WO2018016650A1 - 金属有機構造体ナノシートおよびその製造方法 - Google Patents

金属有機構造体ナノシートおよびその製造方法 Download PDF

Info

Publication number
WO2018016650A1
WO2018016650A1 PCT/JP2017/026582 JP2017026582W WO2018016650A1 WO 2018016650 A1 WO2018016650 A1 WO 2018016650A1 JP 2017026582 W JP2017026582 W JP 2017026582W WO 2018016650 A1 WO2018016650 A1 WO 2018016650A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanosheet
metal organic
organic structure
solvent
metal
Prior art date
Application number
PCT/JP2017/026582
Other languages
English (en)
French (fr)
Inventor
幸明 内田
憲和 西山
尊 大宮
拓斗 中居
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to US16/319,743 priority Critical patent/US11389781B2/en
Priority to JP2018528913A priority patent/JP6978783B2/ja
Publication of WO2018016650A1 publication Critical patent/WO2018016650A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/147Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present disclosure relates to a metal organic structure nanosheet and a manufacturing method thereof.
  • Nano-sized materials such as nanosheets, may exhibit interesting properties that cannot be expected in the bulk phase. For this reason, various methods have been studied regarding the method for producing nanosheets.
  • Conventional nanosheet manufacturing methods include bottom-up methods such as sol-gel method, electrolytic oxidation method, CVD method, and drop cast method; a layered compound is formed using the material that forms the target nanosheet, A top-down method of inserting a bulky guest and peeling a single layer is known.
  • the top-down method the material of the nanosheet to be obtained is limited, and a process of firing at a high temperature of 800 ° C. to 1300 ° C. for a long time may be necessary.
  • Patent Document 1 is a composite nanosheet formed at the interface between an organic phase and an aqueous phase, and the composite nanosheet is made of a surfactant and has a lamellar structure, and along the surface direction of the molecular film.
  • Patent Document 1 is a composite nanosheet on a liquid-liquid interface, comprising a formed metal oxide nanosheet.
  • metal oxide nanosheets are formed on the bilayer film, that is, outside the bilayer film.
  • Patent Document 2 has a plurality of complex molecules that are two-dimensionally cross-linked to form a film, each of the complex molecules comprising one metal atom and two molecules of terpyridine or bipyridine derivatives, Has two thiol groups, the thiol group of the derivative is located on both opposing surfaces of the membrane, and a metal atom is bonded to at least a part of the thiol group, A metal-based nanofilm is disclosed.
  • a multilayer film sheet is grown on a substrate using electron beam exposure.
  • Non-Patent Document 1 discloses a gold nanosheet manufactured using a lamellar phase and having excellent optical properties and electrical properties.
  • Non-Patent Document 1 since the method of Non-Patent Document 1 forms a nanosheet at a portion that is compatible with a solvent, it can be applied to a material that easily forms a nanosheet such as gold. On the other hand, in this method, since the nanosheet is formed in the solvent, it cannot be formed into a nanosheet by inhibiting the formation in the thickness direction because there is no obstacle in the thickness direction. In the case of a compound that easily takes a three-dimensional structure such as a structure, there is a problem that it is not easy to form in a sheet form. Further, in the method of Non-Patent Document 1, since the nanosheet is obtained using a hydrogel having a lamellar phase, there is also a problem that the sheet forming method is limited to the drop casting method.
  • This disclosure is intended to provide a novel metal organic structure nanosheet and a method for producing the same.
  • a metal comprising a metal organic structure disposed in a sheet between two monolayers constituting one bilayer, wherein the plurality of bilayers form a super-swelled lamellar phase in a solvent.
  • Organic structure nanosheet [2] The metal organic structure nanosheet according to [1], wherein the bimolecular film is composed of a nonionic amphiphile. [3] At least the nonionic amphiphile is selected from the group consisting of ester surfactants, ether surfactants, ester ether surfactants, alkanolamide surfactants, alkyl glycosides, and higher alcohols.
  • the metal organic structure nanosheet according to [2] which is one type.
  • the nonionic amphiphile is an ether type surfactant, and the ether type surfactant is at least one selected from the group consisting of polyethylene glycol monoalkyl ether and polyoxyethylene alkylphenyl ether.
  • the bimolecular film has the following formula (1): (In the formula, n represents the carbon number of the alkyl group in the hydrophobic portion, and m represents the number of ethylene oxide in the hydrophilic portion.)
  • the metal organic structure nanosheet according to [1] which is composed of a polyethylene glycol monoalkyl ether represented by the formula: [6]
  • a metal organic structure nanosheet in a dispersed state in a liquid wherein the metal organic structure nanosheet is the metal organic structure nanosheet according to any one of [1] to [11] Structure nanosheet dispersion.
  • [14] The method for producing a nanosheet according to [13], wherein the nanosheet is composed of a metal organic structure.
  • a bilayer film is formed in a solvent, an organic ligand is added to the solvent to form a super-swelled lamellar phase of the bilayer film, and then metal ions are added to the solvent.
  • [16] The production of the nanosheet according to [14] or [15], in which the metal organic structure nanosheet is formed between the two monomolecular layers constituting the bilayer, and then the bilayer is removed. Method.
  • the bimolecular film has the following formula (1): (In the formula, n represents the carbon number of the alkyl group in the hydrophobic portion, and m represents the number of ethylene oxide in the hydrophilic portion.)
  • a bilayer film is formed in a solvent, an amphiphile is added to the solvent to form a super-swelled lamellar phase of the bilayer film, and then a metal-containing oxygen atom is contained in the solvent
  • the compound or the metal-containing compound having no oxygen atom is added to form a metal oxide nanosheet or a metal nanosheet between two monolayers constituting one bilayer film, according to the above [23] Manufacturing method of nanosheet.
  • the method for producing a nanosheet according to [24] wherein the solvent includes a mixed solution of water and an organic solvent.
  • a gas separation membrane comprising the metal organic structure nanosheet according to any one of [1] to [11].
  • the gas separation membrane according to [28] which is for nitrogen separation or carbon dioxide separation.
  • Metal oxidation comprising a metal oxide arranged in a sheet between two monolayers constituting one bilayer, wherein the plurality of bilayers form a super-swelled lamellar phase in a solvent Nanosheets.
  • a gold nanosheet comprising a gold compound disposed in the form of a sheet between two monolayers constituting one bilayer, wherein the plurality of bilayers form a super-swelled lamellar phase in a solvent.
  • a novel metal organic structure nanosheet and a method for producing the same are provided. Moreover, since the manufacturing method of the nanosheet concerning this indication is not limited to patent documents 1, 2 and nonpatent literature 1, since a starting material is not limited, various nanosheets can be manufactured. Furthermore, the nanosheet manufacturing method according to the present disclosure does not require a step of heating to a high temperature and is industrially advantageous. In addition, the novel metal organic structure nanosheet according to the present disclosure shifts the pressure at which molecules to be adsorbed (hereinafter referred to as adsorbed molecules) start to be adsorbed or the pressure at which desorption begins to a higher pressure side than the bulk metal organic structure. be able to.
  • adsorbed molecules the pressure at which molecules to be adsorbed
  • FIG. 1A is a schematic diagram illustrating a method for producing a metal organic structure nanosheet according to the first embodiment.
  • FIG. 1B is a schematic diagram showing a bilayer film forming a super-swelling lamellar phase.
  • FIG. 1C is a schematic view showing a conventional method for producing a gold nanosheet.
  • FIG. 2A is an observation result of the metal organic structure nanosheet according to Example 1 by an atomic force microscope.
  • FIG. 2B is an observation result of the metal organic structure nanosheet according to Example 1 using an atomic force microscope.
  • FIG. 3A is the result of measuring the thickness of the metal organic structure nanosheet according to Example 1 with an atomic force microscope.
  • FIG. 3B is the result of measuring the thickness of the metal organic structure nanosheet according to Example 1 using an atomic force microscope.
  • FIG. 4 is an X-ray diffraction spectrum of the metal organic structure nanosheet according to Example 1.
  • FIG. 5 is a graph showing the relationship between the nitrogen relative pressure and the adsorption amount of the metal-organic structure nanosheet according to Example 1.
  • FIG. 6 is a graph showing the relationship between the carbon dioxide absolute pressure and the adsorption amount of the metal organic structure nanosheet according to Example 1.
  • FIG. 7 is a graph showing the relationship between the carbon dioxide absolute pressure and the adsorption amount of the metal-organic structure nanosheet according to Example 1.
  • FIG. 8 is a graph showing the relationship between the nitrogen relative pressure and the adsorption amount of the metal organic structure nanosheet according to Example 2.
  • FIG. 9 is a diagram showing a method for confirming the presence or absence of a super-swelling lamellar phase.
  • FIG. 10 is a graph showing the relationship between the concentration of polyethylene glycol monoalkyl ether, which is a nonionic amphiphile, and the reflection spectrum.
  • 11 shows a polyethylene glycol monoalkyl ether (C n E m ; C n portion which is a nonionic amphiphile, a hydrophobic portion, and a portion where E m is a hydrophilic portion.
  • N is an alkyl in the hydrophobic portion.
  • FIG. 12 shows the composition of the nonionic amphiphile polyethylene glycol monoalkyl ether (C n E m ; C n and E m have the same meaning as above) and the temperature of formation of the super-swelled lamellar phase. It is a table
  • FIG. 13 is a phase diagram of the C 12 E 6 -toluene aqueous system.
  • FIG. 14 is a diagram showing the influence of the addition of glycerin to C 12 E 5 on the formation temperature of the super-swelled lamellar phase.
  • FIG. 15 is a diagram showing the influence of the addition of glycerin to C 12 E 6 on the formation temperature of the super-swelled lamellar phase.
  • FIG. 16 is a diagram showing the influence of the amphiphilic molecule content on the interlayer distance.
  • FIG. 17 is a diagram showing the influence of glycerin addition on the interlayer distance.
  • FIG. 18 is an observation result of the silica nanosheet according to Example 3 using a transmission electron microscope.
  • FIG. 19 is an observation result of the gold nanosheet according to Example 4 using a transmission electron microscope.
  • FIG. 20 is an observation result of the gold nanosheet according to Example 4 using a scanning electron microscope.
  • Porous structures are produced by combining various raw materials and growth methods, and are expected to be applied to gas separation membranes, for example.
  • metal organic structures have been applied to carbon dioxide separation membranes because of their high affinity with carbon dioxide.
  • the separation target molecule When applying as a separation membrane, the separation target molecule is adsorbed to the metal organic structure by pressurization, and the separation target molecule is desorbed from the metal organic structure by decompression. In conventional metal organic structures, carbon dioxide does not readily desorb even under low pressure, and a large amount of energy is required for the desorption process. Ideally, the target molecule is preferably desorbed at 0.1 MPa or more.
  • the metal organic structure nanoparticles have an increased gate open pressure compared to bulk metal organic structures. It is considered that the gate open pressure can be further increased by further reducing the particle size.
  • the gate open pressure means both a pressure at which an adsorbed molecule starts to adsorb and a pressure at which an adsorbed molecule starts to desorb.
  • an organic ligand which is a nonpolar molecule
  • the organic ligand collects between two monolayers.
  • a metal ion is introduced there, a metal organic structure formation reaction (continuous formation of coordination bonds) proceeds between the two monomolecular layers, and the metal organic structure nanosheet is formed between the two monomolecular layers. It was thought to be formed. Since the thickness of the bimolecular film is limited, a nanosheet having a limited thickness can be easily formed.
  • constituent elements that are not described in the independent claims of the present disclosure are described as arbitrary constituent elements that constitute a more preferable form.
  • the same reference numerals are sometimes omitted.
  • the drawings schematically show the respective components for easy understanding, and there are cases where the shape, dimensional ratio, and the like are not accurately displayed.
  • the order of each process etc. may be changed as needed, and another process may be added.
  • the metal organic structure nanosheet according to the first embodiment of the present disclosure includes a metal organic structure disposed in a sheet shape between two monomolecular layers constituting one bimolecular film, and includes a plurality of bimolecular films. Forms a super-swelled lamellar phase in a solvent.
  • Metal organic structure is a porous material having a high surface area containing a metal and an organic compound. Specifically, a porous structure is formed by utilizing coordination bonds between various metal ions and organic compounds. More specifically, for example, an appropriate rigid organic ligand and coordination direction are defined. It can be a highly periodic crystalline compound obtained by forming a complex between the formed metal clusters. It is sometimes called a porous coordination polymer (PCP: Porous CoordinationlyPolymer). It can be applied to various uses such as gas adsorption or separation.
  • PCP Porous CoordinationlyPolymer
  • the metal organic structure nanosheet 1 is a sheet-like structure made of a metal organic structure.
  • the thickness of the metal organic structure nanosheet 1 is not particularly limited as long as it is nano-sized, and can be appropriately set according to the required use, and is usually 0.1 nm or more, preferably 0.5 nm or more. More preferably, it is 1 nm or more.
  • the thickness of the metal organic structure nanosheet 1 is usually 100 nm or less, preferably 50 nm or less, and more preferably 20 nm or less. This is because the operability is high above the lower limit, and the thickness is practically thin when it is below the upper limit. Moreover, it is preferable at the point which improves a gate open pressure below the said lower limit and below the said upper limit.
  • the size in the planar direction of the metal organic structure nanosheet 1 is not particularly limited and can be appropriately set according to the starting material to be used and its use. However, in terms of practicality, one side is usually 50 nm or more, preferably Is 100 nm or more, usually 1 ⁇ m or less, preferably 500 nm or less.
  • the aspect ratio (size / thickness in the horizontal direction) of the metal organic structure nanosheet 1 is not particularly limited and can be appropriately set according to the starting material to be used and its use, but is usually 10 or more, preferably Is 20 or more, more preferably 50 or more, and still more preferably 100 or more. Moreover, an aspect ratio is 5000 or less normally, Preferably it is 1000 or less.
  • the bimolecular film is preferably composed of an amphiphilic substance.
  • the amphiphilic substance may be a nonionic amphiphilic substance because it is easy to adjust the balance between the hydrophilic part and the hydrophobic part in order to form a super-swelled lamellar phase.
  • Nonionic amphiphilic substances include ester surfactants, ether surfactants, ester ether surfactants, alkanolamide surfactants, alkyl glycosides, and higher alcohols.
  • a commercially available product can be used as the nonionic amphiphile.
  • ester type surfactant examples include sucrose fatty acid esters such as sucrose laurate, sucrose oleate, and sucrose monopalmitate; sorbitan caprylate monoester, sorbitan caprylate diester, sorbitan caproate monoester, Sorbitan fatty acid esters such as sorbitan caproic acid diester, sorbitan capric acid monoester, sorbitan capric acid diester, sorbitan lauric acid monoester, sorbitan lauric acid diester, sorbitan myristic acid monoester, sorbitan myristic acid diester; glyceryl caprylate, glyceryl caprate Monoglycerin fatty acid ester such as glyceryl laurate, glyceryl myristate, glyceryl di (laurate / myristate) Diglyceryl monostearate, diglyceryl monooleate, diglyceryl dioleate, diglyceryl
  • ether type surfactant As the ether type surfactant, the following formula (1) (In the formula, n represents the carbon number of the alkyl group in the hydrophobic portion, and m represents the number of ethylene oxide in the hydrophilic portion.)
  • polyethylene glycol monoalkyl ether represented polyethylene glycol monoalkyl ether containing (C n E m); the following formula (2) (The addition mole number p of ethylene oxide may be 3 to 40 or 5 to 20), poly (oxyethylene) octylphenyl ether represented by the following formula (3) (The addition mole number q of ethylene oxide may be 3 to 40 or 5 to 20) and polyoxyethylene alkylphenyl ethers such as poly (oxyethylene) nonylphenyl ether It is done.
  • ester ether surfactants include polyoxyethylene fatty acid esters such as polyethylene glycol monostearate, polyethylene glycol monooleate, and polyethylene glycol dioleate; polyoxyethylene hexitan fatty acid esters; polyoxyethylene sorbitan fatty acid esters (sorbitan fatty acids)
  • the ester moiety is the same as the above ester type surfactant
  • sorbitan fatty acid ester polyethylene glycol the sorbitan fatty acid ester part is the same as the above ester type surfactant
  • alkanolamide surfactant examples include lauric acid monoethanolamide, lauric acid monoisopropanolamide, lauric acid diethanolamide, oleic acid diethanolamide, stearic acid diethanolamide, and fatty acid alkanolamides of cocamide DEA.
  • Alkyl glycosides include n-octyl- ⁇ -D-glucoside, n-octyl- ⁇ -D-maltoside, n-decyl- ⁇ -D-glucoside (decylglucoside), n-decyl- ⁇ -D-maltoside, n -Undecyl- ⁇ -D-glucoside, n-dodecyl- ⁇ -D-glucoside (lauryl glucoside), n-tridecyl- ⁇ -D-glucoside, n-octadecyl- ⁇ -D-glucoside, n-heptyl- ⁇ -D -Thioglucoside, n-octyl- ⁇ -D-thioglucoside, n-nonyl- ⁇ -D-thiomaltoside and the like.
  • higher alcohols include higher alcohols having 12 to 18 carbon atoms such as cetanol, stearyl alcohol, lauryl alcohol, and oleyl alcohol.
  • the nonionic amphiphile is represented by the following formula (1): (Wherein n and m have the same meaning as above), and may be composed of a polyethylene glycol monoalkyl ether (C n E m ).
  • n / m ⁇ 6 may be satisfied, 2.2 ⁇ n / m ⁇ 5 may be satisfied, and 2.4 ⁇ n / m ⁇ 4.
  • the lower limit value of n / m is not particularly limited, but may be 2, 2.2, or 2.4.
  • the upper limit value of n / m is not particularly limited, but may be 6, 5 or 4. In such a range, using water or a mixture of water and a water-soluble organic solvent described later and a polyethylene glycol monoalkyl ether, these are mixed and stirred, and the mixed solution is allowed to flow through the flow path.
  • a super-swelled lamellar phase can be easily formed simply by performing an operation such as applying a shear stress to the solution.
  • the channel include a bubble fixing channel device described in JP-A-2015-058416.
  • the stirring speed may be, for example, 1000 rpm or less, 750 rpm or less, or 500 rpm or less.
  • n / m ⁇ 2 may be satisfied.
  • an ultra-swelled lamellar phase can be formed by using an organic solvent such as 1-hexanol, styrene, and toluene together.
  • N may be 1 or more.
  • m may be 1 or more.
  • n may be 250 or less, and may be 100 or less.
  • m may be 40 or less, and may be 20 or less.
  • n may be 12 and m may be 5.
  • the solvent may be water or a mixed solution of water and a water-soluble organic solvent.
