WO2023051366A1 - 一种控制传输的方法及相关装置 - Google Patents

一种控制传输的方法及相关装置 Download PDF

Info

Publication number
WO2023051366A1
WO2023051366A1 PCT/CN2022/120459 CN2022120459W WO2023051366A1 WO 2023051366 A1 WO2023051366 A1 WO 2023051366A1 CN 2022120459 W CN2022120459 W CN 2022120459W WO 2023051366 A1 WO2023051366 A1 WO 2023051366A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
sub
network device
information
timer
Prior art date
Application number
PCT/CN2022/120459
Other languages
English (en)
French (fr)
Inventor
张梦晨
徐海博
邝奕如
阿鲁瓦利亚贾格迪普•辛格
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051366A1 publication Critical patent/WO2023051366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method for controlling transmission and a related device.
  • the communication protocol stack between the terminal and the network device includes a radio resource control (radio resource control, RRC) layer.
  • RRC radio resource control
  • the terminal can transmit small packets of data (small data) with the network device without entering the RRC CONNECTED state, such as in the RRC IDLE state or RRC INACTIVE state, so that The process can be called small packet data transmission (small data transmission, SDT).
  • a multi-card terminal includes a sub-device A and a sub-device B, and the sub-device A and the sub-device B share a radio frequency transmission chain and/or a radio frequency reception chain, that is, they cannot send information and/or receive information at the same time.
  • sub-device A and network device are performing SDT, if sub-device B has a data transmission requirement (for example, non-SDT data transmission is required), sub-device A needs to stop the transmission so that sub-device B can transmit information, but the network device will still be a sub-device. Device A schedules resources for this SDT.
  • a data transmission requirement for example, non-SDT data transmission is required
  • the embodiment of the present application discloses a method and a related device for controlling transmission, which can prevent the network device from continuing to schedule resources for small packet data transmission when the device no longer monitors small packet data transmission, and save air interface resources.
  • an embodiment of the present application provides a method for controlling transmission, which is applied to a first device, and the method includes: when in a non-radio resource control RRC connection state, sending first information to the first network device, the first A message indicating a request to stop packet data transmission SDT.
  • the first device sends the first information to the first network device when the SDT is initiated under the first network device.
  • the first device may send the first information to the first network device, and use the first information to indicate the request to stop SDT, so as to prevent the first network device from still scheduling the SDT for the first device when the first device stops monitoring the SDT.
  • SDT resources save air interface resources.
  • the first device is a multi-card terminal
  • the first device includes a first sub-device and a second sub-device
  • the first sub-device and the second sub-device share a radio frequency
  • the sending the first information to the first network device includes: sending the first information to the first network device through the first sub-device; wherein: the first The information indicates that the first sub-device requests to stop the SDT; or, the first information indicates that the SDT of the first sub-device is requested to be stopped.
  • the sending the first information to the first network device includes: when the second sub-device needs to enter the RRC connected state from the non-RRC connected state, sending the first information to the first network device through the first sub-device The first network device sends the first information; or, the sending the first information to the first network device includes: when the first device needs to switch from the SDT service to the RRC connected state service, sending the first information to the The first network device sends the first information; or, the sending the first information to the first network device includes: sending the first information to the first network device due to multiple cards.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal further includes a second sub-device, and the first sub-device and the second sub-device Sharing a radio frequency transmission chain and/or a radio frequency reception chain; the first information indicates that the first device requests to stop the SDT; or, the first information indicates that the first device requests to stop the SDT.
  • the sending the first information to the first network device includes: when the second sub-device needs to enter the RRC connected state from the non-RRC connected state, sending the first information to the first network device The first information; or, the sending the first information to the first network device includes: when the multi-card terminal needs to switch from the SDT service to the RRC connection state service, sending the first network device the The first information; or, the sending the first information to the first network device includes: sending the first information to the first network device due to multiple cards.
  • the first information can be applied to various scenarios of multi-card terminals, and the application scenarios are wide and the product usability is high.
  • the being in the non-radio resource control RRC connection state includes: the first sub-device is in the RRC inactive state; the method further includes: sending the first sub-device to the first network device information, the first sub-device starts a first timer; after sending the first information to the first network device, the method further includes: if the first timer is received before the first timer expires The first response message sent by the network device, the first sub-device stops the first timer; if the first response message sent by the first network device is not received when the first timer expires , the first sub-device enters an RRC idle state.
  • the method before sending the first information to the first network device, the method further includes: receiving first configuration information through the first sub-device, the first configuration information indicating that the The reporting of the first information, wherein: receiving the first configuration information through the first sub-device includes: receiving the first configuration information sent by the first network device through broadcast system information through the first sub-device.
  • receiving the first configuration information through the first sub-device includes: receiving, through the first sub-device, the first configuration information sent by the first network device through an RRC message; or, The receiving the first configuration information through the first sub-device includes: receiving the first configuration information sent by the second network device through an RRC message through the first sub-device, and the second network device stores the The anchor device of the user context of the first sub-device, the first network device does not store the user context of the first sub-device; the first configuration information includes the duration of the first timer; or, the The method further includes: receiving, by the first sub-device, the duration of the first timer sent by the first network device through broadcast system information; or, the method further includes: receiving, by the first sub-device, the The duration of the first timer sent by the first network device through an RRC message; or, the method further includes: receiving, by the first sub-device, the duration of the first timer sent by the second network device through an RRC message, the The second network device is
  • the method before receiving the first configuration information through the first sub-device, the method further includes: sending a first request message through the first sub-device, and the first request message Indicates that the reporting of the configuration of the first information is requested.
  • the first device may first request to configure the reporting of the first information, and the network device that receives the request configures the reporting of the first information for the first device, so as to avoid the situation where the first device does not need to configure the reporting of the first information.
  • the waste of resources caused by additional configuration reduces unnecessary signaling overhead.
  • the first response message is an RRC release message.
  • the first information is sent through an RRC message carried on a dedicated control channel DCCH.
  • the embodiment of the present application provides yet another method for controlling transmission, which is applied to a first network device, and the method includes: receiving first information sent by the first device, the first information indicating a request to stop SDT.
  • the first device is in a non-RRC connected state. In some embodiments, the first device initiates SDT under the first network device.
  • the first device may send the first information to the first network device, and use the first information to indicate the request to stop SDT, so as to prevent the first network device from still scheduling the SDT for the first device when the first device stops monitoring the SDT.
  • SDT resources save air interface resources.
  • the first device is a multi-card terminal
  • the first device includes a first sub-device and a second sub-device
  • the first sub-device and the second sub-device share a radio frequency
  • the sending chain and/or radio frequency receiving chain the receiving the first information sent by the first device includes: receiving the first information sent by the first sub-device; wherein: the first information indicates the first The sub-device requests to stop the SDT; or, the first information indicates that the SDT of the first sub-device is requested to be stopped.
  • the first information is sent by the first sub-device to the first network device when the second sub-device needs to enter the RRC connected state from the non-RRC connected state; or , the first information is sent by the first device to the first network device when the first device needs to switch from the SDT service to the RRC connection state service; or, the first information is the first device due to multiple cards sent to the first network device.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal further includes a second sub-device, and the first sub-device and the second sub-device Sharing a radio frequency transmission chain and/or a radio frequency reception chain; the first information indicates that the first device requests to stop the SDT; or, the first information indicates that the first device requests to stop the SDT.
  • the first information is sent by the first device to the first network device when the second sub-device needs to enter the RRC connected state from the non-RRC connected state; or, The first information is sent by the first device to the first network device when the multi-card terminal needs to switch from the SDT service to the RRC connection state service; or, the first information is the first The device sends to the first network device due to multiple cards.
  • the first information can be applied to various scenarios of multi-card terminals, and the application scenarios are wide and the product usability is high.
  • the method before receiving the first information sent by the first device, the method further includes: sending first configuration information to the first sub-device, and/or sending the first configuration information to the first sub-device
  • the sub-device sends the duration of the first timer, the first configuration information indicates the reporting of the first information, and the first timer is used for the first sub-device to monitor the response message of the first information
  • the sending the first configuration information to the first sub-device includes: sending the first configuration information to the first sub-device through broadcast system information; or, sending the first configuration information to the first sub-device Configuration information, including: sending the first configuration information to the first sub-device through an RRC message; the first configuration information includes the duration of the first timer; or, the sending to the first sub-device
  • the device sending the duration of the first timer includes: sending the duration of the first timer to the first sub-device through broadcast system information; or, sending the duration of the first timer to the first sub-device
  • the duration includes: sending the duration of
  • the method further includes: before the first timer expires, sending a first response message to the first sub-device.
  • the first network device does not store the user context of the first sub-device; after receiving the first information sent by the first device, the method further includes: The device sends a first message, where the first message includes the first information, and the second network device is an anchor device that stores the user context of the first sub-device.
  • the method further includes: receiving a second message sent by a second network device, where the second message includes a first response message, and the second network device stores the first An anchor device of the user context of the sub-device, the second message is used for the first network device to send the first response message to the first sub-device.
  • the method further includes: receiving a third message sent by a second network device, where the second network device stores the The anchor device of the user context of the first sub-device, the user context of the first sub-device includes the duration of the first timer, the three messages include the duration of the first timer, and the duration of the first timer The duration is used for the first network device to send the first response message to the first sub-device before the first timer expires.
  • the second message and the third message are the same. In other embodiments, the second message and the third message are different.
  • the method before receiving the second message sent by the second network device, the method further includes: sending a fourth message to the second network device, where the fourth message includes the first timing The duration of the timer, the duration of the first timer is generated by the first network device, and the duration of the first timer is used for the second network device to send the second information.
  • the method before receiving the first information sent by the first device, the method further includes: receiving a fifth message sent by a second network device, where the second network device stores the An anchor device of the user context of the first sub-device, the fifth message includes a duration of a first timer, and the duration of the first timer is used by the first network device before the first timer expires Send a first response message to the first sub-device.
  • the method before sending the first configuration information to the first sub-device, the method further includes: receiving a first request message sent by the first sub-device, the first request The message indicates a request to configure reporting of the first information.
  • the first device can first request to configure the report of the first information, and the network device that receives the request configures the first information for the first device, so as to avoid additional configuration of the first device when the first device does not need to configure the first information.
  • Resource waste caused by information reduces unnecessary signaling overhead.
  • the first response message is an RRC release message.
  • the first information is sent through an RRC message carried on a dedicated control channel DCCH.
  • the embodiment of the present application provides yet another method for controlling transmission, which is applied to a second network device, and the method includes: receiving a first message sent by the first network device, where the first message includes first information, The first information indicates that the first device requests to stop SDT, the first network device does not store the user context of the first device, and the second network device is an anchor point that stores the user context of the first device equipment.
  • the first information is sent by the first device to the first network device.
  • it is sent when the first device is in a non-RRC connection state.
  • the first device is under the first network device Sent when SDT is initiated.
  • the first device may send the first information to the first network device, and use the first information to indicate the request to stop SDT, so as to prevent the first network device from still scheduling the SDT for the first device when the first device stops monitoring the SDT.
  • SDT resources save air interface resources.
  • the first device is a multi-card terminal
  • the first device includes a first sub-device and a second sub-device
  • the first sub-device and the second sub-device share a radio frequency
  • the sending chain and/or the radio frequency receiving chain the first network device does not store the user context of the first device, including: the first network device does not store the user context of the first sub-device, and the second
  • the network device is an anchor device storing the user context of the first device, including: the second network device is an anchor device storing the user context of the first sub-device;
  • the first information indicates the The first sub-device requests to stop the SDT; or, the first information indicates that the SDT of the first sub-device is requested to be stopped.
  • the first information is sent by the first sub-device to the first network device when the second sub-device needs to enter the RRC connected state from the non-RRC connected state; or , the first information is sent by the first device to the first network device when the first device needs to switch from the SDT service to the RRC connection state service; or, the first information is the first device due to multiple cards sent to the first network device.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal further includes a second sub-device, and the first sub-device and the second sub-device Sharing a radio frequency transmission chain and/or a radio frequency reception chain; the first information indicates that the first device requests to stop the SDT; or, the first information indicates that the first device requests to stop the SDT.
  • the first information is sent by the first device to the first network device when the second sub-device needs to enter the RRC connected state from the non-RRC connected state; or, The first information is sent by the first device to the first network device when the multi-card terminal needs to switch from the SDT service to the RRC connection state service; or, the first information is the first The device sends to the first network device due to multiple cards.
  • the first information can be applied to various scenarios of multi-card terminals, and the application scenarios are wide and the product usability is high.
  • the method before receiving the first message sent by the first network device, the method further includes: sending the first configuration information to the first sub-device through an RRC message, and/or, through The RRC message sends the duration of the first timer to the first sub-device, the first configuration information indicates the reporting of the first information, and the first timer is used for the first sub-device to monitor the first information; the first configuration information includes the duration of the first timer; or, the duration of the first timer is predefined.
  • the method further includes: sending a second message to the first network device, where the second message includes a first response message, and the second message is used by the first network device The device sends the first response message to the first sub-device.
  • the method further includes: sending a third message to the first network device, where the third message includes a duration of a first timer, and the duration of the first timer is used for The first network device sends a first response message to the first sub-device before the first timer times out.
  • the second message and the third message are the same. In other embodiments, the second message and the third message are different.
  • the method before sending the second message to the first network device, the method further includes: receiving a fourth message sent by the first network device, where the fourth message includes the first The duration of a timer, the duration of the first timer is generated by the first network device, and the duration of the first timer is used by the second network device to send the Second message.
  • the method further includes: sending a fifth message to the first network device, where the fifth message includes the duration of the first timer, and the fifth message is the first Received before the network device receives the first information sent by the first sub-device, the duration of the first timer is used for the first network device to report to the first information before the first timer expires.
  • a sub-device sends a first response message.
  • the first response message is an RRC release message.
  • the first information is sent through an RRC message carried on a dedicated control channel DCCH.
  • the embodiment of the present application provides yet another method for controlling transmission, which is applied to a first device, and the method includes: when in a non-RRC connection state, sending second information to the first network device, the second information Indicates that gap configuration for SDT is requested, or the second information indicates that SDT is requested to be suspended.
  • the first device sends the second information to the first network device when the SDT is initiated under the first network device.
  • the first device may send the second information to the first network device, through which the second information indicates that the SDT is requested to be suspended or the gap configuration for the SDT is requested, so as to prevent the first network device from still Resources used for the SDT are scheduled for the first device to save air interface resources.
  • the first device is a multi-card terminal
  • the first device includes a first sub-device and a second sub-device
  • the first sub-device and the second sub-device share a radio frequency
  • the sending the second information to the first network device includes: sending the second information to the first network device through the first sub-device; wherein: the second The information indicates that the first sub-device requests the gap configuration for the SDT; or, the second information indicates that the gap configuration for the SDT of the first sub-device is requested; or, the The second information indicates that the first sub-device requests to suspend the SDT; or, the second information indicates that the SDT of the first sub-device is requested to be suspended.
  • the sending the second information to the first network device includes: when the second sub-device needs to send a system information request or receive a downlink message, the first sub-device sends the The first network device sends the second information; or, the sending the second information to the first network device includes: when the first device needs to switch from the SDT service to the service of sending a system information request or receiving a downlink message , sending the second information to the first network device; or, sending the second information to the first network device includes: sending the second information to the first network device due to multiple cards.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal further includes a second sub-device, and the first sub-device and the second sub-device Sharing a radio frequency transmission chain and/or a radio frequency reception chain;
  • the second information indicates that the first device requests the gap configuration for the SDT; or, the second information indicates that the request is for the first device The gap configuration of the SDT; or, the second information indicates that the first device requests to suspend the SDT; or, the second information indicates that the SDT of the first device is requested to be suspended.
  • the sending the second information to the first network device includes: when the second sub-device needs to send a system information request or receive a downlink message, sending the second information to the first network device the second information; or, the sending the second information to the first network device includes: when the multi-card terminal needs to switch from the SDT service to the service of sending a system information request or receiving a downlink message, sending the second information to the first network device
  • the network device sends the second information; or, the sending the second information to the first network device includes: sending the second information to the first network device due to multiple cards.
  • the first information can be applied to various scenarios of multi-card terminals, and the application scenarios are wide and the product usability is high.
  • the being in the non-RRC connected state includes: the first sub-device is in the RRC inactive state; the method further includes: when sending the second information to the first network device, The first sub-device starts a second timer; after sending the second information to the first network device, the method further includes: if the first network device receives the message sent by the first network device before the second timer expires The first sub-device stops the second timer, and the first sub-device processes the SDT based on the second response message.
  • the second response message includes third information, where the third information is used to indicate the gap configuration, and the first sub-device processes the SDT based on the second response message , including: the first sub-device stops listening to the SDT during a time period indicated by the gap configuration, and performs the SDT with the first network device during a time period outside the time period indicated by the gap configuration.
  • the first device may not stop the current SDT, but continue the SDT when the SDT can be performed, reducing signaling overhead and improving transmission efficiency.
  • the method before sending the second information to the first network device, the method further includes: receiving second configuration information through the first sub-device, the second configuration information indicating that the The reporting of the second information, wherein: receiving the second configuration information through the first sub-device includes: receiving the second configuration information sent by the first network device through broadcast system information through the first sub-device.
  • receiving the second configuration information through the first sub-device includes: receiving, through the first sub-device, the second configuration information sent by the first network device through an RRC message; or, The receiving the second configuration information through the first sub-device includes: receiving the second configuration information sent by the second network device through an RRC message through the first sub-device, and the second network device stores the The anchor device of the user context of the first sub-device, the first network device does not store the user context of the first sub-device; the second configuration information includes the duration of the second timer; or, the The method further includes: receiving, by the first sub-device, the duration of the second timer sent by the first network device through broadcast system information; or, the method further includes: receiving, by the first sub-device, the duration of the second timer The duration of the second timer sent by the first network device through the RRC message; or, the method further includes: receiving, through the first sub-device, the duration of the second timer sent by the second network device through the RRC message,
  • the method before receiving the second configuration information through the first sub-device, the method further includes: sending a second request message through the first sub-device, and the second request message Indicates that the reporting of the configuration of the second information is requested.
  • the first device can first request to configure the reporting of the second information, and the network device that receives the request configures the reporting of the second information for the first device, so as to avoid the situation where the first device does not need to configure the reporting of the second information.
  • the waste of resources caused by additional configuration reduces unnecessary signaling overhead.
  • the second response message is an RRC reconfiguration message.
  • the second information is sent through an RRC message carried on a dedicated control channel DCCH.
  • the embodiment of the present application provides yet another method for controlling transmission, which is applied to the first network device, and the method includes: receiving second information sent by the first device, the second information indicating the request for SDT Gap configuration, or the second information indicates that the SDT is requested to be suspended.
  • the first device is in a non-RRC connected state. In some embodiments, the first device initiates SDT under the first network device.
  • the first device may send the second information to the first network device, through which the second information indicates that the SDT is requested to be suspended or the gap configuration for the SDT is requested, so as to prevent the first network device from still Resources used for the SDT are scheduled for the first device to save air interface resources.
  • the first device is a multi-card terminal
  • the first device includes a first sub-device and a second sub-device
  • the first sub-device and the second sub-device share a radio frequency
  • the receiving the second information sent by the first device includes: receiving the second information sent by the first sub-device; wherein: the second information indicates that the first The sub-device requests the gap configuration for the SDT; or, the second information indicates that the gap configuration for the SDT of the first sub-device is requested; or, the second information indicates the The first sub-device requests to suspend the SDT; or, the second information indicates that the SDT of the first sub-device is requested to be suspended.
  • the second information is sent by the first sub-device to the first network device when the second sub-device needs to send a system information request or receive a downlink message; or, The second information is sent to the first network device when the first device needs to switch from the SDT service to the service of sending a system information request or receiving a downlink message; or, the second information is the first The device sends to the first network device due to multiple cards.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal further includes a second sub-device, and the first sub-device and the second sub-device Sharing a radio frequency transmission chain and/or a radio frequency reception chain;
  • the second information indicates that the first device requests the gap configuration for the SDT; or, the second information indicates that the request is for the first device The gap configuration of the SDT; or, the second information indicates that the first device requests to suspend the SDT; or, the second information indicates that the SDT of the first device is requested to be suspended.
  • the second information is sent by the first device to the first network device when the second sub-device needs to send a system information request or receive a downlink message; or, the The second information is sent by the first device to the first network device when the multi-card terminal needs to switch from the SDT service to the service of sending a system information request or receiving a downlink message; or, the second information It is sent by the first device to the first network device due to multiple cards.
  • the first information can be applied to various scenarios of multi-card terminals, and the application scenarios are wide and the product usability is high.
  • the method before receiving the second information sent by the first device, the method further includes: sending second configuration information to the first sub-device, and/or, sending the first configuration information to the first sub-device
  • the sub-device sends the duration of the second timer, the second configuration information indicates the reporting of the second information, and the second timer is used for the first sub-device to monitor the response message of the second information
  • the sending the second configuration information to the first sub-device includes: sending the second configuration information to the first sub-device through broadcast system information; or, sending the second configuration information to the first sub-device
  • Two configuration information including: sending the second configuration information to the first sub-device through an RRC message; the second configuration information includes the duration of the second timer; or, the sending to the first sub-device
  • the device sending the duration of the second timer includes: sending the duration of the second timer to the first sub-device through broadcast system information; or, sending the duration of the second timer to the first sub-device
  • the duration includes: sending the
  • the method further includes: before the second timer expires, sending a second response message to the first sub-device, so The second response message is used for the first sub-device to process the SDT.
  • the second response message includes third information, where the third information is used to indicate the gap configuration, and the gap configuration is used to indicate a period for stopping monitoring the SDT.
  • the first device may not stop the current SDT, and continue the SDT when the SDT can be performed, for example, stop monitoring the SDT during the time period indicated by the gap configuration, and continue the SDT outside the time period indicated by the gap configuration, so as to reduce signaling overhead and transmit higher efficiency.
  • the method further includes: sending a sixth message to the second network device, where the sixth message includes the second information,
  • the second network device is an anchor device that stores the user context of the first sub-device; receiving a seventh message sent by the second network device, where the seventh message includes a second response message, and the first The second response message is a response message to the second information, and the seventh message is used for the first network device to send the second response message to the first sub-device.
  • the method further includes: receiving an eighth message sent by a second network device, where the second network device stores the The anchor device of the user context of the first sub-device, the user context of the first sub-device includes the duration of the second timer, the eighth message includes the duration of the second timer, and the second timer
  • the duration is used for the first network device to send a second response message to the first sub-device before the second timer expires, where the second response message is a response message to the second information.
  • the seventh message and the eighth message are the same. In other embodiments, the seventh message and the eighth message are different.
  • the method before receiving the seventh message sent by the second network device, the method further includes: sending a ninth message to the second network device, where the ninth message includes the first The duration of the second timer, the duration of the second timer is generated by the first network device, and the duration of the second timer is used for the second network device to send the A seventh message, where the seventh message is used for the first network device to send the second response message to the first sub-device before the second timer expires.
  • the method before receiving the second information sent by the first device, the method further includes: receiving a tenth message sent by a second network device, where the second network device stores the An anchor device of the user context of the first sub-device, the tenth message includes a duration of a second timer, and the duration of the second timer is used by the first network device before the second timer expires Sending a second response message to the first sub-device, where the second response message is a response message to the second information.
  • the second response message includes third information, where the third information is used to indicate the gap configuration, where: the third information is based on the Generated by the second information and the duration of the second timer, the duration of the second timer is used by the first network device to send the second A response message; or, after sending the sixth message to the second network device, the method further includes: receiving an eleventh message sent by the second network device, the eleventh message including the second information ; generating the third information based on the second information in the eleventh message; sending a twelfth message to the second network device, where the twelfth message includes the third information.
  • the third information indicating the gap configuration can be generated by the second network device or the first network device, and can be used in different ways based on specific scenarios, making it more flexible to use.
  • the method before sending the second configuration information to the first sub-device, the method further includes: receiving a second request message sent by the first sub-device, the second request The message indicates a request to configure reporting of the second information.
  • the first device can first request to configure the reporting of the second information, and the network device that receives the request configures the reporting of the second information for the first device, so as to avoid the situation where the first device does not need to configure the reporting of the second information.
  • the waste of resources caused by additional configuration reduces unnecessary signaling overhead.
  • the second response message is an RRC reconfiguration message.
  • the second information is sent through an RRC message carried on a dedicated control channel DCCH.
  • the embodiment of the present application provides yet another method for controlling transmission, which is applied to the second network device, and the method includes: receiving a sixth message sent by the first network device, the sixth message including the second information, The second information indicates that the first device requests gap configuration for SDT, or the second information indicates that the first device requests to suspend SDT, the first network device does not store the user context of the first device, the The second network device is an anchor device storing the user context of the first device.
  • the second information is sent by the first device to the first network device.
  • it is sent when the first device is in a non-RRC connection state.
  • the first device is under the first network device. Sent when SDT is initiated.
  • the first device may send the second information to the first network device, through which the second information indicates that the SDT is requested to be suspended or the gap configuration for the SDT is requested, so as to prevent the first network device from still Resources used for the SDT are scheduled for the first device to save air interface resources.
  • the first device is a multi-card terminal
  • the first device includes a first sub-device and a second sub-device
  • the first sub-device and the second sub-device share a radio frequency
  • the sending chain and/or the radio frequency receiving chain the first network device does not store the user context of the first device, including: the first network device does not store the user context of the first sub-device, and the second
  • the network device is an anchor device storing the user context of the first device, including: the second network device is an anchor device storing the user context of the first sub-device; wherein: the second information Instructing the first sub-device to request the gap configuration for the SDT; or, the second information indicating requesting the gap configuration for the SDT of the first sub-device; or, the The second information indicates that the first sub-device requests to suspend the SDT; or, the second information indicates that the SDT of the first sub-device is requested to be suspended.
  • the second information is sent by the first sub-device to the first network device when the second sub-device needs to send a system information request or receive a downlink message; or, The second information is sent to the first network device when the first device needs to switch from the SDT service to the service of sending a system information request or receiving a downlink message; or, the second information is the first The device sends to the first network device due to multiple cards.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal further includes a second sub-device, and the first sub-device and the second sub-device Sharing a radio frequency transmission chain and/or a radio frequency reception chain;
  • the second information indicates that the first device requests the gap configuration for the SDT; or, the second information indicates that the request is for the first device The gap configuration of the SDT; or, the second information indicates that the first device requests to suspend the SDT; or, the second information indicates that the SDT of the first device is requested to be suspended.
  • the second information is sent by the first device to the first network device when the second sub-device needs to send a system information request or receive a downlink message; or, the The second information is sent by the first device to the first network device when the multi-card terminal needs to switch from the SDT service to the service of sending a system information request or receiving a downlink message; or, the second information It is sent by the first device to the first network device due to multiple cards.
  • the first information can be applied to various scenarios of multi-card terminals, and the application scenarios are wide and the product usability is high.
  • the method before receiving the sixth message sent by the first network device, the method further includes: sending the second configuration information to the first sub-device through an RRC message, and/or, through The RRC message sends the duration of the second timer to the first sub-device, the second configuration information indicates the reporting of the second information, and the second timer is used for the first sub-device to monitor the second information; the second configuration information includes the duration of the second timer; or, the duration of the second timer is predefined.
  • the method further includes: generating a second response message based on the duration of the second timer, where the second response message is A response message of the second information; sending a seventh message to the first network device, the seventh message includes the second response message, and the seventh message is used by the first network device in the first network device Sending the second response message to the first sub-device before the second timer expires.
  • the user context of the first sub-device stored by the second network device includes the duration of the second timer; the method further includes: sending an eighth timer to the first network device message, the eighth message includes the duration of the second timer, and the duration of the second timer is used by the first network device to send to the first sub-device before the second timer expires A second response message, where the second response message is a response message to the second information.
  • the seventh message and the eighth message are the same. In other embodiments, the seventh message and the eighth message are different.
  • the method before sending the seventh message to the first network device, the method further includes: receiving a ninth message sent by the first network device, where the ninth message includes the first The duration of the second timer, the duration of the second timer is generated by the first network device, and the duration of the second timer is used for the second network device to send the Seventh message.
  • the method further includes: sending a tenth message to the first network device, the tenth message includes the duration of the second timer, and the tenth message is the first Received before the network device receives the first information sent by the first sub-device, the duration of the second timer is used for the first network device to report to the first information before the second timer expires.
  • a sub-device sends a second response message, where the second response message is a response message to the second information.
  • the second response message includes third information, where the third information is used to indicate the gap configuration, and the gap configuration is used to indicate a period for stopping monitoring the SDT.
  • the first device may not stop the current SDT, and continue the SDT when the SDT can be performed, for example, stop monitoring the SDT during the time period indicated by the gap configuration, and continue the SDT outside the time period indicated by the gap configuration, so as to reduce signaling overhead and transmit higher efficiency.
  • the second response message includes third information, and the third information is used to indicate the gap configuration; wherein: the third information is the second network device based on the generated by the second information and the duration of the second timer; or, after receiving the sixth message sent by the first network device, the method further includes: sending an eleventh message to the first network device, The eleventh message includes the second information, and the second information in the eleventh message is used by the first network device to generate the third information; receiving the third information sent by the first network device A twelfth message, where the twelfth message includes the third information.
  • the third information indicating the gap configuration can be generated by the second network device or the first network device, and can be used in different ways based on specific scenarios, making it more flexible to use.
  • the second response message is an RRC reconfiguration message.
  • the second information is sent through an RRC message carried on a dedicated control channel DCCH.
  • the embodiment of the present application provides yet another method for controlling transmission, which is applied to a first communication system, where the first communication system includes a first device and a first network device, and the method includes: the first device is in a non- In the RRC connection state, send indication information to the first network device, where the indication information indicates to stop monitoring the SDT.
  • the indication information is the first aspect of the method for controlling transmission provided by the first aspect to the third aspect of the embodiments of this application, and any implementation manner of the first aspect to the third aspect.
  • the first device is used to execute the control transmission method provided by the first aspect of the embodiment of the present application and any one of the implementations of the first aspect
  • the first network device is used to execute the second aspect and the second aspect of the embodiment of the present application The control transfer method provided by any implementation.
  • the first communication system further includes a second network device, and the second network device is configured to execute the control transmission method provided in the third aspect of the embodiment of the present application and any one of the implementation manners of the third aspect.
  • the indication information is the second aspect of the method for controlling transmission provided by the fourth aspect to the sixth aspect and any implementation manner of the fourth aspect to the sixth aspect of the embodiments of the present application.
  • Information the first device is used to execute the control transmission method provided by the fourth aspect and any implementation of the fourth aspect of the embodiment of the present application, and the first network device is used to execute the fifth aspect and the fifth aspect of the embodiment of the present application The control transfer method provided by any implementation.
  • the first communication system further includes a second network device, and the second network device is configured to implement the sixth aspect of the present application and the control transmission method provided in any one of the implementation manners of the sixth aspect.
  • the embodiment of the present application provides a network device, including a transceiver, a processor, and a memory; the memory is used to store computer program codes, the computer program codes include computer instructions, and the processor invokes the computer instructions to enable
  • the above user equipment implements the second aspect, the third aspect, the fifth aspect, the sixth aspect, and the seventh aspect of the embodiments of the present application, and any of the second, third, fifth, sixth, and seventh aspects.
  • a control transfer method provided by an implementation.
  • an embodiment of the present application provides an electronic device, including a transceiver, a processor, and a memory; the memory is used to store computer program codes, the computer program codes include computer instructions, and the processor invokes the computer instructions to enable
  • the foregoing user equipment executes the control transmission method provided in the first aspect, the fourth aspect, and the seventh aspect of the embodiments of the present application, and any implementation manner of the first aspect, the fourth aspect, and the seventh aspect.
  • the embodiment of the present application provides a communication device, which may be a device or a chip in the device, and the communication device includes a processing unit, and the processing unit is used to implement the first aspect to the seventh aspect of the embodiment of the present application, And the method for controlling transmission provided by any one of the implementation manners of the first aspect to the seventh aspect.
  • the embodiment of the present application provides a computer storage medium, the computer storage medium stores a computer program, and the computer program includes program instructions, and when the program instructions are executed by a processor, they are used to execute the first step of the embodiment of the application.
  • a method for controlling transmission provided by the first aspect to the seventh aspect, and any implementation manner of the first aspect to the seventh aspect.
  • the embodiment of the present application provides a computer program product, which, when the computer program product runs on the communication device, causes the communication device to execute the first to seventh aspects of the embodiment of the present application, and the first aspect The method for controlling transmission provided by any implementation manner up to the seventh aspect.
  • the embodiments of the present application provide an electronic device, where the electronic device includes executing the method or device introduced in any embodiment of the present application.
  • the aforementioned electronic device is, for example, a chip.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication protocol stack of a user plane of a new wireless access NR;
  • Fig. 3 is a schematic diagram of the architecture of the communication protocol stack of the control plane of NR;
  • FIG. 4 is a schematic diagram of transition of a radio resource control RRC state of a user equipment UE
  • FIGS. 5-10 are schematic flowcharts of some small packet data transmission SDTs provided by the embodiments of the present application.
  • FIGS 11-12 are schematic flowcharts of some anchor point migration processes provided by the embodiments of the present application.
  • FIG. 13-FIG. 19 are schematic flowcharts of some methods for controlling transmission provided by the embodiments of the present application.
  • Network equipment may be a device for sending or receiving information.
  • the network equipment includes access network equipment, such as but not limited to: base station, user equipment (user equipment, UE), wireless access Access point (access point, AP), transmission and receiver point (transmission and receiver point, TRP), relay equipment, or other network equipment with the function of a base station, etc.
  • the base station is a device deployed in a radio access network (radio access network, RAN) to provide a wireless communication function.
  • radio access network radio access network
  • the names of base stations may be different, such as but not limited to: global system for mobile communications (global system for mobile communications, GSM) or code division multiple access (code division multiple access, CDMA)
  • BTS Base transceiver station
  • node B node B (node B, NB) in wideband code division multiple access (WCDMA)
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • eNodeB evolved node B, eNodeB
  • it can also be the fifth generation mobile communication technology (5th generation mobile networks, 5G), that is, the next generation base station (g node B, gNB) in the new radio access (new radio, NR), Or base stations in other future network systems.
  • the network device includes a core network device, such as an authentication management function (authentication management function, AMF), a mobility management node function (mobility management entity, MME), and the like.
  • a terminal may be a device with a wireless communication function.
  • a terminal is a UE.
  • a terminal may also be called a mobile station, an access terminal, or a user agent.
  • the terminal is a terminal in the form of a handheld device, a wearable device, a computing device, a portable device, a vehicle-mounted device, an industrial wireless sensor, or a smart meter.
  • the terminals are devices such as cellular phones, smart phones, smart glasses, laptops, personal digital assistants, cordless phones, pressure sensors, temperature sensors, and smart meters.
  • the terminal in this embodiment of the present application may be a multi-card terminal or a single-card terminal.
  • a multi-card terminal may also be called a multi-card device or a multi-card terminal device.
  • a multi-card terminal can be interpreted as a multi-global subscriber identity module (multiple universal subscriber identity module, Multi-USIM or MUSIM), and in some embodiments, a multi-card terminal can also be interpreted as a multi-universal mobile communication system ( universal mobile telecommunications system, UMTS) subscriber identity card (multiple UMTS subscriber identity module, Multi-USIM or MUSIM).
  • a multi-card terminal can include multiple sub-devices, for example, a multi-card terminal can be equipped with multiple subscriber identity (subscriber identity module, SIM) cards, global subscriber identity (universal subscriber identity module) cards and other telephone cards, and each telephone card is a sub-equipment .
  • the sub-device included in the multi-card terminal may be a device with a wireless communication function, and in some embodiments, the sub-device is a UE.
  • the multiple sub-devices included in the multi-card terminal can be registered to different networks, for example, different access network devices and/or different core network devices.
  • radio frequency transmission chain includes but is not limited to at least one of the following: antenna, power amplifier, filter, Transmit modulator, envelope tracker, low noise amplifier, filter, antenna switch, antenna tuner, etc.
  • the radio frequency receiving chain includes but not limited to at least one of the following: antenna, filter, low noise amplifier, radio frequency interface, antenna switches, antenna tuners, envelope trackers, etc.
  • a multi-card terminal is a smart phone installed with two calling cards, and the user can only use one of the calling cards to make or receive calls, surf the Internet, etc. at any time.
  • a single-card terminal is a concept relative to a multi-card terminal.
  • a single-card terminal can be understood as a terminal that includes only one sub-device, that is, a single-card terminal itself, such as a smart phone that only includes one phone card.
  • a single-card The terminal is UE.
  • a network device is used as a base station
  • a single-card terminal is a UE
  • any sub-device included in a multi-card terminal is used as an example for illustration.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system can be, but not limited to, GSM, CDMA, wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA), universal mobile communication system (universal mobile telecommunications system, UMTS), LTE, NR, or other future network systems.
  • the communication system may include UE110, UE120, base station 210, base station 220, and base station 230.
  • UE110 and UE120 are different single-card terminals.
  • UE110 is a single-card terminal.
  • Card terminal, UE120 is a multi-card terminal or a sub-device included in a multi-card terminal.
  • UE110 is a multi-card terminal or a sub-device included in a multi-card terminal
  • UE120 is a single-card terminal.
  • UE110 and UE120 are two sub-devices included in the same multi-card terminal, for example, the multi-card terminal 100 shown in FIG. 1 includes UE110 and UE120.
  • the communication system may also include a core network, which is a key control node in the communication system and is mainly responsible for signaling processing functions, such as but not limited to implementing access control, mobility management, session Management and other functions.
  • a core network which is a key control node in the communication system and is mainly responsible for signaling processing functions, such as but not limited to implementing access control, mobility management, session Management and other functions.
  • the base station when the UE is in a cell covered by a certain base station, that is, when the current serving cell of the UE corresponds to the base station, the base station can provide wireless communication services for the UE.
  • the UE can transmit uplink data and and/or downlink data.
  • the UE may transmit uplink data and/or downlink data through the base station and the core network.
  • the UE may transmit data through the base station and other devices.
  • UE110 and UE120 can be registered to different networks respectively. As shown in FIG. The interface is connected to the base station 220, and the base station 220 can provide wireless communication services for the UE120.
  • base stations may communicate with each other. As shown in FIG. 1 , base station 210 may communicate with base station 230 through an Xn interface, and messages transmitted through the Xn interface may be called Xn interface messages.
  • the core network may be called a 5G core network (5G Core, 5GC), and the base station may be called a gNB.
  • At least one gNB can constitute a next generation radio access network (next generation-radio access network, NG-RAN) node.
  • the NG-RAN node may include at least one gNB connected to the 5GC through the NG interface, and at least one gNB in the NG-RAN node may be connected and communicated through the Xn-C interface.
  • UE can connect to gNB through Uu interface.
  • FIG. 1 the shapes and quantities of UEs and base stations shown in FIG. 1 are only for example, and are not limited in this embodiment of the present application.
  • the embodiments of the present application mainly use a communication system in which LTE and/or NR is applied as an example for description.
  • FIG. 2 is a schematic diagram of an architecture of a user plane protocol stack of NR.
  • the user plane protocol stack may include a physical (physical, PHY) layer, a medium access control (medium access control, MAC) layer, a radio link control (radio link control, RLC) layer, a packet data convergence protocol (packet data convergence protocol) , PDCP) layer, service data adaptation protocol (service data adaptation protocol, SDAP) layer.
  • PHY physical
  • MAC medium access control
  • RLC radio link control
  • RLC radio link control
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • FIG. 3 is a schematic diagram of an architecture of a control plane protocol stack of NR.
  • the control plane protocol stack may include a PHY layer, a MAC layer, an RLC layer, a PDCP layer, a radio resource control (radio resource control, RRC) layer, and a non-access stratum (non access stratum, NAS).
  • RRC radio resource control
  • NR's user plane protocol stack adds a new SDAP layer, but the architecture of other layers is the same, and the specific description is similar. LTE is more mature, so I won't repeat it here.
  • the lower layer of the PDCP layer includes the RLC layer.
  • the PDCP layer can process RRC messages on the control plane, and the PDCP layer can perform IP packet header compression to reduce the number of bits transmitted on the radio interface.
  • the PDCP layer can also be responsible for the encryption of the control plane and the integrity protection of the transmitted data.
  • the PDCP layer performs the corresponding decryption and decompression operations.
  • One PDCP entity can be configured for each radio bearer.
  • the RLC layer is responsible for splitting/cascading, retransmission control, and duplicate detection.
  • the RLC layer provides services for the PDCP layer.
  • One RLC entity can be configured for each radio bearer.
  • the MAC layer controls multiplexing of logical channels, retransmission of HARQ, scheduling of uplink and downlink, etc.
  • the MAC layer provides services for the RLC layer in the form of logical channels.
  • the PHY layer load manages encoding/decoding, modulation/demodulation, multi-antenna mapping, and other types of physical layer functions.
  • the PHY layer provides services for the MAC layer in the form of transmission channels.
  • the MAC layer can provide services for higher layers (such as the RLC layer) via a logical channel (logical channel, LCH).
  • Logical channels can be classified into control channels used to transmit control information on a control plane and traffic channels used to transmit user data on a user plane according to the type of transmitted information.
  • the control channel may include but not limited to a common control channel (common control channel, CCCH) and a dedicated control channel (dedicated control channel, DCCH).
  • the traffic channel may include but not limited to a dedicated traffic channel (dedicated traffic channel, DTCH).
  • the CCCH can exist all the time, and the UE that has no RRC connection with the RAN node can also use the CCCH to transmit information.
  • DCCH can be used to transmit dedicated control information between UE and RAN nodes.
  • DTCH can be used to transmit user data between UE and RAN nodes.
  • DCCH and DTCH do not exist all the time, but after the base station connected to the UE restores the UE context (UE context), the DCCH and DTCH can be used for communication between the UE and the base station.
  • UE context includes but not limited to terminal identity, radio bearer (radio bearer, RB) related configuration, PDCP layer context or function configuration (such as integrity protection and encryption security related configuration), quality of service related configuration, etc.
  • RB may be a connection format set between UE and RAN node, and may include related configurations of physical channels, transport channels and logical channels.
  • the RB can be divided into a signaling radio bearer (signaling radio bearer, SRB) used to transmit control information on the control plane and a data radio bearer (data radio bearer, DRB) used to transmit user data on the user plane.
  • a DRB may include a PDCP layer entity (PDCP entity for short), an RLC layer entity (RLC entity for short), and a logical channel.
  • the RRC layer can be used to transmit RRC messages between the UE and the base station.
  • the RRC resume request (RRCResumeRequest) in NR can be used for the UE to request to resume the suspended RRC connection, so as to transmit data with the base station.
  • the RRC layer belongs to the access stratum (AS).
  • RRC layer there are currently three UE RRC states, which are RRC IDLE state, RRC INACTIVE state and RRC CONNECTED state.
  • RRC states the UE performs mostly different operations.
  • the three states and the transition process please refer to the example in Figure 4 below.
  • an RRC connection is established between the UE and the base station.
  • a UE connection can be established between the 5GC and the NG-RAN
  • the connection between the user plane and the control plane, NG-RAN and UE can retain the UE context of the AS layer, NG-RAN can obtain the cell to which the UE belongs, the UE can send or receive unicast data, and the network (such as NG-RAN) can control the UE mobility, for example, the UE can measure the channel with the base station, and can report the measurement result to the base station, and the base station can determine whether to switch the cell to which the UE belongs according to the measurement result.
  • the UE and the base station can not only transmit data normally, but the base station can also manage the UE.
  • the UE in the RRC CONNECTED state wants to send uplink data to the base station, it needs to maintain synchronization with the base station according to timing advance (TA).
  • TA timing advance
  • the UE in the RRC CONNECTED state has not obtained uplink synchronization, the UE can initiate a random access (RA) to the base station.
  • TA timing advance timer
  • TAT timing advance timer
  • the base station can allocate configured grant (CG) resources for the UE.
  • CG configured grant
  • the base station may configure CG resources for the UE through an RRC message, and the configured information may include time-frequency position and period. Compared with dynamically scheduling transmission resources, this way of transmitting data through CG resources can reduce signaling overhead and transmission delay.
  • the UE in the RRC CONNECTED state can trigger a buffer status report (buffer status reporting, BSR) to request the base station to schedule uplink resources.
  • BSR buffer status reporting
  • the BSR can be used to indicate the amount of data currently to be transmitted in the data buffer (buffer) of the UE.
  • the amount of data can be different at different times.
  • the UE is a smart phone. Users can send messages to other users through social applications installed on the UE, but the types and quantities of messages sent by users at different times can be different. Sometimes the messages sent It may be just a text message, and sometimes the message sent may include multiple videos. Therefore, the size of the BSR sent by the UE to the base station at different times may also be different.
  • the resources for the UE to send the BSR to the base station (referred to as BSR resources) may be dynamically scheduled by the base station to the UE.
  • the UE When the UE is in the RRC IDLE state, no RRC connection is established between the UE and the base station.
  • the UE may select a public land mobile network (PLMN), receive system information broadcast by the base station, and perform cell re-selection. , called paging (Paging) initiated by 5GC for downlink transmission, and discontinuous reception (DRX) configured by the NAS layer for core network paging, etc.
  • PLMN public land mobile network
  • Paging paging
  • DRX discontinuous reception
  • the RRC INACTIVE state is a new RRC state in NR.
  • the base station usually keeps the UE in the RRC INACTIVE state.
  • the UE can select a PLMN, receive system information broadcast by the base station, cell reselection occurs, and the called paging (Paging) is initiated by the NG-RAN, and the NG-RAN Manage the RAN-based notification area (RAN-based Notification Area, RNA), for example, UE triggers RNA update (RNA update, RNAU) to notify the base station of the UE's current RNA, and NG-RAN configures DRX for RAN paging , 5GC and NG-RAN can establish a connection between the user plane and the control plane of the UE, the NG-RAN and the UE can retain the UE context of the AS layer, and the NG-RAN can obtain the RNA where the UE is located
  • RNA update RNA update
  • the UE after the UE establishes an RRC connection with the base station, the UE enters the RRC CONNECTED state. If the UE in the RRC CONNECTED state has no data transmission requirements with the base station within a preset period of time, the base station can instruct the UE to enter the RRC_INACTIVE state. For example, the base station can send an RRC release (RRCRelease with suspend indication) message carrying a suspension indication to the UE. After the UE receives the RRC Release with suspend indication message, the UE retains its own context and enters the RRC INACTIVE state.
  • RRC release RRCRelease with suspend indication
  • the above three states in the RRC layer can be converted to each other, as shown in Figure 4, in some embodiments, when the UE is in the RRC IDLE state or the RRC INACTIVE state (which can be collectively referred to as the non-RRC connection state), if it is necessary to perform data transmission, an RRC connection establishment process or an RRC connection recovery process may be initiated.
  • a UE in the RRC IDLE state can establish an RRC connection with the base station by executing RA, specifically sending an RRC setup request (RRCSetupRequest) message to the base station, and then receiving an RRC setup (RRCSetup) message sent by the base station.
  • the UE After receiving the RRCSetup message, the UE can Establish an RRC connection with the base station and enter the RRC CONNECTED state. For example, a UE in the RRC INACTIVE state can send an RRCResumeRequest message to the base station, and then receive an RRC resume (RRCResume) message sent by the base station. After receiving the RRCResume message, the UE can enter the RRC CONNECTED state. In some other embodiments, when the UE is in the non-RRC connected state, it can also execute the RRC connection establishment process or the RRC connection recovery process in response to the paging message from the base station. For example, the core network can instruct the base station to send The UE sends a paging message.
  • the core network can instruct the base station to send The UE sends a paging message.
  • the UE can enter the RRC INACTIVE state or the RRC IDLE state from the RRC CONNECTED state under the instruction of the base station.
  • the base station may release the UE to enable the UE to enter the RRC INACTIVE state or the RRC IDLE state, and specific examples are as follows.
  • Example 1 the UE enters the RRC INACTIVE state from the RRC CONNECTED state under the instruction of the base station.
  • the base station can send a release message with a suspend indication to the UE, such as a RRC Release with suspend indication message, so that the UE enters the RRC INACTIVE state.
  • the RRC connection between the UE and the base station will be suspended, but at least one RAN node retains the UE context of the UE.
  • Example 2 the UE enters the RRC IDLE state from the RRC CONNECTED state under the instruction of the base station.
  • the base station can send a release message to the UE, such as an RRC release (RRCRelease) message, so that the UE enters the RRC IDLE state.
  • RRC release RRCRelease
  • the RRC connection between the UE and the base station will be stopped, and the RAN node will delete the UE context of the UE.
  • the UE can also enter the RRC IDLE state from the RRC INACTIVE state under the instruction of the base station. For example, after the UE in the RRC INACTIVE state sends an RRC connection recovery request, the base station can release the UE so that the UE enters the RRC IDLE state . Understandably, compared with entering the RRC CONNECTED state from the RRC IDLE state, the UE enters the RRC CONNECTED state from the RRC INACTIVE state faster.
