WO2018016310A1 - X線高電圧装置及びx線撮像装置 - Google Patents

X線高電圧装置及びx線撮像装置 Download PDF

Info

Publication number
WO2018016310A1
WO2018016310A1 PCT/JP2017/024449 JP2017024449W WO2018016310A1 WO 2018016310 A1 WO2018016310 A1 WO 2018016310A1 JP 2017024449 W JP2017024449 W JP 2017024449W WO 2018016310 A1 WO2018016310 A1 WO 2018016310A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
communication
control unit
inverter
high voltage
Prior art date
Application number
PCT/JP2017/024449
Other languages
English (en)
French (fr)
Inventor
貴之 正木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018016310A1 publication Critical patent/WO2018016310A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/20Power supply arrangements for feeding the X-ray tube with high-frequency ac; with pulse trains
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/64Circuit arrangements for X-ray apparatus incorporating image intensifiers

Definitions

  • the present invention relates to an X-ray imaging apparatus such as an X-ray high voltage apparatus having a plurality of power conversion circuits and an X-ray CT apparatus including the X-ray high voltage apparatus.
  • the X-ray CT apparatus rotates the X-ray source and a detector arranged opposite to the X-ray source around the subject while the X-rays irradiated from the X-ray source and transmitted through the subject are detected by the detector.
  • a tomographic image of the subject is acquired using projection data obtained from a plurality of angles.
  • An image acquired by the X-ray CT apparatus is displayed on a display device and used for image diagnosis.
  • an X-ray source When acquiring images with an X-ray CT system, an X-ray source, an X-ray high-voltage device that supplies a high voltage to the X-ray source, an X-ray control unit that controls the X-ray high-voltage device, a detector, an operator console
  • An image generation unit that generates an image, a control unit that controls these devices, and the like perform transmission / reception of necessary control signals and data transfer, that is, communication.
  • an X-ray high-voltage device has a high-output converter circuit and an inverter circuit, and converts the AC voltage from the power system to a high-frequency AC voltage of a desired voltage value by appropriately switching these circuits on and off. Yes.
  • a large switching noise is generated when the circuits are switched on / off. That is, in the X-ray CT apparatus, the X-ray high-voltage apparatus becomes a large noise source, and it is difficult to increase the speed of data communication and improve the reliability between the apparatuses constituting the X-ray CT apparatus.
  • the rotor control is stopped in the case of general imaging with high output and short-time X-ray irradiation, and the converter control is performed in the case of fluoroscopic imaging with low / medium output and medium / long-time X-ray irradiation.
  • the noise generation amount is reduced, thereby suppressing the influence of noise.
  • the X-ray high voltage apparatus of Patent Document 1 described above, any one of the plurality of semiconductor power conversion circuits is stopped, so that the imaging operation is limited. Further, the X-ray high voltage apparatus of Patent Document 1 is premised on being applied to an X-ray imaging apparatus that performs general imaging or fluoroscopic imaging, and it is difficult to apply this to an X-ray CT apparatus as it is. In other words, the X-ray CT apparatus obtains images by continuing X-ray exposure for a long time and high output as compared with the X-ray imaging apparatus. If any of the semiconductor power conversion circuits is stopped, a desired image cannot be acquired.
  • the X-ray source and the detector are arranged on a rotating disk that rotates at a high speed, and the signals detected by the detector while rotating the rotating disk are transmitted to the other through the slip ring. Sending to the unit. That is, in the X-ray CT apparatus, since the communication connection between the detector and the like provided on the rotating disk and other units is made only by the slip ring, for example, the earth is strengthened, the earth is separated, etc. It is difficult to add noise suppression parts.
  • Shielding the X-ray high voltage device or arranging it at a distance from other units will lead to an increase in the size and cost of the X-ray CT device.
  • the present invention has been made in view of the above circumstances, and without affecting the size and cost of the X-ray imaging device, reduces the influence of noise caused by the X-ray high-voltage device, and enables high-speed communication between the units.
  • the purpose is to improve efficiency and reliability.
  • the present invention provides the following means.
  • One aspect of the present invention is an X-ray high voltage apparatus for generating X-rays by supplying a tube voltage to an X-ray tube, a converter for converting electric power supplied from an AC power source into DC voltage, and the DC voltage
  • An inverter that converts the AC voltage into an AC voltage
  • a high voltage generator that boosts the AC voltage to generate a high voltage
  • a control unit that controls at least the inverter, and the control unit includes a plurality of semiconductors included in the inverter
  • the control unit includes a plurality of semiconductors included in the inverter
  • an X-ray high-voltage device that outputs communication permission information indicating whether communication between devices included in an X-ray imaging device is possible based on switching timing of the operation of a switching element.
  • the influence of noise caused by the X-ray high-voltage apparatus can be reduced, and the communication speed and reliability between the units can be improved. Can do.
  • the block diagram which shows the outline of the X-ray CT apparatus which concerns on embodiment of this invention
  • the block diagram which shows schematic structure of the X-ray high voltage apparatus which concerns on embodiment of this invention
  • Schematic which shows the connection relation of each apparatus of the X-ray CT apparatus which concerns on embodiment of this invention.
  • the flowchart which shows the flow of the measurement process in the X-ray CT apparatus which concerns on embodiment of this invention.
  • An X-ray high-voltage apparatus is applied to an X-ray imaging apparatus that generates an X-ray to acquire an image, and converts a power supplied from an AC power supply of a power system into a DC voltage, and a DC voltage
  • An inverter that converts the AC voltage into an AC voltage
  • a high voltage generator that boosts the AC voltage to generate a high voltage
  • a control unit that controls at least the inverter, and the control unit operates a plurality of semiconductor switching elements included in the inverter Communication permission information indicating whether communication between devices included in the X-ray imaging apparatus is possible or not is output based on the switching timing.
  • This communication permission information is information that prohibits communication when the semiconductor switching element is switched on and off.
  • the X-ray high voltage apparatus generates communication permission information indicating whether communication is possible based on the switching timing of the semiconductor switching element in the inverter. Therefore, an X-ray imaging apparatus such as an X-ray CT apparatus to which the X-ray high voltage apparatus is applied can perform communication processing while avoiding switching timing in the X-ray high voltage apparatus according to the communication permission information. For this reason, there is no influence of switching noise during communication processing.
  • Fig. 1 shows the overall configuration of the X-ray CT system
  • Fig. 2 shows the configuration of the X-ray high-voltage system.
  • the X-ray CT apparatus includes an operation console 1, a scanner 2, a bed 3, and a system control unit 4.
