WO2024079977A1 - ポリチオフェン系化合物のナノシート状粒子及びその製造方法 - Google Patents

ポリチオフェン系化合物のナノシート状粒子及びその製造方法 Download PDF

Info

Publication number
WO2024079977A1
WO2024079977A1 PCT/JP2023/029497 JP2023029497W WO2024079977A1 WO 2024079977 A1 WO2024079977 A1 WO 2024079977A1 JP 2023029497 W JP2023029497 W JP 2023029497W WO 2024079977 A1 WO2024079977 A1 WO 2024079977A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanosheet
particles
polythiophene
solvent
producing
Prior art date
Application number
PCT/JP2023/029497
Other languages
English (en)
French (fr)
Inventor
幸明 内田
弘毅 佐々木
祐樹 徳田
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Publication of WO2024079977A1 publication Critical patent/WO2024079977A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • the present invention relates to nanosheet particles of a polythiophene compound and a method for producing the same.
  • Polythiophene has a polymer structure in which ⁇ -conjugated systems are linked, so it is conductive, has excellent processability, and exhibits relatively high environmental and thermal stability. For this reason, polythiophene has been attracting attention in recent years as a material that can be used in electrical components, such as organic thin-film solar cells, organic thin-film transistors, photoelectric conversion materials, organic EL materials, diodes, triodes, electro-optical displays, reflective films, and nonlinear optical materials.
  • a typical method is to polymerize thiophene using a polythiophene polymerization catalyst.
  • a method for producing poly(3,4-ethylenedioxythiophene) (PEDOT), a derivative of polythiophene is to obtain it by oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) in an aqueous solution of polystyrene sulfonic acid using an oxidizing agent suitable for oxidative polymerization of pyrrole, such as ferric salt, alkali metal persulfate, or ammonium persulfate (for example, Patent Document 1).
  • PEDOT Since PEDOT is insoluble, in the above production method, it is obtained in a state contained in a dispersion of colloidal particles.
  • a method for forming a thin film of PEDOT is to directly polymerize EDOT monomer, ferric salt of paratoluenesulfonic acid as an oxidative polymerization agent, a low-temperature curing binder, and a solvent on a support substrate (for example, Patent Document 1).
  • a method for forming a film from a liquid containing EDOT raw materials is to directly polymerize a gelation film process method, a drop cast method, a spin coat method, and the like.
  • the thickness of the PEDOT thin film obtained by this film formation method ranges from several tens of nm to several hundreds of nm to several ⁇ m (for example, Non-Patent Document 1, Patent Document 2).
  • Patent Documents 3 and 4 do not disclose a method of forming a layer of a monomer such as EDOT and then polymerizing the layer to form nanosheet particles of a polymer such as PEDOT. In particular, there is no disclosure of a method of forming nanosheet particles of a polythiophene compound.
  • the present invention has been made in consideration of the above circumstances, and aims to provide nanosheet particles of a polythiophene-based compound and a method for producing the same. It also aims to provide a dispersion liquid containing nanosheet particles of a polythiophene-based compound.
  • Nanosheet particles of a polythiophene-based compound The thickness of the nanosheet particle is 0.5 nm or more and 10 nm or less, The nanosheet-shaped particle is characterized in that the aspect ratio (maximum width in the particle/thickness) of the nanosheet-shaped particle is 100 or more.
  • the thickness of the nanosheet particle is 1 nm or more and 5 nm or less
  • the nanosheet particle according to [1] or [2], characterized in that the width of the nanosheet particle in a planar direction is 200 nm or more and 100 ⁇ m or less.
  • a method for producing nanosheet-shaped particles of a polythiophene compound comprising: [5] The nanosheet-shaped particle according to [4], wherein in the first step, a superswollen lamellar phase of the bilayer membrane is formed under a temperature condition of 20° C.
  • the thiophene compound is 3,4-ethylenedioxythiophene
  • the polymerization catalyst is iron(III) chloride.
  • the thickness of the nanosheet particle is 0.5 nm or more and 10 nm or less,
  • the width of the nanosheet particle in the planar direction is 200 nm or more and 100 ⁇ m or less
  • a dispersion composition comprising the nanosheet particles according to [1] or [2].
  • the present invention can provide nanosheet particles of a polythiophene compound having a thickness of 10 nm or less, which could not be obtained by conventional methods, and a method for producing the same.
  • it can provide a dispersion composition containing nanosheet particles of a polythiophene compound that are stable without agglomeration.
  • Example A-1 shows AFM data of nanosheet particles of a polythiophene compound obtained in Example A-1.
  • 1 shows AFM data of nanosheet particles of a polythiophene compound obtained in Example A-1.
  • 1 is an FT-IR spectrum of the nanosheet particles of the polythiophene compound obtained in Example A-1.
  • 1 is a TEM image of nanosheet particles of a polythiophene compound obtained in Example A-1.
  • 1 is a TEM image of nanosheet particles of a polythiophene compound obtained in Example A-1.
  • 1 is a TEM image of nanosheet particles of a polythiophene compound obtained in Example A-1.
  • 1 shows DLS data of nanosheet particles of a polythiophene compound obtained in Example A-1.
  • 1 shows SEM-EDX data of nanosheet particles of a polythiophene compound obtained in Example A-1.
  • 3 shows TG data of nanosheet particles of polythiophene compound obtained in Example A-1.
  • 1 shows AFM data of nanosheet particles of a polythiophene compound obtained in Example D-1.
  • 1 shows AFM data of nanosheet particles of a polythiophene compound obtained in Example D-1.
  • 1 is a TEM image of nanosheet particles of a polythiophene compound obtained in Example D-1.
  • 1 shows DLS data of nanosheet particles of a polythiophene compound obtained in Example D-1.
  • 1 is a photograph showing the test results of the coatability of PEDOT nanosheet particles.
  • 1 is a photograph showing the test results of the coatability of PEDOT bulk particles.
  • FIG. 1 is a schematic diagram showing the coatability of PEDOT nanosheet particles.
  • FIG. 1 is a schematic diagram showing the coatability of PEDOT bulk particles.
  • 1 is a photograph showing the results of a test evaluating the effect of production conditions (pH) on the appearance of PEDOT nanosheet particles.
  • FIG. 1 shows the results of a test evaluating the effect of production conditions (pH) on the yield of PEDOT nanosheet particles.
  • 1 is a photograph showing the results of a test evaluating the effect of production conditions (addition of SDS) on the yield of PEDOT nanosheet particles.
  • nanosheet particles of polythiophene compounds and a method for producing the same according to an embodiment of the present invention will be described. Note that this embodiment is specifically described to provide a better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
  • nanosheet-shaped particles of polythiophene-based compound The nanosheet particles of a polythiophene compound according to one embodiment of the present invention (also referred to as nanosheet particles according to this embodiment) are nanosheet particles formed of a polythiophene compound.
  • the nanosheet particles according to this embodiment have a thickness of 0.5 nm or more and 10 nm or less.
  • the aspect ratio of the nanosheet particles is 100 or more.
  • the aspect ratio is the ratio of the maximum width to the thickness in the particle (maximum width/thickness).
  • the thickness of the nanosheet particles is preferably 1 nm or more and 5 nm or less.
  • the width of the nanosheet particles in the planar direction may be 200 nm or more and 100 ⁇ m or less.
  • thiophene-based compound as used herein means thiophene or a derivative thereof (including, for example, thiophene which may have a substituent), and the term “polythiophene-based compound” means polythiophene or a derivative thereof (including, for example, a polymer of the thiophene-based compound).
  • the nanosheet particles of this embodiment have excellent uniformity in thickness and aspect ratio, and also have high flexibility and high adhesive strength due to their ultrathinness.
  • the nanosheet particles of this embodiment are not necessarily those obtained by the "Method for producing nanosheet particles of polythiophene-based compounds” described below, but are preferably nanosheet particles having the same size, dispersion characteristics, or conductivity as those obtained by the "Method for producing nanosheet particles of polythiophene-based compounds” described below, and are more preferably nanosheet particles obtained by the "Method for producing nanosheet particles of polythiophene-based compounds” described below.
  • the nanosheet particles of this embodiment are not limited in terms of the form (bulk state) in which they exist, and examples of such forms include a state in which they are dispersed in a fluid medium, a powder state, a thin film formed on a supporting substrate, and an independent sheet state.
  • the nanosheet particles of this embodiment may be, for example, nanosheet particles in a monodispersed state before the solution is removed when produced by the "production method of nanosheet particles of polythiophene-based compounds" described later, or may be secondary particles formed by agglomerating (e.g., stacking) the nanosheet particles in the monodispersed state as primary particles.
  • the nanosheet particles are one nanosheet particle as a primary particle from the measurement results of TEM and AFM shown in the examples described later.
  • the width of the nanosheet particles in the planar direction is not particularly limited, but may be 200 nm or more and 100 ⁇ m or less.
  • the nanosheet particles in the monodispersed state (for example, those having a width in the planar direction of 200 nm or more and 100 ⁇ m or less) may be formed into a film on a substrate to form a nanosheet particle.
  • the nanosheet particles here are sheets having a thickness of 0.5 nm or more and 10 nm or less (preferably 1 nm or more and 5 nm or less), and the width in the planar direction may exceed 100 ⁇ m.
  • the nanosheet particles of this embodiment may include such nanosheet particles.
  • the polythiophene-based compound of one embodiment of the present invention (also referred to as the polythiophene-based compound of the present embodiment) is a polymeric compound having a structure containing a polymer of a thiophene-based compound, and a polymeric compound having thiophene as a partial skeleton.
  • the degree of polymerization of the polythiophene-based compound of the present embodiment can be predicted by a method of estimating the degree of polymerization by assuming that one sheet of the nanosheet-like particle of the present embodiment is made of one molecule.
  • an example of the polythiophene-based compound of the present embodiment may be a polymeric compound having a structure containing a polymer of a thiophene-based compound of 150,000 or more and 15 million or less, and a polymeric compound having thiophene as a partial skeleton.
  • the thiophene-based compound is preferably at least one selected from the group consisting of thiophenes and derivatives thereof.
  • the polythiophene-based compound of the present embodiment may be at least one polymer selected from the group consisting of the thiophenes and derivatives thereof, or at least one selected from the group consisting of polythiophene and derivatives thereof.
  • the thiophene-based compounds according to this embodiment include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-nonylthiophene, 3-decylthiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-methyl-4-methoxythiophene, 3,4-ethylenedioxythiophene, benzothiophene, and benzodithiophene.
  • 3,4-ethylenedioxythiophene EDOT
  • EDOT 3,4-ethylenedioxythiophene
  • the polythiophene and its derivatives according to this embodiment are preferably homopolymers.
  • a homopolymer is a polymer formed by bonding only a plurality of groups selected from the group consisting of thiophenediyl groups and thiophenediyl groups having a substituent.
  • the thiophenediyl group is preferably a thiophene-2,5-diyl group, and the thiophenediyl group having a substituent is preferably a 3,4-ethylenedioxythiophene-2,5-diyl group or an alkylthiophene-2,5-diyl group.
  • homopolymer polythiophenes and their derivatives include poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3-octylthiophene-2,5-diyl), poly(3-dodecylthiophene-2,5-diyl), and poly(3-octadecylthiophene-2,5-diyl).
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • P3HT poly(3-hexylthiophene-2,5-diyl)
  • P3HT poly(3-octylthiophene-2,5-diyl)
  • poly(3-dodecylthiophene-2,5-diyl) poly(3-octadecylthiophene-2,5-diyl).
  • polythiophene homopolymers consisting of 3,4-ethylenedioxy groups and thiophenediyl groups substituted with alkyl groups having 6 to 30 carbon atoms are preferred, with poly(3,4-ethylenedioxythiophene) (PEDOT) represented by the following formula (A) being more preferred.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • a method for producing nanosheet-shaped particles of a polythiophene-based compound according to one embodiment of the present invention includes a first step of forming a layer of a thiophene-based compound, which is a monomer of the polythiophene-based compound, and a second step of oxidatively polymerizing the thiophene-based compound from the layer of the thiophene-based compound to produce nanosheet-shaped particles of the polythiophene-based compound.
  • polythiophene-based compound and the “thiophene-based compound” are the same as the "polythiophene-based compound” and the “thiophene-based compound” described in the above section (Nanosheet-like particles of polythiophene-based compound). Preferred examples thereof are also the same.
  • a layer of a thiophene-based compound which is a monomer of a polythiophene-based compound, is formed using a super-swollen lamellar phase.
  • a bilayer membrane is formed in a solvent, and a thiophene-based compound is added to the solvent to form a super-swollen lamellar phase of the bilayer membrane.
  • a layer of the thiophene-based compound is formed between the two monomolecular phases that constitute one of the bilayer membranes.
  • the thiophene-based compound can be trapped between the two monomolecular phases that constitute one of the bilayer membranes. As a result, a layer of the thiophene-based compound is formed between the two monomolecular phases that constitute one of the bilayer membranes.
  • the monomer molecules of the thiophene-based compound contained in the layer of the thiophene-based compound are present in a super-swollen lamellar phase in a substantially non-aggregated state.
  • the molecules of the thiophene-based compound may be arranged in a thin two-dimensional planar space formed between the two monomolecular phases.
  • the molecules of the thiophene-based compound in the thin two-dimensional planar space may have a certain orientation or a random orientation.
  • one layer of the thiophene-based compound formed between a pair of the two monomolecular phases may be arranged in the thickness direction of the layer with other layers of the thiophene-based compound formed in the same manner to form a laminated structure.
  • the layer of thiophene-based compound thus formed between the two monomolecular phases imparts high orientation to the "polythiophene-based compound" (i.e., the nanosheet-like particles of this embodiment) obtained after the subsequent polymerization in the arrangement state of the polythiophene-based compound and has the effect of suppressing the insulating effect caused by the presence of spaces between the molecules (i.e., exhibiting high electrical conductivity).
  • the "polythiophene-based compound" i.e., the nanosheet-like particles of this embodiment
  • the nanosheet-like particles of this embodiment obtained after polymerization can be given excellent uniformity in thickness and aspect ratio, as well as high flexibility and high adhesion due to its thinness.
  • a "polythiophene-based compound” i.e., the nanosheet-like particle of this embodiment