  • the RRC connection establishment process or the RRC connection recovery process may be performed to request to enter the RRC CONNECTED state to transmit data, wherein, if in the RRC IDLE
  • the UE in the RRC INACTIVE state or RRC INACTIVE has no resources to send the RRCSetupRequest message or the RRCResumeRequest message, the UE needs to initiate a random access (RA) process.
  • RA random access
  • the UE can obtain the RA configuration of the current cell from the system information broadcast by the base station, for example, the configuration includes the available random access preamble (random access preamble) and the RA resource for sending the random access preamble, for example, sending
  • the RA resource of the random access preamble is the time-frequency resource for the UE to send the random access preamble, and may also be called a random access occasion (random access occasion, RO).
  • RA may include 4-step random access (4-step RA for short) and 2-step random access (2-step RA for short).
  • the base station can broadcast the RA configuration corresponding to 4-step RA and the RA configuration corresponding to 2-step RA in the system information, or only broadcast the RA configuration corresponding to 4-step RA in the system information, or only broadcast in the system information RA configuration corresponding to 2-step RA.
  • the base station may broadcast the RA configuration corresponding to the 4-step RA and the RA configuration corresponding to the 2-step RA in the system information.
  • the UE can base on the currently measured reference signal receiving power (reference signal receiving power, RSRP) and the relative size of the preset RSRP threshold, Determine to initiate 4-step RA or 2-step RA. For example, when the currently measured RSRP is greater than or equal to the preset RSRP threshold, the UE can initiate 2-step RA. When the currently measured RSRP is less than the preset RSRP threshold, the UE can initiate 4-step RA.
  • RSRP reference signal receiving power
  • the message sent by the UE to the base station in the third step of the 4-step RA may be called message 3, or msg3 for short.
  • the message sent by the UE to the base station can be called message A, or msgA for short.
  • the above msg3 or msgA may include an RRC message.
  • the RRC messages may be different when the UE is in different RRC states and in different service scenarios.
  • the msg3 sent by the UE to the base station may include the RRCResumeRequest message, so as to request to resume the suspended RRC connection and enter the RRC CONNECTED state to transmit data with the base station.
  • the UE in the non-RRC connection state has uplink data to send to the base station, or receives a paging (Paging) message sent by the base station, and the paging message is used by the base station to indicate that there is downlink data to send to the UE , the UE needs to re-establish or restore the RRC connection and enter the RRC CONNECTED state, and then transmit data with the base station in the RRC CONNECTED state.
  • Paging paging
  • this type of data packet can be called small data packet, and the signaling required for the UE switching state process is even larger than the small packet data, resulting in unnecessary power consumption and signaling overhead of the UE. Therefore, it is necessary to transmit small packet data to the base station when the UE is not in the RRC connection state. For example, when the UE in the RRC INACTIVE state has the transmission requirement of uplink small packet data, it can transmit the uplink small packet data to the base station.
  • small packet data may include, but is not limited to, data packets whose data volume is less than a preset threshold (such as the size of the transmission block indicated by the base station), data packets whose data label is small packet data, and data packets whose data type belongs to small packet data wait.
  • the data packets of non-small packet data can be called large packet data, which can include but not limited to data packets whose data volume is greater than or equal to the preset threshold, data packets whose data label is large packet data, and data packets whose data type belongs to large packet data, etc.
  • the above data label and/or the above data type may be jointly negotiated by the UE and the network device.
  • data tags may include large and small packets of data.
  • data whose data type is heartbeat packet is small packet data
  • data whose data type is file, video or audio is large packet data.
  • the small packet data is an instant messaging message of an application program (application, APP) of the UE, a heartbeat packet of the APP, or a push message of the APP, and the like.
  • the small packet data is periodic data (such as heartbeat packets) of wearable devices such as smart watches.
  • the small packet data is business data of Internet of Things (IoT) devices.
  • IoT Internet of Things
  • Another example is the periodic readings of the industrial wireless sensor network for small packet data.
  • the small packet data is the periodic reading of smart meters such as smart meters.
  • the above-mentioned transmission of small packet data to the base station when the UE is in the non-RRC connected state may include that the UE transmits small data during the RA process without entering the RRC CONNECTED state before transmitting small data.
  • the above transmission process may be referred to as RA-based small data transmission (small data transmission, SDT), referred to as RA-SDT.
  • RA can include 4-step RA and 2-step RA
  • SDT can also include SDT based on 4-step RA (abbreviated as 4-step SDT) and SDT based on 2-step RA (abbreviated as 2-step RA).
  • the process example of 4-step SDT can be seen in Figure 5 and Figure 6 below
  • the process example of 2-step SDT can be seen in Figure 7 and Figure 8 below.
  • the implementation of RA-SDT is similar to that of RA.
  • the UE can obtain the configuration of RA-SDT from the system information broadcast by the base station, and the UE can determine to initiate 4 based on the relative size of the currently measured RSRP and the preset RSRP threshold.
  • -step SDT or 2-step SDT.
  • transmitting the small packet data to the base station may also include that the UE transmits small data through pre-allocated CG resources or preconfigured uplink resources (preconfigured uplink resource, PUR) without Enter the RRC CONNECTED state and then transmit small data.
  • pre-allocated CG resources or preconfigured uplink resources preconfigured uplink resource, PUR
  • PUR preconfigured uplink resource
  • the SDT has multiple different application scenarios, and SDTs with different implementation manners, such as RA-SDT or CG-SDT, can be used according to the application scenarios.
  • SDTs with different implementation manners such as RA-SDT or CG-SDT, can be used according to the application scenarios.
  • a specific example is as follows:
  • Example 1 In CG-SDT, the resources indicated by the CG-SDT configuration (such as CG resources or PUR) are issued by the base station to the UE through dedicated control signaling, so the CG-SDT configuration is applicable to the UE in the cell covered by the base station For UEs, the CG-SDT configuration provided in one cell cannot be reused by UEs in another cell.
  • the resources indicated by the CG-SDT configuration such as CG resources or PUR
  • the resources indicated by the CG-SDT configuration can no longer be used, which can be based on Such characteristics can be applied to the following scenarios, for example: For IoT applications, UEs have limited mobility, and usually establish all connections in the same cell to send data, and rarely change cells, so UEs in the IoT field can preferentially use CG- SDT.
  • Example 2 RA-SDT configuration
  • the related RA configuration can be provided by the system information sent by the base station.
  • the UE can read and apply the configuration of the system information broadcast, which can be based on such characteristics as It can be applied to the following scenarios: For applications such as instant messaging messages on smart phones, the mobility of the UE is relatively strong, and the UE may move from the coverage area of one base station to the coverage area of another base station.
  • the UE moves from the coverage area of base station A to the coverage area of base station B, and is within the coverage area of base station B, it uses the resources indicated by the CG-SDT configuration sent by base station A before moving to perform SDT, and cannot transmit data due to RA -
  • the resources for sending the random access preamble in the SDT are broadcast by the base station in real time. Therefore, RA-SDT can be preferentially used for UEs with strong mobility.
  • the UE adopts the CG-SDT or the RA-SDT is not limited by the scenario, and it can be determined which way to use for the SDT based on the implementation of the UE.
  • the success rate of the UE performing CG-SDT is relatively high.
  • the random access resources of RA-SDT are broadcast by network equipment, and UEs that can receive the broadcast message can initiate RA-SDT on the random access resources, and multiple UEs will compete for resources, which may lead to the failure of the competition, so , the success rate of RA-SDT is not as high as that of CG-SDT, and CG-SDT may be more effective than RA-SDT.
  • the UE prefers to select CG-SDT, and the UE needs to meet certain conditions when selecting CG-SDT.
  • the UE can select RA-SDT. For example, whether there are resources indicated by the CG-SDT configuration within the range covered by the normal uplink (NUL) carrier or the supplementary uplink (SUL) carrier where the UE is currently located, if there is a resource indicated by the CG-SDT configuration If there are valid resources in the resources indicated by the CG-SDT configuration, the UE can select CG-SDT; otherwise, it can select RA-SDT.
  • NUL normal uplink
  • SUL supplementary uplink
  • the RBs configured by the base station for the UE may include RBs for carrying small packet data (SDT RB for short), and RBs for carrying large packet data (non-SDT RB (non-SDT RB) for short). It may include a DRB for carrying data and an SRB for carrying control information. Only when the small packet data carried by the SDT RB arrives, the UE can initiate SDT. If the large packet data carried by the non-SDT RB arrives, the UE cannot initiate SDT.
  • FIG. 5 exemplarily shows a schematic flowchart of a 4-step SDT process under the user plane.
  • the process shown in Figure 5 may include but not limited to the following steps:
  • S111 The UE sends a random access preamble to the base station.
  • the base station may send a broadcast message to the UE, where the broadcast message includes first resource configuration information, and the first resource configuration information is used to indicate the random access resource for sending the random access preamble.
  • the first resource configuration information may specifically indicate the first random access resource used to initiate normal random access.
  • the first resource configuration information may specifically indicate the first random access resource used to send random access resources during the RA-SDT process.
  • the second random access resource of the preamble may be generated by the UE according to specific rules, but the base station can recognize the random access preamble generated by the UE.
  • the random access preamble for the UE to send RA-SDT may be different from the random access preamble for the UE to initiate normal RA without performing RA-SDT. That is to say, the base station can use different random access preambles to distinguish the intention of the UE, for example, the intention of the UE is to perform RA-SDT or to initiate RA.
  • the random access preamble for the UE to send RA-SDT may also be the same as the random access preamble for the UE to initiate normal RA without performing RA-SDT.
  • the UE can send the random access preamble on different random access resources based on different intentions, so that the base station can use different resources for receiving the random access preamble to distinguish the intention of the UE. For example, when the UE intends to initiate RA, it sends a random access preamble on the first random access resource, and when the base station receives the random access preamble through the first random access resource, it can determine that the UE intends to initiate RA.
  • the UE When the UE intends to perform RA-SDT, it sends a random access preamble on the second random access resource, and when the base station passes the second random access resource random access preamble, it can determine that the UE intends to perform RA-SDT.
  • the random access resource for the UE to perform RA-SDT to send the random access preamble may also be the same as the random access resource for the UE to initiate normal RA without performing RA-SDT.
  • the base station In response to the random access preamble, the base station sends a random access response (random access response, RAR) to the UE.
  • RAR random access response
  • the UE may monitor a physical downlink control channel (physical downlink control channel, PDCCH) within the RAR time window to receive the RAR sent by the base station. If the UE does not receive the RAR sent by the base station within the RAR time window, the UE may determine that the RA fails this time.
  • the RAR is used to schedule uplink resources (uplink grant, UL grant) for the UE, so that the UE can send msg3 (including the RRC request message in S113 ) on the resources scheduled by the RAR.
  • the RAR may further include at least one of a temporary cell radio network temporary identifier (temporary cell radio network temporary identifier, TC-RNTI) and a timing advance (timing advance, TA).
  • TA is used for UE to learn uplink synchronization.
  • the UE sends the uplink small packet data and the RRC request message to the base station on the resources scheduled by the RAR.
  • the RRC request message may carry intent information
  • the intent information is used to indicate the intention of the UE to send the RRC request message, for example, the intention of the UE is to perform RA-SDT or to initiate RA.
  • the random access preamble sent by the UE to initiate RA-SDT is the same as the random access preamble for the UE to initiate normal RA without performing RA-SDT, or the random access resource used by the UE to initiate RA-SDT to send the random access preamble is the same as
  • the random access resources are the same.
  • the RRC request message sent by the UE to perform RA-SDT can carry intent information.
  • the intent information is used to indicate that the UE wants to initiate RA. - the intent of the SDT, not the intent to initiate a normal RA.
  • the UE may send a BSR when sending msg3 to the base station, and the base station may obtain the intention of the UE through the BSR sent by the UE, for example, the intention of the UE is to perform RA-SDT or to initiate RA.
  • the random access preamble for the UE to send RA-SDT is the same as the random access preamble for the UE to initiate normal RA without performing RA-SDT
  • the random access resource for the UE to send the random access preamble for RA-SDT can also be It is the same as the random access resource for UE to initiate normal RA without RA-SDT.
  • UE wants to perform RA-SDT, it can send BSR when sending msg3 to the base station.
  • the BSR is used to indicate the data volume of small packet data.
  • the base station can The intention of the UE obtained through the received BSR is to initiate RA-SDT instead of normal RA.
  • the UE is in different RRC states and under different service scenarios, the RRC request message in msg3 can be different.
  • the RRC request message sent by the UE in the RRC IDLE state (optionally, at this time, the UE may store UE contexts such as configuration information for obtaining the key for encrypting the above-mentioned uplink packet data, or the terminal may not store its context)
  • RRCConnectionRequest RRC connection recovery request
  • RRCEearlyDataRequest RRC data early transmission request
  • RRCResumeRequest message RRCResume
  • the RRC request message sent by the UE in the RRC INACTIVE state can be RRCConnectionRequest message, RRCConnectionResumeRequest message, RRCEearlyDataRequest message, RRCResumeRequest message, RRCResumeRequest1 message, RRCSetupRequest message or other RRC messages with the same function but not standardized by 3GPP.
  • the UE may send uplink packet data and an RRC request message to the base station to initiate the RRC connection recovery process for 4-step SDT, in some embodiments, for initiating RRC for 4-step SDT
  • the RRC request message of the connection recovery process includes an information element (information element, IE) of a resumeCause (resumeCause), and the resumeCause IE can be set to mo-data.
  • the UE first initiates the RRC connection recovery procedure for SDT, and then sends an RRC request message to the base station based on 4-step SDT.
  • msg3 may include the identifier of the UE, for example, the unique identifier of the UE at the core network.
  • msg3 may include information about a connected base station on the UE, such as an inactive temporary cell radio network temporary identifier (I-RNTI).
  • I-RNTI inactive temporary cell radio network temporary identifier
  • msg3 may include information for encryption and integrity protection.
  • the above-mentioned uplink packet data can be transmitted on the DTCH, and the above-mentioned RRC message can be transmitted on the CCCH.
  • the MAC layer can encapsulate the small packet data and the RRC request message, and send it to the base station through the PHY layer.
  • the base station After receiving the RRC request message, the base station sends a contention resolution (contention resolution) message to the UE.
  • a contention resolution (contention resolution) message After receiving the RRC request message, the base station sends a contention resolution (contention resolution) message to the UE.
  • the base station after receiving the uplink small packet data and the RRC request message, the base station can restore the UE context, and send the received uplink small packet data to the core network.
  • the contention resolution message is actually a contention resolution identity media access layer control element (contention resolution Identity MAC control element, contention resolution Identity MAC control element, contention resolution Identity MAC CE), and the contention resolution Identity MAC CE may indicate that the UE contention resolution is successful.
  • the UE can determine whether the contention resolution Identity MAC CE is consistent with the msg3 sent by S113, and if they are consistent, determine that the contention resolution corresponding to the current RA-SDT process is successful, or determine that the current RA-SDT process is successful.
  • S115 The base station sends an RRC response message to the UE.
  • the core network may send the downlink small packet data to the base station. Then, the base station can send the downlink packet data to the UE when sending the RRC response message. Wherein, the downlink packet data can be transmitted on the DTCH, and multiplexed with the RRC response message transmitted on the DCCH at the MAC layer.
  • the UE may determine whether the uplink packet data is successfully transmitted according to the RRC response message, and a specific example is as follows:
  • the RRC response message sent by the base station is an RRC Connection Release (RRCConnectionRelease) message, an RRC Connection Resume (RRCConnectionResume) message, an RRC Connection Setup (RRCConnectionSetup) message, an RRCRelease message, an RRCResume message, or an RRCSetup message, or other messages that have the same function but are not included in 3GPP. Standardized RRC messages.
  • RRCConnectionRelease RRC Connection Release
  • RRCConnectionResume RRC Connection Resume
  • RRCConnectionSetup RRC Connection Setup
  • the RRC response message sent by the base station is an RRC Connection Reject (RRCConnectionReject) message, an RRC Reject (RRCReject) message or other RRC messages that have the same function but are not standardized by 3GPP.
  • RRCConnectionReject RRC Connection Reject
  • RRCReject RRC Reject
  • the UE may determine that the SDT transmission fails this time.
  • the UE may remain in the current RRC state or enter another RRC state according to the RRC response message, and specific examples are as follows:
  • the RRC response messages sent by the base station are the RRC Early Data Complete (RRCEearlyDataComplete) message, the RRCConnectionRelease message, the RRC Release with suspend config (RRCRelease with suspend config) message, and the RRCRelease message or other RRC messages that have the same functionality but are not standardized by 3GPP.
  • the UE receives the above RRC response message, it can be considered that the SDT transmission process is successful.
  • the UE may remain in the current non-RRC connected state in response to the above RRC response message.
  • the above RRC response message (such as the RRCRelease message) may include related configurations for the UE to initiate SDT next time, for example, next hop chaining count (NCC) and I-RNTI for UE encrypted packet data.
  • NCC next hop chaining count
  • I-RNTI for UE encrypted packet data.
  • Example 2 If the core network has a need for further data transmission, the core network can trigger the connection establishment indication process, and the above RRC response message sent by the base station is RRCConnectionSetup message, RRCConnectionResume message, RRCSetup message, RRCResume message or other with the same function but not 3GPP Standardized RRC messages.
  • the UE receives the above RRC response message, it can be considered that the SDT transmission process is successful.
  • the UE may enter the RRC CONNECTED state in response to the above RRC response message.
  • the UE if the UE does not receive the RRC response message in S115, it considers that the small packet data transmission in S113 fails. If the UE receives the RRC response message in S115, it considers that the small packet data transmission in S113 is successful. That is to say, the UE can determine whether the small packet data in S113 is successfully transmitted by using whether the RRC response message is received.
  • FIG. 6 exemplarily shows a schematic flowchart of a 4-step SDT process under the control plane.
  • the process shown in Figure 6 may include but not limited to the following steps:
  • S121 The UE sends a random access preamble to the base station.
  • the base station In response to the random access preamble, the base station sends a RAR to the UE.
  • S121-S122 are similar to S111-S112 in FIG. 5 and will not be repeated here.
  • the UE sends an RRC request message carrying uplink small packet data to the base station on the resources scheduled by the RAR.
  • S123 is similar to S113 in FIG. 5 , the difference is that the uplink small packet data is not sent after being encapsulated with msg3 at the MAC layer, but carried in msg3 and sent.
  • the above-mentioned uplink small packet data can carry In msg3 and transmitted on CCCH.
  • the above-mentioned uplink packet data may be carried in the NAS layer-related IE (such as dedicated information NAS (dedicatedInfoNAS) IE) included in the RRCEearlyDataRequest message, and transmitted on the CCCH.
  • the NAS layer-related IE such as dedicated information NAS (dedicatedInfoNAS) IE
  • the base station After receiving the RRC request message, the base station sends a contention resolution message to the UE.
  • S124 is similar to S114 in FIG. 5, except that the RRC request message received by the base station includes uplink packet data, and in some embodiments, the base station may send the above-mentioned uplink packet data to the core network through the above-mentioned msg3 carrying the uplink packet data .
  • the base station may send the above-mentioned uplink packet data to the core network by forwarding the IE related to the NAS layer included in the above-mentioned msg3.
  • S125 The base station sends an RRC response message to the UE.
  • S125 is similar to S115 in FIG. 5 , and will not be repeated here.
  • FIG. 5 and FIG. 6 illustrate by taking the UE to execute S111 and/or S121 when there is uplink small packet data sent to the base station, that is, the UE actively initiates the transmission process of small packet data.
  • the UE passively initiates the transmission process of the small packet data under the instruction of the base station, for example, the terminal terminated (mobile terminated, MT) EDT (abbreviated as MT-EDT) in LTE.
  • MT mobile terminated
  • MT-EDT mobile terminated
  • the transmission process in this case is similar to the transmission process shown in Figure 5 and Figure 6, and the differences are as follows:
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station can send a paging message to the UE, and the UE determines to initiate a 4-step SDT based on the relative size of the currently measured RSRP and the preset RSRP threshold.
  • the base station can trigger MT-EDT, and send a paging message carrying an MT-EDT indication to the UE, so that the UE triggers MO-EDT for MT-EDT.
  • the difference from the above UE initiatively initiating the transmission process of small packet data is that in S113, the UE may only send the RRC message to the base station without sending the uplink small packet data, and optionally, may also carry the reason information for triggering MT-EDT.
  • the base station may receive the downlink packet data sent by the core network, and in S115 the base station may send the RRC response message and the downlink packet data to the UE.
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, and the UE determines to initiate a 4-step SDT based on the relative size of the currently measured RSRP and the preset RSRP threshold, wherein the transmission process of small packet data is actively initiated with the above UE.
  • the base station can receive the downlink packet data sent by the core network.
  • the RRC response message sent by the base station to the UE may carry downlink packet data.
  • FIG. 7 exemplarily shows a schematic flowchart of a 2-step SDT process on the user plane.
  • the process shown in Figure 7 may include but not limited to the following steps:
  • S211 UE sends random access preamble, RRC request message and uplink packet data to the base station.
  • the transmission resource for the UE to perform S211 can be obtained through information broadcast by the base station.
  • the UE can use the RA resource broadcast by the base station to send a random access preamble, and the UE can use the PUSCH resource broadcast by the base station to send an RRC request message.
  • the base station can use different random access preamble to distinguish the intention of the UE. In other embodiments, the base station can use different resources for receiving the random access preamble to distinguish the intention of the UE. In other embodiments, The base station can obtain the intention of the UE through the BSR sent by the UE. In other embodiments, the RRC request message can carry intention information, and the intention information is used to indicate the intention of the UE to send the RRC request message. For example, the intention of the UE is to perform For RA-SDT or for initiating RA, refer to the examples of S111 and S113 in Figure 5 above for details, and details will not be repeated here.
  • the above RRC request message in msgA may be different.
  • the above RRC request message in msgA may be different.
  • the above-mentioned RRC request message and uplink packet data may be carried in a physical uplink shared channel (physical uplink share channel, PUSCH) payload.
  • the above-mentioned uplink packet data can be transmitted on the DTCH, and the above-mentioned RRC message can be transmitted on the CCCH.
  • the MAC layer can encapsulate the small packet data and the RRC request message, and send it to the base station through the PHY layer.
  • the UE may send uplink packet data and an RRC request message to the base station to initiate the RRC connection recovery process for 2-step SDT, in some embodiments, for initiating RRC for 2-step SDT
  • the resumeCause IE can be set to mo-data.
  • the UE first initiates the RRC connection recovery procedure for SDT, and then sends the RRC request message to the base station based on 2-step SDT.
  • the base station After receiving the RRC request message, the base station sends a message B to the UE.
  • the base station after receiving the uplink small packet data and the RRC request message, the base station can restore the UE context, and send the received uplink small packet data to the core network.
  • the message sent by the base station to the UE in the second step of the 2-step RA may be called message B (message B), msgB for short.
  • msgB can be understood as the response corresponding to msgA in the 2-step SDT process.
  • msgB may include a response for contention resolution, fallback indication (fallback indication) or backoff indication (backoff indication), for example, msgB includes backoff indicator (back Indicator), successful RAR (successRAR) or fallback Back RAR (fallbackRAR).
  • msgB includes successRAR
  • successRAR includes a contention resolution field, such as the content included in contention resolution MAC CE
  • the UE receives successRAR, then determines that the contention resolution corresponding to the current RA-SDT process is successful, or determines the current RA-SDT process success.
  • the contention resolution field in successRAR may indicate that the UE contention resolution is successful.
  • the UE may determine whether the contention resolution field in successRAR is consistent with the msgA sent by S211, and if they are consistent, determine the contention resolution field corresponding to the current RA-SDT process. The solution is successful, or the current RA-SDT process is determined to be successful.
  • msgB includes fallbackRAR, and after receiving the fallbackRAR, the UE sends msg3 and the uplink packet data to the base station again.
  • the base station sends an RRC response message to the UE.
  • the core network may send the downlink small packet data to the base station. Then, the base station can send the downlink packet data to the UE when sending the RRC response message.
  • FIG. 8 exemplarily shows a schematic flowchart of a 2-step SDT process under the control plane.
  • the process shown in Figure 8 may include but not limited to the following steps:
  • S221 The UE sends a random access preamble and an RRC request message carrying uplink packet data to the base station.
  • S221 is similar to S211 in FIG. 7, the difference is that the uplink small packet data is not sent together with the RRC request message in msgA, but is sent in the RRC request message in msgA.
  • carrying The RRC request message of the uplink packet data can be carried in the physical uplink shared channel (physical uplink share channel, PUSCH) load, and can be transmitted on the CCCH.
  • PUSCH physical uplink share channel
  • the base station After receiving the RRC request message, the base station sends msgB to the UE.
  • S222 is similar to S212 in FIG. 7, except that the RRC request message received by the base station includes uplink packet data.
  • the base station may send the above-mentioned uplink request message to the core network through the above-mentioned RRC request message carrying the uplink packet data.
  • Small packets of data For example, the base station may send the above-mentioned uplink small packet data to the core network by forwarding the RRCResumeRequest message carrying the uplink small packet data.
  • the base station sends an RRC response message to the UE.
  • S223 is similar to S213 in FIG. 7 , and will not be repeated here.
  • FIG. 7 and FIG. 8 illustrate by taking the UE as an example to perform S211 and/or S221 when there is uplink small packet data to be sent to the base station, that is, the UE actively initiates the transmission process of small packet data.
  • the UE passively initiates the transmission process of the small packet data under the instruction of the base station.
  • the transmission process in this case is similar to the transmission process shown in Figure 7 and Figure 8, and the differences are as follows:
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station can send a paging message to the UE, and the UE determines to initiate a 2-step SDT based on the relative size of the currently measured RSRP and the preset RSRP threshold.
  • the base station can trigger MT-EDT, and send a paging message carrying an MT-EDT indication to the UE, so that the UE triggers MO-EDT for MT-EDT.
  • the difference from the above UE initiating the transmission process of small packet data is that in S211, the UE can only send random access preamble and RRC request message to the base station, and does not send uplink small packet data.
  • the base station may receive the downlink packet data sent by the core network, and in S213 the base station may send the RRC response message and the downlink packet data to the UE.
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, and the UE determines to initiate a 2-step SDT based on the relative size of the currently measured RSRP and the preset RSRP threshold, wherein the transmission process of small packet data is actively initiated with the above UE The difference is: the RRC message sent by the UE to the base station in S221 may not carry the uplink small packet data, and optionally, may also carry the reason information for triggering the MT-EDT.
  • the base station can receive the downlink packet data sent by the core network.
  • the RRC response message sent by the base station to the UE may carry downlink packet data.
  • the base station may also send the msgB and the RRC response message to the UE together.
  • the base station executes before sending the RRC response message to the UE, such as between S114 and S115 in Figure 5 above, and between S212 and S213 in Figure 7 above.
  • RRC response message such as between S114 and S115 in Figure 5 above, and between S212 and S213 in Figure 7 above.
  • Example 1 The RA-SDT currently initiated by the UE is used to transmit a small data (such as an instant messaging message).
  • a small data such as an instant messaging message.
  • the UE initiates a 4-step SDT the UL grant indicated by the base station in the RAR is smaller than the UL grant for transmitting small data and RRC request messages.
  • the sum of resources, or when the UE initiates 2-step SDT the transmission resources obtained by the UE from the broadcast message are less than the sum of the resources for transmitting random access preamble, small data and RRC request messages.
  • the UE can first send part of the small data through msg3 or msgA, and then transmit the remaining data of the small data in the subsequent transmission phase.
  • the base station can dynamically schedule uplink resources for the UE after sending contention resolution to the UE For subsequent transmission.
  • Example 2 The RA-SDT currently initiated by the UE is used to transmit multiple small data.
  • the UE can initiate a 4-step SDT or 2-step SDT to transmit small data through msg3 or msgA, but in this SDT During the process, the UE acquires new small data, and the UE can transmit new small data in the subsequent transmission phase.
  • the base station can dynamically schedule uplink resources for the UE to perform subsequent transmission after sending contention resolution to the UE.
  • FIG. 9 exemplarily shows a flow chart of a CG-SDT process in the user plane.
  • the process shown in Figure 9 may include but not limited to the following steps:
  • S311 The UE sends an RRC request message and uplink packet data to the base station on pre-configured resources.
  • the pre-configured resources are configured grants type 1 (configured grants type 1, CG Type 1) or PUR.
  • CG Type 1 may be an uplink resource directly configured by the RRC layer, which may include but not limited to the time-frequency resource location and resource period of the uplink resource.
  • the UE may perform S311 without performing RA.
  • Conditions for using CG-SDT include, for example: the UE is in a non-RRC connection state, the UE has a need for uplink packet data transmission, the UE has pre-configured resources, meets RSRP conditions, and has a valid TA.
  • the conditions for the UE to determine to use CG-SDT include at least one of the following:
  • Condition 1 The TAT is running, that is, the TA of the UE is valid, and the UE and the base station are in an uplink synchronization state, which can indicate that the CG-SDT is valid, otherwise it is invalid.
  • the current RSRP of the UE is greater than the preset first RSRP threshold (referred to as RSRP 1), which can indicate that the CG-SDT is valid.
  • the RSRP1 may be an RSRP for which the UE can initiate SDT transmission. That is to say, if the current RSRP of the UE is greater than the preset RSRP 1, it means that the UE is closer to the base station and the channel quality is better. If CG-SDT is performed, the success rate is higher and CG-SDT is effective. If the UE's current RSRP is less than or equal to the preset RSRP 1, it means that the UE is far away from the base station and the channel quality is poor. If CG-SDT is performed, the success rate is low.
  • RSRP 1 can be configured by the base station for both CG-SDT and RA-SDT.
  • Condition 3 During the preset time period when the last TA was valid, the increase or decrease of the UE's RSRP is less than or equal to the preset second RSRP threshold (referred to as RSRP 2), which can indicate that the CG-SDT is valid. That is to say, it can be determined whether the UE has moved according to the increase or decrease of the UE's RSRP. If the increase or decrease of the RSRP is greater than or equal to RSRP 2, it means that the UE has moved within the valid period relative to the last TA. Or if the moving distance is large, if CG-SDT is performed, the success rate is low and CG-SDT is invalid.
  • RSRP 2 preset second RSRP threshold
  • Condition 4 If the base station configures CG-SDT on the SUL and/or NUL, the UE needs to compare the current RSRP with the third RSRP threshold preset by the base station (RSRP 3 for short), so as to determine whether the CG-SDT configured on the SUL is valid or not. CG-SDT configured on NUL is valid.
  • the UE compares the current RSRP with RSRP 3, and if the current RSRP is less than RSRP 3, selects CG-SDT on SUL; if the current RSRP is greater than or equal to RSRP 3 chooses CG-SDT on NUL.
  • the base station when the base station is configured with CG-SDT on both SUL and NUL, if the current RSRP of the UE is less than RSRP 3, it means that the UE is far away from the base station, and CG-SDT configured on SUL should be used, that is, SUL The CG-SDT on the NUL is valid, and the CG-SDT on the NUL is invalid. If the current RSRP of the UE is greater than or equal to RSRP 3, it means that the UE is close to the base station, and the CG-SDT configured on the NUL should be used, that is, the CG-SDT on the NUL is valid, and the CG-SDT on the SUL is invalid.
  • the UE compares the current RSRP with RSRP 3, and if the current RSRP is less than RSRP 3, then selects the CG-SDT on the SUL. At this time, the CG-SDT is valid, if If the current RSRP is greater than or equal to RSRP 3, CG-SDT cannot be used, that is, CG-SDT on SUL is invalid, that is to say, the base station is configured with CG-SDT on SUL, and when the UE is far away from the base station, SUL can be used. CG-SDT on SUL, otherwise CG-SDT on SUL is invalid.
  • the UE compares the current RSRP with RSRP 3. If the current RSRP is less than RSRP 3, CG SDT cannot be used, and if the current RSRP is greater than or equal to RSRP 3, select CGSDT on NUL, that is, CG-SDT on NUL is valid, that is to say, the base station is configured with CG-SDT on NUL. When the UE is relatively close to the base station, it can use CG-SDT on NUL. CG-SDT is invalid.
  • Condition five the UE is in the range covered by the base station, and the base station has configured CG resources for CG-SDT for the UE.
  • the UE may also request the base station to configure pre-configured resources for initiating CG-SDT. For example, the UE sends a CG-SDT resource request message to the base station in the RRC CONNECTED state.
  • the CG-SDT resource request message is used to request the base station to configure the CG-SDT.
  • the UE sends a PUR request configuration information (PURConfigurationRequest) message to the base station.
  • PUR request configuration information PUR request configuration information
  • the UE can send a CG-SDT resource request message to the base station at any time in the RRC CONNECTED state.
  • the UE in the RRC CONNECTED state, the UE can determine that there may be small packets of data in the future, and then it can send a CG-SDT resource request message to the base station.
  • the UE is in the RRC CONNECTED state, and the UE has no need to transmit data with the base station within a preset period of time. The UE determines that it may soon enter the non-RRC connected state. In order to transmit small packet data in the non-RRC connected state, the UE can Send a CG-SDT resource request message to the base station.
  • the base station after the base station receives the request configuration information (such as a CG-SDT resource request message or a PURConfigurationRequest message), when the base station instructs the UE to switch from the RRC CONNECTED state to a non-RRC connected state, the base station sends the RRC response message to the UE It may carry detailed CG-SDT configuration information.
  • the base station instructs the UE to switch from the RRC CONNECTED state to the RRC INACTIVE state
  • the above RRC response message is an RRCRelease message
  • the RRCRelease message may carry detailed CG resource configuration information.
  • the above RRC response message is an RRCRelease message
  • the RRCRelease message may carry detailed PUR configuration information.
  • the base station may send an RRC response message carrying release instruction information to the UE to release the configured CG-SDT.
  • the RRCRelease message may carry CG resource release indication information.
  • the RRCConnectionRelease message may carry PUR release indication information.
  • the UE may not send a CG-SDT resource request message to the network device, and the network device may directly configure CG-SDT resources for the UE. -SDT resources.
  • the UE may send uplink packet data and an RRC request message to the base station to initiate the RRC connection recovery process for CG-SDT, in some embodiments, for initiating the RRC connection recovery process for CG-SDT
  • the resumeCause IE can be set to mo-data.
  • the UE first initiates the RRC connection recovery procedure for SDT, and then sends the RRC request message to the base station based on CG-SDT.
  • the UE may only send small packet data during the CG-SDT process, for example, the resource indicated by the CG-SDT configuration is a unique resource configured by the network device to the UE , non-shared resources, the UE can only send small packet data in the resources indicated by the CG-SDT configuration during the CG-SDT process. In this way, the network device can identify the UE sending the small packet data according to the resource receiving the small packet data.
  • the UE may send small packet data and RRC request messages on the resources indicated by the CG-SDT configuration during the SDT process, In this way, the network device can use the RRC message to identify the UE.
  • S312 The base station sends a feedback response message to the UE.
  • the base station sends a feedback response message to the UE in response to the RRC request message sent by the UE.
  • the feedback response message is used to indicate that the transmission of the RRC request message is successful.
  • the feedback response message is used to indicate that the transmission of the RRC request message and the uplink packet data sent together with the RRC request message is successful.
  • the feedback response message is used to indicate that the uplink small packet data transmission is successful.
  • the feedback response message is a Layer 1 Acknowledgment message (Layer 1 Acknowledgment, Layer 1 Ack), that is, a physical layer ACK.
  • Layer 1 Acknowledgment Layer 1 Ack
  • the feedback response message is downlink feedback information (DFI), that is, CG-DFI.
  • DFI downlink feedback information
  • the feedback response message is a MAC CE of the MAC layer.
  • the feedback response message is an RRC message of the RRC layer.
  • the base station sends an RRC response message to the UE.
  • the core network may send the downlink small packet data to the base station. Then, the base station can send the downlink packet data to the UE when sending the RRC response message.
  • the RRC response message may include CG-SDT configuration, for example, the CG-SDT configuration in S311 is used for the UE to transmit the small packet data in S311, and the CG-SDT configuration indicated by the RRC response message in S313 is used for UE Transfer small packets of data at a time.
  • the feedback response message in S312 when the feedback response message in S312 is an RRC message of the RRC layer, the feedback response message in S312 and the RRC response message in S313 may be the same message, that is, the above-mentioned feedback response message may be the above-mentioned The RRC response message, that is, S312 and S313 are the same step.
  • FIG. 10 exemplarily shows a flowchart of a CG-SDT process under the control plane.
  • the process shown in Figure 10 may include but not limited to the following steps:
  • S321 The UE sends an RRC request message carrying uplink small packet data to the base station on pre-configured resources.
  • S321 is similar to S311 in FIG. 9 , except that the uplink packet data is not sent together with the RRC request message, but carried in the RRC request message.
  • the base station sends a feedback response message to the UE.
  • the base station sends an RRC response message to the UE.
  • S322-S323 are similar to S312-S313 in FIG. 9 and will not be repeated here.
  • FIG. 9 and FIG. 10 illustrate by taking the UE as an example to perform S311 and/or S321 when there is uplink small packet data to be sent to the base station, that is, the UE actively initiates the transmission process of small packet data.
  • the UE passively initiates the transmission process of the small packet data under the instruction of the base station.
  • the transmission process in this case is similar to the transmission process shown in Figure 9 and Figure 10, and the differences are as follows:
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, so that the UE initiates CG-SDT.
  • the difference from the above-mentioned UE initiatively initiating the transmission process of small packet data is that in S311, the UE can only send the RRC request message to the base station without sending the uplink small packet data, and optionally, it can also carry the reason information for triggering MT-EDT .
  • the base station may receive the downlink packet data sent by the core network, and in S313 the base station may send the RRC response message and the downlink packet data to the UE.
  • the core network may send a paging message to the base station.
  • the paging message may carry data volume information of the downlink small packet data.
  • the base station may send a paging message to the UE, so that the UE initiates CG-SDT.
  • the difference from the above UE initiating the small packet data transmission process is that the RRC message sent by the UE to the base station in S321 may not carry the uplink small packet data, and optionally, may also carry the reason information for triggering MT-EDT.
  • the base station can receive the downlink packet data sent by the core network.
  • the RRC response message sent by the base station to the UE may carry downlink packet data.
  • the network device corresponding to the current serving cell of the UE in the non-RRC connection state does not save the context of the UE.
  • the network device can be called a serving device, and the context of the UE is saved Among other network devices (may be referred to as anchor devices).
  • the anchor device can maintain the context of one or more UEs in the non-RRC connected state.
  • the anchor device can maintain the PDCP context of one or more UEs in the RRC INACTIVE state or features (such as security-related configurations for integrity protection and encryption).
  • the anchor device may be the network device connected to when the UE in the non-RRC connected state was in the RRC CONNECTED state last time, and in other embodiments, the anchor device may be the UE in the non-RRC connected state last A network device that sends an RRCRelease message to the UE when it is in the RRC CONNECTED state.
  • the anchor device is, for example, network devices such as NG-RAN nodes and base stations.
  • the serving device as the serving base station and the anchor device as the anchor base station as an example.
  • the UE may leave the coverage of the anchor base station that stores the context of the UE, move to other serving base stations, and initiate SDT under other serving base stations, for example, for UEs with frequent mobility, move to the serving base station
  • the UE in the RRC INACTIVE state can initiate RA-SDT under the current serving base station when there is a need for SDT transmission.
  • the anchor base station does not send the context of the UE to the serving base station, the role of the anchor base station remains unchanged; if the anchor base station sends the context of the UE to the serving base station, the serving base station becomes the anchor base station of the UE. For example, when UE1 is within the coverage of base station 1, base station 1 stores the context of UE1.
  • base station 2 When UE1 moves out of the coverage of base station 1 and enters the coverage of base station 2, base station 2 is the serving base station of UE1. If base station 1 If the context of UE1 is not sent to base station 2, the role of base station 1 remains unchanged and remains the anchor base station of UE1. When UE1 moves out of the coverage area of base station 2 and enters the coverage area of base station 3, base station 3 is the serving base station of UE1. If base station 1 does not send the context of UE1 to base station 3, the role of base station 1 remains unchanged. It is the anchor base station of UE1, but if base station 1 sends the context of UE1 to base station 3, base station 1 is no longer the anchor base station of UE1, and base station 3 becomes the anchor base station of UE1. It can be understood that, except for the anchor base station storing the context of the UE, other base stations can serve as the serving base station of the UE.
  • the anchor base station may be called an anchor gNB (anchor gNB), may also be called a previous serving gNB (last serving gNB), and may also be called an old gNB (old gNB).
  • the serving base station may be called a new serving gNB (new serving gNB), may also be called a current serving gNB (current serving gNB), and may also be called a new gNB (new gNB).
  • the anchor base station is referred to as the old station, and the serving base station is referred to as the new station for illustration.
  • the new station when the UE initiates SDT (such as RA-SDT) under the new station, the new station can obtain the context of the UE by performing anchor relocation (anchor relocation).
  • anchor relocation anchor relocation
  • the old station decides to execute anchor relocation, and the new station The context of the UE can be obtained from the old station.
  • the old station decides not to perform anchor relocation, and the new station cannot obtain the context of the UE from the old station.
  • the specific process See Figure 12 below for an example.
  • FIG. 11 exemplarily shows a schematic flowchart of an anchor relocation process.
  • the process shown in Figure 11 may include but not limited to the following steps:
  • S411 The UE sends an RRC request message to the new station.
  • the UE when it initiates SDT under the new station, it can send an RRC request message to the new station, for example, send an RRCResumeRequest message when initiating RA-SDT.
  • RRC request message For examples of the RRC request message, refer to the SDT process shown in Figure 5-10 above
  • the RRC request message is not limited to this, and may also be other RRC messages for initiating SDT.
  • S412 The new station sends the first Xn interface message to the old station.
  • the new station may send the first Xn interface message to the old station through the Xn interface to request to obtain the context of the UE.
  • the first Xn interface message is a RetrieveUEContextRequest message.
  • the RRC request message sent by the UE to the new station includes the information of the old station, and the new station can obtain the information of the old station through the RRC request message.
  • the new station can according to the I-RNTI carried in the RRCResumeRequest message, Obtain the information of the old station.
  • S413 The old station sends a second Xn interface message to the new station in response to the first Xn interface message sent by the new station.
  • the old station may send a second Xn interface message to the new station through the Xn interface in response to the request of the new station to acquire the context of the UE.
  • the old station when the old station decides to execute anchor relocation (it can also be understood as when the old station decides to replace the anchor base station), the old station can send a second Xn interface message to the new station through the Xn interface.
  • the second Xn interface message may include the context of the UE.
  • the second Xn interface message is a RetrieveUEContextResponse message.
  • S414 The new station sends a path switching request message to the core network device.
  • S415 The core network device sends a path switching response message to the new station.
  • the new station may perform path switching, such as performing S414 and S415, where the core network device is, for example, the AMF.
  • path switching such as performing S414 and S415, where the core network device is, for example, the AMF.
  • the new station After the new station performs path switching, it can perform the above SDT with the UE.
  • the new station For details, refer to the SDT process shown in Figures 5-10 above, where the new station is a base station.
  • S416 The new station sends an RRC response message to the UE.
  • the new station may generate an RRC response message and send it to the UE.
  • the RRC response message is used to end the SDT between the new station and the UE.
  • the new station performs S416 when the UE has no SDT requirement.
  • the RRC response message refer to the RRC response message in the SDT process shown in Figure 5- Figure 10 above.
  • FIG. 12 exemplarily shows a schematic flowchart of another anchor relocation process.
  • the process shown in Figure 12 may include but not limited to the following steps:
  • S421 The UE sends an RRC request message to the new station.
  • S422 The new station sends the first Xn interface message to the old station.
  • S421-S422 is similar to S411-S412 in FIG. 11 , and for details, refer to the description of S411-S412 in FIG. 11 .
  • S423 The old station sends a third Xn interface message to the new station in response to the first Xn interface message sent by the new station.
  • the old station may send a third Xn interface message to the new station through the Xn interface in response to the request of the new station to acquire the context of the UE.
  • the old station when the old station decides not to execute anchor relocation (it can also be understood as when the old station decides not to replace the anchor base station), the old station sends a third Xn interface message to the new station through the Xn interface.
  • the third Xn interface message may not include all the context of the UE, for example, the third Xn interface message may not include the context related to the PDCP layer of the UE, but only the context related to the RLC layer of the UE.
  • the third Xn interface message is a retrieveUEContextFailure message. In other embodiments, the third Xn interface message is a retrieveUEContextResponse message.
  • S424 The new station establishes a transmission channel.
  • the new station when it receives the third Xn interface message, it can establish a data transmission tunnel (tunnel), which can also be understood as performing the establishment of a transmission tunnel (forwarding tunnel establishment).
  • the transmission channel may be used by the new station to forward SDT information for the UE and the old station, such as may be used to execute S425.
  • S425 The UE transmits the small packet data.
  • the transmission of small packet data by the UE may include: the new station forwards the information of the SDT process for the UE and the old station.
  • the specific process is similar to the SDT process shown in Figures 5-10 above.
  • the old station optionally, the new station is used to perform the step of transmitting information by the base station, and optionally, the old station is used to perform the step of generating information by the base station.
  • the new station can forward the information of the above SDT process to the old station for the UE. For example, after the new station receives the RRC request message sent by the UE, it can forward the RRC request message to the old station. After sending the uplink small packet data, the uplink small packet data can be forwarded to the old station, and for example, the new station can forward the information sent by the UE in the subsequent transmission phase to the old station.
  • the new station can forward the above SDT process information to the UE for the old station, for example, the old station generates an RRC response message and sends it to the new station, and the new station can forward the RRC response message to the UE (such as S426), and for example The new station can forward the downlink packet data sent by the old station to the UE in S426, and for example, the new station can forward the information sent by the old station in the subsequent transmission phase to the UE.
  • the old station generates an RRC response message and sends it to the new station
  • the new station can forward the RRC response message to the UE (such as S426), and for example
  • the new station can forward the downlink packet data sent by the old station to the UE in S426, and for example, the new station can forward the information sent by the old station in the subsequent transmission phase to the UE.
  • S426 The new station sends an RRC response message to the UE.
  • the new station can forward the RRC response message to the UE for the old station, where the RRC response message is generated by the old station.
  • the RRC response message is used to end the SDT between the new station and the UE, for example, the UE has no SDT
  • the new station forwards the RRC response message.
  • the RRC response message refer to the RRC response message in the SDT process shown in Figures 5-10 above.
  • the RRC response message sent by the old station to the new station is included in the third Xn interface message of S423.
  • the new station may first store the RRC response message.
  • the RRC response message is an RRCRelease message.
  • the RRC response message sent by the old station to the new station is not included in the third Xn interface message of S423, but may be included in other Xn interface messages, for example, when the old station determines that the UE has no SDT requirement , sending an Xn interface message including an RRC response message to the new station (for example, a UE context release (UE CONTEXT RELEASE ) message, or an RRC transmission (RRC TRANSFER ) message, or other existing Xn interface messages, or a new Xn interface message ), the new station sends an RRC response message to the UE based on the Xn interface message.
  • an RRC response message including an RRC response message to the new station for example, a UE context release (UE CONTEXT RELEASE ) message, or an RRC transmission (RRC TRANSFER ) message, or other existing Xn interface messages, or a new Xn interface message
  • the new station sends an RRC response message to the UE based on the Xn interface
  • the current serving cell of UE 110 corresponds to base station 210 , but base station 210 does not store the context of UE 110 , that is, base station 210 is a new station of UE 110 .
  • the UE 110 is within the coverage of the base station 230 before moving to the base station 210 , and the base station 230 stores the context of the UE 110 , that is, the base station 230 is an old station of the UE 110 .
  • base station 210 can request base station 230 to obtain the context of UE110, if base station 230 decides to perform anchor relocation, then base station 210 can obtain the context of UE110, and base station 210 can directly perform the above SDT with UE110, for example The process shown in Figure 11 above. If the base station 230 decides not to execute anchor relocation, the base station 210 cannot obtain the context of the UE110, and the base station 210 can forward the above SDT information for the UE110 and the base station 230, such as the process shown in Figure 12 above.
  • the base station 220 corresponding to the current serving cell of the UE 120 may store the context of the UE 120 , and when the UE 120 initiates an SDT under the base station 220 , the base station 220 may directly perform the above SDT with the UE 120 .
  • the terminal may not be able to continue the SDT.
  • the specific scenario example is as follows (assuming that the terminal is a multi-card terminal, and the multi-card terminal includes sub-device A and sub-device B):
  • Scenario 1 When sub-device A and network device perform SDT (such as RA-SDT or CG-SDT), if sub-device B has a data transmission requirement, and the data transmission requirement requires sub-device B to enter the RRC CONNECTED state, for example, enter the RRC CONNECTED state
  • SDT such as RA-SDT or CG-SDT
  • Scenario 2 When sub-device A and network device perform SDT (such as RA-SDT or CG-SDT), if sub-device B needs to send system information requests or receive downlink messages, such as paging, system information, radio resource management (radio resource management) , RRM) and other periodic downlink messages, or other aperiodic downlink messages, in order to perform data transmission of sub-device B, sub-device A needs to stop the current SDT.
  • SDT such as RA-SDT or CG-SDT
  • RRM radio resource management
  • the network device will still schedule resources for the SDT.
  • the network device communicating with sub-device A cannot know that sub-device A will no longer monitor the scheduling for SDT, but will execute sub-device B's Service transmission, therefore, resources for SDT will continue to be scheduled for sub-device A. That is to say, there is a problem that air interface resources are wasted, and there is also a lack of an efficient transmission solution that can be applied to the above situation.
  • the embodiment of the present application provides a method for controlling transmission, which can be applied to a communication system.
  • the communication system can include a first device and a first network device, and the first device can send information indicating that it will not continue to monitor SDT to the first network device. , avoiding the situation that the first network device continues to schedule resources for the SDT when the first device no longer monitors the SDT, and saves air interface resources.
  • the method may be applied to a communication system, such as the communication system shown in FIG. 1 , the communication system may include a first device and a first network device, and in some embodiments, the communication system further includes a second network device.
  • the first device is a multi-card terminal, and the multi-card terminal includes a first sub-device.
  • the first device is the multi-card terminal 100 shown in FIG. UE110 or UE120.
  • the first device can execute the method of controlling transmission through the first sub-device, that is, in the following method of controlling transmission, the first device can be replaced by the first sub-device, and the first device (executing steps) can be replaced by the first The device passes through the first sub-device (execution step).
  • the first device is a sub-device included in the multi-card terminal, for example, the first device is UE110 or UE120 included in the multi-card terminal 100 shown in FIG. 1 .
  • the following embodiments are described by taking the first device as a sub-device included in a multi-card terminal as an example.
  • the network device corresponding to the current serving cell of the first device is the first network device, and the first network device stores the user context of the first device.
  • the first network device obtains the user context of the first device from the anchor device.
  • the first device is the multi-card terminal 100 shown in FIG. 1 (the first sub-device is UE120 at this time) or the UE120 included in the multi-card terminal 100
  • the first network device is the base station 220 .
  • the network device corresponding to the current serving cell of the first device is the first network device, the first network device does not store the user context of the first device, and the user context of the first device is stored in the second network device,
  • the first network device may request the second network device to obtain the user context of the first device, but the second network device decides not to execute the anchor relocation, that is, the second network device is still the anchor device of the first device, so the first network device does not obtain the user context of the first device from the second network device.
  • the first network device is the new station
  • the second network device is the old station.
  • the first device is the multi-card terminal 100 shown in FIG.
  • FIG. 13 is a schematic flowchart of a method for controlling transmission provided by an embodiment of the present application. The method includes but is not limited to the following steps:
  • S510 The first device receives first configuration information.
  • S510 is an optional step.
  • the first device is a multi-card terminal, the multi-card terminal includes a first sub-device, and the first device receives the first configuration information through the first sub-device. In some embodiments, the first device is a first sub-device included in the multi-card terminal, and the first device receives the first configuration information. The following description takes the first device as the first sub-device included in the multi-card terminal as an example for illustration.
  • the first configuration information indicates the reporting of the first information.
  • the first configuration information indicates the establishment and/or release of the reporting of the first information.
  • the first configuration information indicates enabling and/or Or disable the reporting of the first information.
  • the first configuration information indicates that the device (such as the first device) can report the first information.
  • the first configuration information indicates that the current network device (such as the first network device ) support device (such as the first device) to report the first information
  • the first configuration information indicates that the device (such as the first device) can report the first information in the RRC INACTIVE state.
  • the first information indicates that the SDT is requested to be stopped. For details, please refer to the description of the first information in S530, which will not be described in detail for now.
  • the first configuration information includes the duration of the first timer.
  • the duration of the first timer is sent to the first device through other messages.
  • the duration of the first timer is The duration of a timer is predefined, for example, the duration of the first timer stipulated in the 3GPP protocol. Wherein, the first timer is used for the first device to monitor the response message of the first information.
  • the first timer can be the third timer used when the multi-card terminal reports a request to leave the RRC CONNECTED state.
  • the first timer can be a newly defined timer, such as , considering that when the first device initiates RA-SDT, there may be signaling interaction between the first network device and the second network device (for example, interacting with the duration of the first timer), so the newly defined duration of the first timer greater than the duration of the third timer.
  • the configuration manner of the first configuration information and the duration of the first timer may be but not limited to any of the following:
  • Mode 1 The first configuration information is sent to the first device through broadcast system information (such as system information block (SIB) 1), and the first configuration information includes the duration of the first timer.
  • SIB system information block
  • the first device receives the first configuration information sent by the first network device through broadcast system information. For example, the first device moves to the first network device, and the first device reads the first configuration information System information broadcast by a network device.
  • the first configuration information includes a first field, and the first device can read the first field in the system information and the duration of the first timer.
  • the first field may indicate that the current network device (such as the first network device) supports the device (such as the first device) to report the first information, and/or, the device (such as the first device) can report the first information.
  • the first configuration information indicates enabling and/or disabling reporting of the first information.
  • the first field and the duration of the first timer are optional fields in SIB1. Both the first field and the duration of the first timer are enumeration types. When the value of the first field in SIB1 is "true", it means " The current base station supports the UE to report the first information, and the UE can report the first information", and the duration of the first timer is the duration indicated in SIB1.
  • the first configuration information indicates establishing and/or releasing the reporting of the first information.
  • the first configuration information in SIB1 indicates "establish”, it means “the current base station supports UE to report the first information, and the UE can report the first information”
  • the first configuration information in SIB1 indicates “release”, it means "the current base station does not The UE is supported to report the first information, but the UE cannot report the first information”
  • the first configuration information in SIB1 includes the duration of the first timer.
  • the first configuration information does not include the first field.
  • the system information includes the duration of the first timer, it means that the current network device supports the device to report the first information, and/or, the device can report the first information.
  • the duration of the first timer is an optional field in SIB1
  • the duration of the first timer is an enumeration type
  • the duration of the first timer is the duration indicated in SIB1
  • SIB1 includes the duration of the first timer Indicates that "the current base station supports the UE to report the first information, and the UE can report the first information.
  • Mode 2 The first configuration information is sent to the first device through broadcast system information (such as SIB1), and the duration of the first timer is sent to the first device through an RRC message.
  • broadcast system information such as SIB1
  • the first device receives the first configuration information sent by the first network device through broadcast system information. For example, the first device moves to the first network device, and the first device reads the first configuration information System information broadcast by a network device.
  • the first configuration information includes a first field
  • the first device can read the first field in the system information, and the first field can indicate that the current network device supports the device to report the first information, and/or, the device can Report the first information.
  • the first configuration information indicates enabling and/or disabling reporting of the first information.
  • the first field is an optional field in SIB1, and the first field is an enumeration type. When the value of the first field in SIB1 is "true", it means "the current base station supports the UE to report the first information, and the UE can report the first information ".
  • the first configuration information indicates establishing and/or releasing the reporting of the first information.
