WO2023213140A1 - 通信方法、资源配置方法、设备、网络节点、系统及介质 - Google Patents

通信方法、资源配置方法、设备、网络节点、系统及介质 Download PDF

Info

Publication number
WO2023213140A1
WO2023213140A1 PCT/CN2023/081246 CN2023081246W WO2023213140A1 WO 2023213140 A1 WO2023213140 A1 WO 2023213140A1 CN 2023081246 W CN2023081246 W CN 2023081246W WO 2023213140 A1 WO2023213140 A1 WO 2023213140A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
indication information
information
capability
interval
Prior art date
Application number
PCT/CN2023/081246
Other languages
English (en)
French (fr)
Inventor
许辉
丁剑锋
华孝泉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP23799128.6A priority Critical patent/EP4366455A1/en
Publication of WO2023213140A1 publication Critical patent/WO2023213140A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This application relates to the technical field of wireless communication networks, for example, to a communication method, resource allocation method, device, network node, system and medium.
  • UE User Equipment
  • SIMs Subscriber Identity Modules
  • USIMs Universal Subscriber Identity Modules
  • MUSIM Multi-SIM
  • MUSIM UEs Considering the cost efficiency of communication, MUSIM UEs generally use the same radio frequency and baseband components to be shared by multiple USIM cards, leading to some problems that affect system performance: assuming SIM-A is communicating with Network A, the UE needs to occasionally detect the network B (corresponding to SIM-B), for example: reading the paging channel, completing measurements or reading system messages, etc. This occasional detection activity in network B may have an impact on system performance.
  • the UE is in the RRC connected state in the base station corresponding to SIM-A, occupying two radio frequency modules for communication; when the UE starts or leaves the RRC connected state in the base station corresponding to SIM-B, the first base station where the UE is located does not know, resulting in The data sent by the first base station to the UE is lost, resulting in a waste of network resources.
  • This application provides a communication method, resource configuration method, equipment, network node, system and medium.
  • This embodiment of the present application provides a communication method, applied to a UE, where the UE includes multiple SIMs.
  • the method includes:
  • the embodiment of this application also provides a resource configuration method, applied to the first network node, including:
  • An embodiment of the present application also provides a user equipment, including: multiple SIMs, a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the program, the above is implemented. Communication methods.
  • Embodiments of the present application also provide a first network node, including: a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the program, the above resource configuration is implemented. method.
  • An embodiment of the present application also provides a communication system, including: the above-mentioned user equipment, the above-mentioned first network node, and the second network node.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium. When the program is executed by a processor, the above-mentioned communication method or resource allocation method is implemented.
  • Figure 1 is a flow chart of a communication method provided by an embodiment
  • Figure 2 is a schematic diagram of a user equipment communicating with a first network node and a second network node according to an embodiment
  • Figure 3A is a schematic diagram of a communication process provided by an embodiment
  • Figure 3B is a schematic diagram of a communication process provided by an embodiment
  • Figure 3C is a schematic diagram of a communication process provided by an embodiment
  • Figure 3D is a schematic diagram of a communication process provided by an embodiment
  • Figure 4 is a flow chart of a resource configuration method provided by an embodiment
  • Figure 5 is a schematic structural diagram of a communication device according to an embodiment
  • Figure 6 is a schematic structural diagram of a resource allocation device provided by an embodiment
  • Figure 7 is a schematic diagram of the hardware structure of a user equipment provided by an embodiment
  • Figure 8 is a schematic diagram of the hardware structure of a first network node according to an embodiment
  • Figure 9 is a schematic structural diagram of a communication system provided by an embodiment.
  • the communication system is widely deployed to provide multiple services such as voice, data, and video.
  • the communication system includes UE and network nodes.
  • the network nodes are, for example, base stations (Base Station, BS), evolved base stations (evolved Node B, eNB). ), 5G (Generation NodeB, gNB, etc.).
  • the UE can be 3G (such as Wideband Code Division Multiple Access (WCDMA)), 4G (such as Long Term Evolution (LTE)), 5G (such as New Radio (NR)), etc.
  • WCDMA Wideband Code Division Multiple Access
  • 4G such as Long Term Evolution (LTE)
  • 5G such as New Radio (NR)
  • UEs also include terminals in future new generation communication systems.
  • terminals and user equipment are the same concept.
  • a base station or cell refers to a site that communicates with a UE.
  • a network node contains multiple cells.
  • the communication link between the UE and the network node includes: uplink and downlink.
  • the uplink refers to the transmission of the UE to the network node.
  • the way of data, downlink refers to the way in which network nodes transmit data to UE.
  • the embodiments of this application do not limit the multiple access mode of the wireless communication system, nor do they limit the duplex mode of communication, such as Time Division Duplexing (TDD), Frequency Division Duplexing (FDD) and other duplex modes. All working modes (such as full-duplex) are applicable.
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • Radio Resource Control There is only one Radio Resource Control (RRC) connection between a UE and a network node; a UE is in one of the following RRC states within the coverage of a network node: RRC connected state (Connected), RRC idle state (Idle), RRC inactive state (Inactive). In some networks, only two states may exist: RRC connected state and idle state. The inactive state is applicable to 5G NR systems.
  • RRC Radio Resource Control
  • the MUSIM UE in this application can use dual USIM cards. It should be noted that MUSIM UE includes multiple USIM cards, that is, one UE includes more than two USIM cards.
  • the solution for two USIM cards in the embodiment of this application is also applicable to UEs with more than two USIM cards.
  • Two USIM cards can belong to the same mobile operator or different mobile operators.
  • Two USIM cards correspond to the same communication technology (for example, both are 5G NR or LTE), or they correspond to different communication technologies (for example, one card corresponds to LTE and the other card corresponds to NR).
  • the two cards can be single-mode, dual-mode or multi-mode.
  • Single-mode means that the SIM card can only use one network standard, such as LTE or 5G; dual-mode means that the mobile phone card can use two network standards at the same time, such as LTE and NR. Network; multi-mode means that one SIM card can support more than two networks at the same time, such as FDD-LTE, TD-LTE and NR, etc.
  • a communication method which can realize network communication of multiple SIM cards.
  • the UE in the RRC connected state in the first network node starts or ends the RRC connection in the second network node
  • the UE can indicate to the first network node that its capabilities have changed, and the first network node can reconfigure the UE's network accordingly. resources, thereby improving resource utilization.
  • the first network node may also configure or release interval resources according to the UE's request information.
  • the timer can be used to restrict the UE from repeatedly sending indication information or request information during the timer running period, which reduces the waste of downlink network resources, reduces the load of the uplink, and improves communication reliability and network operation performance.
  • Figure 1 is a flow chart of a communication method provided by an embodiment. Applies to UE, UE contains multiple SIMs. As shown in Figure 1, the method provided in this embodiment includes the following steps:
  • step 110 timer information is received.
  • step 120 when the first network node corresponding to the first SIM is in a connected state and the connection state in the second network node corresponding to the second SIM changes, indication information is sent to the first network node. .
  • step 130 while sending the indication information, the timer is started.
  • step 140 receive network resource information configured by the first network node according to the indication information.
  • the UE has at least two SIMs, the first SIM corresponds to the first network node, and the second SIM corresponds to the second network node.
  • the first network node is in the RRC connected state and the connection state in the second network node changes (such as entering the RRC connected state or leaving the RRC connected state)
  • indication information may be sent to the first network node to notify the first network node.
  • the node indicates that the capability of the UE changes, and the first network node can configure appropriate network resources for the UE accordingly.
  • the timer information can be configured by the first network node and notified to the UE through RRC signaling.
  • the UE starts the timer while sending the indication information, and will not repeatedly send the indication information to the first network node during the running of the timer.
  • receiving the timer information includes: receiving the timer information sent by the first network node before sending the indication information to the first network node.
  • the change of the connection state includes: entering or leaving the RRC connection state in the second network node; wherein the UE is in carrier aggregation (Carrier Aggregation, CA) or dual connectivity (Dual-connectivity, DC) mode.
  • carrier aggregation Carrier Aggregation, CA
  • dual connectivity Dual-connectivity, DC
  • FIG 2 is a schematic diagram of a user equipment communicating with a first network node and a second network node according to an embodiment.
  • CA is for UEs in RRC connected state. It means that the UE can communicate with multiple serving cells at the same time. One of the serving cells is the main cell and the other cells are secondary cells. It can be used for uplink communication or downlink. road communication. Secondary cells can be added or deleted by the primary cell through RRC signaling.
  • CA is limited to the same wireless standard, and most of the time it is multiple carrier aggregation under the same base station.
  • DC means that the UE remains connected to two network nodes or two wireless standards at the same time (such as the DC of 4G and 5G base stations).
  • the network nodes are divided into master nodes. (master) and slave nodes (slave).
  • DC offloads data at the Packet Data Convergence Protocol (PDCP) layer
  • PDCP Packet Data Convergence Protocol
  • CA Media Access Control
  • the network resource information includes at least one of the following information: beam, time slot, part Bandwidth Part (BWP); among them, beams and time slots are indicated through downlink RRC signaling and transmitted through the Physical Down Shared Channel (PDSCH); BWP is indicated through downlink control information (DCI) And transmitted through the Physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH).
  • BWP Bandwidth Part
  • DCI downlink control information
  • PDCCH Physical Downlink Control Channel
  • the method further includes: step 150: while receiving the network resource information, stop the running timer.
  • the UE while receiving the network resource information, the UE stops the running timer. After that, if the connection status in the second network node changes again, the UE can send indication information to the first network node again.
  • the indication information when the change of the connection state is to enter the RRC connection state in the second network node, the indication information includes limited capability indication information, and the limited capability indication information is used to indicate the device communication capability of the UE relative to Changes before the connection status changes.
  • the indication information when the change in the connection state is that the second network node leaves the RRC connection state, the indication information includes capability recovery indication information, and the capability recovery indication information is used to indicate the device communication capability of the UE relative to the change in the connection state. previous changes.
  • the device communication capabilities include: baseband communication capabilities and radio frequency communication capabilities.
  • the UE can use all or part of the device communication capabilities to communicate with the network node.
  • the capability restriction indication information includes at least one of the following: capability change information, cell release information, and configuration resource deactivation information.
  • the capability recovery indication information includes at least one of the following: capability change information, configuration resource activation information.
  • capability changes include capability limitation or capability recovery.
  • Cell release means for CA or DC, in order to enter the connected state at the second base station, the connected UE in the first network node needs to release part or all of the auxiliary cells; configuration resource activation means: the connected state in the first network node When the UE leaves the connected state at the second base station, it uses part or all of the configuration resources to communicate with the first network node; deactivation of the configuration resources means that the UE in the connected state in the first network node enters the connected state at the second base station and stops using it. department Some or all of the configured resources communicate with the first network node.
  • the capability change information is indicated through bit mapping and carried through uplink RRC signaling.
  • the indication information when the connection state changes to entering the RRC connected state in the second network node, the indication information includes interval request information, and the interval request information is used to indicate the interval configuration supported by the UE.
  • the method further includes:
  • Step 160 Establish a connection with the second network node in the interval resource configured by the first network node according to the instruction information, and maintain the connection state in the first network node.
  • the interval configuration includes at least one of the following: interval type, interval length.
  • the interval configuration further includes at least one of the following:
  • Interval period Interval period, interval subframe offset, starting radio frame number and radio subframe number of aperiodic interval.
  • the indication information is not sent repeatedly.
  • the method further includes:
  • Step 170 When receiving the RRC connection reconfiguration signaling, stop the running timer.
  • the method further includes:
  • Step 180 After the RRC connection with the first network node has been released and the RRC connection state is entered in the second network node, send capability update indication information to the second network node.
  • the capability update indication information is used to instruct the UE device to communicate. Changes in capabilities relative to before the RRC connection was released.
  • the method further includes:
  • Step 1902 When the first network node is in the connected state and the second network node leaves the connected state, communicate with the first network node according to the network resource information configured by the first network node.
  • the method further includes:
  • Step 1904 After the RRC connection with the first network node has been released and the RRC connection state is left in the second network node, select or reselect a suitable cell to camp on at the first network node or the second network node.
  • the indication information is carried through uplink RRC signaling and transmitted through a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first base station serves as the first network node
  • the second base station serves as the second network node
  • Embodiment 1 is aimed at the scenario where CA/DC UE sends limited capability indication information
  • FIG. 3A is a schematic diagram of a communication process provided by an embodiment. As shown in Figure 3, the communication process includes:
  • Step 101 MUSIM UE is in the RRC connected state in the first base station
  • MUSIM UE is dual-transmit/dual-receive, which means it contains two transceiver and transmitter frequency devices, such as amplifiers, antennas, etc.
  • MUSIM UE is CA or DC
  • MUSIM UE is using two radio frequency devices for communication operations, such as two radio frequency devices connected to two base stations respectively.
  • the RRC connection state means that the MUSIM UE maintains uplink and downlink synchronization with the first base station and receives/transmits data.
  • the MUSIM UE contains two SIM cards, SIM-1 and SIM-2, where SIM-1 faces the first base station and SIM-2 faces the second base station. That is, SIM-1 in the MUSIM UE has established an RRC connection with the first base station. .
  • Step 102 Determine whether the MUSIM UE has established an RRC connection in the second base station (whether it has entered the RRC connection state in the second base station). If so, go to step 103, otherwise continue to judge;
  • the reasons why the MUSIM UE establishes the RRC connection in the second base station include but are not limited to one of the following: the MUSIM UE responds to the paging message of the second base station, the MUSIM UE performs measurements in the second base station, and the MUSIM UE initiates a random access in the second base station. Enter and wait.
  • the MUSIM UE In order to establish an RRC connection in the second base station, the MUSIM UE needs to send uplink information to the second base station and receive downlink information. The MUSIM UE needs to release a radio frequency device unit for SIM-2 to establish a connection with the second base station. If the MUSIM UE is not in When the second base station establishes a connection, the UE continues to determine whether a connection needs to be established at the second base station.