  • the layer of the thiophene-based compound (monomer layer) formed between the two monomolecular phases by a subsequent polymerization reaction. Since the space for the polymerization reaction is limited, it is expected to grow in the planar direction.
  • one nanosheet-like particle may be formed from one polymer. Also, one nanosheet-like particle may be formed from a stack of several polymers.
  • the state and arrangement of the polymer of the polythiophene-based compound are not limited to the state and arrangement of the polymer in the nanosheet-like particle when the nanosheet-like particle of this embodiment contains a polythiophene-based compound and is the above-mentioned nanosheet-like particle.
  • a super-swollen lamellar phase is formed, and then a thiophene-based compound is added.
  • the method for forming a super-swollen lamellar phase is to form a bilayer membrane in a solvent, and then add an amphiphilic substance to the solvent to form a super-swollen lamellar phase of the bilayer membrane.
  • the hyper-swollen lamellar phase refers to a specific lamellar phase swollen with a solvent. More specifically, it refers to a phase in which a plurality of bilayer membranes constituting the lamellar phase are stacked in layers with a layer of solvent sandwiched between them.
  • the phase constituting the hyper-swollen lamellar phase may be observed to exhibit coloration due to Bragg reflection in the visible light region.
  • the hyper-swollen lamellar phase may be a hyper-swollen lyotropic lamellar phase.
  • the mass proportion of the solvent in the whole is not particularly limited as long as the object of the present invention is satisfied, but is usually 90 mass% or more, preferably 95 mass% or more, more preferably 98 mass% or more, and even more preferably 99 mass% or more.
  • the upper limit is not particularly limited as long as a super-swollen lamellar phase can be formed between the solute and the solvent, and the theoretical upper limit is the limit concentration at which a super-swollen lamellar phase can be formed between the solvents used.
  • the above-mentioned "total" means the total of everything mixed, including the solute and the solvent.
  • the upper limit of the mass proportion of the solvent in the whole can be, for example, 99 mass%.
  • the distance between adjacent bilayer membranes is not particularly limited and can be set appropriately depending on the material used and the intended use. It is usually 50 nm or more and 1000 nm or less (both values are included, the same below). When the intended nanosheet-like particle is to be thin, the thinner the interlayer distance, the more preferable it is, for example, preferably 500 nm or less.
  • the interlayer distance between bilayer membranes means the distance from the end of the part of a bilayer membrane that has affinity for the solvent to the end of the part of another bilayer membrane adjacent to the bilayer membrane that has affinity for the solvent. The interlayer distance can also depend on the content of the molecules (amphiphilic molecules) that make up the bilayer membrane.
  • the thickness of the bilayer membrane itself is not particularly limited, but is usually 1 nm or more and 20 nm or less. Preferably, it is, for example, 1 nm or more and 10 nm or less, and more preferably, it is, for example, 1 nm or more and 5 nm or less.
  • the superswollen lamellar phase remains stable even in solutions of nonionic amphiphiles due to the waviness of the layers and Helfrich interactions.
  • thiophene-based compounds By confining thiophene-based compounds within a bilayer membrane of a superswollen lamellar phase, it is possible to fabricate a layer of thiophene-based compounds. In particular, it is possible to fabricate an ordered layer of thiophene-based compounds.
  • a thiophene-based compound is added to the solvent to form a layer of the thiophene-based compound between the two monolayers that make up the bilayer membrane.
  • the hydrophilic parts face the solvent side, and a layer of the thiophene-based compound is formed between the hydrophobic parts of two monolayers that make up one bilayer membrane.
  • the hydrophobic and hydrophilic parts of the bilayer membrane are arranged as described above.
  • a layer of a thiophene-based compound is formed between parts that are not compatible with the solvent, so that a layer of a thiophene-based compound can be produced not only in a hydrophobic reaction field but also in a hydrophilic reaction field depending on the type of solvent.
  • the solvent in the present embodiment of the method for producing a layer of a thiophene-based compound may be a solvent consisting of water alone, but preferably contains an organic solvent other than water.
  • the organic solvent may be a hydrocarbon solvent.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, bicyclohexyl, etc., and aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene, etc.
  • the solvent may be a hydrocarbon solvent alone, or a combination of a hydrocarbon solvent with another organic solvent.
  • the other organic solvent examples include ketone-based solvents such as acetone, acetylacetone, methyl ethyl ketone, cyclohexanone, and acetophenone; alcohol-based solvents such as methanol, ethanol, n-propanol, isopropyl alcohol, cyclohexanol, ethylene glycol, diethylene glycol, propylene glycol, and glycerin; chlorine-based solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, and o-dichlorobenzene; and ether-based solvents such as tetrahydrofuran, dioxane, anisole, and 4-methylanisole.
  • the mass ratio of the two (hydrocarbon solvent:other organic solvent) is preferably 80:20 to 99.99:0.01, and more preferably 85:15 to 99.9:0.1.
  • an acidic aqueous solution such as hydrochloric acid, nitric acid, or sulfuric acid; or a basic aqueous solution such as a sodium hydroxide aqueous solution may be used as the solvent depending on the type of reaction in synthesizing the target nanosheet particles.
  • the organic solvent is preferably a hydrocarbon solvent.
  • the solvent is preferably a mixture of water and a hydrocarbon solvent, more preferably a mixture of water and hexane.
  • the amphiphilic substance may be, for example, a nonionic amphiphilic substance.
  • the amount of the amphiphilic substance added may be 1 to 50 parts by mass, 1 to 10 parts by mass, or 1 to 5 parts by mass, relative to 100 parts by mass of the solution (total amount including a surfactant coagent, if any).
  • Nonionic amphiphiles examples include ester type surfactants, ether type surfactants, ester ether type surfactants, alkanolamide type surfactants, alkyl glycosides, and higher alcohols. Commercially available nonionic amphiphilic substances can be used.
  • Ester surfactants include sucrose fatty acid esters such as sucrose laurate, sucrose oleate, and sucrose monopalmitate; sorbitan monocaprylate, sorbitan dicaprylate, sorbitan monocaproate, sorbitan dicaproate, sorbitan monocaprate, sorbitan dicaprate, sorbitan monolaurate, sorbitan dilaurate, sorbitan monomyristate, and sorbitan dimyristate.
  • sucrose fatty acid esters such as sucrose laurate, sucrose oleate, and sucrose monopalmitate
  • sorbitan monocaprylate sorbitan dicaprylate
  • sorbitan monocaproate sorbitan dicaproate
  • sorbitan monocaprate sorbitan dicaprate
  • sorbitan monolaurate sorbitan dilaurate
  • sorbitan monomyristate sorbitan dimyristate
  • Rubitan fatty acid esters such as glyceryl caprylate, glyceryl caprate, glyceryl laurate, glyceryl myristate, and di(laurate/myristate)glyceryl; diglyceryl monostearate, diglyceryl monooleate, diglyceryl dioleate, diglyceryl monoisostearate, tetraglyceryl monostearate, tetraglyceryl tristearate, tetraglyceryl pentastearate, tetraglyceryl pentaoleate, hexaglyceryl monolaurate, monomyristate, Hexaglyceryl Stearate, Hexaglyceryl Monostearate, Hexaglyceryl Monooleate, Hexaglyceryl Tristearate, Hexaglyceryl Pentastearate, Hexaglyceryl Pentastearate, Hexaglyceryl Pentastearate
  • Ether-type surfactants are those represented by the following formula (1)
  • n represents the number of carbon atoms in the alkyl group of the hydrophobic portion, and m represents the number of ethylene oxide groups in the hydrophilic portion.
  • n may be 3 to 40, 5 to 20, or 20 to 14.
  • m may be 1 to 10, 2 to 8, or 3 to 6);
  • Poly(oxyethylene)octylphenyl ether represented by the following formula (3): (the number of moles of ethylene oxide added, p, may be 3 to 40, or 5 to 20)
  • the number of moles of ethylene oxide added, q, may be 3 to 40, or 5 to 20) and other polyoxyethylene alkylphenyl ethers.
  • Ester ether type surfactants include polyoxyethylene fatty acid esters such as polyethylene glycol monostearate, polyethylene glycol monooleate, and polyethylene glycol dioleate; polyoxyethylene hexitane fatty acid esters; polyoxyethylene sorbitan fatty acid esters (the sorbitan fatty acid ester portion is the same as the above ester type surfactants), and sorbitan fatty acid ester polyethylene glycol (the sorbitan fatty acid ester portion is the same as the above ester type surfactants).
  • Alkanolamide surfactants include fatty acid alkanolamides such as lauric acid monoethanolamide, lauric acid monoisopropanolamide, lauric acid diethanolamide, oleic acid diethanolamide, stearic acid diethanolamide, and cocamide DEA.
  • Alkyl glycosides include n-octyl- ⁇ -D-glucoside, n-octyl- ⁇ -D-maltoside, n-decyl- ⁇ -D-glucoside (decyl glucoside), n-decyl- ⁇ -D-maltoside, n-undecyl- ⁇ -D-glucoside, n-dodecyl- ⁇ -D-glucoside (lauryl glucoside), n-tridecyl- ⁇ -D-glucoside, n-octadecyl- ⁇ -D-glucoside, n-heptyl- ⁇ -D-thioglucoside, n-octyl- ⁇ -D-thioglucoside, and n-nonyl- ⁇ -D-thiomaltoside.
  • Higher alcohols include those with 12 to 18 carbon atoms, such as cetanol, stearyl alcohol, lauryl alcohol, and oleyl alcohol.
  • nonionic amphiphilic substance is represented by the following formula (1):
  • polyethylene glycol monoalkyl ether examples include tetraethylene glycol monomethyl ether and tetraethylene glycol monododecyl ether.
  • n/m ⁇ 6, 2.2 ⁇ n/m ⁇ 5, or 2.4 ⁇ n/m ⁇ 4 may be satisfied.
  • the lower limit of n/m is not particularly limited, but may be 2, 2.2, or 2.4.
  • the upper limit of n/m is not particularly limited, but may be 6, 5, 4, or 3.
  • the nonionic amphiphilic substance according to this embodiment is preferably tetraethylene glycol monododecyl ether (C12E4).
  • C12E4 tetraethylene glycol monododecyl ether
  • An example of tetraethylene glycol monododecyl ether (C12E4) is polyethylene glycol dodecyl ether (Brij (registered trademark) L4, manufactured by Sigma-Aldrich) used in the examples described below.
  • the solvent may contain a surfactant to stabilize the amphiphilic substance.
  • the surfactant include monohydric alcohol, glycol polyhydric alcohol and derivatives thereof.
  • Examples of monohydric alcohols include ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 2-methyl-1-pentanol, 4-methyl-1-pentanol, 5-methyl-1-pentanol, 6-methyl-1-pentanol, 7-methyl-1-pentanol, 8-methyl-1-pentanol, 9-methyl-1-pentanol, 10-methyl-1-pentanol, 11-methyl-1-pentanol, 12-methyl-1
  • glycol polyhydric alcohols or derivatives thereof examples include glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol-1-methyl ether, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and triethylene glycol dimethyl ether; glycol ether acetates such as ethylene glycol methyl ether acetate and diethylene glycol ethyl ether acetate; diols such as ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, and hexylene glycol; and polyols such as glycerin, pentaerythritol, and
  • the solvent is a mixed solvent of a hydrocarbon solvent such as hexane and water
  • the amphiphilic substance is a non-ionic amphiphilic substance such as polyethylene glycol monoalkyl ether (CnEm)
  • the solvent may further contain a surfactant aid such as a monohydric alcohol.
  • the layer of the thiophene-based compound according to this embodiment may contain other compounds.
  • the temperature at which the super-swollen lamellar phase is formed in this embodiment is preferably 15°C to 60°C, more preferably 20°C to 40°C, and even more preferably 25°C to 35°C. It is even more preferably 28°C to 32°C.
  • the pH of the system for forming the superswollen lamellar phase of the bilayer membrane may be controlled in advance.
  • a buffer solution adjusted to a desired pH may be used in place of water used as a solvent.
  • the pH of the mixture liquid in the system may be, for example, a value in the range of 2 to 7.
  • the pH is in the range of 2 to 4.
  • sodium dodecyl sulfate (hereinafter, referred to as SDS) may be added to the system for forming the superswollen lamellar phase of the bilayer membrane.
  • concentration of SDS in the mixed solution that forms the system is preferably 0.15% by mass or less.
  • the reagents and conditions used are as follows.
  • Thiophene compounds for example, 3,4-ethylenedioxythiophene (EDOT)
  • Solvent for example, water or a mixture of hexane and water.
  • Surfactant 1-propanol.
  • Amphiphilic substance for example, tetraethylene glycol monododecyl ether (C12E4). Formation temperature: for example, 25°C to 35°C Stirring time: for example, 15 to 30 hours Stirring speed: for example, 100 to 500 rpm
  • a thiophene compound, an amphipathic substance, a surfactant aid, and a solvent are mixed.
  • the order in which the reagents are mixed is not particularly limited, but for example, the order may be thiophene compound, amphipathic substance, surfactant aid, and solvent.
  • the resulting mixture is stirred at a predetermined stirring temperature.
  • the stirring speed may vary depending on the stirring device, but for example, when using a hot stirrer, it may be 100 to 500 rpm or 200 to 400 rpm.
  • the amounts of each reagent added are, for example, as follows.
  • the thiophene compound may be present in an amount of 0.05 to 0.5% by mass, or in an amount of 0.10 to 0.2% by mass.
  • the amphiphilic substance may be 2.5 to 7.5% by mass, or 4.0 to 5.0% by mass.
  • the solvent may be 5.0 to 8.0% by mass, or 6.0 to 7.0% by mass.
  • Water may be 70.0 to 95.0% by mass, or may be 86.0 to 90.0% by mass.
  • the thickness of the layer of the thiophene compound can be adjusted by appropriately combining conditions such as the thickness of the bilayer membrane, the raw material composition ratio, the reaction temperature, and the reaction time.
  • the texture derived from the superswelling lamellar phase can be confirmed using a polarizing plate, and the formation of the superswelling lamellar phase can be confirmed.
  • ⁇ Second step> an oxidative polymerization catalyst is added to the solution as a polymerization catalyst to oxidatively polymerize the thiophene compound, thereby producing nanosheet-shaped particles of a polythiophene compound.
  • the polymerization catalyst according to the present embodiment is not particularly limited as long as it can polymerize the thiophene compound in the layer of the thiophene compound obtained in the first step to synthesize a polythiophene compound.
  • an oxidative polymerization catalyst is preferable.
  • known oxidizing agents such as iron(III) chloride, iron paratoluenesulfonate, copper perchlorate, palladium acetate, and copper acetate can be mentioned.
  • reaction conditions for synthesizing a polythiophene-based compound using a polymerization catalyst are not particularly limited, but the following ranges are preferable.
  • Reaction temperature may be 25 to 40°C, or may be 30 to 35°C.
  • the amount of the polymerization catalyst added may be, for example, 0.05 to 0.2 parts by mass, or 0.075 to 0.12 parts by mass, relative to 100 parts by mass of the mixed liquid obtained in the first step.
  • the polymerization reaction time may be 8 to 48 hours, or 12 to 24 hours.
  • the completion of the polymerization reaction can be confirmed by infrared spectroscopy.
  • the pH of the reaction field for oxidatively polymerizing the thiophene-based compound that has formed a layer using a polymerization catalyst may be controlled in advance.
  • a buffer solution previously adjusted to a desired pH may be used instead of water used as a solvent.
  • the pH of the mixture that serves as the reaction field may be, for example, a value in the range of 2 to 7.
  • the pH of the mixture is in the range of 2 to 4.
  • the redox potential of the oxidizing agent e.g., Fe 3+
  • the oxidizing agent e.g., Fe 3+
  • SDS may be added to a reaction field for oxidatively polymerizing the thiophene-based compound that has formed a layer using a polymerization catalyst.