  • the first configuration information in SIB1 indicates “establish”, it means “the current base station supports UE to report the first information, and the UE can report the first information”
  • the first configuration information in SIB1 indicates “release”, it means "the current base station does not The UE is supported to report the first information, but the UE cannot report the first information.”
  • the first device receives the duration of the first timer sent by the first network device through an RRC message, for example, the RRC message indicates that the first network device and the first network device perform an SDT The sent RRC reconfiguration (RRCReconfiguration) message.
  • RRC message indicates that the first network device and the first network device perform an SDT The sent RRC reconfiguration (RRCReconfiguration) message.
  • the first device receives the duration of the first timer sent by the second network device through an RRC message.
  • the user context of the first device stored by the second network device includes the first timer device duration.
  • the RRC message is an RRCRelease message. After receiving the RRCRelease message, the first device enters the RRC INACTIVE state from the RRC CONNECTED state.
  • the RRC message is an RRCRelease message for ending the SDT.
  • the RRC message is the first The RRCReconfiguration message sent by the second network device when a device and the second network device performs SDT
  • the RRC message is the RRCReconfiguration message sent by the second network device when the first device is in the RRC CONNECTED state
  • the first device The configured first timer duration is not released when a resume procedure (resume procedure) corresponding to the SDT is initiated under the first network device.
  • RRCReconfiguration message when the above RRC message is an RRCReconfiguration message, other configuration IE (OtherConfig IE) in the RRCReconfiguration message can be used to indicate the duration of the first timer, not limited thereto, and other existing IEs or newly added The IE indicates the duration of the first timer.
  • RRCConfig IE an RRCConfiguration IE
  • the duration of the first timer can be indicated through the suspension configuration IE (suspendconfig IE) in the RRCRelease message, or can be configured through the SDT IE (SDTConfig IE) in the RRCRelease message Indicate the duration of the first timer, and may also indicate the duration of the first timer through other existing IEs or newly added IEs.
  • RRC message in the above example, and other types of RRC messages can also be used, such as the RRC response message of the SDT process shown in Figures 5-12 above, which is not limited in this application.
  • Method 3 The first configuration information is sent to the first device through an RRC message.
  • the first configuration information includes the duration of the first timer. In other embodiments, the duration of the first timer is passed Other RRC messages are sent to the first device.
  • the first device receives first configuration information sent by the first network device through a first RRC message, where the first configuration information includes a duration of the first timer.
  • the first device receives first configuration information sent by the second network device through a second RRC message, where the first configuration information includes a duration of the first timer.
  • the first device receives the first configuration information sent by the first network device through the first RRC message, and receives the duration of the first timer sent by the second network device through the second RRC message.
  • the first device receives the duration of the first timer sent by the first network device through the first RRC message, and receives the first configuration information sent by the second network device through the second RRC message.
  • first RRC message refers to the RRC message used by the first network device to send the duration of the first timer in method 2.
  • the second RRC message refer to the method 2 for the second network device to send the first timer The duration of the RRC message used.
  • the first configuration information includes the first field and the duration of the first timer, and the first device can read the first field and the first timer in the RRC message.
  • the first field may indicate that a device (such as the first device) may report the first information.
  • the first configuration information indicates enabling and/or disabling reporting of the first information.
  • the first field and the duration of the first timer are optional fields in the RRC message, and the duration of the first field and the first timer are both enumerated types. When the value of the first field in the RRC message is "true" Indicates that "the UE can report the first information", and the duration of the first timer is the duration indicated in the RRC message.
  • the first configuration information indicates establishing and/or releasing the reporting of the first information. For example, when the first configuration information in the RRC message indicates "establishment”, it means “UE can report the first information”, when the first configuration information in the RRC message indicates “release”, it means "UE cannot report the first information”, RRC The first configuration information in the message includes the duration of the first timer.
  • the first configuration information includes the duration of the first timer, but does not include the first field.
  • the RRC message includes the duration of the first timer, it means that the device can report the first information.
  • the duration of the first timer is an optional field in the RRC message
  • the duration of the first timer is an enumeration type
  • the duration of the first timer is the duration indicated in the RRC message.
  • the method further includes: the first device receives system information (such as SIB1) sent by the first network device, and the system information may indicate that the current network device (such as the first network device) supports the device (such as the first device ) to report the first information.
  • SIB1 system information
  • the value of the first support information in SIB1 is "true”, it means that "the current base station supports the UE to report the first information”.
  • Mode 4 The first configuration information is sent to the first device through an RRC message, and the duration of the first timer is sent to the first device through broadcast system information (such as SIB1).
  • SIB1 broadcast system information
  • the first device receives the first configuration information sent by the first network device through an RRC message.
  • RRC message refer to the duration used by the first network device to send the first timer in the second method RRC messages.
  • the first device receives the first configuration information sent by the second network device through an RRC message.
  • RRC message refer to the duration used by the second network device to send the first timer in method 2.
  • the first configuration information includes a first field
  • the first device can read the first field in the RRC message, and the first field can indicate that the device can report the first information, for example, the first configuration information indicates enabling And/or disable the reporting of the first information.
  • the first field is an optional field in the RRC message, and the first field is an enumeration type. When the value of the first field in the RRC message is "true", it means that "the UE can report the first information".
  • the first configuration information indicates establishing and/or releasing the reporting of the first information. For example, when the first configuration information in the RRC message indicates “establishment”, it means “the UE can report the first information", and when the first configuration information in the SIB1 indicates “release”, it means "the UE cannot report the first information”.
  • the first device receives the duration of the first timer sent by the first network device through broadcast system information, for example, the duration of the first timer is an optional field in SIB1, and the first timing The duration of the timer is an enumeration type, and the duration of the first timer is the duration indicated in SIB1.
  • the system information includes the duration of the first timer, it means that the current network device (such as the first network device) supports the device (such as the first device) to report the first information, for example, when SIB1 indicates the duration of the first timer When the duration is long, it means that "the current base station supports the UE to report the first information".
  • the method further includes: the first device receives system information (such as SIB1) sent by the first network device, and the system information may indicate that the current network device (such as the first network device) supports the device (such as the first device ) to report the first information.
  • SIB1 system information
  • the value of the first support information in SIB1 is "true”, it means that "the current base station supports the UE to report the first information”.
  • Manner 5 The first configuration information is sent to the first device through an RRC message or broadcast system information, and the duration of the first timer is predefined.
  • the duration of the first timer is a predetermined duration in the protocol. In other embodiments, the duration of the first timer is pre-coordinated between the first device and the first network device. Optionally, the first The duration of a timer is pre-coordinated by the first device, the first network device and the second network device.
  • the first device receives the first configuration information sent by the first network device through broadcast system information. For example, the first device moves to the first network device, and the first device reads the first configuration information System information broadcast by a network device.
  • the first configuration information please refer to the description of the first configuration information in the second manner.
  • the first device receives the first configuration information sent by the first network device through an RRC message.
  • RRC message refer to the duration used by the first network device to send the first timer in method 2.
  • RRC message refer to the duration used by the second network device to send the first timer in method 2.
  • RRC message refer to the description of the first configuration information in the fourth manner.
  • the first device may send the first request message before the first device receives the first configuration information, and/or before the first device receives the duration of the first timer.
  • the first device Send the first request message to the first network device, optionally, the first device sends the first request message to the second network device.
  • the first request message indicates that reporting of the configuration first information is requested.
  • the first device sends an on demand system information (on demand SI) message, an RRC message (such as the RRC request message in the SDT shown in Figure 5- Figure 10 above or the RRC message carried by the DCCH) or the media access A layer control unit (MAC control element, MAC CE) etc. requests the network device to report the configuration first information.
  • on demand SI on demand SI
  • RRC message such as the RRC request message in the SDT shown in Figure 5- Figure 10 above or the RRC message carried by the DCCH
  • media access A layer control unit MAC control element, MAC CE
  • S520 The first device performs SDT.
  • S520 is an optional step.
  • the first device is a multi-card terminal, the multi-card terminal includes a first sub-device, and the first sub-device in the first device is in a non-RRC connection state, and the first device connects to the first network through the first sub-device Initiate SDT under the device.
  • the first device is a first sub-device included in the multi-card terminal, the first device is in a non-RRC connection state, and the first device initiates an SDT under the first network device.
  • the following description takes the first device as the first sub-device included in the multi-card terminal as an example for illustration.
  • the first network device corresponding to the current serving cell of the first device stores the user context of the first device, and when the first device initiates SDT under the first network device, the first device may directly communicate with the first network device To perform SDT, for example, the SDT process shown in Figure 5- Figure 10 above, the first device is a UE, and the first network device is a base station.
  • the first network device corresponding to the current serving cell of the first device does not store the user context of the first device, and the user context of the first device is stored in the second network device, that is, the first network device is a new station , the second network device is the old station.
  • the first network device can forward the SDT information for the first device and the second network device, optionally, the first network device can send the SDT information sent by the first device Forwarding to the second network device may also forward the SDT information sent by the second network device to the first device.
  • S425 in FIG. 12 refer to S425 in FIG. 12 .
  • the above-mentioned SDT is RA-SDT, and the specific process can be referred to in Fig. 5-Fig. 8 above. In some other embodiments, the above-mentioned SDT is CG-SDT, and the specific process can be referred to in Fig. 9-Fig. 10 above.
  • the first device sends first information to the first network device.
  • the first information indicates a request to stop (stop) the SDT (such as the SDT in S520 ).
  • the request to stop the SDT may also be replaced by a request to stop the SDT.
  • the first device is a multi-card terminal, the multi-card terminal includes a first sub-device, and the first device sends the first information to the first network device through the first sub-device.
  • the first information indicates that the first sub-device requests to stop the SDT, and optionally, the first information indicates that the first sub-device requests to stop the SDT.
  • the first device is a first sub-device included in the multi-card terminal, and the first device sends the first information to the first network device.
  • the first information indicates that the first device requests to stop the SDT, and optionally, the first information indicates that the SDT of the first device is requested to be stopped.
  • the following description takes the first device as the first sub-device included in the multi-card terminal as an example for illustration.
  • the first device when the first device is in a non-RRC connected state, it sends the first information to the first network device. In some embodiments, when the first device intends to initiate or initiate an SDT (such as SDT in S520 ) under the first network device, the first device may send the first information to the first network device.
  • SDT such as SDT in S520
  • the first device when the second sub-device needs to enter the RRC connected state from the non-RRC connected state, the first device sends the first information to the first network device, and optionally, the second sub-device is in the RRC unconnected state.
  • the first device when the multi-card terminal needs to switch from the SDT service to the RRC CONNECTED state service, the first device sends the first information to the first network device, which can also be referred to as the first device sending the first information to the first network due to multiple cards.
  • the device sends first information.
  • Scenario 1 where the terminal may not be able to continue the SDT when the terminal and the network device perform SDT. It is not limited thereto, and may also be applied to other scenarios such as Scenario 2.
  • the multi-card terminal is a smart phone, and the smart phone can be equipped with two calling cards, that is, a first sub-device and a second sub-device.
  • the terminal transmits an instant messaging message
  • the mobile data of the first sub-device is used at this time to communicate with other terminals through the first network device, and the smart phone can receive an incoming call for another calling card (ie, the second sub-device).
  • the smart phone the second sub-device
  • the instant messaging message cannot be transmitted through the first sub-device, and the first sub-device can send the first information to the first network device.
  • the first information may be sent through an RRC message carried by the DCCH, such as user equipment assistance information (UEAssistanceInformation), user equipment capability information (UECapabilityInformation) or other messages carried by the DCCH.
  • the first information may be an existing field in the RRC message carried by the DCCH.
  • the first information is the release preference (ReleasePreference) IE in the UEAssistanceInformation message
  • the ReleasePreference IE can include a parameter: preferred RRC state (preferredRRC-State), and the value of preferredRRC-State can be idle, inactive or connected, when preferredRRC-State
  • the first network device may determine that the first device requests to stop the current SDT.
  • the first information may be a newly added field in the RRC message carried by the DCCH.
  • the first information is a new IE (new IE) in the UEAssistanceInformation message.
  • the first device may send the contention resolution message to the first device before receiving the contention resolution message or msgB
  • a network device sends the first information, such as sending the first information before sending the RRC request message, or sending the first information when sending the RRC request message (for example, the RRC request message carries the first information), in other embodiments,
  • the first device may send the first information in the subsequent transmission phase, for example, the first device sends the first information on dynamically scheduled uplink resources.
  • the first device if the first device intends to initiate RA-SDT, it also intends to send the first information, for example, it intends to send the first information before sending the RRC request message, which can be determined according to its own implementation Whether to send the first information and whether to continue the current SDT, for example, not to send the first information, and to cancel the current SDT (the RRC request message may not be sent).
  • the above-mentioned SDT is a CG-SDT (for specific examples, please refer to Figures 9-10 above).
  • the first device may send the first The network device sends the first information, such as sending the first information before sending the RRC request message, or sending the first information when sending the RRC request message.
  • the first device may send the first information after receiving the feedback response message , to send the first information in the subsequent transmission stage, for example, the first device sends the first information on the dynamically scheduled uplink resource, and for example, the first device sends the first information on the CG-SDT resource.
  • the first device if the first device intends to initiate CG-SDT, it also intends to send the first information, for example, it intends to send the first information before sending the RRC request message, which can be determined according to its own implementation Whether to send the first information and whether to continue the current SDT, for example, not to send the first information, and to cancel the current SDT (the RRC request message may not be sent).
  • the first timer when the first device sends the first information, the first timer is started.
  • the first timer is used for the first device to monitor the response message of the first information.
  • the first timer listens to the response message sent by the first network device (for example, the first response message in S550).
  • the response message refer to the RRC response message in the SDT shown in FIGS. 5-10 above, for example For the RRCRelease message.
  • the first device may stop the first timer. For details, see The description of S550 will not be detailed for now.
  • the first timer expires and the first device has not received the response message sent by the first network device (for example, the first response message in S550)
  • the first device may enter the RRC IDLE state.
  • the first device after the first device sends the first information, it does not monitor the scheduling of the SDT, but the second sub-device performs data transmission.
  • S540 Transmit the first information and other related information between the first network device and the second network device.
  • S540 is an optional step.
  • the first network device corresponding to the current serving cell of the first device does not store the user context of the first device, and the user context of the first device is stored in the second network device, that is, the first network device is a new station, The second network device is the old station.
  • the first network device forwards the first information to the second network device.
  • S540 is a scenario where the old station (second network device) decides not to execute anchor relocation, and the new station (first network device) cannot obtain the user context of the first device from the old station (second network device) executed below.
  • the SDT initiated by the first device is RA-SDT, that is, S540 is performed in the scenario of RA-SDT without changing the anchor device.
  • information is exchanged between the first network device and the second network device through an Xn interface message, and the following description takes the message exchanged between the first network device and the second network device as an Xn interface message as an example for illustration.
  • the first network device may send a first message to the second network device.
  • the first message includes the first information.
  • the first message is the above The first Xn interface message shown in FIGS. 11-12 (for example, the RetrieveUEContextRequest message), or other existing Xn interface messages, or new Xn interface messages.
  • the first network device may receive a second message sent by the second network device, the second message includes a first response message, and the second message is used for the first network device to send a message to the first network device before the first timer expires.
  • the device sends a first response message, such as a second message, for the first network device to perform S550.
  • a first response message such as a second message
  • the second message is, for example, the third Xn interface message (such as the RetrieveUEContextFailure message) shown in FIG. 12 above, or other existing Xn interface messages, or new Xn interface messages.
  • the first network device before the first network device sends the first message to the second network device, it receives the second message sent by the second network device.
  • the second message is the third Xn shown in FIG. 12 above. Interface messages, such as the RetrieveUEContextFailure message.
  • the second network device after the first network device sends the first message to the second network device, the second network device sends the second message to the first network device.
  • the second network device may The first information generates a first response message, and generates a second message including the first response message.
  • a message including the duration of the first timer may be transmitted between the first network device and the second network device, specifically as follows:
  • the configuration of the first configuration information and the duration of the first timer is the first or fourth method in S510, that is, the first timer used by the first device is broadcast by the first network device
  • the system information (such as SIB1) is configured for the first device.
  • the duration of the first timer is generated by the first network device.
  • the duration of the first timer is configured by the second network before the duration of the first timer is configured for the first device.
  • the device sends the fifth message to the first network device, where the fifth message includes the duration of the first timer.
  • the first configuration information and the duration of the first timer are configured in the second or third way in S510, that is, the first timer used by the first device is the first network device or The second network device is configured for the first device through an RRC message.
  • the first timer used by the first device is the first timer in the context of the first device stored by the second network device.
  • the first timer used by the first device The first network device is configured for the first device.
  • the duration of the first timer is generated by the first network device.
  • the duration of the first timer is Before a device configures the duration of the first timer, the second network device sends the fifth message to the first network device, where the fifth message includes the duration of the first timer.
  • the first configuration information and the duration of the first timer are configured in the fifth manner in S510, that is, the duration of the first timer used by the first device is predefined, and the first The network device and the second network device may not exchange the duration of the first timer.
  • the first timer used by the first device is the first timer in the context of the first device stored by the second network device.
  • the first network device After the first network device receives the first information sent by the first device, it can receive the third message sent by the second network device.
  • the third message includes the duration of the first timer, and the duration of the first timer can be used for the first
  • the network device sends the first response message to the first device before the first timer expires, for example, the duration of the first timer is used for the first network device to execute S550.
  • the second message including the first response message is not the third Xn interface message shown in FIG. 12 above. At this time, the transmission process between the first network device and the second network device is shown in FIG. 14 below.
  • the second message including the first response message is the third Xn interface message shown in FIG. 12 above. At this time, the transmission process between the first network device and the second network device is shown in FIG. 15 below.
  • the first timer used by the first device is configured by the first network device for the first device, and the duration of the first timer is generated by the first network device.
  • the second message including the first response message is not the third Xn interface message shown in FIG. 12 above.
  • the first network device may send a fourth message to the second network device, where the fourth message includes the duration of the first timer, and the second network device may send the first network device the first timer based on the duration of the first timer in the fourth message. Two messages, at this time, the transmission flow of the first network device and the second network device is shown in Figure 16 below.
  • the second message including the first response message is the third Xn interface message shown in FIG. 12 above.
  • the first network device may not send the duration of the first timer to the second network device.
  • the first network device sends a first message including the first information to the second network device, and the second
  • the order in which the network device sends the second message including the first response message to the first network device is not limited.
  • the first timer used by the first device is configured by the first network device for the first device, and the duration of the first timer is before the duration of the first timer configured for the first device.
  • the second network device sends the fifth message to the first network device, where the fifth message includes the duration of the first timer.
  • the second network device sends an Xn setup response (XN SETUP RESPONSE) message to the first network device, and indicates the duration of the first timer through the XN SETUP RESPONSE message.
  • the second network device sends an NG RAN Configuration Update Request (NG RAN CONFIGURATION UPDATE REQUEST) message to the first network device, through the NG RAN CONFIGURATION UPDATE REQUEST Indicates the duration of the first timer.
  • the first network device may not send the duration of the first timer to the second network device, and optionally, the first network device sends a first message including the first information to the second network device , and the order in which the second network device sends the second message including the first response message to the first network device is not limited.
  • the first network device may send the duration of the timer to the second network device through an Xn interface message multiple times. For a specific example, refer to the example of the fifth message above. If the response message of the second network device received by the first network device does not include the duration of the timer, the first network device determines that the duration of the timer sent to the second network device is the duration of the first timer, if The response message received by the first network device from the second network device includes the duration of the timer, and the first network device determines that the duration of the timer sent by the second network device is the duration of the first timer.
  • the first timer used by the first device is predefined.
  • the second message including the first response message is not the third Xn interface message shown in FIG. 12 above.
  • the second network device may generate the first response message based on the duration of the first timer, and send the second message to the first network device.
  • the first network device may send the first response message to the first device based on the duration of the first timer, for example, before the first timer expires.
  • the second message including the first response message is the third Xn interface message shown in FIG. 12 above.
  • the first network device may send the first response message to the first device based on the duration of the first timer, for example, before the first timer expires.
  • the first network device sends a first response message (eg RRCRelease message) to the first device.
  • a first response message eg RRCRelease message
  • S550 is an optional step.
  • the first device after receiving the first response message, stops the first timer.
  • the first device may wait for subsequent re-initiation of SDT.
  • the first device enters the RRC IDLE state if it has not received the first response message sent by the first network device when the first timer expires.
  • the first response message refers to the RRC response message in the SDT shown in Fig. 5-Fig. 10 above.
  • the above-mentioned device may report the first information, including: the device may report the first information in the RRC INACTIVE state, for example, the UE may report the first information, including: the UE may report the first information in the RRC INACTIVE state.
  • the first device may send first information to the first network device, and the first information indicates a request to stop SDT, so as to avoid that when the first device stops monitoring SDT, the first network device is still the first
  • the device schedules resources for the SDT to save air interface resources.
  • the first timer used by the first device is the first timer in the context of the first device stored by the second network device, and the second message including the first response message is not the The third Xn interface message shown in 12.
  • the first timer and the first response message can be sent to the second network device together, and the specific process is shown in (A) of FIG. 14 below.
  • the first timer can pass the first timer The three Xn interface message is sent to the second network device, and the specific process is shown in (B) of FIG. 14 below.
  • FIG. 14 exemplarily shows a schematic flowchart of another method for controlling transmission.
  • the method includes but is not limited to the following steps:
  • the second network device sends a third Xn interface message to the first network device.
  • the first network device sends the first message including the first information to the second network device.
  • sequence of S5411 and S5412 is not limited, and optionally, the sequence of S530 and S540 in FIG. 13 is not limited either.
  • S5411 is performed before S5412, for example, the first device initiates RA-SDT under the first network device, and after receiving the contention resolution message or msgB, the first device sends the contention resolution message or msgB to the first network device in the subsequent transmission stage
  • the first information for example, the first device initiates CG-SDT under the first network device, and the first device sends the first information to the first network device in the subsequent transmission stage after receiving the feedback response message.
  • the first network device before the first network device receives the first information sent by the first device, the first network device sends the first Xn interface message to the second network device, and receives the third Xn interface message sent by the second network device information.
  • some steps in S540 are before S530, and some steps (such as S5412 and S5413) are after S530.
  • S5411 is performed after S5412, for example, the first device initiates RA-SDT under the first network device, and the first device sends the first information to the first network device before receiving the contention resolution message or msgB, For another example, the first device initiates the CG-SDT under the first network device, and the first device sends the first information to the first network device before receiving the feedback response message.
  • the first network device may first receive the first information sent by the first device, then send the first Xn interface message to the second network device, and receive the third Xn interface message sent by the second network device,
  • the first network device may send a first message including the first information to the second network device, for example, a first Xn interface message such as a RetrieveUEContextRequest message.
  • S530 is before S540.
  • the second network device sends a message including the first response message and the duration of the first timer to the first network device.
  • the second message including the first response message is the same as the third message including the duration of the first timer, for example, an existing Xn interface message other than the third Xn interface message, or a new Xn interface message.
  • the second network device may generate the first response message based on the first information in the first message, optionally, based on the duration of the first timer and the first information Generate a first response message.
  • the second network device may send the second message including the first response message to the first network device based on the duration of the first timer.
  • the first network device may send the first response message to the first device before the first timer expires.
  • the first network device may send the first response message to the first device before the first timer expires.
  • what the second network device sends may not be the duration of the first timer, but the first duration determined according to the duration of the first timer. Considering that the interaction of Xn interface messages takes some time, the second The first duration may be shorter than the duration of the first timer.
  • the first network device may send the first response message to the first device within a first time period after receiving the first information sent by the first device.
  • FIG. 14 exemplarily shows a schematic flowchart of another method for controlling transmission. The method includes but is not limited to the following steps:
  • the second network device sends a third Xn interface message including the duration of the first timer to the first network device.
  • the first network device sends the first message including the first information to the second network device.
  • S5421 and S5422 are similar to the descriptions of S5411 and S5412 in (A) of Figure 14 above, the difference is that the third Xn interface message in S5421 includes the duration of the first timer, which will not be repeated here.
  • the second network device sends a second message including the first response message to the first network device.
  • the second message including the first response message is different from the third message including the duration of the first timer.
  • the third message is a third Xn interface message
  • the second message is an existing Xn interface message other than the third Xn interface message.
  • the second network device may generate the first response message based on the first information in the first message, and optionally, may also generate the first response based on the duration of the first timer information.
  • the second network device may send the second message including the first response message to the first network device based on the duration of the first timer.
  • the first network device may send the first response message to the first device before the first timer expires.
  • the first network device may send the first response message to the first device before the first timer indicated by the third Xn interface message expires.
  • the first network device may send the first Responding to the message, wherein, considering that the interaction of Xn interface messages takes some time, the second duration may be shorter than the duration of the first timer.
  • the first timer used by the first device is the first timer in the context of the first device stored by the second network device, and the second message including the first response message is The third Xn interface message shown in 12.
  • the first timer can be sent to the second network device through an Xn interface message other than the third Xn interface message.
  • the specific process is shown in (A) of FIG. 15 below.
  • the first The timer and the first response message may be sent to the second network device together, and the specific process is shown in (B) of FIG. 15 below.
  • FIG. 15 exemplarily shows a schematic flowchart of another method for controlling transmission.
  • the method includes but is not limited to the following steps:
  • the second network device sends the third Xn interface message including the first response message to the first network device.
  • S5432 The first network device sends the first message including the first information to the second network device.
  • S5431 and S5432 are similar to the descriptions of S5411 and S5412 in (A) of FIG. 14 above. The difference is that the third Xn interface message in S5431 includes the first response message, and details will not be repeated here.
  • the second network device sends a third message including the duration of the first timer to the first network device.
  • the second message including the first response message is different from the third message including the duration of the first timer, the second message is a third Xn interface message, and the third message is an existing Xn interface message other than the third Xn interface message. Xn interface message, or new Xn interface message, etc.
  • the first network device may send the first response message to the first device before the first timer expires.
  • what the second network device sends may not be the duration of the first timer, but the third duration determined according to the duration of the first timer. Considering that the interaction of Xn interface messages takes some time, the second The duration of the third timer may be shorter than the duration of the first timer.
  • the first network device may send the first response message to the first device within a third time period after receiving the first information sent by the first device.
  • FIG. 15 exemplarily shows a schematic flowchart of another method for controlling transmission.
  • the method includes but is not limited to the following steps:
  • the second network device sends a third Xn interface message including the first response message and the duration of the first timer to the first network device.
  • S5442 The first network device sends the first message including the first information to the first network device.
  • S5441 and S5442 are similar to the descriptions of S5411 and S5412 in (A) of Figure 14 above, the difference is that the third Xn interface message in S5441 includes the first response message and the duration of the first timer, and details will not be repeated here.
  • the second message including the first response message is the same as the third message including the duration of the first timer, and is a third Xn interface message.
  • the first network device may send the first response to the first device before the first timer expires information.
  • the first timer used by the first device is configured by the first network device for the first device, and the duration of the first timer is generated by the first network device, including the first response
  • the second message of the message is not the third Xn interface message, and the specific process is shown in Figure 16 below.
  • FIG. 16 exemplarily shows a schematic flowchart of another method for controlling transmission.
  • the method includes but is not limited to the following steps:
  • the first network device sends a fourth message including the duration of the first timer to the second network device.
  • S5452 The first network device sends the first message including the first information to the second network device.
  • the fourth message is the first Xn interface message (such as the RetrieveUEContextRequest message) shown in FIGS. 11-12 above.
  • the first network device requests the user context of the first device from the second network device, it may indicate the duration of the first timer through the first Xn interface message.
  • the fourth message is an Xn setup request (XN SETUP REQUEST) message.
  • XN SETUP REQUEST Xn setup request
  • the first network device sends an XN SETUP REQUEST message to the second network device, and indicates the duration of the first timer through the XN SETUP REQUEST message.
  • the fourth message is an NG RAN CONFIGURATION UPDATE REQUEST message.
  • the first network device sends an NG RAN CONFIGURATION UPDATE REQUEST message to the second network device, and indicates the duration of the first timer through the NG RAN CONFIGURATION UPDATE REQUEST.
  • the fourth message is not limited to the above example, and may also be other existing Xn interface messages, or may be a new Xn interface message.
  • the first message may be an existing Xn interface message, optionally a first Xn interface message, such as a RetrieveUEContextRequest message, and optionally, the first network device requests the second network device for the first device's In the context of the user, after receiving the first information sent by the first device, the duration of the first timer and the first information may be indicated through the first Xn interface message. In other embodiments, the first message may also be a new Xn interface message.
  • S5453 The second network device sends the second message including the first response message to the first network device.
  • the second network device may generate a first response message based on the first information in the first message.
  • the second network device may send the second message including the first response message to the first network device based on the duration of the first timer indicated by the fourth message, optionally so that the first network device The first response message may be sent to the first device before the first timer expires.
  • the first information indicates a request to suspend (suspend) SDT
  • the first information indicates a request to suspend (suspend) SDT and does not enter the RRC CONNECTED state , the specific description is similar to the first information in the above example.
  • FIG. 17 is a schematic flowchart of another method for controlling transmission provided by an embodiment of the present application.
  • the method may include, but is not limited to, the following steps:
  • S610 The first device receives second configuration information.
  • S610 is an optional step.
  • S610 is similar to S510 in FIG. 13, except that in S610, the first configuration information needs to be replaced with the second configuration information, the first information needs to be replaced with the second information, and the first timer needs to be replaced with the second timer.
  • the second information indicates that the interval (gap) configuration for SDT is requested.
  • the second information indicates that the SDT is requested to be suspended. For details, please refer to the description of the second information in S630. For other descriptions, please refer to FIG. 13 Instructions for the S510.
  • S620 The first device performs SDT.
  • S620 is an optional step.
  • S620 is similar to S520 in FIG. 13 , and for details, refer to the description of S520 in FIG. 13 .
  • S630 The first device sends second information to the first network device.
  • the second information indicates that the SDT is requested to be suspended (suspend) (such as the SDT in S620 ).
  • the request to suspend the SDT may also be replaced by the request to suspend the SDT.
  • the second information indicates that a gap configuration for the SDT (such as the SDT in S620) is requested.
  • the first device is a multi-card terminal
  • the multi-card terminal includes a first sub-device
  • the first device sends the second information to the first network device through the first sub-device.
  • the second information indicates that the first sub-device requests to suspend the SDT.
  • the second information indicates that the SDT of the first sub-device is requested to be suspended.
  • the second information indicates that the first sub-device requests to suspend the SDT for the SDT.
  • gap configuration optionally, the second information indicates that the gap configuration of the SDT used for the first sub-device is requested.
  • the first device is a first sub-device included in the multi-card terminal, and the first device sends the second information to the first network device.
  • the second information indicates that the first device requests to suspend the SDT.
  • the second information indicates that the SDT of the first device is requested to be suspended.
  • the second information indicates that the first device requests a gap configuration for the SDT,
  • the second information indicates that gap configuration for the SDT of the first device is requested.
  • the following description takes the first device as the first sub-device included in the multi-card terminal as an example for illustration.
  • S630 is similar to S530 in Figure 13, the difference is that in S630, the first information needs to be replaced with the second information, the first timer needs to be replaced with the second timer, the first response message needs to be replaced with the second response message, and the first The second response message is a response message (such as RRCReconfiguration message) of the second information.
  • the first device when the second timer expires, the first device will not enter the RRC IDLE state, but decides how to handle the SDT according to its own implementation, for example Stop SDT, for example, suspend SDT.
  • Stop SDT for example, suspend SDT.
  • the first device when the second sub-device needs to send a system information request or receive a downlink message, the first device sends the second information to the first network device, and optionally, the second sub-device is in an RRC disconnected state.
  • the multi-card terminal when the multi-card terminal needs to switch from the SDT service to the service of sending a system information request or receiving a downlink message, the first device sends the second information to the first network device.
  • the card reason sends the second information to the first network device.
  • the downlink messages are, for example, periodic downlink messages such as paging, system information, and RRM, or other aperiodic downlink messages.
  • the multi-card terminal is a smart phone, and the smart phone can be equipped with two calling cards, that is, a first sub-device and a second sub-device.
  • the terminal transmits instant messaging messages, for example, using the mobile data of the first sub-device to communicate with other terminals through the first network device, another calling card of the smartphone (that is, the second sub-device) needs to monitor the downlink data sent by the network device.
  • the smart phone cannot continue to transmit instant messaging messages through the first sub-device, and the first sub-device can send the second information to the first network device.
  • the second information includes the above-mentioned gap configuration.
  • the gap configuration may instruct the first device to stop listening to the SDT period.
  • the gap configuration is for the second
  • the service generated by the sub-device may indicate the period during which the second sub-device performs data transmission.
  • the gap configuration in the second information may include: start time, duration and service period, in other embodiments, for the aperiodic service of the second sub-device For sex services, the gap configuration in the second information may include: start time and duration. In some other embodiments, for services of the second sub-device, such as periodic services and aperiodic services, the gap configuration in the second information may include: start time and duration.
  • the first device stops monitoring the SDT.
  • the above-mentioned period of stopping listening to the SDT may also be referred to as a period occupied by (the second sub-device).
  • the gap configuration may also indicate the time period for the first device to monitor the SDT.
  • This application uses the gap configuration to instruct the first device to stop monitoring the SDT period as an example for illustration.
  • the first device may decide to send the second information according to its own implementation. For example, the business of the second sub-device is only periodic business, then the first device can send the second information corresponding to the periodic business (such as business cycle), and for example, the business of the second sub-device is only aperiodic service, the first device can send the second information corresponding to the aperiodic service (such as the occupied period), and for example, the service of the second sub-device includes periodic service and aperiodic service, and the first device can calculate the The occupied period of the service is sent to the first network device through the second information.
  • the business of the second sub-device is only periodic business
  • the first device can send the second information corresponding to the periodic business (such as business cycle)
  • the business of the second sub-device is only aperiodic service
  • the first device can send the second information corresponding to the aperiodic service (such as the occupied period)
  • the service of the second sub-device includes periodic service and aperi
  • S640 Transmit second information and other related information between the first network device and the second network device.
  • S640 is an optional step.
  • the first network device corresponding to the current serving cell of the first device does not store the user context of the first device, and the user context of the first device is stored in the second network device, that is, the first network device is a new station, The second network device is the old station.
  • the first network device forwards the second information to the second network device.
  • S640 is a scenario where the old station (second network device) decides not to execute anchor relocation, and the new station (first network device) cannot obtain the user context of the first device from the old station (second network device) executed below.
  • the SDT initiated by the first device is RA-SDT, that is, S640 is performed in the scenario of RA-SDT without changing the anchor device.
  • information is exchanged between the first network device and the second network device through an Xn interface message, and the following description takes the message exchanged between the first network device and the second network device as an Xn interface message as an example for illustration.
  • the first network device may send a sixth message to the second network device.
  • the sixth message includes the second information.
  • the sixth message is the above The first Xn interface message shown in FIGS. 11-12 (for example, the RetrieveUEContextRequest message), or other existing Xn interface messages, or new Xn interface messages.
  • the first network device may receive a seventh message sent by the second network device, the seventh message includes the second response message, and the seventh message is used for the first network
  • the device sends a second response message to the first device before the second timer times out, for example, the seventh message is used for the first network device to perform S650.
  • the second response message refer to the RRC response message in the SDT shown in FIG. 5 to FIG. 10 above, for example, the RRCReconfiguration message.
  • the seventh message may be the second Xn interface message (for example, the RetrieveUEContextResponse message) shown in Figure 11 above or the third Xn interface message (for example, the RetrieveUEContextFailure message) shown in Figure 12 above, or other existing Xn interface message, or a new Xn interface message.
  • the second Xn interface message for example, the retrieveUEContextResponse message
  • the third Xn interface message for example, the retrieveUEContextFailure message
  • a message including the duration of the second timer may be transmitted between the first network device and the second network device, specifically as follows:
  • the configuration of the second configuration information and the duration of the second timer is the method 1 or 4 in S610, that is, the second timer used by the first device is broadcast by the first network device
  • the system information (such as SIB1) is configured for the first device.
  • the duration of the second timer is generated by the first network device.
  • the duration of the second timer is configured before the duration of the second timer for the first device. The device sends to the first network device through the tenth message, where the tenth message includes the duration of the second timer.
  • the second configuration information and the duration of the second timer are configured in the second or third way in S610, that is, the second timer used by the first device is the first network device or the second timer.
  • the second network device is configured for the first device through an RRC message.
  • the second timer used by the first device is the second timer in the context of the first device stored by the second network device.
  • the second timer used by the first device The first network device is configured for the first device.
  • the duration of the second timer is generated by the first network device.
  • the duration of the second timer is Before a device configures the duration of the second timer, the second network device sends a tenth message to the first network device, where the tenth message includes the duration of the second timer.
  • the second configuration information and the duration of the second timer are configured in the fifth manner in S610, that is, the duration of the second timer used by the first device is predefined, and the first The network device and the second network device may not exchange the duration of the second timer.
  • the second timer used by the first device is a second timer in the context of the first device stored by the second network device.
  • the eighth message includes the duration of the second timer, and the duration of the second timer can be used for the first
  • the network device sends the second response message to the first device before the second timer expires, for example, the duration of the second timer is used for the first network device to execute S650.
  • the seventh message including the second response message is not the third Xn interface message shown in FIG. 12 above. In this case, the transmission process between the first network device and the second network device is similar to that in FIG. 14 above. In another possible situation, the seventh message including the second response message is the third Xn interface message shown in FIG. 12 above. In this case, the transmission process between the first network device and the second network device is similar to that in FIG. 15 above.
  • the second timer used by the first device is configured by the first network device for the first device, and the duration of the second timer is generated by the first network device.
  • the seventh message including the second response message is not the third Xn interface message shown in FIG. 12 above.
  • the first network device may send a ninth message to the second network device, the ninth message includes the duration of the second timer, and the second network device may send the first network device the first network device based on the duration of the second timer in the ninth message. Seven messages, at this time, the transmission process between the first network device and the second network device is similar to that in Figure 16 above.
  • the seventh message including the second response message is the third Xn interface message shown in FIG. 12 above.
  • the first network device may not send the duration of the second timer to the second network device.
  • the first network device sends a sixth message including the second information to the second network device, and the second
  • the order in which the network device sends the seventh message including the second response message to the first network device is not limited.
  • the second timer used by the first device is configured by the first network device for the first device, and the duration of the second timer is before the duration of the second timer configured for the first device.
  • the second network device sends the tenth message to the first network device, and the tenth message includes the duration of the second timer. For example, in the Xn Setup Procedure, the second network device sends an XN SETUP RESPONSE message to the first network device, and indicates the duration of the second timer through the XN SETUP RESPONSE message.
  • the second network device sends an NG RAN CONFIGURATION UPDATE REQUEST message to the first network device, and indicates the duration of the second timer through the NG RAN CONFIGURATION UPDATE REQUEST.
  • the first network device may not send the duration of the second timer to the second network device, and optionally, the first network device sends a sixth message including the second information to the second network device , and the order in which the second network device sends the seventh message including the second response message to the first network device is not limited.
  • the first network device may send the duration of the timer to the second network device through an Xn interface message multiple times. For a specific example, refer to the example of the tenth message above. If the response message of the second network device received by the first network device does not include the duration of the timer, the first network device determines that the duration of the timer sent to the second network device is the duration of the second timer, if The response message of the second network device received by the first network device includes the duration of the timer, and the first network device determines that the duration of the timer sent by the second network device is the duration of the second timer.
  • the second timer used by the first device is predefined.
  • the seventh message including the second response message is not the third Xn interface message shown in FIG. 12 above.
  • the second network device may generate a second response message based on the duration of the second timer, and send a seventh message to the first network device.
  • the first network device may send the second response message to the first device based on the duration of the second timer, for example, before the second timer expires.
  • the seventh message including the second response message is the third Xn interface message shown in FIG. 12 above.
  • the first network device may send the second response message to the first device based on the duration of the second timer, for example, before the second timer expires.
  • the second response message includes third information, and the third information indicates the above-mentioned gap configuration.
  • the third information is generated by the second network device based on the second information, and the specific process is shown in Figure 18 below.
  • the third information is generated by the first network device based on the second information , the specific process is shown in Figure 19 below.
  • the first network device sends a second response message (for example, an RRCReconfiguration message) to the first device.
  • a second response message for example, an RRCReconfiguration message
  • S650 is an optional step.
  • the first device may process the SDT based on the second response message, and optionally, stop the second timer.
  • the second response message includes third information, and the third information indicates a gap configuration.
  • the gap configuration refer to the description of the gap configuration included in the second information in S630.
  • the gap configuration indicated by the third information may instruct the first device to stop monitoring the SDT for the first period.
  • the first device may stop monitoring the SDT within the first period, and monitor the SDT (for example, perform SDT) in a period outside the first period.
  • the gap configuration is for the periodic service of the second sub-device.
  • the first device may stop monitoring the SDT periodically, that is, it may be within the service period of the periodic service Stop listening to SDT, and continue SDT outside the business cycle.
  • the gap configuration is for the aperiodic service of the second sub-device. After receiving the second response message, the first device may stop monitoring SDT within the time period occupied by the aperiodic service, and continue SDT in other time periods.
  • the first device has not received the second response message sent by the first network device when the second timer expires, then it can decide how to process the SDT according to its own implementation, For example, stop SDT, or suspend SDT.
  • the second response message is an RRC message, such as an RRCReconfiguration message.
  • the second response message may also be an RRC response message in the SDT process shown in FIG. 5 to FIG. 10 above.
  • the first network device may also indicate to the first device the activation and/or deactivation of the gap configuration through the MAC CE.
  • the second timer may not be configured for the first device, for example, S610 does not involve the second timer.
  • the configuration method of the second configuration information It may be sent to the first device through broadcast system information (such as SIB1).
  • the description of the second configuration information may refer to the description of the second configuration information in the second manner of S610.
  • the second configuration information may be sent to the first device through an RRC message. In this case, for a description of the second configuration information, refer to the description of the second configuration information in the fourth manner of S610.
  • the method may further include: the first device receives system information (such as SIB1) sent by the first network device (broadcast), the system information It may indicate that the current network device supports the device to report the second information, for example, when the value of the second support information in SIB1 is "true", it means that "the current base station supports the UE to report the second information".
  • the first device does not use the second timer. For example, S630 does not involve the second timer.
  • the first device can directly decide how to handle the SDT according to its own implementation, such as stopping the SDT or suspending the SDT. The second timer waits for the second response message.
  • the first device may send second information to the first network device, and the second information indicates that the SDT is requested to be suspended or the gap configuration for the SDT is requested, so as to prevent the first device from stopping listening to the SDT.
  • the first network device still schedules resources for the SDT for the first device, saving air interface resources.
  • the first device may not stop the current SDT, and continue the SDT when the SDT can be performed (for example, the first device continues the SDT when the second sub-device is not performing periodic services), which reduces signaling overhead and improves transmission efficiency.
  • the first device when it determines to stop the current SDT, it may send the first information indicating that the SDT is requested to be stopped, and the SDT will not be continued subsequently.
  • the first device may re-initiate a new SDT subsequently.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal further includes a second sub-device, the first device may stop the current SDT, and allow the second sub-device to enter the RRC connection state.
  • the second sub-device subsequently enters the non-RRC connected state, the first device may re-initiate a new SDT.
  • the first device when the first device determines to suspend the current SDT, it may send the first information indicating that the SDT is requested to be suspended (optionally and not entering the RRC CONNECTED state), or the second information indicating that the SDT is requested to be suspended, or Indicates the second information requesting gap configuration for SDT.
  • the first device may continue the SDT subsequently, and in another possible case, the first device may subsequently re-initiate a new SDT.
  • the first device is a first sub-device included in a multi-card terminal, and the multi-card terminal also includes a second sub-device, and the first device may suspend the current SDT to allow the second sub-device to perform periodic or aperiodic data transmission ( If the second sub-device is still transmitting data in a non-RRC connection state), the first device can continue the current SDT during the period other than the periodical data transmission of the second sub-device, or after the second sub-device performs aperiodic data transmission, the first The device can continue the current SDT.
  • the third information indicating the gap configuration in the second response message is generated by the second network device based on the second information, and the specific process is shown in FIG. 18 below.
  • FIG. 18 exemplarily shows a schematic flowchart of another method for controlling transmission.
  • the method includes but is not limited to the following steps:
  • the first network device sends a sixth message including the second information to the second network device.
  • the first network device may forward the second information to the second network device.
  • the second network device may generate third information based on the second information in the sixth message.
  • the second network device may generate the third information based on specific content of the second information in the sixth message. In some embodiments, the second network device generates a second response message including the third information.
  • the second network device may generate the third information based on the duration of the second timer and the second information. In some embodiments, the second network device may generate the third information based on the duration of the second timer.
  • the second response message for .
  • the first network device may send the second response message to the first device before the second timer times out.
  • the second network device sends a seventh message including the second response message to the first network device.
  • the second network device can send the seventh message including the second response message to the first network device based on the duration of the second timer, optionally so that the first network device can Send a second response message to the first device before the timer times out.
  • the second network device may also send the specific content of the gap configuration to the first network device, for example, send an Xn interface message including third information, and the first network device may obtain the gap configuration based on the Xn interface message. details.
  • the first network device may schedule the SDT based on the specific content of the gap configuration.
  • the first network device may send the second response message to the first device before the second timer times out.
  • the third information indicating the gap configuration in the second response message is generated by the first network device based on the second information, and a specific process is shown in FIG. 19 below.
  • FIG. 19 exemplarily shows a schematic flowchart of another method for controlling transmission.
  • the method includes but is not limited to the following steps:
  • the first network device sends a sixth message including the second information to the second network device.
  • the first network device may forward the second information to the second network device.
  • S6422 The second network device sends an eleventh message including the second information to the first network device.
  • the second network device may send an eleventh message including specific content of the second information to the first network device.
  • the first network device may obtain the second information based on the eleventh message. specific content of the information.
  • the first network device generates third information based on the second information.
  • the first network device may generate the third information based on the acquired specific content of the second information.
  • the first network device sends a twelfth message including the third information to the second network device.
  • the second network device sends a seventh message including the second response message to the first network device.
  • the second network device after receiving the twelfth message including the third information, the second network device generates a second response message including the third information.
  • the second network device may The second response message including the third information is generated for a duration of .
  • the first network device may send the second response message to the first device before the second timer times out.
  • the second network device can send the seventh message including the second response message to the first network device based on the duration of the second timer, optionally so that the first network device can Send a second response message to the first device before the timer times out.
  • the sixth message is the first Xn interface message (for example, the retrieveUEContextRequest message), and the seventh message is the second Xn interface message (for example, the retrieveUEContextResponse message) or the third Xn interface message (for example, the retrieveUEContextFailure message).
  • the sixth message may also be other existing or new Xn interface messages.
  • the seventh message may also be other existing or new Xn interface messages.
  • the above-mentioned eleventh message is a first Xn interface message (such as a retrieveUEContextRequest message), and the above-mentioned twelfth message is a second Xn interface message (such as a retrieveUEContextResponse message) or a third Xn interface message (such as a retrieveUEContextFailure message ).
  • the eleventh message may also be other existing or new Xn interface messages.
  • the twelfth message may also be other existing or new Xn interface messages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种控制传输的方法及相关装置,该方法包括:第一设备处于非无线资源控制RRC连接态时,向第一网络设备发送第一信息或者第二信息,第一信息指示请求停止小包数据传输SDT,第二信息指示请求用于SDT的间隔gap配置,或者第二信息指示请求暂停SDT。本申请实施例可以应用于第一设备在进行SDT时可能无法继续该SDT的场景,可以避免第一设备不再继续监听SDT时,第一网络设备继续调度用于SDT的资源的情况,节省空口资源。