  • the operation console 1 includes an input unit (not shown), an image calculation unit, a display unit, a storage unit, and a system control unit.
  • the input unit can apply a keyboard, a pointing device, etc. For example, the subject name, examination date, imaging conditions, etc. are entered.
  • the image calculation unit performs CT image reconstruction by performing calculation processing on measurement data transmitted from an X-ray detector 23, which will be described later. Specifically, a CPU for executing calculation processing or a dedicated calculation circuit is provided. Can be applied.
  • the display unit displays the CT image created by the image computation unit, and the storage unit stores the data collected by the X-ray detector 23 and the image data of the CT image created by the image computation unit.
  • the scanner 2 includes a rotating disk 19, an X-ray tube 22, an X-ray detector 23, a scanner control unit 21, an X-ray high voltage device 25, and an abnormality monitoring unit 28.
  • the rotating disk 19 includes an opening 191 into which the subject mounted on the bed 3 enters, and an X-ray tube 22 and an X-ray detector 23 are mounted to rotate around the subject.
  • the rotating disk 19 is driven and controlled by a rotation driving unit (not shown) according to a control signal from the scanner control unit 21.
  • the X-ray tube 22 is disposed on the rotating disk 19, and is supplied with a tube current and a tube voltage controlled by the X-ray high voltage device 25 according to the imaging conditions (tube voltage, etc.) input from the input unit. .
  • the X-ray detector 23 is disposed on the rotating disk 19 so as to face the X-ray tube 22, and includes a plurality of detection elements (not shown) for detecting X-rays transmitted through the subject in the rotating direction (channel direction) of the rotating disk 19. (Also called).
  • the plurality of detection elements may be arranged in multiple rows (for example, 64 rows) in the rotation axis direction (also referred to as the slice direction) of the rotary disk 19 when the rotation direction is one row. .
  • the X-ray detector 23 converts X-rays detected from a plurality of detection elements into predetermined electrical signals, generates measurement data, and outputs the measurement data to the scanner control unit 21.
  • the scanner control unit 21 controls the collimator control unit that controls the collimator when the rotation drive unit included in the rotary disk 19 and the collimator are provided in the X-ray tube 22 according to the control signal from the system control unit 4. .
  • the X-ray high voltage device 25 will be described later.
  • the anomaly monitoring unit 28 monitors the anomaly of the scanner 2, collects fault monitoring information such as current, voltage, vibration, temperature, etc. of each device and sends it to the system control unit 4, and controls the system when an anomaly is detected Notify part 4.
  • the bed 3 puts the subject and moves up and down and back and forth (movement of the rotating disk 19 in the direction of the rotation axis).
  • the bed 3 includes a bed control unit 5, and the movement of the bed 3 is controlled by the bed control unit 5.
  • the bed 3 is depicted at a position away from the scanner 2, but actually the bed 3 is disposed in the vicinity of the scanner 2 and the subject is placed in the opening 191 of the disk 19. Deploy.
  • the system control unit 4 includes an image calculation unit, a display unit, and the like included in the operation console 1, a scanner control unit 21, an X-ray detector 23, a bed control unit 5, The entire X-ray CT apparatus including the X-ray control unit 26 and the like in the X-ray high voltage apparatus 25 is controlled.
  • the communication connection form of the control system of the X-ray CT apparatus in the present embodiment is a star network centered on the system control unit 4 as shown in FIG. That is, in the X-ray CT apparatus, the bed control unit 5, the scan control unit 21, the X-ray detector 23, the X-ray control unit 26, and the abnormality monitoring unit 28 are slaves, and the master-slave format with the system control unit 4 as a master. And operate according to a control signal from the system control unit 4.
  • the X-ray high voltage device 25 is connected to the AC power source 10 and the X-ray tube 22, converts the AC voltage supplied from the AC power source 10 into a DC high voltage, Apply.
  • the X-ray high voltage apparatus 25 includes a converter 251, an inverter 252, a high voltage generation unit 253, and an X-ray control unit 26 for controlling them.
  • an inverter 252 is connected to the subsequent stage of the converter 251, and a high voltage generator 253 is connected to the subsequent stage of the inverter 252.
  • the converter 251 includes one or more switching elements (not shown) and a converter drive circuit that generates a drive signal having a pulse waveform for turning on / off the switching elements.
  • the AC voltage supplied from the three-phase or single-phase AC power supply 10 is converted into a DC voltage by turning the switching element ON / OFF by a drive signal from the converter drive circuit.
  • the X-ray control unit 26 controls the operation of the converter drive circuit and the ON / OFF cycle of the generated pulse waveform.
  • the inverter 252 converts the DC voltage from the converter 251 into an AC voltage. Specifically, the inverter 252 generates an inverter circuit having a plurality of semiconductor switching elements (not shown) and a drive signal having a pulse waveform for turning on / off each switching element of the inverter circuit and outputs the drive signal to each switching element. And an inverter driving circuit.
  • the inverter drive circuit adjusts the cycle and phase of the pulse waveform of the drive signal in order to switch ON / OFF of the plurality of semiconductor switching elements at timing (cycle and phase) according to the control signal received from the X-ray control unit 26 .
  • the high voltage generator 253 boosts the AC voltage from the inverter 252, rectifies and smoothes the boosted AC voltage, and generates a DC high voltage to be applied to the X-ray tube 22.
  • the X-ray control unit 26 controls the converter 251 and the inverter 252 described above according to the control signal from the system control unit 4.
  • the inverter 252 is controlled according to the output signal of the inverter 252 or each high voltage generator 253.
  • the X-ray controller 26 feedback-controls the inverter 252 based on a comparison between a signal based on the output signal of the inverter 252 or the high voltage generator 253 and a voltage signal based on the voltage value of the target tube voltage.
  • the control of the inverter 252 by the X-ray control unit 26 is performed by switching the semiconductor switching element between ON and OFF.
  • the high voltage generator 253 is mounted on the rotating disk 19 and rotates together with the rotating disk 19. Other configurations are not mounted on the rotating disk 19 and are stationary.
  • the inverter 252 transmits to the system control unit 4 communication permission information indicating whether communication between devices is possible based on switching information regarding switching of the semiconductor switching element between ON and OFF during a period of high noise. To do.
  • the system control unit 4 receives communication permission information from the X-ray control unit 26, and transmits communication stop information so that communication between each device is not performed during a period of high noise when switching the semiconductor switching element of the inverter 252. It is transmitted to each device constituting the X-ray CT apparatus. Accordingly, communication between the devices is not performed when the semiconductor switching element is switched on and off, and communication is performed when the switching of the semiconductor switching element is switched on and off and a steady state is achieved.