  • Step 103 determine whether the MUSIM UE maintains the RRC connection in the first base station, if so, go to step 104, otherwise go to step 107;
  • the UE may release the RRC connection in the first base station, such as the communication between the UE and the first base station ends, the communication link fails, or the first base station Release the RRC connection with the UE, etc.; in order to maintain communication, the MUSIM UE maintains the RRC connection with the first base station.
  • Step 104 MUSIM UE indicates the limited capability information to the first base station
  • the UE indicates the limited capability information to the first base station through RRC signaling.
  • the RRC signaling can use UE Assistant Information (UAI).
  • UAI UE Assistant Information
  • the limited capability indication information is used to indicate that the UE cannot use all hardware capabilities. For example, the UE only Ability to communicate using a set of radio frequency devices.
  • RRC signaling can be implemented using bitmap. For example, two bits b1b2 are used to indicate whether two sets of radio frequency devices are occupied:
  • b1b2 01 or 10, indicating that one of the two radio frequency devices is occupied and the other is idle.
  • the two bits are 01 or 10 to indicate limited capability; if a one-bit indication is used, then one bit is 0 or 1 to indicate limited capability.
  • the UE While sending the indication information, the UE starts the timer T1. During the operation of T1, the UE is not allowed to send the limited capability indication information again until the end/expiration of T1, and the UE can send the limited capability indication information again.
  • Step 105 The first base station reconfigures the resources of the MUSIM UE and notifies the UE;
  • the first base station After receiving the above-mentioned UE's capability limited indication information, the first base station reconfigures the UE's network resources and notifies the UE of the network resource information; if resources are allocated to two radio frequency devices, delete one of the occupied radio frequency devices. resource.
  • network resources include: beams, time slots, and BWP.
  • Network resource information can be transmitted using physical layer signaling or RRC signaling.
  • the physical layer signaling is DCI or Uplink Control Information (UCI) carried on the PDCCH.
  • the resources indicated by RRC signaling It can be used directly or after activation through DCI on PDCCH.
  • Reconfiguration also includes: setting timer T1 and transmitting the value of T1 to the UE through RRC signaling.
  • Step 106 MUSIM UE communicates with the first base station and the second base station;
  • the UE uses the resources reconfigured by the first base station to communicate with the first base station and simultaneously communicates with the second base station.
  • Step 107 MUSIM UE communicates with the second base station.
  • the UE has released the RRC connection with the first base station.
  • the UE is in the RRC idle state Idle or the RRC inactive state Inactive in the first base station.
  • the first base station is a non-5G gNB base station, such as an LTE eNB base station, then the UE It is RRC-Idle state.
  • the UE switches to RRC Idle or RRC Inactive according to the RRC signaling instructions of the first base station, and only when the signaling radio bearer (SRB2) and at least one data radio bearer (Data Radio Bearer, DRB) has been established, or in the integrated access and backhaul (IAB), only SRB2 is established, then the UE releases the RRC connection and then turns to RRC Inactive. Otherwise, it turns to RRC Inactive.
  • SRB2 signaling radio bearer
  • DRB Data Radio Bearer
  • IAB integrated access and backhaul
  • the UE communicates with the second base station. At the same time, the UE can send capability update indication information to the second base station.
  • the capability update indication information is used to indicate that the UE and the second base station can communicate using dual transmission and dual reception.
  • the second base station can configure DC or CA for the UE according to the indication information and the UE capability.
  • the capability update indication information can use a single or two-bit indication in the above step 104. For example, two bits b1b2 are used to indicate whether two sets of radio frequency devices are occupied:
  • b1b2 01 or 10, indicating that one of the two RF devices is occupied and the other is idle;
  • the two bits are 11 or 00 to indicate that two radio frequency devices are available. If a one-bit indication is used, then one bit is 0 or 1 to indicate that the two radio frequency devices are available. use.
  • Embodiment 2 is aimed at the scenario where CA/DC UE sends capability recovery indication information
  • FIG. 3B is a schematic diagram of a communication process provided by an embodiment. As shown in Figure 3B, the communication process includes:
  • Step 201 MUSIM UE is in the RRC connection state in the first base station and the second base station;
  • SIM-1 and SIM-2 in the UE are in the RRC connection state at the first base station and the second base station respectively, that is, the two radio frequency devices of the UE are connected to the first base station and the second base station respectively.
  • Step 202 determine whether the MUSIM UE releases the RRC connection (leave the RRC connection state) in the second base station. If so, go to step 203, otherwise continue to determine;
  • the UE determines whether the second base station connected to SIM-2 releases the RRC connection. If the UE has released the RRC connection with the second base station, the UE is in the RRC idle state Idle or RRC inactive state Inactive in the second base station; otherwise, the UE SIM-2 maintains the RRC connection with the second base station, and the UE is in the RRC connected state at the second base station, then the UE continues to determine whether it needs to release the RRC connection with the second base station.
  • Step 203 Determine whether the MUSIM UE maintains the RRC connection in the first base station. If so, go to step 204; otherwise, go to step 207;
  • the UE determines whether the first base station connected to SIM-1 maintains the RRC connection.
  • Step 204 MUSIM UE indicates capability recovery information to the first base station
  • SIM-1 of the UE maintains the RRC connection with the first base station, and at the same time releases the RRC connection of SIM-2 with the second base station, then one of the radio frequency devices connected to the second base station becomes available, and the UE sends RRC signaling to the first base station through RRC signaling.
  • the base station sends the capability recovery indication information. For details, please refer to the description of step 104 or 107 above.
  • the UE While sending the indication information, the UE starts the timer T1. During the operation of T1, the UE is not allowed to send the capability recovery indication information again until the end/expiration of T1, and the UE can send the capability recovery indication information again;
  • Step 205 The first base station reconfigures the resources of the MUSIM UE and notifies the UE;
  • the first base station After receiving the capability recovery indication information of the above-mentioned UE, the first base station reconfigures the network resources of the UE and Notify the UE of the network resource information; for example, the resources originally allocated to a radio frequency device are added to configure the resources of an available radio frequency device.
  • the network resources include: beams, time slots, and BWP; the network resource information can use physical layer signaling or RRC Signaling transmission, where the physical layer signaling is DCI or UCI carried on the PDCCH, the resources indicated by the RRC signaling can be used directly, or used after activation through DCI on the PDCCH.
  • Reconfiguration also includes: setting timer T1 and transmitting the value of T1 to the UE through RRC signaling.
  • Step 206 MUSIM UE communicates with the first base station
  • the UE uses the resources reconfigured by the first base station to communicate with the first base station, such as using two radio frequency devices to communicate at the same time.
  • Step 207 MUSIM UE selects/reselects a suitable cell to camp on.
  • the UE's RRC connections have been released, and the UE is RRC Idle or RRC Inactive.
  • the UE can select/reselect an appropriate cell to camp on based on the cell broadcast message, such as the S criterion for cell broadcast selection or the R criterion for cell reselection. Frequency priority and cell measurement results select/reselect the appropriate cell to camp on.
  • Embodiment 3 Scenario in which UE sends interval request information
  • FIG. 3C is a schematic diagram of a communication process provided by an embodiment. As shown in Figure 3C, the communication process includes:
  • Step 301 MUSIM UE is in the connected state in the first base station
  • Step 302 determine whether the MUSIM UE has established an RRC connection in the second base station. If so, go to step 303, otherwise continue to determine;
  • Step 303 Determine whether the MUSIM UE maintains the RRC connection in the first base station. If so, go to step 304; otherwise, go to step 307;
  • Step 304 MUSIM UE sends interval request information to the first base station
  • the UE has only one radio frequency transmitting device. The UE hopes to maintain the RRC connection at the first base station and at the same time needs to connect to the second base station to send and receive data.
  • the interval request information includes: interval type and interval length. Further, the aperiodic interval request information also includes: interval period, interval subframe offset, aperiodic period The starting radio frame number and radio subframe number of the interval. Among them, the interval type includes: periodic interval and aperiodic interval, the interval period and the interval subframe offset are used to indicate the period length in the periodic interval and the starting subframe in a period, and the interval length is used to indicate the duration of the interval.
  • the interval request information is used to indicate the interval configuration supported by the UE.
  • the corresponding timer T2 is started. T2 stops/expires until the UE receives the interval configuration information sent by the first base station; runs in T2 During this period, the UE should not send interval request information.
  • Step 305 The first base station configures interval resources and notifies the UE
  • the first base station sets the interval according to the received interval request information, that is, performs interval configuration according to the above-mentioned UE request information. If the first base station does not support the interval configuration requested by the UE, then sends a rejection request response message to the UE. The first base station notifies the UE of interval configuration information through RRC signaling.
  • Reconfiguration also includes: setting timer T2 and transmitting the value of T2 to the UE through RRC signaling.
  • Step 306 MUSIM UE maintains connection with the first base station during the interval
  • the UE establishes an RRC connection and communicates with the second base station within the interval according to the received interval configuration information. During the interval, the UE maintains an RRC connection with the first base station.
  • Step 307 MUSIM UE communicates with the second base station.
  • the UE If the UE disconnects the RRC connection with the first base station according to the instruction of the first base station, the UE directly establishes a connection and communicates with the second base station.
  • Embodiment 4 Scenario in which UE sends interval release request information
  • Figure 3D is a schematic diagram of a communication process provided by an embodiment. As shown in Figure 3D, the communication process includes:
  • Step 401 MUSIM UE is in the connected state between the first base station and the second base station;
  • Step 302 determine whether the MUSIM UE releases the RRC connection in the second base station. If so, go to step 403, otherwise continue to determine;
  • Step 403 Determine whether the MUSIM UE maintains the RRC connection in the first base station. If so, go to step 404; otherwise, go to step 307;
  • Step 404 MUSIM UE sends interval release request information to the first base station
  • the UE has disconnected the RRC connection with the second base station, and then the UE requests the release interval from the first base station.
  • the UE sends the request information, it starts the corresponding timer T2.
  • T2 stops/expires until the UE receives the release interval information sent by the first base station; during the operation of T2, the UE should not send the interval release request information.
  • Step 405 The first base station releases the interval resources and notifies the UE;
  • the first base station receives the request information from the UE, releases the interval resources according to the request information from the UE, and sends the release interval information to the UE.
  • the release interval information can be implemented using RRC signaling.
  • Releasing resources also includes: setting timer T12 and transmitting the value of T2 to the UE through RRC signaling.
  • Step 406 MUSIM UE communicates with the first base station
  • the UE maintains the RRC connection with the first base station and continues communication.
  • Step 407 MUSIM UE selects/reselects a suitable cell to camp on.
  • the UE's RRC connection has been released.
  • the UE is RRC Idle or RRC Inactive.
  • the UE can select/reselect an appropriate cell to camp on based on the cell selection/reselection, such as based on the S criterion for cell selection or the R criterion for cell reselection, based on frequency priority and Cell measurement results select/reselect the appropriate cell to camp on.
  • a resource configuration method is also provided, which can realize network resource configuration of a UE with multiple SIM cards.
  • the UE can indicate to the first network node that its capabilities have changed, and the first network node can reconfigure the UE's network accordingly. resources, thereby improving resource utilization.
  • the first network node may also configure or release interval resources according to the UE's request information.
  • the timer can also be used to limit the UE from repeatedly sending indication information or request information, which reduces the waste of downlink network resources, reduces the load on the uplink, and improves communication reliability and network operation performance.
  • Figure 4 is a flow chart of a resource configuration method provided by an embodiment. Applied to the first network node.
  • the method provided in this embodiment includes the following steps:.
  • step 210 timer information is sent to the user equipment UE.
  • step 220 the receiving UE is in the connected state in the first network node corresponding to the first SIM and Indication information sent when the connection status in the second network node corresponding to the second SIM changes.
  • step 230 network resources of the UE are configured according to the indication information.
  • the indication information when the change of the connection state is to enter the RRC connection state in the second network node, the indication information includes limited capability indication information, and the limited capability indication information is used to Indicates the change in the device communication capability of the UE relative to before the connection status change.
  • the indication information when the change of the connection state is that the second network node leaves the RRC connection state, the indication information includes capability recovery indication information, and the capability recovery indication information is used to indicate the The change in the device communication capability of the UE relative to before the connection state change.
  • the indication information when the change of the connection state is to enter the RRC connection state in the second network node, the indication information includes interval request information, and the interval request information is used to indicate to the UE Supported interval configurations.
  • Configuring the network resources of the UE according to the indication information includes: configuring the interval resources of the UE according to the interval request information.
  • sending timer information to the UE includes:
  • the indication information is not sent repeatedly.
  • the method further includes:
  • Step 240 Instruct the UE to stop the timer through RRC connection reconfiguration signaling.
  • the first base station serves as the first network node
  • the second base station serves as the second network node
  • the operations of the first base station include:
  • Step 501 the first base station communicates with the UE
  • Step 502 The first base station receives the capability update indication information of the UE
  • Step 503 The first base station reconfigures the network resources of the UE and notifies the UE of the network resource information.
  • the reconfiguration also includes setting the timer T1 and notifying the UE through RRC signaling;
  • Step 504 The first base station continues to communicate with the UE or releases the RRC connection with the UE.
  • the first base station releases the RRC connection with the UE.
  • the operations of the first base station include:
  • Step 601 the first base station communicates with the UE
  • Step 602 The first base station receives the interval request information or interval release request information from the UE;
  • Step 603 The first base station configures or releases interval resources and notifies the UE, wherein configuring or releasing interval resources also includes setting timer T2 and notifying the UE through RRC signaling;
  • Step 604 The first base station maintains an RRC connection with the UE or releases the RRC connection with the UE.
  • the first base station releases the RRC connection with the UE.
  • the operations of the first base station include:
  • Step 701 the UE communicates with the first base station
  • Step 702 The UE establishes or releases an RRC connection with the second base station
  • Step 703 The UE sends capability update indication information to the first base station, and the UE runs timer T1. During T1, the UE is not allowed to send capability update indication information;