Description

一种控制传输的方法及相关装置
本申请要求于2021年09月28日提交中国专利局、申请号为202111146413.7、申请名称为“一种通信方法、终端及网络设备”的中国专利申请的优先权,本申请要求于2021年10月21日提交中国专利局、申请号为202111228387.2、申请名称为“一种控制传输的方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种控制传输的方法及相关装置。
背景技术
终端与网络设备的通信协议栈包括无线资源控制(radio resource control,RRC)层。目前,终端可以在不进入RRC连接(RRC CONNECTED)态的情况下,例如处于RRC空闲(RRC IDLE)态或RRC非激活(RRC INACTIVE)态时,和网络设备传输小包数据(small data),这样的过程可称为小包数据传输(small data transmission,SDT)。
终端和网络设备进行SDT时,可能出现终端无法继续该SDT的情况,但是网络设备仍会调度用于该SDT的资源,存在空口资源被浪费的问题,也缺少能应用于上述场景的高效传输方案。例如,多卡终端包括子设备A和子设备B,子设备A和子设备B共用射频发送链和/或射频接收链,即无法同时发送信息和/或接收信息。子设备A和网络设备进行SDT时,若子设备B有数据传输需求(如需进行非SDT的数据传输),子设备A需停止传输,让子设备B可以传输信息,但是网络设备仍会为子设备A调度用于该SDT的资源。
发明内容
本申请实施例公开了一种控制传输的方法及相关装置,能够避免设备不再监听小包数据传输时,网络设备继续调度用于小包数据传输的资源的情况,节省空口资源。
第一方面,本申请实施例提供了一种控制传输的方法,应用于第一设备,该方法包括:处于非无线资源控制RRC连接态时,向第一网络设备发送第一信息,所述第一信息指示请求停止小包数据传输SDT。
在一些实施例中,第一设备在第一网络设备下发起SDT的情况下,向第一网络设备发送第一信息。
本申请中,第一设备可以向第一网络设备发送第一信息,通过第一信息指示请求停止SDT,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
在一种可能的实现方式中,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述向第一网络设备发送第一信息,包括:通过所述第一子设备向所述第一网络设备发送所述第一信息;其中:所述第一信息指示所述第一子设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一子设备的所述SDT。
在一种可能的实现方式中,所述向第一网络设备发送第一信息,包括:当所述第二子设 备需从非RRC连接态进入RRC连接态时,通过所述第一子设备向所述第一网络设备发送所述第一信息;或者,所述向第一网络设备发送第一信息,包括:当所述第一设备需从SDT业务切换至RRC连接态业务时,向所述第一网络设备发送所述第一信息;或者,所述向第一网络设备发送第一信息,包括:由于多卡原因向所述第一网络设备发送所述第一信息。
在一种可能的实现方式中,所述第一设备为多卡终端包括的第一子设备,所述多卡终端还包括第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链;所述第一信息指示所述第一设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一设备的所述SDT。
在一种可能的实现方式中,所述向第一网络设备发送第一信息,包括:当所述第二子设备需从非RRC连接态进入RRC连接态时,向所述第一网络设备发送所述第一信息;或者,所述向第一网络设备发送第一信息,包括:当所述多卡终端需从SDT业务切换至RRC连接态业务时,向所述第一网络设备发送所述第一信息;或者,所述向第一网络设备发送第一信息,包括:由于多卡原因向所述第一网络设备发送所述第一信息。
本申请中,第一信息可以应用于多卡终端的多种场景,应用场景广泛,产品可用性高。
在一种可能的实现方式中,所述处于非无线资源控制RRC连接态,包括:所述第一子设备处于RRC非激活态;所述方法还包括:所述向第一网络设备发送第一信息时,所述第一子设备开启第一定时器;所述向第一网络设备发送第一信息之后,所述方法还包括:若在所述第一定时器超时之前接收到所述第一网络设备发送的第一响应消息,所述第一子设备停止所述第一定时器;若在所述第一定时器超时时未接收到所述第一网络设备发送的所述第一响应消息,所述第一子设备进入RRC空闲态。
在一种可能的实现方式中,所述向第一网络设备发送第一信息之前,所述方法还包括:通过所述第一子设备接收第一配置信息,所述第一配置信息指示所述第一信息的上报,其中:所述通过所述第一子设备接收第一配置信息,包括:通过所述第一子设备接收所述第一网络设备通过广播的系统信息发送的所述第一配置信息;或,所述通过所述第一子设备接收第一配置信息,包括:通过所述第一子设备接收所述第一网络设备通过RRC消息发送的所述第一配置信息;或,所述通过所述第一子设备接收第一配置信息,包括:通过所述第一子设备接收第二网络设备通过RRC消息发送的所述第一配置信息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一网络设备未存储所述第一子设备的用户上下文;所述第一配置信息包括第一定时器的时长;或,所述方法还包括:通过所述第一子设备接收所述第一网络设备通过广播的系统信息发送的第一定时器的时长;或,所述方法还包括:通过所述第一子设备接收所述第一网络设备通过RRC消息发送的第一定时器的时长;或,所述方法还包括:通过所述第一子设备接收第二网络设备通过RRC消息发送的第一定时器的时长,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一网络设备未存储所述第一子设备的用户上下文;或,第一定时器的时长是预先定义的;其中,所述第一定时器用于所述第一子设备监听所述第一信息的响应消息。
本申请中,为第一子设备配置第一配置信息和/或第一定时器的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述通过所述第一子设备接收第一配置信息之前,所述方法还包括:通过所述第一子设备发送第一请求消息,所述第一请求消息指示请求配置所述第一信息的上报。
本申请中,第一设备可以先请求配置第一信息的上报,接收到请求的网络设备再为第一 设备配置第一信息的上报,避免第一设备无需配置第一信息的上报的情况下,额外配置带来的资源浪费,减少不必要的信令开销。
在一种可能的实现方式中,所述第一响应消息为RRC释放消息。
在一种可能的实现方式中,所述第一信息是通过专用控制信道DCCH承载的RRC消息发送的。
第二方面,本申请实施例提供了又一种控制传输的方法,应用于第一网络设备,该方法包括:接收第一设备发送的第一信息,所述第一信息指示请求停止SDT。
在一些实施例中,第一设备处于非RRC连接态,在一些实施例中,第一设备在第一网络设备下发起SDT。
本申请中,第一设备可以向第一网络设备发送第一信息,通过第一信息指示请求停止SDT,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
在一种可能的实现方式中,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述接收第一设备发送的第一信息,包括:接收所述第一子设备发送的所述第一信息;其中:所述第一信息指示所述第一子设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一子设备的所述SDT。
在一种可能的实现方式中,所述第一信息是所述第一子设备在所述第二子设备需从非RRC连接态进入RRC连接态时向所述第一网络设备发送的;或者,所述第一信息是所述第一设备需从SDT业务切换至RRC连接态业务时向所述第一网络设备发送的;或者,所述第一信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
在一种可能的实现方式中,所述第一设备为多卡终端包括的第一子设备,所述多卡终端还包括第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链;所述第一信息指示所述第一设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一设备的所述SDT。
在一种可能的实现方式中,所述第一信息是所述第一设备在所述第二子设备需从非RRC连接态进入RRC连接态时向所述第一网络设备发送的;或者,所述第一信息是所述多卡终端需从SDT业务切换至RRC连接态业务时,所述第一设备向所述第一网络设备发送的;或者,所述第一信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
本申请中,第一信息可以应用于多卡终端的多种场景,应用场景广泛,产品可用性高。
在一种可能的实现方式中,所述接收第一设备发送的第一信息之前,所述方法还包括:向所述第一子设备发送第一配置信息,和/或,向所述第一子设备发送第一定时器的时长,所述第一配置信息指示所述第一信息的上报,所述第一定时器用于所述第一子设备监听所述第一信息的响应消息,其中:所述向所述第一子设备发送第一配置信息,包括:通过广播的系统信息向所述第一子设备发送所述第一配置信息;或,所述向所述第一子设备发送第一配置信息,包括:通过RRC消息向所述第一子设备发送所述第一配置信息;所述第一配置信息包括所述第一定时器的时长;或,所述向所述第一子设备发送第一定时器的时长,包括:通过广播的系统信息向所述第一子设备发送所述第一定时器的时长;或,所述向所述第一子设备发送第一定时器的时长,包括:通过RRC消息向所述第一子设备发送所述第一定时器的时长;或,所述第一定时器的时长是预先定义的。
本申请中,为第一子设备配置第一配置信息和/或第一定时器的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述接收第一设备发送的第一信息之后,所述方法还包括:在第一定时器超时之前,向所述第一子设备发送第一响应消息。
在一种可能的实现方式中,所述第一网络设备未存储所述第一子设备的用户上下文;所述接收第一设备发送的第一信息之后,所述方法还包括:向第二网络设备发送第一消息,所述第一消息包括所述第一信息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备。
在一种可能的实现方式中,所述方法还包括:接收第二网络设备发送的第二消息,所述第二消息包括第一响应消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第二消息用于所述第一网络设备向所述第一子设备发送所述第一响应消息。
在一种可能的实现方式中,所述接收第一设备发送的第一信息之后,所述方法还包括:接收第二网络设备发送的第三消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一子设备的用户上下文包括第一定时器的时长,所述三消息包括所述第一定时器的时长,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
在一些实施例中,第二消息和第三消息相同。在另一些实施例中,第二消息和第三消息不同。
在一种可能的实现方式中,所述接收第二网络设备发送的第二消息之前,所述方法还包括:向所述第二网络设备发送第四消息,所述第四消息包括第一定时器的时长,所述第一定时器的时长是所述第一网络设备生成的,所述第一定时器的时长用于所述第二网络设备向所述第一网络设备发送所述第二消息。
在一种可能的实现方式中,所述接收第一设备发送的第一信息之前,所述方法还包括:接收第二网络设备发送的第五消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第五消息包括第一定时器的时长,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
本申请中,第一网络设备和第二网络设备之间传输第一定时器的时长的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述向所述第一子设备发送第一配置信息之前,所述方法还包括:接收所述第一子设备发送的第一请求消息,所述第一请求消息指示请求配置所述第一信息的上报。
本申请中,第一设备可以先请求配置第一信息的上报,接收到请求的网络设备再为第一设备配置第一信息,避免第一设备无需配置第一信息的情况下,额外配置第一信息带来的资源浪费,减少不必要的信令开销。
在一种可能的实现方式中,所述第一响应消息为RRC释放消息。
在一种可能的实现方式中,所述第一信息是通过专用控制信道DCCH承载的RRC消息发送的。
第三方面,本申请实施例提供了又一种控制传输的方法,应用于第二网络设备,该方法包括:接收第一网络设备发送的第一消息,所述第一消息包括第一信息,所述第一信息指示第一设备请求停止SDT,所述第一网络设备未存储所述第一设备的用户上下文,所述第二网 络设备为存储有所述第一设备的用户上下文的锚点设备。
在一些实施例中,第一信息为第一设备发送给第一网络设备的,可选地,第一设备处于非RRC连接态时发送的,可选地,第一设备在第一网络设备下发起SDT的情况下发送的。
本申请中,第一设备可以向第一网络设备发送第一信息,通过第一信息指示请求停止SDT,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
在一种可能的实现方式中,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述第一网络设备未存储所述第一设备的用户上下文,包括:所述第一网络设备未存储所述第一子设备的用户上下文,所述第二网络设备为存储有所述第一设备的用户上下文的锚点设备,包括:所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备;所述第一信息指示所述第一子设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一子设备的所述SDT。
在一种可能的实现方式中,所述第一信息是所述第一子设备在所述第二子设备需从非RRC连接态进入RRC连接态时向所述第一网络设备发送的;或者,所述第一信息是所述第一设备需从SDT业务切换至RRC连接态业务时向所述第一网络设备发送的;或者,所述第一信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
在一种可能的实现方式中,所述第一设备为多卡终端包括的第一子设备,所述多卡终端还包括第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链;所述第一信息指示所述第一设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一设备的所述SDT。
在一种可能的实现方式中,所述第一信息是所述第一设备在所述第二子设备需从非RRC连接态进入RRC连接态时向所述第一网络设备发送的;或者,所述第一信息是所述多卡终端需从SDT业务切换至RRC连接态业务时,所述第一设备向所述第一网络设备发送的;或者,所述第一信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
本申请中,第一信息可以应用于多卡终端的多种场景,应用场景广泛,产品可用性高。
在一种可能的实现方式中,所述接收第一网络设备发送的第一消息之前,所述方法还包括:通过RRC消息向所述第一子设备发送第一配置信息,和/或,通过RRC消息向所述第一子设备发送第一定时器的时长,所述第一配置信息指示所述第一信息的上报,所述第一定时器用于所述第一子设备监听所述第一信息的响应消息;所述第一配置信息包括所述第一定时器的时长;或,所述第一定时器的时长是预先定义的。
本申请中,为第一子设备配置第一配置信息和/或第一定时器的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述方法还包括:向所述第一网络设备发送第二消息,所述第二消息包括第一响应消息,所述第二消息用于所述第一网络设备向所述第一子设备发送所述第一响应消息。
在一种可能的实现方式中,所述方法还包括:向所述第一网络设备发送第三消息,所述第三消息包括第一定时器的时长,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
在一些实施例中,第二消息和第三消息相同。在另一些实施例中,第二消息和第三消息不同。
在一种可能的实现方式中,所述向所述第一网络设备发送第二消息之前,所述方法还包括:接收所述第一网络设备发送的第四消息,所述第四消息包括第一定时器的时长,所述第一定时器的时长是所述第一网络设备生成的,所述第一定时器的时长用于所述第二网络设备向所述第一网络设备发送所述第二消息。
在一种可能的实现方式中,所述方法还包括:向所述第一网络设备发送第五消息,所述第五消息包括第一定时器的时长,所述第五消息是所述第一网络设备接收到所述第一子设备发送的所述第一信息之前接收的,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
本申请中,第一网络设备和第二网络设备之间传输第一定时器的时长的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述第一响应消息为RRC释放消息。
在一种可能的实现方式中,所述第一信息是通过专用控制信道DCCH承载的RRC消息发送的。
第四方面,本申请实施例提供了又一种控制传输的方法,应用于第一设备,该方法包括:处于非RRC连接态时,向第一网络设备发送第二信息,所述第二信息指示请求用于SDT的gap配置,或者所述第二信息指示请求暂停SDT。
在一些实施例中,第一设备在第一网络设备下发起SDT的情况下,向第一网络设备发送第二信息。
本申请中,第一设备可以向第一网络设备发送第二信息,通过第二信息指示请求暂停SDT或者请求用于SDT的gap配置,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
在一种可能的实现方式中,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述向第一网络设备发送第二信息,包括:通过所述第一子设备向所述第一网络设备发送所述第二信息;其中:所述第二信息指示所述第一子设备请求用于所述SDT的所述gap配置;或,所述第二信息指示请求用于所述第一子设备的所述SDT的所述gap配置;或,所述第二信息指示所述第一子设备请求暂停所述SDT;或者,所述第二信息指示请求暂停所述第一子设备的所述SDT。
在一种可能的实现方式中,所述向第一网络设备发送第二信息,包括:当所述第二子设备需发送系统信息请求或者接收下行消息时,所述第一子设备向所述第一网络设备发送所述第二信息;或者,所述向第一网络设备发送第二信息,包括:当所述第一设备需从SDT业务切换至发送系统信息请求或者接收下行消息的业务时,向所述第一网络设备发送所述第二信息;或者,所述向第一网络设备发送第二信息,包括:由于多卡原因向所述第一网络设备发送所述第二信息。
在一种可能的实现方式中,所述第一设备为多卡终端包括的第一子设备,所述多卡终端还包括第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链;所述第二信息指示所述第一设备请求用于所述SDT的所述gap配置;或,所述第二信息指示请求用于所述第一设备的所述SDT的所述gap配置;或,所述第二信息指示所述第一设备请求暂停所述SDT;或者,所述第二信息指示请求暂停所述第一设备的所述SDT。
在一种可能的实现方式中,所述向第一网络设备发送第二信息,包括:当所述第二子设 备需发送系统信息请求或者接收下行消息时,向所述第一网络设备发送所述第二信息;或者,所述向第一网络设备发送第二信息,包括:当所述多卡终端需从SDT业务切换至发送系统信息请求或者接收下行消息的业务时,向所述第一网络设备发送所述第二信息;或者,所述向第一网络设备发送第二信息,包括:由于多卡原因向所述第一网络设备发送所述第二信息。
本申请中,第一信息可以应用于多卡终端的多种场景,应用场景广泛,产品可用性高。
在一种可能的实现方式中,所述处于非RRC连接态,包括:所述第一子设备处于RRC非激活态;所述方法还包括:所述向第一网络设备发送第二信息时,所述第一子设备开启第二定时器;所述向第一网络设备发送第二信息之后,所述方法还包括:若在所述第二定时器超时之前接收到所述第一网络设备发送的第二响应消息,所述第一子设备停止所述第二定时器,所述第一子设备基于所述第二响应消息处理所述SDT。
在一种可能的实现方式中,所述第二响应消息包括第三信息,所述第三信息用于指示所述gap配置,所述第一子设备基于所述第二响应消息处理所述SDT,包括:所述第一子设备在所述gap配置指示的时段停止监听所述SDT,在所述gap配置指示的时段外的时段和所述第一网络设备进行所述SDT。
本申请中,第一设备可以不停止当前SDT,待可以进行SDT时再继续该SDT,减少信令开销,传输效率更高。
在一种可能的实现方式中,所述向第一网络设备发送第二信息之前,所述方法还包括:通过所述第一子设备接收第二配置信息,所述第二配置信息指示所述第二信息的上报,其中:所述通过所述第一子设备接收第二配置信息,包括:通过所述第一子设备接收所述第一网络设备通过广播的系统信息发送的所述第二配置信息;或,所述通过所述第一子设备接收第二配置信息,包括:通过所述第一子设备接收所述第一网络设备通过RRC消息发送的所述第二配置信息;或,所述通过所述第一子设备接收第二配置信息,包括:通过所述第一子设备接收第二网络设备通过RRC消息发送的所述第二配置信息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一网络设备未存储所述第一子设备的用户上下文;所述第二配置信息包括第二定时器的时长;或,所述方法还包括:通过所述第一子设备接收所述第一网络设备通过广播的系统信息发送的第二定时器的时长;或,所述方法还包括:通过所述第一子设备接收所述第一网络设备通过RRC消息发送的第二定时器的时长;或,所述方法还包括:通过所述第一子设备接收第二网络设备通过RRC消息发送的第二定时器的时长,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一网络设备未存储所述第一子设备的用户上下文;或,第二定时器的时长是预先定义的;其中,所述第二定时器用于所述第一子设备监听所述第二信息的响应消息。
本申请中,为第一子设备配置第二配置信息和/或第二定时器的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述通过所述第一子设备接收第二配置信息之前,所述方法还包括:通过所述第一子设备发送第二请求消息,所述第二请求消息指示请求配置所述第二信息的上报。
本申请中,第一设备可以先请求配置第二信息的上报,接收到请求的网络设备再为第一设备配置第二信息的上报,避免第一设备无需配置第二信息的上报的情况下,额外配置带来的资源浪费,减少不必要的信令开销。
在一种可能的实现方式中,所述第二响应消息为RRC重配消息。
在一种可能的实现方式中,所述第二信息是通过专用控制信道DCCH承载的RRC消息 发送的。
第五方面,本申请实施例提供了又一种控制传输的方法,应用于第一网络设备,该方法包括:接收第一设备发送的第二信息,所述第二信息指示请求用于SDT的间隔gap配置,或者所述第二信息指示请求暂停SDT。
在一些实施例中,第一设备处于非RRC连接态,在一些实施例中,第一设备在第一网络设备下发起SDT。
本申请中,第一设备可以向第一网络设备发送第二信息,通过第二信息指示请求暂停SDT或者请求用于SDT的gap配置,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
在一种可能的实现方式中,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述接收第一设备发送的第二信息,包括:接收所述第一子设备发送的所述第二信息;其中:所述第二信息指示所述第一子设备请求用于所述SDT的所述gap配置;或,所述第二信息指示请求用于所述第一子设备的所述SDT的所述gap配置;或,所述第二信息指示所述第一子设备请求暂停所述SDT;或者,所述第二信息指示请求暂停所述第一子设备的所述SDT。
在一种可能的实现方式中,所述第二信息是所述第一子设备在所述第二子设备需发送系统信息请求或者接收下行消息时向所述第一网络设备发送的;或者,所述第二信息是所述第一设备需从SDT业务切换至发送系统信息请求或者接收下行消息的业务时向所述第一网络设备发送的;或者,所述第二信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
在一种可能的实现方式中,所述第一设备为多卡终端包括的第一子设备,所述多卡终端还包括第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链;所述第二信息指示所述第一设备请求用于所述SDT的所述gap配置;或,所述第二信息指示请求用于所述第一设备的所述SDT的所述gap配置;或,所述第二信息指示所述第一设备请求暂停所述SDT;或者,所述第二信息指示请求暂停所述第一设备的所述SDT。
在一种可能的实现方式中,所述第二信息是所述第一设备在所述第二子设备需发送系统信息请求或者接收下行消息时向所述第一网络设备发送的;或者,所述第二信息是所述多卡终端需从SDT业务切换至发送系统信息请求或者接收下行消息的业务时,所述第一设备向所述第一网络设备发送的;或者,所述第二信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
本申请中,第一信息可以应用于多卡终端的多种场景,应用场景广泛,产品可用性高。
在一种可能的实现方式中,所述接收第一设备发送的第二信息之前,所述方法还包括:向所述第一子设备发送第二配置信息,和/或,向所述第一子设备发送第二定时器的时长,所述第二配置信息指示所述第二信息的上报,所述第二定时器用于所述第一子设备监听所述第二信息的响应消息,其中:所述向所述第一子设备发送第二配置信息,包括:通过广播的系统信息向所述第一子设备发送所述第二配置信息;或,所述向所述第一子设备发送第二配置信息,包括:通过RRC消息向所述第一子设备发送所述第二配置信息;所述第二配置信息包括所述第二定时器的时长;或,所述向所述第一子设备发送第二定时器的时长,包括:通过广播的系统信息向所述第一子设备发送所述第二定时器的时长;或,所述向所述第一子设备发送第二定时器的时长,包括:通过RRC消息向所述第一子设备发送所述第二定时器的时长;或,所述第二定时器的时长是预先定义的。
本申请中,为第一子设备配置第二配置信息和/或第二定时器的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述接收第一设备发送的第二信息之后,所述方法还包括:在第二定时器超时之前,向所述第一子设备发送第二响应消息,所述第二响应消息用于所述第一子设备处理所述SDT。
在一种可能的实现方式中,所述第二响应消息包括第三信息,所述第三信息用于指示所述gap配置,所述gap配置用于指示停止监听所述SDT的时段。
本申请中,第一设备可以不停止当前SDT,待可以进行SDT时再继续该SDT,例如在gap配置指示的时段停止监听SDT,在gap配置指示的时段外继续SDT,减少信令开销,传输效率更高。
在一种可能的实现方式中,所述接收第一设备发送的第二信息之后,所述方法还包括:向第二网络设备发送第六消息,所述第六消息包括所述第二信息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备;接收所述第二网络设备发送的第七消息,所述第七消息包括第二响应消息,所述第二响应消息为所述第二信息的响应消息,所述第七消息用于所述第一网络设备向所述第一子设备发送所述第二响应消息。
在一种可能的实现方式中,所述接收第一设备发送的第二信息之后,所述方法还包括:接收第二网络设备发送的第八消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一子设备的用户上下文包括第二定时器的时长,所述第八消息包括所述第二定时器的时长,所述第二定时器的时长用于所述第一网络设备在所述第二定时器超时之前向所述第一子设备发送第二响应消息,所述第二响应消息为所述第二信息的响应消息。
在一些实施例中,第七消息和第八消息相同。在另一些实施例中,第七消息和第八消息不同。
在一种可能的实现方式中,所述接收所述第二网络设备发送的第七消息之前,所述方法还包括:向所述第二网络设备发送第九消息,所述第九消息包括第二定时器的时长,所述第二定时器的时长是所述第一网络设备生成的,所述第二定时器的时长用于所述第二网络设备向所述第一网络设备发送所述第七消息,所述第七消息用于所述第一网络设备在所述第二定时器超时之前向所述第一子设备发送所述第二响应消息。
在一种可能的实现方式中,所述接收第一设备发送的第二信息之前,所述方法还包括:接收第二网络设备发送的第十消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第十消息包括第二定时器的时长,所述第二定时器的时长用于所述第一网络设备在所述第二定时器超时之前向所述第一子设备发送第二响应消息,所述第二响应消息为所述第二信息的响应消息。
本申请中,第一网络设备和第二网络设备之间传输第二定时器的时长的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述第二响应消息包括第三信息,所述第三信息用于指示所述gap配置,其中:所述第三信息为所述第二网络设备基于所述第二信息和第二定时器的时长生成的,所述第二定时器的时长用于所述第一网络设备在所述第二定时器超时之前向所述第一子设备发送所述第二响应消息;或,所述向第二网络设备发送第六消息之后,所述方法还包括:接收所述第二网络设备发送的第十一消息,所述第十一消息包括所述第二信息;基于所述十一消息中的所述第二信息生成所述第三信息;向所述第二网络设备发送第十二消息,所述第十二消息包括所述第三信息。
本申请中,指示gap配置的第三信息可以是第二网络设备生成的,也可以是第一网络设备生成的,可以基于具体场景使用不同的方式,使用更加灵活。
在一种可能的实现方式中,所述向所述第一子设备发送第二配置信息之前,所述方法还包括:接收所述第一子设备发送的第二请求消息,所述第二请求消息指示请求配置所述第二信息的上报。
本申请中,第一设备可以先请求配置第二信息的上报,接收到请求的网络设备再为第一设备配置第二信息的上报,避免第一设备无需配置第二信息的上报的情况下,额外配置带来的资源浪费,减少不必要的信令开销。
在一种可能的实现方式中,所述第二响应消息为RRC重配消息。
在一种可能的实现方式中,所述第二信息是通过专用控制信道DCCH承载的RRC消息发送的。
第六方面,本申请实施例提供了又一种控制传输的方法,应用于第二网络设备,该方法包括:接收第一网络设备发送的第六消息,所述第六消息包括第二信息,所述第二信息指示第一设备请求用于SDT的gap配置,或者所述第二信息指示第一设备请求暂停SDT,所述第一网络设备未存储所述第一设备的用户上下文,所述第二网络设备为存储有所述第一设备的用户上下文的锚点设备。
在一些实施例中,第二信息为第一设备发送给第一网络设备的,可选地,第一设备处于非RRC连接态时发送的,可选地,第一设备在第一网络设备下发起SDT的情况下发送的。
本申请中,第一设备可以向第一网络设备发送第二信息,通过第二信息指示请求暂停SDT或者请求用于SDT的gap配置,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
在一种可能的实现方式中,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述第一网络设备未存储所述第一设备的用户上下文,包括:所述第一网络设备未存储所述第一子设备的用户上下文,所述第二网络设备为存储有所述第一设备的用户上下文的锚点设备,包括:所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备;其中:所述第二信息指示所述第一子设备请求用于所述SDT的所述gap配置;或,所述第二信息指示请求用于所述第一子设备的所述SDT的所述gap配置;或,所述第二信息指示所述第一子设备请求暂停所述SDT;或者,所述第二信息指示请求暂停所述第一子设备的所述SDT。
在一种可能的实现方式中,所述第二信息是所述第一子设备在所述第二子设备需发送系统信息请求或者接收下行消息时向所述第一网络设备发送的;或者,所述第二信息是所述第一设备需从SDT业务切换至发送系统信息请求或者接收下行消息的业务时向所述第一网络设备发送的;或者,所述第二信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
在一种可能的实现方式中,所述第一设备为多卡终端包括的第一子设备,所述多卡终端还包括第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链;所述第二信息指示所述第一设备请求用于所述SDT的所述gap配置;或,所述第二信息指示请求用于所述第一设备的所述SDT的所述gap配置;或,所述第二信息指示所述第一设备请求暂停所述SDT;或者,所述第二信息指示请求暂停所述第一设备的所述SDT。
在一种可能的实现方式中,所述第二信息是所述第一设备在所述第二子设备需发送系统信息请求或者接收下行消息时向所述第一网络设备发送的;或者,所述第二信息是所述多卡 终端需从SDT业务切换至发送系统信息请求或者接收下行消息的业务时,所述第一设备向所述第一网络设备发送的;或者,所述第二信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
本申请中,第一信息可以应用于多卡终端的多种场景,应用场景广泛,产品可用性高。
在一种可能的实现方式中,所述接收第一网络设备发送的第六消息之前,所述方法还包括:通过RRC消息向所述第一子设备发送第二配置信息,和/或,通过RRC消息向所述第一子设备发送第二定时器的时长,所述第二配置信息指示所述第二信息的上报,所述第二定时器用于所述第一子设备监听所述第二信息的响应消息;所述第二配置信息包括所述第二定时器的时长;或,所述第二定时器的时长是预先定义的。
本申请中,为第一子设备配置第二配置信息和/或第二定时器的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述接收第一网络设备发送的第六消息之后,所述方法还包括:基于第二定时器的时长生成第二响应消息,所述第二响应消息为所述第二信息的响应消息;向所述第一网络设备发送第七消息,所述第七消息包括所述第二响应消息,所述第七消息用于所述第一网络设备在所述第二定时器超时之前向所述第一子设备发送所述第二响应消息。
在一种可能的实现方式中,所述第二网络设备存储的所述第一子设备的用户上下文包括第二定时器的时长;所述方法还包括:向所述第一网络设备发送第八消息,所述第八消息包括所述第二定时器的时长,所述第二定时器的时长用于所述第一网络设备在所述第二定时器超时之前向所述第一子设备发送第二响应消息,所述第二响应消息为所述第二信息的响应消息。
在一些实施例中,第七消息和第八消息相同。在另一些实施例中,第七消息和第八消息不同。
在一种可能的实现方式中,所述向所述第一网络设备发送第七消息之前,所述方法还包括:接收所述第一网络设备发送的第九消息,所述第九消息包括第二定时器的时长,所述第二定时器的时长是所述第一网络设备生成的,所述第二定时器的时长用于所述第二网络设备向所述第一网络设备发送所述第七消息。
在一种可能的实现方式中,所述方法还包括:向所述第一网络设备发送第十消息,所述第十消息包括第二定时器的时长,所述第十消息是所述第一网络设备接收到所述第一子设备发送的所述第一信息之前接收的,所述第二定时器的时长用于所述第一网络设备在所述第二定时器超时之前向所述第一子设备发送第二响应消息,所述第二响应消息为所述第二信息的响应消息。
本申请中,第一网络设备和第二网络设备之间传输第二定时器的时长的方式多种多样,可以基于具体场景使用不同的方式,应用场景广泛,使用更加灵活。
在一种可能的实现方式中,所述第二响应消息包括第三信息,所述第三信息用于指示所述gap配置,所述gap配置用于指示停止监听所述SDT的时段。
本申请中,第一设备可以不停止当前SDT,待可以进行SDT时再继续该SDT,例如在gap配置指示的时段停止监听SDT,在gap配置指示的时段外继续SDT,减少信令开销,传输效率更高。
在一种可能的实现方式中,所述第二响应消息包括第三信息,所述第三信息用于指示所述gap配置;其中:所述第三信息为所述第二网络设备基于所述第二信息和所述第二定时器 的时长生成的;或,所述接收第一网络设备发送的第六消息之后,所述方法还包括:向所述第一网络设备发送第十一消息,所述第十一消息包括所述第二信息,所述第十一消息中的所述第二信息用于所述第一网络设备生成所述第三信息;接收所述第一网络设备发送的第十二消息,所述第十二消息包括所述第三信息。
本申请中,指示gap配置的第三信息可以是第二网络设备生成的,也可以是第一网络设备生成的,可以基于具体场景使用不同的方式,使用更加灵活。
在一种可能的实现方式中,所述第二响应消息为RRC重配消息。
在一种可能的实现方式中,所述第二信息是通过专用控制信道DCCH承载的RRC消息发送的。
第七方面,本申请实施例提供了又一种控制传输的方法,应用于第一通信系统,所述第一通信系统包括第一设备和第一网络设备,该方法包括:第一设备处于非RRC连接态时,向第一网络设备发送指示信息,所述指示信息指示停止监听SDT。
在一种可能的实现方式中,所述指示信息为本申请实施例第一方面至第三方面,以及第一方面至第三方面的任意一种实现方式提供的控制传输的方法中的第一信息,第一设备用于执行本申请实施例第一方面和第一方面的任意一种实现方式提供的控制传输方法,第一网络设备用于执行本申请实施例第二方面和第二方面的任意一种实现方式提供的控制传输方法。在一些实施例中,所述第一通信系统还包括第二网络设备,第二网络设备用于执行本申请实施例第三方面和第三方面的任意一种实现方式提供的控制传输方法。
在一种可能的实现方式中,所述指示信息为本申请实施例第四方面至第六方面,以及第四方面至第六方面的任意一种实现方式提供的控制传输的方法中的第二信息,第一设备用于执行本申请实施例第四方面和第四方面的任意一种实现方式提供的控制传输方法,第一网络设备用于执行本申请实施例第五方面和第五方面的任意一种实现方式提供的控制传输方法。在一些实施例中,所述第一通信系统还包括第二网络设备,第二网络设备用于执行本申请实施例第六方面和第六方面的任意一种实现方式提供的控制传输方法。
第八方面,本申请实施例提供了一种网络设备,包括收发器、处理器和存储器;上述存储器用于存储计算机程序代码,上述计算机程序代码包括计算机指令,上述处理器调用上述计算机指令以使上述用户设备执行本申请实施例第二方面、第三方面、第五方面、第六方面和第七方面,以及第二方面、第三方面、第五方面、第六方面和第七方面的任意一种实现方式提供的控制传输方法。
第九方面,本申请实施例提供了一种电子设备,包括收发器、处理器和存储器;上述存储器用于存储计算机程序代码,上述计算机程序代码包括计算机指令,上述处理器调用上述计算机指令以使上述用户设备执行本申请实施例第一方面、第四方面和第七方面,以及第一方面、第四方面和第七方面的任意一种实现方式提供的控制传输方法。
第十方面,本申请实施例提供了一种通信装置,该装置可以为设备或设备中的芯片,该通信装置包括处理单元,处理单元用于执行本申请实施例第一方面至第七方面,以及第一方面至第七方面的任意一种实现方式提供的控制传输的方法。
第十一方面,本申请实施例提供了一种计算机存储介质,该计算机存储介质存储有计算机程序,该计算机程序包括程序指令,该程序指令被处理器执行时,用于执行本申请实施例第一方面至第七方面,以及第一方面至第七方面的任意一种实现方式提供的控制传输的方法。
第十二方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品在通信设 备上运行时,使得该通信设备执行本申请实施例第一方面至第七方面,以及第一方面至第七方面的任意一种实现方式提供的控制传输的方法。
第十三方面,本申请实施例提供一种电子设备,该电子设备包括执行本申请任一实施例所介绍的方法或装置。上述电子设备例如为芯片。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是一种新无线接入NR的用户面的通信协议栈的架构示意图;
图3是一种NR的控制面的通信协议栈的架构示意图;
图4是一种用户设备UE的无线资源控制RRC状态的转换示意图;
图5-图10是本申请实施例提供的一些小包数据传输SDT的流程示意图;
图11-图12是本申请实施例提供的一些锚点迁移过程的流程示意图;
图13-图19是本申请实施例提供的一些控制传输的方法的流程示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。本申请实施例的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
首先介绍本申请涉及的相关装置和通信系统。
网络设备:网络设备可以是一种用于发送或接收信息的设备,在一些实施例中,网络设备包括接入网设备,例如但不限于:基站,用户设备(user equipment,UE),无线接入点(access point,AP),收发点(transmission and receiver point,TRP),中继设备,或者具备基站的功能的其他网络设备等。其中,基站是一种部署在无线接入网(radio access network,RAN)中用于提供无线通信功能的设备。在不同的无线接入系统中,基站的名称可能不同,例如但不限于:全球移动通讯系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的基站收发台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的节点B(node B,NB),长期演进(long term evolution,LTE)中的演进型基站(evolved node B,eNodeB),还可以是第五代移动通信技术(5th generation mobile networks,5G),即新无线接入(new radio,NR)中的下一代基站(g node B,gNB),或者其他未来网络系统中的基站。在一些实施例中,网络设备包括核心网设备,例如认证管理功能(authentication management function,AMF)、移动管理节点功能(mobility management entity,MME)等。
终端:终端可以是具有无线通信功能的设备,在一些实施例中,终端为UE,在一些实施例中,终端也可以被称为移动台、接入终端、用户代理等。示例性地,终端为手持设备、可穿戴设备、计算设备、便携式设备、车载设备、工业无线传感器或智能仪表等形式的终端。示例性地,终端具体为蜂窝电话、智能手机、智能眼镜、膝上型电脑、个人数字助理、无绳电话、压力传感器、温度传感器、智能电表等设备。
本申请实施例中的终端可以为多卡终端,也可以为单卡终端,多卡终端也可称为多卡设备,还可称为多卡终端设备。在一些实施例中,多卡终端可以解释为多全球用户识别卡(multiple universal subscriber identity module,Multi-USIM或MUSIM),在一些实施例中,多 卡终端也可以解释为多通用移动通信系统(universal mobile telecommunications system,UMTS)用户识别卡(multiple UMTS subscriber identity module,Multi-USIM或MUSIM)。