  • the rotation driving unit 222 rotates the anode by controlling the motor 221 in order to prevent the anode of the X-ray tube 22 from melting due to the collision of electrons.
  • the cooling unit 223 cools the anode by, for example, oil cooling.
  • X-rays irradiated from the X-ray tube 22 and transmitted through the subject are detected by the X-ray detection element of the X-ray detector 23.
  • the rotating disk 19 rotates the X-ray tube 22 and the X-ray detector 23 so that X-rays are irradiated and detected from each direction of the subject.
  • the rotation speed of the rotary disk 19 is controlled by the rotation drive unit via the system control unit 4 so as to satisfy the imaging conditions (scanning speed, etc.) input from the input unit of the operation console 1.
  • the bed 3 operates so that the bed control unit 5 moves the subject in the body axis direction to satisfy the imaging conditions input from the operation console 1.
  • the output signal detected by the X-ray detector 23 is collected as measurement data and sent to the image calculation unit of the operation console 1.
  • the image calculation unit reconstructs the measurement data to obtain a CT image.
  • the reconstructed CT image is displayed on the display unit, and is stored in the storage unit as image data together with the imaging conditions.
  • step S111 When the X-ray CT apparatus is driven, measurement preparation is first started in step S111. Specifically, the user inputs measurement conditions such as scan speed, measurement range, focus size, slice thickness, tube voltage and tube current from the operation console 1, and these measurement conditions are transmitted to the system control unit 4. .
  • measurement conditions such as scan speed, measurement range, focus size, slice thickness, tube voltage and tube current from the operation console 1, and these measurement conditions are transmitted to the system control unit 4. .
  • measurement start is instructed from the operation console 1 at an arbitrary timing, and the system control unit 4 transmits a necessary control signal to each device of the X-ray CT apparatus.
  • the system control unit 4 transmits necessary measurement conditions such as a scan speed to the scanner control unit 21 of the scanner 2, and the scanner control unit 21 rotates the rotating disk 19 so that the scan speed conforms to the received measurement conditions.
  • the X-ray source 22 and the detector 23 are rotated.
  • the system control unit 4 transmits a control signal related to the measurement range input to the bed control unit 5, and the bed control unit 5 moves the bed 3 on which the subject is placed in order to measure the input measurement range. Let Then, the system control unit 4 transmits X-ray exposure conditions such as focus, slice thickness, and anode drive to the X-ray control unit 26 according to the measurement conditions.
  • the X-ray control unit 26 receives a control signal related to the X-ray exposure timing for performing X-ray exposure at a desired scanner angle and measurement range from the system control unit 4, and in accordance with the X-ray exposure conditions, Controls X-ray output from 22
  • step S112 the system control unit 4 monitors reception of communication permission information from the X-ray control unit 26 during measurement. That is, when the system control unit 4 receives communication permission information in step S112, the process proceeds to step S113, and the system control unit 4 transmits a communication permission signal for performing communication processing according to the communication permission information to each device.
  • the communication permission signal is a signal for performing communication processing between the respective devices while avoiding the ON / OFF switching timing of the semiconductor switching element of the inverter 252.
  • the devices that have received the communication permission information from the system control unit 4 perform communication processing with each other while avoiding the switching timing of the inverter 22 during X-ray exposure (during X-ray inverter operation). That is, sequentially, in step S114, the X-ray detector 23 transmits the measurement data collected during the communication permitted period to the operation console 1 via the system control unit 4.
  • step S115 the scanner control unit 21 sends the variable tube current control information to the X-ray control unit 26 so as to obtain an optimum X-ray tube current value according to the rotation angle of the rotary disk 19 and the position of the bed 3. Send to.
  • step S116 the X-ray control unit 26 receives detection data from the X-ray detector 23 via the system control unit 4, and corrects the focal position of the X-ray tube 22, jumping focus control, and dynamics of exposure reduction. Communicates data for performing various collimator controls.
  • step S117 the failure monitoring unit 28 collects failure monitoring information such as current, voltage, vibration, temperature, etc. of each device and transmits it to the system control unit 4.
  • step S118 the image calculation unit included in the operation console 1 receives measurement data and X-ray focal position information via the system control unit 4, performs image reconstruction based on these, and system control unit The failure monitoring information is received via 4, and based on this, image correction and warning notification are performed as necessary.
  • step S119 the system control unit 4 determines whether or not the measurement is finished. If the measurement is not finished, the system control unit 4 returns to step S112 and continues the processes from step S112 to S118. When the measurement is finished, the system control unit 4 finishes the process.
  • the high voltage control of the X-ray high voltage apparatus feedback control of the inverter 252 by the X-ray control unit 26
  • the transmission of communication permission information by the X-ray control unit 26 This will be described with reference to the flowchart of FIG.
  • step S211 in accordance with control signals from the operation console 1 and the system control unit 4, the X-ray control unit 26 starts preparation for irradiating X-rays under X-ray exposure conditions. Specifically, the X-ray control unit 26 rotation driving unit 222 is controlled to start rotation of the anode of the X-ray tube 22 and cooling of the anode by the cooling unit 223 is started.
  • step S212 the X-ray control unit 26 starts the X-ray exposure by outputting control signals to the converter drive circuit of the converter 251 and the inverter drive circuit of the inverter 252 to start the operation. Specifically, the X-ray control unit 26 receives a control signal of the X-ray control unit 26 from the converter drive circuit of the converter 251, and turns on / off the semiconductor switch of the converter 251 at a designated cycle. Drive signal is generated and output to the semiconductor switching element.
  • the inverter drive circuit of the inverter 252 receives the control signal of the X-ray control unit 26, and generates a drive signal having a pulse waveform that turns on / off the plurality of semiconductor switching elements of the inverter circuit at a designated cycle. , Respectively, to the semiconductor switching element.
  • converter 251 converts the AC power of AC power supply 10 into a DC voltage
  • inverter 252 converts the DC voltage output from converter 251 into an AC voltage having a predetermined frequency (for example, 10 to 20 kHz).
  • the high voltage generator 253 boosts the AC voltage from the inverter 252, rectifies and smoothes it, and supplies it to the X-ray tube 22. Therefore, X-ray exposure from the X-ray tube 22 is started.