  • Step 704 The UE receives the network resource reconfiguration signaling sent by the first base station.
  • the network resource reconfiguration signaling also includes the value of the timer T1;
  • Step 705 The UE continues to communicate with the first base station or disconnects from the first base station.
  • the UE selects/reselects an appropriate cell to camp on. Specifically, the UE may select/reselect an appropriate cell to camp on based on the instructions of the system broadcast message and corresponding criteria.
  • the operations of the first base station include:
  • Step 801 the UE communicates with the first base station
  • Step 802 the UE establishes or releases an RRC connection with the second base station
  • Step 803 The UE sends interval request information or interval release request information to the first base station, and the UE runs timer T2. During T2, the UE is not allowed to send request indication information;
  • Step 804 The UE receives interval configuration signaling or interval release signaling sent by the first base station.
  • the interval configuration signaling or interval release signaling may also include the value of timer T2;
  • Step 805 The UE maintains the RRC connection with the first base station or releases the RRC connection with the first base station.
  • the UE selects/reselects an appropriate cell to camp on. Specifically, the UE may select/reselect an appropriate cell to camp on based on the instructions of the system broadcast message and corresponding criteria.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment. As shown in Figure 5, the communication device includes:
  • the timer information receiving module 310 is configured to receive timer information
  • the instruction information sending module 320 is configured to send a message to the first network node when the first network node corresponding to the first SIM is in a connected state and the connection state in the second network node corresponding to the second SIM changes. Send instructions;
  • the starting module 330 is configured to start the timer while sending the indication information
  • the resource information receiving module 340 is configured to receive network resource information configured by the first network node according to the indication information.
  • the communication device of this embodiment can realize network communication of UEs with multiple SIM cards.
  • the UE in the RRC connected state in the first network node starts or ends the RRC connection in the second network node
  • the UE can indicate to the first network node that its capabilities have changed, and the first network node can reconfigure the UE's network accordingly. resources, thereby improving resource utilization. .
  • the timer information receiving module 310 is configured as:
  • the change of the connection state includes: entering or leaving the RRC connection state in the second network node; wherein the UE is in carrier aggregation or dual connectivity mode.
  • the network resource information includes at least one of the following information: beam, time slot, BWP;
  • the beam and the time slot are indicated by downlink RRC signaling and transmitted through PDSCH; the BWP is indicated by DCI and transmitted through PDCCH.
  • the device further includes:
  • the first stopping module is configured to stop the running timer while receiving the network resource information.
  • the indication information when the change of the connection state is to enter the RRC connection state in the second network node, the indication information includes limited capability indication information, and the limited capability indication information is used to Indicates the change in the device communication capability of the UE relative to before the connection status change.
  • the indication information when the change of the connection state is that the second network node leaves the RRC connection state, the indication information includes capability recovery indication information, and the capability recovery indication information is used to indicate the The change in the device communication capability of the UE relative to before the connection state change.
  • the capability restriction indication information includes at least one of the following: capability change information, cell release information, and configuration resource deactivation information.
  • the capability recovery indication information includes at least one of the following: capability change information, configuration resource activation information.
  • the capability change information is indicated through bit mapping and carried through uplink RRC signaling.
  • the indication information when the change of the connection state is to enter the RRC connection state in the second network node, the indication information includes interval request information, and the interval request information is used to indicate to the UE Supported interval configurations.
  • the device further includes:
  • the connection establishment module is configured to establish a connection with the second network node in the interval resource configured by the first network node according to the instruction information, and maintain the connection state in the first network node.
  • the interval configuration includes at least one of the following: interval type, interval length.
  • the interval configuration further includes at least one of the following:
  • Interval period Interval period, interval subframe offset, starting radio frame number and radio subframe number of aperiodic interval.
  • the indication information is not sent repeatedly.
  • the device further includes:
  • the second stopping module is configured to stop the running timer when receiving RRC connection reconfiguration signaling.
  • the device further includes:
  • the update module is configured to send capability update indication information to the second network node when the RRC connection with the first network node has been released and the RRC connection state is entered in the second network node, the The capability update indication information is used to indicate the change in the communication capability of the UE device relative to before the RRC connection is released.
  • the device further includes:
  • the communication module is configured to communicate with the first network node according to the network resource information configured by the first network node when it is in a connected state in the first network node and leaves the connected state in the second network node.
  • the device further includes:
  • the resident module is configured to release the RRC connection with the first network node and leave the RRC connection state in the second network node, then select or reset the first network node or the second network node. Choose a suitable community to stay in.
  • the indication information is carried through uplink RRC signaling and transmitted through PUSCH.
  • the communication device proposed in this embodiment and the communication method proposed in the above embodiment belong to the same inventive concept.
  • Technical details not described in detail in this embodiment can be referred to any of the above embodiments, and this embodiment has the same benefits as performing the communication method. Effect.
  • FIG. 6 is a schematic structural diagram of a resource allocation device provided by an embodiment. As shown in Figure 6, the resource configuration device includes:
  • the timer information sending module 410 is configured to send timer information to the UE
  • the indication information receiving module 420 is configured to receive indication information sent when the UE is in a connected state in the first network node corresponding to the first SIM and the connection state in the second network node corresponding to the second SIM changes. ;
  • the configuration module 430 is configured to configure the network resources of the UE according to the indication information.
  • the resource configuration device of this embodiment can implement network resource configuration for a UE with multiple SIM cards.
  • the UE can indicate to the first network node that its capabilities have changed, and the first network node can reconfigure the UE's network accordingly. resources, thereby improving resource utilization.
  • the first network node may also configure or release interval resources according to the UE's request information.
  • the timer can also be used to limit the UE from repeatedly sending indication information or request information, which reduces the waste of downlink network resources, reduces the load on the uplink, and improves communication reliability and network operation performance.
  • the indication information when the change of the connection state is to enter the RRC connection state in the second network node, the indication information includes limited capability indication information, and the limited capability indication information is used to Indicates the change in the device communication capability of the UE relative to before the connection status change.
  • the indication information when the change of the connection state is that the second network node leaves the RRC connection state, the indication information includes capability recovery indication information, and the capability recovery indication information is used to indicate the The change in the device communication capability of the UE relative to before the connection state change.
  • the indication information when the change of the connection state is to enter the RRC connection state in the second network node, the indication information includes interval request information, and the interval request information is used to indicate to the UE Supported interval configurations;
  • the configuration module 430 is configured to: configure the interval resources of the UE according to the interval request information.
  • the timer information sending module 410 is configured as:
  • the indication information is not sent repeatedly.
  • the device further includes:
  • a reconfiguration module configured to instruct the UE to stop the timer through RRC connection reconfiguration signaling.
  • the resource configuration device proposed in this embodiment and the communication method proposed in the above embodiment belong to the same inventive concept.
  • Technical details not described in detail in this embodiment can be referred to any of the above embodiments, and this embodiment has the same features as the resource configuration method. beneficial effects.
  • FIG. 7 is a schematic diagram of the hardware structure of a user equipment provided by an embodiment.
  • the user equipment provided by the present application includes multiple SIMs 500, processors 510 and memory 520; the processor 510 in the user equipment may be one or more, one processor 510 is taken as an example in Figure 7; the memory 520 is configured to store one or more programs; the one or more programs are The one or more processors 510 execute such that the one or more processors 510 implement the communication method as described in the embodiments of this application.
  • the user equipment also includes: communication device 530, input device 540 and output device 550.
  • the processor 510, memory 520, communication device 530, input device 540 and output device 550 in the user equipment may be connected through a bus or other means.
  • connection through a bus is taken as an example.
  • the input device 540 may be used to receive input numeric or character information and generate key signal input related to user settings and function control of the user device.
  • the output device 550 may include a display device such as a display screen.
  • Communication device 530 may include a receiver and a transmitter.
  • the communication device 530 is configured to perform information transceiver communication according to the control of the processor 510 .
  • the memory 520 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the communication methods described in the embodiments of the present application (for example, timer information in a communication device receiving module 310, instruction information sending module 320, starting module 330 and resource information receiving module 340).
  • the memory 520 may include a program storage area and a data storage area, Among them, the stored program area can store the operating system and at least one application program required for the function; the stored data area can store data created according to the use of the user device, etc.
  • memory 520 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the memory 520 may further include memory located remotely relative to the processor 510, and these remote memories may be connected to the user device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • FIG. 8 is a schematic diagram of the hardware structure of a first network node provided by an embodiment.
  • the first network node provided by the present application includes processing The processor 610 and the memory 620; the processor 610 in the first network node may be one or more, one processor 610 is taken as an example in Figure 8; the memory 620 is configured to store one or more programs; the one or more A program is executed by the one or more processors 610, so that the one or more processors 610 implement the resource configuration method as described in the embodiment of this application.
  • the first network node also includes: a resource configuration device 630, an input device 640, and an output device 650.
  • the processor 610, the memory 620, the resource configuration device 630, the input device 640 and the output device 650 in the first network node may be connected through a bus or other means.
  • connection through a bus is taken as an example.
  • the input device 640 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the first network node.
  • the output device 650 may include a display device such as a display screen.
  • the resource configuration device 630 may include a receiver and a transmitter.
  • the resource configuration device 630 is configured to perform information transceiver communication according to the control of the processor 610 .
  • the memory 620 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the resource configuration method described in the embodiments of the present application (for example, timing in the resource configuration device). device information sending module 410, indication information receiving module 420 and configuration module 430).
  • the memory 620 may include a program storage area and a data storage area, where the program storage area The program area can store the operating system and at least one application program required for the function; the storage data area can store data created according to the use of the first network node, etc.
  • the memory 620 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the memory 620 may further include memory located remotely relative to the processor 610, and these remote memories may be connected to the first network node through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • FIG. 9 is a schematic diagram of the hardware structure of a first network node according to an embodiment. As shown in Figure 9, the system includes: a user equipment 710 as described in any of the above embodiments, a first network node 720 as described in any of the above embodiments, and a second network node 730.
  • the communication system of this embodiment can realize network communication of multiple SIM cards.
  • the user equipment 710 in the RRC connection state in the first network node 720 starts or ends the RRC connection in the second network node 730
  • the user equipment 710 may indicate to the first network node 720 that its capabilities have changed.
  • the first network node 720 Accordingly, the network resources of the UE can be reconfigured, thereby improving resource utilization.
  • the first network node 720 may also configure or release interval resources according to the UE's request information.
  • the timer can be used to restrict the user equipment 710 from repeatedly sending indication information or request information during the timer operation period, which reduces the waste of downlink network resources, reduces the load of the uplink, and improves communication reliability and network operation performance.
  • An embodiment of the present application also provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, it implements any of the communication methods or resource configuration methods described in the embodiments of the present application.
  • the communication method includes: receiving timer information; when the first network node corresponding to the first SIM is in a connected state and the connection state in the second network node corresponding to the second SIM changes, sending a message to the third network node.
  • a network node sends indication information; while sending the indication information, it starts start the timer; receive network resource information configured by the first network node according to the indication information.
  • the resource configuration method includes: sending timer information to the UE; and receiving that the UE is in a connected state in the first network node corresponding to the first SIM and the connection state in the second network node corresponding to the second SIM changes. and configure the network resources of the UE according to the instruction information.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but is not limited to: an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections having one or more wires, portable computer disks, hard drives, random access memory (RAM), read-only memory (Read Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above .
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to: wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to: wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Programs for performing the operations of this application may be written in one or more programming languages or a combination thereof.
  • Computer program code including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type appropriate to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), optical storage devices and systems (Digital Video Disc (DVD) or Compact Disk (CD), etc.).
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP) ), Application Specific Integrated Circuit (ASIC), Programmable Logic Device (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Programmable Logic Device
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、资源配置方法、设备、网络节点、系统及介质。该通信方法应用于UE,所述UE包含多个用户识别模块SIM;该方法包括:接收定时器信息;在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下,向所述第一网络节点发送指示信息;在发送所述指示信息的同时,启动所述定时器;接收所述第一网络节点根据所述指示信息配置的网络资源信息。

