和/或所述第二阈值可以根据第一小区切换时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的,其中所述第一小区切换时延包括:同一个通信卫星覆盖的小区之间切换的时延,或者,不同通信卫星覆盖的小区之间切换的时延。
在本申请的一些实施例中,若所述网络设备为基站,所述第一阈值和/或所述第二阈值可以根据第二小区切换时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,其中所述第二小区切换时延包括:同一个基站覆盖的小区之间切换的时延,或者,不同基站覆盖的小区之间切换的时延。
在本申请的一些实施例中,所述终端800还包括:发送模块803,用于发送测量报告,所述测量报告是根据所述小区切换测量的结果生成的;或者,所述处理模块802还用于:根据所述小区切换测量的结果进行小区切换。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本申请实施例提供的另一种网络设备,请参阅图9所示,网络设备900包括:
接收器901、发射器902、处理器903和存储器904(其中网络设备900中的处理器903的数量可以一个或多个,图9中以一个处理器为例)。在本申请的一些实施例中,接收器901、发射器902、处理器903和存储器904可通过总线或其它方式连接,其中,图9中以通过总线连接为例。
存储器904可以包括只读存储器和随机存取存储器,并向处理器903提供指令和数据。存储器904的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。存储器904存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器903控制网络设备的操作,处理器903还可以称为中央处理单元(central processing unit,CPU)。具体的应用中,网络设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器903中,或者由处理器903实现。处理器903可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器903中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器903可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器904,处理器903读取存储器904中的信息,结合其硬件完成上述方法的步骤。
接收器901可用于接收输入的数字或字符信息,以及产生与网络设备的相关设置以及 功能控制有关的信号输入,发射器902可包括显示屏等显示设备,发射器902可用于通过外接接口输出数字或字符信息。
本申请实施例中,处理器903,用于执行前述的网络设备执行的小区切换测量的指示方法。
接下来介绍本申请实施例提供的另一种终端,请参阅图10所示,终端1000包括:
接收器1001、发射器1002、处理器1003和存储器1004(其中终端1000中的处理器1003的数量可以一个或多个,图10中以一个处理器为例)。在本申请的一些实施例中,接收器1001、发射器1002、处理器1003和存储器1004可通过总线或其它方式连接,其中,图10中以通过总线连接为例。
存储器1004可以包括只读存储器和随机存取存储器,并向处理器1003提供指令和数据。存储器1004的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。存储器1004存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1003控制终端的操作,处理器1003还可以称为中央处理单元(central processing unit,CPU)。具体的应用中,终端的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器1003中,或者由处理器1003实现。处理器1003可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1003中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1003可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1004,处理器1003读取存储器1004中的信息,结合其硬件完成上述方法的步骤。
接收器1001可用于接收输入的数字或字符信息,以及产生与终端的相关设置以及功能控制有关的信号输入,发射器1002可包括显示屏等显示设备,发射器1002可用于通过外接接口输出数字或字符信息。
本申请实施例中,处理器1003,用于执行前述的终端执行的小区切换测量的指示方法。
在另一种可能的设计中,芯片包括:处理单元和通信单元,所述处理单元例如可以是 处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行前述的终端或者网络设备执行的小区切换测量的指示方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC,或一个或多个用于控制上述第一方面方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。

Claims (39)