  • the X-ray control unit 26 detects the tube voltage value of the X-ray tube 22 at a predetermined feedback cycle (for example, 100 ⁇ s cycle (10 kHz)), and the detected value and the operation console 1 set the detected value. A difference from the target value is obtained, and feedback control is performed to increase / decrease the output of the inverter 252 (increase / decrease the PWM value) so that a desired tube voltage is obtained. That is, the X-ray control unit 26 performs feedback control for adjusting the inverter drive circuit of the inverter 252 by, for example, PWM control or phase shift PWM control according to the difference between the detected tube voltage and the target value, for a predetermined period ( For example, a cycle of 100 ⁇ s).
  • a predetermined feedback cycle for example, 100 ⁇ s cycle (10 kHz)
  • the X-ray control unit 26 obtains the difference from the tube voltage received at a certain period of a predetermined feedback period (for example, 100 ⁇ s period), generates a control signal (PWM value) according to the difference, Output to the inverter drive circuit.
  • the inverter drive circuit modulates the pulse width and phase of the pulse waveform for driving the semiconductor switching element with the received PWM value in the period following the period of receiving the PWM value, and increases or decreases the output of the inverter 252.
  • step S213 the X-ray control unit 26 performs feedback control in a predetermined feedback cycle (for example, a 100 ⁇ sec cycle), so when a certain PWM value is output to the inverter 252, the next cycle (100 ⁇ sec) After), the semiconductor switching element of the inverter 252 is switched at the timing modulated by the designated PWM value.
  • a predetermined feedback cycle for example, a 100 ⁇ sec cycle
  • a large noise is generated during the period when the semiconductor switching element is switched. That is, the X-ray control unit 26 knows the timing of noise generation one cycle before the noise generated by switching occurs.
  • step S214 the X-ray control unit 26 generates communication permission information indicating whether communication is possible based on the grasped switching timing. This communication permission information indicates that communication cannot be performed at the next switching timing, but communication is permitted until then.
  • the communication permission information generated by the X-ray control unit 26 may be the PWM value itself, or may be information indicating how many seconds after the previous switching the switching timing from the PWM value is.
  • the X-ray control unit 26 transmits communication permission information to the system control unit 4.
  • the system control unit 4 sets a switching period in which noise due to switching occurs as a communication prohibition period in order to perform communication while avoiding switching timing. For example, a predetermined switching period (several microseconds) from the switching timing is set as the communication prohibition period. Alternatively, a predetermined period before and after the switching timing may be set as the communication prohibition period.
  • the system control unit 4 communicates with the connected operation console 1, the scanner control unit 21, the X-ray detector 23, the bed control unit 5, the X-ray control unit 26, etc. during the communication permission period before the communication prohibition period.
  • FIG. 6 shows a timing chart showing the relationship between the switching period in which processing is performed and the communication period.
  • the time of “communication time + switching period” is taken as the communication prohibition period based on this I can leave.
  • the system control unit 4 calculates the communication time until the communication data (communication frame) is completed from the maximum communication data length assumed in advance and the communication speed of the transmission path (data length ⁇ communication speed). That is, the communication time is obtained from the length of data to be communicated, and when the communication time is longer than the predetermined time, a time equal to the communication time is added as an additional communication prohibited period before the communication prohibited period.
  • the communication prohibition period is 8 ⁇ s of 5 ⁇ s + 3 ⁇ s.
  • step S216 the system control unit 4 determines whether or not the measurement by the X-ray CT apparatus has been completed. If not, the system control unit 4 returns to step S212 and repeats the above-described processing. When the measurement by the X-ray CT apparatus is finished, the process is finished.
  • whether communication is possible is determined based on communication permission information generated by grasping in advance the switching timing of the semiconductor switching element in the inverter of the X-ray high voltage apparatus. Therefore, communication processing can be performed while avoiding switching timing in the X-ray high voltage apparatus, and the communication processing is not affected by switching noise. Therefore, without increasing the size and cost of the X-ray imaging apparatus, it is possible to reduce the influence of noise caused by the X-ray high voltage apparatus and improve the communication speed and reliability between the units.
  • step S214 the X-ray control unit 26 has described the configuration in which the communication prohibition period is set for the switching timing of the inverter 252.
  • a prohibition period may be set.
  • the X-ray control unit 26 outputs communication permission information indicating switching timing for prohibiting communication, and the system control unit 4 sets a communication prohibition period after or before and after the switching timing.
  • the X-ray control unit 26 may output not only the switching timing but also information in which the communication prohibition period is set to the switching timing to the system control unit 4 as communication permission information.
  • the so-called photon counting type X-ray detector for detecting X-ray energy collects measurement data for each of several types of X-ray energy, so that the communication data to be transmitted greatly increases. Therefore, by applying the X-ray high-voltage device 25 described above to an X-ray imaging apparatus having a photon counting type X-ray detector, high-speed and highly reliable communication is possible.
  • the system control unit 4 is set to the switch-on period or the sum of the switch-on period and the communication time as a period for prohibiting communication. It is also possible to deform as shown in FIG.
  • the magnitude of switching noise is generally greatly influenced by the rising and falling slopes of the voltage and current at the time of switching, and the noise becomes larger as the slope of the current and voltage becomes steeper.
  • the threshold is set according to the rising and falling slopes of the voltage and current to determine whether communication is possible.
  • Fig. 7 shows an example of the inverter current waveform.
  • the inverter current waveform in the steady state of the X-ray output is determined according to the X-ray conditions (tube current and tube voltage), and is the same waveform every time under the same X-ray exposure conditions. Therefore, by conducting an experiment in advance and measuring the current waveform of the inverter in advance, it is possible to predict the slope of the current waveform of the inverter under the X-ray exposure conditions.
  • a threshold value is set in advance, and the system control unit 4 sets a period with a certain slope or more as a communication prohibited period.
  • the system control unit 4 refers to the table and sets a period during which the current gradient is greater than or equal to a certain value as a communication prohibited period.
  • the system control unit 4 has means for obtaining the slope (differential value) in real time from the result of detecting the inverter current value in real time, and the current slope is not less than a certain value. It is also possible to make the communication prohibited state during this period.
  • a means for obtaining the differential value an analog circuit may be used, or a value obtained by AD converting the inverter current value detected in real time is input to the CPU constituting the system control unit 4, and the differential value is calculated by the CPU. May be performed.
  • variable tube current control to reduce X-ray exposure, the tube current changes significantly during X-ray exposure, and the inverter current waveform changes accordingly.
  • a method for obtaining the inclination is suitable.
  • Modification 2 In the second modification, as shown in FIG. 8, in the X-ray CT apparatus, the system control unit 4, the scanner control unit 21, the X-ray detector 23, and the abnormality monitoring unit 28 are connected via the X-ray control device 26.