Description

通信方法、资源配置方法、设备、网络节点、系统及介质 技术领域
本申请涉及无线通信网络技术领域,例如涉及一种通信方法、资源配置方法、设备、网络节点、系统及介质。
背景技术
目前用户设备(User Equipment,UE)可支持多个用户识别模块(Subscriber Identity Module,SIM),典型的为支持两个全球用户识别卡(Universal Subscriber Identity Module,USIM),两个USIM可属于相同或不同的移动网络运营商。多SIM也称为MUSIM。考虑到通信的成本效率,MUSIM的UE一般采用相同的射频和基带元件由多个USIM卡共享,从而导致一些影响系统性能的问题:假设SIM-A正在与网络A通信,UE需要偶尔的检测网络B(对应SIM-B),例如:读取寻呼信道,完成测量或读取系统消息等,这种偶尔的在网络B的检测活动可能对系统性能产生影响。例如UE在SIM-A对应的基站中为RRC连接态,占用两个射频模块通信;当UE在SIM-B对应的基站中开始或离开RRC连接态时,UE所在的第一基站不知道,导致第一基站向UE发送的数据丢失,造成网络资源浪费。
发明内容
本申请提供一种通信方法、资源配置方法、设备、网络节点、系统及介质。
本申请实施例提供一种通信方法,应用于UE,所述UE包含多个SIM,该方法包括:
接收定时器信息;
在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下,向所述第一网络节点发送指示信息;
在发送所述指示信息的同时,启动所述定时器;
接收所述第一网络节点根据所述指示信息配置的网络资源信息。
本申请实施例还提供了一种资源配置方法,应用于第一网络节点,包括:
向UE发送定时器信息;
接收所述UE在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下发送的指示信息;
根据所述指示信息配置所述UE的网络资源。
本申请实施例还提供了一种用户设备,包括:多个SIM,存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的通信方法。
本申请实施例还提供了一种第一网络节点,包括:存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的资源配置方法。
本申请实施例还提供了一种通信系统,包括:上述的用户设备,上述的第一网络节点,以及第二网络节点。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的通信方法或资源配置方法。
附图说明
图1为一实施例提供的一种通信方法的流程图;
图2为一实施例提供的一种用户设备与第一网络节点及第二网络节点通信的示意图;
图3A为一实施例提供的一种通信过程的示意图;
图3B为一实施例提供的一种通信过程的示意图;
图3C为一实施例提供的一种通信过程的示意图;
图3D为一实施例提供的一种通信过程的示意图;
图4为一实施例提供的一种资源配置方法的流程图;
图5为一实施例提供的一种通信装置的结构示意图;
图6为一实施例提供的一种资源配置装置的结构示意图;
图7为一实施例提供的一种用户设备的硬件结构示意图;
图8为一实施例提供的一种第一网络节点的硬件结构示意图;
图9为一实施例提供的一种通信系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请中通信系统为了提供语音、数据、视频等多种服务而被广泛部署,通信系统包括UE和网络节点,网络节点例如为基站(Base Station,BS)、演进型基站(evolved Node B,eNB)、5G(Generation NodeB,gNB等)。UE可以是3G(如宽带码分多址(Wideband Code Division Multiple Access,WCDMA))、4G(如长期演进(Long Term Evolution,LTE))、5G(如新空口(New Radio,NR))等中的UE,也包括未来新一代通信系统中的终端,本申请中终端和用户设备为相同概念。基站或小区是指与UE进行通信的站点,一个网络节点包含多个小区,UE和网络节点之间的通信链路包括:上行链路和下行链路,上行链路是指UE向网络节点传输数据的方式,下行链路是指网络节点向UE传输数据的方式。本申请实施例对无线通信系统的多址方式没有限制,也不限制通信的双工方式,如时分双工(Time Division Duplexing,TDD)、频分双工(Frequency Division Duplexing,FDD)以及其他双工方式(如全双工)都可适用。
一个UE和一个网络节点之间只有一个无线资源控制(Radio Resource Control,RRC)连接;一个UE在一个网络节点覆盖内为以下RRC状态之一: RRC连接态(Connected),RRC空闲态(Idle),RRC非激活态(Inactive)。在一些网络中可能只存在其中的两种状态:RRC连接态和空闲态。非激活态可适用于5G NR系统。
本申请中的MUSIM UE可采用双USIM卡。应该指出:MUSIM UE包括多USIM卡,即一个UE包括两个以上的USIM卡,本申请实施例中用于两个USIM卡的方案同样适用于两个以上USIM的UE。两个USIM卡可以是属于相同移动运营商,或不同的移动运营商。两个USIM卡对应相同的通信技术(如都是5G NR或LTE),或者对应不同的通信技术(如一个卡对应LTE,另一个卡对应NR)。两个卡可以为单模、双模或多模,其中单模指SIM卡只能使用一种网络制式,如LTE或5G;双模指手机卡可以同时使用两种网络制式,如LTE和NR网络;多模指一张SIM卡同时可以支持两种以上的网络,如FDD-LTE、TD-LTE和NR等。
在本申请实施例中,提供一种通信方法,能够实现多SIM卡的网络通信。在第一网络节点中处于RRC连接态的UE开始或结束在第二网络节点的RRC连接时,UE可向第一网络节点指示其能力发生变更,第一网络节点据此可重新配置UE的网络资源,从而提高资源利用率。在此基础上,第一网络节点也可以根据UE的请求信息配置或释放间隔资源。此外,通过定时器可以限制UE在定时器运行期间不允许重复发送指示信息或请求信息,减少了下行网络资源浪费,降低了上行链路的负载,提高了通信可靠性和网络运行性能。
图1为一实施例提供的一种通信方法的流程图。应用于UE,UE包含多个SIM。如图1所示,本实施例提供的方法包括以下步骤:
在步骤110中,接收定时器信息。
在步骤120中,在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下,向所述第一网络节点发送指示信息。
在步骤130中,在发送所述指示信息的同时,启动所述定时器。
在步骤140中,接收所述第一网络节点根据所述指示信息配置的网络资源信息。
本实施例中,UE至少有两个SIM,第一SIM对应于第一网络节点,第二SIM对应于第二网络节点。在第一网络节点中处于RRC连接态且在第二网络节点中的连接状态变化(如进入RRC连接态或者离开RRC连接态)时,可以向第一网络节点发送指示信息,以向第一网络节点指示UE的能力发生变化,第一网络节点可据此为UE配置合适的网络资源。
定时器信息可以由第一网络节点配置并通过RRC信令通知UE,UE在发送指示信息的同时启动定时器,并且在定时器运行期间不会向第一网络节点重复发送指示信息。
在一实施例中,接收定时器信息包括:在向第一网络节点发送指示信息之前,接收第一网络节点发送的定时器信息。
在一实施例中,连接状态的变化包括:在第二网络节点中进入或者离开RRC连接态;其中,UE为载波聚合(Carrier Aggregation,CA)或双连接(Dual-connectivity,DC)模式。
图2为一实施例提供的一种用户设备与第一网络节点及第二网络节点通信的示意图。如图2所示,CA是针对RRC连接态的UE,是指UE可同时和多个服务小区通信,其中一个服务小区为主小区,其他小区为辅小区,可用于上行链路通信或下行链路通信。辅小区可由主小区通过RRC信令添加或删除。CA仅限于同一种无线制式下,大多数时候是同一个基站下的多个载波聚合。DC是指UE同时与两个网络节点或者两种无线制式保持连接(如4G和5G基站的DC),在连接态下可同时使用至少两个不同网络节点的无线资源,网络节点分为主节点(主站)和从节点(从站)。DC在分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层分流数据,而CA在媒体访问控制(Media Access Control,MAC)层分流数据。
在一实施例中,网络资源信息包括以下至少之一的信息:波束,时隙,部 分带宽(Bandwidth Part,BWP);其中,波束和时隙通过下行RRC信令指示并通过物理下行共享信道(Physical Down Shared Channel,PDSCH)传输;BWP通过下行控制信息(Downlink Control Information,DCI)指示并通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)传输。
在一实施例中,该方法还包括:步骤150:在接收网络资源信息的同时,停止运行中的定时器。
本实施例中,UE在接收网络资源信息的同时,停止运行中的定时器,在此之后如果在第二网络节点中的连接状态再次发生变化,UE可再次向第一网络节点发送指示信息。
在一实施例中,在连接状态的变化为在第二网络节点中进入RRC连接态的情况下,指示信息包括能力受限指示信息,能力受限指示信息用于指示UE的设备通信能力相对于连接状态变化前的变化。
在一实施例中,在连接状态的变化为在第二网络节点离开RRC连接态的情况下,指示信息包括能力恢复指示信息,能力恢复指示信息用于指示UE的设备通信能力相对于连接状态变化前的变化。
本实施例中,设备通信能力包括:基带通信能力和射频通信能力,UE可使用全部或部分设备通信能力与网络节点通信。
在一实施例中,能力受限指示信息包括以下至少之一:能力变化信息,小区释放信息,配置资源去激活信息。
在一实施例中,能力恢复指示信息包括以下至少之一:能力变化信息,配置资源激活信息。
本实施例中,能力变化包括能力受限或能力恢复。小区释放是指:针对CA或DC,第一网络节点中连接态的UE为了在第二基站进入连接态,需要释放部分或全部辅助小区;配置资源激活是指:第一网络节点中连接态的UE在第二基站离开连接态,则使用部分或全部配置资源与第一网络节点通信;配置资源去激活是指:第一网络节点中连接态的UE在第二基站进入连接态,则停止使用部 分或全部配置资源与第一网络节点通信。
在一实施例中,能力变化信息通过比特映射指示并通过上行RRC信令承载。
在一实施例中,在连接状态的变化为在第二网络节点中进入RRC连接态的情况下,指示信息包括间隔请求信息,间隔请求信息用于指示UE支持的间隔配置。
在一实施例中,该方法还包括:
步骤160:在第一网络节点根据指示信息配置的间隔资源中与第二网络节点建立连接,并在第一网络节点中保持连接态。
在一实施例中,间隔配置包括以下至少之一:间隔类型,间隔长度。
在一实施例中,间隔配置还包括以下至少之一:
间隔周期,间隔子帧偏移,非周期间隔的起始无线帧编号和无线子帧编号。
在一实施例中,在定时器的运行期间,指示信息不重复发送。
在一实施例中,该方法还包括:
步骤170:当收到RRC连接重配信令时,停止运行中的定时器。
在一实施例中,该方法还包括:
步骤180:在已释放与第一网络节点的RRC连接且在第二网络节点中进入RRC连接态的情况下,向第二网络节点发送能力更新指示信息,能力更新指示信息用于指示UE设备通信能力相对于RRC连接被释放前的变化。
在一实施例中,该方法还包括:
步骤1902:在第一网络节点中处于连接态且在第二网络节点中离开连接态,则根据第一网络节点配置的网络资源信息与第一网络节点通信。
在一实施例中,该方法还包括:
步骤1904:已释放与第一网络节点的RRC连接且在第二网络节点中离开RRC连接态,则在第一网络节点或第二网络节点选择或重选合适小区驻留。
在一实施例中,指示信息通过上行RRC信令承载,并通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输。
以下通过具体实施例对上述的通信方法进行说明。在以下实施例中,第一基站作为第一网络节点,第二基站作为第二网络节点。
实施例1针对CA/DC UE发送能力受限指示信息的场景
图3A为一实施例提供的一种通信过程的示意图。如图3所示,通信过程包括:
步骤101,MUSIM UE在第一基站中处于RRC连接态;
其中,MUSIM UE为双发/双收,即包含两个收发射频器件,如放大器、天线等。MUSIM UE为CA或DC,且MUSIM UE正在使用两个射频器件进行通信操作,如两个射频器件分别连接到两个基站。RRC连接态是指MUSIM UE与第一基站保持上下行同步、接收/传输数据。假设MUSIM UE包含两个SIM卡,SIM-1和SIM-2,其中SIM-1面向第一基站,SIM-2面向第二基站,即MUSIM UE中的SIM-1与第一基站已建立RRC连接。
步骤102,判断MUSIM UE是否在第二基站中建立RRC连接(是否在第二基站进入RRC连接态),如果是,转向步骤103,否则继续判断;
MUSIM UE在第二基站中建立RRC连接的原因包括但不限于以下之一:MUSIM UE响应第二基站的寻呼消息,MUSIM UE在第二基站进行测量,MUSIM UE在第二基站中发起随机接入等。
为了在第二基站中建立RRC连接,MUSIM UE要向第二基站发送上行信息并接收下行信息,MUSIM UE需要释放一个射频器件单元用于SIM-2与第二基站建立连接,如果MUSIM UE没有在第二基站建立连接,则UE继续判断是否需要在第二基站建立连接。