  1. 一种小区切换测量的指示方法,其特征在于,包括:
    网络设备根据测量事件计算小区切换的测量时刻,所述测量事件为终端与所述网络设备之间的位置关系;
    所述网络设备发送测量指示,所述测量指示中携带有所述测量时刻,所述测量指示用于指示所述终端进行小区切换测量。
  2. 根据权利要求1所述的指示方法,其特征在于,
    所述测量事件包括以下至少一种:第一测量事件或第二测量事件;
    所述第一测量事件为:所述终端与服务小区的中心点之间的距离大于第一阈值,所述服务小区是为所述终端提供服务的小区;所述第二测量事件为:所述终端与所述网络设备之间的距离大于第二阈值。
  3. 根据权利要求1或2所述的指示方法,其特征在于,
    所述测量时刻包括以下至少一项:测量开始时刻、测量结束时刻或时间偏移量,其中所述时间偏移量为所述测量开始时刻与所述测量结束时刻之间的时间差。
  4. 根据权利要求1至3中任一项所述的指示方法,其特征在于,所述网络设备发送测量指示,包括:
    所述网络设备通过无线资源控制消息或者下行链路控制信息发送所述测量指示。
  5. 根据权利要求4所述的指示方法,其特征在于,所述网络设备可以通过复用字段或者新增字段的方式发送所述测量指示。
  6. 根据权利要求1至5中任一项所述的指示方法,其特征在于,所述测量指示中包括一个或者多个小区的所述测量时刻,其中所述小区包括服务小区。
  7. 根据权利要求1至6中任一项所述的指示方法,其特征在于,
    若所述网络设备为通信卫星,所述第一阈值和/或所述第二阈值可以根据第一小区切换时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的,其中所述第一小区切换时延包括:同一个通信卫星覆盖的小区之间切换的时延,或者,不同通信卫星覆盖的小区之间切换的时延。
  8. 根据权利要求1至6中任一项所述的指示方法,其特征在于,
    若所述网络设备为基站,所述第一阈值和/或所述第二阈值可以根据第二小区切换时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,其中所述第二小区切换时延包括:同一个基站覆盖的小区之间切换的时延,或者,不同基站覆盖的小区之间切换的时延。
  9. 一种小区切换测量的指示方法,其特征在于,包括:
    终端接收测量指示,所述测量指示用于指示所述终端进行小区切换测量,所述测量指示中携带有小区切换的测量时刻,所述测量时刻是网络设备根据测量事件计算得到的,所述测量事件为所述终端与所述网络设备之间的位置关系;
    所述终端根据所述测量指示,进行小区切换测量。
  10. 根据权利要求9所述的指示方法,其特征在于,
    所述测量事件包括以下至少一种:第一测量事件或第二测量事件;
    所述第一测量事件为:所述终端与服务小区的中心点之间的距离大于第一阈值,所述服务小区是为所述终端提供服务的小区;所述第二测量事件为:所述终端与所述网络设备之间的距离大于第二阈值。
  11. 根据权利要求8或9所述的指示方法,其特征在于,
    所述测量时刻包括以下至少一项:测量开始时刻、测量结束时刻或时间偏移量,其中所述时间偏移量为所述测量开始时刻与所述测量结束时刻之间的时间差。
  12. 根据权利要求9至11中任一项所述的指示方法,其特征在于,所述网络设备发送测量指示,包括:
    所述网络设备通过无线资源控制消息或者下行链路控制信息发送所述测量指示。
  13. 根据权利要求12所述的指示方法,其特征在于,所述网络设备可以通过复用字段或者新增字段的方式发送所述测量指示。
  14. 根据权利要求9至13中任一项所述的指示方法,其特征在于,所述测量指示中包括一个或者多个小区的所述测量时刻,其中所述小区包括服务小区。
  15. 根据权利要求9至14中任一项所述的指示方法,其特征在于,
    若所述网络设备为通信卫星,所述第一阈值和/或所述第二阈值可以根据第一小区切换时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的,其中所述第一小区切换时延包括:同一个通信卫星覆盖的小区之间切换的时延,或者,不同通信卫星覆盖的小区之间切换的时延。
  16. 根据权利要求9至14中任一项所述的指示方法,其特征在于,