  • the communication configuration is connected to a line type or a ring type.
  • the communication speed of the token is sufficiently higher (eg, several M to several Gbps) than the switching speed of the inverter 252 (eg, 10 kHz). Then, the X-ray control device 26 schedules the communication timing so as to avoid the switching timing, and permits the communication only at the timing that does not overlap with the switching of the inverter 252.
  • the token cannot be used from other devices and cannot be transmitted from other devices. Communication is disabled. As a result, communication is not performed during the switching period, and communication processing is performed as shown in the timing chart of FIG.
  • Modification 3 In the third modification, as shown in FIG. 9, the X-ray control device 26, the system control unit 4, the scanner control unit 21, the X-ray detector 23, and the abnormality monitoring unit 28 are connected in a bus configuration. It has become. This is a communication configuration generally used in Ethernet and CAN (controller area network). Called CSMA (Carrier Sense Multiple Access), each unit's communication device checks in advance whether communication data exists on the communication path and starts transmission only when it does not exist. This is a method for avoiding communication collision.
  • CSMA Carrier Sense Multiple Access
  • the X-ray control device 26 occupies a communication path by transmitting dummy data onto the bus during a period near switching so that communication is not started from other communication devices. As a result, communication is not performed during the switching period, and the communication processing timing is as shown in the timing chart of FIG.
  • the time of “communication time + switching period” is set to the communication prohibited state. It is preferable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

X線撮像装置を大型化及び高コスト化させることなく、X線高電圧装置によるノイズの影響を低減させて、X線撮像装置の各ユニット間の通信の高速化及び信頼性を向上させる。 X線を発生させて画像を取得するX線撮像装置に適用され、交流電源から供給された電力を直流電圧に変換するコンバータと、前記直流電圧を交流電圧に変換するインバータと、前記交流電圧を昇圧して高電圧を発生する高電圧発生器と、少なくとも前記インバータを制御する制御部を備え、該制御部が、前記インバータが備える複数の半導体スイチング素子の動作の切り替えのタイミングに基づいて前記X線撮像装置に含まれる機器間の通信の可否を示す通信許可情報を出力するX線高電圧装置を提供する。

Description

X線高電圧装置及びX線撮像装置
 本発明は、複数の電力変換回路を有するX線高電圧装置、及びX線高電圧装置を備えるX線CT装置等のX線撮像装置に関する。
 X線CT装置は、X線源とX線源に対向して配置された検出器とを被検体の周囲で回転させながら、X線源から照射され被検体を透過したX線を検出器により検出する。これにより得られる複数角度からの投影データを用いて被検体の断層画像を取得する。X線CT装置で取得された画像は、表示装置に表示されて画像診断に供される。
 X線CT装置において画像を取得する際には、X線源、X線源に高電圧を供給するX線高電圧装置、X線高電圧装置を制御するX線制御ユニット、検出器、操作卓、画像を生成する画像生成ユニット、これらの各装置を制御する制御ユニット等が、相互に必要な制御信号の送受信やデータ転送、すなわち通信を行っている。
 近年、検出器の高精細化、マルチスライス化、被曝低減の要請によりX線CT装置に備えられる各ユニットに対する制御は煩雑化する傾向にある。また、X線CT装置の異常監視・故障予知を目的としたビッグデータ解析等、通信データの情報量は増加し、通信速度の高速化、信頼性向上、遅延のないリアルタイム通信等が求められている。
 ところで、X線CT装置では、高出力のX線曝射を行うためにX線高電圧装置によりX線源に電力を供給している。X線高電圧装置は、高出力のコンバータ回路やインバータ回路を有し、これらの回路のオン/オフを適宜切り替えることにより電力系統からの交流電圧から所望の電圧値の高周波交流電圧に変換している。X線高電圧装置では、この各回路のオン/オフの切り替え時に、大きなスイッチングノイズを発生してしまう。つまり、X線CT装置において、X線高電圧装置が大きなノイズ源となり、X線CT装置を構成する各装置間のデータ通信の高速化、信頼性の向上が困難となる。
 このため、例えば、特許文献1に開示されたX線高電圧装置では、ノイズが生じたことによる周辺機器への誤動作を低減するために、X線管によるX線曝射時に、X線曝射条件に応じてX線高電圧装置が備える複数の半導体電力変換回路のうち、一部の半導体電力変換回路内の半導体スイッチング素子の動作を停止させてノイズ発生量を低減させている。