  • concentration of SDS in the mixture that serves as the reaction field is preferably 0.15% by mass or less.
  • the method for producing nanosheet particles of this embodiment preferably further includes a third step.
  • the solution containing the nanosheet particles obtained in the second step is dried by removing the solvent.
  • the resulting dry solid may be a powder, granule, or other shaped body, or may be supported on a substrate.
  • a known granulation method such as extrusion, spray drying, stirring granulation, or rolling granulation is used.
  • the solvent, the surfactant, the amphipathic substance, or the polymerization catalyst added in the first step can be removed by centrifugation. Ethanol and water are used as the solvents used for washing. The added solvent, water, surfactant, and amphipathic substance are removed with ethanol, and the polymerization catalyst is removed with water.
  • the nanosheet particles of this embodiment may be dispersed in ethanol or the like without drying. Alternatively, the particles may be dried. In this case, the particles may be left to stand in an oven set to a certain drying temperature to evaporate the solvent.
  • the drying temperature may be adjusted appropriately in relation to the drying time, and is not particularly limited as long as the particles are dried. For example, the temperature may be 50 to 95°C, or 80 to 95°C.
  • the polythiophene compounds are arranged in an orderly manner so as to have high orientation and suppress the insulating effect caused by the presence of spaces between the molecules (i.e., to exhibit high electrical conductivity).
  • Such nanosheet particles have excellent uniformity in thickness and aspect ratio, and also have high flexibility and high adhesion due to their thinness.
  • the dispersion composition containing nanosheet-shaped particles of polythiophene-based compound according to one embodiment of the present invention is a dispersion composition containing the nanosheet particles of a polythiophene-based compound described above.
  • the dispersion composition of the present embodiment is a dispersion composition containing nanosheet particles of a polythiophene-based compound obtained by the method for producing nanosheet particles of a polythiophene-based compound.
  • the dispersion composition of this embodiment preferably further contains a monohydric alcohol and is substantially free of water.
  • the dispersion composition contains 10% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less of water.
  • the dispersion composition may contain 0.0001% by mass (1 ppm) or more of water.
  • Specific examples of the monohydric alcohol include the same monohydric alcohols described in the method for producing nanosheet particles of this embodiment.
  • the monohydric alcohol contained in the dispersion composition of this embodiment may be the same as or different from the monohydric alcohol used as a surfactant aid in the method for producing nanosheet particles of this embodiment.
  • the content of the nanosheet-shaped particles of this embodiment may be 0 to 100% by mass, or may be 0 to 1% by mass.
  • An example of a method for producing the dispersion composition of this embodiment is a method in which a monohydric alcohol is added to a solution containing nanosheet particles obtained after the second step of the method for producing nanosheet particles of this embodiment described above, and then water is removed from the solution.
  • nanosheet particles of this embodiment can be used, for example, as conductive polymer nanosheet materials, thermoelectric conversion thin film materials, organic strain sensors, biological information monitors, and the like.
  • ⁇ Conductive polymer nanosheet material Specific examples of the use of the conductive polymer nanosheet material include antistatic films, solid electrolytic capacitors, organic electroluminescence products, organic solar cells, organic transistors, transparent electrodes, etc.
  • the electrical conductivity is, for example, from 0.1 S/cm to 10,000 S/cm, preferably from 1 S/cm to 1,000 S/cm.
  • thermoelectric conversion thin film materials include thermoelectric conversion materials that recover a portion of the waste heat emitted into the atmosphere and reuse it as electrical energy, from everyday products such as automobiles and home appliances to large-scale facilities such as power plants and factories.
  • examples of such uses include adhesive thermoelectric generation sheets (e.g., utilizing exhaust heat from factory piping) and independent power sources for IoT sensors (e.g., utilizing exhaust heat from electrical appliances), which are sheets or fibers that take advantage of their flexible properties.
  • Organic strain sensor examples include, for example, the creation of artificial organs that can reproduce movements similar to those of living organs, which requires accurate measurement of the amount of deformation of flexible biological tissue.
  • uses include products such as sensors that measure strain data generated on the surface of the biological tissue, and hybrid artificial organs that combine such sensors with cells and tissues.
  • biological information monitors include ultra-thin electrodes (i.e., electronic nano-bandages) that can be attached to the skin to measure bioelectrical signals (e.g., body temperature, pH, heart rate, and muscle potential), products such as independent power sources (e.g., using body temperature) for wearable sensor devices not only for everyday life but also for health care, medical care, and sports, and fields such as next-generation wearable devices.
  • bioelectrical signals e.g., body temperature, pH, heart rate, and muscle potential
  • independent power sources e.g., using body temperature
  • Atomic Force Microscopy Apparatus: Veeco Instruments, product name: MMAFM-2 Measurement conditions: Room temperature and atmospheric air Preparation of evaluation sample: Add a few mg of sample to ethanol, and apply ultrasonic waves to prepare an ethanol dispersion. Drop the prepared dispersion onto a mica substrate. Absorb excess dispersion and dry to prepare the sample.
  • Example 2 0.0050 g of PEDOT nanosheet particles were dispersed in 2 g of 0.1 M HCl solution. The resulting mixture was stirred with ultrasound to prepare a dispersion. The dispersion was applied to a glass substrate by drop casting and dried to obtain a polythiophene thin film. The electrical conductivity of the 1 ⁇ m-thick thin film thus obtained was evaluated using a small digital tester. The measurement result was 1 S/cm. Comparing with commercially available PEDOT:PSS measured in the same way, the electrical conductivity was calculated to be approximately 1 S/cm. The calculation method was to consider the applied area as a rectangular parallelepiped with a height of 1 ⁇ m and a width of 1 cm, and to measure the resistance at 1 cm intervals.
  • ⁇ First step> (That is, a first step of forming a bilayer membrane composed of tetraethylene glycol monododecyl ether having a number average molecular weight of 362 or less in water containing 1-propanol and having a content of the 1-propanol of 0.1% by mass or more and 10% by mass or less, adding 3,4-ethylenedioxythiophene to the solvent to form a super-swollen lamellar phase of the bilayer membrane under a temperature condition of 20° C. or more and 40° C. or less, and forming a layer of the 3,4-ethylenedioxythiophene between two monomolecular phases constituting one bilayer membrane)
  • ⁇ Second step> i.e., the second step of oxidatively polymerizing the 3,4-ethylenedioxythiophene contained in the 3,4-ethylenedioxythiophene layer using iron(III) chloride to form nanosheets of poly(2,3-dihydrothieno-1,4-dioxin)
  • ⁇ Reagents and reaction conditions> Deionized water (3 ml) FeCl 3.6H 2 O (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.0039 g Reaction temperature: 30°C Reaction time: 24 hours. It was confirmed that the reaction took place while maintaining the bilayer membrane. 3 ml of an aqueous solution of iron chloride was prepared using 0.0039 g of iron (III) chloride. The mixed solution obtained in the first step was heated to 30° C., and 3 ml of the aqueous solution of iron (III) chloride was added dropwise to the mixed solution at 30° C. using a pipette.
  • ⁇ Third process> (That is, the third step of removing the solvent from the solution containing the nanosheet particles obtained in the second step and drying the solution)
  • the solvent, water, polymerization catalyst, surfactant, and amphipathic substance added in the first and second steps were removed by centrifugation. Ethanol and water were used as the solvents used for washing.
  • the added solvent, water, surfactant, and amphipathic substance were removed with ethanol, and the polymerization catalyst was removed with water.
  • the product may be stored as a dispersion in ethanol or the like without drying. For drying, the product was left stationary in an oven set at 90°C to evaporate the solvent.
  • the results of AFM measurements are shown in FIGS.
  • the AFM measurement results showed that the thickness was 2 nm, the maximum width in the planar direction was 800 nm, and the aspect ratio (maximum width in the particle/thickness) was 600.
  • the results of FT-IR measurement are shown in Figure 3.
  • a peak derived from PEDOT was confirmed.
  • the results of the TEM measurements are shown in Figures 4 to 6.
  • the DLS measurement results are shown in FIG. TEM and DLS results confirmed sheet-like nanoparticles, which were composed of small connected nanoplatelets, with a small amount of aggregates present.
  • the electrical conductivity was measured and found to be about 1 S/cm.
  • the measurement results of SEM-EDX are shown in Figure 8.
  • the removal of impurities (Fe) was confirmed.
  • the results of TG measurement are shown in Figure 9. The removal of iron was confirmed.
  • Nanosheet-like particles of PEDOT were obtained by the same method as in Example A-1, except that the amount of 1-propanol added as a surfactant assistant was changed as shown in Table 1.
  • Nanosheet-like particles of PEDOT were obtained in the same manner as in Example A-1, except that an alcohol shown in Table 2 was used as the surfactant assistant.
  • Examples C-1 to C-5 Comparative Examples C-1 to C-6
  • the nanosheet-shaped particles (3.4 ⁇ 10 ⁇ 4 g) of PEDOT obtained in Example A-1 were dispersed in a solvent (1 ml) shown in Table 3 and Table 4 (Comparative Example) to obtain a dispersion liquid. Dispersion of the nanosheet-shaped particles in the solvent was confirmed.
  • ⁇ Third process> The solvent, water, polymerization catalyst, surfactant, and amphipathic substance added in the first and second steps were removed by centrifugation. Ethanol and water were used as the solvents used for washing. The added hexane, water, surfactant, and amphipathic substance were removed with ethanol, and the polymerization catalyst was removed with water. After washing, the product may be stored as a dispersion in ethanol or the like without drying. For drying, the product was left stationary in an oven set at 90°C to evaporate the solvent.
  • the results of the AFM measurements are shown in FIG. 10 and FIG.
  • the AFM measurement results showed that the thickness was 3.5 nm, the maximum width in the planar direction was 150 nm, and the aspect ratio (maximum width in the particle/thickness) was about 40.
  • the results of the TEM measurement are shown in Figure 12. As a result of the TEM measurement, it was confirmed that nanosheet-shaped particles were produced.
  • the DLS measurement results are shown in FIG. TEM and DLS results confirmed sheet-like nanoparticles, which were composed of small connected nanoplatelets, with a small amount of aggregates present.
  • Example E-1 (Measurement of Electrical Conductivity of PEDOT Nanosheet Particles)
  • the nanosheet particles of PEDOT were obtained in the same manner as in Example A1.
  • the electrical conductivity of the nanosheet particles of PEDOT was measured by the measurement method described in the above [Conductivity Measurement]. The results are shown in Table 5.
  • Example E-2 The coating property was evaluated by the evaluation method described in [Evaluation of Coatability] above using the same PEDOT nanosheet particles as in Example E-1. It was confirmed by visual observation that the coating property was excellent in dispersion and uniformity. A photograph of the evaluation sample taken with a Research System BX-51 microscope (Olympus Corporation) is shown in FIG.
  • Comparative Example E-2 Using the same PEDOT bulk particles as in Comparative Example E-1, the coating property was evaluated in the same manner as in Example E-2. Visual observation confirmed that the dispersion and uniformity were poorer than those in Example E-2. A photograph of the evaluation sample taken with a Research System BX-51 microscope (Olympus Corporation) is shown in FIG.
  • Example E-2 and Comparative Example E-2 are schematic diagrams of the samples obtained in Example E-2 and Comparative Example E-2, respectively. From the results of Example E-2 and Comparative Example E-2, it was confirmed that the PEDOT nanosheet particles exhibited superior dispersion and uniformity to the PEDOT bulk particles. Specifically, as can be seen from the micrographs of Figures 14 and 15, the PEDOT nanosheet particles could be applied more uniformly to the interdigital electrode than the PEDOT bulk particles.
  • Example E-1 the conductivity of Example E-1 and Comparative Example E-1 indicate that the reduction in the gaps between the particles leads to a reduction in contact resistance, and as a result, the conductivity of the PEDOT nanosheet particles increases, which is believed to be why the conductivity is improved.
  • Example E-3 "Effect of manufacturing conditions (pH) on the appearance of PEDOT nanosheet particles" EDOT (0.13% by mass), hydrogen peroxide (0.65% by mass), Brij L4 (4.57% by mass), 1-propanol (6.52% by mass), and phosphate buffer solutions (88.1% by mass) previously prepared at various pH values (pH 2, 3, 4, 5, 6, 7) were added to a screw tube and mixed. The resulting mixtures were stirred at room temperature (25° C.). During stirring, the presence or absence of the appearance of the superswelled lamellar phase was observed while checking the birefringence derived from the superswelled lamellar phase. The results are shown in FIG. 18. The evaluation results from the photograph of FIG. 18 are shown in Table 6 below.
  • Example E-4 "Effect of manufacturing conditions (pH) on the yield of PEDOT nanosheet particles" EDOT (0.13% by mass), hydrogen peroxide (0.65% by mass), Brij L4 (4.57% by mass), 1-propanol (6.52% by mass), and phosphate buffer solutions (88.1% by mass) previously prepared at various pH values (pH 2, 3, 4, 5) were added to a screw tube and mixed. The resulting mixtures were stirred at room temperature (25° C.). During stirring, the presence or absence of formation of a superswelled lamellar phase was observed while checking the birefringence derived from the superswelled lamellar phase. After the above operation, the aqueous iron chloride solution was added to the resulting mixture.
  • the resulting mixture was further stirred for 24 hours. After the stirring was completed, the collected mixture was centrifuged at 11,000 rpm, and the precipitate was collected. The collected precipitate was washed three times with ethanol, and then the mass of the dried product obtained by drying was measured, and the yield of the obtained PEDOT nanosheet particles was calculated. The results are shown in FIG. 19.
  • Example E-5 "Effect of manufacturing conditions (addition of SDS) on the yield of PEDOT nanosheet particles” EDOT (0.13% by mass), hydrogen peroxide (0.65% by mass), Brij L4 (4.57% by mass), 1-propanol (6.52% by mass), and water (88.1% by mass) were added to a screw tube and mixed. The resulting mixture was stirred at room temperature (25° C.) to form a superswollen lamellar phase.
  • the concentration of SDS added between 0.098% by mass and 0.147% by mass was in a favorable state (i.e., a state in which thin nanosheets could be stably produced).Furthermore, all of the concentrations were in a particularly favorable state (i.e., a state in which the nanosheets were very stable and the largest possible size could be produced), and it was confirmed that a highly stable superswollen lamellar phase was maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