    若所述网络设备为基站,所述第一阈值和/或所述第二阈值可以根据第二小区切换时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,其中所述第二小区切换时延包括:同一个基站覆盖的小区之间切换的时延,或者,不同基站覆盖的小区之间切换的时延。
  17. 根据权利要求9至16中任一项所述的指示方法,其特征在于,所述指示方法还包括:
    所述终端发送测量报告,所述测量报告是根据所述小区切换测量的结果生成的;
    或者,所述终端根据所述小区切换测量的结果进行小区切换。
  18. 一种网络设备,其特征在于,包括:
    处理模块,用于根据测量事件计算小区切换的测量时刻,所述测量事件为终端与所述网络设备之间的位置关系;
    发送模块,用于发送测量指示,所述测量指示中携带有所述测量时刻,所述测量指示用于指示所述终端进行小区切换测量。
  19. 根据权利要求18所述的网络设备,其特征在于,
    所述测量事件包括以下至少一种:第一测量事件或第二测量事件;
    所述第一测量事件为:所述终端与服务小区的中心点之间的距离大于第一阈值,所述服务小区是为所述终端提供服务的小区;所述第二测量事件为:所述终端与所述网络设备 之间的距离大于第二阈值。
  20. 根据权利要求18或19所述的网络设备,其特征在于,
    所述测量时刻包括以下至少一项:测量开始时刻、测量结束时刻或时间偏移量,其中所述时间偏移量为所述测量开始时刻与所述测量结束时刻之间的时间差。
  21. 根据权利要求18至20中任一项所述的网络设备,其特征在于,所述发送模块具体用于:
    通过无线资源控制消息或者下行链路控制信息发送所述测量指示。
  22. 根据权利要求21所述的网络设备,其特征在于,所述发送模块具体用于:
    可以通过复用字段或者新增字段的方式发送所述测量指示。
  23. 根据权利要求18至22中任一项所述的网络设备,其特征在于,所述测量指示中包括一个或者多个小区的所述测量时刻,其中所述小区包括服务小区。
  24. 根据权利要求18至23中任一项所述的网络设备,其特征在于,
    若所述网络设备为通信卫星,所述第一阈值和/或所述第二阈值可以根据第一小区切换时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的,其中所述第一小区切换时延包括:同一个通信卫星覆盖的小区之间切换的时延,或者,不同通信卫星覆盖的小区之间切换的时延。
  25. 根据权利要求18至23中任一项所述的网络设备,其特征在于,
    若所述网络设备为基站,所述第一阈值和/或所述第二阈值可以根据第二小区切换时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,其中所述第二小区切换时延包括:同一个基站覆盖的小区之间切换的时延,或者,不同基站覆盖的小区之间切换的时延。
  26. 一种终端,其特征在于,包括:
    接收模块,用于接收测量指示,所述测量指示用于指示所述终端进行小区切换测量,所述测量指示中携带有小区切换的测量时刻,所述测量时刻是网络设备根据测量事件计算得到的,所述测量事件为所述终端与所述网络设备之间的位置关系;
    处理模块,用于根据所述测量指示,进行小区切换测量。
  27. 根据权利要求26所述的终端,其特征在于,
    所述测量事件包括以下至少一种:第一测量事件或第二测量事件;
    所述第一测量事件为:所述终端与服务小区的中心点之间的距离大于第一阈值,所述服务小区是为所述终端提供服务的小区;所述第二测量事件为:所述终端与所述网络设备之间的距离大于第二阈值。
  28. 根据权利要求26或27所述的终端,其特征在于,
    所述测量时刻包括以下至少一项:测量开始时刻、测量结束时刻或时间偏移量,其中所述时间偏移量为所述测量开始时刻与所述测量结束时刻之间的时间差。
  29. 根据权利要求26至28中任一项所述的终端,其特征在于,所述接收模块具体用于:
    通过无线资源控制消息或者下行链路控制信息发送所述测量指示。
  30. 根据权利要求29所述的终端,其特征在于,所述接收模块具体用于:
    可以通过复用字段或者新增字段的方式发送所述测量指示。
  31. 根据权利要求26至30中任一项所述的终端,其特征在于,所述测量指示中包括一个或者多个小区的所述测量时刻,其中所述小区包括服务小区。