  • the water-soluble organic solvent include glycerin, ethylene glycol, diethylene glycol, isopropylideneglycerol, 1,3-butanediol, 3-methyl-1,3-butanediol, triethylene glycol, propylene glycol, dipropylene glycol, Trimethylolpropane, trimethylolethane, ethylene glycol, diethylene glycol, dipropylene glycol, tripropylene glycol, tetraethylene glycol, hexylene glycol, polyethylene glycol, polypropylene glycol, 1,5-pentanediol, 1,6-hexanediol, glycerol 1,2,6-hexanetriol, 1,2,4-buta
  • Polyhydric alcohol alkyl ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, tetraethylene glycol monomethyl ether, propylene glycol monoethyl ether; ethylene glycol mono Polyhydric alcohol aryl ethers such as phenyl ether and ethylene glycol monobenzyl ether; 2-pyrrolidone, N-methyl-2-pyrrolidone, N-hydroxyethyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, ⁇ - Nitrogen-containing heterocyclic compounds such as caprolactam and ⁇ -butyrolactam; formamide, N-methylformamide, N, N Amides such as dimethylformamide, N, N-dimethyl- ⁇ -methoxypropionamide, N, N-dimethyl- ⁇ -butoxypropionamide
  • n 12
  • m 6
  • the solvent may contain water and an organic solvent.
  • the organic solvent used in combination with water include toluene, o-xylene, m-xylene, p-xylene, benzene, carbon tetrachloride, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, Examples include trichloroethylene, chloroform, monochlorobenzene, dichloroethylidene, methyl acetate, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone; polymerizable liquid such as styrene; hydrophobic ionic liquid, and the like.
  • hydrophobic ionic liquid examples include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), 1-ethyl-3-methylimidazolium.
  • Tetrafluoroborate (EMI-BF 4 ), 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI-PF 6 ), 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI- TFSI), 1-butyl-3-methylimidazolium tetrafluoroborate (BMI-BF 4 ), 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF 6 ), 1-butyl-3-methyl Imidazolium bis (trifluoromethanesulfonyl) imide BMI-TFSI), and the like.
  • the organic solvent used in combination with water is preferably toluene.
  • an organic solvent such as toluene may enter the inside of the bimolecular film.
  • the hyper-swelled lamellar phase is a specific lamellar phase swollen with a solvent 3 (for example, water). More specifically, it is a phase in which a plurality of bimolecular films are stacked in layers with the solvent 3 layer in between. It may be swollen with about 99% by mass of water.
  • the distance D between the bilayer and bilayer shown in FIG. 1A may be 100 nm or more.
  • the distance between the bilayer membrane and the bilayer membrane (solvent layer) may be several hundred nm, and the thickness of the bilayer membrane itself may be several nm. In the case of water-C 12 E 5 , the thickness of the water layer is about 250 nm and the oil layer portion is about 2 nm.
  • the distance between the bilayer membrane and the bilayer membrane can depend on the content of molecules (amphiphilic molecules) constituting the bilayer membrane.
  • the super-swelling lamellar phase may be a hyper-swelling lyotropic lamellar phase.
  • the mass ratio of the solvent 3 in the whole is not particularly limited as long as the object of the present invention is satisfied, but is usually 90 mass% or more, preferably 95 mass% or more, more preferably 98 mass. % Or more, more preferably 99% by mass or more.
  • the upper limit is not particularly limited as long as the super-swelling lamellar phase can be formed between the solute and the solvent, and the limit concentration at which the super-swelling lamellar phase can be formed between the solvent to be used is the theoretical upper limit. is there.
  • the “total” means the sum of all the mixed substances including the solute and the solvent.
  • the upper limit of the mass ratio of the solvent 3 in the whole can be, for example, 99 mass%.
  • the distance D (also referred to as “interlayer distance” in the present specification) between adjacent bilayer membranes 10 is not particularly limited, and is appropriately set according to the material used and the intended application. However, it is usually 50 nm or more and 1000 nm or less (including values at both ends, the same applies hereinafter). D is preferably thinner when the target nanosheet is thinned, for example, preferably 500 nm or less.
  • the distance D between the adjacent bilayer membranes is determined from the end of the portion 5A having affinity for the solvent 3 of the bilayer membrane. It means the distance to the end of the portion 5A that is affinity for the solvent 3 of the other bilayer membrane adjacent to the membrane.
  • the thickness d of the bimolecular film 10 itself is not particularly limited, but is usually 1 nm or more and 20 nm or less.
  • the super-swelling lamellar phase is stably maintained even in a solution of a nonionic amphiphile due to the undulation of each layer or the Helfrich interaction.
  • a metal organic structure nanosheet having a larger gate open pressure than the bulk in the desorption of carbon dioxide, which is important for adsorption separation is produced. it can.
  • Nanosheets can also be produced for metal organic structures for which nanosized particles or sheets cannot be produced by conventional methods.
  • the metal organic structure nanoparticles exhibit a large gate open pressure because the skeleton of the metal organic structure is less likely to be deformed due to the reduction in size.
  • the size in the thickness direction of the metal organic structure nanosheet of the present disclosure is smaller than the size of the metal organic structure nanoparticle so far. Such a small size is considered to contribute to increasing the gate open pressure.
  • the metal organic structure includes an organic ligand as a constituent component.
  • organic ligands include hydrophobic raw materials (ligands) (hereinafter referred to as “hydrophobic ligands” or “ligands with high lipophilicity”).
  • the metal organic structure contains a hydrophilic metal ion.
  • metal ions include, but are not limited to, metal ion forms such as Cu, Zn, Ni, Mg, Co, and Al.
  • organic ligand include hydrophobic ligands such as 4,4′-bipyridine, pyrazine, 5,5′-dimethyl-2,2′-bipyridyl, terephthalic acid, trimesic acid, 2,3- Although pyrazine dicarboxylic acid etc. are mentioned, it is not limited to these.
  • FIG. 1A there is a composite nanosheet 11 including a metal organic structure nanosheet 1 and a bilayer film composed of an amphiphile 5.
  • the metal organic structure nanosheet 1 is formed inside the bimolecular film (between the portions 5B that are incompatible with the solvent 3 in FIG. 1A).
  • the amphiphilic substance and the bimolecular film are as described above.
  • the metal organic structure nanosheet 1 is a sheet-like structure composed of a metal organic structure as described above.
  • the thickness of the composite nanosheet 11 is not particularly limited, but is usually 1 nm or more and 50 nm or less.
  • the metal organic structure nanosheet dispersion according to the second embodiment includes a metal organic structure nanosheet in a dispersed state in the liquid, and the metal organic structure nanosheet is a metal organic according to any one of the first embodiments. It is a structure nanosheet.
  • the nanosheet contained in the dispersion is useful as a catalyst, an adsorbent, a thin film synthesis material, and the like.
  • the method for producing a nanosheet according to the third embodiment includes a step of forming a nanosheet between two monolayers constituting one bilayer when the bilayer forms a super-swelled lamellar phase in a solvent. Prepare.
  • the conventional method using self-organization as disclosed in Patent Document 2 above can obtain nanosheets only on the substrate surface, thus realizing thin nanosheets. It was difficult to do.
  • a single-layer or several-layer nanosheet (a nanosheet having a thickness of one to several repeating units in a metal organic structure) can be realized.
  • the metal organic structure nanosheet can be obtained in a dispersed state.
  • the sheet forming method is limited to the drop casting method.
  • the metal organic structure nanosheet can be manufactured by a spin coating method, a dip coating method, or the like in addition to the drop casting method.
  • the method of Non-Patent Document 1 places importance on the chemical properties on the surface of the bimolecular film 10 composed of a nonionic surfactant that becomes a substrate in the solvent 3.
  • the gold nanosheet 12 is formed while being adsorbed.
  • the inside of the bimolecular film (between the non-affinity portions 5B in the solvent 3 in FIG. 1A).
  • the sheet is formed with an emphasis on the physical viewpoint of providing a steric hindrance in the thickness direction.
  • the method of Non-Patent Document 1 is difficult to apply to other than gold that easily forms nanosheets, and does not suggest application to metals or compounds other than gold.
  • even a compound that easily forms a three-dimensional structure such as a metal organic structure can easily form a nanosheet due to steric hindrance in the thickness direction.
  • the metal organic structure is a nanosheet
  • the metal organic structure (for example, ELM-11, ELM-13, etc.) is a multi-layer nanosheet, and the hydrogen bond between the layers of the metal organic structure is strong.
  • the adsorbed molecules do not easily enter the layer of the metal organic structure, that is, the gate open pressure shifts to the high pressure side.
  • Such a metal organic structure may be referred to as a “flexible MOF” because the gate opens and closes.
  • the metal organic structure nanosheet contains not only an organic ligand but also a hydrophilic metal ion.
  • organic ligand a hydrophobic raw material (ligand) is mentioned, for example.
  • ligand a hydrophobic raw material
  • the concentration of the organic ligand and the concentration of the metal ion are considered while taking into consideration the mass ratio of the organic ligand to the metal ion. Optimization of the combination and concentration of amphiphiles is required.
  • the metal organic structure does not undergo thermal polymerization, and it is not essential to fire after the sheet is formed. From the above, it was difficult to produce a metal organic structure by the conventional method of producing a carbon nanosheet, and could not be applied.
  • the substance amount ratio between the organic ligand and the metal ion is also important.
  • a plane can be easily formed by making the metal ion to be present at least 1/2 times the organic ligand.
  • a lipophilic ligand is required to apply the above ratio to an aqueous solution of amphiphilic molecules used in the method for producing a metal organic structure nanosheet.
  • a metal organic structure nanosheet is formed between two monomolecular layers constituting one bilayer when the bilayer forms a super-swelling lamellar phase in a solvent. To do.
  • a bilayer film is formed in a solvent, and an organic ligand is added to the solvent to form a super-swelled lamellar phase of the bilayer film.
  • a metal ion may be added to the solvent to form a metal organic structure nanosheet between two monomolecular layers constituting one bimolecular film.
  • the solvent, bilayer film, amphiphile, organic ligand, super-swelling lamellar phase, and metal ion are as described in the metal organic structure nanosheet.
  • an organic ligand and a metal ion a coordination bond is continuously generated by the reaction, and a metal organic structure is obtained. This reaction is performed between two monolayers constituting one bilayer. Because it is produced in a solution that occurs and forms a super-swelling lamellar phase, non-aggregated metal organic structure nanosheets are formed.
  • the bimolecular film 10 is formed by amphiphilic molecules 5.
  • the amphiphilic molecule 5 the above-mentioned amphiphilic substance is used.
  • the portion 5A having affinity for the solvent 3 is directed to the outside of the bilayer membrane 10 (solvent 3 side), and the portion 5B having no affinity for the solvent 3 is directed to the inside of the bilayer membrane 10.
  • the bimolecular film 10 is formed by arranging the amphiphilic molecules 5. That is, in this production method, the bilayer membrane 10 has the amphiphilic molecule 5 in a sheet with the portion 5A having affinity for the solvent 3 facing one side and the portion 5B having no affinity for the solvent 3 facing the other side.
  • a monomolecular film is formed by arranging them in a shape, and two monomolecular films are arranged so that the non-affinity sides of the solvent 3 face each other.
  • the solvent 3 is hardly present inside the bimolecular film 10.
  • the portion 5A having affinity for the solvent 3 represents a hydrophilic portion
  • the portion 5B having no affinity for the solvent 3 represents a hydrophobic portion
  • the portion 5A having affinity for the solvent 3 represents a hydrophobic portion
  • the portion 5B having no affinity for the solvent 3 represents a hydrophilic portion.
  • the polyethylene glycol monoalkyl ether may have 2 ⁇ n / m ⁇ 6, 2.2 ⁇ n / m ⁇ 5, or 2 in the above formula (1). 4 ⁇ n / m ⁇ 4, n may be 12, and m may be 5. By using such amphiphilic molecules, a super-swelled lamellar phase can be suitably formed.
  • the content of the polyethylene glycol monoalkyl ether (C n E m ) of 2 ⁇ n / m ⁇ 6 in the surfactant solution that expresses the super-swelling lamellar phase is 0.1 to 3.0 mass% is preferable, 0.5 to 2.8 mass% is more preferable, 0.8 to 2.4 mass% is further preferable, and 1.2 to 2.0 mass% is particularly preferable.
  • the polyethylene glycol monoalkyl ether may be such that n is 12 and m is 6 in the above formula (1).
  • the solvent 3 may contain water and an organic solvent such as toluene. Even with such a configuration, the super-swelled lamellar phase can be suitably formed.
  • a metal organic structure is formed inside the bimolecular film 10.
  • the bilayer thickness is relatively uniform.
  • the raw material of the nanosheet that can be held inside the bimolecular film cannot exceed a certain amount.
  • the inside of the bimolecular film as a reaction field, the thickness of the reaction field itself is limited, and a uniform and thin nanosheet can be easily formed.
  • the nanosheet manufacturing method according to the present disclosure since the nanosheet is formed by a bottom-up method, the range of applicable substances is wide, and mass production is possible at low cost.
  • the metal organic structure nanosheet 1 of the first embodiment is formed inside a bimolecular film 10.
  • symbol and name are attached
  • subjected and detailed description is abbreviate
  • any one of the above manufacturing methods after forming a sheet-like metal organic structure between two monomolecular layers constituting one bilayer, the bilayer is removed, and the metal organic structure nanosheet 1 is formed. It may be isolated.
  • “removal” includes washing, centrifugation, drying, baking and the like. These methods are not particularly limited, and known methods can be used.
  • a cleaning method a method of removing the bilayer film and immersing the nanosheet by immersing in a solvent in which the bilayer membrane dissolves can be mentioned.
  • the metal organic structure produced by any one of the above production methods may be a metal organic structure comprising a highly lipophilic ligand as a constituent component.
  • the metal organic structure to be manufactured may be a flexible MOF. More specifically, the metal organic structure may be ELM-11 or ELM-13.
  • the metal organic structure may be a structure formed by continuously forming a coordination bond between a metal ion and an organic ligand.
  • the solvent 3 for example, water can be used.
  • the solvent 3 is not limited to water.
  • the bilayer membrane may be formed such that the solvent 3 is an organic solvent (for example, a nonpolar solvent), and the hydrophobic portion of the amphiphilic molecule faces outward and the hydrophilic portion faces inward. .
  • the hydrophobic part and the hydrophilic part of the bilayer membrane are arranged as described above.
  • a hydrophilic ligand may be used for forming the metal organic structure nanosheet.
  • the metal organic structure nanosheet 1 may be formed inside a bimolecular film 10 forming a super-swelling lamellar phase.
  • Nanosheet production methods include metal oxide nanosheet production methods and metal nanosheet production methods.
  • a bilayer film is formed in a solvent, an amphiphile is added to the solvent to form a superswelled lamellar phase of the bilayer film, Thereafter, a metal-containing compound having an oxygen atom is added to the solvent, and a metal oxide nanosheet is formed between two monomolecular layers constituting one bimolecular film. Is mentioned. Further, as a preferred embodiment of the method for producing a metal nanosheet, a bilayer film is formed in a solvent, an amphiphile is added to the solvent, and a superswelling lamellar phase of the bilayer film is formed.
  • a method for producing a metal nanosheet in which a metal-containing compound having no oxygen atom is added to the solvent to form a metal nanosheet between two monolayers constituting one bilayer film. .
  • a nanosheet is formed between the hydrophilic portions of two monolayers constituting one bilayer by the hydrophobic portion facing the solvent side. Is done.
  • the hydrophobic part and the hydrophilic part of the bilayer membrane are arranged as described above.
  • Non-Patent Document 1 a lamellar phase of a hydrogel is used for producing a gold nanosheet, and the reaction can be performed only in a hydrophilic field. Since a nanosheet is formed between 5B, according to the kind of solvent, a nanosheet can be manufactured not only in a hydrophilic reaction field but also in a hydrophobic reaction field.
  • an organic solvent is preferable as a solvent in a preferred embodiment of the method for producing the metal oxide nanosheet and the method for producing the metal nanosheet.
  • the organic solvent may be a hydrocarbon solvent.
  • hydrocarbon solvents include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, and bicyclohexyl.
  • Solvents aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene and the like.
  • the solvent may be only a hydrocarbon solvent or a combination of a hydrocarbon solvent and another organic solvent.
  • organic solvents examples include ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, cyclohexanone, and acetophenone; alcohol solvents such as methanol, ethanol, n-propanol, isopropyl alcohol, cyclohexanol, ethylene glycol, diethylene glycol, propylene glycol, and glycerin.
  • Solvents Chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole, 4-methylanisole and the like.
  • These manufacturing methods may contain water in a preferable embodiment.
  • the solvent contains the hydrocarbon solvent and water (preferably, when the amphiphile is an anionic amphiphile)
  • the solvent may be a mixed solution of water and an organic solvent.
  • an acidic aqueous solution such as hydrochloric acid, nitric acid, sulfuric acid or the like, depending on the type of reaction when synthesizing the target nanosheet, instead of or in addition to water, as a solvent;
  • a basic aqueous solution such as an aqueous sodium hydroxide solution may be used.
  • the amphiphilic substance may be an anionic amphiphilic substance.
  • the anionic amphiphile include sulfonic acid type surfactants, sulfate ester type surfactants, carboxylic acid type surfactants, and phosphate ester type surfactants.
  • the sulfonic acid type surfactant include ⁇ -sulfo fatty acid methyl ester salts (CH 3 (CH 2 ) s CH (SO 3 Na) COOCH such as methyl sodium ⁇ -sulfomyristate and methyl sodium ⁇ -sulfostearate. 3 ), where s may be 8-20.
  • ⁇ -sulfo fatty acid ester salts such as sodium p-toluenesulfonate, sodium cumenesulfonate, sodium octylbenzenesulfonate, sodium dodecylbenzenesulfonate; sodium hexylsulfonate, sodium octylsulfonate, Examples include alkane sulfonates such as sodium decyl sulfonate, sodium dodecyl sulfonate, sodium tetradecyl sulfonate, sodium hexadecyl sulfonate, and sodium stearyl sulfonate; ⁇ -olefin sulfonates having 8 to 26 carbon atoms.
  • sulfate-type surfactants include R 1 -OSO 3 Na such as sodium hexyl sulfate, sodium octyl sulfate, sodium decyl sulfate, sodium dodecyl sulfate, sodium tetradecyl sulfate, sodium hexadecyl sulfate, sodium stearyl sulfate, and sodium laureth sulfate.
  • the carboxylic acid type surfactant include sodium octoate, sodium decanoate, sodium laurate, sodium oleate, sodium myristate, sodium palmitate, sodium stearate, potassium laurate, potassium oleate, perfluorooctanoic acid.