従来の方法で得られない、10nm以下の厚みを有するポリチオフェン系化合物のナノシート状粒子、及びその製造方法を提供する。特に、凝集せずに安定に存在している、ポリチオフェン系化合物のナノシート状粒子を含む分散液組成物を提供する。本発明のポリチオフェン系化合物のナノシート状粒子は、その厚みが0.5nm以上、10nm以下であり、そのアスペクト比(粒子中の最大幅/厚み)が100以上である。

Description

ポリチオフェン系化合物のナノシート状粒子及びその製造方法
 本発明は、ポリチオフェン系化合物のナノシート状粒子及びその製造方法に関する。
 本願は、2022年10月14日に、日本に出願された特願2022-165782号に基づき優先権を主張し、その内容をここに援用する。
 ポリチオフェンは、π共役系が連結した高分子構造をとっているため、導電性を有しており、さらに加工性に優れ、比較的高い環境安定性および熱安定性を示す。そのためポリチオフェンは、近年電気部品、例えば有機薄膜太陽電池、有機薄膜トランジスタ、光電変換材料、有機EL材料、ダイオード、トリオード、電気光学的ディスプレイ、反射膜、非線形光学材料などの用途に使用しうる材料として注目を集めている。
 ポリチオフェンの製造方法としては種々の方法が報告されているが、一般的に、ポリチオフェン重合用触媒を用いて、チオフェンを重合させて製造する方法が挙げられる。例えば、ポリチオフェンの誘導体であるポリ(3,4-エチレンジオキシチオフェン)(PEDOT)の製造方法としては、ポリスチレンスルホン酸の水溶液中で、例えば、第二鉄塩、アルカリ金属過硫酸塩、過硫酸アンモニウム等のピロールの酸化重合に適した酸化剤を使用して3,4-エチレンジオキシチオフェン(EDOT)の酸化重合により得られる方法が挙げられる(例えば、特許文献1)。PEDOTは、不溶性であるため、上記製造方法では、コロイド粒子の分散液に含まれている状態で得られる。また、薄膜状のPEDOTを形成する方法としては、支持基板上でEDOTモノマーと酸化重合剤のパラトルエンスルホン酸第二鉄塩と低温硬化バインダーと溶剤とを直接重合する方法が挙げられる(例えば、特許文献1)。EDOT原料を含む液の成膜方法としては、ゲル化成膜プロセス法、ドロップキャスト法、スピンコート法などが挙げられる。当該成膜方法で得られるPEDOT薄膜の膜厚は、数十nm~数百nm~数μm範囲である(例えば、非特許文献1、特許文献2)。
 一方、ナノシート状粒子の製造方法に関して種々の方法が検討されてきた。例えば、溶媒中に二分子膜が超膨潤ラメラ相をなす場合において、1の二分子膜を構成する2つの単分子層の間にシート状の金属有機構造体を形成し、金属有機構造体ナノシート状粒子の製造方法が開示されている(例えば、特許文献3)。また例えば、溶媒中に二分子膜が超膨潤ラメラ相をなす場合において、1の二分子膜を構成する2つの単分子層の間にゼオライトの前駆体(アルミノシリケート)を形成し、ゼオライトナノシート状粒子の製造方法を開示されている(例えば、特許文献4)。
特開平1-313521号公報 特開2011-181724号公報 国際公開第2018/016650号 国際公開第2020/250985号
第65回応用物理学会春季学術講演会講演予稿集(2018早稲田大学・西早稲田キャンパス)、講演番号:18p-P3-11
 しかしながら、EDOT原料を含む液の成膜後、直接重合して薄膜を形成する方法では、10nm以下の薄膜を形成することが困難であり、また、高額の装置が必要であるなどの問題があった。
 また、特許文献3、4において、EDOTなどのモノマーの層を形成してから、これを重合させてPEDOTなどのポリマーのナノシート状粒子を形成する方法に関する開示がない。特に、ポリチオフェン系化合物のナノシート状粒子を形成する方法に関する開示がない。
 本発明は、上記事情に鑑みてなされたものであって、ポリチオフェン系化合物のナノシート状粒子、及びその製造方法を提供することを目的とする。また、ポリチオフェン系化合物のナノシート状粒子を含む分散液を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を提供する。
[1] ポリチオフェン系化合物のナノシート状粒子であって、
 前記ナノシート状粒子の厚みが0.5nm以上、10nm以下であり、
 前記ナノシート状粒子のアスペクト比(粒子中の最大幅/厚み)が100以上であることを特徴とするナノシート状粒子。
[2] 前記ポリチオフェン系化合物が、ポリ(3,4-エチレンジオキシチオフェン)であることを特徴とする[1]記載のナノシート状粒子。
[3] 前記ナノシート状粒子の厚みが1nm以上、5nm以下であり、
 前記ナノシート状粒子の平面方向の幅が200nm以上、100μm以下であることを特徴とする[1]又は[2]に記載のナノシート状粒子。
[4] 溶媒中に二分子膜を形成し、前記溶媒中に、チオフェン系化合物を添加して、前記二分子膜の超膨潤ラメラ相を形成することにより、1つの前記二分子膜を構成する2つの単分子相の間においてチオフェン系化合物の層を形成する第一工程と;
 前記第一工程で層を形成したチオフェン系化合物を、重合用触媒を用いて酸化重合させ、ポリチオフェン系化合物のナノシート状粒子を形成する第二工程と;
を含むことを特徴とする、ポリチオフェン系化合物のナノシート状粒子の製造方法。
[5] 第一工程において、20℃以上、40℃以下の温度条件下で前記二分子膜の超膨潤ラメラ相を形成する、[4]に記載のナノシート状粒子。
[6]前記チオフェン系化合物が3,4-エチレンジオキシチオフェンであり、
 前記ポリチオフェン系化合物がポリ(3,4-エチレンジオキシチオフェン)である、[4]又は[5]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[7] 前記重合用触媒が、塩化鉄(III)である、[4]又は[5]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[8] 前記溶媒が、水のみからなる溶媒または炭化水素系溶媒と水とを含む混合溶媒であり、
 前記溶媒における炭化水素系溶媒と水との質量比が、炭化水素系溶媒:水=0:100~15:85である、[4]又は[5]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[9] 前記溶媒が、炭化水素系溶媒と水とを含む混合溶媒であり、
 前記溶媒における炭化水素系溶媒と水との質量比が、炭化水素系溶媒:水=0.01:99.99~15:85である、[4]又は[5]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[10] 前記炭化水素系溶媒がヘキサンである、[9]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[11] 前記二分子膜を構成する両親媒性物質がポリエチレングリコールモノアルキルエーテルである、[4]又は[5]の何れかに記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[12] 前記ポリエチレングリコールモノアルキルエーテルが、テトラエチレングリコールモノメチルエーテルである、[11]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[13] 前記ポリエチレングリコールモノアルキルエーテルが、数平均分子量362以下のテトラエチレングリコールモノドデシルエーテルである、[11]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[14] 前記溶媒が1価アルコールを含む、[4]又は[5]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[15] 前記1価アルコールが、1-プロパノール、2-プロパノールおよび1ーブタノールからなる群から選ばれる少なくとも1種である、[14]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[16] 前記1価アルコールが、1-プロパノールである、[15]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[17] 前記溶媒中において、前記1価アルコールの含有量が0.1質量%以上、10質量%以下である、[15]に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
[18] 前記ナノシート状粒子の厚みが0.5nm以上、10nm以下であり、
 前記ナノシート状粒子の平面方向の幅が200nm以上、100μm以下であり、
 前記ナノシート状粒子のアスペクト比(粒子中の最大幅/厚み)が100以上である、[4]又は[5]に記載のポリチオフェン系の化合物のナノシート状粒子の製造方法。[19] [1]又は[2]に記載のナノシート状粒子を含む分散液組成物。
[20] 更に1価アルコールを含み、かつ、
 実質的に水を含まないことを特徴とする[19]に記載の分散液組成物。
 本発明によれば、従来の方法で得られない、10nm以下の厚みを有するポリチオフェン系化合物のナノシート状粒子、及びその製造方法を提供することができる。特に、凝集せずに安定に存在している、ポリチオフェン系化合物のナノシート状粒子を含む分散液組成物を提供することができる。
実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のAFMデータである。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のAFMデータである。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のFT-IRスペクトルである。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のTEM画像である。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のTEM画像である。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のTEM画像である。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のDLSデータである。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のSEM-EDXデータである。 実施例A-1で得られたポリチオフェン系化合物のナノシート状粒子のTGデータである。 実施例D-1で得られたポリチオフェン系化合物のナノシート状粒子のAFMデータである。 実施例D-1で得られたポリチオフェン系化合物のナノシート状粒子のAFMデータである。 実施例D-1で得られたポリチオフェン系化合物のナノシート状粒子のTEM画像である。 実施例D-1で得られたポリチオフェン系化合物のナノシート状粒子のDLSデータである。 PEDOTナノシート状粒子の塗布性の試験結果を示す写真である。 PEDOTバルク粒子の塗布性の試験結果を示す写真である。 PEDOTナノシート状粒子の塗布性を示す模試図である。 PEDOTバルク粒子の塗布性を示す模試図である。 PEDOTナノシート状粒子の発現に対する製造条件(pH)の影響を評価する試験結果を示す写真である。 PEDOTナノシート状粒子の収率に対する製造条件(pH)の影響を評価する試験結果を示す図である。 PEDOTナノシート状粒子の収率に対する製造条件(SDSの添加)の影響を評価する試験結果を示す写真である。
 以下、本発明の実施形態に係るポリチオフェン系化合物のナノシート状粒子及びその製造方法を説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
(ポリチオフェン系化合物のナノシート状粒子)
 本発明の一実施形態のポリチオフェン系化合物のナノシート状粒子(本実施形態のナノシート状粒子ともいう)は、ポリチオフェン系化合物で形成されたナノシート状粒子である。本実施形態のナノシート状粒子の厚みが0.5nm以上、10nm以下である。前記ナノシート状粒子のアスペクト比が100以上である。ここで、アスペクト比とは、粒子中の最大幅と厚みとの比(最大幅/厚み)である。前記ナノシート状粒子の厚みが1nm以上、5nm以下であることが好ましい。前記ナノシート状粒子の平面方向の幅が200nm以上、100μm以下であってもよい。
 尚、ここで「チオフェン系化合物」とは、チオフェン又はその誘導体(例えば、置換基を有してもよいチオフェンを含む)を意味するものである。また「ポリチオフェン系化合物」とは、ポリチオフェン又はその誘導体(例えば、前記チオフェン系化合物の重合体を含む)を意味するものである。
 このような本実施形態のナノシート状粒子は、その厚みおよびアスペクト比の均一性に優れ、また超薄性由来の高柔軟性と高密着力を有する。
 本実施形態のナノシート状粒子は、後述の「ポリチオフェン系化合物のナノシート状粒子の製造方法」で得られたものとは限らないが、後述の「ポリチオフェン系化合物のナノシート状粒子の製造方法」で得られたものと同じサイズ、分散特性、又は導電性を有するナノシート状粒子であることが好ましく、後述の「ポリチオフェン系化合物のナノシート状粒子の製造方法」で得られたナノシート状粒子であることがより好ましい。
 本実施形態のナノシート状粒子は、その存在する形態(バルク状態)に限定がなく、例えば、流動媒体中に分散している状態、粉末の状態、支持基板上に形成された薄膜の状態、独立のシートの状態などが挙げられる。
 本実施形態のナノシート状粒子は、例えば、後述の「ポリチオフェン系化合物のナノシート状粒子の製造方法」で製造される場合、その溶液を除去する前の、単分散した状態のナノシート状粒子でもよく、その単分散した状態のナノシート状粒子を一次粒子として凝集(例えば、積層)してからなる二次粒子でもよい。例えば、後述の実施例で示すTEM、AFMの測定結果から、一次粒子としての1枚のナノシート状粒子であると判断することができる。
 前記ナノシート状粒子の平面方向の幅は、特に限定ないが、200nm以上、100μm以下であってもよい。また、例えば、後述の「ポリチオフェン系化合物のナノシート状粒子の製造方法」で製造される場合、その単分散した状態のナノシート状粒子(例えば、平面方向の幅が200nm以上、100μm以下であるもの)を基板上に成膜してなるナノシート状粒子を形成してもよい。ここのナノシート状粒子は、厚みが0.5nm以上、10nm以下(好ましく1nm以上、5nm以下)であるシートであり、平面方向の幅が100μmを超えてもよい。本実施形態のナノシート状粒子は、このようなナノシート状粒子を含んでもよい。
[ポリチオフェン系化合物]
 本発明の一実施形態のポリチオフェン系化合物(本実施形態のポリチオフェン系化合物ともいう)とは、チオフェン系化合物の多量体を含む構造を有する高分子化合物、およびチオフェンを部分骨格として持つ高分子化合物である。本実施形態のポリチオフェン系化合物の重合度は、本実施形態のナノシート状粒子の一枚が一分子でできていると仮定して概算する方法で重合度を予想することができる。例えば、本実施形態のポリチオフェン系化合物の一例としては、チオフェン系化合物を15万量体以上1500万量体以下の多量体を含む構造を有する高分子化合物、およびチオフェンを部分骨格として持つ高分子化合物であっても良い。前記チオフェン系化合物は、チオフェン類及びその誘導体からなる群から選択される少なくも1種であることが好ましい。本実施形態のポリチオフェン系化合物は、前記チオフェン類及びその誘導体からなる群から選択される少なくも1種の重合体であってもよく、ポリチオフェン及びその誘導体からなる群から選択される少なくも1種であってもよい。
 本実施形態に係るチオフェン系化合物としては、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-ノニルチオフェン、3-デシルチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-メチル-4-メトキシチオフェン、3,4-エチレンジオキシチオフェン、ベンゾチオフェン、ベンゾジチオフェン等が挙げられる。その中でも3,4-エチレンジオキシチオフェン(EDOT)が適度な重合速度と、ポリマーの耐熱性が優れることから好ましい。
 本実施形態にかかるポリチオフェン及びその誘導体としては、ホモポリマーであることが好ましい。ホモポリマーとは、チオフェンジイル基及び置換基を有するチオフェンジイル基からなる群から選ばれる基のみが複数個結合してなるポリマーである。チオフェンジイル基としては、チオフェン-2,5-ジイル基が好ましく、置換基を有するチオフェンジイル基としては、3,4-エチレンジオキシチオフェン-2、5-ジイル基、アルキルチオフェン-2、5-ジイル基、が好ましい。ホモポリマーであるポリチオフェン及びその誘導体の具体例としては、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(P3HT)、ポリ(3-オクチルチオフェン-2,5-ジイル)、ポリ(3-ドデシルチオフェン-2,5-ジイル)、ポリ(3-オクタデシルチオフェン-2,5-ジイル)が挙げられる。ホモポリマーであるポリチオフェン及びその誘導体の中では、3,4-エチレンジオキシ基、炭素原子数が6~30のアルキル基で置換されたチオフェンジイル基からなるポリチオフェンホモポリマーが好ましく、下記式(A)に表すポリ(3,4-エチレンジオキシチオフェン)(PEDOT)がより好ましい。
Figure JPOXMLDOC01-appb-C000001
(ポリチオフェン系化合物のナノシート状粒子の製造方法)
 本発明の一実施形態(本実施形態ともいう)のポリチオフェン系化合物のナノシート状粒子を製造する方法は、当該ポリチオフェン系化合物の単量体であるチオフェン系化合物の層を形成する第一工程と、前記チオフェン系化合物の層から、前記チオフェン系化合物を酸化重合させ、ポリチオフェン系化合物のナノシート状粒子を製造する第二工程とを備える。
 ここで「ポリチオフェン系化合物」及び「チオフェン系化合物」とは、前述の(ポリチオフェン系化合物のナノシート状粒子)の節で説明した「ポリチオフェン系化合物」及び「チオフェン系化合物」と同じである。これらの好ましい例も同じである。