  32. 根据权利要求26至31中任一项所述的终端,其特征在于,
    若所述网络设备为通信卫星,所述第一阈值和/或所述第二阈值可以根据第一小区切换时延、服务小区对应的小区直径、通信卫星轨道高度、通信卫星运动速度或终端业务类型中的至少一项确定的,其中所述第一小区切换时延包括:同一个通信卫星覆盖的小区之间切换的时延,或者,不同通信卫星覆盖的小区之间切换的时延。
  33. 根据权利要求26至31中任一项所述的终端,其特征在于,
    若所述网络设备为基站,所述第一阈值和/或所述第二阈值可以根据第二小区切换时延、服务小区对应的小区直径或终端业务类型中的至少一项确定的,其中所述第二小区切换时延包括:同一个基站覆盖的小区之间切换的时延,或者,不同基站覆盖的小区之间切换的时延。
  34. 根据权利要求26至33中任一项所述的终端,其特征在于,所述网络设备还包括:
    发送模块,用于发送测量报告,所述测量报告是根据所述小区切换测量的结果生成的;
    或者,所述处理模块还用于:根据所述小区切换测量的结果进行小区切换。
  35. 一种网络设备,其特征在于,包括:
    处理器,所述处理器与存储器耦合;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,使得权利要求1至8中任一项所述的方法被执行。
  36. 一种终端,其特征在于,包括:
    处理器,所述处理器与存储器耦合;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,使得权利要求9至17中任一项所述的方法被执行。
  37. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,如权利要求1至8中任意一项所述的方法或者如权利要求9至17中任意一项所述的方法被执行。
  38. 一种计算机程序产品,其特征在于,当其在计算机上运行时,如权利要求1至8中任意一项所述的方法或者权利要求9至17中任意一项所述的方法的被执行。
  39. 一种通信系统,其特征在于,所述通信系统包括终端和网络设备,其中,
    所述网络设备为权利要求1至8中任一项所述的网络设备;
    所述终端为权利要求9至17中任一项所述的终端。
PCT/CN2020/083632 2019-04-17 2020-04-08 一种小区切换测量的指示方法、网络设备及终端 WO2020211687A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217036973A KR20210146409A (ko) 2019-04-17 2020-04-08 셀 핸드오버 측정 지시 방법, 네트워크 기기 및 단말기
EP20790619.9A EP3952444A4 (en) 2019-04-17 2020-04-08 INDICATION METHOD FOR CELLULAR TRANSFER MEASUREMENT, AND ASSOCIATED NETWORK DEVICE AND TERMINAL
US17/504,347 US20220038964A1 (en) 2019-04-17 2021-10-18 Cell handover measurement indication method, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910309135.9A CN111836313B (zh) 2019-04-17 2019-04-17 一种小区切换测量的指示方法、网络设备及终端
CN201910309135.9 2019-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/504,347 Continuation US20220038964A1 (en) 2019-04-17 2021-10-18 Cell handover measurement indication method, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2020211687A1 true WO2020211687A1 (zh) 2020-10-22