 具体的には、高出力、短時間のX線照射による一般撮影の場合には、ロータ制御を停止させ、低中出力、中長時間のX線照射による透視撮影の場合には、コンバータ制御を停止させることで、ノイズの発生量を低減させることで、ノイズによる影響を抑制している。
特開2011-165446号公報
 しかしながら、上述した特許文献1のX線高電圧装置では、複数の半導体電力変換回路のうちの何れかを停止させるので、撮影動作に制限が生じてしまう。また、特許文献1のX線高電圧装置は、一般撮影や透視撮影を行うX線撮影装置に適用することを前提としており、これをこのままX線CT装置に適用することは困難である。つまり、X線CT装置では、X線撮影装置に比して、はるかに長時間かつ高出力のX線曝射を継続して画像を取得するので、特許文献1のX線高電圧装置のように何れかの半導体電力変換回路を停止させてしまうと、所望の画像を取得することができない。
 さらに、X線CT装置では、X線源と検出器とを高速で回転する回転盤に配置しており、回転盤を回転させながら検出器で検出した信号等を、スリップリングを介して他のユニットに送信している。つまり、X線CT装置において、回転盤に設けられた検出器等と他のユニットとの間の通信接続はスリップリングのみで行われているため、例えば、アースを強化する、アースを分離する等のノイズ対策部品を追加することが困難である。
 また、X線高電圧装置を遮蔽する、又は、他のユニットから距離を置いて配置する等は、X線CT装置の大型化及び高コスト化を招来する。
 本発明は上記実情に鑑みてなされたものであり、X線撮像装置を大型化及び高コスト化させることなく、X線高電圧装置によるノイズの影響を低減させて、各ユニット間の通信の高速化及び信頼性を向上させることを目的とする。
 上記課題を解決するために、本発明は以下の手段を提供する。
 本発明の一態様は、X線管に管電圧を供給してX線を発生させるX線高電圧装置であって、交流電源から供給された電力を直流電圧に変換するコンバータと、前記直流電圧を交流電圧に変換するインバータと、前記交流電圧を昇圧して高電圧を発生する高電圧発生器と、少なくとも前記インバータを制御する制御部を備え、該制御部が、前記インバータが備える複数の半導体スイッチング素子の動作の切り替えのタイミングに基づいてX線撮像装置に含まれる機器間の通信の可否を示す通信許可情報を出力するX線高電圧装置を提供する。
 本発明によれば、X線CT装置を大型化及び高コスト化させることなく、X線高電圧装置によるノイズの影響を低減させて、各ユニット間の通信の高速化及び信頼性を向上させることができる。
本発明の実施形態に係るX線CT装置の概略を示すブロック図 本発明の実施形態に係るX線高電圧装置の概略構成を示すブロック図 本発明の実施形態に係るX線CT装置の各装置の接続関係を示す概略図 本発明の実施形態に係るX線CT装置における計測処理の流れを示すフローチャート 本発明の実施形態に係るX線高電圧装置における電圧制御の流れを示すフローチャート 本発明の実施形態に係るX線CT装置における、インバータのスイッチング期間と通信期間の関係を示すタイミングチャート インバータの電流波形の一例 本発明の実施形態の変形例2にX線CT装置の各装置の接続関係を示す概略図 本発明の実施形態の変形例3にX線CT装置の各装置の接続関係を示す概略図
 以下、本発明の一実施形態について、図面を参照して説明する。
 本発明に係るX線高電圧装置は、X線を発生させて画像を取得するX線撮像装置に適用され、電力系統の交流電源から供給された電力を直流電圧に変換するコンバータと、直流電圧を交流電圧に変換するインバータと、交流電圧を昇圧して高電圧を発生する高電圧発生器と、少なくともインバータを制御する制御部を備え、制御部が、インバータが備える複数の半導体スイチング素子の動作の切り替えのタイミングに基づいてX線撮像装置に含まれる機器間の通信の可否を示す通信許可情報を出力する。
 この通信許可情報は、半導体スイッチング素子のオンとオフとの切り替え時に通信を禁止とする情報である。
 したがって、X線高電圧装置は、インバータにおける半導体スイッチング素子のスイッチングのタイミングに基づいて通信の可否を示す通信許可情報を生成する。従って、X線高電圧装置が適用されたX線CT装置等のX線撮像装置では、この通信許可情報に従い、X線高電圧装置におけるスイッチングのタイミングを避けて通信処理を行うことができる。このため、通信処理の際にスイッチングノイズの影響を受けることがない。
 よって、X線撮像装置を大型化及び高コスト化させることなく、X線高電圧装置によるノイズの影響を低減させて、各ユニット間の通信の高速化及び信頼性を向上させることができる。
 以下、より具体的に実施形態に係るX線高電圧装置について図面を参照して説明する。
本実施形態においては、X線高電圧装置がX線CT装置に適用されている例について説明する。
 図1にX線CT装置の全体構成図を、図2にX線高電圧装置の構成図を示す。X線CT装置は、操作コンソール1と、スキャナ2と寝台3とシステム制御部4とを備えている。
 操作コンソール1は、図示しない入力部と、画像演算部と、表示部と、記憶部と、システム制御部とを備えている。
 入力部は、具体的にはキーボードやポインティングデバイス等を適用することができ、例えば、被検体氏名、検査日時、撮影条件などを入力する。画像演算部は、後述するX線検出器23から送出される計測データを演算処理してCT画像再構成を行うものであり、具体的には演算処理を実行するCPU、若しくは専用の演算回路を適用することができる。表示部は、画像演算部で作成されたCT画像を表示し、記憶部はX線検出器23で収集されたデータ及び画像演算部で作成されたCT画像の画像データを記憶する。
 スキャナ2は、回転円盤19と、X線管22と、X線検出器23と、スキャナ制御部21と、X線高電圧装置25と、異常監視部28とを備えている。
 回転円盤19は、寝台3上に搭載された被検体が入る開口部191を備えると共に、X線管22とX線検出器23を搭載し、被検体の周囲を回転する。回転円盤19は、スキャナ制御部21からの制御信号に従って、図示しない回転駆動部により駆動及び制御される。
 X線管22は、回転円盤19上に配置され、入力部から入力された撮影条件(管電圧等)に応じて、X線高電圧装置25によって制御された管電流および管電圧が供給される。
 X線検出器23は、回転円盤19上にX線管22と対向配置され、被検体を透過したX線を検出する複数の検出素子(図示せず)を回転円盤19の回転方向(チャンネル方向ともいう)に配置した構成である。複数の検出素子は、回転方向の並びを1列としたときに、この列を回転円盤19の回転軸方向(スライス方向ともいう)に多列(例えば64列)並べたものであっても良い。X線検出器23は複数の検出素子から検出されたX線を所定の電気信号に変換して計測データを生成し、スキャナ制御部21に出力する。
 スキャナ制御部21は、システム制御部4からの制御信号に従って、回転円盤19に含まれる回転駆動部及びX線管22にコリメータが設けられている場合にはコリメータを制御するコリメータ制御部を制御する。
 X線高電圧装置25については後述する。
 異常監視部28は、スキャナ2の異常を監視し、各装置の電流や電圧や振動や温度等の故障監視情報を収集してシステム制御部4に送信すると共に、異常を検知した場合にシステム制御部4に通知する。