多卡终端可以包括多个子设备,例如多卡终端可以安装有多个用户识别(subscriber identity module,SIM)卡、全球用户识别(universal subscriber identity module)卡等电话卡,每一张电话卡为一个子设备。多卡终端包括的子设备可以是具有无线通信功能的设备,在一些实施例中,子设备为UE。多卡终端包括的多个子设备可以分别注册到不同的网络,例如不同的接入网设备和/或不同的核心网设备。多卡终端包括的多个子设备可以共用射频发送链(transmission chain)和/或射频接收链(reception chain),其中射频发送链例如包括但不限于以下至少一项:天线、功率放大器、滤波器、发射调制器、包络追踪器、低噪声放大器、滤波器、天线开关、天线调谐器等,射频接收链例如包括但不限于以下至少一项:天线、滤波器、低噪声放大器、射频接口、天线开关、天线调谐器、包络追踪器等。可选地,任一时刻这多个子设备中仅有一个子设备能够使用共用的射频发送链和/或射频接收链进行通信,这多个子设备无法同时进行通信(发送信息和/或接收信息),例如多卡终端为安装有2张电话卡的智能手机,用户在任一时刻只能使用其中一张电话卡拨打或接听电话、上网等。
单卡终端是相对多卡终端的概念,单卡终端可以理解为是仅包括一个子设备,即单卡终端自身的终端,例如仅包括一张电话卡的智能手机,在一些实施例中,单卡终端为UE。
以下实施例以网络设备为基站,单卡终端为UE,多卡终端包括的任意一个子设备为UE为例进行说明。
请参见图1,图1是本申请实施例提供的一种通信系统的架构示意图。该通信系统可以但不限于是GSM,CDMA,宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),通用移动通信系统(universal mobile telecommunications system,UMTS),LTE,NR,或其他未来网络系统。
如图1所示,该通信系统可以包括UE110、UE120、基站210、基站220和基站230,在一些实施例中,UE110和UE120为不同的单卡终端,在另一些实施例中,UE110为单卡终端,UE120为多卡终端或者多卡终端包括的子设备,在另一些实施例中,UE110为多卡终端或者多卡终端包括的子设备,UE120为单卡终端,在另一些实施例中,UE110和UE120为同一个多卡终端包括的两个子设备,例如图1所示的多卡终端100包括UE110和UE120。
在一些实施例中,该通信系统还可以包括核心网,核心网为该通信系统中的关键控制节点,主要负责信令处理功能,例如但不限于用于实现接入控制、移动性管理、会话管理等功能。在一些实施例中,UE处于某个基站覆盖的小区内,即UE当前的服务小区对应该基站时,该基站可以为UE提供无线通信服务,可选地,UE可以和该基站传输上行数据和/或下行数据,可选地,UE可以通过该基站和核心网传输上行数据和/或下行数据,可选地,UE可以通过该基站和其他设备传输数据。
在一些实施例中,UE110和UE120可以分别注册到不同网络,如图1所示,UE110可以通过空中接口(如Uu)和基站210连接,基站210可以为UE110提供无线通信服务,UE120可以通过空中接口和基站220连接,基站220可以为UE120提供无线通信服务。
在一些实施例中,基站之间可以互相通信,如图1所示,基站210可以通过Xn接口和基站230通信,通过Xn接口传输的消息可以称为Xn接口消息。
示例性地,在NR中,核心网可以称为5G核心网(5G Core,5GC),基站可以称为gNB。至少一个gNB可以构成一个下一代无线接入网(next generation-radio access network,NG-RAN)节点。NG-RAN节点可以包括至少一个通过NG接口连接至5GC的gNB,并且,NG-RAN 节点中至少一个gNB可以通过Xn-C接口连接和通信。UE可以通过Uu接口连接gNB。
需要说明的是图1所示的UE和基站的形态和数量仅用于示例,本申请实施例对此不作限定。
为了方便理解,本申请实施例主要以LTE和/或NR为应用的通信系统为例进行说明。
接下来示例性地介绍NR的通信协议栈。
请参见图2,图2是一种NR的用户面协议栈的架构示意图。该用户面协议栈可以包括物理(physical,PHY)层、媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、服务数据适配协议(service data adaptation protocol,SDAP)层。
请参见图3,图3是一种NR的控制面协议栈的架构示意图。该控制面协议栈可以包括PHY层、MAC层、RLC层、PDCP层、无线资源控制(radio resource control,RRC)层、非接入层(non access stratum,NAS)。
相比LTE的用户面协议栈,NR的用户面协议栈新增了SDAP层,但其他层的架构是一致的,具体说明也类似,LTE较为成熟,不再赘述。
如图2和图3所示,PDCP层的下层包括RLC层。PDCP层可以处理控制面上的RRC消息,PDCP层可以进行IP包头压缩,以减少无线接口上传输的比特数。PDCP层还可以负责控制平面的加密、传输数据的完整性保护。在接收端,PDCP层执行相应的解密和解压缩操作。可以为每个无线承载配置一个PDCP实体。RLC层负责分割/级联、重传控制和重复检测等,RLC层为PDCP层提供服务,可以为每个无线承载配置一个RLC实体。MAC层控制逻辑信道的复用、混合自动重传请求的重传、上行链路和下行链路的调度等。MAC层以逻辑信道的形式为RLC层提供服务。PHY层负载管理编码/解码、调制/解调、多天线的映射以及其他类型的物理层功能,PHY层以传输信道的形式为MAC层提供服务。
如图2和图3所示,MAC层可以经由逻辑信道(logical channel,LCH)为较高层(如RLC层)提供服务。根据发送信息的类型,逻辑信道可以被分类为用于在控制面传输控制信息的控制信道和用于在用户面传输用户数据的业务信道。其中,控制信道可以包括但不限于公共控制信道(common control channel,CCCH)、专用控制信道(dedicated control channel,DCCH)。业务信道可以包括但不限于专用业务信道(dedicated traffic channel,DTCH)。CCCH可以一直存在,与RAN节点之间没有RRC连接的UE也可以使用CCCH传输信息。DCCH可以用于UE与RAN节点之间传输专用控制信息。DTCH可以用于UE与RAN节点之间传输用户数据。通常,DCCH和DTCH不会一直存在,而是在与UE连接的基站恢复UE上下文(UE context)之后,DCCH和DTCH才能用于UE和基站之间进行通信。其中,UE context包括但不限于终端的标识、无线承载(radio bearer,RB)相关配置、PDCP层的上下文或功能配置(例如完整性保护和加密的安全相关配置)、服务质量相关配置等。
RB可以为UE和RAN节点之间的连接格式集,可以包括物理信道、传输信道和逻辑信道的相关配置。RB可以分为用于在控制面传输控制信息的信令无线承载(signaling radio bearer,SRB)和用于在用户面传输用户数据的数据无线承载(data radio bearer,DRB)。一个DRB可以包括一个PDCP层的实体(简称PDCP实体)、一个RLC层的实体(简称RLC实体)和一个逻辑信道。
如图3所示,RRC层可以用于UE和基站之间传输RRC消息。例如但不限于,NR中的RRC恢复请求(RRCResumeRequest)可以用于UE请求恢复已经暂停的RRC连接,以此与基站传输数据。RRC层属于接入层(access stratum,AS)。
对于RRC层,目前存在三种UE的RRC状态,分别为RRC空闲(RRC IDLE)态、RRC非激活(RRC INACTIVE)态和RRC连接(RRC CONNECTED)态。UE在不同的RRC状态下,执行的操作大多不一样,这三种状态和转换过程具体可参见下图4的示例。
如图4所示,当UE处于RRC CONNECTED态时,UE与基站之间建立有RRC连接,在一些实施例中,当UE处于RRC CONNECTED态时,5GC和NG-RAN之间可以建立有UE的用户面和控制面的连接,NG-RAN和UE可以保留AS层的UE context,NG-RAN可以获取到UE所属小区,UE可以发送或接收单播数据,网络(例如NG-RAN)可以控制UE的移动性,示例性地,UE可以对与基站之间的信道进行测量,并可以将测量结果上报给基站,基站可以根据测量结果确定是否切换UE所属的小区。换句话说,在RRC CONNECTED态,UE和基站不仅能够正常的传输数据,基站也能够对UE进行管理。在一些实施例中,处于RRC CONNECTED态的UE若要向基站发送上行数据,需要根据时间提前(timing advance,TA)与基站保持同步。若处于RRC CONNECTED态的UE未获得上行同步,UE可以向基站发起随机接入(random access,RA)。其中,当UE的上行提前定时器(timing advance timer,TAT)保持运行时,UE保持上行同步。当UE的TAT超时时,UE的上行同步失效,如果UE需要向基站再发送上行数据时,则需要发起RA,通过RA获得新的TA。在一些实施例中,当UE处于RRC CONNECTED态时,基站可以为UE分配配置(configured grant,CG)资源。UE有数据传输需求时,可以使用CG资源向基站发送上行数据。在一些实施例中,基站可以通过RRC消息为UE配置CG资源,配置的信息可以包括时频位置和周期。相比动态调度传输资源,这种通过CG资源传输数据的方式可以减少信令开销和传输时延。
当没有上行资源但存在上行数据发送给基站时,处于RRC CONNECTED态的UE可以触发上报缓冲状态报告(buffer status reporting,BSR),以请求基站调度上行资源。BSR可以用于指示UE的数据缓存区(buffer)中当前待传输的数据量。该数据量在不同时刻可以不同,例如UE为智能手机,用户可以通过UE上安装的社交应用给其他用户发送消息,但用户在不同时刻发送的消息的类型和数量可以不同,有时候发送的消息可能仅为一条文字消息,有时候发送的消息可能包括多个视频。因此UE在不同时刻向基站发送的BSR的大小也可以不同。UE向基站发送BSR的资源(简称BSR资源)可以是基站动态调度给UE的。
当UE处于RRC IDLE态时,UE与基站之间未建立RRC连接。在一些实施例中,当UE处于RRC IDLE态时,UE可以进行公众陆地移动通信网络(public lands mobile network,PLMN)的选择,接收基站广播的系统信息,发生小区重选(cell re-selection),由5GC发起的用于下行传输的被叫寻呼(Paging),以及由NAS层配置用于核心网寻呼的不连续接收(discontinuous reception,DRX)等。
RRC INACTIVE态为NR中新增的RRC状态。在一些实施例中,对于数据传输不频繁的UE,基站通常会让该UE保持在RRC INACTIVE态。在一些实施例中,当UE处于RRC INACTIVE态时,UE可以进行PLMN的选择,接收基站广播的系统信息,发生小区重选,由NG-RAN发起被叫寻呼(Paging),由NG-RAN管理基于RAN的通知区域(RAN-based Notification Area,RNA),例如UE触发RNA更新(RNA update,RNAU),以通知基站UE当前所处的RNA,由NG-RAN配置用于RAN寻呼的DRX,5GC和NG-RAN之间可以建立有UE的用户面和控制面的连接,NG-RAN和UE可以保留AS层的UE context,以及NG-RAN可以获取到UE所在的RNA。在一些实施例中,若UE与基站建立了RRC连接之后,UE进入RRC CONNECTED态。RRC CONNECTED态下的UE在预设时间段内与基站没有数据传输的需求,则基站可以指示UE进入RRC_INACTIVE态。例如,基站可以向UE发送携带暂 停指示的RRC释放(RRCRelease with suspend indication)消息,UE接收到RRCRelease with suspend indication消息之后,UE保留自身的上下文,进入RRC INACTIVE态。
其中,在RRC层的上述三种状态可以互相转换,如图4所示,在一些实施例中,UE处于RRC IDLE态或RRC INACTIVE态(可以统称为非RRC连接态)时,若需要进行数据传输,则可以发起RRC连接建立过程或者RRC连接恢复过程。例如,处于RRC IDLE态的UE可以通过执行RA与基站建立RRC连接,具体为向基站发送RRC建立请求(RRCSetupRequest)消息,然后接收基站发送的RRC建立(RRCSetup)消息,UE接收到RRCSetup消息后可以和基站建立RRC连接,进入RRC CONNECTED态。例如,处于RRC INACTIVE态的UE可以向基站发送RRCResumeRequest消息,然后接收基站发送的RRC恢复(RRCResume)消息,UE接收到RRCResume消息后可以进入RRC CONNECTED态。在另一些实施例中,UE处于非RRC连接态时,也可以响应于基站的寻呼消息执行RRC连接建立过程或者RRC连接恢复过程,例如核心网可以在有数据传输给UE时,指示基站向UE发送寻呼消息。
在一些实施例中,UE可以在基站的指示下,从RRC CONNECTED态进入RRC INACTIVE态或RRC IDLE态。在一些实施例中,UE后续无需进行数据时,基站可以将UE释放以使UE进入RRC INACTIVE态或RRC IDLE态,具体示例如下所示。
示例一,UE在基站的指示下,从RRC CONNECTED态进入RRC INACTIVE态。详细地,基站可以向UE发送带有暂停指示的释放消息,例如RRCRelease with suspend indication消息,以使UE进入RRC INACTIVE态。此时,UE与基站之间的RRC连接会被暂停,但至少有一个RAN节点保留了该UE的UE context。
示例二,UE在基站的指示下,从RRC CONNECTED态进入RRC IDLE态。详细地,基站可以向UE发送释放消息,例如RRC释放(RRCRelease)消息,以使UE进入RRC IDLE态。此时,UE与基站之间的RRC连接会被停止,RAN节点会删除该UE的UE context。
在一些实施例中,UE也可以在基站的指示下,从RRC INACTIVE态进入RRC IDLE态,例如处于RRC INACTIVE态的UE发送RRC连接恢复请求后,基站可以将UE释放以使UE进入RRC IDLE态。可以理解地,相比从RRC IDLE态进入RRC CONNECTED态,UE从RRC INACTIVE态进入RRC CONNECTED态的速度更快。
在一些实施例中,UE处于RRC IDLE态或RRC INACTIVE态时,若需要进行数据传输,可以执行RRC连接建立过程或者RRC连接恢复过程,以请求进入RRC CONNECTED态传输数据,其中,如果处于RRC IDLE态或RRC INACTIVE的UE没有发送RRCSetupRequest消息或者RRCResumeRequest消息的资源时,UE需要发起随机接入(random access,RA)过程。接下来示例性介绍RA。
在一些实施例中,UE可以从基站广播的系统信息中获取当前小区的RA配置,例如,该配置包括可用的随机接入前导(random access preamble)和发送随机接入前导的RA资源,例如发送随机接入前导的RA资源为UE发送随机接入前导的时频资源,也可以称为随机接入时机(random access occasion,RO)。在一些实施例中,RA可以包括4步随机接入(简称4-step RA)和2步随机接入(简称2-step RA)。基站可以在系统信息中广播4-step RA对应的RA配置和2-step RA对应的RA配置,也可以在系统信息中只广播4-step RA对应的RA配置,还可以在系统信息中只广播2-step RA对应的RA配置。
在一些实施例中,基站可以在系统信息中广播4-step RA对应的RA配置和2-step RA对应的RA配置。当UE未配置有非竞争随机接入(contention free random access,CFRA)的资源时,UE可以基于当前测量的参考信号接收功率(reference signal receiving power,RSRP) 和预设的RSRP门限的相对大小,确定发起4-step RA或2-step RA。例如,当前测量的RSRP大于或等于预设的RSRP门限时,UE可以发起2-step RA。当前测量的RSRP小于预设的RSRP门限时,UE可以发起4-step RA。
其中,4-step RA的第三步中UE向基站发送的消息可以称为message 3,简称为msg3。在2-step RA的第一步中UE向基站发送的消息可以称为message A,简称msgA。在一些实施例中,上述msg3或msgA可以包括RRC消息。UE处于不同的RRC状态和在不同的业务场景下,该RRC消息可以不同。例如,处于RRC INACTIVE态的UE存在数据发送给基站时,UE向基站发送的msg3可以包括RRCResumeRequest消息,以此请求恢复已经暂停的RRC连接并进入RRC CONNECTED态与基站传输数据。
可以理解地,一般情况下,处于非RRC连接态的UE存在上行数据发送给基站,或,接收到基站发送的寻呼(Paging)消息,该寻呼消息用于基站指示存在下行数据发送给UE,UE需重新建立或恢复RRC连接并进入RRC CONNECTED态,在RRC CONNECTED态下再与基站传输数据。但是,上述方法比较适用于UE和基站之间传输的数据量较大的情况。若传输的数据包很小,可以称这类数据包为小包数据(small data),UE切换状态的过程所需的信令甚至大于小包数据,从而导致UE不必要的功耗和信令开销。因此,有必要在UE处于非RRC连接态时将小包数据传输给基站,例如处于RRC INACTIVE态的UE有上行小包数据的传输需求时,可以将上行小包数据传输给基站。
本申请实施例中,小包数据可以但不限于包括数据量小于预设门限(例如基站指示的传输块的大小)的数据包,数据标签为小包数据的数据包,数据类型属于小包数据的数据包等。非小包数据的数据包可以称为大包数据,可以但不限于包括数据量大于或等于预设门限的数据包,数据标签为大包数据的数据包,数据类型属于大包数据的数据包等。其中,上述数据标签和/或上述数据类型可以为UE和网络设备共同协商的。例如,数据标签可以包括大包数据和小包数据。例如,数据类型为心跳包的数据为小包数据,数据类型为文件、视频或音频的数据为大包数据。例如,小包数据为UE的应用程序(application,APP)的即时通讯消息,APP的心跳包或者APP的推送消息等。又例如,小包数据为智能手表等可穿戴设备的周期性数据(例如心跳包)等。又例如小包数据为物联网(internet of things,IoT)设备的业务数据等。又例如小包数据为工业无线传感器网络的周期性读数等。又例如小包数据为智能电表等智能仪表的周期性读数等。
在一些实施例中,上述UE处于非RRC连接态时将小包数据传输给基站可以包括,UE在RA过程中传输small data,而无需进入RRC CONNECTED态后再传输small data,上述传输过程可以称为基于RA的小包数据传输(small data transmission,SDT),简称RA-SDT。在一些实施例中,RA可以包括4-step RA和2-step RA,SDT也可以包括基于4-step RA的SDT(简称4-step SDT)和基于2-step RA的SDT(简称2-step SDT),4-step SDT的过程示例可参见下图5和图6,2-step SDT的过程示例可参见下图7和图8。其中,RA-SDT的实现方式和RA类似,例如,UE可以从基站广播的系统信息中获取RA-SDT的配置,UE可以基于当前测量的RSRP和预设的RSRP门限的相对大小,确定发起4-step SDT或2-step SDT。
在另一些实施例中,上述UE处于非RRC连接态时将小包数据传输给基站还可以包括,UE通过预先分配的CG资源或预配置上行资源(preconfigured uplink resource,PUR)传输small data,而无需进入RRC CONNECTED态后再传输small data,上述传输过程可以称为基于CG的SDT,简称CG-SDT,具体过程示例可参见下图9和图10。
在一些实施例中,SDT存在多个不同的应用场景,可以根据应用场景使用不同实现方式的SDT,例如RA-SDT或CG-SDT。具体示例如下所示:
示例一:CG-SDT中,CG-SDT配置所指示的资源(例如CG资源或PUR)是基站通过专用控制信令下发给UE的,因此CG-SDT配置适用于该基站覆盖的小区中的UE,在一个小区中提供的CG-SDT的配置不能被另一个小区中的UE重用,如果UE移动到其他的网络设备覆盖范围内,则CG-SDT配置所指示的资源不能再使用,可以基于这样的特性例如可以应用于以下场景:对于IoT的应用,UE的移动性有限,且通常在同一小区建立所有连接以发送数据,而很少改变小区,因此IoT领域中的UE可以优先采用CG-SDT。
示例二:RA-SDT的配置相关的RA的配置可以由基站发送的系统信息提供,每当UE重新选择到新小区时,UE可以读取和应用系统信息广播的配置,可以基于这样的特性例如可以应用于以下场景:对于智能手机的即时通信消息等应用,UE的移动性比较强,UE可能会从一个基站的覆盖范围内移动到另一个基站的覆盖范围内。如果UE从基站A的覆盖范围移动到基站B的覆盖范围,处于基站B的覆盖范围内时,采用移动前基站A发送的CG-SDT配置所指示的资源进行SDT,则无法传输数据,由于RA-SDT中发送随机接入前导的资源是基站实时广播的,因此,对于移动性较强的UE,可以优先采用RA-SDT。
当然,UE到底采用CG-SDT还是RA-SDT也可以不受场景的限制,可以基于UE的实现确定采用哪种方式进行SDT。
示例性地,由于进行CG-SDT的资源是基站为UE专门配置的,因此UE进行CG-SDT的成功率较高。RA-SDT的随机接入资源是网络设备广播的,能够接收到广播消息的UE都可以在随机接入资源上发起RA-SDT,多个UE会竞争资源,可能会导致竞争失败的情形,因此,RA-SDT的成功率没有CG-SDT的成功率高,CG-SDT比RA-SDT可能有效。通常情况下,UE优先选择CG-SDT,UE选择CG-SDT也需要满足一定的条件,如果不满足条件,则UE可以选择RA-SDT。例如,UE当前所处的普通上行载波(normal uplink,NUL)载波或者辅助上行(supplementary uplink,SUL)载波覆盖的范围内是否有CG-SDT配置所指示的资源,如果有CG-SDT配置所指示的资源,且CG-SDT配置所指示的资源中存在有效的资源的情况下,UE可以选择CG-SDT,否则选择RA-SDT。
在一些实施例中,基站为UE配置的RB可以包括用于承载小包数据的RB(简称SDT RB),以及用于承载大包数据的RB(简称非SDT RB(non-SDT RB)),RB可以包括用于承载数据的DRB和用于承载控制信息的SRB。只有通过SDT RB承载的小包数据到达时,UE才可以发起SDT,若通过non-SDT RB承载的大包数据到达时,UE无法发起SDT。
接下来示例性介绍SDT的传输过程。
请参见图5,图5示例性示出一种用户面下4-step SDT过程的流程示意图。图5所示过程可以包括但不限于以下步骤:
S111:UE向基站发送random access preamble。
在一些实施例中,基站可以向UE发送广播消息,广播消息包括第一资源配置信息,第一资源配置信息用于指示发送random access preamble的随机接入资源。可选地,第一资源配置信息具体可以指示用于发起正常随机接入的第一随机接入资源,可选地,第一资源配置信息具体可以指示用于在RA-SDT过程中发送random access preamble的第二随机接入资源。其中,random access preamble可以是UE按照特定的规则生成的,但是基站能够识别UE生成的random access preamble。
在一些实施例中,UE要进行RA-SDT发送的random access preamble可以与UE要发起 正常RA而不进行RA-SDT的random access preamble不同。也就是说,基站可以利用不同的random access preamble来区别UE的意图,如UE的意图是为了进行RA-SDT或者为了发起RA。
在另一些实施例中,UE要进行RA-SDT发送的random access preamble也可以与UE要发起正常RA而不进行RA-SDT的random access preamble相同。
在一些实施例中,如果第一资源配置信息具体指示用于发起正常随机接入的第一随机接入资源,以及用于在RA-SDT过程中发送random access preamble的第二随机接入资源。则UE可以基于不同的意图在不同的随机接入资源上发送random access preamble,这样,基站可以利用不同的接收random access preamble的资源来区别UE的意图。例如UE意图发起RA时,在第一随机接入资源上发送random access preamble,基站通过第一随机接入资源接收random access preamble时,可以确定UE的意图为发起RA。UE意图进行RA-SDT时,在第二随机接入资源上发送random access preamble,基站通过第二随机接入资源random access preamble时,可以确定UE的意图为进行RA-SDT。
在另一些实施例中,UE要进行RA-SDT发送random access preamble的随机接入资源也可以与UE要发起正常RA而不进行RA-SDT的随机接入资源相同。
S112:响应于random access preamble,基站向UE发送随机接入响应(random access response,RAR)。
具体地,UE向基站发送random access preamble后,可以在RAR时间窗内监听物理下行控制信道(physical downlink control channel,PDCCH),以接收基站发送的RAR。若UE在RAR时间窗内未接收到基站发送的RAR,UE可以确定此次RA失败。RAR用于为UE调度上行资源(uplink grant,UL grant),以使UE可以在RAR调度的资源上发送msg3(包括S113中的RRC请求消息)。
在一些实施例中,RAR还可以包括临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)和时间提前量(timing advance,TA)中的至少一种。TA用于UE获知上行同步。
S113:UE在RAR调度的资源上向基站发送上行小包数据和RRC请求消息。
在一些实施例中,RRC请求消息可以携带意图信息,该意图信息用于指示UE发送RRC请求消息的意图,如UE的意图是为了进行RA-SDT或者为了发起RA。示例性地,如果UE要发起RA-SDT发送的random access preamble与UE发起正常RA而不进行RA-SDT的random access preamble相同,或者UE要发起RA-SDT发送random access preamble的随机接入资源与UE要发起正常RA而不进行RA-SDT所传输random access preamble的随机接入资源相同,UE要进行RA-SDT发送的RRC请求消息可以携带意图信息,该意图信息用于指示UE想要发起RA-SDT的意图,而不是发起正常的RA的意图。
在另一些实施例中,UE可以在向基站发送msg3时发送BSR,基站可以通过UE发送的BSR获取到UE的意图,如UE的意图是为了进行RA-SDT或者为了发起RA。示例性地,UE要进行RA-SDT发送的random access preamble与UE要发起正常RA而不进行RA-SDT的random access preamble相同,UE要进行RA-SDT发送random access preamble的随机接入资源也可以与UE要发起正常RA而不进行RA-SDT的随机接入资源相同,如果UE要进行RA-SDT,可以在向基站发送msg3时发送BSR,该BSR用于指示小包数据的数据量,基站可以通过接收的BSR获取到UE的意图是发起RA-SDT,而不是发起正常的RA。
在一些实施例中,UE处于不同的RRC状态和在不同的业务场景下,msg3中的RRC请 求消息可以不同。例如,处于RRC IDLE态的UE(可选地,此时UE可以存储有用于获取加密上述上行小包数据的密钥的配置信息等UE上下文,或者终端还可以未存储其上下文)发送的RRC请求消息可以包括RRC连接请求(RRCConnectionRequest)消息、RRC连接恢复请求(RRCConnectionResumeRequest)消息、RRC数据早传请求(RRCEarlyDataRequest)消息、RRCResumeRequest消息、RRCResumeRequest1消息、RRCSetupRequest消息或其他具有相同功能但第三代合作伙伴计划(3rd generation partnership project,3GPP)未标准化的RRC消息。处于RRC INACTIVE态的UE发送的RRC请求消息可以是RRCConnectionRequest消息、RRCConnectionResumeRequest消息、RRCEarlyDataRequest消息、RRCResumeRequest消息、RRCResumeRequest1消息、RRCSetupRequest消息或其他具有相同功能但3GPP未标准化的RRC消息。
在一些实施例中,UE可以向基站发送上行小包数据和RRC请求消息,以发起用于4-step SDT的RRC连接恢复过程,在一些实施例中,用于发起用于4-step SDT的RRC连接恢复过程的RRC请求消息包括恢复原因(resumeCause)的信息元素(information element,IE),resumeCause IE可以被设置为mo-data。
在一些实施例中,UE先初始化用于SDT的RRC连接恢复过程,然后再基于4-step SDT向基站发送RRC请求消息。在一些实施例中,msg3可以包括UE的标识,例如UE在核心网处的唯一标识。在一些实施例中,msg3可以包括UE上一个连接的基站的相关信息,例如非激活态无线网络临时标识(inactive temporary cell radio network temporary identifier,I-RNTI)。在一些实施例中,msg3可以包括用于加密和完整性保护的信息。
在一些实施例中,上述上行小包数据可以在DTCH上传输,上述RRC消息可以在CCCH上传输。MAC层可以将小包数据和RRC请求消息进行封装,通过PHY层发送给基站。
S114:基站接收到RRC请求消息后,向UE发送竞争解决(contention resolution)消息。
在一些实施例中,基站接收到上行小包数据和RRC请求消息后,可以恢复UE上下文,并将接收到的上述上行小包数据发送给核心网。
在一些实施例中,contention resolution消息实际为竞争解决标识媒体接入层控制单元(contention resolution Identity MAC control element,contention resolution Identity MAC CE),contention resolution Identity MAC CE可以指示UE竞争解决成功。在一些实施例中,UE可以判断contention resolution Identity MAC CE和S113发送的msg3是否一致,若一致则确定当前RA-SDT过程对应的竞争解决成功,或者确定当前RA-SDT过程成功。
S115:基站向UE发送RRC响应消息。
在一些实施例中,若核心网存在下行小包数据发送给UE,核心网可以向基站发送下行小包数据。然后,基站可以在发送RRC响应消息时将下行小包数据一起发送给UE。其中,下行小包数据可以在DTCH上传输,并与在DCCH上传输的RRC响应消息在MAC层多路复用。
在一些实施例中,UE可以根据RRC响应消息确定上行小包数据是否传输成功,具体示例如下所示:
示例一:基站发送的RRC响应消息为RRC连接释放(RRCConnectionRelease)消息、RRC连接恢复(RRCConnectionResume)消息、RRC连接建立(RRCConnectionSetup)消息、RRCRelease消息、RRCResume消息或RRCSetup消息或其他具有相同功能但3GPP未标准化的RRC消息。UE接收到上述RRC响应消息的情况下,可以确定此次SDT传输成功。
示例二:基站发送的RRC响应消息为RRC连接拒绝(RRCConnectionReject)消息、RRC 拒绝(RRCReject)消息或其他具有相同功能但3GPP未标准化的RRC消息。UE接收到上述RRC响应消息的情况下,可以确定此次SDT传输失败。
在一些实施例中,UE可以根据RRC响应消息保持在当前的RRC状态或者进入其他RRC状态,具体示例如下所示:
示例一:若核心网没有进一步传输数据的需求,基站发送的RRC响应消息为RRC数据早传完成(RRCEarlyDataComplete)消息、RRCConnectionRelease消息、带有暂停配置的RRC释放(RRCRelease with suspend config)消息、RRCRelease消息或其他具有相同功能但3GPP未标准化的RRC消息。UE接收到上述RRC响应消息的情况下,可以认为此次SDT传输过程成功。并且,UE可以响应于上述RRC响应消息,保持在当前的非RRC连接态。可选地,上述RRC响应消息(如RRCRelease消息)可以包括UE下一次发起SDT的相关配置,例如,UE加密小包数据的下一跳链计算(next hop chaining count,NCC)和I-RNTI。
示例二:若核心网有进一步传输数据的需求,核心网可以触发连接建立的指示过程,基站发送的上述RRC响应消息为RRCConnectionSetup消息、RRCConnectionResume消息、RRCSetup消息、RRCResume消息或其他具有相同功能但3GPP未标准化的RRC消息。UE接收到上述RRC响应消息的情况下,可以认为此次SDT传输过程成功。并且,UE可以响应于上述RRC响应消息,进入RRC CONNECTED态。
在一些实施例中,若UE没有接收到S115中的RRC响应消息,则认为S113中小包数据传输失败。若UE接收到S115中的RRC响应消息,则认为S113中的小包数据传输成功。也就是说,UE可以利用是否接收到RRC响应消息,判断S113中的小包数据是否传输成功。
需要说明的是,上述核心网是否有进一步传输数据的需求,不包括基站在S115中发送下行小包数据的需求。
请参见图6,图6示例性示出一种控制面下4-step SDT过程的流程示意图。图6所示过程可以包括但不限于以下步骤:
S121:UE向基站发送random access preamble。
S122:响应于random access preamble,基站向UE发送RAR。
具体地,S121-S122和图5的S111-S112类似,不再赘述。
S123:UE在RAR调度的资源上向基站发送携带上行小包数据的RRC请求消息。
具体地,S123和图5的S113类似,区别在于,上行小包数据不是和msg3一起在MAC层封装后发送的,而是携带于msg3中发送的,在一些实施例中,上述上行小包数据可以携带于msg3中并在CCCH上传输。例如,上述上行小包数据可以携带于RRCEarlyDataRequest消息包含的NAS层相关的IE(如专用信息NAS(dedicatedInfoNAS)IE)中,并在CCCH上传输。
S124:基站接收到RRC请求消息后,向UE发送contention resolution消息。
具体地,S124和图5的S114类似,区别在于,基站接收到的RRC请求消息包括上行小包数据,在一些实施例中,基站可以通过上述携带上行小包数据的msg3向核心网发送上述上行小包数据。例如,基站可以通过转发上述msg3包含的NAS层相关的IE向核心网发送上述上行小包数据。
S125:基站向UE发送RRC响应消息。
具体地,S125和图5的S115类似,不再赘述。
图5和图6以UE在存在上行小包数据发送给基站的情况下执行S111和/或S121,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在基站的指示下 被动发起小包数据的传输过程的情况,例如,LTE中的终端终止(mobile terminated,MT)EDT(简称MT-EDT)。该情况的传输过程与图5和图6所示的传输过程类似,区别之处具体如下所述:
在S111之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。在一些实施例中,该寻呼消息可以携带下行小包数据的数据量信息。在一些实施例中,基站可以向UE发送寻呼消息,UE基于当前测量的RSRP和预设的RSRP门限的相对大小,确定发起4-step SDT,示例性地,基站可以根据该寻呼消息触发MT-EDT,并向UE发送携带MT-EDT指示的寻呼消息,以使UE触发用于MT-EDT的MO-EDT。其中,与上述UE主动发起小包数据的传输过程不同的是:在S113中,UE可以仅发送RRC消息给基站,不发送上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,基站可以接收核心网发送的下行小包数据,S115中基站可以向UE发送RRC响应消息和下行小包数据。
类似地,在S121之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。在一些实施例中,该寻呼消息可以携带下行小包数据的数据量信息。在一些实施例中,基站可以向UE发送寻呼消息,UE基于当前测量的RSRP和预设的RSRP门限的相对大小,确定发起4-step SDT,其中,与上述UE主动发起小包数据的传输过程不同的是:S123中UE向基站发送的RRC消息可以未携带上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,基站可以接收核心网发送的下行小包数据。S125中基站向UE发送的RRC响应消息中可以携带有下行小包数据。
请参见图7,图7示例性示出一种用户面下2-step SDT过程的流程示意图。图7所示过程可以包括但不限于以下步骤:
S211:UE向基站发送random access preamble,RRC请求消息和上行小包数据。
在一些实施例中,UE执行S211的传输资源可以通过基站广播的信息获得,例如,UE可以使用基站广播的RA资源发送random access preamble,UE可以使用基站广播的PUSCH资源发送RRC请求消息。
在一些实施例中,基站可以利用不同的random access preamble来区别UE的意图,在另一些实施例中,基站可以利用不同的接收random access preamble的资源来区别UE的意图,在另一些实施例中,基站可以通过UE发送的BSR获取到UE的意图,在另一些实施例中,RRC请求消息可以携带意图信息,该意图信息用于指示UE发送RRC请求消息的意图,如UE的意图是为了进行RA-SDT或者为了发起RA,具体可参见上图5中S111和S113的示例,不再赘述。
在一些实施例中,UE处于不同的RRC状态和在不同的业务场景下,上述msgA中的RRC请求消息可以不同,具体可参见上图5中msg3中的RRC请求消息的示例,不再赘述。
在一些实施例中,上述RRC请求消息和上行小包数据可以携带于物理上行共享信道(physical uplink share channel,PUSCH)负载中。上述上行小包数据可以在DTCH上传输,上述RRC消息可以在CCCH上传输。MAC层可以将小包数据和RRC请求消息进行封装,通过PHY层发送给基站。
在一些实施例中,UE可以向基站发送上行小包数据和RRC请求消息,以发起用于2-step SDT的RRC连接恢复过程,在一些实施例中,用于发起用于2-step SDT的RRC连接恢复过程的RRC请求消息中,resumeCause IE可以被设置为mo-data。
在一些实施例中,UE先初始化用于SDT的RRC连接恢复过程,然后再基于2-step SDT 向基站发送RRC请求消息。
其中,RRC请求消息和上行小包数据的说明可参见上图5的S113中RRC请求消息和上行小包数据的说明,不再赘述。
S212:基站接收到RRC请求消息后,向UE发送消息B。
在一些实施例中,基站接收到上行小包数据和RRC请求消息后,可以恢复UE上下文,并将接收到的上述上行小包数据发送给核心网。
在一些实施例中,在2-step RA的第二步中基站向UE发送的消息可以称为消息B(message B),简称msgB。msgB可以理解为是在2-step SDT过程中对应msgA的响应。在一些实施例中,msgB可以包括用于contention resolution、回退指示(fallback indication)或者退避指示(backoff indication)的响应,例如,msgB包括退避指示器(backoff Indicator)、成功RAR(successRAR)或回退RAR(fallbackRAR)。
在一些实施例中,msgB包括successRAR,successRAR包括contention resolution字段,例如contention resolution MAC CE包括的内容,UE接收到successRAR,则确定当前RA-SDT过程对应的竞争解决成功,或者确定当前RA-SDT过程成功。可选地,successRAR中的contention resolution字段可以指示UE竞争解决成功,可选地,UE可以判断successRAR中的contention resolution字段和S211发送的msgA是否一致,若一致则确定当前RA-SDT过程对应的竞争解决成功,或者确定当前RA-SDT过程成功。在另一些实施例中,msgB包括fallbackRAR,UE接收到fallbackRAR后,再次向基站发送msg3和上行小包数据。
S213:基站向UE发送RRC响应消息。
在一些实施例中,若核心网存在下行小包数据发送给UE,核心网可以向基站发送下行小包数据。然后,基站可以在发送RRC响应消息时将下行小包数据一起发送给UE。
其中,RRC响应消息的说明可参见上图5的S115中RRC响应消息的说明,不再赘述。
请参见图8,图8示例性示出一种控制面下2-step SDT过程的流程示意图。图8所示过程可以包括但不限于以下步骤:
S221:UE向基站发送random access preamble,以及携带上行小包数据的RRC请求消息。
具体地,S221和图7的S211类似,区别在于,上行小包数据不是和msgA中的RRC请求消息一起发送的,而是携带于msgA中的RRC请求消息中发送的,在一些实施例中,携带上行小包数据的RRC请求消息可以携带于物理上行共享信道(physical uplink share channel,PUSCH)负载中,并可以在CCCH上传输。
S222:基站接收到RRC请求消息后,向UE发送msgB。
具体地,S222和图7的S212类似,区别在于,基站接收到的RRC请求消息包括上行小包数据,在一些实施例中,基站可以通过上述携带上行小包数据的RRC请求消息向核心网发送上述上行小包数据。例如,基站可以通过转发携带上行小包数据的RRCResumeRequest消息向核心网发送上述上行小包数据。
S223:基站向UE发送RRC响应消息。
具体地,S223和图7的S213类似,不再赘述。
图7和图8以UE在存在上行小包数据发送给基站的情况下执行S211和/或S221,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在基站的指示下被动发起小包数据的传输过程的情况。该情况的传输过程与图7和图8所示的传输过程类似,区别之处具体如下所述:
在S211之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。 在一些实施例中,该寻呼消息可以携带下行小包数据的数据量信息。在一些实施例中,基站可以向UE发送寻呼消息,UE基于当前测量的RSRP和预设的RSRP门限的相对大小,确定发起2-step SDT,示例性地,基站可以根据该寻呼消息触发MT-EDT,并向UE发送携带MT-EDT指示的寻呼消息,以使UE触发用于MT-EDT的MO-EDT。其中,与上述UE主动发起小包数据的传输过程不同的是:在S211中,UE可以仅发送random access preamble和RRC请求消息给基站,不发送上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,基站可以接收核心网发送的下行小包数据,S213中基站可以向UE发送RRC响应消息和下行小包数据。
类似地,在S221之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。在一些实施例中,该寻呼消息可以携带下行小包数据的数据量信息。在一些实施例中,基站可以向UE发送寻呼消息,UE基于当前测量的RSRP和预设的RSRP门限的相对大小,确定发起2-step SDT,其中,与上述UE主动发起小包数据的传输过程不同的是:S221中UE向基站发送的RRC消息可以未携带上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,基站可以接收核心网发送的下行小包数据。S223中基站向UE发送的RRC响应消息中可以携带有下行小包数据。
不限于上述所示示例,在另一些实施例中,基站也可以将msgB和RRC响应消息一起发送给UE。
在一些实施例中,UE发起RA-SDT后,无法通过发送一次msg3或者msgA完成small data的传输,UE可以通过后续传输(subsequent transmission)完成后续small data的传输,其中subsequent transmission可以在UE接收到contention resolution之后,基站向UE发送RRC响应消息之前执行,例如上图5中S114和S115之间,上图7中S212和S213之间。具体示例如下所示:
示例一:UE当前发起的RA-SDT用于传输一个small data(例如一条即时通讯消息),当UE发起4-step SDT时,基站在RAR中指示的UL grant小于传输small data和RRC请求消息的资源之和,或者当UE发起2-step SDT时,UE从广播消息中获取的传输资源小于传输random access preamble、small data和RRC请求消息的资源之和。在这种情况下,UE可以先通过msg3或者msgA发送small data的部分数据,然后在subsequent transmission阶段传输small data剩余的数据,例如基站可以在向UE发送contention resolution后,可以为UE动态调度上行资源来进行subsequent transmission。
示例二:UE当前发起的RA-SDT用于传输多个small data,当small data到达后,UE可以发起4-step SDT或者2-step SDT,通过msg3或msgA传输small data,但在此次SDT过程中,UE又获取新的small data,则UE可以在subsequent transmission阶段传输新的small data,例如基站可以在向UE发送contention resolution后,可以为UE动态调度上行资源来进行subsequent transmission。
请参见图9,图9示例性示出一种用户面下CG-SDT过程的流程示意图。图9所示过程可以包括但不限于以下步骤:
S311:UE在预先配置的资源上向基站发送RRC请求消息和上行小包数据。
示例性地,预先配置的资源为配置资源类型一(configured grants type 1,CG Type 1)或PUR。其中,CG Type 1可以是由RRC层直接配置的上行资源,可以包括但不限于该上行资源的时频资源位置以及资源周期。
在一些实施例中,当基站和UE均支持CG-SDT,并且UE满足使用CG-SDT的条件时,UE可以执行S311而不必执行RA。使用CG-SDT的条件例如包括:UE处于非RRC连接态,UE有上行小包数据的传输需求,UE有预先配置的资源,满足RSRP条件,以及具有有效的TA。
在一些实施例中,UE确定使用CG-SDT的条件包括以下至少一项:
条件一:TAT运行,即UE的TA有效,UE与基站处于上行同步状态,可以表示CG-SDT有效,否则无效。
条件二:在TAT运行的前提下,UE当前的RSRP大于预设的第一RSRP门限(简称为RSRP 1),可以表示CG-SDT有效。可选地,该RSRP1可以为UE可以发起SDT传输的RSRP。也就是说,UE当前的RSRP大于预设的RSRP 1表示UE离基站较近,信道质量较好,如果进行CG-SDT,则成功率较高,CG-SDT有效。UE当前的RSRP小于或等于预设的RSRP 1表示UE离基站较远,信道质量差,如果进行CG-SDT,则成功率较低。其中,RSRP 1可以为基站为CG-SDT和RA-SDT共同配置的。
条件三:在上次TA有效的预设时间段内,UE的RSRP的增加量或者减少量小于或等于预设的第二RSRP门限(简称为RSRP 2),可以表示CG-SDT有效。也就是说,可以根据UE的RSRP的增加量或者减少量确定UE是否发生移动,如果RSRP的增加量或者减少量大于或等于RSRP 2,则表示相对于上次TA有效的时段内,UE发生移动或者移动距离较大,如果进行CG-SDT,则成功率较低,CG-SDT无效。如果RSRP的增加量或者减少量小于RSRP2,则表示相对于上次TA有效的时段内,UE没有移动或者移动距离较小,如果进行CG-SDT,则成功率较高,CG-SDT有效。
条件四:若基站在SUL和/或NUL上配置CG-SDT,则UE需要比较当前的RSRP与基站预设的第三RSRP门限(简称RSRP 3),从而确定SUL上配置的CG-SDT有效还是NUL上配置的CG-SDT有效。可选地,假设SUL和NUL上均配置了CG-SDT,则UE将当前的RSRP与RSRP 3比较,若当前的RSRP小于RSRP 3则选择SUL上的CG-SDT,若当前的RSRP大于或等于RSRP 3则选择NUL上的CG-SDT。也就是说,基站在SUL和NUL上都配置了CG-SDT的情况下,如果UE当前的RSRP小于RSRP 3,则表示UE离基站较远,应采用SUL上配置的CG-SDT,也即SUL上的CG-SDT有效,NUL上的CG-SDT无效。如果UE当前的RSRP大于或等于RSRP 3,则表示UE离基站较近,应采用NUL上配置的CG-SDT,也即NUL上的CG-SDT有效,SUL上的CG-SDT无效。可选地,假设基站仅在SUL上配置CG-SDT,则UE将当前的RSRP与RSRP 3比较,若当前的RSRP小于RSRP 3则选择SUL上的CG-SDT,此时CG-SDT有效,若当前的RSRP大于或等于RSRP 3则无法使用CG-SDT,即SUL上的CG-SDT无效,也就是说基站配置了在SUL上的CG-SDT,UE离基站比较远的情况下,可以利用SUL上的CG-SDT,否则SUL上的CG-SDT无效。可选地,假设基站仅在NUL上配置CG-SDT,则UE将当前的RSRP与RSRP 3比较,若当前的RSRP小于RSRP 3则无法使用CG SDT,若当前的RSRP大于或等于RSRP 3则选择NUL上的CGSDT,即NUL上的CG-SDT有效,也就是说基站配置了在NUL上的CG-SDT,UE离基站比较近的情况下,可以利用NUL上的CG-SDT,否则NUL上的CG-SDT无效。
条件五:UE处于基站覆盖的范围,且该基站为UE配置过用于CG-SDT的CG资源。
在一些实施例中,在S311之前,UE还可以向基站请求配置用于发起CG-SDT的预配置资源。例如,UE在RRC CONNECTED态向基站发送CG-SDT资源请求消息。CG-SDT资源请求消息用于向基站请求进行CG-SDT的配置。例如LTE中,UE向基站发送PUR请求配置 信息(PURConfigurationRequest)消息。
可选地,UE可以在RRC CONNECTED态下的任意时刻可以向基站发送CG-SDT资源请求消息。可选地,UE在RRC CONNECTED态下可以确定未来可能会有小包数据,则可以向基站发送CG-SDT资源请求消息。可选地,UE处于RRC CONNECTED态,UE在预设的时间段内与基站没有传输数据的需求,UE确定自身可能即将进入非RRC连接态,为了在非RRC连接态传输小包数据,则UE可以向基站发送CG-SDT资源请求消息。
在一些实施例中,基站接收到请求配置信息(例如CG-SDT资源请求消息或PURConfigurationRequest消息)后,当基站指示UE从RRC CONNECTED态切换为非RRC连接态时,基站向UE发送的RRC响应消息可以携带有详细的CG-SDT的配置信息。例如,基站指示UE从RRC CONNECTED态切换为RRC INACTIVE态时,上述RRC响应消息为RRCRelease消息,RRCRelease消息可以携带详细的CG资源的配置信息。例如,基站指示UE从RRC CONNECTED态切换为RRC IDLE态时,上述RRC响应消息为RRCRelease消息,RRCRelease消息可以携带详细的PUR的配置信息。
不限于上述列举的情况,在另一些实施例中,基站为UE配置了CG-SDT后,可以向UE发送携带释放指示信息的RRC响应消息,以释放配置的CG-SDT。例如,RRCRelease消息可以携带CG资源的释放指示信息。例如,RRCConnectionRelease消息可以携带PUR的释放指示信息。
在另一些实施例中,UE也可以不向网络设备发送CG-SDT资源请求消息,网络设备可以直接为UE配置CG-SDT资源,例如网络设备可以参考UE历史的通信业务情况,为UE配置CG-SDT资源。
在一些实施例中,UE可以向基站发送上行小包数据和RRC请求消息,以发起用于CG-SDT的RRC连接恢复过程,在一些实施例中,用于发起用于CG-SDT的RRC连接恢复过程的RRC请求消息中,resumeCause IE可以被设置为mo-data。
在一些实施例中,UE先初始化用于SDT的RRC连接恢复过程,然后再基于CG-SDT向基站发送RRC请求消息。
不限于上述示例的情况,在另一些实施例中,UE在进行CG-SDT的过程中可以仅发送小包数据,例如,对于CG-SDT配置所指示的资源是网络设备配置给UE的特有的资源,非共享资源,则UE进行CG-SDT的过程中可以在CG-SDT配置所指示的资源仅发送小包数据。这样,网络设备可以根据接收小包数据的资源识别出来发送小包数据的UE。又例如,若CG-SDT配置所指示的资源是网络设备配置给多个UE的共享资源,则UE进行SDT的过程中可以在CG-SDT配置所指示的资源上发送小包数据和RRC请求消息,这样,网络设备可以利用RRC消息识别UE。
其中,RRC请求消息和上行小包数据的说明可参见上图5的S113中RRC请求消息和上行小包数据的说明,不再赘述。
S312:基站向UE发送反馈响应消息。
在一些实施例中,基站响应于UE发送的RRC请求消息,向UE发送反馈响应消息。在一些实施例中,反馈响应消息用于指示RRC请求消息传输成功,在一些实施例中,反馈响应消息用于指示RRC请求消息以及与RRC请求消息一起发送的上行小包数据传输成功,在一些实施例中,反馈响应消息用于指示上行小包数据传输成功。
在一些实施例中,反馈响应消息为层一确认消息(Layer 1 Acknowledgement,Layer 1 Ack),即物理层ACK。
在一些实施例中,反馈响应消息为下行反馈信息(downlink feedback information,DFI),即CG-DFI。
在一些实施例中,反馈响应消息为MAC层的MAC CE。
在一些实施例中,反馈响应消息为RRC层的RRC消息。
S313:基站向UE发送RRC响应消息。
在一些实施例中,若核心网存在下行小包数据发送给UE,核心网可以向基站发送下行小包数据。然后,基站可以在发送RRC响应消息时将下行小包数据一起发送给UE。
其中,RRC响应消息的说明可参见上图5的S115中RRC响应消息的说明,不再赘述。
在一些实施例中,RRC响应消息可以包括CG-SDT配置,例如,S311中的CG-SDT配置用于UE传输S311中的小包数据,S313中RRC响应消息指示的CG-SDT配置用于UE下次传输小包数据。
在一些实施例中,当S312中反馈响应消息为RRC层的RRC消息时,S312中的反馈响应消息与S313中的RRC响应消息可以为同一条消息,也就是说,上述反馈响应消息可以为上述RRC响应消息,即S312与S313为同一个步骤。
请参见图10,图10示例性示出一种控制面下CG-SDT过程的流程示意图。图10所示过程可以包括但不限于以下步骤:
S321:UE在预先配置的资源上向基站发送携带上行小包数据的RRC请求消息。
具体地,S321和图9的S311类似,区别在于,上行小包数据不是和RRC请求消息一起发送的,而是携带于RRC请求消息中发送的。
S322:基站向UE发送反馈响应消息。
S323:基站向UE发送RRC响应消息。
具体地,S322-S323和图9的S312-S313类似,不再赘述。
图9和图10以UE在存在上行小包数据发送给基站的情况下执行S311和/或S321,即UE主动发起小包数据的传输过程为例进行说明。但在具体实现中,还存在UE在基站的指示下被动发起小包数据的传输过程的情况。该情况的传输过程与图9和图10所示的传输过程类似,区别之处具体如下所述:
在S311之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。在一些实施例中,该寻呼消息可以携带下行小包数据的数据量信息。在一些实施例中,基站可以向UE发送寻呼消息,以使UE发起CG-SDT。其中,与上述UE主动发起小包数据的传输过程不同的是:在S311中,UE可以仅发送RRC请求消息给基站,不发送上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,基站可以接收核心网发送的下行小包数据,S313中基站可以向UE发送RRC响应消息和下行小包数据。
类似地,在S321之前,当核心网存在下行小包数据发送给UE,核心网可以向基站发送寻呼消息。在一些实施例中,该寻呼消息可以携带下行小包数据的数据量信息。在一些实施例中,基站可以向UE发送寻呼消息,以使UE发起CG-SDT。其中,与上述UE主动发起小包数据的传输过程不同的是:S321中UE向基站发送的RRC消息可以未携带上行小包数据,可选地,还可以携带触发MT-EDT的原因信息。相应地,基站可以接收核心网发送的下行小包数据。S323中基站向UE发送的RRC响应消息中可以携带有下行小包数据。
在一种可能的实现方式中,处于非RRC连接态(如RRC INACTIVE态)的UE当前服务小区对应的网络设备没有保存该UE的上下文,该网络设备可以称为服务设备,该UE的 上下文保存在其他网络设备(可称为锚点设备)中。在一些实施例中,锚点设备可以维护一个或多个处于非RRC连接态的UE的上下文,在另一些实施例中,锚点设备可以维护一个或多个处于RRC INACTIVE态的UE的PDCP上下文或功能(例如完整性保护和加密的安全相关配置)。在一些实施例中,锚点设备可以是处于非RRC连接态的UE最近一次处于RRC CONNECTED态时连接的网络设备,在另一些实施例中,锚点设备可以是处于非RRC连接态的UE最近一次处于RRC CONNECTED态时,向该UE发送RRCRelease消息的网络设备。锚点设备例如为NG-RAN节点、基站等网络设备。
以下实施例以服务设备为服务基站,锚点设备为锚点基站为例进行说明。
在一些实施例中,UE可以离开存储有该UE的上下文的锚点基站的覆盖范围,移动至其他服务基站下,在其他服务基站下发起SDT,例如对于移动性较频繁的UE,移动到服务基站下后,处于RRC INACTIVE态的UE在有SDT传输需求时,可以在当前服务基站下发起RA-SDT。若锚点基站未将该UE的上下文发送给服务基站,则锚点基站的角色不变,若锚点基站将该UE的上下文发送给服务基站,则该服务基站成为该UE的锚点基站。例如,UE1处于基站1的覆盖范围内时,基站1存储有UE1的上下文,当UE1移动离开基站1的覆盖范围并进入基站2的覆盖范围内时,基站2为UE1的服务基站,若基站1未将UE1的上下文发送给基站2,则基站1的角色不变,仍为UE1的锚点基站。当UE1再次移动离开基站2的覆盖范围并进入基站3的覆盖范围内时,基站3为UE1的服务基站,若基站1未将UE1的上下文发送给基站3,则基站1的角色不变,仍为UE1的锚点基站,但若基站1将UE1的上下文发送给基站3,则基站1不再为UE1的锚点基站,基站3成为UE1的锚点基站。可以理解的是,除了存储有UE的上下文的锚点基站外,其他基站均可以作为该UE的服务基站。
示例性地,在NR中,锚点基站可以称为锚点gNB(anchor gNB),也可称为上一个服务gNB(last serving gNB),还可称为老gNB(old gNB)。服务基站可以称为新服务gNB(new serving gNB),也可称为当前服务gNB(current serving gNB),还可称为新gNB(new gNB)。
为了简化描述,以下实施例将锚点基站简称为老站,服务基站简称为新站进行说明。
其中,UE在新站下发起SDT(如RA-SDT)时,新站可以通过执行锚点迁移(anchor relocation)来获取UE的上下文,在一些实施例中,老站决定执行anchor relocation,新站可以从老站处获取到UE的上下文,具体流程示例可参见下图11,在另一些实施例中,老站决定不执行anchor relocation,新站无法从老站处获取到UE的上下文,具体流程示例可参见下图12。
请参见图11,图11示例性示出一种anchor relocation过程的流程示意图。图11所示过程可以包括但不限于以下步骤:
S411:UE向新站发送RRC请求消息。
具体地,UE在新站下发起SDT时,可以向新站发送RRC请求消息,例如发起RA-SDT时发送RRCResumeRequest消息,RRC请求消息的示例可参见上图5-图10所示的SDT过程中的RRC请求消息,不限于此,也可以是其他用于发起SDT的RRC消息。
S412:新站向老站发送第一Xn接口消息。
在一些实施例中,新站可以通过Xn接口向老站发送第一Xn接口消息,来请求获取UE的上下文。
在一些实施例中,第一Xn接口消息为获取UE上下文请求(RetrieveUEContextRequest)消息。
在一些实施例中,UE向新站发送的RRC请求消息包括老站的信息,新站可以通过RRC 请求消息获取到老站的信息,例如,新站可以根据RRCResumeRequest消息中携带的I-RNTI,获取到老站的信息。
S413:老站响应于新站发送的第一Xn接口消息,向新站发送第二Xn接口消息。
在一些实施例中,老站可以响应于新站获取UE的上下文的请求,通过Xn接口向新站发送第二Xn接口消息。
在一些实施例中,当老站决定执行anchor relocation(也可理解为当老站决定更换锚点基站)时,老站可以通过Xn接口向新站发送第二Xn接口消息。可选地,第二Xn接口消息可以包括该UE的上下文。
在一些实施例中,第二Xn接口消息为获取UE上下文响应(RetrieveUEContextResponse)消息。S414:新站向核心网设备发送路径切换请求消息。
S415:核心网设备向新站发送路径切换响应消息。
具体地,新站获取到UE的上下文后,可以执行路径切换,例如执行S414和S415,其中核心网设备例如为AMF。新站执行路径切换后,可以和UE进行上述SDT,具体可参见上图5-图10所示的SDT过程,其中新站为基站。
S416:新站向UE发送RRC响应消息。
具体地,新站可以生成RRC响应消息并发送给UE,可选地,该RRC响应消息用于结束新站和UE之间的SDT,例如当UE无SDT的需求时新站执行S416。RRC响应消息的示例可参见上图5-图10所示的SDT过程中的RRC响应消息。
请参见图12,图12示例性示出又一种anchor relocation过程的流程示意图。图12所示过程可以包括但不限于以下步骤:
S421:UE向新站发送RRC请求消息。
S422:新站向老站发送第一Xn接口消息。
具体地,S421-S422和图11的S411-S412类似,具体可参见图11的S411-S412的说明。
S423:老站响应于新站发送的第一Xn接口消息,向新站发送第三Xn接口消息。
在一些实施例中,老站可以响应于新站获取UE的上下文的请求,通过Xn接口向新站发送第三Xn接口消息。
在一些实施例中,当老站决定不执行anchor relocation(也可理解为当老站决定不更换锚点基站)时,老站通过Xn接口向新站发送第三Xn接口消息。可选地,第三Xn接口消息可以不包括该UE的全部上下文,例如第三Xn接口消息可以不包括该UE的PDCP层相关的上下文,仅包括UE的RLC层相关的上下文。
在一些实施例中,第三Xn接口消息为获取UE上下文失败(RetrieveUEContextFailure)消息。在另一些实施例中,第三Xn接口消息为RetrieveUEContextResponse消息。
S424:新站建立传输通道。
具体地,新站接收第三Xn接口消息时,可以建立数据传输通道(tunnel),也可理解为是执行传输通道的建立(forwarding tunnel establishment)。在一些实施例中,传输通道可以用于新站为UE和老站转发SDT的信息,如可以用于执行S425。
S425:UE进行小包数据的传输。
具体地,UE进行小包数据的传输可以包括:新站为UE和老站转发SDT过程的信息,具体过程和上图5-图10所示的SDT过程类似,区别在于,基站替换为新站和老站,可选地,新站用于执行基站传输信息的步骤,可选地,老站用于执行基站生成信息的步骤。
在一些实施例中,新站可以为UE转发上述SDT过程的信息至老站,例如新站接收到UE发送的RRC请求消息后,可以向老站转发RRC请求消息,又例如新站接收到UE发送的上行小包数据后,可以向老站转发上行小包数据,又例如新站可以转发subsequent transmission阶段UE发送的信息至老站。
在一些实施例中,新站可以为老站转发上述SDT过程的信息至UE,例如老站生成RRC响应消息并发送给新站,新站可以向UE转发RRC响应消息(如S426),又例如新站可以在S426中向UE转发老站发送的下行小包数据,又例如新站可以转发subsequent transmission阶段老站发送的信息至UE。
S426:新站向UE发送RRC响应消息。
具体地,新站可以为老站转发RRC响应消息至UE,其中RRC响应消息为老站生成的,可选地,该RRC响应消息用于结束新站和UE之间的SDT,例如UE无SDT的需求时新站转发RRC响应消息,RRC响应消息的示例可参见上图5-图10所示的SDT过程中的RRC响应消息。
在一些实施例中,老站向新站发送的RRC响应消息包括在S423的第三Xn接口消息中,例如,新站接收到第三Xn接口消息后,可以先存储RRC响应消息,当UE无SDT的需求时向UE发送RRC响应消息。例如,该RRC响应消息为RRCRelease消息。
在另一些实施例中,老站向新站发送的RRC响应消息不包括在S423的第三Xn接口消息中,可以包括在其他Xn接口消息中,例如,当老站确定UE无SDT的需求时,向新站发送包括RRC响应消息的Xn接口消息(例如,UE上下文释放(UE CONTEXT RELEASE)消息,或者RRC传输(RRC TRANSFER)消息,或者其他已有的Xn接口消息,或者新的Xn接口消息),新站再基于该Xn接口消息向UE发送RRC响应消息。示例性地,图1所示的通信系统中,UE110当前的服务小区对应基站210,但基站210未存储UE110的上下文,即基站210为UE110的新站。UE110移动至基站210下之前处于基站230的覆盖范围内,基站230存储有UE110的上下文,即基站230为UE110的老站。UE110在基站210下发起SDT时,基站210可以向基站230请求获取UE110的上下文,如果基站230决定执行anchor relocation,则基站210可以获取到UE110的上下文,基站210可以直接和UE110进行上述SDT,例如上图11所示流程。如果基站230决定不执行anchor relocation,则基站210无法获取到UE110的上下文,基站210可以为UE110和基站230转发上述SDT的信息,例如上图12所示流程。而UE120当前服务小区对应的基站220可以存储有UE120的上下文,UE120在基站220下发起SDT时,基站220可以直接和UE120进行上述SDT。
终端和网络设备进行SDT时,可能出现终端无法继续该SDT的情况,具体场景示例如下所示(假设终端为多卡终端,多卡终端包括子设备A和子设备B):
场景一:子设备A和网络设备进行SDT(例如RA-SDT或CG-SDT)时,若子设备B有数据传输需求,并且该数据传输需求需要子设备B进入RRC CONNECTED态,例如进入RRC CONNECTED态进行非SDT的数据传输,为了执行子设备B的数据传输,设备A需停止当前的SDT。
场景二:子设备A和网络设备进行SDT(例如RA-SDT或CG-SDT)时,若子设备B需发送系统信息请求或者接收下行消息,例如寻呼、系统信息、无线资源管理(radio resource management,RRM)等周期性的下行消息,或者其他非周期性的下行消息,为了执行子设备B的数据传输,子设备A需停止当前的SDT。
在上述情况下,网络设备仍会调度用于该SDT的资源,例如与子设备A进行通信的网络设备无法获知到子设备A不再继续监听用于SDT的调度,而是执行子设备B的业务传输,因此仍会继续为子设备A调度用于SDT的资源。也就是说,存在空口资源被浪费的问题,也缺少能应用于上述情况的高效传输方案。
本申请实施例提供了一种控制传输的方法,可以应用于通信系统,通信系统可以包括第一设备和第一网络设备,第一设备可以向第一网络设备发送指示不再继续监听SDT的信息,避免第一设备不再监听SDT时,第一网络设备继续为该SDT调度资源的情况,节省空口资源。
接下来基于上述说明对本申请实施例提供的控制传输的方法进行说明。
该方法可以应用于通信系统,例如图1所示的通信系统,该通信系统可以包括第一设备和第一网络设备,在一些实施例中,该通信系统还包括第二网络设备。
在一些实施例中,第一设备为多卡终端,多卡终端包括第一子设备,例如,第一设备为图1所示的多卡终端100,第一子设备为多卡终端100包括的UE110或者UE120。第一设备可以通过第一子设备执行控制传输的方法,也就是说,下述控制传输的方法中,第一设备可以替换为第一子设备,第一设备(执行步骤)可以替换为第一设备通过第一子设备(执行步骤)。在另一些实施例中,第一设备为多卡终端包括的子设备,例如,第一设备为图1所示的多卡终端100包括的UE110或UE120。以下实施例以第一设备为多卡终端包括的子设备为例进行说明。
在一些实施例中,第一设备当前服务小区对应的网络设备为第一网络设备,第一网络设备存储有第一设备的用户上下文,例如第一设备移动至第一网络设备下,在第一网络设备下发起SDT时,第一网络设备从锚点设备处获取到第一设备的用户上下文,具体示例可参见上图11所示流程。例如,第一设备为图1所示的多卡终端100(此时第一子设备为UE120)或者多卡终端100包括的UE120,第一网络设备为基站220。
在另一些实施例中,第一设备当前服务小区对应的网络设备为第一网络设备,第一网络设备未存储第一设备的用户上下文,第一设备的用户上下文保存在第二网络设备中,例如第一设备移动至第一网络设备下,在第一网络设备下发起SDT时,第一网络设备可以向第二网络设备请求获取第一设备的用户上下文,但第二网络设备决定不执行anchor relocation,即第二网络设备仍然为第一设备的锚点设备,因此第一网络设备未从第二网络设备处获取到第一设备的用户上下文,具体示例可参见上图12所示流程。也就是说,第一网络设备为新站,第二网络设备为老站。例如,第一设备为图1所示的多卡终端100(此时第一子设备为UE110)或者多卡终端100包括的UE110,第一网络设备为基站210,第二网络设备为基站230。
请参见图13,图13是本申请实施例提供的一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S510:第一设备接收第一配置信息。
在一些实施例中,S510为可选的步骤。
在一些实施例中,第一设备为多卡终端,多卡终端包括第一子设备,第一设备通过第一子设备接收第一配置信息。在一些实施例中,第一设备为多卡终端包括的第一子设备,第一设备接收第一配置信息。以下描述以第一设备为多卡终端包括的第一子设备为例进行说明。
在一些实施例中,第一配置信息指示第一信息的上报,可选地,第一配置信息指示建立和/或释放第一信息的上报,可选地,第一配置信息指示使能和/或去使能第一信息的上报,可选地,第一配置信息指示设备(如第一设备)可以上报第一信息,可选地,第一配置信息指 示当前网络设备(如第一网络设备)支持设备(如第一设备)上报第一信息,可选地,第一配置信息指示设备(如第一设备)可以在RRC INACTIVE态上报第一信息。在一些实施例中,第一信息指示请求停止SDT,具体可参见S530中第一信息的说明,暂不详述。
在一些实施例中,第一配置信息包括第一定时器的时长,在另一些实施例中,第一定时器的时长是通过其他消息发送给第一设备的,在另一些实施例中,第一定时器的时长是预先定义的,例如3GPP协议规定的第一定时器的时长。其中,第一定时器用于第一设备监听第一信息的响应消息。
在一些实施例中,第一定时器可以为多卡终端上报请求离开RRC CONNECTED态时所使用的第三定时器,在另一些实施例中,第一定时器可以为新定义的定时器,例如,考虑到第一设备发起RA-SDT时,可能存在第一网络设备和第二网络设备之间的信令交互(例如交互第一定时器的时长),因此新定义的第一定时器的时长大于第三定时器的时长。
在一些实施例中,第一配置信息和第一定时器的时长的配置方式可以但不限于为以下任意一种:
方式一:第一配置信息是通过广播的系统信息(如系统信息块(system information block,SIB)1)发送给第一设备的,第一配置信息包括第一定时器的时长。
在一种可能的实现方式中,第一设备接收第一网络设备通过广播的系统信息发送的第一配置信息,示例性地,第一设备移动至第一网络设备下,第一设备读取第一网络设备广播的系统信息。
在一些实施例中,第一配置信息包括第一字段,第一设备可以读取系统信息中的第一字段和第一定时器的时长。第一字段可以指示当前网络设备(如第一网络设备)支持设备(如第一设备)上报第一信息,和/或,设备(如第一设备)可以上报第一信息。例如,第一配置信息指示使能和/或去使能第一信息的上报。第一字段和第一定时器的时长为SIB1中可选的字段,第一字段和第一定时器的时长均为枚举类型,当SIB1中第一字段的取值为“true”时表示“当前基站支持UE上报第一信息,UE可以上报第一信息”,第一定时器的时长为SIB1中指示的时长。
在另一些实施例中,第一配置信息指示建立和/或释放第一信息的上报。例如,当SIB1中第一配置信息指示“建立”时表示“当前基站支持UE上报第一信息,UE可以上报第一信息”,当SIB1中第一配置信息指示“释放”时表示“当前基站不支持UE上报第一信息,UE不可以上报第一信息”,SIB1中的第一配置信息包括第一定时器的时长。
在另一些实施例中,第一配置信息不包括第一字段。当系统信息包括第一定时器的时长时表示当前网络设备支持设备上报第一信息,和/或,设备可以上报第一信息。例如,第一定时器的时长为SIB1中可选的字段,第一定时器的时长为枚举类型,第一定时器的时长为SIB1中指示的时长,当SIB1包括第一定时器的时长时表示“当前基站支持UE上报第一信息,UE可以上报第一信息”。
方式二:第一配置信息是通过广播的系统信息(如SIB1)发送给第一设备的,第一定时器的时长是通过RRC消息发送给第一设备的。
在一种可能的实现方式中,第一设备接收第一网络设备通过广播的系统信息发送的第一配置信息,示例性地,第一设备移动至第一网络设备下,第一设备读取第一网络设备广播的系统信息。
在一些实施例中,第一配置信息包括第一字段,第一设备可以读取系统信息中的第一字段,第一字段可以指示当前网络设备支持设备上报第一信息,和/或,设备可以上报第一信息。 例如,第一配置信息指示使能和/或去使能第一信息的上报。第一字段为SIB1中可选的字段,第一字段为枚举类型,当SIB1中第一字段的取值为“true”时表示“当前基站支持UE上报第一信息,UE可以上报第一信息”。在另一些实施例中,第一配置信息指示建立和/或释放第一信息的上报。例如,当SIB1中第一配置信息指示“建立”时表示“当前基站支持UE上报第一信息,UE可以上报第一信息”,当SIB1中第一配置信息指示“释放”时表示“当前基站不支持UE上报第一信息,UE不可以上报第一信息”。
在一种可能的实现方式中,第一设备接收第一网络设备通过RRC消息发送的第一定时器的时长,例如,该RRC消息为第一设备和第一网络设备进行SDT时第一网络设备发送的RRC重配(RRCReconfiguration)消息。
在又一种可能的实现方式中,第一设备接收第二网络设备通过RRC消息发送的第一定时器的时长,可选地,第二网络设备存储的第一设备的用户上下文包括第一定时器的时长。例如,该RRC消息为RRCRelease消息,第一设备接收到该RRCRelease消息后从RRC CONNECTED态进入RRC INACTIVE态,又例如,该RRC消息为用于结束SDT的RRCRelease消息,又例如,该RRC消息为第一设备和第二网络设备进行SDT时第二网络设备发送的RRCReconfiguration消息,又例如,该RRC消息为第一设备处于RRC CONNECTED态时第二网络设备发送的RRCReconfiguration消息,可选地,第一设备在第一网络设备下发起SDT对应的恢复过程(resume procedure)时不释放配置的第一定时器的时长。
在一些实施例中,上述RRC消息为RRCReconfiguration消息时,可以通过RRCReconfiguration消息中的其他配置IE(OtherConfig IE)指示第一定时器的时长,不限于此,也可以通过其他已有的IE或新增的IE指示第一定时器的时长。
在另一些实施例中,上述RRC消息为RRCRelease消息时,可以通过RRCRelease消息中的暂停配置IE(suspendconfig IE)指示第一定时器的时长,也可以通过RRCRelease消息中的SDT配置IE(SDTConfig IE)指示第一定时器的时长,还可以通过其他已有的IE或新增的IE指示第一定时器的时长。
不限于上述示例的RRC消息,还可以使用其他类型的RRC消息,例如上图5-图12所示的SDT过程的RRC响应消息,本申请对此不作限定。
方式三:第一配置信息是通过RRC消息发送给第一设备,在一些实施例中,第一配置信息包括第一定时器的时长,在另一些实施例中,第一定时器的时长是通过其他RRC消息发送给第一设备。
在一种可能的实现方式中,第一设备接收第一网络设备通过第一RRC消息发送的第一配置信息,第一配置信息包括第一定时器的时长。
在又一种可能的实现方式中,第一设备接收第二网络设备通过第二RRC消息发送的第一配置信息,第一配置信息包括第一定时器的时长。
在又一种可能的实现方式中,第一设备接收第一网络设备通过第一RRC消息发送的第一配置信息,接收第二网络设备通过第二RRC消息发送的第一定时器的时长。
在又一种可能的实现方式中,第一设备接收第一网络设备通过第一RRC消息发送的第一定时器的时长,接收第二网络设备通过第二RRC消息发送的第一配置信息。
其中,第一RRC消息的示例可参见方式二中第一网络设备发送第一定时器的时长所使用的RRC消息,第二RRC消息的示例可参见方式二中第二网络设备发送第一定时器的时长所使用的RRC消息。
在一些实施例中,第一配置信息包括第一字段和第一定时器的时长,第一设备可以读取 RRC消息中的第一字段和第一定时器。第一字段可以指示设备(如第一设备)可以上报第一信息。例如,第一配置信息指示使能和/或去使能第一信息的上报。第一字段和第一定时器的时长为RRC消息中可选的字段,第一字段和第一定时器的时长均为枚举类型,当RRC消息中第一字段的取值为“true”时表示“UE可以上报第一信息”,第一定时器的时长为RRC消息中指示的时长。
在另一些实施例中,第一配置信息指示建立和/或释放第一信息的上报。例如,当RRC消息中第一配置信息指示“建立”时表示“UE可以上报第一信息”,当RRC消息中第一配置信息指示“释放”时表示“UE不可以上报第一信息”,RRC消息中的第一配置信息包括第一定时器的时长。
在另一些实施例中,第一配置信息包括第一定时器的时长,但不包括第一字段。当RRC消息包括第一定时器的时长时表示设备可以上报第一信息。例如,第一定时器的时长为RRC消息中可选的字段,第一定时器的时长均为枚举类型,第一定时器的时长为RRC消息中指示的时长,当RRC消息指示了第一定时器的时长时表示“UE可以上报第一信息”。
在一些实施例中,该方法还包括:第一设备接收第一网络设备发送的系统信息(如SIB1),该系统信息可以指示当前网络设备(如第一网络设备)支持设备(如第一设备)上报第一信息。例如,当SIB1中第一支持信息的取值为“true”时表示“当前基站支持UE上报第一信息”。
方式四:第一配置信息是通过RRC消息发送给第一设备,第一定时器的时长是通过广播的系统信息(如SIB1)发送给第一设备。
在一种可能的实现方式中,第一设备接收第一网络设备通过RRC消息发送的第一配置信息,RRC消息的示例可参见方式二中第一网络设备发送第一定时器的时长所使用的RRC消息。
在又一种可能的实现方式中,第一设备接收第二网络设备通过RRC消息发送的第一配置信息,RRC消息的示例可参见方式二中第二网络设备发送第一定时器的时长所使用的RRC消息。
在一些实施例中,第一配置信息包括第一字段,第一设备可以读取RRC消息中的第一字段,第一字段可以指示设备可以上报第一信息,例如,第一配置信息指示使能和/或去使能第一信息的上报。第一字段为RRC消息中可选的字段,第一字段为枚举类型,当RRC消息中第一字段的取值为“true”时表示“UE可以上报第一信息”。
在另一些实施例中,第一配置信息指示建立和/或释放第一信息的上报。例如,当RRC消息中第一配置信息指示“建立”时表示“UE可以上报第一信息”,当SIB1中第一配置信息指示“释放”时表示“UE不可以上报第一信息”。
在一种可能的实现方式中,第一设备接收第一网络设备通过广播的系统信息发送的第一定时器的时长,例如,第一定时器的时长为SIB1中可选的字段,第一定时器的时长为枚举类型,第一定时器的时长为SIB1中指示的时长。可选地,当系统信息包括第一定时器的时长时表示当前网络设备(如第一网络设备)支持设备(如第一设备)上报第一信息,例如,当SIB1指示了第一定时器的时长时表示“当前基站支持UE上报第一信息”。
在一些实施例中,该方法还包括:第一设备接收第一网络设备发送的系统信息(如SIB1),该系统信息可以指示当前网络设备(如第一网络设备)支持设备(如第一设备)上报第一信息。例如,当SIB1中第一支持信息的取值为“true”时表示“当前基站支持UE上报第一信息”。
方式五:第一配置信息是通过RRC消息或者广播的系统信息发送给第一设备,第一定时器的时长是预先定义的。
在一些实施例中,第一定时器的时长是协议预先规定的时长,在另一些实施例中,第一定时器的时长是第一设备和第一网络设备预先协调的,可选地,第一定时器的时长是第一设备、第一网络设备和第二网络设备预先协调的。
在一种可能的实现方式中,第一设备接收第一网络设备通过广播的系统信息发送的第一配置信息,示例性地,第一设备移动至第一网络设备下,第一设备读取第一网络设备广播的系统信息。在一些实施例中,第一配置信息的说明具体可参见方式二中第一配置信息的说明。
在又一种可能的实现方式中,第一设备接收第一网络设备通过RRC消息发送的第一配置信息,RRC消息的示例可参见方式二中第一网络设备发送第一定时器的时长所使用的RRC消息。在又一种可能的实现方式中,第一设备接收第二网络设备通过RRC消息发送的第一配置信息,RRC消息的示例可参见方式二中第二网络设备发送第一定时器的时长所使用的RRC消息。在一些实施例中,第一配置信息的说明具体可参见方式四中第一配置信息的说明。
在一些实施例中,第一设备接收到第一配置信息之前,和/或第一设备接收到第一定时器的时长之前,第一设备可以发送第一请求消息,可选地,第一设备向第一网络设备发送第一请求消息,可选地,第一设备向第二网络设备发送第一请求消息。第一请求消息指示请求配置第一信息的上报。例如,第一设备发送按需系统(on demand system information,on demand SI)消息、RRC消息(如上图5-图10所示的SDT中的RRC请求消息或DCCH承载的RRC消息)或者媒体接入层控制单元(MAC control element,MAC CE)等来向网络设备请求配置第一信息的上报。
S520:第一设备进行SDT。
在一些实施例中,S520为可选的步骤。
在一些实施例中,第一设备为多卡终端,多卡终端包括第一子设备,第一设备中的第一子设备处于非RRC连接态,第一设备通过第一子设备在第一网络设备下发起SDT。在一些实施例中,第一设备为多卡终端包括的第一子设备,第一设备处于非RRC连接态,第一设备在第一网络设备下发起SDT。以下描述以第一设备为多卡终端包括的第一子设备为例进行说明。
在一些实施例中,第一设备当前服务小区对应的第一网络设备存储有第一设备的用户上下文,第一设备在第一网络设备下发起SDT时,第一设备可以直接和第一网络设备进行SDT,例如上图5-图10所示的SDT过程,第一设备为UE,第一网络设备为基站。
在另一些实施例中,第一设备当前服务小区对应的第一网络设备未存储第一设备的用户上下文,第一设备的用户上下文保存在第二网络设备中,即第一网络设备为新站,第二网络设备为老站。第一设备在第一网络设备下发起SDT时,第一网络设备可以为第一设备和第二网络设备转发SDT的信息,可选地,第一网络设备可以将第一设备发送的SDT的信息转发给第二网络设备,也可以将第二网络设备发送的SDT的信息转发给第一设备,具体示例可参见图12的S425。
在一些实施例中,上述SDT为RA-SDT,具体流程可参见上图5-图8所示。在另一些实施例中,上述SDT为CG-SDT,具体流程可参见上图9-图10所示。
其中,S510和S520的顺序不作限定。
S530:第一设备向第一网络设备发送第一信息。
具体地,第一信息指示请求停止(stop)SDT(如S520中的SDT),可选地,上述请求停止SDT也可以替换为希望停止SDT。
在一些实施例中,第一设备为多卡终端,多卡终端包括第一子设备,第一设备通过第一子设备向第一网络设备发送第一信息。可选地,第一信息指示第一子设备请求停止SDT,可选地,第一信息指示请求停止第一子设备的SDT。在一些实施例中,第一设备为多卡终端包括的第一子设备,第一设备向第一网络设备发送第一信息。可选地,第一信息指示第一设备请求停止SDT,可选地,第一信息指示请求停止第一设备的SDT。以下描述以第一设备为多卡终端包括的第一子设备为例进行说明。
在一些实施例中,第一设备处于非RRC连接态时,向第一网络设备发送第一信息。在一些实施例中,第一设备在第一网络设备下意图发起或发起SDT(如S520中的SDT)的情况下,第一设备可以向第一网络设备发送第一信息。
在一些实施例中,当第二子设备需从非RRC连接态进入RRC连接态时,第一设备向第一网络设备发送第一信息,可选地,第二子设备处于RRC非连接态。在一些实施例中,当多卡终端需从SDT业务切换为RRC CONNECTED态业务时,第一设备向第一网络设备发送第一信息,也可称为第一设备由于多卡原因向第一网络设备发送第一信息。具体示例可参见上述终端和网络设备进行SDT时,可能出现终端无法继续该SDT的情况的场景一,不限于此,也可以应用于场景二等其他场景。