Family

ID=72838060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083632 WO2020211687A1 (zh) 2019-04-17 2020-04-08 一种小区切换测量的指示方法、网络设备及终端

Country Status (5)

Country Link
US (1) US20220038964A1 (zh)
EP (1) EP3952444A4 (zh)
KR (1) KR20210146409A (zh)
CN (1) CN111836313B (zh)
WO (1) WO2020211687A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119534A (zh) * 2021-01-21 2022-09-27 北京小米移动软件有限公司 切换配置确定方法、装置和通信设备装置
EP4192102A1 (en) * 2021-12-02 2023-06-07 Volkswagen Ag Methods for improving a handover, apparatus, vehicle and computer program
WO2023131320A1 (zh) * 2022-01-10 2023-07-13 华为技术有限公司 一种通信方法和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044677A4 (en) * 2019-10-10 2022-09-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR SERVING CELL RESELECTION BASED ON EPHEMERIDES INFORMATION, AND STORAGE MEDIA
CN114365511A (zh) * 2020-07-28 2022-04-15 北京小米移动软件有限公司 位置确定方法、装置、通信设备和存储介质
KR20230087455A (ko) * 2020-10-14 2023-06-16 지티이 코포레이션 무선 통신에서의 지원 정보
CN114630373B (zh) * 2020-12-08 2023-08-08 中国联合网络通信集团有限公司 切换方法及装置
CN112887005B (zh) * 2021-01-06 2022-11-15 成都天奥集团有限公司 一种消解卫星切换影响的全交换方法及装置
CN112867076B (zh) * 2021-01-08 2023-05-05 上海擎昆信息科技有限公司 邻区列表更新的方法和装置
CN115348621A (zh) * 2021-05-12 2022-11-15 维沃移动通信有限公司 信息处理方法、装置、终端和网络侧设备
WO2023010243A1 (zh) * 2021-08-02 2023-02-09 北京小米移动软件有限公司 小区测量方法、装置、设备及介质
CN116918385A (zh) * 2022-02-18 2023-10-20 北京小米移动软件有限公司 测量配置方法及装置
CN118120294A (zh) * 2022-09-29 2024-05-31 北京小米移动软件有限公司 时间指示方法、装置、设备及存储介质
WO2024065687A1 (en) * 2022-09-30 2024-04-04 Lenovo (Beijing) Limited Methods and apparatuses for reducing measurement on neighbour cell frequencies
CN116321333B (zh) * 2023-03-10 2024-04-26 中国电信股份有限公司卫星通信分公司 通信方法、装置、非易失性存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179037A1 (en) * 2015-05-01 2016-11-10 Qualcomm Incorporated Handoff for satellite communication
CN107295468A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 一种长期演进系统的小区切换方法及装置
CN108243463A (zh) * 2016-12-27 2018-07-03 中国移动通信集团浙江有限公司 一种lte高铁的小区切换方法
CN108260176A (zh) * 2018-01-25 2018-07-06 安徽西岸智能科技有限公司 Lte基站快速切换方法
CN108282810A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种基站、终端、测量控制方法和测量方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101073216B (zh) * 2005-01-26 2010-11-10 中兴通讯股份有限公司 一种wcdma系统中测量的方法
US8478262B2 (en) * 2005-06-29 2013-07-02 Koninklijke Philips Electronics, N.V. Method and apparatus for delegating signal quality handover measuring of a user equipment in wireless communication to a neighbouring user equipment
WO2008085838A1 (en) * 2007-01-04 2008-07-17 Interdigital Technology Corporation Method and apparatus for handover using a candidate set
AU2008205368A1 (en) * 2007-01-08 2008-07-17 Interdigital Technology Corporation Measurement gap pattern scheduling to support mobility
CN102300278B (zh) * 2010-06-28 2016-03-30 中兴通讯股份有限公司 一种切换场景的判决方法及系统
CN102685798B (zh) * 2011-03-10 2017-03-22 中兴通讯股份有限公司 一种终端测量时刻的配置方法、终端、网络侧装置及系统
CN102958123B (zh) * 2011-08-30 2016-03-02 阿尔卡特朗讯公司 将移动终端切换到目标小区的方法、无线通信系统和设备
US20130095819A1 (en) * 2011-10-18 2013-04-18 Qualcomm Incorporated Method and apparatus for performing neighboring cell measurements in wireless networks
WO2013070127A1 (en) * 2011-11-10 2013-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangement for handling a data transferral in a cellular network
CN103220702B (zh) * 2012-01-19 2016-11-02 华为技术有限公司 一种异频小区测量方法、装置和系统
US20130229931A1 (en) * 2012-03-02 2013-09-05 Electronics And Telecommunications Research Institute Methods of managing terminal performed in base station and terminal
CN102647767B (zh) * 2012-03-23 2014-04-30 华为终端有限公司 一种小区重选测量的方法、装置及终端设备
US9130688B2 (en) * 2012-05-11 2015-09-08 Intel Corporation User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
CN103974275B (zh) * 2013-01-25 2018-09-25 索尼公司 无线通信系统中的装置和方法
WO2014182214A1 (en) * 2013-05-10 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for enabling continuation of ongoing positioning measurements at handover
CN104662960B (zh) * 2013-09-09 2018-10-19 华为技术有限公司 小区的切换方法、终端和网络设备
US10356675B2 (en) * 2016-08-09 2019-07-16 Qualcomm Incorporated Handover candidate cell identification and radio link failure (RLF) mitigation in coverage areas
JP6627823B2 (ja) * 2017-06-19 2020-01-08 カシオ計算機株式会社 電子機器、高度測定方法及びプログラム
US10117139B1 (en) * 2017-09-19 2018-10-30 Qualcomm Incorporated Techniques and apparatuses for improved neighbor selection in 5G cellular systems
US10757618B2 (en) * 2018-02-07 2020-08-25 Lg Electronics Inc. Method and apparatus for performing handover
CN108594275A (zh) * 2018-04-26 2018-09-28 桂林电子科技大学 一种北斗+gps双模单点定位方法
CN110446232B (zh) * 2018-05-04 2021-10-29 中国移动通信有限公司研究院 测量上报配置方法、测量上报方法、小区切换方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179037A1 (en) * 2015-05-01 2016-11-10 Qualcomm Incorporated Handoff for satellite communication
CN107295468A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 一种长期演进系统的小区切换方法及装置
CN108243463A (zh) * 2016-12-27 2018-07-03 中国移动通信集团浙江有限公司 一种lte高铁的小区切换方法
CN108282810A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种基站、终端、测量控制方法和测量方法
CN108260176A (zh) * 2018-01-25 2018-07-06 安徽西岸智能科技有限公司 Lte基站快速切换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952444A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119534A (zh) * 2021-01-21 2022-09-27 北京小米移动软件有限公司 切换配置确定方法、装置和通信设备装置
EP4192102A1 (en) * 2021-12-02 2023-06-07 Volkswagen Ag Methods for improving a handover, apparatus, vehicle and computer program
WO2023099647A1 (en) 2021-12-02 2023-06-08 Volkswagen Aktiengesellschaft Methods for improving a handover, apparatus, vehicle and computer program
WO2023131320A1 (zh) * 2022-01-10 2023-07-13 华为技术有限公司 一种通信方法和装置