 <第一工程>
 第一工程において、超膨潤ラメラ相を利用して、ポリチオフェン系化合物の単量体であるチオフェン系化合物の層を形成する。
 溶媒中に二分子膜を形成し、前記溶媒中に、チオフェン系化合物を添加して、前記二分子膜の超膨潤ラメラ相を形成する。その結果、1つの前記二分子膜を構成する2つの単分子相の間に、チオフェン系化合物の層を形成する。すなわち、前記二分子膜の超膨潤ラメラ相を形成することによって、1つの前記二分子膜を構成する2つの単分子相の間に、前記チオフェン系化合物を閉じ込めることができる。そのことにより、1つの前記二分子膜を構成する2つの単分子相の間に、チオフェン系化合物の層を形成する。
 前記2つの単分子相の間に形成されたチオフェン系化合物の層において、例えば、前記チオフェン系化合物の層に含まれるチオフェン系化合物の単量体分子同士が、実質的に凝集していない状態で超膨潤ラメラ相中に存在している。前記チオフェン系化合物の分子が、前記2つの単分子相の間に形成されている薄い2次元平面空間中に配列してもよい。薄い2次元平面空間中にあるチオフェン系化合物の各分子同士は、一定の配向を有しても良く、ランダムな配向を有しても良い。また、1対の前記2つの単分子相の間に形成された1つのチオフェン系化合物の層は、その他、同様に形成されたチオフェン系化合物の層と、層の厚み方向で配列し、積層構造を形成してもよい。
 尚、このようにして、2つの単分子相の間に形成されたチオフェン系化合物の層は、その後に行われる重合後に得られる「ポリチオフェン系化合物」(即ち、本実施形態のナノシート状粒子)に対して、当該ポリチオフェン系化合物の配列状態において高い配向性を付与しかつ分子間の空間部の存在により生じる絶縁効果を抑制させる(即ち、高電導性を示す)効果を与える。その結果、重合後に得られる「ポリチオフェン系化合物」(即ち、本実施形態のナノシート状粒子)に、厚みおよびアスペクト比の優れた均一性、また薄性由来の高柔軟性と高密着力を与えることができる。
 また、2つの単分子相の間に形成されたチオフェン系化合物の層(単量体の層)から、後に行われる重合反応によって、「ポリチオフェン系化合物」(即ち、本実施形態のナノシート状粒子)が形成される。重合反応の空間を制限しているため、平面方向に成長すると予想されている。また、ポリチオフェン系化合物の物性を考えると、一つの高分子で一つのナノシート状粒子を形成しても良い。また、数個の高分子の積層で一つのナノシート状粒子を形成しても良い。ナノシート状粒子中において、ポリチオフェン系化合物の高分子の状態や配置などについては、本実施形態のナノシート状粒子がポリチオフェン系化合物を含み、上記のようなナノシート状粒子である場合には、ナノシート状粒子中の高分子の状態や配置に限定されない。
 本実施形態では、まず、超膨潤ラメラ相を形成し、そしてチオフェン系化合物を添加する。超膨潤ラメラ相を形成する方法としては、溶媒中に二分子膜を形成し、前記溶媒中に両親媒性物質を添加して、二分子膜の超膨潤ラメラ相を形成する。
 超膨潤ラメラ相(Hyper-swollen Lamellar Phase)とは、溶媒で膨潤された特異的なラメラ相をいう。より具体的には、ラメラ相を構成する複数の二分子膜が、溶媒の層を挟んで、層状に積み重なった相をいう。
 超膨潤ラメラ相を構成する相は、可視光領域でのBragg反射により呈色が観察されることがある。超膨潤ラメラ相は、超膨潤リオトロピックラメラ相(Hyper-swollen Lyotropic Lamellar Phase)であってもよい。
 超膨潤ラメラ相において、全体に占める溶媒の質量割合は、本発明の目的を満たす限りにおいて特に限定はされないが、通常90質量%以上であり、好ましくは95質量%以上、より好ましくは98質量%以上、さらに好ましくは99質量%以上である。上限は溶質と溶媒との間で超膨潤ラメラ相を形成できる範囲であれば特に限定はされず、用いる溶媒と溶媒の間で超膨潤ラメラ相を形成し得る限界の濃度が理論的な上限である。前記「全体」とは、溶質と溶媒を含む混合しているものすべての合計を意味する。超膨潤ラメラ相において、全体に占める溶媒の質量割合の上限は、例えば、99質量%としうる。
 超膨潤ラメラ相において、隣接する二分子膜間の距離(本明細書において「層間距離」ともいう。)は、特に限定はされず、用いる材料や目的とする用途に応じ、適宜設定することができる。通常50nm以上1000nm以下である(両端の値を含む、以下同じ)。層間距離は、目的とするナノシート状粒子を薄くする場合、薄い方が好ましく、例えば好ましくは500nm以下である。二分子膜間の層間距離は、ある二分子膜の溶媒に親和的な部分の端部から、前記二分子膜に隣接する他の二分子膜の溶媒に親和的な部分の端部までの距離を意味する。また前記層間距離は、二分子膜を構成する分子(両親媒性分子)の含量に依存しうる。
 二分子膜自体の厚さは、特に限定はされないが、通常は1nm以上20nm以下である。好ましくは、例えば、1nm以上10nm以下、より好ましくは、例えば、1nm以上5nm以下を挙げることができる。
 超膨潤ラメラ相は、非イオン性両親媒性物質の溶液においても、各層のうねり、ないしヘルフリッヒ(Helfrich)相互作用により、安定に維持される。
 超膨潤ラメラ相の二分子膜内でチオフェン系化合物を閉じ込めることにより、チオフェン系化合物の層を作製できる。特に、チオフェン系化合物の配列層を作製できる。
 超膨潤ラメラ相を形成した後、前記溶媒中に、チオフェン系化合物を添加して、1の前記二分子膜を構成する2つの単分子層の間にチオフェン系化合物の層を形成する。
 チオフェン系化合物の層の形成方法では、親水性部分が溶媒側を向くことによって、1の二分子膜を構成する2つの単分子層の疎水性部分の間で、チオフェン系化合物の層が形成される。混合する溶媒と両親媒性分子の組み合わせを変えることで、二分子膜の疎水性部分と親水性部分は、上記のように配置される。本実施形態では、溶媒に非親和的な部分同士の間でチオフェン系化合物の層を形成するため、溶媒の種類に応じて、疎水性の反応場のみならず、親水性の反応場でも、チオフェン系化合物の層を製造することができる。
<溶媒>
 前記チオフェン系化合物の層の製造方法の本実施形態における溶媒としては、水のみからなる溶媒であってもよいが、水以外の溶媒として有機溶媒を含むことが好ましい。前記有機溶媒は、炭化水素系溶媒であってもよい。
 炭化水素系溶媒としては、シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒が挙げられる。また、前記溶媒としては、炭化水素系溶媒のみであってもよく、炭化水素系溶媒と他の有機溶媒とを組み合わせものであってもよい。
 前記他の有機溶媒としては、アセトン、アセチルアセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;メタノール、エタノール、n-プロパノール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等のアルコール系溶媒;1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒などが挙げられる。
 前記溶媒として、炭化水素系溶媒と他の有機溶媒とを使用する場合、両者の質量比は、炭化水素系溶媒:他の有機溶媒=80:20~99.99:0.01が好ましく、85:15~99.9:0.1がより好ましい。
 また、前記チオフェン系化合物の層の製造方法の本実施形態における溶媒としては、例えば、前記溶媒が水のみからなる溶媒または前記有機溶媒と水とを含む混合溶媒である場合には、両者の質量比は、有機溶媒:水=0:100~15:85が好ましく、0:100~10:90がより好ましい。また、前記溶媒が前記有機溶媒と水とを含む混合溶媒である場合には、両者の質量比は、有機溶媒:水=0.01:99.99~15:85が好ましく、0.1:99.9~10:90がより好ましい。また、これらの好適な実施形態においては、溶媒として、水に代えてまたは水に加えて、目的とするナノシート状粒子を合成する際の反応の種類に応じて、塩酸、硝酸、硫酸等の酸性水溶液;水酸化ナトリウム水溶液等の塩基性水溶液を使用してもよい。
 本実施形態において、前記有機溶媒は、炭化水素系溶媒であることが好ましい。前記溶媒は、水と炭化水素系溶媒との混合液であることが好ましく、水とヘキサンとの混合液であることがより好ましい。両者の質量比は、ヘキサン:水=0.01:99.99~15:85が好ましく、0.1:99.9~10:90がより好ましい。
<両親媒性物質>
 本実施形態において、両親媒性物質としては、例えば、非イオン性両親媒性物質を挙げることができる。
 前記溶液(界面活性助剤を含む場合、それを含む総量)100質量部に対して、両親媒性物質の添加量は、1~50質量部であってもよく、1~10質量部であってもよく、1~5質量部であってもよい。
「非イオン性両親媒性物質」
 本実施形態にかかる非イオン性両親媒性物質としては、エステル型界面活性剤、エーテル型界面活性剤、エステルエーテル型界面活性剤、アルカノールアミド型界面活性剤、アルキルグリコシド、高級アルコールが挙げられる。非イオン性両親媒性物質は市販品を使用できる。
 エステル型界面活性剤としては、ショ糖ラウリン酸エステル、ショ糖オレイン酸エステル、ショ糖モノパルミチン酸エステルなどのショ糖脂肪酸エステル;ソルビタンカプリル酸モノエステル、ソルビタンカプリル酸ジエステル、ソルビタンカプロン酸モノエステル、ソルビタンカプロン酸ジエステル、ソルビタンカプリン酸モノエステル、ソルビタンカプリン酸ジエステル、ソルビタンラウリン酸モノエステル、ソルビタンラウリン酸ジエステル、ソルビタンミリスチン酸モノエステル、ソルビタンミリスチン酸ジエステルなどのソルビタン脂肪酸エステル;カプリル酸グリセリル、カプリン酸グリセリル、ラウリン酸グリセリル、ミリスチン酸グリセリル、ジ(ラウリン酸/ミリスチン酸)グリセリルなどのモノグリセリン脂肪酸エステル;モノステアリン酸ジグリセリル、モノオレイン酸ジグリセリル、ジオレイン酸ジグリセリル、モノイソステアリン酸ジグリセリル、モノステアリン酸テトラグリセリル、トリステアリン酸テトラグリセリル、ペンタステアリン酸テトラグリセリル、ペンタオレイン酸テトラグリセリル、モノラウリン酸ヘキサグリセリル、モノミリスチン酸ヘキサグリセリル、モノステアリン酸ヘキサグリセリル、モノオレイン酸ヘキサグリセリル、トリステアリン酸ヘキサグリセリル、ペンタステアリン酸ヘキサグリセリル、ペンタステアリン酸ヘキサグリセリル、ポリリシノール酸ヘキサグリセリル、モノラウリン酸デカグリセリル、モノミリスチン酸デカグリセリル、モノステアリン酸デカグリセリル、モノオレイン酸デカグリセリル、モノリノール酸デカグリセリル、モノイソステアリン酸デカグリセリル、ジステアリン酸デカグリセリル、ジオレイン酸デカグリセリル、ジイソステアリン酸デカグリセリル、トリステアリン酸デカグリセリル、トリオレイン酸デカグリセリル、トリイソステアリン酸デカグリセリル、ペンタステアリン酸デカグリセリル、ペンタオレイン酸デカグリセリル、ペンタイソステアリン酸デカグリセリル、ヘプタステアリン酸デカグリセリル、ヘプタオレイン酸デカグリセリル、ヘプタイソステアリン酸デカグリセリル、デカステアリン酸デカグリセリル、デカオレイン酸デカグリセリル、デカイソステアリン酸デカグリセリルなどのポリグリセリン脂肪酸エステルなどが挙げられる。
 エーテル型界面活性剤としては、下記式(1)
Figure JPOXMLDOC01-appb-C000002
 (式中、nは疎水部のアルキル基の炭素数を表し、mは親水部のエチレンオキサイド数を表す。nが3~40であってもよく、5~20であってもよく、20~14であってもよい。mが1~10であってもよく、2~8であってもよく、3~6であってもよい。)で示されるポリエチレングリコールモノアルキルエーテル(C)を含むポリエチレングリコールモノアルキルエーテル;下記式(2)
Figure JPOXMLDOC01-appb-C000003
 (エチレンオキサイドの付加モル数pは、3~40であってもよく、5~20であってもよい)で示されるポリ(オキシエチレン)オクチルフェニルエーテル、下記式(3)
Figure JPOXMLDOC01-appb-C000004
 (エチレンオキサイドの付加モル数qは、3~40であってもよく、5~20であってもよい)で示されるポリ(オキシエチレン)ノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテルなどが挙げられる。
 エステルエーテル型界面活性剤としては、モノステアリン酸ポリエチレングリコール、モノオレイン酸ポリエチレングリコール、ジオレイン酸ポリエチレングリコールなどのポリオキシエチレン脂肪酸エステル;ポリオキシエチレンヘキシタン脂肪酸エステル;ポリオキシエチレンソルビタン脂肪酸エステル(ソルビタン脂肪酸エステル部分は、上記エステル型界面活性剤と同様である)、ソルビタン脂肪酸エステルポリエチレングリコール(ソルビタン脂肪酸エステル部分は、上記エステル型界面活性剤と同様である)などが挙げられる。
 アルカノールアミド型界面活性剤としては、ラウリン酸モノエタノールアミド、ラウリン酸モノイソプロパノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、コカミドDEAの脂肪酸アルカノールアミドなどが挙げられる。
 アルキルグリコシドとしては、n-オクチル-β-D-グルコシド、n-オクチル-β-D-マルトシド、n-デシル-β-D-グルコシド(デシルグルコシド)、n-デシル-β-D-マルトシド、n-ウンデシル-β-D-グルコシド、n-ドデシル-β-D-グルコシド(ラウリルグルコシド)、n-トリデシル-β-D-グルコシド、n-オクタデシル-β-D-グルコシド、n-ヘプチル-β-D-チオグルコシド、n-オクチル-β-D-チオグルコシド、n-ノニル-β-D-チオマルトシドなどが挙げられる。
 高級アルコールとしては、セタノール、ステアリルアルコール、ラウリルアルコール、オレイルアルコールなどの炭素数12~18の高級アルコールが挙げられる。
 また、ある好適な実施形態では、前記非イオン性両親媒性物質は、下記式(1)
Figure JPOXMLDOC01-appb-C000005
 (式中、nおよびmは上記と同一意味を有する。)で示されるポリエチレングリコールモノアルキルエーテル(C)で構成されてもよい。ポリエチレングリコールモノアルキルエーテルとしては、例えば、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノドデシルエーテルなどが挙げられる。
 ある実施形態では、上記式(1)において、2<n/m<6であってもよく、2.2<n/m<5であってもよく、2.4≦n/m≦4であってもよい。n/mの下限値は、特に限定されないが、2でもよく、2.2でもよく、2.4でもよい。n/mの上限値は、特に限定されないが、6でもよく、5でもよく、4でもよく、3でもよい。本実施形態にかかる非イオン性両親媒性物質は、好ましく、テトラエチレングリコールモノドデシルエーテル(C12E4)である。テトラエチレングリコールモノドデシルエーテル(C12E4)としては、例えば、後述の実施例で使用したポリエチレングリコールドデシルエーテル(Brij(登録商標) L4 sigma-aldrich社製)が挙げられる。
[界面活性助剤]
 また、本実施形態において、溶媒は、両親媒性物質の安定化のために、界面活性助剤を含めていてもよい。界面活性助剤としては、一価アルコール、グリコール系多価アルコールおよびその誘導体などが挙げられる。本実施形態において、溶媒は、一価アルコールを含むことが特に好ましい。
 一価アルコールとしては、例えば、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、2-ヘプタノール、3-ヘプタノール、2-オクタノール、2-エチル-1-ヘキサノール、3,5,5-トリメチル-1-ヘキサノールなどの炭素数1~10の一価アルコール;コレステロール、アルケニルコハク酸コレステリル、コレスタノール、炭素数12~36(好ましくは炭素数14~28)の飽和または不飽和の直鎖または分岐鎖の炭化水素基を有するコレステリルエステル、デヒドロコレステロールなどのコレステロールおよびその誘導体などが挙げられる。
 グリコール系多価アルコールまたはその誘導体としては、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール-1-メチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル等のグリコールエーテル類;エチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテートなどのグリコールエーテルアセテート類;エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、へキシレングリコールなどのジオール類;グリセリン、ペンタエリスリトール、ソルビトールなどのポリオール類などが挙げられる。
 本実施形態においては、溶媒がヘキサンなどの炭化水素系溶媒と水との混合溶媒であり、両親媒性物質がポリエチレングリコールモノアルキルエーテル(CnEm)などの非イオン性両親媒性物質であり、さらに溶媒が1価アルコールなどの界面活性助剤を含むものであってもよい。
 本実施形態に係るチオフェン系化合物の層は、その他の化合物を含んでもよい。
 本実施形態の超膨潤ラメラ相形成の形成温度が15℃~60℃であることが好ましく、20℃~40℃であることがより好ましく、25℃~35℃であることがさらに好ましい。28℃~32℃であることがさらに好ましい。
 本実施形態に係る第一工程において、二分子膜の超膨潤ラメラ相を形成させるための系内のpHは、予め制御してもよい。例えば、溶媒として用いられる水の代わりに、予め所望のpHに調整された緩衝液を用いればよい。前記系内となる混合液のpHとしては、例えば、2~7の範囲の値を挙げることができる。好ましくは、2~4の範囲の値が挙げられる。