  • alkyloyl sarcosines such as sodium N-lauroyl sarcosine, sodium cocoyl glutamate ((HOOCCH 2 CH 2 CH (NHCOR 3 ) COONa)), wherein R 3 represents an alkyl group having 11 to 17 carbon atoms Etc.
  • phosphate ester type surfactants include lauryl phosphate; sodium lauryl phosphate, sodium hexyl phosphate, sodium octyl phosphate, sodium decyl phosphate, sodium dodecyl phosphate, sodium tetradecyl phosphate, sodium hexadecyl phosphate, etc.
  • Monoalkyl phosphates such as potassium lauryl phosphate, potassium hexyl phosphate, potassium octyl phosphate, potassium decyl phosphate, potassium dodecyl phosphate, potassium tetradecyl phosphate, potassium hexadecyl phosphate; polyoxy Ethylene alkyl ether phosphoric acid; polyoxyethylene alkyl ether such as sodium polyoxyethylene lauryl ether phosphate, sodium reoxyethylene tridecyl ether phosphate And sodium telluric acid.
  • the alkyl group of the anionic amphiphile described above preferably has 8 to 20 carbon atoms.
  • the solvent may contain a surface active aid for stabilizing the amphiphilic substance.
  • the surfactant assistant include monohydric alcohols, glycol polyhydric alcohols and derivatives thereof.
  • monohydric alcohols include ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, and 2-methyl.
  • -1-butanol isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 2-methyl- 1-pentanol, 4-methyl-2-pentanol, 2-ethyl-1-butanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, 3,5,5-trimethyl- 1 carbon number such as 1-hexanol 10 monohydric alcohols; cholesterol, cholesteryl alkenyl succinate, cholestanol, cholesteryl ester having a saturated or unsaturated linear or branched hydrocarbon group having 12 to 36 carbon atoms (preferably 14 to 28 carbon atoms), Examples include cholesterol such as dehydrocholesterol and derivatives thereof.
  • glycol polyhydric alcohols or derivatives thereof include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol-1-methyl ether, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, and diethylene glycol.
  • Glycol ethers such as monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and triethylene glycol dimethyl ether; glycol ether acetates such as ethylene glycol methyl ether acetate and diethylene glycol ethyl ether acetate S, ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, diols such as dipropylene glycol, hexylene glycol; glycerol, pentaerythritol, and the like polyols such as sorbitol.
  • the solvent is a hydrocarbon solvent and water
  • the amphiphile is an anionic amphiphile
  • the solvent is It may contain a surface active aid.
  • the content of water is not particularly limited, but is preferably 5% by mass or less, more preferably 2.0% by mass or less in the solvent. 5 mass% or less is more preferable.
  • Examples of the metal-containing compound having an oxygen atom used in the method for producing a metal oxide nanosheet include tetraethoxysilane (TEOS), titanium (IV) isopropoxide, germanium ethoxide, niobium (V) ethoxide, aluminum ethoxide, and the like. And metal alkoxides. Silicon may be classified as a semimetal, but in this specification, these are included in the metal. Examples of the metal oxide constituting the nanosheet obtained by the production method include silica, titanium oxide, niobium oxide, and alumina.
  • Examples of the metal-containing compound having no oxygen atom as a raw material used in the method for producing a metal nanosheet include a gold-containing compound having no oxygen atom and a nickel-containing compound having no oxygen atom.
  • the no gold containing compound oxygen atom for example, Au (OH) 4, which is readily reduced by the light - from the point that can form a complex, such as tetrachloroaurate (III) acid tetrahydrate and the like.
  • the metal is gold in the method for producing a metal nanosheet, that is, in the method for producing a gold nanosheet, in addition to a gold-containing compound having no oxygen atom as a raw material, iron (III) chloride (FeCl 3 ), sodium chloride, copper chloride (CuCl 2), it is preferable to use sodium nitrate, polyvinyl pyrrolidone and the like as a protective agent. In these production methods, thinner nanosheets can be produced by shortening the reaction time.
  • the metal when the metal is gold in the manufacturing method of the metal nanosheet, that is, in the manufacturing method of the gold nanosheet, energy irradiation such as ultrasonic wave, light irradiation (ultraviolet ray, visible light), and ⁇ -ray irradiation may be performed.
  • energy irradiation such as ultrasonic wave, light irradiation (ultraviolet ray, visible light), and ⁇ -ray irradiation may be performed.
  • gold nanoparticles can be obtained by irradiating ultraviolet rays having a wavelength of about 350 nm, and gold nanoparticles are formed between two monomolecular layers constituting one bilayer film of a super-swelling lamellar phase.
  • the energy irradiation time may be, for example, about 10 minutes to 15 hours.
  • the bimolecular film after forming the metal nanosheet, the bimolecular film may be removed and the metal nanosheet may be isolated. The removal can use the same method as the
  • a gas separation membrane including any one of the above-described metal organic structure nanosheets may be mentioned.
  • the gas separation membrane may be for nitrogen separation or carbon dioxide separation.
  • the gas separation membrane may be a multilayer structure in which a plurality of any of the above-described metal organic structure nanosheets are laminated, and a plurality of any of the above-described metal organic structure nanosheets and a known gas separation membrane may be used.
  • stacked these may be sufficient.
  • the thickness of the gas separation membrane can be variously changed according to the purpose.
  • a metal oxide arranged in a sheet shape between two monolayers constituting one bilayer is provided, and a plurality of the bilayers are in a solvent.
  • metal oxide nanosheets that form a super-swelled lamellar phase are provided.
  • a metal for example, gold, nickel
  • a metal nanosheets for example, gold nanosheets and nickel nanosheets
  • Another embodiment includes a composite nanosheet comprising a metal oxide nanosheet and a bimolecular film composed of an amphiphile.
  • the composite nanosheet provided with the metal nanosheet and the bilayer membrane comprised from an amphiphilic substance is mentioned.
  • the present invention includes embodiments in which the above configurations are combined in various ways within the technical scope of the present invention as long as the effects of the present invention are exhibited.
  • X-ray diffractometer manufactured by Rigaku Corporation, MiniFlex II diffractometer
  • X-ray source CuK ⁇ Tube voltage: 30 kV Tube current: 15 mA
  • High-accuracy gas / vapor adsorption measuring device BELSORP-max manufactured by Microtrac Bell Measurement temperature: 77K
  • Adsorbed gas purity 99.99% by volume for both nitrogen and carbon dioxide Sample to be measured Pretreatment method Approximately 30 mg of a sample was weighed and left under vacuum (P ⁇ 10 ⁇ 4 Pa) at 373 K for 2 hours.
  • Example 1 A metal organic structure nanosheet using ELM-11 ([Cu (bpy) 2 (BF 4 ) 2 ]) as a metal organic structure was prepared by the following method.
  • FIG. 3A shows a cross section taken along the upper and lower lines in FIG. 2A.
  • FIG. 3B shows a cross section taken along the upper and lower lines in FIG. 2B.
  • 2A and the arrow in FIG. 3A correspond to each other, and the arrow in FIG. 2B and the arrow in FIG. 3B correspond to each other.
  • the ELM-11 nanosheet was indefinite with a width and a depth of about 200 to 300 nm, and its thickness was extremely thin at 10 nm or less.
  • the upper line is the actual measurement value
  • the lower line is the theoretical value.
  • the spectrum of the ELM-11 nanosheet was in good agreement with the theoretical value of the spectrum obtained from the bulk ELM-11, confirming that the ELM-11 nanosheet was obtained.
  • the nitrogen adsorption amount of the ELM-11 nanosheet and a bulk ELM-11 (hereinafter, bulk ELM-11; manufactured by Tokyo Chemical Industry Co., Ltd.) as a comparative reference were measured by the method described above. The results are shown in FIG.
  • the vertical axis of FIG. 5 shows the values of the adsorption amount per unit mass, in terms of the volume of nitrogen gas at standard temperature and pressure (STP) (N 2) of nitrogen gas (N 2).
  • STP standard temperature and pressure
  • N 2 nitrogen gas
  • represents the amount of adsorption when the relative pressure of nitrogen was increased for the bulk ELM-11
  • represents the amount of adsorption when the relative pressure of nitrogen was decreased for the bulk ELM-11
  • represents the amount of adsorption when the relative pressure of nitrogen was increased for the ELM-11 nanosheet
  • represents the amount of adsorption when the relative pressure of nitrogen was decreased for the ELM-11 nanosheet.
  • the rising position of the nitrogen adsorption amount is shifted to the right as the relative pressure of nitrogen is increased compared to the bulk metal organic structure. It was found that the organic structure nanosheet had a higher gate open pressure for nitrogen adsorption than the bulk metal organic structure. That is, it is expected that the nitrogen adsorption amount can be controlled on the higher pressure side by forming the metal organic structure into a nanosheet.
  • shaft shows the carbon dioxide adsorption amount calculated
  • indicates the amount of adsorption when the absolute pressure of carbon dioxide is increased for the bulk ELM-11
  • indicates the amount of adsorption when the absolute pressure of carbon dioxide is decreased for the bulk ELM-11.
  • the metal organic structure nanosheet has a bulk metal organic structure and how the carbon dioxide adsorption amount rises when the absolute pressure of carbon dioxide is increased, that is, the inclination Was different.
  • metal organic structure nanosheets have particles that exhibit the same gate open pressure as bulk metal organic structures, but the gate open pressure for carbon dioxide adsorption is higher than that of bulk metal organic structures. Indicating that higher particles are present.
  • FIG. 6 it is guessed that it is in the state where the shape and size of the particle
  • the metal organic structure nanosheet can shift the rising of carbon dioxide adsorption to a higher pressure side than the metal organic structure that is not a nanosheet. That is, it is expected that the carbon dioxide adsorption amount can be controlled on the higher pressure side by forming the metal organic structure into a nanosheet.
  • Example 2 A nanosheet using ELM-13 as a metal organic structure (hereinafter referred to as ELM-13 nanosheet) and ELM-13 as a bulk metal organic structure (hereinafter referred to as bulk ELM-13) were prepared. The pressure dependence was measured.
  • the ELM-13 nanosheet was prepared by the following method. 4,4′-bipyridine and C 12 E 6 were mixed in the same manner as in Example 1, and it was confirmed that the super-swelled lamellar phase was stably maintained. Thereafter, 1 mL of an aqueous solution prepared by adjusting 2.2% by mass of Cu (BF 4 ) 2 .6H 2 O and 3.3% by mass of KCF 3 BF 3 (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. Thereafter, the ELM-13 nanosheet having a thickness of 10 to 20 nm was obtained in the same manner as in Example 1.
  • the bulk ELM-13 was prepared by the following method.
  • a Cu (BF 4 ) aqueous solution 80 mM, 6.25 mL was placed in a test tube, and KCF 3 BF 3 (1.0 mmol) was added and dissolved.
  • a solution of 4,4′-bipyridine (bpy) in acetone 80 mM, 12.5 mL was slowly added dropwise thereto to laminate ELM-13. After standing for 2 weeks, the deposited blue crystals were filtered under reduced pressure and dried under reduced pressure to obtain blue polymer metal complex crystals.
  • indicates the amount of adsorption when the relative pressure of nitrogen is increased for the bulk ELM-13
  • indicates the amount of adsorption when the relative pressure of nitrogen is decreased for the bulk ELM-13
  • represents the adsorption amount when the relative pressure of nitrogen was increased for the ELM-13 nanosheet
  • represents the adsorption amount when the relative pressure of nitrogen was decreased for the ELM-13 nanosheet.
  • the metal organic structure nanosheets differed from the bulk metal organic structure in how the nitrogen adsorption amount rises when the relative pressure of nitrogen was increased, that is, the slope. This is because metal organic structure nanosheets have particles that exhibit the same gate open pressure as bulk metal organic structures, while the gate open pressure for nitrogen adsorption is higher than that of bulk metal organic structures. , Indicating that higher particles are present.
  • FIG. 8 it is inferred that there are variations in the shape and size of the particles constituting the metal organic structure nanosheet, and particles having a high gate open pressure are mixed. From this, it was found that the ELM-13 nanosheet can shift the gate open pressure for nitrogen adsorption to a higher pressure side than the bulk ELM-13.
  • the observed gate open pressure of the ELM-13 nanosheet is the highest gate open pressure confirmed at present in nitrogen adsorption at 273K.
  • a surfactant solution was prepared in the same manner as in Example 2 except that C 12 E 5 was used instead of C 12 E 6 , and this surfactant solution and water were mixed at 2:98 (mass ratio).
  • a solution was prepared. The prepared solution was stirred at 300 rpm for 24 hours at 54 ° C. to form a super-swelled lamellar phase.
  • white light was irradiated from the light source 22 toward the end of the screw tube 20, and reflected light at an angle of about 24 degrees was collected by the spectroscope 24 to perform spectrum analysis.
  • the reflection spectrum measurement was performed in the state which is stirring at 300 rpm, and the state which is left still (0 rpm) about the solution which forms the super swelling lamellar phase. The results are shown in FIG.
  • n / m in the formula (1) when n / m in the formula (1) is larger than 2 and smaller than 6, a super-swelled lamellar phase is formed, but when n / m is 2 or less and n / m is 6 or more. In some cases no super-swelled lamellar phase was formed.
  • C 12 E 6 , toluene as a hydrophobic molecule, and deionized water were mixed in various concentrations shown in FIG. 13 in a 20 mL screw tube bottle to prepare a total solution of 10 g.
  • a reflection spectrum was measured. The reflection spectrum was measured while heating to 54 ° C. using a hot stirrer and a magnetic stirrer having a length of 20 mm and a diameter of 7 mm and stirring at 300 rpm.
  • styrene was used as the hydrophobic molecule, the solution was observed when C 12 E 6 and styrene were mixed at various ratios. The results are shown in FIG.
  • Example 4 In the fourth experimental example, the formation temperature of the super-swelled lamellar phase was compared when glycerin was added to polyethylene glycol monoalkyl ether (C 12 E 5 to C 12 E 6 ).
  • the formation temperature of the super-swelled lamellar phase decreases as the amount of glycerin added increases. It is considered that as the amount of glycerin added increases, the concentration of the system (solution) increases, the Helfrich interaction changes, and the formation temperature of the super-swelled lamellar phase decreases. From this, it was found that the formation temperature of the super-swelled lamellar phase can be controlled by adding glycerin.
  • the experiment was performed by the following method.
  • the method for forming the super-swelled lamellar phase using C 12 E 5 to C 12 E 6 was the same as in the fourth experimental example.
  • n is the water reflection index (1.33).
  • the interlayer distance in the super-swelling lamellar phase could be controlled by changing the content of amphiphilic molecules.
  • the experimental method (including the method for calculating the interlayer distance) is the same as the fourth experimental example and the fifth experimental example. The results are shown in FIG.
  • is 0 mass%, ⁇ is 10 mass%, ⁇ is 20 mass%, ⁇ is 30 mass%, and ⁇ is 40 mass%.
  • is 0 mass%
  • is 10 mass%
  • is 20 mass%
  • is 30 mass%
  • is 40 mass%.
  • FIG. 17 when the glycerin content increased, the interlayer distance tended to be shortened. That is, the interlayer distance in the super-swelled lamellar phase could be controlled by changing the glycerin content.
  • the viscosity of the solvent increases.
  • the effect of increasing the viscosity is expected to maintain the lamellar phase stably even at high temperatures.
  • the formation temperature of the super-swelled lamellar phase was lowered by the addition of glycerin. This suggests that glycerin has some influence on the membrane properties of the bilayer.
  • Example 3 In a 20 mL screw tube, 9.2 g (89.8 mass%) of n-decane, 0.85 g (8.3 mass%) of 1-pentanol, 0.09 g (0.9 mass%) of sodium octylbenzenesulfonate Then, each component was added and mixed so as to be 0.1 g (1.0% by mass) of water to prepare a surfactant solution. To 10.2 g of the surfactant solution, 0.074 g of tetraethoxysilane (TEOS; manufactured by Wako Pure Chemical Industries, Ltd.) was added as a silica material to obtain a mixed solution.
  • TEOS tetraethoxysilane
  • This mixed solution was stirred at 300 rpm for 72 hours at room temperature using a magnetic stirrer having a length of 20 mm and a diameter of 7 mm, and it was confirmed that the super-swelled lamellar phase was stably maintained.
  • Silica nanosheets were produced.
  • the obtained silica nanosheet was dispersed in the solution, and the dispersion was subjected to a washing operation to isolate the silica nanosheet.
  • As the washing operation first, centrifugation is performed using the dispersion liquid, methanol is added to the obtained solid content, the mixture is centrifuged, the supernatant is discarded, methanol is added again, and the supernatant is centrifuged. Abandoned.
  • Example 4 A surfactant solution described in Example 3 was prepared in the same manner as in Example 3. To 10.2 g of the surfactant solution, tetrachloroauric (III) acid tetrahydrate as a raw material gold-containing compound ( 10 mg of HAuCl 4 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and 1 mg of iron (III) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was further added to obtain a mixed solution.
  • tetrachloroauric (III) acid tetrahydrate as a raw material gold-containing compound
  • 10 mg of HAuCl 4 ⁇ H 2 O manufactured by Wako Pure Chemical Industries, Ltd.
  • iron (III) chloride manufactured by Wako Pure Chemical Industries, Ltd.
  • UV was applied to this mixed solution using a UV irradiation device (product name: 300 W xenon light source, model number: MAX-303, manufactured by Asahi Spectroscopic Co., Ltd.).
  • (Wavelength 350 nm) was irradiated for 1 hour to synthesize a gold nanosheet.
  • the obtained gold nanosheet was dispersed in the solution, and the dispersion was subjected to a washing operation to isolate the gold nanosheet.
  • the washing operation was performed in the same manner as in Example 3. This washing operation was repeated several times, and after sufficient washing, the remaining solid was dried at 90 ° C. overnight.
  • the result of having observed the obtained gold nanosheet with the transmission electron microscope is shown in FIG.
  • the observation magnification during the TEM observation was 10,000 times, and the acceleration voltage was 200 KV.
  • the result of having observed the obtained gold nano sheet with the scanning electron microscope (SEM) is shown in FIG.
  • the observation magnification during the SEM observation was 500,000 times, and the acceleration voltage was 15 KV.
  • FIGS. 19 and 20 it was confirmed that gold nanosheets were generated. From the TEM image, it was confirmed that the lateral width of the gold nanosheet was about 4 ⁇ m. Moreover, it was confirmed from the SEM image that the thickness of the gold nanosheet was about 6 nm.
  • the method for producing a metal organic structure nanosheet according to the present disclosure is useful for producing a nano-sized metal organic structure sheet.
  • the method for producing a nanosheet according to the present disclosure has a wide range of selection of materials, and is useful for producing nanosheets using various raw material compounds.
  • the metal organic structure nanosheet according to the present disclosure is useful as a gas separation membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本開示は、溶媒中に二分子膜が超膨潤ラメラ相をなす場合において、1の二分子膜を構成する2つの単分子層の間にシート状の金属有機構造体を形成する、金属有機構造体ナノシートの製造方法を提供する。本開示は1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属有機構造体を備え、複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、金属有機構造体ナノシートに関する。