示例性地,多卡终端为智能手机,智能手机可以安装有两张电话卡,即第一子设备和第二子设备,当用户通过智能手机上的一张电话卡(即第一子设备)和其他终端传输即时通讯消息时,例如此时使用第一子设备的移动数据,通过第一网络设备和其他终端通信,智能手机可以接收到针对另一张电话卡(即第二子设备)的来电,用户使用智能手机(的第二子设备)接听该来电时,无法继续通过第一子设备传输即时通讯消息,第一子设备可以向第一网络设备发送第一信息。
在一种可能的实现方式中,第一信息可以通过DCCH承载的RRC消息发送,例如用户设备辅助信息(UEAssistanceInformation)、用户设备能力信息(UECapabilityInformation)或者其他通过DCCH承载的消息。在一些实施例中,第一信息可以为通过DCCH承载的RRC消息中已有的字段。例如,第一信息为UEAssistanceInformation消息中的释放偏好(ReleasePreference)IE,ReleasePreference IE可以包括参数:偏好RRC状态(preferredRRC-State),preferredRRC-State的取值可以为idle、inactive或connected,当preferredRRC-State的取值为inactive时,第一网络设备可以确定第一设备请求停止当前的SDT。在另一些实施例中,第一信息可以为通过DCCH承载的RRC消息中新增的字段。例如,第一信息为UEAssistanceInformation消息中的新IE(new IE)。
在一种可能的实现方式中,上述SDT为RA-SDT(具体示例可参见上图5-图8),在一些实施例中,第一设备可以在接收到contention resolution消息或者msgB之前,向第一网络设备发送第一信息,例如在发送RRC请求消息之前发送第一信息,又例如在发送RRC请求消息时发送第一信息(如RRC请求消息携带第一信息),在另一些实施例中,第一设备可以在接收到contention resolution消息或者msgB之后,在subsequent transmission阶段发送第一信息,例如第一设备在动态调度的上行资源上发送第一信息。不限于上述示例的情况,在另一些实施例中,若第一设备意图发起RA-SDT时,也意图发送第一信息,例如意图在发送RRC请求消息之前发送第一信息,可以根据自身实现决定是否发送第一信息和是否继续当前SDT,例如不发送第一信息,并且取消当前的SDT(可以不发送RRC请求消息)。
在又一种可能的实现方式中,上述SDT为CG-SDT(具体示例可参见上图9-图10),在一些实施例中,第一设备可以在接收到反馈响应消息之前,向第一网络设备发送第一信息, 例如在发送RRC请求消息之前发送第一信息,又例如在发送RRC请求消息时发送第一信息,在另一些实施例中,第一设备可以在接收到反馈响应消息之后,在subsequent transmission阶段发送第一信息,例如第一设备在动态调度的上行资源上发送第一信息,又例如第一设备在CG-SDT资源上发送第一信息。不限于上述示例的情况,在另一些实施例中,若第一设备意图发起CG-SDT时,也意图发送第一信息,例如意图在发送RRC请求消息之前发送第一信息,可以根据自身实现决定是否发送第一信息和是否继续当前SDT,例如不发送第一信息,并且取消当前的SDT(可以不发送RRC请求消息)。
在一些实施例中,第一设备发送第一信息时,开启第一定时器,可选地,第一定时器用于第一设备监听第一信息的响应消息,可选地,在第一定时器运行期间,第一设备监听第一网络设备发送的响应消息(例如S550中的第一响应消息),该响应消息的示例可参见上图5-图10所示的SDT中的RRC响应消息,例如为RRCRelease消息。
在一些实施例中,若第一定时器超时之前,第一设备接收到第一网络设备发送的响应消息(例如第一网络设备执行S550),第一设备可以停止第一定时器,具体可参见S550的说明,暂不详述。在另一些实施例中,若第一定时器超时时,第一设备仍未接收到第一网络设备发送的响应消息(例如S550中的第一响应消息),第一设备可以进入RRC IDLE态。
在一些实施例中,第一设备发送第一信息后,不会监听SDT的调度,而是由第二子设备进行数据传输。
S540:第一网络设备和第二网络设备之间传输第一信息和其他相关信息。
在一些实施例中,S540为可选的步骤。
在一些实施例中,第一设备当前服务小区对应的第一网络设备未存储第一设备的用户上下文,第一设备的用户上下文保存在第二网络设备中,即第一网络设备为新站,第二网络设备为老站。在这种情况下,第一网络设备接收到第一设备发送的第一信息后,向第二网络设备转发第一信息。可选地,S540是在老站(第二网络设备)决定不执行anchor relocation,新站(第一网络设备)无法从老站(第二网络设备)处获取到第一设备的用户上下文的场景下执行的。可选地,第一设备发起的SDT为RA-SDT,也就是说,S540是在RA-SDT且不更换锚点设备的场景下执行的。
在一些实施例中,第一网络设备和第二网络设备之间通过Xn接口消息交互信息,以下描述以第一网络设备和第二网络设备之间交互的消息为Xn接口消息为例进行说明。
在一些实施例中,第一网络设备接收到第一设备发送的第一信息后,可以向第二网络设备发送第一消息,第一消息包括第一信息,可选地,第一消息为上图11-图12所示的第一Xn接口消息(例如为RetrieveUEContextRequest消息),或者其他已有的Xn接口消息,或者新的Xn接口消息。
在一些实施例中,第一网络设备可以接收第二网络设备发送的第二消息,第二消息包括第一响应消息,第二消息用于第一网络设备在第一定时器超时之前向第一设备发送第一响应消息,例如第二消息用于第一网络设备执行S550。第一响应消息的示例可参见上图5-图10所示的SDT中的RRC响应消息,例如为RRCRelease消息。第二消息例如为上图12所示的第三Xn接口消息(如RetrieveUEContextFailure消息),或者其他已有的Xn接口消息,或者新的Xn接口消息。
在一些实施例中,第一网络设备向第二网络设备发送第一消息之前,接收到第二网络设备发送的第二消息,可选地,第二消息为上图12所示的第三Xn接口消息,例如为RetrieveUEContextFailure消息。在另一些实施例中,第一网络设备向第二网络设备发送第一 消息之后,第二网络设备向第一网络设备发送第二消息,可选地,第二网络设备可以基于第一消息中的第一信息生成第一响应消息,并生成包括第一响应消息的第二消息。
在一些实施例中,第一网络设备和第二网络设备之间可以传输包括第一定时器的时长的消息,具体如下所述:
在一种可能的实现方式中,第一配置信息和第一定时器的时长的配置方式为S510中的方式一或者方式四,即第一设备使用的第一定时器为第一网络设备通过广播的系统信息(如SIB1)为第一设备配置的。在一些实施例中,第一定时器的时长是第一网络设备生成的,在另一些实施例中,第一定时器的时长是为第一设备配置第一定时器的时长之前,第二网络设备通过第五消息发送给第一网络设备的,第五消息包括第一定时器的时长。
在又一种可能的实现方式中,第一配置信息和第一定时器的时长的配置方式为S510中的方式二或者方式三,即第一设备使用的第一定时器为第一网络设备或第二网络设备通过RRC消息为第一设备配置的。在一些实施例中,第一设备使用的第一定时器为第二网络设备存储的第一设备的上下文中的第一定时器,在另一些实施例中,第一设备使用的第一定时器为第一网络设备为第一设备配置的,一种可能的情况中,第一定时器的时长是第一网络设备生成的,另一种可能的情况中,第一定时器的时长是为第一设备配置第一定时器的时长之前,第二网络设备通过第五消息发送给第一网络设备的,第五消息包括第一定时器的时长。
在又一种可能的实现方式中,第一配置信息和第一定时器的时长的配置方式为S510中的方式五,即第一设备使用的第一定时器的时长为预先定义的,第一网络设备和第二网络设备可以不交互第一定时器的时长。
在一些实施例中,第一设备使用的第一定时器为第二网络设备存储的第一设备的上下文中的第一定时器。第一网络设备接收到第一设备发送的第一信息之后,可以接收第二网络设备发送的第三消息,第三消息包括第一定时器的时长,第一定时器的时长可以用于第一网络设备在第一定时器超时之前向第一设备发送第一响应消息,例如第一定时器的时长用于第一网络设备执行S550。一种可能的情况中,包括第一响应消息的第二消息不为上图12所示的第三Xn接口消息,此时第一网络设备和第二网络设备的传输流程如下图14所示。另一种可能的情况中,包括第一响应消息的第二消息为上图12所示的第三Xn接口消息,此时第一网络设备和第二网络设备的传输流程如下图15所示。
在另一些实施例中,第一设备使用的第一定时器为第一网络设备为第一设备配置的,并且第一定时器的时长是第一网络设备生成的。一种可能的情况中,包括第一响应消息的第二消息不为上图12所示的第三Xn接口消息。第一网络设备可以向第二网络设备发送第四消息,第四消息包括第一定时器的时长,第二网络设备可以基于第四消息中的第一定时器的时长向第一网络设备发送第二消息,此时第一网络设备和第二网络设备的传输流程如下图16所示。另一种可能的情况中,包括第一响应消息的第二消息为上图12所示的第三Xn接口消息。第一网络设备可以不向第二网络设备发送第一定时器的时长,可选地,这种情况下,第一网络设备向第二网络设备发送包括第一信息的第一消息,和第二网络设备向第一网络设备发送包括第一响应消息的第二消息的顺序不做限定。
在另一些实施例中,第一设备使用的第一定时器为第一网络设备为第一设备配置的,并且第一定时器的时长是为第一设备配置第一定时器的时长之前,第二网络设备通过第五消息发送给第一网络设备的,第五消息包括第一定时器的时长。例如,在Xn建立过程(Xn Setup Procedure)中,第二网络设备向第一网络设备发送Xn建立响应(XN SETUP RESPONSE)消息,通过XN SETUP RESPONSE消息指示第一定时器的时长。又例如,在NG RAN节点 配置更新过程(NG RAN Node Configuration Update Procedure)中,第二网络设备向第一网络设备发送NG RAN配置更新请求(NG RAN CONFIGURATION UPDATE REQUEST)消息,通过NG RAN CONFIGURATION UPDATE REQUEST指示第一定时器的时长。可选地,这种情况下,第一网络设备可以不向第二网络设备发送第一定时器的时长,可选地,第一网络设备向第二网络设备发送包括第一信息的第一消息,和第二网络设备向第一网络设备发送包括第一响应消息的第二消息的顺序不做限定。
在一些实施例中,第一网络设备可以多次通过Xn接口消息向第二网络设备发送定时器的时长,具体示例可参见上述第五消息的示例。若第一网络设备接收到的第二网络设备的响应消息不包括定时器的时长,则第一网络设备确定使用上述向第二网络设备发送的定时器的时长为第一定时器的时长,若第一网络设备接收到的第二网络设备的响应消息包括定时器的时长,则第一网络设备确定使用第二网络设备发送的定时器的时长为第一定时器的时长。
在另一些实施例中,第一设备使用的第一定时器为预先定义的。一种可能的情况中,包括第一响应消息的第二消息不为上图12所示的第三Xn接口消息。第二网络设备可以基于第一定时器的时长生成第一响应消息,并向第一网络设备发送第二消息。第一网络设备可以基于第一定时器的时长向第一设备发送第一响应消息,例如在第一定时器超时之前发送。另一种可能的情况中,包括第一响应消息的第二消息为上图12所示的第三Xn接口消息。第一网络设备可以基于第一定时器的时长向第一设备发送第一响应消息,例如在第一定时器超时之前发送。
S550:第一网络设备向第一设备发送第一响应消息(例如RRCRelease消息)。
在一些实施例中,S550为可选的步骤。
在一些实施例中,第一设备接收到第一响应消息后,停止第一定时器,可选地,第一设备可以等待后续重新发起SDT。
不限于上述示例的情况,在另一些实施例中,第一设备在第一定时器超时时,仍未接收到第一网络设备发送的第一响应消息,则进入RRC IDLE态。
第一响应消息的示例可参见上图5-图10所示的SDT中的RRC响应消息。
在一些实施例中,上述设备可以上报第一信息,包括:设备可以在RRC INACTIVE态上报第一信息,例如UE可以上报第一信息,包括:UE可以在RRC INACTIVE态上报第一信息。
在图13所示的方法中,第一设备可以向第一网络设备发送第一信息,通过第一信息指示请求停止SDT,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
接下来示例性介绍S540的具体实现方式。
在一种可能的实现方式中,第一设备使用的第一定时器为第二网络设备存储的第一设备的上下文中的第一定时器,包括第一响应消息的第二消息不为上图12所示的第三Xn接口消息。在一些实施例中,第一定时器和第一响应消息可以一起发送至第二网络设备,具体流程如下图14的(A)所示,在另一些实施例中,第一定时器可以通过第三Xn接口消息发送至第二网络设备,具体流程如下图14的(B)所示。
请参见图14的(A),图14的(A)示例性示出又一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S5411:第二网络设备向第一网络设备发送第三Xn接口消息。
S5412:第一网络设备向第二网络设备发送包括第一信息的第一消息。
其中,S5411和S5412的顺序不作限定,可选地,上图13中S530和S540的顺序也不作限定。
在一些实施例中,S5411在S5412之前执行,例如第一设备在第一网络设备下发起RA-SDT,第一设备在接收到contention resolution消息或者msgB之后,在subsequent transmission阶段向第一网络设备发送第一信息,又例如第一设备在第一网络设备下发起CG-SDT,第一设备在接收到反馈响应消息之后,在subsequent transmission阶段向第一网络设备发送第一信息。在这种情况下,第一网络设备接收到第一设备发送的第一信息之前,第一网络设备向第二网络设备发送第一Xn接口消息,并接收第二网络设备发送的第三Xn接口消息。可选地,这种情况下,S540中的部分步骤(如S5411)在S530之前,部分步骤(如S5412和S5413)在S530之后。
在另一些实施例中,S5411在S5412之后执行,例如第一设备在第一网络设备下发起RA-SDT,第一设备在接收到contention resolution消息或者msgB之前向第一网络设备发送第一信息,又例如,第一设备在第一网络设备下发起CG-SDT,第一设备在接收到反馈响应消息之前向第一网络设备发送第一信息。在这种情况下,第一网络设备可以先接收到第一设备发送的第一信息,再向第二网络设备发送第一Xn接口消息,并接收第二网络设备发送的第三Xn接口消息,可选地,第一网络设备接收到第一设备发送的第一信息后,可以向第二网络设备发送包括第一信息的第一消息,例如RetrieveUEContextRequest消息等第一Xn接口消息。可选地,这种情况下,S530在S540之前。
S5413:第二网络设备向第一网络设备发送包括第一响应消息和第一定时器的时长的消息。
具体地,包括第一响应消息的第二消息和包括第一定时器的时长的第三消息相同,例如为第三Xn接口消息以外其他已有的Xn接口消息,或者新的Xn接口消息。
在一些实施例中,第二网络设备接收到第一消息后,可以基于第一消息中的第一信息生成第一响应消息,可选地,还可以基于第一定时器的时长和第一信息生成第一响应消息。在一些实施例中,第二网络设备可以基于第一定时器的时长,向第一网络设备发送包括第一响应消息的第二消息。可选地,在上述情况下,第一网络设备可以在第一定时器超时之前向第一设备发送第一响应消息。
在一些实施例中,第一网络设备接收到包括第一响应消息和第一定时器的时长的Xn接口消息后,可以在该第一定时器超时之前,向第一设备发送第一响应消息。
在另一些实施例中,第二网络设备发送的也可以不是第一定时器的时长,而是根据第一定时器的时长确定的第一时长,考虑到Xn接口消息的交互需要一些时间,第一时长可以小于第一定时器的时长。可选地,第一网络设备可以在接收到第一设备发送的第一信息之后的第一时长内,向第一设备发送第一响应消息。
请参见图14的(B),图14的(B)示例性示出又一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S5421:第二网络设备向第一网络设备发送包括第一定时器的时长的第三Xn接口消息。
S5422:第一网络设备向第二网络设备发送包括第一信息的第一消息。
S5421和S5422的说明和上图14的(A)的S5411和S5412的描述类似,区别在于,S5421中第三Xn接口消息包括第一定时器的时长,不再赘述。
S5423:第二网络设备向第一网络设备发送包括第一响应消息的第二消息。
具体地,包括第一响应消息的第二消息和包括第一定时器的时长的第三消息不同,第三 消息为第三Xn接口消息,第二消息为第三Xn接口消息以外其他已有的Xn接口消息,或者新的Xn接口消息等。
在一些实施例中,第二网络设备接收到第一消息后,可以基于第一消息中的第一信息生成第一响应消息,可选地,还可以基于第一定时器的时长生成第一响应消息。在一些实施例中,第二网络设备可以基于第一定时器的时长,向第一网络设备发送包括第一响应消息的第二消息。可选地,在上述情况下,第一网络设备可以在第一定时器超时之前向第一设备发送第一响应消息。
在一些实施例中,第一网络设备接收到包括第一响应消息的第二消息后,可以在第三Xn接口消息指示的第一定时器超时之前,向第一设备发送第一响应消息。
在另一些实施例中,第一网络设备接收到包括第一响应消息的第二消息后,可以在接收到第一设备发送的第一信息之后的第二时长内,向第一设备发送第一响应消息,其中,考虑到Xn接口消息的交互需要一些时间,第二时长可以小于第一定时器的时长。
在又一种可能的实现方式中,第一设备使用的第一定时器为第二网络设备存储的第一设备的上下文中的第一定时器,包括第一响应消息的第二消息为上图12所示的第三Xn接口消息。在一些实施例中,第一定时器可以通过第三Xn接口消息以外的Xn接口消息发送至第二网络设备,具体流程如下图15的(A)所示,在另一些实施例中,第一定时器和第一响应消息可以一起发送至第二网络设备,具体流程如下图15的(B)所示。
请参见图15的(A),图15的(A)示例性示出又一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S5431:第二网络设备向第一网络设备发送包括第一响应消息的第三Xn接口消息。
S5432:第一网络设备向第二网络设备发送包括第一信息的第一消息。
S5431和S5432的说明和上图14的(A)的S5411和S5412的描述类似,区别在于,S5431中第三Xn接口消息包括第一响应消息,具体不再赘述。
S5433:第二网络设备向第一网络设备发送包括第一定时器的时长的第三消息。
具体地,包括第一响应消息的第二消息和包括第一定时器的时长的第三消息不同,第二消息为第三Xn接口消息,第三消息为第三Xn接口消息以外其他已有的Xn接口消息,或者新的Xn接口消息等。
在一些实施例中,第一网络设备接收到包括第一定时器的时长的第三消息后,可以在该第一定时器超时之前,向第一设备发送第一响应消息。
在另一些实施例中,第二网络设备发送的也可以不是第一定时器的时长,而是根据第一定时器的时长确定的第三时长,考虑到Xn接口消息的交互需要一些时间,第三时长可以小于第一定时器的时长。可选地,第一网络设备可以在接收到第一设备发送的第一信息之后的第三时长内,向第一设备发送第一响应消息。
请参见图15的(B),图15的(B)示例性示出又一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S5441:第二网络设备向第一网络设备发送包括第一响应消息和第一定时器的时长的第三Xn接口消息。
S5442:第一网络设备向第一网络设备发送包括第一信息的第一消息。
S5441和S5442的说明和上图14的(A)的S5411和S5412的描述类似,区别在于,S5441中第三Xn接口消息包括第一响应消息和第一定时器的时长,具体不再赘述。
具体地,包括第一响应消息的第二消息和包括第一定时器的时长的第三消息相同,为第三Xn接口消息。
在一些实施例中,第一网络设备接收到包括第一响应消息和第一定时器的时长的第三Xn接口消息后,可以在该第一定时器超时之前,向第一设备发送第一响应消息。
在又一种可能的实现方式中,第一设备使用的第一定时器为第一网络设备为第一设备配置的,并且第一定时器的时长是第一网络设备生成的,包括第一响应消息的第二消息不为第三Xn接口消息,具体流程如下图16所示。
请参见图16,图16示例性示出又一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S5451:第一网络设备向第二网络设备发送包括第一定时器的时长的第四消息。
S5452:第一网络设备向第二网络设备发送包括第一信息的第一消息。
示例性地,第四消息为上图11-图12所示的第一Xn接口消息(例如RetrieveUEContextRequest消息)。第一网络设备向第二网络设备请求第一设备的用户上下文时,可以通过第一Xn接口消息指示第一定时器的时长。
示例性地,第四消息为Xn建立请求(XN SETUP REQUEST)消息。在Xn Setup Procedure中,第一网络设备向第二网络设备发送XN SETUP REQUEST消息,通过XN SETUP REQUEST消息指示第一定时器的时长。
示例性地,第四消息为NG RAN CONFIGURATION UPDATE REQUEST消息。在NG RAN Node Configuration Update Procedure中,第一网络设备向第二网络设备发送NG RAN CONFIGURATION UPDATE REQUEST消息,通过NG RAN CONFIGURATION UPDATE REQUEST指示第一定时器的时长。
不限于上述示例的第四消息,还可以为其他已有的Xn接口消息,还可以为新的Xn接口消息。
在一些实施例中,第一消息可以为已有的Xn接口消息,可选地为第一Xn接口消息,例如RetrieveUEContextRequest消息,可选地,第一网络设备向第二网络设备请求第一设备的用户上下文时,接收到第一设备发送的第一信息后,可以通过第一Xn接口消息指示第一定时器的时长和第一信息。在另一些实施例中,第一消息也可以为新的Xn接口消息。
其中,S5451和S5452的顺序不做限定。
S5453:第二网络设备向第一网络设备发送包括第一响应消息的第二消息。
在一些实施例中,第二网络设备接收到第一消息后,可以基于第一消息中的第一信息生成第一响应消息。在一些实施例中,第二网络设备可以基于第四消息指示的第一定时器的时长,向第一网络设备发送包括第一响应消息的第二消息,可选地,以使第一网络设备可以在第一定时器超时之前向第一设备发送第一响应消息。
不限于上述示例的第一信息,在另一些实施例中,第一信息指示请求暂停(suspend)SDT,在另一些实施例中,第一信息指示请求暂停(suspend)SDT且不进入RRC CONNECTED态,具体描述和上述示例的第一信息类似。
请参见图17,图17是本申请实施例提供的又一种控制传输的方法的流程示意图。该方法可以包括但不限于如下步骤:
S610:第一设备接收第二配置信息。
在一些实施例中,S610为可选的步骤。
S610和图13的S510类似,区别在于,在S610中,第一配置信息需替换为第二配置信 息,第一信息需替换为第二信息,第一定时器需替换为第二定时器,在一些实施例中,第二信息指示请求用于SDT的间隔(gap)配置,在一些实施例中,第二信息指示请求暂停SDT,具体可参见S630中第二信息的说明,其他描述可参见图13的S510的说明。
S620:第一设备进行SDT。
在一些实施例中,S620为可选的步骤。
S620和图13的S520类似,具体可参见图13的S520的说明。
S630:第一设备向第一网络设备发送第二信息。
在一些实施例中,第二信息指示请求暂停(suspend)SDT(如S620中的SDT),可选地,请求暂停SDT也可以替换为希望暂停SDT。在一些实施例中,第二信息指示请求用于SDT(如S620中的SDT)的gap配置。
在一些实施例中,第一设备为多卡终端,多卡终端包括第一子设备,第一设备通过第一子设备向第一网络设备发送第二信息。可选地,第二信息指示第一子设备请求暂停SDT,可选地,第二信息指示请求暂停第一子设备的SDT,可选地,第二信息指示第一子设备请求用于SDT的gap配置,可选地,第二信息指示请求用于第一子设备的SDT的gap配置。
在一些实施例中,第一设备为多卡终端包括的第一子设备,第一设备向第一网络设备发送第二信息。可选地,第二信息指示第一设备请求暂停SDT,可选地,第二信息指示请求暂停第一设备的SDT,可选地,第二信息指示第一设备请求用于SDT的gap配置,可选地,第二信息指示请求用于第一设备的SDT的gap配置。
以下描述以第一设备为多卡终端包括的第一子设备为例进行说明。
S630和图13的S530类似,区别在于,在S630中,第一信息需替换为第二信息,第一定时器需替换为第二定时器,第一响应消息需替换为第二响应消息,第二响应消息为第二信息的响应消息(例如RRCReconfiguration消息),在一些实施例中,第二定时器超时时,第一设备不会进入RRC IDLE态,而是根据自身实现决定如何处理SDT,例如停止SDT,又例如暂停SDT。其中第二信息的描述可参见下述说明,其他描述可参见图13的S530的说明。
在一些实施例中,当第二子设备需发送系统信息请求或者接收下行消息时,第一设备向第一网络设备发送第二信息,可选地,第二子设备处于RRC非连接态。在一些实施例中,当多卡终端需从SDT业务切换为送系统信息请求或者接收下行消息的业务时,第一设备向第一网络设备发送第二信息,也可称为第一设备由于多卡原因向第一网络设备发送第二信息。具体示例可参见上述终端和网络设备进行SDT时,可能出现终端无法继续该SDT的情况的场景二,不限于此,也可以应用于场景一等其他场景。其中,下行消息例如为寻呼、系统信息、RRM等周期性的下行消息,或者其他非周期性的下行消息。
示例性地,多卡终端为智能手机,智能手机可以安装有两张电话卡,即第一子设备和第二子设备,当用户通过智能手机上的一张电话卡(即第一子设备)和其他终端传输即时通讯消息时,例如此时使用第一子设备的移动数据,通过第一网络设备和其他终端通信,智能手机的另一张电话卡(即第二子设备)需要监听网络设备发送的下行消息,例如寻呼消息等,智能手机无法继续通过第一子设备传输即时通讯消息,第一子设备可以向第一网络设备发送第二信息。
在一种可能的实现方式中,第二信息包括上述gap配置,在一些实施例中,该gap配置可以指示第一设备停止监听SDT的时段,在一些实施例中,该gap配置是针对第二子设备的业务生成的,可以指示第二子设备进行数据传输的时段。
在一些实施例中,针对第二子设备的周期性业务,第二信息中的gap配置可以包括:开 始时间、持续时间和业务周期,在另一些实施例中,针对第二子设备的非周期性业务,第二信息中的gap配置可以包括:开始时间和持续时间。在另一些实施例中,针对第二子设备的业务,例如周期性业务和非周期性业务,第二信息中的gap配置可以包括:开始时间和持续时间。
其中,在第二子设备的业务运行时,第一设备停止监听SDT。
在一些实施例中,上述停止监听SDT的时段,也可称为(第二子设备)占用的时段。
不限于上述示例的情况,在另一些实施例中,gap配置也可以指示第一设备监听SDT的时段,本申请以gap配置指示第一设备停止监听SDT的时段为例进行说明。
在一些实施例中,第一设备可以根据自身实现决定发送的第二信息。例如,第二子设备的业务仅为周期性业务,则第一设备可以发送和该周期性业务对应的第二信息(如业务周期),又例如,第二子设备的业务仅为非周期性业务,则第一设备可以发送和该非周期性业务对应的第二信息(如占用时段),又例如,第二子设备的业务包括周期性业务和非周期性业务,第一设备可以计算该业务的占用时段,并通过第二信息发送给第一网络设备。
S640:第一网络设备和第二网络设备之间传输第二信息和其他相关信息。
在一些实施例中,S640为可选的步骤。
在一些实施例中,第一设备当前服务小区对应的第一网络设备未存储第一设备的用户上下文,第一设备的用户上下文保存在第二网络设备中,即第一网络设备为新站,第二网络设备为老站。在这种情况下,第一网络设备接收到第一设备发送的第二信息后,向第二网络设备转发第二信息。可选地,S640是在老站(第二网络设备)决定不执行anchor relocation,新站(第一网络设备)无法从老站(第二网络设备)处获取到第一设备的用户上下文的场景下执行的。可选地,第一设备发起的SDT为RA-SDT,也就是说,S640是在RA-SDT且不更换锚点设备的场景下执行的。
在一些实施例中,第一网络设备和第二网络设备之间通过Xn接口消息交互信息,以下描述以第一网络设备和第二网络设备之间交互的消息为Xn接口消息为例进行说明。
在一些实施例中,第一网络设备接收到第一设备发送的第二信息后,可以向第二网络设备发送第六消息,第六消息包括第二信息,可选地,第六消息为上图11-图12所示的第一Xn接口消息(例如为RetrieveUEContextRequest消息),或者其他已有的Xn接口消息,或者新的Xn接口消息。
在一些实施例中,第一网络设备向第二网络设备发送第六消息之后,可以接收第二网络设备发送的第七消息,第七消息包括第二响应消息,第七消息用于第一网络设备在第二定时器超时之前向第一设备发送第二响应消息,例如第七消息用于第一网络设备执行S650。第二响应消息的示例可参见上图5-图10所示的SDT中的RRC响应消息,例如为RRCReconfiguration消息。可选地,第七消息可以为上图11所示的第二Xn接口消息(例如为RetrieveUEContextResponse消息)或者上图12所示的第三Xn接口消息(例如为RetrieveUEContextFailure消息),或者其他已有的Xn接口消息,或者新的Xn接口消息。
在一些实施例中,第一网络设备和第二网络设备之间可以传输包括第二定时器的时长的消息,具体如下所述:
在一种可能的实现方式中,第二配置信息和第二定时器的时长的配置方式为S610中的方式一或者方式四,即第一设备使用的第二定时器为第一网络设备通过广播的系统信息(如SIB1)为第一设备配置的。在一些实施例中,第二定时器的时长是第一网络设备生成的,在另一些实施例中,第二定时器的时长是为第一设备配置第二定时器的时长之前,第二网络设 备通过第十消息发送给第一网络设备的,第十消息包括第二定时器的时长。
在又一种可能的实现方式中,第二配置信息和第二定时器的时长的配置方式为S610中的方式二或者方式三,即第一设备使用的第二定时器为第一网络设备或第二网络设备通过RRC消息为第一设备配置的。在一些实施例中,第一设备使用的第二定时器为第二网络设备存储的第一设备的上下文中的第二定时器,在另一些实施例中,第一设备使用的第二定时器为第一网络设备为第一设备配置的,一种可能的情况中,第二定时器的时长是第一网络设备生成的,另一种可能的情况中,第二定时器的时长是为第一设备配置第二定时器的时长之前,第二网络设备通过第十消息发送给第一网络设备的,第十消息包括第二定时器的时长。
在又一种可能的实现方式中,第二配置信息和第二定时器的时长的配置方式为S610中的方式五,即第一设备使用的第二定时器的时长为预先定义的,第一网络设备和第二网络设备可以不交互第二定时器的时长。
在一些实施例中,第一设备使用的第二定时器为第二网络设备存储的第一设备的上下文中的第二定时器。第一网络设备接收到第一设备发送的第二信息之后,可以接收第二网络设备发送的第八消息,第八消息包括第二定时器的时长,第二定时器的时长可以用于第一网络设备在第二定时器超时之前向第一设备发送第二响应消息,例如第二定时器的时长用于第一网络设备执行S650。一种可能的情况中,包括第二响应消息的第七消息不为上图12所示的第三Xn接口消息,此时第一网络设备和第二网络设备的传输流程和上图14类似。另一种可能的情况中,包括第二响应消息的第七消息为上图12所示的第三Xn接口消息,此时第一网络设备和第二网络设备的传输流程和上图15类似。
在另一些实施例中,第一设备使用的第二定时器为第一网络设备为第一设备配置的,并且第二定时器的时长是第一网络设备生成的。一种可能的情况中,包括第二响应消息的第七消息不为上图12所示的第三Xn接口消息。第一网络设备可以向第二网络设备发送第九消息,第九消息包括第二定时器的时长,第二网络设备可以基于第九消息中的第二定时器的时长向第一网络设备发送第七消息,此时第一网络设备和第二网络设备的传输流程和上图16类似。另一种可能的情况中,包括第二响应消息的第七消息为上图12所示的第三Xn接口消息。第一网络设备可以不向第二网络设备发送第二定时器的时长,可选地,这种情况下,第一网络设备向第二网络设备发送包括第二信息的第六消息,和第二网络设备向第一网络设备发送包括第二响应消息的第七消息的顺序不做限定。
在另一些实施例中,第一设备使用的第二定时器为第一网络设备为第一设备配置的,并且第二定时器的时长是为第一设备配置第二定时器的时长之前,第二网络设备通过第十消息发送给第一网络设备的,第十消息包括第二定时器的时长。例如,在Xn Setup Procedure中,第二网络设备向第一网络设备发送XN SETUP RESPONSE消息,通过XN SETUP RESPONSE消息指示第二定时器的时长。又例如,在NG RAN Node Configuration Update Procedure中,第二网络设备向第一网络设备发送NG RAN CONFIGURATION UPDATE REQUEST消息,通过NG RAN CONFIGURATION UPDATE REQUEST指示第二定时器的时长。可选地,这种情况下,第一网络设备可以不向第二网络设备发送第二定时器的时长,可选地,第一网络设备向第二网络设备发送包括第二信息的第六消息,和第二网络设备向第一网络设备发送包括第二响应消息的第七消息的顺序不做限定。
在一些实施例中,第一网络设备可以多次通过Xn接口消息向第二网络设备发送定时器的时长,具体示例可参见上述第十消息的示例。若第一网络设备接收到的第二网络设备的响应消息不包括定时器的时长,则第一网络设备确定使用上述向第二网络设备发送的定时器的 时长为第二定时器的时长,若第一网络设备接收到的第二网络设备的响应消息包括定时器的时长,则第一网络设备确定使用第二网络设备发送的定时器的时长为第二定时器的时长。
在另一些实施例中,第一设备使用的第二定时器为预先定义的。一种可能的情况中,包括第二响应消息的第七消息不为上图12所示的第三Xn接口消息。第二网络设备可以基于第二定时器的时长生成第二响应消息,并向第一网络设备发送第七消息。第一网络设备可以基于第二定时器的时长向第一设备发送第二响应消息,例如在第二定时器超时之前发送。另一种可能的情况中,包括第二响应消息的第七消息为上图12所示的第三Xn接口消息。第一网络设备可以基于第二定时器的时长向第一设备发送第二响应消息,例如在第二定时器超时之前发送。
在一种可能的实现方式中,第二响应消息包括第三信息,第三信息指示上述gap配置,具体可参见S650的说明,暂不详述。在一些实施例中,第三信息是第二网络设备基于第二信息生成的,具体流程如下图18所示,在另一些实施例中,第三信息是第一网络设备基于第二信息生成的,具体流程如下图19所示。
S650:第一网络设备向第一设备发送第二响应消息(例如RRCReconfiguration消息)。
在一些实施例中,S650为可选的步骤。
在一些实施例中,第一设备接收到第二响应消息后,可以基于第二响应消息处理SDT,可选地,可以停止第二定时器。在一些实施例中,第二响应消息包括第三信息,第三信息指示gap配置,gap配置的示例可参见S630中第二信息包括的gap配置的说明。
在一些实施例中,第三信息指示的gap配置可以指示第一设备停止监听SDT的第一时段。第一设备接收到第二响应消息后,可以在第一时段内停止监听SDT,在第一时段外的时段监听SDT(如进行SDT)。可选地,该gap配置是针对第二子设备的周期性业务,第一设备接收到第二响应消息后,可以周期性停止监听SDT,也就是说,可以在该周期性业务的业务周期内停止监听SDT,在业务周期外继续SDT。可选地,该gap配置是针对第二子设备的非周期性业务,第一设备接收到第二响应消息后,可以在该非周期性业务占用的时段内停止监听SDT,其他时段继续SDT。
不限于上述示例的情况,在另一些实施例中,第一设备在第二定时器超时时,仍未接收到第一网络设备发送的第二响应消息,则可以根据自身实现决定如何处理SDT,例如停止SDT,又例如暂停SDT。
在一些实施例中,第二响应消息为RRC消息,例如为RRCReconfiguration消息。不限于此,在另一些实施例中,第二响应消息也可以为上图5-图10所示的SDT过程中的RRC响应消息。在另一些实施例中,第一网络设备还可以通过MAC CE向第一设备指示gap配置的激活和/或去激活。
不限于上述示例的情况,在另一些实施例中,也可以不为第一设备配置第二定时器,例如S610不涉及第二定时器,一种可能的情况下,第二配置信息的配置方式可以是通过广播的系统信息(如SIB1)发送给第一设备的,此时第二配置信息的描述可参见S610的方式二中第二配置信息的说明。另一种可能的情况下,第二配置信息可以是通过RRC消息发送给第一设备的,此时第二配置信息的描述可参见S610的方式四中第二配置信息的说明。可选地,第二配置信息是通过RRC消息发送给第一设备的情况下,该方法还可以包括:第一设备接收第一网络设备(广播)发送的系统信息(如SIB1),该系统信息可以指示当前网络设备支持设备上报第二信息,例如当SIB1中第二支持信息的取值为“true”时表示“当前基站支持UE上报第二信息”。并且,第一设备也不使用第二定时器,例如S630不涉及第二定时器,相应 地,第一设备可以直接根据自身实现决定如何处理SDT,例如停止SDT,又例如暂停SDT,无需基于第二定时器等待第二响应消息。
在图17所示的方法中,第一设备可以向第一网络设备发送第二信息,通过第二信息指示请求暂停SDT或者请求用于SDT的gap配置,以避免第一设备停止监听SDT时,第一网络设备仍为第一设备调度用于该SDT的资源,节省空口资源。
并且第一设备可以不停止当前SDT,待可以进行SDT时再继续该SDT(例如第二子设备进行周期性业务以外的时段第一设备再继续SDT),减少信令开销,传输效率更高。
在一些实施例中,第一设备确定停止当前的SDT时,可以发送指示请求停止SDT的第一信息,后续不会继续该SDT,可选地,第一设备后续可以重新发起新的SDT。例如,第一设备为多卡终端包括的第一子设备,多卡终端还包括第二子设备,第一设备可以停止当前SDT,让第二子设备进入RRC连接态。后续第二子设备进入非RRC连接态时,第一设备可以重新发起新的SDT。
在另一些实施例中,第一设备确定暂停当前的SDT时,可以发送指示请求暂停SDT(可选地以及不进入RRC CONNECTED态)的第一信息,或者指示请求暂停SDT的第二信息,或者指示请求用于SDT的gap配置的第二信息,一种可能的情况下,第一设备后续可以继续该SDT,另一种可能的情况下,第一设备后续可以重新发起新的SDT。例如,第一设备为多卡终端包括的第一子设备,多卡终端还包括第二子设备,第一设备可以暂停当前SDT,让第二子设备进行周期性或非周期性的数据传输(如仍处于非RRC连接态传输数据),第二子设备进行周期性的数据传输以外的时段内,第一设备可以继续当前SDT,或者第二子设备进行非周期性的数据传输之后,第一设备可以继续当前SDT。
接下来示例性介绍S640的具体实现方式。
在一些实施例中,第二响应消息中指示gap配置的第三信息是第二网络设备基于第二信息生成的,具体流程如下图18所示。
请参见图18,图18示例性示出又一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S6411:第一网络设备向第二网络设备发送包括第二信息的第六消息。
在一些实施例中,第一网络设备接收到第一设备发送的第二信息后,可以向第二网络设备转发第二信息。
S6412:第二网络设备可以基于第六消息中的第二信息生成第三信息。
在一些实施例中,第二网络设备可以基于第六消息中第二信息的具体内容,生成第三信息。在一些实施例中,第二网络设备生成包括第三信息的第二响应消息。
在一些实施例中,第二网络设备可以基于第二定时器的时长和第二信息生成第三信息,在一些实施例中,第二网络设备可以基于第二定时器的时长生成包括第三信息的第二响应消息。可选地,在上述情况下,第一网络设备可以在第二定时器超时之前向第一设备发送第二响应消息。
S6413:第二网络设备向第一网络设备发送包括第二响应消息的第七消息。
在一些实施例中,第二网络设备可以基于第二定时器的时长,向第一网络设备发送包括第二响应消息的第七消息,可选地,以使第一网络设备可以在第二定时器超时之前向第一设备发送第二响应消息。
在一些实施例中,第二网络设备还可以向第一网络设备发送gap配置的具体内容,例如发送包括第三信息的Xn接口消息,第一网络设备可以基于该Xn接口消息获取到gap配置的 具体内容。可选地,第一网络设备可以基于gap配置的具体内容,进行SDT的调度。
在一些实施例中,第一网络设备接收到第七消息后,可以在第二定时器超时之前,向第一设备发送第二响应消息。
在另一些实施例中,第二响应消息中指示gap配置的第三信息是第一网络设备基于第二信息生成的,具体流程如下图19所示。
请参见图19,图19示例性示出又一种控制传输的方法的流程示意图。该方法包括但不限于如下步骤:
S6421:第一网络设备向第二网络设备发送包括第二信息的第六消息。
在一些实施例中,第一网络设备接收到第一设备的第二信息后,可以向第二网络设备转发第二信息。
S6422:第二网络设备向第一网络设备发送包括第二信息的第十一消息。
在一些实施例中,第二网络设备可以向第一网络设备发送包括第二信息的具体内容的第十一消息,在一些实施例中,第一网络设备可以基于第十一消息获取到第二信息的具体内容。
S6423:第一网络设备基于第二信息生成第三信息。
在一些实施例中,第一网络设备可以基于获取到的第二信息的具体内容,生成第三信息。
S6424:第一网络设备向第二网络设备发送包括第三信息的第十二消息。
S6425:第二网络设备向第一网络设备发送包括第二响应消息的第七消息。
在一些实施例中,第二网络设备接收到包括第三信息的第十二消息后,生成包括第三信息的第二响应消息,在一些实施例中,第二网络设备可以基于第二定时器的时长生成包括第三信息的第二响应消息。可选地,在上述情况下,第一网络设备可以在第二定时器超时之前向第一设备发送第二响应消息。
在一些实施例中,第二网络设备可以基于第二定时器的时长,向第一网络设备发送包括第二响应消息的第七消息,可选地,以使第一网络设备可以在第二定时器超时之前向第一设备发送第二响应消息。
示例性地,上述第六消息为第一Xn接口消息(例如为RetrieveUEContextRequest消息),上述第七消息为第二Xn接口消息(例如为RetrieveUEContextResponse消息)或者第三Xn接口消息(例如为RetrieveUEContextFailure消息)。不限于此,第六消息也可以为其他现有的或者新的Xn接口消息。第七消息也可以为其他现有的或者新的Xn接口消息。
示例性地,上述第十一消息为第一Xn接口消息(例如为RetrieveUEContextRequest消息),上述第十二消息为第二Xn接口消息(例如为RetrieveUEContextResponse消息)或者第三Xn接口消息(例如为RetrieveUEContextFailure消息)。不限于此,第十一消息也可以为其他现有的或者新的Xn接口消息。第十二消息也可以为其他现有的或者新的Xn接口消息。
可以理解地,本申请描述的通信系统架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着通信系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可存储计算机程序代码的介质。