 本実施形態に係る第一工程において、二分子膜の超膨潤ラメラ相を形成させるための系内において、ドデシル硫酸ナトリウム(以下、SDSと記す)を添加してもよい。例えば、前記系内となる混合液中のSDSの濃度としては、例えば、0.15質量%以下の値を好ましく挙げることができる。
〔第一工程の具体例〕
 本実施形態の製造方法の第一工程の好ましい例を説明する。
 使用する試薬と条件は以下である。
 チオフェン系化合物:例えば、3.4-エチレンジオキシチオフェン(EDOT)
 溶媒:例えば、水、又はヘキサンと水との混合溶媒
 界面活性助剤:1-プロパノール
 両親媒性物質:例えば、テトラエチレングリコールモノドデシルエーテル(C12E4)
 形成温度:例えば、25℃~35℃
 攪拌時間:例えば、15~30時間
 攪拌速度:例えば、100~500rpm
 まず、チオフェン系化合物と、両親媒性物質と、界面活性助剤と、溶媒とを混合する。各試薬の混合順は特に限定されないが、例えば、オフェン系化合物、両親媒性物質、界面活性助剤、溶媒の順で混合しても良い。得られた混合液を所定の攪拌温度で攪拌する。攪拌装置によって攪拌速度が異なっても良いが、例えば、ホットスターラーを用いる場合、100~500rpmであっても良く、200~400rpmであっても良い。
 前記混合液において、各試薬などの添加量としは例えば、以下の例が挙げられる。
 前記チオフェン系化合物:0.05~0.5質量%でもよく、0.10~0.2質量%でもよい、
 前記両親媒性物質:2.5~7.5質量%でもよく、4.0~5.0質量%でもよい、 前記溶媒:5.0~8.0質量%でもよく、6.0~7.0質量%でもよい、
 水:70.0~95.0質量%でもよく、86.0~90.0質量%でもよい。
 チオフェン系化合物の層の厚みの調整には、前記二分子膜の厚み、原料組成比、反応温度、反応時間等の条件を適宜組み合わせて調整することができる。また、例えば、偏光板を用いて、超膨潤ラメラ相由来のテクスチャーを確認し、超膨潤ラメラ相の形成を確認することができる。
<第二工程>
 本実施形態にかかる第二工程において、前記溶液に重合用触媒として酸化重合用触媒を添加して、前記チオフェン系化合物を酸化重合させてポリチオフェン系化合物のナノシート状粒子を製造する。
〔重合用触媒〕
 本実施形態にかかる重合用触媒は、第一工程で得られる、前記チオフェン系化合物の層において、前記チオフェン系化合物を重合させてポリチオフェン系化合物を合成することができれば、特に限定がない。本実施形態にかかる重合用触媒として、例えば、酸化重合用触媒であることが好ましい。酸化重合用触媒としては、例えば、塩化鉄(III)、パラトルエンスルホン酸鉄塩、過塩素酸銅、酢酸パラジウム、酢酸銅等の公知の酸化剤が挙げられる。
 本実施形態にかかる第二工程において、重合用触媒を用いて、ポリチオフェン系化合物を合成する反応条件は、特に限定されないが、以下の範囲が好ましい。
 反応温度:25~40℃であってもよく、30~35℃であってもよい。
 重合用触媒の添加量:第一工程で得られた混合液100質量部に対して、例えば、0.05~0.2質量部であっても良く、0.075~0.12質量部であっても良い。
 本実施形態にかかる第二工程において、重合反応の時間は、8~48時間であってもよく、12~24時間であってもよい。赤外分光法で重合反応の終了を確認することができる。
 本実施形態に係る第二工程において、層を形成したチオフェン系化合物を、重合用触媒を用いて酸化重合させるための反応場のpHは、予め制御してもよい。例えば、溶媒として用いられる水の代わりに、予め所望のpHに調整された緩衝液を用いればよい。前記反応場となる混合液のpHとしては、例えば、2~7の範囲の値を挙げることができる。好ましくは、2~4の範囲の値が挙げられる。
 前記反応場のpHを低くすると、重合用触媒としての酸化剤(例えば、Fe3+)の酸化還元電位が高くなり、当該酸化剤が有する酸化力が高まることが期待でき、その結果、前記酸化重合を促進させることができる。
 本実施形態に係る第二工程において、層を形成したチオフェン系化合物を、重合用触媒を用いて酸化重合させるための反応場には、SDSを添加してもよい。例えば、前記反応場となる混合液中のSDSの濃度としては、例えば、0.15質量%以下の値を好ましく挙げることができる。
 前記反応場に少量のSDSが存在すると、当該SDSが有する静電引力により重合用触媒としての酸化剤(例えば、Fe3+)を引き寄せることが期待でき、その結果、前記酸化重合を促進させることができる。
<第三工程>
 本実施形態のナノシート状粒子の製造方法は、さらに、第三工程を含むことが好ましい。
 第三工程において、前記第二工程で得られたナノシート状粒子を含む溶液に対して溶媒を除去し、乾燥する。得られる乾燥固体は、粉末状、粒状又はその他の形状の成形体でも、基体に担持された形態でもよい。乾燥固体を粒状とするには、押出法、噴霧乾燥法、撹拌造粒法、転動造粒法等の公知の造粒方法が用いられる。
 例えば、前記第一工程において添加した前記溶媒、前記界面活性助剤、前記両親媒性物質、又は、第一工程において添加した前記重合用触媒は遠心分離によって除去することができる。洗浄にしようする溶媒はエタノールと水を用いる。添加した溶媒、水、界面活性助剤、両親媒性物質はエタノールで除去し、重合用触媒は水で除去している。洗浄したのち乾燥させず、本実施形態のナノシート状粒子のエタノール等の分散液としても良い。また、乾燥しても良い。その場合、例えば、一定の乾燥温度に設定したオーブン中に静置し溶媒を飛ばしても良い。乾燥温度は、乾燥時間と関連して適宜で調整すればよく、乾燥するのであれば、特に限定されない。例えば、50~95℃でもよく、80~95℃でもよい。
 尚、このようにして得られた本実施形態のナノシート状粒子では、ポリチオフェン系化合物の配列状態において、高い配向性を有しかつ分子間の空間部の存在により生じる絶縁効果を抑制する(即ち、高電導性を示す)ように、整然として配列してなることがより好ましい。そして、このようなナノシート状粒子は、その厚みおよびアスペクト比の均一性に優れ、また薄性由来の高柔軟性と高密着力を有する。
 因みに、ドロップキャスト法、スピンコート法等の従来の成膜方法を用いる場合、製膜後のチオフェン系化合物のナノシート粒子について表面微細構造をSTM像として観察すると、チオフェン系化合物の層がランダムな粒状構造を示したり、また配向性が弱いものであったり、場所による差異がみられることが多い。
(ポリチオフェン系化合物のナノシート状粒子を含む分散液組成物)
 本発明の一実施形態のポリチオフェン系化合物のナノシート状粒子を含む分散液組成物(本実施形態の分散液組成物)は、前述のポリチオフェン系化合物のナノシート状粒子を含む分散液組成物である。または、本実施形態の分散液組成物は、前記ポリチオフェン系化合物のナノシート状粒子の製造方法で得られるポリチオフェン系化合物のナノシート状粒子を含む分散液組成物である。
 本実施形態の分散液組成物は、更に1価アルコールを含み、かつ、実質的に水を含まないことが好ましい。ここで、「実質的に水を含まない」とは、前記分散液組成物において、10質量%以下、好ましく5質量%以下、より好ましく2質量%以下の水を含むことである。また、0.0001質量%(1ppm)以上の水を含んでもよい。前記1価アルコールは、前述の本実施形態のナノシート状粒子の製造方法において説明した1価アルコールと同じ具体例が挙げられる。本実施形態の分散液組成物に含まれている1価アルコールは、本実施形態のナノシート状粒子の製造方法において界面活性助剤として使用した1価アルコールと同じでも、異なってもよい。
 本実施形態の分散液組成物においては、本実施形態のナノシート状粒子の含有量が、0~100質量%であってもよく、0~1質量%であってもよい。
 本実施形態の分散液組成物の製造方法としては、前述の本実施形態のナノシート状粒子の製造方法の第二工程後で得られた、ナノシート状粒子を含む溶液に、1価アルコールを添加した後、当該溶液から水を除去する方法が挙げられる。
[ナノシート状粒子の用途]
 本実施形態のナノシート状粒子の用途としては、例えば、導電性高分子ナノシート材料、熱電変換薄膜材料、有機ひずみセンサー、生体情報モニター等としての利用を挙げることができる。
<導電性高分子ナノシート材料>
 導電性高分子ナノシート材料としての利用としては、具体的には例えば、帯電防止フィルム、固体電解コンデンサ、有機エレクトロルミネッセンス等の製品や、有機太陽電池、有機トランジスタ、透明電極等の分野を挙げることができる。因みに、電気伝導度としては、例えば、0.1S/cm以上10000S/cm以下、好ましくは1S/cm以上1000S/cm以下が挙げられる。
<熱電変換薄膜材料>
 熱電変換薄膜材料としての利用としては、具体的には例えば、自動車、家電など身の回りの製品から、発電所、向上などの大規模施設に至るまで、大気中へ排出される廃熱の一部を回収し、電気エネルギーとして再利用する熱電変換材料のうち、フレキシブルな特性を生かしたシート又はファイバーである、貼り付け型熱電発電シート(例えば、工場配管の排熱利用)、IoTセンサー用自立電源(例えば、電化製品の排熱利用)等を挙げることができる。
<有機ひずみセンサー>
 有機ひずみセンサーとしての利用としては、具体的には例えば、生体の臓器に類似させた動きを再現できる人工臓器を作製するためには、柔軟な生体組織の変形量を精確に測定する必要があり、当該生体組織の表面に生じるひずみデータを測定するためのセンサー等の製品や、当該センサーと細胞・組織を組み合わせたハイブリッド人工臓器の分野を挙げることができる。
<生体情報モニター>
 生体情報モニターとしての利用としては、具体的には例えば、皮膚に貼り付けて生体電気信号(例えば、体温、pH、心拍、筋電位)を計測可能な極薄電極(即ち、電子ナノ絆創膏)、日常生活のみならずヘルスケア・医療やスポーツの現場向けのウェラブルセンサーデバイス用自立電源(例えば、体温利用)等の製品や、次世代型ウェアブルデバイス等の分野等を挙げることができる。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(評価方法)
[AFM(Atomic Force Microscopy:原子間顕微鏡分析)]
 装置:Veeco Instruments社製 商品名: MMAFM-2
 測定条件:室温・大気雰囲気下                
 評価用サンプルの作製:エタノールに数mg程度のサンプルを添加し、超音波を当てることでエタノール分散液を作製する。作製した分散液をマイカ基盤上に滴下する。過剰な分散液を吸い取り、乾燥させることで作製する。
[FT-IR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外線分光法)]
 測定条件:室温、大気雰囲気下
 装置:JASCO社製 商品名: FT/IR-4600
 評価用サンプルの作製:サンプル粉末を金属性の円盤に固定して作製する。
[TEM(Transmission Electron Microscopy:透過型電子顕微鏡分析)]
 測定条件:1×10-6Pa
 装置:Hitachi社製 商品名:H-800
 評価用サンプルの作製:エタノールに数mg程度のサンプルを添加し、超音波を当てることでエタノール分散液を作製する。作製した分散液をTEM用マイクログリッドに滴下し、乾燥させることで作製する。
[DLS(Dynamic Light Scattering;動的散乱法)]
 装置:Otsuka Electronics Co., Ltd社製 商品名:ELSZ-2000
 測定条件:室温、大気雰囲気下
 評価用サンプルの作製:エタノールに数mg程度のサンプルを添加し、超音波を当てることでエタノール分散液を作製する。作製した分散液(約1.5ml)をDLS用のプラスチック製のキュベットに加え測定を行う。
[電気伝導度(Electrical Conductivity)]
 装置:ATTO社製 商品名:CROSSPOWER500
  測定条件:室温、大気雰囲気下
評価用サンプルの作製:エタノールに数mg程度のサンプルを添加し、超音波を当てることでエタノール分散液を作製する。作製した分散液をスライドガラスに滴下し乾燥させることで作製する。
 (記載例)0.0050gのPEDOTナノシート状粒子を2gの0.1MHCL溶液に分散した。得られた混合物を、超音波で攪拌することにより、分散液を調製した。その分散液をガラス基板にドロップキャスト法で塗布し、これを乾燥することにより、ポリチオフェンの薄膜を得た。このようにして得られた1μm厚みの薄膜に対して、小型デジタルテスターで電気伝導度を評価した。測定結果は1S/cmである。同じ方法で測定した市販のPEDOT:PSSと比較した結果、電気伝導率が約1S/cmであると算出した。その算出方法は塗布した部分を高さ1μm幅1cmの直方体とみなし、1cm間隔で抵抗測定する方法である。
[SEM-EDX(Energy Dispersive X-ray Spectroscopy:エネルギー分散型X線分光法)]
 装置:JEOL社製 商品名: JCM-7000
 測定条件:High vacuum
 評価用サンプルの作製:カーボンテープ上に粉末試料を付着させることで作製する。
 [TG(Thermogravimetric Analysis:熱重量測定分析)]
 装置:Shimadzu社製 商品名: DTG-60
 測定条件:窒素雰囲気下
 評価用サンプルの作製:粉末試料(20 mg)をアルミセルにのせる。
[導電率測定]
「測定サンプルの調製」
 PEDOTバルク粒子およびPEDOTナノシート状粒子のそれぞれを水に分散させ、それぞれの水分散液(濃度:3.4×10-4g/ml)を調製した。
「測定方法」
 得られた水分散液を櫛形電極(Pt製くし間2μm、ピ-・エス・エス社製)上に滴下した後、前記電極を乾燥させた。乾燥後、前記電極の導電性をインピーダンスアナライザー(SI1260モデル、東陽テクニカ社製)を用いて測定した。
[塗布性評価]
 「測定サンプルの調製」
 PEDOTバルク粒子およびPEDOTナノシート状粒子のそれぞれを水に分散させ、それぞれの水分散液(濃度:3.4×10-4g/ml)を調製した。
 「評価方法」
 得られた水分散液を櫛形電極(Pt製くし間2μm)上に滴下した後、前記電極を乾燥させた。乾燥後、前記電極を研究用システム顕微鏡BX-51(オリンパス社製)で目視により観察した。
 判断基準:粒子間の空隙が生じることがないように均一に分散されている状態について、粒子の厚さが略均一であり、粒子同士が互いに密着している度合いに基づき、これらの面で良好で有れば、優れた塗布性を有すると評価した。
(実施例A-1)
(PEDOTのナノシート状粒子の製造)
 <第一工程>
(即ち、1-プロパノールを含み、前記1-プロパノールの含有量が0.1質量%以上、10質量%以下である、水中に、数平均分子量362以下であるテトラエチレングリコールモノドデシルエーテルにより構成されてなる二分子膜を形成し、前記溶媒中に、3,4-エチレンジオキシチオフェンを添加して、20℃以上、40℃以下の温度条件下で二分子膜の超膨潤ラメラ相を形成し、1の二分子膜を構成する2つの単分子相の間において、前記3,4-エチレンジオキシチオフェンの層を形成する第一工程)
<使用試薬と反応条件>
 EDOT(富士フイルム和光純薬社製、0.13質量%)0.04g
 脱イオン水(88.6質量%)27g
 1-プロパノール(富士フイルム和光純薬社製、6.56質量%)2.0g
 ポリエチレングリコールドデシルエーテル(Brij L4 sigma-aldrich社製、4.59質量%)1.4g
 反応温度:30℃
 攪拌速度:300rpm
 50mlスクリュー管にEDOT0.04g、Brij(登録商標) L4 1.4g、1プロパノール2.0g、水27gを定量添加した。その後、30℃300rpmで撹拌を行った。偏光板で超膨潤ラメラ相由来のテクスチャーを確認したのちに、超膨潤ラメラ相を有する混合液を得た。
 <第二工程>
(即ち、前記3,4-エチレンジオキシチオフェンの層に含まれる前記3,4-エチレンジオキシチオフェンを、塩化鉄(III)を用いて酸化重合させ、ポリ(2,3-ジヒドロチエノ-1,4-ジオキシン)のナノシートを形成する第二工程)
<使用試薬と反応条件>
 脱イオン水(3ml)
 FeCl・6HO(富士フイルム和光純薬社製)0.0039g
 反応温度:30℃
 反応時間:24時間
 二分子膜を維持した状態で反応することを確認した。
 塩化鉄(III)0.0039gで3mlの塩化鉄水溶液を調製した。第一工程で得られた混合液を30℃に加熱し、上記塩化鉄(III)水溶液3mlを、30℃の混合液にピペットで滴下した。
 <第三工程>
(即ち、前記第二工程で得られたナノシート状粒子を含む溶液に対して溶媒を除去し、乾燥する第三工程)
 第一工程及び第二工程で添加した溶媒、水、重合用触媒、界面活性助剤、両親媒性物質は遠心分離によって除去した。洗浄にしようする溶媒はエタノールと水を用いた。添加した溶媒、水、界面活性助剤、両親媒性物質はエタノールで除去し、重合用触媒は水で除去した。洗浄したのち乾燥させず、エタノール等の分散液として保存してもよい。また、乾燥は90℃に設定したオーブン中に静置し溶媒を飛ばした。
<評価結果>
 AFMの測定結果を、図1~2に示した。
 AFM測定結果から、その厚みは2nmであり、平面方向の最大幅が800nmであり、アスペクト比(粒子中の最大幅/厚み)は600であった。
 FT-IRの測定結果を、図3に示した。PEDOT由来のピークを確認した。
 TEMの測定結果を、図4~6に示した。TEM測定の結果、ナノシート状粒子が生成していることを確認した。
 DLSの測定結果を、図7に示した。
 TEM及びDLSの結果から、シート状のナノ粒子を確認した。ナノシート状粒子は小さなナノプレートレット(nanoplatelets)がつながって構成され、また、少量の凝集体が存在していたことを確認した。
 電気伝導度測定した。電気伝導率約1S/cmである。
 SEM-EDXの測定結果を、図8に示した。不純物(Fe)の除去を確認した。
 TGの測定結果を、図9に示した。鉄の除去を確認した。
(実施例A-2~A-3)
 界面活性助剤としての1-プロパノールの添加量を表1に示すように変更したこと以外は実施例A-1と同様な方法を用いることにより、PEDOTのナノシート状粒子を得た。
Figure JPOXMLDOC01-appb-T000006
 