Description

金属有機構造体ナノシートおよびその製造方法
 本開示は、金属有機構造体ナノシートおよびその製造方法に関する。
 ナノサイズの材料、例えばナノシートは、バルク相では期待できない興味深い性質を示すことがある。このためナノシートの製造方法に関して種々の方法が検討されてきた。従来のナノシートの製造方法としては、ゾル-ゲル法、電解酸化法、CVD法、ドロップキャスト法などのボトムアップ的手法;目的のナノシートを形成する材料を用いて層状化合物を形成し、各層間に嵩高いゲストを挿入し、単層を剥離するトップダウン的手法が知られている。しかしながら、前記トップダウン的手法では、得られるナノシートの物質が限定され、800℃~1300℃の高温で長時間焼成する工程が必要な場合があった。また、前記ボトムアップ的手法では、さらなる薄膜化が求められ、新たな方法が検討されていた。このようなナノシートの製造方法として、例えば、特許文献1、2、非特許文献1が挙げられる。特許文献1は、有機相と水相との界面に形成された複合ナノシートであって、当該複合ナノシートが、界面活性剤からなりラメラ構造を有する分子膜と、この分子膜の面方向に沿って形成された金属酸化物ナノシートとを備えることを特徴とする液液界面上の複合ナノシート、を開示する。同文献では、二分子膜の上、すなわち二分子膜の外部に金属酸化物ナノシートが形成される。
 特許文献2は、2次元的に相互架橋して膜を形成した複数の錯体分子を有し、前記錯体分子のそれぞれが1つの金属原子と2分子のターピリジンまたはビピリジンの誘導体とからなり、前記誘導体が2つのチオール基を有し、前記誘導体の前記チオール基が前記膜の対向する両表面上に位置し、且つ前記チオール基のうちの少なくとも一部に金属原子が結合する、単層自立性有機金属系ナノ膜、を開示する。同文献では、電子線露光を用いて基板上に多層膜シートを成長させる。非特許文献1は、ラメラ相を用いて製造した、光学的特性および電気的特性に優れる金ナノシートを開示する。しかしながら、非特許文献1の方法は、溶媒に親和的な部分で、ナノシートを形成するため、金のようなナノシートを形成しやすい材料では適用可能である。一方で、この方法では、溶媒中でナノシートを形成しているため、厚さ方向に障害がないことに起因して厚さ方向への形成を阻害してナノシート化することはできず、金属有機構造体等の立体的な構造をとりやすい化合物の場合、シート状に形成することが容易ではないという問題があった。また、非特許文献1の方法では、ナノシートはラメラ相を有するヒドロゲルを用いて得られるため、シートの形成方法はドロップキャスト法に限られるという問題もあった。
特許第4765079号 特開2014-225485号
RSC Advances, 2016, 6. 45031-45035
 本開示は、新規な金属有機構造体ナノシートおよびその製造方法を提供することを目的とする。
 本開示は、以下の実施形態を提供する。
[1]1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属有機構造体を備え、複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、金属有機構造体ナノシート。
[2]前記二分子膜が、非イオン性両親媒性物質から構成される、前記[1]に記載の金属有機構造体ナノシート。
[3]非イオン性両親媒性物質が、エステル型界面活性剤、エーテル型界面活性剤、エステルエーテル型界面活性剤、アルカノールアミド型界面活性剤、アルキルグリコシド、高級アルコールからなる群より選ばれる少なくとも1種である、前記[2]に記載の金属有機構造体ナノシート。
[4]非イオン性両親媒性物質が、エーテル型界面活性剤であり、前記エーテル型界面活性剤が、ポリエチレングリコールモノアルキルエーテルおよびポリオキシエチレンアルキルフェニルエーテルからなる群より選ばれる少なくとも1種である、前記[3]に記載の金属有機構造体ナノシート。
[5]前記二分子膜が、下記式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、nは疎水部のアルキル基の炭素数を表し、mは親水部のエチレンオキサイド数を表す。)
で示されるポリエチレングリコールモノアルキルエーテルから構成される、前記[1]に記載の金属有機構造体ナノシート。
[6]2<n/m<6である、前記[5]に記載の金属有機構造体ナノシート。
[7]nが12であり、mが5である、前記[5]に記載の金属有機構造体ナノシート。
[8]前記溶媒が、水または水と水溶性有機溶媒との混合液を含む、前記[1]~[6]のいずれかに記載の金属有機構造体ナノシート。
[9]nが12であり、mが6であり、さらに前記溶媒が水と有機溶媒とを含む、前記[5]に記載の金属有機構造体ナノシート。
[10]前記金属有機構造体が、親油性が高い配位子を構成成分とする金属有機構造体である、前記[6]~[9]のいずれかに記載の金属有機構造体ナノシート。
[11]超膨潤ラメラ相が、隣接する二分子膜間の距離が50nm以上のラメラ構造を有する、前記[1]~[10]のいずれかに記載の金属有機構造体ナノシート。
[12]液体中において分散状態にある金属有機構造体ナノシートを含み、前記金属有機構造体ナノシートは、前記[1]~[11]のいずれかに記載の金属有機構造体ナノシートである、金属有機構造体ナノシート分散液。
[13]溶媒中に二分子膜が超膨潤ラメラ相をなす場合において、1の二分子膜を構成する2つの単分子層の間にナノシートを形成する、ナノシートの製造方法。
[14]ナノシートが金属有機構造体から構成される、前記[13]に記載のナノシートの製造方法。
[15]溶媒中に二分子膜を形成し、前記溶媒中に有機配位子を添加して、二分子膜の超膨潤ラメラ相を形成し、その後、前記溶媒中に金属イオンを添加して、1の前記二分子膜を構成する2つの単分子層の間に金属有機構造体ナノシートを形成する、前記[14]に記載のナノシートの製造方法。
[16]前記二分子膜を構成する2つの単分子層の間に金属有機構造体ナノシートを形成した後に、前記二分子膜を除去する、前記[14]または[15]に記載のナノシートの製造方法。
[17]前記二分子膜が、下記式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、nは疎水部のアルキル基の炭素数を表し、mは親水部のエチレンオキサイド数を表す。)
で示されるポリエチレングリコールモノアルキルエーテルで構成される、前記[14]~[16]のいずれかに記載のナノシートの製造方法。
[18]2<n/m<6である、前記[17]に記載のナノシートの製造方法。
[19]nが12であり、mが5である、前記[17]に記載のナノシートの製造方法。
[20]前記溶媒が水または水と水溶性有機溶媒との混合液とを含む、前記[15]~[19]のいずれかに記載のナノシートの製造方法。
[21]nが12であり、mが6であり、さらに前記溶媒が水と有機溶媒とを含む、前記[17]に記載のナノシートの製造方法。
[22]前記金属有機構造体が、親油性が高い配位子を構成成分とする金属有機構造体である、前記[14]~[21]のいずれかに記載のナノシートの製造方法。
[23]ナノシートが金属酸化物または金属から構成される、前記[13]に記載のナノシートの製造方法。
[24]溶媒中に二分子膜を形成し、前記溶媒中に両親媒性物質を添加して、二分子膜の超膨潤ラメラ相を形成し、その後、前記溶媒中に酸素原子を有する金属含有化合物または酸素原子を有しない金属含有化合物を添加して、1の前記二分子膜を構成する2つの単分子層の間に金属酸化物ナノシートまたは金属ナノシートを形成する、前記[23]に記載のナノシートの製造方法。
[25]前記溶媒が、水と有機溶媒との混合液を含む、前記[24]に記載のナノシートの製造方法。
[26]さらに、前記溶媒中に界面活性助剤を添加する、前記[24]または[25]に記載のナノシートの製造方法。
[27]両親媒性物質が、陰イオン性両親媒性物質である、前記[24]~[26]のいずれかに記載のナノシートの製造方法。
[28]前記[1]~[11]のいずれかに記載の金属有機構造体ナノシートを含む、ガス分離膜。
[29]窒素分離用または二酸化炭素分離用である、前記[28]に記載のガス分離膜。
[30]1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属酸化物を備え、複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、金属酸化物ナノシート。
[31]1の二分子膜を構成する2つの単分子層の間にシート状に配置された金化合物を備え、複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、金ナノシート。
 本開示によれば、新規な金属有機構造体ナノシートおよびその製造方法が提供される。また、本開示にかかるナノシートの製造方法は、特許文献1、2および非特許文献1とは異なり、出発材料が限定されないため、種々のナノシートを製造することができる。さらに、本開示にかかるナノシートの製造方法は、高温に加熱する工程が不要であり、工業的に有利である。また、本開示にかかる新規な金属有機構造体ナノシートは、バルク金属有機構造体と比べて、吸着対象の分子(以下、吸着分子)を吸着し始める圧力あるいは脱着し始める圧力を高圧側にシフトさせることができる。
図1Aは、第1実施形態にかかる金属有機構造体ナノシートの製造方法を示す模式図である。 図1Bは、超膨潤ラメラ相をなす二分子膜を示す模式図である。 図1Cは、従来技術の金ナノシートの製造方法を示す模式図である。 図2Aは、実施例1にかかる金属有機構造体ナノシートの原子間力顕微鏡による観察結果である。 図2Bは、実施例1にかかる金属有機構造体ナノシートの原子間力顕微鏡による観察結果である。 図3Aは、実施例1にかかる金属有機構造体ナノシートの厚さを原子間力顕微鏡により測定した結果である。 図3Bは、実施例1にかかる金属有機構造体ナノシートの厚さを原子間力顕微鏡により測定した結果である。 図4は、実施例1にかかる金属有機構造体ナノシートのX線回折スペクトルである。 図5は、実施例1にかかる金属有機構造体ナノシートの窒素相対圧と吸着量との関係を示す図である。 図6は、実施例1にかかる金属有機構造体ナノシートの二酸化炭素絶対圧と吸着量との関係を示す図である。 図7は、実施例1にかかる金属有機構造体ナノシートの二酸化炭素絶対圧と吸着量との関係を示す図である。 図8は、実施例2にかかる金属有機構造体ナノシートの窒素相対圧と吸着量との関係を示す図である。 図9は、超膨潤ラメラ相発現の有無を確認するための方法を示す図である。 図10は、非イオン性両親媒性物質であるポリエチレングリコールモノアルキルエーテルの濃度と、反射スペクトルとの関係を示す図である。 図11は、非イオン性両親媒性物質であるポリエチレングリコールモノアルキルエーテル(Cnm;Cnの部分が疎水部であり、Emの部分が親水部である。nは疎水部のアルキル基の炭素数を表し、mは親水部のエチレンオキサイド数を表す。)の組成と超膨潤ラメラ相形成の有無との関係を示す表である。 図12は、非イオン性両親媒性物質であるポリエチレングリコールモノアルキルエーテル(Cnm;CnおよびEmは上記と同一意味を有する。)の組成と超膨潤ラメラ相の形成温度との関係を示す表である。 図13は、C126-トルエン水系の相図である。 図14は、C125へのグリセリン添加による超膨潤ラメラ相の形成温度への影響を示す図である。 図15は、C126へのグリセリン添加による超膨潤ラメラ相の形成温度への影響を示す図である。 図16は、両親媒性分子の含量が層間距離に与える影響を示す図である。 図17は、グリセリン添加が層間距離に与える影響を示す図である。 図18は、実施例3にかかるシリカナノシートの透過型電子顕微鏡による観察結果である。 図19は、実施例4にかかる金ナノシートの透過型電子顕微鏡による観察結果である。 図20は、実施例4にかかる金ナノシートの走査型電子顕微鏡による観察結果である。
 多孔性構造体は、種々の原料および成長法を組み合わせて製造され、例えば、ガス分離膜への応用が期待されている。特に、金属有機構造体は、二酸化炭素との親和性の高さから、二酸化炭素分離膜に応用されている。
 分離膜として応用する際には、加圧により分離対象分子が金属有機構造体へ吸着し、減圧により金属有機構造体から分離対象分子が脱着する。これまでの金属有機構造体では、低圧下でも二酸化炭素がなかなか脱着せず、脱着過程に大きなエネルギーを要することが問題になっている。理想的には、0.1MPa以上で対象分子が脱着することが好ましい。
 最近、金属有機構造体のナノ粒子では、バルク金属有機構造体と比べて、ゲートオープン圧が上昇することが報告された。粒子サイズをさらに小さくすれば、ゲートオープン圧をさらに高くすることも可能と考えられる。本明細書において、ゲートオープン圧とは、吸着分子が吸着し始める圧力および吸着分子が脱着し始める圧力の両方を意味する。
 そこで、新規な金属有機構造体ナノシートおよびその製造方法を見出すべく、鋭意検討が行なわれた。その結果、以下の知見が得られた。なお、以下の知見はあくまで本開示が完成されるきっかけとなったものであり、本開示を限定するものではない。
 1の二分子膜を構成する2つの単分子層の間を反応場として利用できる可能性があるとの洞察が得られた。そこで、水などの極性分子からなる溶媒中に二分子膜が超膨潤ラメラ相をなしている場合に、有機配位子と金属イオンとを順次に投入すると、驚くべきことに、厚さが数nmと極めて薄い金属有機構造体ナノシートが得られることが判明した。
 非極性分子である有機配位子を溶媒に投入すると、有機配位子は2つの単分子層の間に集まる。そこに金属イオンを投入すると、2つの単分子層の間において金属有機構造体の形成反応(配位結合の連続的形成)が進行し、2つの単分子層の間において金属有機構造体ナノシートが形成されると考えられた。二分子膜の厚さには制約があることから、厚さが限定されたナノシートを容易に形成することが可能となる。
 以下、添付図面を参照しつつ、本開示の実施形態について説明する。なお、以下の実施形態はあくまで一例であり、本開示を限定するものではない。なお、「親油性」は「疎水性」と同じ意味を有するものとする。本明細書において、数値範囲(各成分の含有量、各成分から算出される値および各物性等)の上限値および下限値は適宜組み合わせ可能である。
 以下で説明する実施形態は、いずれも本開示の好ましい一具体例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、あくまで一例であり、本開示を限定するものではない。
 また、以下の実施形態における構成要素のうち、本開示の独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比等については正確な表示ではない場合がある。また、製造方法においては、必要に応じて、各工程の順序等が変更されてもよいし、他の工程が追加されてもよい。
(第1実施形態)
 本開示の第1実施形態にかかる金属有機構造体ナノシートは、1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属有機構造体を備え、複数の二分子膜が溶媒中で超膨潤ラメラ相をなす。
 金属有機構造体(MOF:Metal Organic Framework)とは、金属と有機化合物とを含む、高表面積をもつ多孔性材料である。具体的には種々の金属イオンと有機化合物の配位結合を利用して多孔性構造を形成するものであり、より具体的には、例えば、適切な剛直有機配位子と配位方向が規定された金属クラスターの間で錯体形成を行うことにより得られる、周期性の高い結晶性化合物でありうる。多孔性配位高分子(PCP:Porous Coordination Polymer)と呼ばれることもある。ガス吸着あるいは分離をはじめとするさまざまな用途に応用可能である。
 金属有機構造体ナノシート1は、金属有機構造体からなるシート状構造物である。金属有機構造体ナノシート1の厚さは、ナノサイズである限り特に限定されず、必要とされる用途に応じ、適宜設定することができ、通常0.1nm以上であり、好ましくは0.5nm以上であり、より好ましくは1nm以上である。また、金属有機構造体ナノシート1の厚さは、通常100nm以下であり、好ましくは50nm以下であり、より好ましくは20nm以下である。前記下限値以上では、操作性が高く、前記上限値以下であれば実用面で十分な薄さを有するためである。また前記下限値以上、前記上限値以下では、ゲートオープン圧を向上させる点で好ましい。
 金属有機構造体ナノシート1の平面方向の大きさは、特に限定はされず、用いる出発材料やその用途に応じ適宜設定することができるが、実用性の面で、通常、一辺が50nm以上、好ましくは100nm以上であり、通常1μm以下であり、好ましくは500nm以下である。
 金属有機構造体ナノシート1のアスペクト比(水平方向の大きさ/厚さ)は、特に限定はされず、用いる出発材料やその用途に応じ適宜設定することができるが、通常10以上であり、好ましくは20以上であり、より好ましくは50以上であり、さらに好ましくは100以上である。また、アスペクト比は、通常5000以下であり、好ましくは1000以下である。
 上記金属有機構造体ナノシートにおいて、二分子膜は、両親媒性物質から構成されるものが好ましい。好適な実施形態では、超膨潤ラメラ相の形成のために親水部と疎水部のバランスを調整しやすい点から、両親媒性物質は非イオン性両親媒性物質であってもよい。
 非イオン性両親媒性物質としては、エステル型界面活性剤、エーテル型界面活性剤、エステルエーテル型界面活性剤、アルカノールアミド型界面活性剤、アルキルグリコシド、高級アルコールが挙げられる。非イオン性両親媒性物質は市販品を使用できる。
 エステル型界面活性剤としては、ショ糖ラウリン酸エステル、ショ糖オレイン酸エステル、ショ糖モノパルミチン酸エステルなどのショ糖脂肪酸エステル;ソルビタンカプリル酸モノエステル、ソルビタンカプリル酸ジエステル、ソルビタンカプロン酸モノエステル、ソルビタンカプロン酸ジエステル、ソルビタンカプリン酸モノエステル、ソルビタンカプリン酸ジエステル、ソルビタンラウリン酸モノエステル、ソルビタンラウリン酸ジエステル、ソルビタンミリスチン酸モノエステル、ソルビタンミリスチン酸ジエステルなどのソルビタン脂肪酸エステル;カプリル酸グリセリル、カプリン酸グリセリル、ラウリン酸グリセリル、ミリスチン酸グリセリル、ジ(ラウリン酸/ミリスチン酸)グリセリルなどのモノグリセリン脂肪酸エステル;モノステアリン酸ジグリセリル、モノオレイン酸ジグリセリル、ジオレイン酸ジグリセリル、モノイソステアリン酸ジグリセリル、モノステアリン酸テトラグリセリル、トリステアリン酸テトラグリセリル、ペンタステアリン酸テトラグリセリル、ペンタオレイン酸テトラグリセリル、モノラウリン酸ヘキサグリセリル、モノミリスチン酸ヘキサグリセリル、モノステアリン酸ヘキサグリセリル、モノオレイン酸ヘキサグリセリル、トリステアリン酸ヘキサグリセリル、ペンタステアリン酸ヘキサグリセリル、ペンタステアリン酸ヘキサグリセリル、ポリリシノール酸ヘキサグリセリル、モノラウリン酸デカグリセリル、モノミリスチン酸デカグリセリル、モノステアリン酸デカグリセリル、モノオレイン酸デカグリセリル、モノリノール酸デカグリセリル、モノイソステアリン酸デカグリセリル、ジステアリン酸デカグリセリル、ジオレイン酸デカグリセリル、ジイソステアリン酸デカグリセリル、トリステアリン酸デカグリセリル、トリオレイン酸デカグリセリル、トリイソステアリン酸デカグリセリル、ペンタステアリン酸デカグリセリル、ペンタオレイン酸デカグリセリル、ペンタイソステアリン酸デカグリセリル、ヘプタステアリン酸デカグリセリル、ヘプタオレイン酸デカグリセリル、ヘプタイソステアリン酸デカグリセリル、デカステアリン酸デカグリセリル、デカオレイン酸デカグリセリル、デカイソステアリン酸デカグリセリルなどのポリグリセリン脂肪酸エステルなどが挙げられる。