步骤103,判断MUSIM UE是否在第一基站中保持RRC连接,如果是,转向步骤104,否则转向步骤107;
在MUSIM UE在第二基站中建立RRC连接期间,UE可能在第一基站中释放RRC连接,如UE与第一基站的通信结束,通信链路发生故障,或第一基站 释放与UE的RRC连接等;为了保持通信,MUSIM UE保持与第一基站的RRC连接。
步骤104,MUSIM UE向第一基站指示能力受限信息;
MUISM UE通过RRC信令向第一基站指示能力受限信息,RRC信令可采用UE辅助信息(UE Assitantant Information,UAI),能力受限指示信息用于指示UE不能使用全部硬件能力,如UE只能使用一套射频器件进行通信。
RRC信令可采用比特映射(Bitmap)的方式实现,如采用两比特b1b2指示两套射频器件是否占用:
b1b2=11,说明两个射频器件都被占用;
b1b2=00,说明两个射频器件都空闲;
b1b2=01或10,说明两个射频器件中一个被占用,另一个空闲。
或者,可以采用一比特b指示,如b=1指示能力受限,即其中一个射频器件被占用,b=0指示能力恢复,即两个射频器件都可用。或者,也可以是b=0指示能力受限,即其中一个射频器件被占用,b=1指示能力恢复,即两个射频器件都可用。
具体到本实施例中,如果采用两比特指示,则两比特为01或10指示能力受限;如果采用一比特指示,则一比特为0或1指示能力受限。
UE在发送指示信息的同时,启动定时器T1,在T1运行期间,UE不允许再次发送能力受限指示信息,直到T1结束/到期,UE可以再次发送能力受限指示信息。
步骤105,第一基站重新配置MUSIM UE的资源并通知UE;
第一基站收到上述UE的能力受限指示信息,则重新配置UE的网络资源并将网络资源信息通知UE;如将分配到两个射频器件的资源,删除其中一个已被占用的射频器件的资源。其中,网络资源包括:波束,时隙,BWP。网络资源信息可采用物理层信令或RRC信令传输,其中物理层信令为PDCCH上承载的DCI或上行控制信息(Uplink Control Information,UCI),RRC信令指示的资源 可以直接使用,或者通过PDCCH上的DCI激活之后使用。
重新配置还包括:设置定时器T1,并将T1的值通过RRC信令传输给UE。
步骤106,MUSIM UE与第一基站和第二基站进行通信;
UE采用上述第一基站重新配置的资源与第一基站通信,同时与第二基站通信。
步骤107,MUSIM UE与第二基站进行通信。
UE已释放与第一基站的RRC连接,UE在第一基站中为RRC空闲态Idle,或RRC非激活态Inactive,例如,如果第一基站为非5G gNB基站,如为LTE eNB基站,则UE为RRC-Idle态,否则,如果第一基站为5G gNB基站,UE根据第一基站RRC信令指示,转为RRC Idle,或者RRC Inactive,且仅当信令无线承载(Signalling Radio Bearer,SRB2)和至少一个数据无线承载(Data Radio Bearer,DRB)已建立,或在集成接入和回程(Integrated Access and Backhaul,IAB)中,仅SRB2建立,则UE释放RRC连接后转向RRC Inactive,否则,转向RRC Idle。
MUSIM UE与第二基站进行通信,同时,UE可向第二基站发送能力更新指示信息,能力更新指示信息用于指示UE与第二基站可采用双发双收进行通信。第二基站根据指示信息和UE能力可对UE配置DC或CA。
能力更新指示信息可采用上述步骤104中的单个或两个比特指示,如采用两比特b1b2指示两套射频器件是否占用:
b1b2=11,说明两个射频器件都被占用或空闲,
b1b2=00,说明两个射频器件都空闲或占用,
b1b2=01或10,说明两个射频器件中一个被占用,另一个空闲;
或者采用一比特b指示,如b=1指示能力受限,即其中一个射频器件被占用,b=0指示能力恢复,即两个射频器件都可用。或者,b=0指示能力受限,即其中一个射频器件被占用,b=1指示能力恢复,即两个射频器件都可用。
具体到本实施例中,如果采用两比特指示,则两比特为11或00指示两个射频器件可用,如果采用一比特指示,则一比特为0或1指示两个射频器件可 用。
实施例2针对CA/DC UE发送能力恢复指示信息的场景
图3B为一实施例提供的一种通信过程的示意图。如图3B所示,通信过程包括:
步骤201,MUSIM UE在第一基站和第二基站中处于RRC连接态;
UE中的SIM-1和SIM-2分别在第一基站和第二基站为RRC连接态,即UE的两个射频器件分别连接到第一基站和第二基站。
步骤202,判断MUSIM UE是否在第二基站中释放RRC连接(离开RRC连接态),如果是,转向步骤203,否则继续判断;
UE判断SIM-2连接的第二基站是否释放RRC连接,如果UE已释放与第二基站的RRC连接后,UE在第二基站中为RRC空闲态Idle,或RRC非激活态Inactive;否则,UE的SIM-2保持与第二基站的RRC连接,UE在第二基站为RRC连接态,则UE继续判断是否需要释放与第二基站的RRC连接。
步骤203,判断MUSIM UE是否在第一基站中保持RRC连接,如果是,转向步骤204,否则转向步骤207;
UE判断SIM-1连接的第一基站是否保持RRC连接。
步骤204,MUSIM UE向第一基站指示能力恢复信息;
UE的SIM-1保持与第一基站的RRC连接,同时释放SIM-2与第二基站的RRC连接,则其中与第二基站连接的一个射频器件变为可用,UE通过RRC信令向第一基站发送能力恢复指示信息,具体可参考上述步骤104或107的描述。
UE在发送指示信息的同时,启动定时器T1,在T1运行期间,UE不允许再次发送能力恢复指示信息,直到T1结束/到期,UE可以再次发送能力恢复指示信息;
步骤205,第一基站重新配置MUSIM UE的资源并通知UE;
第一基站收到上述UE的能力恢复指示信息,则重新配置UE的网络资源并 将网络资源信息通知UE;如将原来分配到一个射频器件的资源,增加配置一个可用的射频器件的资源,网络资源包括:波束,时隙,BWP;网络资源信息可采用物理层信令或RRC信令传输,其中物理层信令为PDCCH上承载的DCI或UCI,RRC信令指示的资源可以直接使用,或者通过PDCCH上的DCI激活之后使用。
重新配置还包括:设置定时器T1,并将T1的值通过RRC信令传输给UE。
步骤206,MUSIM UE与第一基站进行通信;
UE采用上述第一基站重新配置的资源与第一基站通信,如同时使用两个射频器件通信。
步骤207,MUSIM UE选择/重选合适的小区驻留。
UE的RRC连接都已释放,UE为RRC Idle或RRC Inactive,UE可根据小区广播消息选择/重选合适的小区驻留,如根据小区广播的选择的S准则或小区重选的R准则,根据频率优先级和小区测量结果选择/重选合适的小区驻留。
实施例3,针对UE发送间隔请求信息的场景
图3C为一实施例提供的一种通信过程的示意图。如图3C所示,通信过程包括:
步骤301,MUSIM UE在第一基站中处于连接态;
步骤302,判断MUSIM UE是否在第二基站中建立RRC连接,如果是,转向步骤303,否则继续判断;
步骤303,判断MUSIM UE是否在第一基站中保持RRC连接,如果是,转向步骤304,否则转向步骤307;
步骤304,MUSIM UE向第一基站发送间隔请求信息;
UE只有一个射频发送器件,UE希望在第一基站保持RRC连接,同时需要连接到第二基站收发数据,间隔请求信息包括:间隔类型,间隔长度。进一步的,针对非周期间隔请求信息,还包括:间隔周期,间隔子帧偏移,非周期间 隔的起始无线帧编号和无线子帧编号。其中,间隔类型包括:周期间隔和非周期间隔,间隔周期和间隔子帧偏移用于指示周期间隔中的周期长度和一个周期中的起始子帧,间隔长度用于指示间隔的持续时间。
间隔请求信息用于指示UE支持的间隔配置,当UE发送间隔请求信息的同时,启动相应的定时器T2,T2直到UE收到第一基站发送的间隔配置信息时停止/到期;在T2运行期间,UE不应发送间隔请求信息。
步骤305,第一基站配置间隔资源并通知UE;
第一基站根据收到的间隔请求信息设置间隔,即根据上述UE的请求信息进行间隔配置,如果第一基站不支持UE请求的间隔配置,则向UE发送拒绝请求响应信息。第一基站通过RRC信令通知UE间隔配置信息。
重新配置还包括:设置定时器T2,并将T2的值通过RRC信令传输给UE。
步骤306,MUSIM UE在间隔期内保持与第一基站连接;
UE根据收到的间隔配置信息,在间隔内与第二基站建立RRC连接并通信。在间隔内,UE与第一基站保持RRC连接。
步骤307,MUSIM UE与第二基站进行通信。
如果UE根据第一基站的指示断开与第一基站的RRC连接,则UE直接与第二基站建立连接并通信。
实施例4,针对UE发送间隔释放请求信息的场景
图3D为一实施例提供的一种通信过程的示意图。如图3D所示,通信过程包括:
步骤401,MUSIM UE在第一基站和第二基站中处于连接态;
步骤302,判断MUSIM UE是否在第二基站中释放RRC连接,如果是,转向步骤403,否则继续判断;
步骤403,判断MUSIM UE是否在第一基站中保持RRC连接,如果是,转向步骤404,否则转向步骤307;
步骤404,MUSIM UE向第一基站发送间隔释放请求信息;
UE已断开与第二基站的RRC连接,则UE向第一基站请求释放间隔。UE发送请求信息的同时,启动相应的定时器T2,T2直到UE收到第一基站发送的释放间隔信息时停止/到期;在T2运行期间,UE不应发送间隔释放请求信息。
步骤405,第一基站释放间隔资源并通知UE;
第一基站收到UE的请求信息,根据UE的请求信息释放间隔资源并向UE发送释放间隔信息,释放间隔信息可采用RRC信令实现。
释放资源还包括:设置定时器T12,并将T2的值通过RRC信令传输给UE。
步骤406,MUSIM UE与第一基站进行通信;
UE与第一基站保持RRC连接并继续通信。
步骤407,MUSIM UE选择/重选合适的小区驻留。
UE的RRC连接都已释放,UE为RRC Idle或RRC Inactive,UE可根据小区选择/重选合适的小区驻留,如根据小区选择的S准则或小区重选的R准则,根据频率优先级和小区测量结果选择/重选合适的小区驻留。
在本申请实施例中,还提供一种资源配置方法,能够实现多SIM卡的UE的网络资源配置。在第一网络节点中处于RRC连接态的UE开始或结束在第二网络节点的RRC连接时,UE可向第一网络节点指示其能力发生变更,第一网络节点据此可重新配置UE的网络资源,从而提高资源利用率。在此基础上,第一网络节点也可以根据UE的请求信息配置或释放间隔资源。此外,还可以通过定时器限制UE重复发送指示信息或请求信息,减少了下行网络资源浪费,降低了上行链路的负载,提高了通信可靠性和网络运行性能。
图4为一实施例提供的一种资源配置方法的流程图。应用于第一网络节点。
如图4所示,本实施例提供的方法包括以下步骤:。
在步骤210中,向用户设备UE发送定时器信息。
在步骤220中,接收UE在第一SIM对应的第一网络节点中处于连接态且 在第二SIM对应的第二网络节点中的连接状态发生变化的情况下发送的指示信息。
在步骤230中,根据指示信息配置UE的网络资源。
在一实施例中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括能力受限指示信息,所述能力受限指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
在一实施例中,在所述连接状态的变化为在所述第二网络节点离开RRC连接态的情况下,所述指示信息包括能力恢复指示信息,所述能力恢复指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
在一实施例中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括间隔请求信息,所述间隔请求信息用于指示所述UE支持的间隔配置。
根据所述指示信息配置所述UE的网络资源,包括:根据所述间隔请求信息配置所述UE的间隔资源。
在一实施例中,向UE发送定时器信息,包括:
在所述UE发送所述指示信息之前,向所述UE发送定时器信息;
在所述定时器的运行期间,所述指示信息不重复发送。
在一实施例中,该方法还包括:
步骤240:通过RRC连接重配信令指示所述UE停止所述定时器。
以下通过具体实施例对上述的资源配置方法进行说明。在以下实施例中,第一基站作为第一网络节点,第二基站作为第二网络节点。
实施例5
本实施例中,第一基站的操作包括:
步骤501,第一基站与UE通信;
步骤502,第一基站收到UE的能力更新指示信息;
步骤503,第一基站重新配置UE的网络资源并将网络资源信息通知UE, 其中,重新配置还包括设置定时器T1并通过RRC信令通知UE;
步骤504,第一基站继续与UE通信或释放与UE的RRC连接。
如果与UE的通信结束、波束故障、链路质量差或者链路故障,则第一基站释放与UE的RRC连接。
实施例6
本实施例中,第一基站的操作包括:
步骤601,第一基站与UE通信;
步骤602,第一基站收到UE的间隔请求信息或间隔释放请求信息;
步骤603,第一基站配置或释放间隔资源并通知UE,其中,配置或释放间隔资源还包括设置定时器T2并通过RRC信令通知UE;
步骤604,第一基站与UE保持RRC连接或释放与UE的RRC连接。
如果与UE的通信结束、波束故障、链路质量差或者链路故障,则第一基站释放与UE的RRC连接。
实施例7
本实施例中,第一基站的操作包括:
步骤701,UE与第一基站通信;
步骤702,UE与第二基站建立或释放RRC连接;
步骤703,UE向第一基站发送能力更新指示信息,UE运行定时器T1,T1运行期间,UE不允许发送能力更新指示信息;
步骤704,UE接收第一基站发送的网络资源重配信令,网络资源重配信令中还包括定时器T1的值;
步骤705,UE继续与第一基站通信或断开与第一基站连接。
如果UE已断开与第一基站的RRC连接,则UE选择/重选合适的小区驻留,具体可根据系统广播消息的指示,根据相应的准则选择/重选合适的小区驻留。
实施例8
本实施例中,第一基站的操作包括:
步骤801,UE与第一基站通信;
步骤802,UE与第二基站建立或释放RRC连接;
步骤803,UE向第一基站发送间隔请求信息或间隔释放请求信息,UE运行定时器T2,T2运行期间,UE不允许发送请求指示信息;
步骤804,UE接收第一基站发送的间隔配置信令或间隔释放信令,间隔配置信令或间隔释放信令中可还包括定时器T2的值;
步骤805,UE保持与第一基站的RRC连接或释放与第一基站的RRC连接。
如果UE已断开与第一基站的RRC连接,则UE选择/重选合适的小区驻留,具体可根据系统广播消息的指示,根据相应的准则选择/重选合适的小区驻留。
本申请实施例还提供一种通信装置。图5为一实施例提供的一种通信装置的结构示意图。如图5所示,所述通信装置包括:
定时器信息接收模块310,设置为接收定时器信息;
指示信息发送模块320,设置为在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下,向所述第一网络节点发送指示信息;
启动模块330,设置为在发送所述指示信息的同时,启动所述定时器;
资源信息接收模块340,设置为接收所述第一网络节点根据所述指示信息配置的网络资源信息。
本实施例的通信装置,能够实现多SIM卡的UE的网络通信。在第一网络节点中处于RRC连接态的UE开始或结束在第二网络节点的RRC连接时,UE可向第一网络节点指示其能力发生变更,第一网络节点据此可重新配置UE的网络资源,从而提高资源利用率。。
在一实施例中,定时器信息接收模块310,设置为:
在向所述第一网络节点发送指示信息之前,接收所述第一网络节点发送的定时器信息。
在一实施例中,所述连接状态的变化包括:在所述第二网络节点中进入或者离开RRC连接态;其中,所述UE为载波聚合或双连接模式。
在一实施例中,网络资源信息包括以下至少之一的信息:波束,时隙,BWP;
其中,所述波束和所述时隙通过下行RRC信令指示并通过PDSCH传输;所述BWP通过DCI指示并通过PDCCH传输。
在一实施例中,该装置还包括:
第一停止模块,设置为在接收所述网络资源信息的同时,停止运行中的所述定时器。
在一实施例中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括能力受限指示信息,所述能力受限指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
在一实施例中,在所述连接状态的变化为在所述第二网络节点离开RRC连接态的情况下,所述指示信息包括能力恢复指示信息,所述能力恢复指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
在一实施例中,所述能力受限指示信息包括以下至少之一:能力变化信息,小区释放信息,配置资源去激活信息。
在一实施例中,所述能力恢复指示信息包括以下至少之一:能力变化信息,配置资源激活信息。
在一实施例中,所述能力变化信息通过比特映射指示并通过上行RRC信令承载。
在一实施例中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括间隔请求信息,所述间隔请求信息用于指示所述UE支持的间隔配置。
在一实施例中,该装置还包括:
连接建立模块,设置为在所述第一网络节点根据所述指示信息配置的间隔资源中与所述第二网络节点建立连接,并在所述第一网络节点中保持连接态。
在一实施例中,间隔配置包括以下至少之一:间隔类型,间隔长度。
在一实施例中,间隔配置还包括以下至少之一:
间隔周期,间隔子帧偏移,非周期间隔的起始无线帧编号和无线子帧编号。
在一实施例中,在所述定时器的运行期间,所述指示信息不重复发送。
在一实施例中,该装置还包括:
第二停止模块,设置为当收到RRC连接重配信令时,停止运行中的所述定时器。
在一实施例中,该装置还包括:
更新模块,设置为在已释放与所述第一网络节点的RRC连接且在所述第二网络节点中进入RRC连接态的情况下,向所述第二网络节点发送能力更新指示信息,所述能力更新指示信息用于指示所述UE设备通信能力相对于所述RRC连接被释放前的变化。
在一实施例中,该装置还包括:
通信模块,设置为在第一网络节点中处于连接态且在第二网络节点中离开连接态,则根据所述第一网络节点配置的网络资源信息与所述第一网络节点通信。
在一实施例中,该装置还包括:
驻留模块,设置为已释放与所述第一网络节点的RRC连接且在所述第二网络节点中离开RRC连接态,则在所述第一网络节点或所述第二网络节点选择或重选合适小区驻留。
在一实施例中,指示信息通过上行RRC信令承载,并通过PUSCH传输。
本实施例提出的通信装置与上述实施例提出的通信方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行通信方法相同的有益效果。
本申请实施例还提供一种资源配置装置。图6为一实施例提供的一种资源配置装置的结构示意图。如图6所示,所述资源配置装置包括:
定时器信息发送模块410,设置为向UE发送定时器信息;
指示信息接收模块420,设置为接收所述UE在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下发送的指示信息;
配置模块430,设置为根据所述指示信息配置所述UE的网络资源。
本实施例的资源配置装置,能够实现多SIM卡的UE的网络资源配置。在第一网络节点中处于RRC连接态的UE开始或结束在第二网络节点的RRC连接时,UE可向第一网络节点指示其能力发生变更,第一网络节点据此可重新配置UE的网络资源,从而提高资源利用率。在此基础上,第一网络节点也可以根据UE的请求信息配置或释放间隔资源。此外,还可以通过定时器限制UE重复发送指示信息或请求信息,减少了下行网络资源浪费,降低了上行链路的负载,提高了通信可靠性和网络运行性能。
在一实施例中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括能力受限指示信息,所述能力受限指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
在一实施例中,在所述连接状态的变化为在所述第二网络节点离开RRC连接态的情况下,所述指示信息包括能力恢复指示信息,所述能力恢复指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
在一实施例中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括间隔请求信息,所述间隔请求信息用于指示所述UE支持的间隔配置;
配置模块430,设置为:根据所述间隔请求信息配置所述UE的间隔资源。
在一实施例中,定时器信息发送模块410,设置为:
在所述UE发送所述指示信息之前,向所述UE发送定时器信息;
在所述定时器的运行期间,所述指示信息不重复发送。
在一实施例中,该装置还包括:
重配模块,设置为通过RRC连接重配信令指示所述UE停止所述定时器。
本实施例提出的资源配置装置与上述实施例提出的通信方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行资源配置方法相同的有益效果。
本申请实施例还提供了一种用户设备,图7为一实施例提供的一种用户设备的硬件结构示意图,如图7所示,本申请提供的用户设备,包括多个SIM 500、处理器510以及存储器520;该用户设备中的处理器510可以是一个或多个,图7中以一个处理器510为例;存储器520配置为存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器510执行,使得所述一个或多个处理器510实现如本申请实施例中所述的通信方法。
用户设备还包括:通信装置530、输入装置540和输出装置550。
用户设备中的处理器510、存储器520、通信装置530、输入装置540和输出装置550可以通过总线或其他方式连接,图7中以通过总线连接为例。
输入装置540可用于接收输入的数字或字符信息,以及产生与用户设备的用户设置以及功能控制有关的按键信号输入。输出装置550可包括显示屏等显示设备。
通信装置530可以包括接收器和发送器。通信装置530设置为根据处理器510的控制进行信息收发通信。
存储器520作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述通信方法对应的程序指令/模块(例如,通信装置中的定时器信息接收模块310、指示信息发送模块320、启动模块330和资源信息接收模块340)。存储器520可包括存储程序区和存储数据区, 其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据用户设备的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器520可进一步包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至用户设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种第一网络节点,图8为一实施例提供的一种第一网络节点的硬件结构示意图,如图8所示,本申请提供的第一网络节点,包括处理器610以及存储器620;该第一网络节点中的处理器610可以是一个或多个,图8中以一个处理器610为例;存储器620配置为存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器610执行,使得所述一个或多个处理器610实现如本申请实施例中所述的资源配置方法。
第一网络节点还包括:资源配置装置630、输入装置640和输出装置650。
第一网络节点中的处理器610、存储器620、资源配置装置630、输入装置640和输出装置650可以通过总线或其他方式连接,图8中以通过总线连接为例。
输入装置640可用于接收输入的数字或字符信息,以及产生与第一网络节点的用户设置以及功能控制有关的按键信号输入。输出装置650可包括显示屏等显示设备。
资源配置装置630可以包括接收器和发送器。资源配置装置630设置为根据处理器610的控制进行信息收发通信。
存储器620作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述资源配置方法对应的程序指令/模块(例如,资源配置装置中的定时器信息发送模块410、指示信息接收模块420和配置模块430)。存储器620可包括存储程序区和存储数据区,其中,存储程 序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据第一网络节点的使用所创建的数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器620可进一步包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至第一网络节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种通信系统。图9为一实施例提供的一种第一网络节点的硬件结构示意图。如图9所示,该系统包括:如上述任意实施例所述的用户设备710,如上述任意实施例所述的第一网络节点720,以及第二网络节点730。
本实施例的通信系统,能够实现多SIM卡的网络通信。在第一网络节点720中处于RRC连接态的用户设备710开始或结束在第二网络节点730的RRC连接时,用户设备710可向第一网络节点720指示其能力发生变更,第一网络节点720据此可重新配置UE的网络资源,从而提高资源利用率。在此基础上,第一网络节点720也可以根据UE的请求信息配置或释放间隔资源。此外,通过定时器可以限制用户设备710在定时器运行期间不允许重复发送指示信息或请求信息,减少了下行网络资源浪费,降低了上行链路的负载,提高了通信可靠性和网络运行性能。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的通信方法或资源配置方法。该通信方法,包括:接收定时器信息;在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下,向所述第一网络节点发送指示信息;在发送所述指示信息的同时,启 动所述定时器;接收所述第一网络节点根据所述指示信息配置的网络资源信息。
该资源配置方法包括:向UE发送定时器信息;接收所述UE在第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下发送的指示信息;根据所述指示信息配置所述UE的网络资源。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计 算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于 只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (30)