 表1の「安定性」の評価基準は以下に示す。
 ◎:特に好ましい状態
 〇:好ましい状態
(実施例B-1~B-2)
 界面活性助剤として、表2に示すアルコールを用いたこと以外は実施例A-1と同様な方法を用いることにより、PEDOTのナノシート状粒子を得た。
Figure JPOXMLDOC01-appb-T000007
 
 表2の「ラメラ層の発現」の評価基準は以下に示す。
 ◎:特に好ましい状態
(実施例C-1~C-5、比較例C-1~C-6)
 実施例A-1で得られたPEDOTのナノシート状粒子(3.4×10-4g)を表3および表4(比較例)に示す溶媒(1ml)中に分散することにより、分散液を得た。ナノシート状粒子化による溶媒への分散を確認した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
表3および表4の「分散度」の評価基準は以下に示す。
◎:特に好ましい状態
〇:好ましい状態
△:一部において好ましい状態
×:好ましくない状態
表3および表4の「安定性」の評価基準は以下に示す。
◎:特に好ましい状態
〇:好ましい状態
△:一部において好ましい状態
×:好ましくない状態
表3および表4の「電気伝導性」の評価基準は以下に示す。
◎:特に好ましい状態
〇:好ましい状態
△:好ましい状態から低下した状態
(考察)
 上記の結果から、得られたPEDOTナノシート状粒子はPSSなしで溶媒に分散させることが可能であり、ナノシート状粒子は極性溶媒と非極性溶媒の両方に分散することが分かった。
(実施例D-1)
(ポリチオフェン(PT)のナノシート状粒子の製造)
 <第一工程>
<使用試薬と反応条件>
 チオフェン(富士フイルム和光純薬社製、0.12質量%)0.0356g
 脱イオン水(88.8質量%)27.0g
 ヘキサン(富士フイルム和光純薬社製、0.042質量%)0.0127g
 1-プロパノール(富士フイルム和光純薬社製、6.74質量%)2.05g
 ポリエチレングリコールドデシルエーテル(Brij L4 sigma-aldrich社製、4.31質量%)1.31g
 反応温度:30℃
 攪拌速度:300rpm
 50mlスクリュー管にチオフェン0.0356g、Brij(登録商標) L4 1.31g、1プロパノール2.05g、ヘキサン0.0127g、水27.0gを定量添加した。その後、30℃300rpmで撹拌を行った。偏光板で超膨潤ラメラ相由来のテクスチャーを確認したのちに、超膨潤ラメラ相を有する混合液を得た。
 <第二工程>
<使用試薬と反応条件>
 脱イオン水(3ml)
 FeCl・6HO(富士フイルム和光純薬社製)0.0010g
 反応温度:30℃
 反応時間:24時間
 二分子膜を維持した状態で反応することを確認した。
 塩化鉄(III)0.0039gで3mlの塩化鉄水溶液を調製した。第一工程で得られた混合液を30℃に加熱し、上記塩化鉄(III)水溶液3mlを、30℃の混合液にピペットで滴下した。
 <第三工程>
 第一工程及び第二工程で添加した溶媒、水、重合用触媒、界面活性助剤、両親媒性物質は遠心分離によって除去した。洗浄にしようする溶媒はエタノールと水を用いた。添加したヘキサン、水、界面活性助剤、両親媒性物質はエタノールで除去し、重合用触媒は水で除去した。洗浄したのち乾燥させず、エタノール等の分散液として保存してもよい。また、乾燥は90℃に設定したオーブン中に静置し溶媒を飛ばした。
<評価結果>
 AFMの測定結果を、図10と図11に示した。
 AFM測定結果から、その厚みは3.5nmであり、平面方向の最大幅が150nmであり、アスペクト比(粒子中の最大幅/厚み)は約40であった。
 TEMの測定結果を、図12に示した。TEM測定の結果、ナノシート状粒子が生成していることを確認した。
 DLSの測定結果を、図13に示した。
 TEM及びDLSの結果から、シート状のナノ粒子を確認した。ナノシート状粒子は小さなナノプレートレット(nanoplatelets)がつながって構成され、また、少量の凝集体が存在していたことを確認した。
(実施例E-1)
(PEDOTナノシート状粒子の導電率の測定)
 実施例A1と同様な方法で、PEDOTのナノシート状粒子を得た。PEDOTのナノシート状粒子の導電率を、上記[導電率測定]に記載された測定方法により測定した。その結果を表5に示す。
(比較例E-1)
(PEDOTバルク粒子の導電率の測定)
 ポリエチレングリコールドデシルエーテルを含まない溶媒系を用いること以外は実施例A-1と同様な方法に準じて調製されたPEDOTバルク粒子の導電率を、実施例E-1と同様な方法で測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010
<評価結果の考察>
 PEDOTバルク粒子よりもPEDOTナノシート状粒子のほうが、優れた導電率を示すことが確認された。
(実施例E-2)
 実施例E-1と同様なPEDOTナノシート状粒子を用いて、上記[塗布性評価]に記載された評価方法を用いて、塗布性を評価した。目視の結果、優れた分散・均一性を示すことが確認された。
 評価サンプルの研究用システムBX-51顕微鏡(オリンパス社製)写真は、図14に示す。
(比較例E-2)
 比較例E-1と同様なPEDOTバルク粒子を用いて、実施例E-2と同様な方法で、塗布性を評価した。目視の結果、実施例E-2に比べて、よくない分散・均一性を示すことが確認された。
 評価サンプルの研究用システムBX-51顕微鏡(オリンパス社製)写真は、図15に示す。
<評価結果の考察>
 図16及び17は、それぞれ。実施例E-2及び比較例E-2で得られたサンプルの模試図である。
 実施例E-2及び比較例E-2の結果から、PEDOTバルク粒子よりもPEDOTナノシート状粒子のほうが、優れた分散・均一性を示すことが確認された。
 具体的には、図14及び図15の顕微鏡写真から分かるように、PEDOTバルク粒子よりもPEDOTナノシート状粒子のほうが櫛形電極上にムラなく均一に塗布できていた。これは、PEDOTバルク粒子の場合には、粒子のサイズが不均一であり、塗布した際に粒子間の空隙が多くなってしまうが、一方、PEDOTナノシート状粒子の場合には、粒子(即ち、シート)の厚さが略均一であるため、粒子同士が互いに密着しやすく、その結果、塗布した際に粒子(シート)間の空隙が少なくなるためであろう。
 尚、前記実施例E-1及び比較例E-1の導電率測定の結果は、このような粒子間の空隙の減少に伴い、接触抵抗が小さくなり、その結果、PEDOTナノシート状粒子では、伝導率の増大が起こり、導電率が向上したものと考えられる。
(実施例E-3)
「PEDOTナノシート状粒子の発現に対する製造条件(pH)の影響」
 スクリュー管の中に、EDOT(0.13 質量%)、過酸化水素水(0.65 質量%)、Brij L4 (4.57質量%)、1-プロパノール(6.52 質量%)および各種pH値(pH2、3、4、5、6、7)に予め調製されたリン酸緩衝液(88.1 質量%)を加え、混合した。得られた各混合液を室温(25℃)下で撹拌した。攪拌中は、超膨潤ラメラ相由来の複屈折を確認しながら、超膨潤ラメラ相の発現有無を観察した。その結果を図18に示す。図18の写真から、その評価結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000011
 尚、図18の「超膨潤ラメラ相の発現」の評価基準は以下とした。
〇:好ましい状態
△:一部において好ましい状態
×:好ましくない状態
<考察>
 図18の結果から、pH2~7のいずれのpH値においても超膨潤ラメラ相の発現が観察され、好ましい状態(即ち、薄いナノシートが安定に作れる状態)であり、pH値は超膨潤ラメラ相の発現に対して影響を与えないことが確認できた。特に、pH2~4の間のpH値では、いずれも特に好ましい状態(即ち、非常に安定で最もナノシートが大きく作れる状態)であり、PEDOTナノシート状粒子の収率に対して大きな影響を与えないことがわかった。
(実施例E-4)
「PEDOTナノシート状粒子の収率に対する製造条件(pH)の影響」
 スクリュー管の中に、EDOT(0.13 質量%)、過酸化水素水(0.65 質量%)、Brij L4 (4.57質量%)、1-プロパノール(6.52 質量%)および各種pH値(pH2、3、4、5)に予め調製されたリン酸緩衝液(88.1 質量%)を加え、混合した。得られた各混合液を室温(25℃)下で撹拌した。攪拌中は、超膨潤ラメラ相由来の複屈折を確認しながら、超膨潤ラメラ相の形成有無を観察した。
 上記操作後、得られた混合液に塩化鉄水溶液を加えた。得られた混合液を更に24時間撹拌した。攪拌終了後、回収された混合液を11,000 rpmで遠心分離した後、沈殿物を回収した。回収された沈殿物をエタノールで3回洗浄した後、これを乾燥させることにより得られた乾燥物の質量を測り、得られたPEDOTナノシート状粒子の収率を計算した。その結果を図19に示す。
<考察>
 図19の結果から、pH2~4の間のpH値では、PEDOTナノシート状粒子の収率に対して大きな影響を与えないことが確認できた。
(実施例E-5)
「PEDOTナノシート状粒子の収率に対する製造条件(SDSの添加)の影響」
 スクリュー管の中に、EDOT(0.13 質量%)、過酸化水素水(0.65 質量%)、Brij L4 (4.57質量%)、1-プロパノール(6.52 質量%)および水(88.1 質量%)を加え、混合した。得られた混合液を室温(25℃)下で撹拌することにより、超膨潤ラメラ相を形成させた。
 ついで、形成された超膨潤ラメラ相を含む前記混合液の中に、各種のドデシル硫酸ナトリウム(SDS)の添加濃度(0.098質量%、0.130質量%、0.147質量%、0.166質量%、0.180質量%、0.195質量%)になるようにドデシル硫酸ナトリウム(SDS)を加え、混合した。得られた各混合液を室温(25℃)下で撹拌した。攪拌中は、超膨潤ラメラ相由来の複屈折を確認しながら、超膨潤ラメラ相の維持状態を観察した。その結果を図20に示す。図20の写真から、その評価結果を下記の表7に示す。
Figure JPOXMLDOC01-appb-T000012
 尚、図20の「超膨潤ラメラ相の維持状態」の評価基準は以下とした。
〇:好ましい状態
△:一部において好ましい状態
×:好ましくない状態
<考察>
 図20の結果から、SDSの添加濃度が0.098質量%~0.147質量%の間の濃度値では、好ましい状態(即ち、薄いナノシートが安定に作れる状態)であった。さらに、いずれも特に好ましい状態(即ち、非常に安定で最もナノシートが大きく作れる状態)でもあり、安定性の高い超膨潤ラメラ相が維持されることが確認された。