 寝台3は、被検体を載せて上下動および前後動(回転円盤19の回転軸方向の移動)を行う。寝台3は、寝台制御部5を含み、寝台制御部5によりその移動を制御される。図1では、図示の都合上、寝台3がスキャナ2から離れた位置に描かれているが、実際には寝台3はスキャナ2の近傍に配置され、円盤19の開口部191内に被検体を配置する。
 システム制御部4は、操作コンソール1の入力部から入力される指示に従って、操作コンソール1に含まれる画像演算部、表示部等や、スキャナ制御部21、X線検出器23、寝台制御部5、X線高電圧装置25内のX線制御部26等を含むX線CT装置全体を制御する。
 すなわち、本実施形態におけるX線CT装置の制御系の通信の接続形態は、図3に示すように、システム制御部4を中心としたスター型ネットワークとなっている。すなわち、X線CT装置のうち、寝台制御部5、スキャン制御部21、X線検出器23、X線制御部26、異常監視部28はスレーブとし、システム制御部4をマスターとしたマスタースレーブ形式の通信を行い、システム制御部4からの制御信号に従って動作する。
 続いて、X線高電圧装置25について説明する。
 図2に示すように、X線高電圧装置25は、交流電源10とX線管22とに接続され、交流電源10から供給された交流電圧を直流高電圧に変換し、X線管22に印加する。このため、X線高電圧装置25は、コンバータ251、インバータ252、高電圧発生部253、及びこれらを制御するX線制御部26を備えている。
 図2に示すように、コンバータ251の後段にはインバータ252が接続され、インバータ252の後段には高電圧発生部253が接続されている。
 コンバータ251は、1以上のスイッチング素子(図示せず)と、スイッチング素子をON/OFFするパルス波形の駆動信号を生成するコンバータ駆動回路とを備えている。
 スイッチング素子をコンバータ駆動回路からの駆動信号によりON/OFFすることにより、3相または単相の交流電源10から供給される交流電圧を直流電圧に変換する。コンバータ駆動回路の動作および生成するパルス波形のON/OFFの周期は、X線制御部26が制御する。
 インバータ252は、コンバータ251からの直流電圧を交流電圧に変換する。具体的には、インバータ252は、複数の半導体スイッチング素子(図示せず)を備えるインバータ回路と、インバータ回路の各スイッチング素子をON/OFFするパルス波形の駆動信号を生成して各スイッチング素子に出力するインバータ駆動回路とを有する。インバータ駆動回路は、X線制御部26から受け取った制御信号に応じたタイミング(周期および位相)で複数の半導体スイッチング素子のON/OFFを切り替えるため、駆動信号のパルス波形の周期や位相を調整する。
 高電圧発生部253は、インバータ252からの交流電圧を昇圧し、昇圧された交流電圧を整流及び平滑して、X線管22に印加するための直流の高電圧を発生する。
 X線制御部26は、システム制御部4からの制御信号に従って、上述したコンバータ251及びインバータ252を制御する。
 具体的には、高電圧発生部253から発生されX線管22に印加される直流高電圧の電圧値を予め設定された目標管電圧値に略一致させるように、図示しない検出回路により検出されたインバータ252又は各高電圧発生部253の出力信号に応じてインバータ252を制御する。
 X線制御部26は、インバータ252又は高電圧発生部253の出力信号に基づく信号と、目標管電圧の電圧値に基づく電圧信号との比較に基づいてインバータ252をフィードバック制御する。X線制御部26によるインバータ252の制御は、半導体スイッチング素子のONとOFFとを切り替えることにより行われる。
 なお、X線高電圧装置25のうち、例えば、高電圧発生部253は、回転円盤19に搭載され、回転円盤19と共に回転する。他の構成は、回転円盤19には搭載されず、静止している。
 ところで、インバータ252は、その動作中において、半導体スイッチング素子のONとOFFとの切り替え時、すなわち、電圧電流の立上り及び立下り中の過渡状態に大きなノイズを発生する。そして、このノイズが、X線高電圧装置25のみならず、X線高電圧装置25を備えるX線CT装置に影響を及ぼし、特に、X線CT装置を構成する各装置間の通信の高速化及び信頼性を妨げる虞がある。そこで、X線制御部26は、ノイズの大きい期間である半導体スイッチング素子のONとOFFとの切り替え時に関するスイッチング情報に基づいて機器間の通信の可否を示す通信許可情報をシステム制御部4に送信する。
 システム制御部4では、X線制御部26から通信許可情報を受信して、インバータ252の半導体スイッチング素子の切り替え時にノイズの大きい期間は各装置間での通信を行わなわないように通信停止情報をX線CT装置を構成する各装置に送信する。これにより、各装置間では、半導体スイッチング素子のONとOFFとの切り替え時には通信を行わず、半導体スイッチング素子のONとOFFとの切り替えが完了して定常状態になったときに通信を行う。
 なお、回転駆動部222は、X線管22の陽極が電子の衝突により溶融するのを防止するためにモータ221を制御することにより陽極を回転させる。冷却部223は、陽極を、例えば油冷により冷却する。
 このように構成されたX線CT装置では、X線管22から照射され被検体を透過したX線が、X線検出器23のX線検出素子によって検出される。この間、回転円盤19は、X線管22とX線検出器23とを回転させることにより、被検体の各方向からX線が照射され、検出されるようにする。回転円盤19の回転速度は、操作コンソール1の入力部から入力された撮影条件(スキャン速度など)となるようにシステム制御部4を介して回転駆動部により制御される。また、X線が照射されて検出されている間、寝台3は、寝台制御部5により、被検体を体軸方向に移動させ、操作コンソール1から入力された撮影条件となるように動作する。
 X線検出器23により検出された出力信号は計測データとして収集され、操作コンソール1の画像演算部へ送出される。画像演算部は、計測データを再構成演算してCT画像とする。再構成されたCT画像は表示部に表示され、また撮影条件とともに画像データとして記憶部に記憶される。
 以下、このように構成されたX線CT装置における、計測、すなわち画像取得について、図4のフローチャートに従ってより具体的に説明する。
 X線CT装置が駆動されると、ステップS111において、まず計測準備が開始される。具体的には、ユーザが操作コンソール1から、スキャン速度、計測範囲、焦点サイズ、スライス厚、管電圧や管電流などの計測条件を入力し、これらの計測条件がシステム制御部4に送信される。
 そして、操作コンソール1から、任意のタイミングで計測開始が指示され、システム制御部4がX線CT装置の各装置に必要な制御信号を送信する。システム制御部4は、スキャン速度等必要な計測条件をスキャナ2のスキャナ制御部21へ送信し、スキャナ制御部21は受信した計測条件に従ったスキャン速度となるよう回転円盤19を回転させることにより、X線源22と検出器23を回転させる。
 また、システム制御部4は、寝台制御部5へ入力された計測範囲に係る制御信号を送信し、寝台制御部5では入力された計測範囲を計測するために被検体を載せた寝台3を移動させる。そして、システム制御部4は、計測条件に従って、焦点、スライス厚、陽極駆動などのX線曝射条件をX線制御部26に送信する。X線制御部26は、システム制御部4から所望のスキャナ角度や計測範囲でX線曝射を行うためのX線曝射のタイミングに関する制御信号を受け取り、X線曝射条件に従って、X線管22からのX線出力を制御する。