  1. 一种通信方法,应用于用户设备UE,所述UE包含多个用户识别模块SIM,所述多个SIM包括第一SIM和第二SIM;所述方法包括:
    接收定时器信息;
    响应于第一SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化,向所述第一网络节点发送指示信息;
    在发送所述指示信息的同时,启动所述定时器;
    接收所述第一网络节点根据所述指示信息配置的网络资源信息。
  2. 根据权利要求1所述的方法,其中,所述接收定时器信息包括:
    在向所述第一网络节点发送指示信息之前,接收所述第一网络节点发送的定时器信息。
  3. 根据权利要求1所述的方法,其中,所述连接状态的变化包括:在所述第二网络节点中进入或者离开无线资源控制RRC连接态;
    其中,所述UE为载波聚合或双连接模式。
  4. 根据权利要求1所述的方法,其中,所述网络资源信息包括以下至少之一的信息:波束,时隙,部分带宽BWP;
    其中,所述波束和所述时隙信息通过下行RRC信令指示并通过物理下行共享信道PDSCH传输;所述BWP信息通过下行控制信息DCI指示并通过物理下行控制信道PDCCH传输。
  5. 根据权利要求1所述的方法,还包括:
    在接收所述网络资源信息的同时,停止运行中的所述定时器。
  6. 根据权利要求1所述的方法,其中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括能力受限指示信息,所述能力受限指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
  7. 根据权利要求1所述的方法,其中,在所述连接状态的变化为在所述第二网络节点离开RRC连接态的情况下,所述指示信息包括能力恢复指示信息, 所述能力恢复指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
  8. 根据权利要求6所述的方法,其中,所述能力受限指示信息包括以下至少之一:
    能力变化信息,小区释放信息,配置资源去激活信息。
  9. 根据权利要求7所述的方法,其中,所述能力恢复指示信息包括以下至少之一:能力变化信息,配置资源激活信息。
  10. 根据权利要求8或9所述的方法,其中,所述能力变化信息通过比特映射指示并通过上行RRC信令承载。
  11. 根据权利要求1所述的方法,其中,在所述连接状态的变化为在所述第二网络节点中进入RRC连接态的情况下,所述指示信息包括间隔请求信息,所述间隔请求信息用于指示所述UE支持的间隔配置。
  12. 根据权利要求11所述的方法,还包括:
    在所述第一网络节点根据所述指示信息配置的间隔资源中与所述第二网络节点建立连接,并在所述第一网络节点中保持连接态。
  13. 根据权利要求11所述的方法,其中,所述间隔配置包括以下至少之一:间隔类型,间隔长度。
  14. 根据权利要求13所述的方法,其中,所述间隔配置还包括以下至少之一:
    间隔周期,间隔子帧偏移,非周期间隔的起始无线帧编号和无线子帧编号。
  15. 根据权利要求1所述的方法,其中,在所述定时器的运行期间,所述指示信息不重复发送。
  16. 根据权利要求1所述的方法,还包括:
    响应于收到RRC连接重配信令,停止运行中的所述定时器。
  17. 根据权利要求1所述的方法,还包括:
    响应于已释放与所述第一网络节点的RRC连接且在所述第二网络节点中进 入RRC连接态,向所述第二网络节点发送能力更新指示信息,所述能力更新指示信息用于指示所述UE设备通信能力相对于所述RRC连接被释放前的变化。
  18. 根据权利要求1所述的方法,还包括:
    响应于第一网络节点中处于连接态且在第二网络节点中离开连接态,根据所述第一网络节点配置的网络资源信息与所述第一网络节点通信。
  19. 根据权利要求1所述的方法,还包括:
    响应于已释放与所述第一网络节点的RRC连接且在所述第二网络节点中离开RRC连接态,在所述第一网络节点或所述第二网络节点选择或重选合适小区驻留。
  20. 根据权利要求1所述的方法,其中,所述指示信息通过上行RRC信令承载,并通过物理上行共享信道PUSCH传输。
  21. 一种资源配置方法,应用于第一网络节点,包括:
    向用户设备UE发送定时器信息;
    接收所述UE在第一用户识别模块SIM对应的第一网络节点中处于连接态且在第二SIM对应的第二网络节点中的连接状态发生变化的情况下发送的指示信息;
    根据所述指示信息配置所述UE的网络资源。
  22. 根据权利要求21所述的方法,其中,在所述连接状态的变化为在所述第二网络节点中进入无线资源控制RRC连接态的情况下,所述指示信息包括能力受限指示信息,所述能力受限指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
  23. 根据权利要求21所述的方法,其中,在所述连接状态的变化为在所述第二网络节点离开RRC连接态的情况下,所述指示信息包括能力恢复指示信息,所述能力恢复指示信息用于指示所述UE的设备通信能力相对于所述连接状态变化前的变化。
  24. 根据权利要求21所述的方法,其中,在所述连接状态的变化为在所述 第二网络节点中进入RRC连接态的情况下,所述指示信息包括间隔请求信息,所述间隔请求信息用于指示所述UE支持的间隔配置;
    根据所述指示信息配置所述UE的网络资源,包括:
    根据所述间隔请求信息配置所述UE的间隔资源。
  25. 根据权利要求21所述的方法,其中,向UE发送定时器信息,包括:
    在所述UE发送所述指示信息之前,向所述UE发送定时器信息;
    在所述定时器的运行期间,所述指示信息不重复发送。
  26. 根据权利要求21所述的方法,还包括:
    通过RRC连接重配信令指示所述UE停止所述定时器。
  27. 一种用户设备,包括:多个用户识别模块SIM,存储器,以及至少一个处理器;
    所述存储器,配置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-20中任一项所述的通信方法。
  28. 一种第一网络节点,包括:存储器,以及至少一个处理器;
    所述存储器,配置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求21-26中任一项所述的资源配置方法。
  29. 一种通信系统,包括:如权利要求27所述的用户设备,如权利要求28所述的第一网络节点,以及第二网络节点。
  30. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-20中任一所述的通信方法或如权利要求21-26中任一项所述的资源配置方法。
PCT/CN2023/081246 2022-05-06 2023-03-14 通信方法、资源配置方法、设备、网络节点、系统及介质 WO2023213140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23799128.6A EP4366455A1 (en) 2022-05-06 2023-03-14 Communication method, resource configuration method, device, network node, system, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210489572.5A CN115955732A (zh) 2022-05-06 2022-05-06 通信方法、资源配置方法、设备、网络节点、系统及介质
CN202210489572.5 2022-05-06