 エーテル型界面活性剤としては、下記式(1)
Figure JPOXMLDOC01-appb-C000005
(式中、nは疎水部のアルキル基の炭素数を表し、mは親水部のエチレンオキサイド数を表す。)
で示されるポリエチレングリコールモノアルキルエーテル(Cnm)を含むポリエチレングリコールモノアルキルエーテル;下記式(2)
Figure JPOXMLDOC01-appb-C000006
(エチレンオキサイドの付加モル数pは、3~40であってもよく、5~20であってもよい)で示されるポリ(オキシエチレン)オクチルフェニルエーテル、下記式(3)
Figure JPOXMLDOC01-appb-C000007
(エチレンオキサイドの付加モル数qは、3~40であってもよく、5~20であってもよい)で示されるポリ(オキシエチレン)ノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテルなどが挙げられる。
 エステルエーテル型界面活性剤としては、モノステアリン酸ポリエチレングリコール、モノオレイン酸ポリエチレングリコール、ジオレイン酸ポリエチレングリコールなどのポリオキシエチレン脂肪酸エステル;ポリオキシエチレンヘキシタン脂肪酸エステル;ポリオキシエチレンソルビタン脂肪酸エステル(ソルビタン脂肪酸エステル部分は、上記エステル型界面活性剤と同様である)、ソルビタン脂肪酸エステルポリエチレングリコール(ソルビタン脂肪酸エステル部分は、上記エステル型界面活性剤と同様である)などが挙げられる。
 アルカノールアミド型界面活性剤としては、ラウリン酸モノエタノールアミド、ラウリン酸モノイソプロパノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、コカミドDEAの脂肪酸アルカノールアミドなどが挙げられる。
 アルキルグリコシドとしては、n-オクチル-β-D-グルコシド、n-オクチル-β-D-マルトシド、n-デシル-β-D-グルコシド(デシルグルコシド)、n-デシル-β-D-マルトシド、n-ウンデシル-β-D-グルコシド、n-ドデシル-β-D-グルコシド(ラウリルグルコシド)、n-トリデシル-β-D-グルコシド、n-オクタデシル-β-D-グルコシド、n-ヘプチル-β-D-チオグルコシド、n-オクチル-β-D-チオグルコシド、n-ノニル-β-D-チオマルトシドなどが挙げられる。
 高級アルコールとしては、セタノール、ステアリルアルコール、ラウリルアルコール、オレイルアルコールなどの炭素数12~18の高級アルコールが挙げられる。
 また、ある好適な実施形態では、前記非イオン性両親媒性物質は、下記式(1)
Figure JPOXMLDOC01-appb-C000008
(式中、nおよびmは上記と同一意味を有する。)で示されるポリエチレングリコールモノアルキルエーテル(Cnm)で構成されてもよい。
 ある実施形態では、上記式(1)において、2<n/m<6であってもよく、2.2<n/m<5であってもよく、2.4≦n/m≦4であってもよい。n/mの下限値は、特に限定されないが、2でもよく、2.2でもよく、2.4でもよい。n/mの上限値は、特に限定されないが、6でもよく、5でもよく、4でもよい。かかる範囲では、水あるいは水と後記する水溶性有機溶媒の混合液である溶媒とポリエチレングリコールモノアルキルエーテルとを用いて、これらを混合攪拌する、これらの混合溶液を流路に流す、これらの混合溶液にずり応力を与える等の操作を行うだけで容易に超膨潤ラメラ相が形成されうる。流路としては、例えば、特開2015-058416号公報に記載される気泡固定流路装置などが挙げられる。攪拌速度は、例えば、1000rpm以下であってもよく、750rpm以下であってもよく、500rpm以下であってもよい。ただし、上記式(1)において、n/m≦2であってもよい。n/m≦2の場合でも、水に加えて、例えば1-ヘキサノール、スチレン、トルエン等の有機溶媒を併用することで超膨潤ラメラ相が形成されうる。また、nは1以上であればよい。mは1以上であればよい。さらに、nは250以下であればよく、100以下でもよい。mは40以下であればよく、20以下でもよい。
 他の実施形態では、ポリエチレングリコールモノアルキルエーテルは、上記式(1)において、nが12であり、mが5であってもよい。この実施形態において、溶媒は水であってもよいし、水と水溶性有機溶媒との混合液であってもよい。本開示にかかる水溶性有機溶媒としてはグリセリン、エチレングリコール、ジエチレングリコール、イソプロピリデングリセロール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチロールプロパン、トリメチロールエタン、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラエチレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセロール、1,2,6-ヘキサントリオール、1,2,4-ブタントリオール、1,2,3-ブタントリオール、ペトリオール等の多価アルコール類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の多価アルコールアルキルエーテル類;エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル等の多価アルコールアリールエーテル類;2-ピロリドン、N-メチル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン、1,3-ジメチルイミイダゾリジノン、ε-カプロラクタム、γ-ブチロラクタム等の含窒素複素環化合物;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチル-β-メトキシプロピオンアミド、N,N-ジメチル-β-ブトキシプロピオンアミド等のアミド類;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン等のアミン類;ジメチルスルホキシド、スルホラン、チオジエタノール等の含硫黄化合物類;3-エチル-3-ヒドロキシメチルオキセタン、プロピレンカーボネート、炭酸エチレン等、炭素数が8~11のポリオール、炭素数が8~11のグリコールエーテル、低級アルコール等が挙げられ、グリセリンが好ましい。これらは、1種単独でまたは2種以上を併用して、水との混合液として利用してもよい。
 また、他の実施形態では、nが12であり、mが6であり、さらに溶媒が水と有機溶媒を含んでいてもよい。水と併用される前記有機溶媒としては、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン;スチレンなどの重合性の液体;疎水性イオン液体などが挙げられる。疎水性イオン液体としては、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)、1-エチル-3-メチルイミダゾリウムテトラフルオロボラート(EMI-BF4)、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスファート(EMI-PF6)、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート(BMI-BF4)、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスファート(BMI-PF6)、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(BMI-TFSI)などが挙げられる。水と併用される前記有機溶媒としては、トルエンが好ましい。例えばトルエンなどの有機溶媒は、二分子膜の内部に入り込んでいてもよい。
 超膨潤ラメラ相(Hyper-swollen Lamellar Phase)とは、溶媒3(例えば水)で膨潤された特異的なラメラ相をいう。より具体的には、複数の二分子膜が溶媒3の層を挟んで層状に積み重なった相である。約99質量%の水で膨潤していてもよい。図1Aに示される、二分子膜と二分子膜との間隔Dが100nm以上であってもよい。二分子膜と二分子膜との間隔(溶媒の層)は、数百nmであってもよく、二分子膜自体の厚さは数nmであってもよい。水-C125の場合には、水層の厚さが約250nm、油層の部分が約2nmとなる。可視光領域でのBragg反射により呈色してもよい。二分子膜と二分子膜との間隔は二分子膜を構成する分子(両親媒性分子)の含量に依存しうる。超膨潤ラメラ相は、超膨潤リオトロピックラメラ相(Hyper-swollen Lyotropic Lamellar Phase)であってもよい。
 超膨潤ラメラ相において、全体に占める溶媒3の質量割合は、本発明の目的を満たす限りにおいて特に限定はされないが、通常90質量%以上であり、好ましくは95質量%以上、より好ましくは98質量%以上、さらに好ましくは99質量%以上でありうる。上限は溶質と溶媒との間で超膨潤ラメラ相を形成できる範囲であれば特に限定はされず、用いる溶媒と溶媒の間で超膨潤ラメラ相を形成し得る限界の濃度が理論的な上限である。前記「全体」とは、溶質と溶媒を含む混合しているものすべての合計を意味する。超膨潤ラメラ相において、全体に占める溶媒3の質量割合の上限は、例えば、99質量%としうる。
 超膨潤ラメラ相において、隣接する二分子膜10間の距離D(本明細書において「層間距離」ともいう。)は、特に限定はされず、用いる材料や目的とする用途に応じ、適宜設定することができるが、通常50nm以上1000nm以下である(両端の値を含む、以下同じ)。Dは、目的とするナノシートを薄くする場合、薄い方が好ましく、例えば好ましくは500nm以下である。第1実施形態において、前記隣接する二分子膜間の距離Dは、図1A及び図1Bに示されるように、ある二分子膜の溶媒3に親和的な部分5Aの端部から、前記二分子膜に隣接する他の二分子膜の溶媒3に親和的な部分5Aの端部までの距離を意味する。
 二分子膜10自体の厚さdは、特に限定はされないが、通常は1nm以上20nm以下である。
 超膨潤ラメラ相は、非イオン性両親媒性物質の溶液においても、各層のうねり、ないしヘルフリッヒ(Helfrich)相互作用により、安定に維持される。
 すなわち、超膨潤ラメラ相の二重膜内で金属有機構造体を合成することにより、吸着分離に重要な二酸化炭素の脱着におけるゲートオープン圧がバルクよりも大きな値を示す金属有機構造体ナノシートを作製できる。従来法ではナノサイズの粒子あるいはシートが作製できない金属有機構造体についても、ナノシートを作製できる。
 上記のように金属有機構造体ナノ粒子が大きなゲートオープン圧を示すのは、サイズが小さくなったことにより金属有機構造体の骨格が変形しにくくなることによるとされている。本開示の金属有機構造体ナノシートの厚さ方向のサイズは、これまでの金属有機構造体ナノ粒子のサイズよりも小さい。かかる小さなサイズが、ゲートオープン圧を上昇させることに寄与していると考えられる。
 前記金属有機構造体ナノシートにおいて、金属有機構造体は、構成成分として、有機配位子を含む。有機配位子としては、疎水性の原料(配位子)(以下、「疎水性配位子」または「親油性が高い配位子」という。)が挙げられる。また、金属有機構造体は、親水性の金属イオンを含む。
 前記金属イオンとしては、Cu、Zn、Ni、Mg、Co、Alなどの金属のイオンの形態が挙げられるが、これらに限定されるものではない。有機配位子としては、例えば4,4’-ビピリジン、ピラジン、5,5’-ジメチル-2,2’-ビピリジルなどの疎水性配位子の他、テレフタル酸、トリメシン酸、2,3-ピラジンジカルボン酸などが挙げられるが、これらに限定されるものではない。金属有機構造体としては、より具体的には、ELM-11([Cu(bpy)2(BF42](bpy=4,4’-ビピリジン))またはELM-13([Cu(bpy)2(CF3BF32](bpy=4,4’-ビピリジン))であってもよい。
 また、他の実施形態としては、図1Aに示されるように、金属有機構造体ナノシート1と、両親媒性物質5とから構成される二分子膜とを備える複合ナノシート11が挙げられる。複合ナノシート11では、二分子膜の内部(図1Aでは、溶媒3に非親和的な部分5B同士の間)に金属有機構造体ナノシート1が形成されている。両親媒性物質、二分子膜については、上述の説明のとおりである。金属有機構造体ナノシート1は、上述の説明のとおり、金属有機構造体からなるシート状構造物である。複合ナノシート11の厚さは、特に限定はされないが、通常1nm以上50nm以下である。
(第2実施形態)
 第2実施形態にかかる金属有機構造体ナノシート分散液は、液体中において分散状態にある金属有機構造体ナノシートを含み、前記金属有機構造体ナノシートは、上記いずれかの第1実施形態にかかる金属有機構造体ナノシートである。
 分散液に含まれるナノシートは、触媒、吸着剤、薄膜合成材料等として有用である。
(第3実施形態)
 第3実施形態にかかるナノシートの製造方法は、溶媒中に二分子膜が超膨潤ラメラ相をなす場合において、1の二分子膜を構成する2つの単分子層の間にナノシートを形成する工程を備える。
 このようなナノシートの製造方法のある実施形態として、上記した金属有機構造体ナノシートの製造方法を例に挙げて、以下に説明する。
 金属有機構造体ナノシート等の製造技術の中で、上記特許文献2に開示されるような従来の自己組織化を用いた方法では、基板表面でしかナノシートが得られないために、薄いナノシートを実現するのは困難であった。本開示では、単層もしくは数層のナノシート(厚さが金属有機構造体における繰り返し単位の1個~数個分であるナノシート)を実現できる。また、上記特許文献2などの従来の自己組織化を用いた方法では、二酸化炭素分離膜などに応用する際に基板からはがす必要があった。本開示では、合成の際に分散液を用いるために、金属有機構造体ナノシートは分散状態の形で得ることも可能である。また、非特許文献1の方法は、ナノシートはヒドロゲルを用いて得られるため、シートの形成方法はドロップキャスト法に限られた。これに対して、本開示では、液体中でナノシートが得られるため、ドロップキャスト法に加えて、スピンコート法、ディップコート法などによっても金属有機構造体ナノシートを製造することができる。さらに、非特許文献1の方法は、図1Cに示されるように、化学的性質を重視して、溶媒3中において基板となる非イオン界面活性剤で構成される二分子膜10の表面上に吸着させながら金ナノシート12を形成するものであるのに対して、本開示では、非特許文献1と異なり、二分子膜の内部(図1Aにおける溶媒3に非親和的な部分5B同士の間)で、厚さ方向に立体障害を設けるという物理的な観点を重視して、シートが形成される。そのため、非特許文献1の方法では、ナノシートを形成しやすい金以外には適用が困難であり、金以外の金属、化合物への適用は示唆されていない。それに対して、本開示では、金属有機構造体等の立体構造を形成しやすい化合物であっても、厚さ方向の立体障害に起因して、簡便にナノシートを形成することができる。
 金属有機構造体がナノシート状になることで、金属有機構造体(例えば、ELM-11、ELM-13など)が数層のナノシートである実施形態において、金属有機構造体の層間の水素結合が強くなり、その結果、吸着分子を吸着する際に前記吸着分子が金属有機構造体の層内に入りづらくなる、つまり、ゲートオープン圧が高圧側にシフトすると考えられる。かかる金属有機構造体は、ゲートが開いたり閉まったりするため、「フレキシブルMOF」と呼んでもよい。
 金属有機構造体ナノシートは、有機配位子のみならず、親水性の金属イオンを含む。前記有機配位子としては、例えば、疎水性の原料(配位子)が挙げられる。このため、原料が二分子膜の疎水部に集積して反応するかどうかは自明ではない。反応するときに浸水部に集まる可能性もある。そのため、金属有機構造体ナノシートを二分子膜の疎水部で合成するためには、有機配位子と金属イオンの物質量比も考慮しつつ、有機配位子の濃度と金属イオンの濃度との組み合わせおよび両親媒性物質の濃度の最適化が必要となる。
 また、金属有機構造体は熱重合をするわけでもなく、シートが形成されてから焼成することも必須ではない。以上のことから、カーボンナノシートを作る従来の手法では、金属有機構造体を製造することが困難であり、適用できなかった。
 金属有機構造体のシートを形成する場合には、有機配位子と金属イオンの物質量比も重要となる。x座の有機配位子にy配位の金属イオンを加える場合、有機配位子に対して金属イオンをx/y以上存在させることで、平面を構成しやすくなる。例えば、二座の有機配位子に四配位の金属イオンを加える場合、有機配位子に対して金属イオンを1/2倍以上存在させることで、平面を構成しやすくなる。
 なお、好適な実施形態として、上記比を金属有機構造体ナノシートの製造方法に用いる両親媒性分子の水溶液に適用するには親油性の配位子が必要となる。
 金属有機構造体ナノシートの製造方法においては、溶媒中に二分子膜が超膨潤ラメラ相をなす場合において、1の二分子膜を構成する2つの単分子層の間に金属有機構造体ナノシートを形成する。
 上記金属有機構造体ナノシートの製造方法の好適な実施形態において、溶媒中に二分子膜を形成し、前記溶媒中に有機配位子を添加して、二分子膜の超膨潤ラメラ相を形成し、その後、前記溶媒中に金属イオンを添加して、1の前記二分子膜を構成する2つの単分子層の間に金属有機構造体ナノシートを形成してもよい。本製造方法における、溶媒、二分子膜、両親媒性物質、有機配位子、超膨潤ラメラ相、および金属イオンは上記金属有機構造体ナノシートで説明したとおりである。有機配位子と金属イオンを用いることによって、反応によって配位結合が連続的に起こり、金属有機構造体が得られ、この反応が1の二分子膜を構成する2つの単分子層の間で起こり、かつ超膨潤ラメラ相を形成している溶液中で製造されるため、凝集していない金属有機構造体ナノシートが形成される。
 以下、図1A、図1Bを参照しつつ、第1実施形態にかかる金属有機構造体ナノシートについて説明する。