Claims (20)

  1.  ポリチオフェン系化合物のナノシート状粒子であって、
     前記ナノシート状粒子の厚みが0.5nm以上、10nm以下であり、
     前記ナノシート状粒子のアスペクト比が100以上である
     ことを特徴とするナノシート状粒子。
  2.  前記ポリチオフェン系化合物が、ポリ(3,4-エチレンジオキシチオフェン)であることを特徴とする請求項1記載のナノシート状粒子。
  3.  前記ナノシート状粒子の厚みが1nm以上、5nm以下であり、
     前記ナノシート状粒子の平面方向の幅が200nm以上、100μm以下である
    ことを特徴とする請求項1又は2に記載のナノシート状粒子。
  4.  溶媒中に二分子膜を形成し、前記溶媒中に、チオフェン系化合物を添加して、前記二分子膜の超膨潤ラメラ相を形成することにより、1つの前記二分子膜を構成する2つの単分子相の間においてチオフェン系化合物の層を形成する第一工程と;
     前記第一工程で層を形成したチオフェン系化合物を、重合用触媒を用いて酸化重合させ、ポリチオフェン系化合物のナノシート状粒子を形成する第二工程と;
    を含むことを特徴とする、ポリチオフェン系化合物のナノシート状粒子の製造方法。
  5.  第一工程において、20℃以上、40℃以下の温度条件下で前記二分子膜の超膨潤ラメラ相を形成する、請求項4に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  6.  前記チオフェン系化合物が3,4-エチレンジオキシチオフェンであり、
     前記ポリチオフェン系化合物がポリ(3,4-エチレンジオキシチオフェン)である、請求項4又は5に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  7.  前記重合用触媒が、塩化鉄(III)である、請求項4又は5に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  8.  前記溶媒が、水のみからなる溶媒または炭化水素系溶媒と水とを含む混合溶媒であり、 前記溶媒における炭化水素系溶媒と水との質量比が、炭化水素系溶媒:水=0:100~15:85である、請求項4又は5に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  9.  前記溶媒が、炭化水素系溶媒と水とを含む混合溶媒であり、
     前記溶媒における炭化水素系溶媒と水との質量比が、炭化水素系溶媒:水=0.01:99.99~15:85である、請求項4又は5に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  10.  前記炭化水素系溶媒がヘキサンである、請求項9に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  11.  前記二分子膜を構成する両親媒性物質がポリエチレングリコールモノアルキルエーテルである、請求項4又は5に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  12.  前記ポリエチレングリコールモノアルキルエーテルが、テトラエチレングリコールモノメチルエーテルである、請求項11に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  13.  前記ポリエチレングリコールモノアルキルエーテルが、数平均分子量362以下のテトラエチレングリコールモノドデシルエーテルである、請求項11に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  14.  前記溶媒が1価アルコールを含む、請求項4又は5に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  15.  前記1価アルコールが、1-プロパノール、2-プロパノールおよび1ーブタノールからなる群から選ばれる少なくとも1種である、請求項14に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  16.  前記1価アルコールが、1-プロパノールである、請求項14に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  17.  前記溶媒中において、前記1価アルコールの含有量が0.1質量%以上、10質量%以下である、請求項15に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  18.  前記ナノシート状粒子の厚みが0.5nm以上、10nm以下であり、
     前記ナノシート状粒子の平面方向の幅が200nm以上、100μm以下であり、
     前記ナノシート状粒子のアスペクト比(粒子中の最大幅/厚み)が100以上である、請求項4又は5に記載のポリチオフェン系化合物のナノシート状粒子の製造方法。
  19.  請求項1又は2に記載のナノシート状粒子を含む分散液組成物。
  20.  更に1価アルコールを含み、かつ、
     実質的に水を含まないことを特徴とする請求項19に記載の分散液組成物。
PCT/JP2023/029497 2022-10-14 2023-08-15 ポリチオフェン系化合物のナノシート状粒子及びその製造方法 WO2024079977A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022165782 2022-10-14
JP2022-165782 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024079977A1 true WO2024079977A1 (ja) 2024-04-18

Family

ID=90669435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029497 WO2024079977A1 (ja) 2022-10-14 2023-08-15 ポリチオフェン系化合物のナノシート状粒子及びその製造方法

Country Status (1)

Country Link
WO (1) WO2024079977A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313521A (ja) * 1988-04-22 1989-12-19 Bayer Ag ポリチオフエンの製造法
KR100684913B1 (ko) * 2005-10-06 2007-02-20 연세대학교 산학협력단 티오펜 에멀젼의 산화중합에 의한 폴리티오펜 나노입자와이의 유도체 및 이의 제조방법
WO2018016650A1 (ja) * 2016-07-22 2018-01-25 国立研究開発法人科学技術振興機構 金属有機構造体ナノシートおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313521A (ja) * 1988-04-22 1989-12-19 Bayer Ag ポリチオフエンの製造法
KR100684913B1 (ko) * 2005-10-06 2007-02-20 연세대학교 산학협력단 티오펜 에멀젼의 산화중합에 의한 폴리티오펜 나노입자와이의 유도체 및 이의 제조방법
WO2018016650A1 (ja) * 2016-07-22 2018-01-25 国立研究開発法人科学技術振興機構 金属有機構造体ナノシートおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIJUN ZHENG; HAIXIN ZHOU; DIAN LIU; GEORGE FLOUDAS; MANFRED WAGNER; KALOIAN KOYNOV; MARKUS MEZGER; HANS‐JÜRGEN BUTT; TAICHI IKEDA: "Supramolecular Thiophene Nanosheets", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, HOBOKEN, USA, vol. 52, no. 18, 26 March 2013 (2013-03-26), Hoboken, USA, pages 4845 - 4848, XP072081930, ISSN: 1433-7851, DOI: 10.1002/anie.201210090 *

Similar Documents

Publication Publication Date Title
Potts et al. Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization
Buraidah et al. Characterization of chitosan/PVA blended electrolyte doped with NH4I
Lee et al. Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites
Ashokkumar et al. Electrochemically synthesized polyaniline/copper oxide nano composites: To study optical band gap and electrochemical performance for energy storage devices
Lee et al. Nanostar and nanonetwork crystals fabricated by in situ nanoparticlization of fully conjugated polythiophene diblock copolymers
Xu et al. Thermal analysis of poly (vinyl alcohol)/graphite oxide intercalated composites
Chandrakala et al. The influence of zinc oxide–cerium oxide nanoparticles on the structural characteristics and electrical properties of polyvinyl alcohol films
Qi et al. Rectangular platelet micelles with controlled aspect ratio by hierarchical self-assembly of poly (3-hexylthiophene)-b-poly (ethylene glycol)
Aissou et al. Nano-Organization of Amylose-b-polystyrene block copolymer films doped with bipyridine
Maity et al. Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly (vinylidene fluoride) matrix yielding superior mechanical and electronic properties
Zahid et al. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review
Tunckol et al. Polymerized ionic liquid functionalized multi-walled carbon nanotubes/polyetherimide composites
Liu et al. A high-performance dielectric block copolymer with a self-assembled superhelical nanotube morphology
JP2009035619A (ja) 導電性組成物及び導電性膜
Tsai et al. Plastic superconducting polymer− NbSe2 nanocomposites
Xiao et al. Polymer composites with lychee-like core covered by segregated conducting and flexible networks: Unique morphology, high flexibility, stretchability and thermoelectric performance
Zhu et al. POSS-containing jacketed polymer: hybrid inclusion complex with hierarchically ordered structures at sub-10 nm and angstrom length scales
Okada et al. Thermoelectric properties of poly (3-hexylthiophene) nanofiber aerogels with a giant Seebeck coefficient
Jiao et al. Self-assembly and headgroup effect in nanostructured organogels via cationic amphiphile-graphene oxide composites
Tanusorn et al. Influence of carrageenan molecular structures on electromechanical behaviours of poly (3-hexylthiophene)/carrageenan conductive hydrogels
Zahra et al. Conductive nanocomposite materials derived from SEBS-g-PPy and surface modified clay
Jayanthi et al. Effect of nano TiO2 on the thransport, structural and thermal properties of PEMA-NaI solid polymer electrolytes for energy storage devices
EP3778711A1 (en) Method for the synthesis of a two-dimensional or quasi-two-dimensional polymer film, the two-dimensional or quasi-two-dimensional polymer film and the use
Hebbar et al. Synthesis and dielectric investigations of bismuth sulfide particles filled PVA: Polypyrrole core-shell nanocomposites
WO2024079977A1 (ja) ポリチオフェン系化合物のナノシート状粒子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876985

Country of ref document: EP

Kind code of ref document: A1