Also Published As

Publication number Publication date
CN111836313A (zh) 2020-10-27
EP3952444A1 (en) 2022-02-09
US20220038964A1 (en) 2022-02-03
CN111836313B (zh) 2022-08-09
EP3952444A4 (en) 2022-06-08
KR20210146409A (ko) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2020211687A1 (zh) 一种小区切换测量的指示方法、网络设备及终端
US11864131B2 (en) Measurement configuration method and apparatus
US20210321311A1 (en) Apparatus and method in wireless communication system and computer readable storage medium
US20220110028A1 (en) Method for Cell Handover, Communication Device, and Satellite
JP2019532604A (ja) セルハンドオーバ方法、装置、およびシステム
WO2022143564A1 (zh) 一种小区选择方法及装置
US20150045029A1 (en) Method and Apparatus Providing Data Offloading and Carrier Aggregation Associated Measurement Reporting
WO2020063679A1 (zh) 通信方法及装置
CN109842915B (zh) 一种通信方法和装置以及系统
US20230092054A1 (en) Communication method and apparatus
WO2021238766A1 (zh) 一种通信方法及装置
US20210385704A1 (en) Data forwarding for inter-radio access technology wireless networks
US20220322176A1 (en) Cell Reselection Method and System, and Apparatus
US11057807B2 (en) First base station, second base station, and method
WO2022068797A1 (zh) 网络接入方法、网络接入装置、终端和网络侧设备
US20240015634A1 (en) Method and apparatus for transmitting and receiving signal and communication system
WO2021027660A1 (zh) 无线通信的方法和通信装置
US20220182892A1 (en) Communication Method and Apparatus
EP4280666A1 (en) Group migration method, apparatus and system
WO2017166291A1 (zh) 一种通信方法、终端、基站和移动性管理设备
WO2021031212A1 (zh) 一种信息处理方法及终端设备
JP2023537460A (ja) 端末装置、ネットワーク装置、及び方法
WO2023227090A1 (zh) 用于辅小区组的小区更新方法及装置、存储介质
US20240214879A1 (en) Physical cell identity collision resolution for wireless networks
US20240121687A1 (en) Apparatus, method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036973

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020790619

Country of ref document: EP

Effective date: 20211027