Claims (28)

  1. 一种控制传输的方法,其特征在于,应用于第一设备,所述方法包括:
    处于非无线资源控制RRC连接态时,向第一网络设备发送第一信息,所述第一信息指示请求停止小包数据传输SDT。
  2. 如权利要求1所述的方法,其特征在于,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述向第一网络设备发送第一信息,包括:通过所述第一子设备向所述第一网络设备发送所述第一信息;其中:
    所述第一信息指示所述第一子设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一子设备的所述SDT。
  3. 如权利要求2所述的方法,其特征在于,所述向第一网络设备发送第一信息,包括:当所述第二子设备需从非RRC连接态进入RRC连接态时,通过所述第一子设备向所述第一网络设备发送所述第一信息;或者,
    所述向第一网络设备发送第一信息,包括:当所述第一设备需从SDT业务切换至RRC连接态业务时,向所述第一网络设备发送所述第一信息;或者,
    所述向第一网络设备发送第一信息,包括:由于多卡原因向所述第一网络设备发送所述第一信息。
  4. 如权利要求2或3所述的方法,其特征在于,所述处于非无线资源控制RRC连接态,包括:所述第一子设备处于RRC非激活态;所述方法还包括:
    所述向第一网络设备发送第一信息时,所述第一子设备开启第一定时器;
    所述向第一网络设备发送第一信息之后,所述方法还包括:
    若在所述第一定时器超时之前接收到所述第一网络设备发送的第一响应消息,所述第一子设备停止所述第一定时器;
    若在所述第一定时器超时时未接收到所述第一网络设备发送的所述第一响应消息,所述第一子设备进入RRC空闲态。
  5. 如权利要求2-4任一项所述的方法,其特征在于,所述向第一网络设备发送第一信息之前,所述方法还包括:
    通过所述第一子设备接收第一配置信息,所述第一配置信息指示所述第一信息的上报,其中:
    所述通过所述第一子设备接收第一配置信息,包括:通过所述第一子设备接收所述第一网络设备通过广播的系统信息发送的所述第一配置信息;或,所述通过所述第一子设备接收第一配置信息,包括:通过所述第一子设备接收所述第一网络设备通过RRC消息发送的所述第一配置信息;或,所述通过所述第一子设备接收第一配置信息,包括:通过所述第一子设备接收第二网络设备通过RRC消息发送的所述第一配置信息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一网络设备未存储所述第一子设备的用户上下文;
    所述第一配置信息包括第一定时器的时长;或,所述方法还包括:通过所述第一子设备 接收所述第一网络设备通过广播的系统信息发送的第一定时器的时长;或,所述方法还包括:通过所述第一子设备接收所述第一网络设备通过RRC消息发送的第一定时器的时长;或,所述方法还包括:通过所述第一子设备接收第二网络设备通过RRC消息发送的第一定时器的时长,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一网络设备未存储所述第一子设备的用户上下文;或,第一定时器的时长是预先定义的;其中,所述第一定时器用于所述第一子设备监听所述第一信息的响应消息。
  6. 如权利要求5所述的方法,其特征在于,所述通过所述第一子设备接收第一配置信息之前,所述方法还包括:
    通过所述第一子设备发送第一请求消息,所述第一请求消息指示请求配置所述第一信息的上报。
  7. 一种控制传输的方法,其特征在于,应用于第一网络设备,所述方法包括:
    接收第一设备发送的第一信息,所述第一信息指示请求停止SDT。
  8. 如权利要求7所述的方法,其特征在于,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述接收第一设备发送的第一信息,包括:接收所述第一子设备发送的所述第一信息;其中:
    所述第一信息指示所述第一子设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一子设备的所述SDT。
  9. 如权利要求8所述的方法,其特征在于,所述第一信息是所述第一子设备在所述第二子设备需从非RRC连接态进入RRC连接态时向所述第一网络设备发送的;或者,
    所述第一信息是所述第一设备需从SDT业务切换至RRC连接态业务时向所述第一网络设备发送的;或者,
    所述第一信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
  10. 如权利要求8或9所述的方法,其特征在于,所述接收第一设备发送的第一信息之前,所述方法还包括:
    向所述第一子设备发送第一配置信息,和/或,向所述第一子设备发送第一定时器的时长,所述第一配置信息指示所述第一信息的上报,所述第一定时器用于所述第一子设备监听所述第一信息的响应消息,其中:
    所述向所述第一子设备发送第一配置信息,包括:通过广播的系统信息向所述第一子设备发送所述第一配置信息;或,所述向所述第一子设备发送第一配置信息,包括:通过RRC消息向所述第一子设备发送所述第一配置信息;
    所述第一配置信息包括所述第一定时器的时长;或,所述向所述第一子设备发送第一定时器的时长,包括:通过广播的系统信息向所述第一子设备发送所述第一定时器的时长;或,所述向所述第一子设备发送第一定时器的时长,包括:通过RRC消息向所述第一子设备发送所述第一定时器的时长;或,所述第一定时器的时长是预先定义的。
  11. 如权利要求8-10任一项所述的方法,其特征在于,所述接收第一设备发送的第一信息之后,所述方法还包括:
    在第一定时器超时之前,向所述第一子设备发送第一响应消息。
  12. 如权利要求8-11任一项所述的方法,其特征在于,所述第一网络设备未存储所述第一子设备的用户上下文;所述接收第一设备发送的第一信息之后,所述方法还包括:
    向第二网络设备发送第一消息,所述第一消息包括所述第一信息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备。
  13. 如权利要求8-12任一项所述的方法,其特征在于,所述方法还包括:
    接收第二网络设备发送的第二消息,所述第二消息包括第一响应消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第二消息用于所述第一网络设备向所述第一子设备发送所述第一响应消息。
  14. 如权利要求8-13任一项所述的方法,其特征在于,所述接收第一设备发送的第一信息之后,所述方法还包括:
    接收第二网络设备发送的第三消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第一子设备的用户上下文包括第一定时器的时长,所述三消息包括所述第一定时器的时长,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
  15. 如权利要求13所述的方法,其特征在于,所述接收第二网络设备发送的第二消息之前,所述方法还包括:
    向所述第二网络设备发送第四消息,所述第四消息包括第一定时器的时长,所述第一定时器的时长是所述第一网络设备生成的,所述第一定时器的时长用于所述第二网络设备向所述第一网络设备发送所述第二消息。
  16. 如权利要求8-13任一项所述的方法,其特征在于,所述接收第一设备发送的第一信息之前,所述方法还包括:
    接收第二网络设备发送的第五消息,所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备,所述第五消息包括第一定时器的时长,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
  17. 如权利要求10所述的方法,其特征在于,所述向所述第一子设备发送第一配置信息之前,所述方法还包括:
    接收所述第一子设备发送的第一请求消息,所述第一请求消息指示请求配置所述第一信息的上报。
  18. 一种控制传输的方法,其特征在于,应用于第二网络设备,所述方法包括:
    接收第一网络设备发送的第一消息,所述第一消息包括第一信息,所述第一信息指示第一设备请求停止SDT,所述第一网络设备未存储所述第一设备的用户上下文,所述第二网络 设备为存储有所述第一设备的用户上下文的锚点设备。
  19. 如权利要求18所述的方法,其特征在于,所述第一设备为多卡终端,所述第一设备包括第一子设备和第二子设备,所述第一子设备和所述第二子设备共用射频发送链和/或射频接收链,所述第一网络设备未存储所述第一设备的用户上下文,包括:所述第一网络设备未存储所述第一子设备的用户上下文,所述第二网络设备为存储有所述第一设备的用户上下文的锚点设备,包括:所述第二网络设备为存储有所述第一子设备的用户上下文的锚点设备;
    所述第一信息指示所述第一子设备请求停止所述SDT;或者,所述第一信息指示请求停止所述第一子设备的所述SDT。
  20. 如权利要求19所述的方法,其特征在于,所述第一信息是所述第一子设备在所述第二子设备需从非RRC连接态进入RRC连接态时向所述第一网络设备发送的;或者,
    所述第一信息是所述第一设备需从SDT业务切换至RRC连接态业务时向所述第一网络设备发送的;或者,
    所述第一信息是所述第一设备由于多卡原因向所述第一网络设备发送的。
  21. 如权利要求19-20任一项所述的方法,其特征在于,所述接收第一网络设备发送的第一消息之前,所述方法还包括:
    通过RRC消息向所述第一子设备发送第一配置信息,和/或,通过RRC消息向所述第一子设备发送第一定时器的时长,所述第一配置信息指示所述第一信息的上报,所述第一定时器用于所述第一子设备监听所述第一信息的响应消息;
    所述第一配置信息包括所述第一定时器的时长;或,所述第一定时器的时长是预先定义的。
  22. 如权利要求19-21任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送第二消息,所述第二消息包括第一响应消息,所述第二消息用于所述第一网络设备向所述第一子设备发送所述第一响应消息。
  23. 如权利要求19-22任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送第三消息,所述第三消息包括第一定时器的时长,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
  24. 如权利要求22所述的方法,其特征在于,所述向所述第一网络设备发送第二消息之前,所述方法还包括:
    接收所述第一网络设备发送的第四消息,所述第四消息包括第一定时器的时长,所述第一定时器的时长是所述第一网络设备生成的,所述第一定时器的时长用于所述第二网络设备向所述第一网络设备发送所述第二消息。
  25. 如权利要求19-22任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送第五消息,所述第五消息包括第一定时器的时长,所述第五消 息是所述第一网络设备接收到所述第一子设备发送的所述第一信息之前接收的,所述第一定时器的时长用于所述第一网络设备在所述第一定时器超时之前向所述第一子设备发送第一响应消息。
  26. 一种网络设备,其特征在于,包括收发器、处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用所述计算机程序,用于执行如权利要求7-25任一项所述的方法。
  27. 一种电子设备,其特征在于,包括收发器、处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用所述计算机程序,用于执行如权利要求1-6任一项所述的方法。
  28. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1-25任一项所述的方法。
PCT/CN2022/120459 2021-09-28 2022-09-22 一种控制传输的方法及相关装置 WO2023051366A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111146413 2021-09-28
CN202111146413.7 2021-09-28
CN202111228387.2 2021-10-21
CN202111228387.2A CN115884256A (zh) 2021-09-28 2021-10-21 一种控制传输的方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023051366A1 true WO2023051366A1 (zh) 2023-04-06

Family

ID=85756823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120459 WO2023051366A1 (zh) 2021-09-28 2022-09-22 一种控制传输的方法及相关装置

Country Status (2)

Country Link
CN (1) CN115884256A (zh)
WO (1) WO2023051366A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706519A (zh) * 2013-10-25 2016-06-22 日本电气株式会社 移动无线电通信网络中的小数据传输的控制
US20170041782A1 (en) * 2013-11-25 2017-02-09 Zte Corporation Method and system for secure transmission of small data of MTC device group
CN110557806A (zh) * 2018-05-31 2019-12-10 电信科学技术研究院有限公司 一种数据传输方法、终端设备及网络设备
CN113260076A (zh) * 2020-02-13 2021-08-13 华硕电脑股份有限公司 无线通信系统中小数据传送的回退动作的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706519A (zh) * 2013-10-25 2016-06-22 日本电气株式会社 移动无线电通信网络中的小数据传输的控制
US20170041782A1 (en) * 2013-11-25 2017-02-09 Zte Corporation Method and system for secure transmission of small data of MTC device group
CN110557806A (zh) * 2018-05-31 2019-12-10 电信科学技术研究院有限公司 一种数据传输方法、终端设备及网络设备
CN113260076A (zh) * 2020-02-13 2021-08-13 华硕电脑股份有限公司 无线通信系统中小数据传送的回退动作的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Radio bearer configuration for SDT considering UE context relocation and CU/DU split", 3GPP TSG RAN WG2 MEETING #111-E, R2-2006714, 7 August 2020 (2020-08-07), XP051911622 *

Also Published As

Publication number Publication date
CN115884256A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN111819879B (zh) 在rrc非活动状态下暂停/恢复测量
US10149344B2 (en) Device and method of handling a radio resource control state change
US20190021058A1 (en) Method and apparatus for power saving in a wireless communication system
US20210091850A1 (en) Communications device, infrastructure equipment and method
WO2019232732A1 (zh) 一种寻呼消息传输方法和相关设备
KR101676976B1 (ko) 전력 우선 표시자 타이머
CN108886748B (zh) 用于减少信令开销和减少终端电池的方法和设备
US20230284329A1 (en) Method and apparatus for handling response timer and cell reselection for small data transmission
WO2022152003A1 (zh) 非激活态下数据传输方法及装置
CN112514528A (zh) 用于5g蜂窝物联网的用户平面优化
KR20190073504A (ko) 데이터 전송/수신 장치 및 방법, 및 통신 시스템
CN114342435B (zh) 无线通信方法和装置
WO2022077442A1 (en) Method and apparatus for multicast and broadcast services
JP2023519587A (ja) 端末装置及び基地局
CN108029157A (zh) 一种通信方法、终端及网络设备
US20220287004A1 (en) Communication control method and user equipment
CN115767783A (zh) 一种数据传输方法及装置、网络设备、终端
WO2023051366A1 (zh) 一种控制传输的方法及相关装置
CN115529662A (zh) 一种通信方法及装置
WO2023001149A1 (zh) 一种控制传输的方法及相关装置
US20210100037A1 (en) Flexible activation of early data transmission
KR20200071736A (ko) 네트워크 액세스 우선 순위화
WO2022236504A1 (zh) 通信方法及装置
WO2023108476A1 (zh) 通信方法及装置
WO2022267883A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022874753

Country of ref document: EP

Effective date: 20240314