 二分子膜10は、両親媒性分子5により形成される。両親媒性分子5としては、上記両親媒性物質を用いる。本製造方法において、溶媒3に親和的な部分5Aを二分子膜10の外側(溶媒3側)へ向かせ、溶媒3に非親和的な部分5Bを二分子膜10の内側へ向かせるようにして、両親媒性分子5が配列することで、二分子膜10が形成される。すなわち、本製造方法において、二分子膜10は、溶媒3に親和的な部分5Aを一方の側に、溶媒3に非親和的な部分5Bを他方の側に向けて両親媒性分子5がシート状に配列することで一分子膜をなし、2枚の一分子膜が、溶媒3に非親和的な側を互いに向かい合わせるように配置して構成される。二分子膜10の内部には、原則として溶媒3はほぼ存在しない。また、図1Aにおいて、例えば、溶媒3が水の場合、前記溶媒3に親和的な部分5Aは親水性部分を表し、前記溶媒3に非親和的な部分5Bは疎水性部分を表す。また、他の実施形態において、溶媒3が有機溶媒の場合、前記溶媒3に親和的な部分5Aは疎水性部分を表し、前記溶媒3に非親和的な部分5Bは親水性部分を表す。
 ある好適な実施形態において、ポリエチレングリコールモノアルキルエーテルは、上記式(1)において、2<n/m<6であってもよく、2.2<n/m<5であってもよく、2.4≦n/m≦4であってもよく、nが12であり、mが5であってもよい。かかる両親媒性分子を用いることで、超膨潤ラメラ相を好適に形成しうる。また、ある好適な実施形態では、超膨潤ラメラ相を発現する界面活性剤溶液において、2<n/m<6のポリエチレングリコールモノアルキルエーテル(Cnm)の含有量は、0.1~3.0質量%が好ましく、0.5~2.8質量%がより好ましく、0.8~2.4質量%がさらに好ましく、1.2~2.0質量%が特に好ましい。
 他の好適な実施形態として、ポリエチレングリコールモノアルキルエーテルは、上記式(1)において、nが12であり、mが6であってもよい。この場合において、溶媒3が水とトルエンなどの有機溶媒を含んでいてもよい。かかる構成でも、超膨潤ラメラ相を好適に形成しうる。
 本開示にかかる金属有機構造体ナノシートの製造方法では、二分子膜10の内部で金属有機構造体が形成される。二分子膜の厚さは比較的均一である。二分子膜の内部に保持できるナノシートの原材料は一定量を超えられない。二分子膜の内部を反応場とすることで、反応場自体の厚さが限定され、均質で薄いナノシートを容易に形成できる。本開示にかかるナノシートの製造方法では、ボトムアップ的な手法でナノシートが形成されることから、適用できる物質の範囲が広く、低コストで大量生産が可能となる。
 超膨潤ラメラ相を形成する場合、二分子膜10と二分子膜10との間に溶媒3が大量に存在するため、二分子膜が孤立状態にあり、金属有機構造体が3次元(厚さ方向)に成長することを抑制できる。
 図1Bに示すように、第1実施形態の金属有機構造体ナノシート1は、二分子膜10の内部に形成される。なお、図1Aと図1Bとで共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 上記いずれかの製造方法において、1の二分子膜を構成する2つの単分子層の間にシート状の金属有機構造体を形成した後に、二分子膜を除去し、金属有機構造体ナノシート1が単離されていてもよい。ここで、「除去」とは洗浄、遠心分離、乾燥、焼成等を含む。これらの方法は、特に限定されず、公知の方法を用いることができる。例えば、洗浄方法としては、二分子膜が溶解する溶媒に浸すことにより、二分子膜を除去し、ナノシートを分離する方法が挙げられる。
 上記いずれかの製造方法において製造する金属有機構造体は、親油性が高い配位子を構成成分とする金属有機構造体であってもよい。また、製造する金属有機構造体は、フレキシブルMOFでもよい。金属有機構造体としては、より具体的にはELM-11またはELM-13であってもよい。
 金属有機構造体は、金属イオンと有機配位子との間の配位結合が連続的に生じて形成される構造体であってもよい。
 溶媒3としては、例えば、水を用いることができる。ただし、溶媒3は水に限定されるものではない。例えば、溶媒3が有機溶媒(例えば、非極性溶媒)であって、両親媒性分子の疎水性部分が外側に向き、親水性部分が内側に向くようにして二分子膜が形成されてもよい。混合する溶媒と両親媒性分子の組み合わせを変えることで、二分子膜の疎水性部分と親水性部分は、上記のように配置される。この場合、金属有機構造体ナノシート形成のために、親水性の配位子が用いられうる。
 金属有機構造体ナノシート1は、図1Aに示すように、超膨潤ラメラ相をなす二分子膜10の内部に形成されていてもよい。
 他のナノシートの製造方法としては、金属酸化物ナノシートの製造方法、金属ナノシートの製造方法が挙げられる。
 金属酸化物ナノシートの製造方法の好適な実施形態としては、溶媒中に二分子膜を形成し、前記溶媒中に両親媒性物質を添加して、二分子膜の超膨潤ラメラ相を形成し、その後、前記溶媒中に酸素原子を有する金属含有化合物を添加して、1の前記二分子膜を構成する2つの単分子層の間に金属酸化物ナノシートを形成する、金属酸化物ナノシートの製造方法が挙げられる。また、金属ナノシートの製造方法の好適な実施形態としては、溶媒中に二分子膜を形成し、前記溶媒中に両親媒性物質を添加して、二分子膜の超膨潤ラメラ相を形成し、その後、前記溶媒中に酸素原子を有しない金属含有化合物を添加して、1の前記二分子膜を構成する2つの単分子層の間に金属ナノシートを形成する、金属ナノシートの製造方法が挙げられる。金属酸化物ナノシートの製造方法および金属ナノシートの製造方法では、疎水性部分が溶媒側を向くことによって、1の二分子膜を構成する2つの単分子層の親水性部分の間で、ナノシートが形成される。混合する溶媒と両親媒性分子の組み合わせを変えることで、二分子膜の疎水性部分と親水性部分は、上記のように配置される。非特許文献1の方法では、金ナノシートの製造にヒドロゲルのラメラ相を用いており、親水性の場でのみ反応することができるのに対して、本開示では、溶媒3に非親和的な部分5B同士の間でナノシートを形成するため、溶媒の種類に応じて、親水性の反応場のみならず、疎水性の反応場でも、ナノシートを製造することができる。
 前記金属酸化物ナノシートの製造方法および金属ナノシートの製造方法の好適な実施形態における溶媒としては、有機溶媒が好ましい。前記有機溶媒は、炭化水素系溶媒であってもよい。炭化水素系溶媒としては、シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒が挙げられる。また、前記溶媒としては、炭化水素系溶媒のみであってもよく、炭化水素系溶媒と他の有機溶媒を組み合わせものであってもよい。前記他の有機溶媒としては、アセトン、アセチルアセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;メタノール、エタノール、n-プロパノール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等のアルコール系溶媒;1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒などが挙げられる。前記溶媒として、炭化水素系溶媒と他の有機溶媒を使用する場合、両者の質量比は、炭化水素系溶媒:他の有機溶媒=80:20~99.99:0.01が好ましく、85:15~99.9:0.1がより好ましい。これらの製造方法は、ある好適な実施形態においては、水を含んでいてもよい。例えば、溶媒が前記炭化水素系溶媒と水を含む場合(好適には、さらに両親媒性物質が陰イオン性両親媒性物質である場合)には、両者の質量比は、炭化水素系溶媒:水=85:15~99.99:0.01が好ましく、90:10~99.9:0.1がより好ましい。また、これらの好適な実施形態においては、溶媒は、水と有機溶媒との混合液であってもよい。さらに、他の好適な実施形態においては、溶媒として、水に代えてあるいは水に加えて、目的とするナノシートを合成する際の反応の種類に応じて、塩酸、硝酸、硫酸等の酸性水溶液;水酸化ナトリウム水溶液等の塩基性水溶液を使用してもよい。
 前記金属酸化物ナノシートの製造方法および金属ナノシートの製造方法の好適な実施形態において、両親媒性物質は陰イオン性両親媒性物質であってもよい。陰イオン性両親媒性物質としては、例えば、スルホン酸型界面活性剤、硫酸エステル型界面活性剤、カルボン酸型界面活性剤、リン酸エステル型界面活性剤が挙げられる。スルホン酸型界面活性剤としては、例えば、α-スルホミリスチン酸メチルナトリウム、α-スルホステアリン酸メチルナトリウムなどのα-スルホ脂肪酸メチルエステル塩(CH3(CH2sCH(SO3Na)COOCH3)、式中、sは8~20であってもよい。)などのα-スルホ脂肪酸エステル塩;p-トルエンスルホン酸ナトリウム、クメンスルホン酸ナトリウム、オクチルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;ヘキシルスルホン酸ナトリウム、オクチルスルホン酸ナトリウム、デシルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウム、ヘキサデシルスルホン酸ナトリウム、ステアリルスルホン酸ナトリウムなどのアルカンスルホン酸塩;炭素数8~26のα-オレフィンスルホン酸塩などが挙げられる。硫酸エステル型界面活性剤としては、例えば、ヘキシル硫酸ナトリウム、オクチル硫酸ナトリウム、デシル硫酸ナトリウム、ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ヘキサデシル硫酸ナトリウム、ステアリル硫酸ナトリウム、ラウレス硫酸ナトリウムなどのR1-OSO3Na(R1=炭素数8~18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基);ポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリン酸モノグリセリド硫酸ナトリウムなどの脂肪酸モノグリセリド硫酸エステル塩;R2CONHCH2CH2OSO3Na(R2=炭素数7~20の脂肪酸)などの脂肪酸アルカノールアミド硫酸エステル塩などが挙げられる。カルボン酸型界面活性剤としては、例えば、オクタン酸ナトリウム、デカン酸ナトリウム、ラウリン酸ナトリウム、オレイン酸ナトリウム、ミリスチン酸ナトリウム、パルミチン酸ナトリウム、ステアリン酸ナトリウム、ラウリン酸カリウム、オレイン酸カリウム、ペルフルオロオクタン酸、ペルフルオロノナン酸、N-ラウロイルサルコシンナトリウム等のアルキロイルサルコシン類、ココイルグルタミン酸ナトリウム((HOOCCH2CH2CH(NHCOR3)COONa)、式中、R3は炭素数11~17のアルキル基を表す。)などが挙げられる。リン酸エステル型界面活性剤としては、例えば、ラウリルリン酸;ラウリルリン酸ナトリウム、ヘキシルリン酸ナトリウム、オクチルリン酸ナトリウム、デシルリン酸ナトリウム、ドデシルリン酸ナトリウム、テトラデシルリン酸ナトリウム、ヘキサデシルリン酸ナトリウムなどのモノアルキルリン酸ナトリウム;ラウリルリン酸カリウム、ヘキシルリン酸カリウム、オクチルリン酸カリウム、デシルリン酸カリウム、ドデシルリン酸カリウム、テトラデシルリン酸カリウム、ヘキサデシルリン酸カリウムなどのモノアルキルリン酸カリウム;ポリオキシエチレンアルキルエーテルリン酸;ポリオキシエチレンラウリルエーテルリン酸ナトリウム、リオキシエチレントリデシルエーテルリン酸ナトリウムなどのポリオキシエチレンアルキルエーテルリン酸ナトリウムなどが挙げられる。前記した陰イオン性両親媒性物質のアルキル基としては、炭素数8~20が好ましい。
 また、前記金属酸化物ナノシートの製造方法および金属ナノシートの製造方法の好適な実施形態において、溶媒は、両親媒性物質の安定化のために、界面活性助剤を含めていてもよい。界面活性助剤としては、一価アルコール、グリコール系多価アルコールおよびその誘導体などが挙げられる。一価アルコールとしては、例えば、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、2-ヘプタノール、3-ヘプタノール、2-オクタノール、2-エチル-1-ヘキサノール、3,5,5-トリメチル-1-ヘキサノールなどの炭素数1~10の一価アルコール;コレステロール、アルケニルコハク酸コレステリル、コレスタノール、炭素数12~36(好ましくは炭素数14~28)の飽和または不飽和の直鎖または分岐鎖の炭化水素基を有するコレステリルエステル、デヒドロコレステロールなどのコレステロールおよびその誘導体などが挙げられる。グリコール系多価アルコールまたはその誘導体としては、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール-1-メチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル等のグリコールエーテル類;エチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテートなどのグリコールエーテルアセテート類;エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、へキシレングリコールなどのジオール類;グリセリン、ペンタエリスリトール、ソルビトールなどのポリオール類などが挙げられる。
 前記金属酸化物ナノシートの製造方法および金属ナノシートの製造方法のある実施形態においては、溶媒が炭化水素系溶媒と水であり、両親媒性物質が陰イオン性両親媒性物質であり、さらに溶媒が界面活性助剤を含むものであってもよい。これらの製造方法においては、水を含む混合溶媒を使用する場合、水の含有量は、特に限定されないが、溶媒中、5質量%以下が好ましく、2.0質量%以下がより好ましく、1.5質量%以下がさらに好ましい。
 金属酸化物ナノシートの製造方法において用いる酸素原子を有する金属含有化合物としては、例えば、テトラエトキシシラン(TEOS)、チタン(IV)イソプロポキシド、ゲルマニウムエトキシド、ニオブ(V)エトキシド、アルミニウムエトキシドなどの金属アルコキシドなどが挙げられる。なお、ケイ素は半金属に分類される場合があるが、本明細書ではこれらを金属に含めるものとする。前記製造方法によって得られるナノシートを構成する金属酸化物としては、シリカ、酸化チタン、酸化ニオブ、アルミナなどが挙げられる。
 金属ナノシートの製造方法において用いる原料の酸素原子を有しない金属含有化合物としては、酸素原子を有しない金含有化合物、酸素原子を有しないニッケル含有化合物などが挙げられる。酸素原子を有しない金含有化合物としては、例えば、光によって容易に還元されるAu(OH)4 -錯体を生成できる点から、テトラクロロ金(III)酸四水和物などが挙げられる。金属ナノシートの製造方法において金属が金である場合、すなわち、金ナノシートの製造方法においては、原料の酸素原子を有しない金含有化合物に加えて、塩化鉄(III)(FeCl3)、塩化ナトリウム、塩化銅(CuCl2)、硝酸ナトリウム、ポリビニルピロリドンなどを保護剤として用いることが好ましい。これらの製造方法において、反応時間をより短くすることによって、より薄いナノシートを製造することができる。
 また、例えば、金属ナノシートの製造方法において金属が金である場合、すなわち、金ナノシートの製造方法においては、超音波、光照射(紫外線、可視光線)、γ線照射などのエネルギー照射をすることが好ましい。例えば、波長350nm程度の紫外線を照射することによって、金ナノ粒子を得ることができ、超膨潤ラメラ相の1の二分子膜を構成する2つの単分子層の間で金ナノ粒子が形成されることで、金ナノシートを製造することができる。エネルギー照射の時間は、例えば、10分~15時間程度であってもよい。さらに、金属ナノシートを形成した後に、二分子膜を除去し、金属ナノシートが単離されていてもよい。除去は、上記金属有機構造体ナノシートの単離と同様の方法を用いることができる。
(第4実施形態)
 また、本開示にかかる他の実施形態としては、上記したいずれかの金属有機構造体ナノシートを含むガス分離膜が挙げられる。前記ガス分離膜は、窒素分離用または二酸化炭素分離用であってもよい。また、ガス分離膜は、複数の上記したいずれかの金属有機構造体ナノシートを積層した多層構造体であってもよく、複数の上記したいずれかの金属有機構造体ナノシートと公知のガス分離膜とを積層した複合構造体であってもよい。ガス分離膜の厚さは、目的に応じて、種々変更することができる。
(第5実施形態)
 また、本開示にかかる他の実施形態としては、1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属酸化物を備え、複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、金属酸化物ナノシートが挙げられる。さらに、本開示にかかる他の実施形態としては、1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属(例えば、金、ニッケル)を備え、複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、金属ナノシート(例えば、金ナノシート、ニッケルナノシート)が挙げられる。他の実施形態としては、金属酸化物ナノシートと、両親媒性物質とから構成される二分子膜とを備える複合ナノシートが挙げられる。また、金属ナノシートと、両親媒性物質とから構成される二分子膜とを備える複合ナノシートが挙げられる。
 本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。
 次に、実施例を挙げて本開示にかかる実施形態をさらに具体的に説明するが、本開示はこれらの実施例により何ら限定されるものではなく本開示の技術的思想内で、多くの変形が当分野において通常の知識を有する者により可能である。
(形状等観察)
原子間力顕微鏡:東陽テクニカ社製、NanoScope III TappingMode AFM
走査型電子顕微鏡(SEM):日立製作所社製 S-5000
透過型電子顕微鏡(TEM):日立製作所社製 H-800
(X線回折スペクトル測定)
X線回折装置:リガク社製、MiniFlex II diffractometer 
X線源 :CuKα
管球電圧:30kV
管球電流:15mA
(気体吸着量測定)
高精度ガス/蒸気吸着量測定装置 :マイクロトラック・ベル社製 BELSORP-max
測定温度;77K
吸着ガス純度:窒素及び二酸化炭素ともに99.99体積%
測定試料 前処理方法
 サンプルを約30mg秤量し、真空下(P<10-4Pa)、373K、2時間静置。
(実施例1)
 金属有機構造体としてELM-11([Cu(bpy)2(BF42])を用いた金属有機構造体ナノシートを、以下の方法で調製した。