Publications (1)

Publication Number Publication Date
WO2023213140A1 true WO2023213140A1 (zh) 2023-11-09

Family

ID=87295626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081246 WO2023213140A1 (zh) 2022-05-06 2023-03-14 通信方法、资源配置方法、设备、网络节点、系统及介质

Country Status (3)

Country Link
EP (1) EP4366455A1 (zh)
CN (1) CN115955732A (zh)
WO (1) WO2023213140A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560659A (zh) * 2023-08-18 2024-02-13 中国电信股份有限公司技术创新中心 终端能力通知方法、装置、通信设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218354A (zh) * 2019-07-10 2021-01-12 苹果公司 有多个具有改进的暂停/恢复操作的用户身份模块的ue
CN112913266A (zh) * 2021-01-22 2021-06-04 北京小米移动软件有限公司 请求信息发送方法和装置、请求信息接收方法和装置
WO2021147958A1 (en) * 2020-01-21 2021-07-29 FG Innovation Company Limited User equipment and method for multi-sim operation
CN113766488A (zh) * 2021-09-16 2021-12-07 维沃移动通信有限公司 数据传输方法和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218354A (zh) * 2019-07-10 2021-01-12 苹果公司 有多个具有改进的暂停/恢复操作的用户身份模块的ue
WO2021147958A1 (en) * 2020-01-21 2021-07-29 FG Innovation Company Limited User equipment and method for multi-sim operation
CN112913266A (zh) * 2021-01-22 2021-06-04 北京小米移动软件有限公司 请求信息发送方法和装置、请求信息接收方法和装置
CN113766488A (zh) * 2021-09-16 2021-12-07 维沃移动通信有限公司 数据传输方法和电子设备

Also Published As

Publication number Publication date
EP4366455A1 (en) 2024-05-08
CN115955732A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
US11963132B2 (en) Paging method, base station and user equipment
CN108924949B (zh) 无线网络中的通信方法、装置和系统
US11191020B2 (en) Terminal state conversion method and apparatus
US20180376422A1 (en) Communication Method and Apparatus Applied to Hyper Cell
CN108541034B (zh) 处理状态的转换的装置及方法
US20210144606A1 (en) Path switching method, apparatus and system
US20210251032A1 (en) Communication method, apparatus, and system
WO2023130471A1 (zh) 小区接入方法、装置、设备及可读存储介质
US20210185578A1 (en) Data transmission method, radio access network device, and terminal device
WO2023213140A1 (zh) 通信方法、资源配置方法、设备、网络节点、系统及介质
US20230397081A1 (en) Failure monitoring and recovery mechanism in case of sl relay
US20230388919A1 (en) Mobility for small data transmission procedure
WO2022126360A1 (en) Method and apparatus for path switch in a wireless communication system
WO2022160117A1 (en) Method and apparatus for handover and reestablishment in a wireless communication system
US9955520B2 (en) Method for configuring dual connectivity for terminal by base station in wireless communication system and apparatus for same
CN114731731A (zh) 通信方法及装置
EP4344114A1 (en) Pdcch monitoring method and apparatus, and device and storage medium
WO2022198597A1 (zh) 小区重选场景下的数据传输方法、装置、设备及存储介质
WO2023105587A1 (ja) 通信システム、移動端末装置及びプログラム
US20240090070A1 (en) Communication apparatus, and communication method
WO2023051366A1 (zh) 一种控制传输的方法及相关装置
WO2023130368A1 (zh) 收发信息的方法、装置和通信系统
WO2023184288A1 (zh) 上行定位参考信号的配置方法、装置、设备及存储介质
WO2023005351A1 (en) Terminal device, network node, and methods therein for handling path switch and handover
WO2023205959A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023799128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023799128

Country of ref document: EP

Effective date: 20240129