 20mLスクリュー管瓶(AS ONE社製)に、4,4’-ビピリジン(4,4’-bipyridine:和光純薬社製)の濃度が12.2質量%となるように、4,4’-ビピリジンとC126(和光純薬社製)を混合し、界面活性剤溶液を調製した。この界面活性剤溶液と水とを2:98(質量比)で混合した。調製した水溶液を、ホットスターラーと長さ20mm、直径7mmのマグネチックスターラーとを用いて54℃に加熱しながら300rpmで撹拌し、超膨潤ラメラ相が安定的に維持されていることを確認した。その後、2.5質量%のCu(BF42・6H2O(東京化成工業社製)水溶液1mLを加えた。常温保持下で10分間撹拌し、分散液を得た。その後、この分散液を90℃で一晩乾燥させ、残った固体をエタノールで数回洗浄して界面活性剤を取り除き、遠心分離によりELM-11のナノシート(以下、ELM-11ナノシート)を得た。得られた粉末を透過型電子顕微鏡および原子間力顕微鏡で観察したところ、薄片状のナノシートが得られていることを確認した。得られた前記ELM-11ナノシートを、前記原子間力顕微鏡により観察した。観察結果を図2A、図3A、図2B及び図3Bに示した。図3Aは、図2A中の上下の線に沿って切った断面を示す。図3Bは、図2B中の上下の線に沿って切った断面を示す。図2Aの矢印と図3Aの矢印とは互いに対応し、図2Bの矢印と図3Bの矢印とは互いに対応している。
 図3A及び図3Bに示すように、前記ELM-11ナノシートは、幅および奥行が200~300nm程度の不定形をなし、またその厚さは10nm以下と極めて薄かった。
 次に、得られた前記ELM-11ナノシートのX線回折スペクトルを前記方法により取得した。結果を図4に示した。
 図4において上側の線が実測値、下側の線が理論値である。図4に示すように、前記ELM-11ナノシートのスペクトルは、バルクELM-11から得られるスペクトルの理論値とよく一致しており、ELM-11のナノシートが得られていることが確認された。
 前記ELM-11ナノシートと、比較対照物としてバルクのELM-11(以下、バルクELM-11;東京化成工業社製)について、前記の方法で、窒素吸着量を測定した。結果を図5に示した。
 図5の縦軸は窒素ガス(N2)の単位質量当たりの吸着量を、標準温度および標準圧力(STP)における窒素ガス(N2)の体積に換算した値を示す。図5中、■は前記バルクELM-11について窒素の相対圧を上昇させていった際の吸着量、□は前記バルクELM-11について窒素の相対圧を低下させていった際の吸着量、●は前記ELM-11ナノシートについて窒素の相対圧を上昇させていった際の吸着量、○は前記ELM-11ナノシートについて窒素の相対圧を低下させていった際の吸着量を示す。
 図5に示すように、金属有機構造体ナノシートは、バルクの金属有機構造体に比べ、窒素の相対圧を上昇させていくにしたがって窒素の吸着量の立ち上がり位置が右側にシフトしており、金属有機構造体ナノシートは、バルクの金属有機構造体に比べ、窒素吸着にかかるゲートオープン圧が高圧側にシフトしていることが分かった。すなわち、金属有機構造体をナノシート化することで、窒素吸着量の制御をより高圧側で行えるようになることが期待される。
 次に上記で求めた窒素吸着量と同様の方法により、前記ELM-11ナノシートの二酸化炭素の吸着量を求めた。結果を図6及び図7に示した。縦軸は、図5で示した方法と同様の方法で求めた二酸化炭素吸着量を示す。図6中、■は前記バルクELM-11について二酸化炭素の絶対圧を上昇させていった際の吸着量、□は前記バルクELM-11について二酸化炭素の絶対圧を低下させていった際の吸着量、●は前記ELM-11ナノシートについて二酸化炭素の絶対圧を上昇させていった際の吸着量、○は前記ELM-11ナノシートについて二酸化炭素の絶対圧を低下させていった際の吸着量を示す。このうち図7は整理のため二酸化炭素の絶対圧を上昇させた際のグラフのみ記載したものである。
 図6及び図7に示すように、金属有機構造体ナノシートは、バルク状の金属有機構造体と、二酸化炭素の絶対圧を上昇させていった際の二酸化炭素の吸着量の立ち上がり方、すなわち傾きが異なっていた。これは、金属有機構造体ナノシートには、バルク状の金属有機構造体と同様のゲートオープン圧を示す粒子もある一方で、二酸化炭素吸着にかかるゲートオープン圧がバルク状の金属有機構造体に比べて、より高い粒子が存在することを示す。図6では、金属有機構造体ナノシートを構成する粒子の形状、サイズにばらつきがあり、ゲートオープン圧が高い粒子が混在している状態であると推察される。このことから、金属有機構造体ナノシートは、ナノシートではない金属有機構造体に比べ、二酸化炭素の吸着の立ち上がりが高圧側にシフトできることが分かった。すなわち、金属有機構造体をナノシート化することで、二酸化炭素吸着量の制御をより高圧側で行えるようになることが期待される。
(実施例2)
 ELM-13を金属有機構造体として用いたナノシート(以下、ELM-13ナノシート)およびバルクの金属有機構造体であるELM-13(以下、バルクELM-13)を調製し、両者について窒素吸着量の圧力依存性を測定した。
 前記ELM-13ナノシートは、以下の方法で調製した。4,4’-ビピリジンとC126を実施例1と同様に混合し、超膨潤ラメラ相が安定的に維持されていることを確認した。その後、2.2質量%のCu(BF42・6H2Oと3.3質量%のKCF3BF3(東京化成工業社製)を調整した水溶液1mLを加えた。以下、実施例1と同様の方法により、厚さ10~20nmの前記ELM-13ナノシートを得た。
 また前記バルクELM-13は、以下の方法で調製した。
試験管にCu(BF4)水溶液(80mM、6.25mL)を入れ,KCF3BF3(1.0mmol)を加えて溶かした。ここに4,4’-ビピリジン(bpy)のアセトン溶液(80mM、12.5mL)をゆっくりと滴下し、ELM-13を積層した。これを2週間静置した後、析出した青色結晶を減圧濾過し、減圧乾燥し、青色の高分子金属錯体の結晶を得た。
 上記方法で得られた前記ELM-13ナノシートおよび前記バルクELM-13について、実施例1と同様に窒素吸着量の圧力依存性を測定した。結果を図8に示した。
 図8中、■はバルク前記バルクELM-13について窒素の相対圧を上昇させていった際の吸着量、□は前記バルクELM-13について窒素の相対圧を低下させていった際の吸着量、●は前記ELM-13ナノシートについて窒素の相対圧を上昇させていった際の吸着量、○は前記ELM-13ナノシートについて窒素の相対圧を低下させていった時の吸着量を示す。
 図8に示すように、金属有機構造体ナノシートは、バルク状の金属有機構造体と、窒素の相対圧を上昇させていった際の窒素の吸着量の立ち上がり方、すなわち傾きが異なっていた。これは、金属有機構造体ナノシートには、バルク状の金属有機構造体と同様のゲートオープン圧を示す粒子もある一方で、窒素吸着にかかるゲートオープン圧がバルク状の金属有機構造体に比べて、より高い粒子が存在することを示す。図8では、金属有機構造体ナノシートを構成する粒子の形状、サイズにばらつきがあり、ゲートオープン圧が高い粒子が混在している状態であると推察される。このことから、前記ELM-13ナノシートは、バルクのELM-13に比べ、窒素吸着にかかるゲートオープン圧が高圧側にシフトできることが分かった。観測された前記ELM-13ナノシートのゲートオープン圧は、273Kの窒素吸着において、現時点において確認されているゲートオープン圧としては最も高いものである。
[第1実験例]
 ポリエチレングリコールモノアルキルエーテル(Cnm)について、疎水部のアルキル基の炭素数および親水部のエチレンオキサイド数を変化させた場合の、超膨潤ラメラ相形成の有無を検討した。
 C126の代わりにC125を用いた以外は実施例2と同様に、界面活性剤溶液を調製し、この界面活性剤溶液と水とを2:98(質量比)で混合し、溶液を調製した。調製された溶液を54℃で24時間300rpmで撹拌し、超膨潤ラメラ相を形成させた。図9に示すように、スクリュー管20の端に向けて光源22から白色光を照射し、約24度の角度への反射光を分光器24で集光してスペクトルの解析を行った。なお、反射スペクトル測定は、超膨潤ラメラ相を形成している溶液について、300rpmで撹拌している状態および静置している状態(0rpm)で行った。結果を図10に示した。
 図10では、溶液中の界面活性剤(ポリエチレングリコールモノアルキルエーテルのC125)の濃度が増加するのに伴い、反射スペクトルのピーク位置が低波長側にシフトしていることが確認できる。すなわち、この反射スペクトルは、超膨潤ラメラ相の周期構造に起因するブラッグ反射である。したがって、超膨潤ラメラ相が発現したといえる。
 また、上記実験とは別に、式(1)のnおよびmが図11の表に記載された所定の値であるポリエチレングリコールモノアルキルエーテル(Cnm)(いずれも和光純薬社製)を脱イオン水中の含量が1.2~2.0質量%となるように混合し、溶液を調製した。その後、前記溶液を入れた容器を激しく振盪した。そして、上記の方法で、超膨潤ラメラ相の発現の有無を確認した。結果を図11に示した。
 図11に示すように、式(1)のn/mが2より大きく6より小さい時には超膨潤ラメラ相が形成されるが、n/mが2以下である場合およびn/mが6以上である場合には超膨潤ラメラ相は形成されなかった。
[第2実験例]
 第2実験例では、ポリエチレングリコールモノアルキルエーテル(Cnm)について、疎水部のアルキル基の炭素数および親水部のエチレンオキサイド数を変化させた場合の、超膨潤ラメラ相の形成温度を比較した。
 実験は、C125について、ホットスターラーで温度を変化させながら、第1実験例の図11の超膨潤ラメラ相の形成の有無を調べた方法と同様の方法で行った。その他のCnmについては文献値を採用した。具体的には、C124については、R.Strey, Ber. Bunsenges. Phys. Chem.,100,182(1996)を参照した。C123については、P.-G.Nilsson,B.Lindman,J.Phys.Chem.,88,4764(1984)を参照した。C104については、C.Stubenrauch,S.Burauer,R.Strey,Liquid Crystals,31,39(2004)を参照した。C103は、A.A.Ali,B.A.Mulley,J.Pharm.Pharmac.,30,205(1978)を参照した。結果を図12に示した。
 例えば、第2実験例で示す方法により、形成温度が様々な金属有機構造体について、超膨潤ラメラ相を用いたナノシート形成を行なうことが可能となる。
[第3実験例]
 第3実験例では、トルエン-水系において、ポリエチレングリコールモノアルキルエーテル(C126)が超膨潤ラメラ相を形成するための、トルエンおよびC126の含量条件について検討した。
 20mLスクリュー管瓶にC126と、疎水性分子としてのトルエンと、脱イオン水とを図13に示される様々な濃度で混合し、全体で10gの溶液を調製した。この際、C126とトルエンとが質量比で一定(C126:トルエン=5:1)となるように調製した。それぞれの溶液のキャラクタリゼーションとして、反射スペクトルを測定した。なお、反射スペクトルの測定は、ホットスターラーと長さ20mm、直径7mmのマグネチックスターラーとを用いて54℃に加熱し、かつ300rpmで撹拌しながら行った。疎水性分子としてスチレンを用いた場合につき、C126とスチレンとを様々な比で混合した場合の溶液の観察も行った。結果を図13に示した。
 図13に示すように、C126の含量が一定の場合でも、トルエンの含量によって、超膨潤ラメラ相形成の有無が影響されうることが分かった。
[第4実験例]
 第4実験例では、ポリエチレングリコールモノアルキルエーテル(C125ないしC126)にグリセリンを添加した場合の、超膨潤ラメラ相の形成温度を比較した。
<C125-グリセリン-水の3成分系からなる超膨潤ラメラ相の形成>
 20mLスクリュー管瓶にC125、グリセリンおよび脱イオン水を混合し、様々なグリセリン濃度の溶液を調製した。それぞれの溶液を撹拌、加熱しながら、溶液の色の変化の観察を行った。また、呈色が確認できた温度において、C125水溶液と同様に反射スペクトルの測定を行った。C125の濃度が2質量%となる溶液については、粘度測定も行った。
<C126-トルエン-グリセリン-水の4成分系からなる超膨潤ラメラ相の形成>
 20mLスクリュー管瓶にC126、トルエン、グリセリンおよび脱イオン水を混合し、様々なグリセリン濃度の溶液を調製した。それぞれの溶液を撹拌、加熱しながら、溶液の色の変化の観察を行った。なお、C126とトルエンはそれぞれ系全体で2質量%および0.67質量%となるように調製した。結果を図14及び図15に示した。
<結果>
 図14及び図15に示すように、グリセリン添加量の増加に伴って、超膨潤ラメラ相の形成温度は低下する。グリセリン添加量の増加に伴って、系(溶液)の濃度が上昇し、ヘルフリッヒ(Helfrich)相互作用が変化し、超膨潤ラメラ相の形成温度は低下するものと考えられる。このことから、グリセリンの添加により、超膨潤ラメラ相の形成温度を制御可能であることが分かった。
[第5実験例]
 第5実験例では、ポリエチレングリコールモノアルキルエーテル(C125ないしC126)の含量を変化させた場合の、超膨潤ラメラ相における層間距離(隣接する二分子膜間の間隔:図1A及び図1BにおけるD)を比較した。
 実験は、以下の方法で行った。C125ないしC126を用いた超膨潤ラメラ相の形成方法については、第4実験例と同様とした。層間距離は反射光強度がピークとなる波長から求めた。具体的には、以下の通りである。すなわち、サンプルを入れたバイアルに対し、中心を外して光を入射させた。2θ=24度だけ角度をつけて分光器を通して反射光の強度を測定した。ここでいう角度とは、反射点を起点として、光源および分光器のそれぞれを通る直線がなす角度をいう。反射光の強度がピークとなる波長をλとすれば、Braggの式より、層間距離d=λ/(2n・cosθ)となる。ここでnは水の反射指数(1.33)である。層間距離の測定方法の詳細については、Uchida et al.,2016,Nanosheet Formation in Hyperswollen Lyotropic Lamellar Phases,JACS,138(4),pp.1103-1105にも記載されている。
 図16に示すように、両親媒性分子の含量が上昇すると層間距離は短くなり、含量が低下すると層間距離が長くなる傾向が見られた。すなわち、両親媒性分子の含量を変えることにより、超膨潤ラメラ相における層間距離を制御できた。
[第6実験例]
 第6実験例では、グリセリンの含量を変化させた場合の、超膨潤ラメラ相における層間距離(隣接する二分子膜間の間隔:図1A及び図1BにおけるD)を比較した。
 実験方法(層間距離の計算方法を含む)は、第4実験例および第5実験例と同様である。結果を図17に示した。
 グリセリン含量につき、◇が0質量%、●が10質量%、□が20質量%、○が30質量%、◆が40質量%である。図17に示すように、グリセリン含量が上昇すると、層間距離は短くなる傾向が見られた。すなわち、グリセリン含量を変えることにより、超膨潤ラメラ相における層間距離を制御できた。
 グリセリンを添加すると溶媒の粘度は上昇する。粘度上昇の効果であれば、高温でも安定にラメラ相が維持されると期待される。しかしながら、実際には、グリセリン添加により超膨潤ラメラ相の形成温度は低下した。これは、グリセリンが二分子膜の膜特性に何らかの影響を与えていることを示唆する。
(実施例3)
 20mLスクリュー管瓶に、n-デカン9.2g(89.8質量%)、1-ペンタノール0.85g(8.3質量%)、オクチルベンゼンスルホン酸ナトリウム0.09g(0.9質量%)、水0.1g(1.0質量%)となるように、各成分を添加して混合し、界面活性剤溶液を調製した。10.2gの前記界面活性剤溶液に、シリカ原料としてテトラエトキシシラン(TEOS;和光純薬社製)を0.074g添加し、混合溶液を得た。この混合溶液を長さ20mm、直径7mmのマグネチックスターラーを用いて常温で72時間、300rpmで撹拌し、超膨潤ラメラ相が安定的に維持されていることを確認した。シリカナノシートが生成された。得られたシリカナノシートは、溶液中に分散しており、この分散液に対して、洗浄操作を行い、シリカナノシートを単離した。前記洗浄操作としては、まず、前記分散液を用いて遠心分離し、得られた固形分にメタノールを加えて遠心分離をし、上清を捨て、再度メタノールを加えて遠心分離をし、上清を捨てた。この洗浄操作を数回繰り返し、十分に洗浄を行った後で、残った固体を90℃で一晩乾燥させた。得られたシリカナノシートを透過型電子顕微鏡(TEM)で観察した結果を図18に示す。なお前記TEM観察時の観測倍率は12万倍、加速電圧は200KVであった。図18から、シリカナノシートが生成されたことが確認された。
(実施例4)
 実施例3に記載の界面活性剤溶液を、実施例3と同様に調製し、10.2gの前記界面活性剤溶液に、原料の金含有化合物としてテトラクロロ金(III)酸四水和物(HAuCl4・H2O;和光純薬社製)を10mg添加し、さらに塩化鉄(III)(和光純薬社製)1mgを添加して、混合溶液を得た。超膨潤ラメラ相が安定的に維持されていることを確認しつつ、この混合溶液に、UV照射装置(製品名:300Wキセノン光源、型番:MAX-303、朝日分光株式会社製)を用いてUV(波長350nm)を1時間照射し、金ナノシートを合成した。得られた金ナノシートは、溶液中に分散しており、この分散液に対して、洗浄操作を行い、金ナノシートを単離した。洗浄操作は実施例3と同様に行った。この洗浄操作を数回繰り返し、十分に洗浄を行った後で、残った固体を90℃で一晩乾燥させた。得られた金ナノシートを透過型電子顕微鏡で観察した結果を図19に示す。なお前記TEM観察時の観測倍率は1万倍、加速電圧は200KVであった。また、得られた金ナノシートを走査型電子顕微鏡(SEM)で観察した結果を図20に示す。なお前記SEM観察時の観測倍率は50万倍、加速電圧は15KVであった。図19および図20に示されるように、金ナノシートが生成されたことが確認された。TEM画像から、金ナノシートの横幅が約4μmであることが確認された。また、SEM画像から、金ナノシートの厚さが約6nmであることが確認された。
 上記説明から、当業者にとっては、本開示の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の技術的思想を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
 本開示にかかる金属有機構造体ナノシートの製造方法は、ナノサイズの金属有機構造体シートの製造に有用である。また、本開示にかかるナノシートの製造方法は、材料の選択の幅が広く、種々の原料化合物を用いたナノシートを製造するのに有用である。さらに、本開示にかかる金属有機構造体ナノシートは、ガス分離膜として有用である。
  1  金属有機構造体ナノシート
  11 複合ナノシート
  12 金ナノシート
  3  溶媒
  5  両親媒性分子
 5A  溶媒に親和的な部分
 5B  溶媒に非親和的な部分
 10  二分子膜
 20  スクリュー管
 22  光源
 24  分光器

Claims (31)

  1.  1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属有機構造体を備え、
     複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、
     金属有機構造体ナノシート。
  2.  前記二分子膜が、非イオン性両親媒性物質から構成される、請求項1に記載の金属有機構造体ナノシート。
  3.  非イオン性両親媒性物質が、エステル型界面活性剤、エーテル型界面活性剤、エステルエーテル型界面活性剤、アルカノールアミド型界面活性剤、アルキルグリコシド、高級アルコールからなる群より選ばれる少なくとも1種である、請求項2に記載の金属有機構造体ナノシート。
  4.  非イオン性両親媒性物質が、エーテル型界面活性剤であり、前記エーテル型界面活性剤が、ポリエチレングリコールモノアルキルエーテルおよびポリオキシエチレンアルキルフェニルエーテルからなる群より選ばれる少なくとも1種である、請求項3に記載の金属有機構造体ナノシート。
  5.  前記二分子膜が、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは疎水部のアルキル基の炭素数を表し、mは親水部のエチレンオキサイド数を表す。)
    で示されるポリエチレングリコールモノアルキルエーテルから構成される、請求項1に記載の金属有機構造体ナノシート。
  6.  2<n/m<6である、請求項5に記載の金属有機構造体ナノシート。
  7.  nが12であり、mが5である、請求項5に記載の金属有機構造体ナノシート。
  8.  前記溶媒が、水または水と水溶性有機溶媒との混合液を含む、請求項1~6のいずれか1項に記載の金属有機構造体ナノシート。
  9.  nが12であり、mが6であり、さらに前記溶媒が水と有機溶媒とを含む、請求項5に記載の金属有機構造体ナノシート。
  10.  前記金属有機構造体が、親油性が高い配位子を構成成分とする金属有機構造体である、請求項6~9のいずれか1項に記載の金属有機構造体ナノシート。
  11.  超膨潤ラメラ相が、隣接する二分子膜間の距離が50nm以上のラメラ構造を有する、請求項1~10のいずれか1項に記載の金属有機構造体ナノシート。
  12.  液体中において分散状態にある金属有機構造体ナノシートを含み、
     前記金属有機構造体ナノシートは、請求項1~11のいずれか1項に記載の金属有機構造体ナノシートである、
     金属有機構造体ナノシート分散液。
  13.  溶媒中に二分子膜が超膨潤ラメラ相をなす場合において、
     1の二分子膜を構成する2つの単分子層の間にナノシートを形成する、
     ナノシートの製造方法。
  14.  ナノシートが金属有機構造体から構成される、請求項13に記載のナノシートの製造方法。
  15.  溶媒中に二分子膜を形成し、
     前記溶媒中に有機配位子を添加して、二分子膜の超膨潤ラメラ相を形成し、
     その後、前記溶媒中に金属イオンを添加して、1の前記二分子膜を構成する2つの単分子層の間に金属有機構造体ナノシートを形成する、請求項14に記載のナノシートの製造方法。
  16.  1の前記二分子膜を構成する2つの単分子層の間に金属有機構造体ナノシートを形成した後に、前記二分子膜を除去する、請求項14または15に記載のナノシートの製造方法。
  17.  前記二分子膜が、下記式(1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは疎水部のアルキル基の炭素数を表し、mは親水部のエチレンオキサイド数を表す。)
    で示されるポリエチレングリコールモノアルキルエーテルで構成される、請求項14~16のいずれか1項に記載のナノシートの製造方法。
  18.  2<n/m<6である、請求項17に記載のナノシートの製造方法。
  19.  nが12であり、mが5である、請求項17に記載のナノシートの製造方法。
  20.  前記溶媒が水または水と水溶性有機溶媒との混合液とを含む、請求項15~19のいずれか1項に記載のナノシートの製造方法。
  21.  nが12であり、mが6であり、さらに前記溶媒が水と有機溶媒とを含む、請求項17に記載のナノシートの製造方法。
  22.  前記金属有機構造体が、親油性が高い配位子を構成成分とする金属有機構造体である、請求項14~21のいずれか1項に記載のナノシートの製造方法。
  23.  ナノシートが金属酸化物または金属から構成される、請求項13に記載のナノシートの製造方法。
  24.  溶媒中に二分子膜を形成し、
     前記溶媒中に両親媒性物質を添加して、二分子膜の超膨潤ラメラ相を形成し、
     その後、前記溶媒中に酸素原子を有する金属含有化合物または酸素原子を有しない金属含有化合物を添加して、1の前記二分子膜を構成する2つの単分子層の間に金属酸化物ナノシートまたは金属ナノシートを形成する、請求項23に記載のナノシートの製造方法。
  25.  前記溶媒が、水と有機溶媒との混合液を含む、請求項24に記載のナノシートの製造方法。
  26.  さらに、前記溶媒中に界面活性助剤を添加する、請求項24または25に記載のナノシートの製造方法。
  27.  両親媒性物質が、陰イオン性両親媒性物質である、請求項24~26のいずれか1項に記載のナノシートの製造方法。
  28.  請求項1~11のいずれか1項に記載の金属有機構造体ナノシートを含む、ガス分離膜。
  29.  窒素分離用または二酸化炭素分離用である、請求項28に記載のガス分離膜。
  30.  1の二分子膜を構成する2つの単分子層の間にシート状に配置された金属酸化物を備え、
     複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、
     金属酸化物ナノシート。
  31.  1の二分子膜を構成する2つの単分子層の間にシート状に配置された金化合物を備え、
     複数の前記二分子膜が溶媒中で超膨潤ラメラ相をなす、
     金ナノシート。
PCT/JP2017/026582 2016-07-22 2017-07-21 金属有機構造体ナノシートおよびその製造方法 WO2018016650A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/319,743 US11389781B2 (en) 2016-07-22 2017-07-21 Metal organic framework nanosheet and method for producing same
JP2018528913A JP6978783B2 (ja) 2016-07-22 2017-07-21 金属有機構造体ナノシートおよびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-144499 2016-07-22
JP2016144499 2016-07-22
JP2017041002 2017-03-03
JP2017-041002 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018016650A1 true WO2018016650A1 (ja) 2018-01-25

Family

ID=60993029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026582 WO2018016650A1 (ja) 2016-07-22 2017-07-21 金属有機構造体ナノシートおよびその製造方法

Country Status (3)

Country Link
US (1) US11389781B2 (ja)
JP (1) JP6978783B2 (ja)
WO (1) WO2018016650A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270232A (zh) * 2019-05-31 2019-09-24 浙江工业大学 一种金属有机骨架纳米片复合膜及其制备方法和应用
JP2020032325A (ja) * 2018-08-28 2020-03-05 Jfeエンジニアリング株式会社 金属有機構造体層を有する選択性複合ガス透過膜およびその作製方法
KR20200141741A (ko) * 2019-06-11 2020-12-21 광주과학기술원 야누스 그래핀을 이용한 선택적 양친성 수처리용 분리막 제조 방법, 분리막의 구조 및 이에 의해 제조된 분리막
CN113813999A (zh) * 2021-09-26 2021-12-21 上海师范大学 一种SiO2@金属-有机纳米片核壳材料、制备工艺及催化性能检测方法
US11873226B2 (en) 2019-06-14 2024-01-16 Japan Science And Technology Agency Sheet-like particles of zeolite and method for producing same
WO2024079977A1 (ja) * 2022-10-14 2024-04-18 国立研究開発法人科学技術振興機構 ポリチオフェン系化合物のナノシート状粒子及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817927B (zh) * 2021-10-09 2022-09-02 中南大学 一种高效制备砷烯纳米片的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182309A (ja) * 1990-11-16 1992-06-29 Res Dev Corp Of Japan 多孔質シリカ薄膜の製造方法
JPH04210227A (ja) * 1990-12-10 1992-07-31 Res Dev Corp Of Japan 細孔構造を制御した有機シリカ多孔体及びシリカ多孔体の製造方法
JPH1076594A (ja) * 1996-09-03 1998-03-24 Toppan Printing Co Ltd 多層膜状体の製造方法
WO2004076532A1 (ja) * 2003-02-28 2004-09-10 National Institute Of Advanced Industrial Science And Technology 層状オルガノシリカナノ複合体およびその製造方法
JP2006000929A (ja) * 2004-06-15 2006-01-05 National Institute For Materials Science 固体状ナノ薄膜

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080299369A1 (en) 2004-07-09 2008-12-04 Kyoto University Composite Nanosheet, Method of Producing the Same, and Method for Producing Metal Oxide Nanosheet
JP4655540B2 (ja) 2004-08-06 2011-03-23 株式会社豊田中央研究所 表面層被覆金属及び圧粉体
GB0709115D0 (en) * 2007-05-11 2007-06-20 Katholieke Universltelt Leuven Membrane comprising hollow particles
US20130023403A1 (en) * 2011-03-03 2013-01-24 University Of South Florida Metal organic materials as biomimetic enzymes
US8313560B1 (en) * 2011-07-13 2012-11-20 Xerox Corporation Application of porous structured organic films for gas separation
JP2014225485A (ja) 2013-04-12 2014-12-04 独立行政法人物質・材料研究機構 自立性の有機金属系ナノ膜及びその製造方法
JP2015058416A (ja) 2013-09-20 2015-03-30 国立大学法人 名古屋工業大学 気泡固定流路装置及びそれを用いた測定装置
CN104667876B (zh) * 2013-11-29 2018-02-13 北京思达安新材料科技有限公司 系列MOF型多级孔材料IPD‑mesoMOF‑1~8及其制备方法,以及介孔大小的调节方法
EP3074405A2 (en) * 2014-03-18 2016-10-05 The Regents of the University of California Mesoscopic materials comprised of ordered superlattices of microporous metal-organic frameworks
US10274421B2 (en) * 2015-02-09 2019-04-30 Oregon State University Sensor devices comprising a metal-organic framework material and methods of making and using the same
US20180297008A1 (en) * 2015-08-20 2018-10-18 Arkema Inc. High performance sorption binder for gas phase storage devices
US10532340B2 (en) * 2015-08-20 2020-01-14 Arkema Inc. High performance sorption binder for gas phase storage devices
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
US11724241B2 (en) * 2018-02-15 2023-08-15 Cambridge Enterprise Limited Constant shear continuous reactor device
GB201805261D0 (en) * 2018-03-29 2018-05-16 G20 Water Tech Limited Membranes
US20200079796A1 (en) * 2018-09-06 2020-03-12 The Board Of Trustees Of The University Of Alabama Methods of making nanostructured metal-organic frameworks
WO2021081286A1 (en) * 2019-10-24 2021-04-29 Trustees Of Boston University 2d electrochromic metal-organic-frameworks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182309A (ja) * 1990-11-16 1992-06-29 Res Dev Corp Of Japan 多孔質シリカ薄膜の製造方法
JPH04210227A (ja) * 1990-12-10 1992-07-31 Res Dev Corp Of Japan 細孔構造を制御した有機シリカ多孔体及びシリカ多孔体の製造方法
JPH1076594A (ja) * 1996-09-03 1998-03-24 Toppan Printing Co Ltd 多層膜状体の製造方法
WO2004076532A1 (ja) * 2003-02-28 2004-09-10 National Institute Of Advanced Industrial Science And Technology 層状オルガノシリカナノ複合体およびその製造方法
JP2006000929A (ja) * 2004-06-15 2006-01-05 National Institute For Materials Science 固体状ナノ薄膜

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032325A (ja) * 2018-08-28 2020-03-05 Jfeエンジニアリング株式会社 金属有機構造体層を有する選択性複合ガス透過膜およびその作製方法
JP7012288B2 (ja) 2018-08-28 2022-01-28 Jfeエンジニアリング株式会社 金属有機構造体層を有する選択性複合ガス透過膜およびその作製方法
CN110270232A (zh) * 2019-05-31 2019-09-24 浙江工业大学 一种金属有机骨架纳米片复合膜及其制备方法和应用
CN110270232B (zh) * 2019-05-31 2021-11-19 浙江工业大学 一种金属有机骨架纳米片复合膜及其制备方法和应用
KR20200141741A (ko) * 2019-06-11 2020-12-21 광주과학기술원 야누스 그래핀을 이용한 선택적 양친성 수처리용 분리막 제조 방법, 분리막의 구조 및 이에 의해 제조된 분리막
KR102223371B1 (ko) 2019-06-11 2021-03-05 광주과학기술원 야누스 그래핀을 이용한 선택적 양친성 수처리용 분리막 제조 방법, 분리막의 구조 및 이에 의해 제조된 분리막
US11873226B2 (en) 2019-06-14 2024-01-16 Japan Science And Technology Agency Sheet-like particles of zeolite and method for producing same
CN113813999A (zh) * 2021-09-26 2021-12-21 上海师范大学 一种SiO2@金属-有机纳米片核壳材料、制备工艺及催化性能检测方法
WO2024079977A1 (ja) * 2022-10-14 2024-04-18 国立研究開発法人科学技術振興機構 ポリチオフェン系化合物のナノシート状粒子及びその製造方法

Also Published As

Publication number Publication date
JPWO2018016650A1 (ja) 2019-06-20
US20190247825A1 (en) 2019-08-15
US11389781B2 (en) 2022-07-19
JP6978783B2 (ja) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2018016650A1 (ja) 金属有機構造体ナノシートおよびその製造方法
Zhang et al. From VO2 (B) to VO2 (A) nanobelts: first hydrothermal transformation, spectroscopic study and first principles calculation
Navik et al. Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol
Hao et al. Ultrasonic synthesis of two nanostructured cadmium (II) coordination supramolecular polymers: Solvent influence, luminescence and photocatalytic properties
Aslani et al. Sonochemical synthesis of nano-sized metal-organic lead (II) polymer: A precursor for the preparation of nano-structured lead (II) iodide and lead (II) oxide
Hu et al. Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection
Jiang et al. Porous two-dimensional monolayer metal–organic framework material and its use for the size-selective separation of nanoparticles
Phelane et al. Polysulfone Nanocomposite Membranes with improved hydrophilicity
Fard-Jahromi et al. Sonochemical synthesis of nanoscale mixed-ligands lead (II) coordination polymers as precursors for preparation of Pb2 (SO4) O and PbO nanoparticles; thermal, structural and X-ray powder diffraction studies
Alavi et al. Ultrasound and modulation assisted synthesis of {[Cu2 (BDC-NH2) 2 (dabco)] DMF. 3H2O} nanostructures; New precursor to prepare nanorods and nanotubes of copper (II) oxide
Sakamoto et al. Photochemical formation of Au/Cu bimetallic nanoparticles with different shapes and sizes in a poly (vinyl alcohol) film
Sabbaghan et al. Preparation of uniform 2D ZnO nanostructures by the ionic liquid-assisted sonochemical method and their optical properties
Aboutorabi et al. Sonochemical syntheses and characterization of nano-structured three-dimensional lead (II) coordination polymer constructed of fumaric acid
Safarifard et al. Sonochemical synthesis and characterization of nano-sized lead (II) 3D coordination polymer: precursor for the synthesis of lead (II) oxybromide nanoparticles
Behnoudnia et al. Synthesis and characterization of novel three-dimensional-cauliflower-like nanostructure of lead (II) oxalate and its thermal decomposition for preparation of PbO
JP2013060637A (ja) 有機化合物とナノ銅粒子との複合体、有機化合物とナノ酸化銅(i)粒子との複合体、並びにそれらの製造方法
An et al. A facile method for preparing one-molecule-thick free-standing organic nanosheets with a regular square shape
Nakashima et al. Ionic liquid‐based luminescent composite materials
Liu et al. Fabrication of CdS nanorods in inverse microemulsion using HEC as a template by a convenient γ-irradiation technique
Mohammadikish et al. Synthesis and optical band gap determination of CuO nanoparticles from salen-based infinite coordination polymer nanospheres
Yamamoto et al. Tailored synthesis of molecularly thin platinum nanosheets using designed 2D surfactant solids
Sun et al. Ultrathin SmVO 4 nanosheets: ionic liquid–assisted hydrothermal synthesis, characterization, formation mechanism and optical property
Dai et al. Pt and Pt–Rh supercrystals self-assembled in N, N-dimethylformamide
US9206040B2 (en) Method and kit for separating metal and semiconductor carbon nanotubes
Dmitri Fluorescence mode XANES spectroscopy as a powerful tool for redox-isomerism studies in ultrathin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831166

Country of ref document: EP

Kind code of ref document: A1