 続いて、ステップS112では、計測中に、システム制御部4が、X線制御部26から通信許可情報の受け取りを監視する。つまり、ステップS112において、システム制御部4が通信許可情報を受け取った場合には、ステップS113に進み、システム制御部4が各装置に、通信許可情報に従って通信処理を行うための通信許可信号を送信する。ここで、通信許可信号は、インバータ252の半導体スイッチング素子のON又はOFFの切り替えのタイミングを回避して各装置間の通信処理を行うための信号である。
 従って、システム制御部4から通信許可情報を受け取った各装置は、X線曝射中(X線インバータ動作中)に、インバータ22のスイッチングのタイミングを回避しながら、相互に通信処理を行う。つまり、順次、ステップS114において、X線検出器23は、通信が許可されている期間に収集した計測データを、システム制御部4を介して操作コンソール1へ送信する。
 ステップS115では、スキャナ制御部21が、回転円盤19の回転角度や寝台3の位置に応じて、最適なX線管電流値となるように、その可変管電流制御情報を、X線制御部26へ送信する。
 ステップS116では、X線制御部26は、システム制御部4を介してX線検出器23から検出データを受け取って、X線管22の焦点位置補正や、跳躍焦点制御や、被曝低減の動的なコリメータ制御などを行うためのデータの通信を行う。
 ステップS117では、故障監視部28が、各装置の電流や電圧や振動や温度等の故障監視情報を収集し、システム制御部4に送信する。
 ステップS118では、操作コンソール1に含まれる画像演算部が、計測データや、X線焦点位置情報を、システム制御部4を介して受け取って、これらに基づいて画像再構成を行うと共に、システム制御部4を介して故障監視情報を受け取って、これに基づいて必要に応じて、画像の補正や、警告通知を行う。
 ステップS119では、システム制御部4は、計測が終了したか否かを判定し、計測が終了していない場合には、ステップS112に戻り、ステップS112~S118までの処理を継続する。計測が終了した場合には、システム制御部4は、処理を終了する。
 続いて、本実施形態に係るX線CT装置における、X線高電圧装置の高電圧制御(X線制御部26によるインバータ252のフィードバック制御)および、X線制御部26による通信許可情報の送信について、図5のフローチャートに従って説明する。
 ステップS211では、操作コンソール1とシステム制御部4からの制御信号に従って、X線制御部26がX線曝射条件でX線を照射するための準備を開始する。具体的には、X線制御部26回転駆動部222を制御してX線管22の陽極の回転を開始させるとともに、冷却部223による陽極の冷却を開始させる。
 ステップS212では、X線制御部26は、コンバータ251のコンバータ駆動回路およびインバータ252のインバータ駆動回路にそれぞれ制御信号を出力して動作を開始させることにより、X線曝射が開始させる。具体的には、X線制御部26は、コンバータ251のコンバータ駆動回路は、X線制御部26の制御信号を受け取って、コンバータ251の半導体スイッチを、指示された周期でON/OFFするパルス波形の駆動信号を生成して、半導体スイッチング素子に出力する。
 また、インバータ252のインバータ駆動回路は、X線制御部26の制御信号を受け取って、インバータ回路の複数の半導体スイッチング素子を、指示された周期でON/OFFするパルス波形の駆動信号を生成して、それぞれ半導体スイッチング素子に出力する。
 これにより、コンバータ251は、交流電源10の交流電力を直流電圧に変換し、インバータ252は、コンバータ251の出力する直流電圧を所定の周波数(例えば10~20kHz)の交流電圧に変換する。高電圧発生部253は、インバータ252からの交流電圧を昇圧し、整流および平滑化してX線管22に供給する。よって、X線管22からX線の曝射が開始される。
 ステップS213では、X線制御部26が、所定のフィードバック周期(例えば100μ秒周期(10kHz))で、X線管22の管電圧値を検出し、その検出値と、操作コンソール1によって設定された目標値との差分を求め、所望の管電圧が得られるよう、インバータ252の出力を増減(PWM値を増減)させるフィードバック制御を行う。すなわち、X線制御部26は、検出した管電圧と目標値との差分に応じて、インバータ252のインバータ駆動回路を、例えばPWM制御や位相シフトPWM制御により調整するフィードバック制御を、所定の周期(例えば100μ秒周期)で行う。
 具体的には、X線制御部26は、所定のフィードバック周期(例えば100μ秒周期)のある周期で受け取った管電圧から上記差分を求め、差分に応じた制御信号(PWM値)を生成し、インバータ駆動回路に出力する。インバータ駆動回路は、PWM値を受け取った周期の次の周期で、半導体スイッチング素子を駆動するパルス波形のパルス幅や位相を、受け取ったPWM値によって変調し、インバータ252の出力を増減する。
 このようにステップS213では、X線制御部26が、所定のフィードバック周期(例えば100μ秒周期)でフィードバック制御を行うため、あるPWM値がインバータ252に出力されると、その次の周期(100μ秒後)に、指定されたPWM値で変調されたタイミングで、インバータ252の半導体スイッチング素子のスイッチングが行われる。
 この半導体スイッチング素子がスイッチングされている期間に、大きなノイズが発生することとなる。すなわち、X線制御部26は、スイッチングによるノイズが発生する1周期前に、ノイズ発生のタイミングを把握している。
 そこで、ステップS214において、X線制御部26は、把握しているスイッチングのタイミングに基づいて通信の可否を示す通信許可情報を生成する。この通信許可情報は、次のスイッチングを行うタイミングにおいては通信できないが、それまでは通信が許可されることを示す。X線制御部26が生成する通信許可情報は、PWM値そのものであってもよいし、PWM値から次のスイッチングタイミングが、前回のスイッチングから何μ秒後かを示す情報であってもよい。
 そして、次のステップS215において、X線制御部26は、通信許可情報をシステム制御部4に送信する。これにより、システム制御部4は、スイッチングのタイミングを回避して通信を行うために、スイッチングによるノイズが発生するスイッチング期間を通信禁止期間として設定する。たとえば、スイッチングのタイミングから予め定めたスイッチング期間(数μ秒)を通信禁止期間とする。または、スイッチングのタイミングの前後の予め定めた期間を通信禁止期間と設定してもよい。システム制御部4は、通信禁止期間の前の通信許可期間に、接続されている操作コンソール1や、スキャナ制御部21、X線検出器23、寝台制御部5、X線制御部26等と通信処理を行うスイッチング期間と通信期間の関係を示すタイミングチャートを図6に示す。
 なお、通信データ長が長く、通信許可期間の最後に送信した通信データの通信時間がスイッチング期間に重なる虞がある場合は、それを踏まえて「通信時間+スイッチング期間」の時間を通信禁止期間としておくことができる。通信時間は、予め想定した通信データの最大長と、その伝送路の通信速度から、その通信データ(通信フレーム)が通信完了するまでの通信時間をシステム制御部4が算出する(データ長÷通信速度)。すなわち、通信するデータの長さから通信時間を求め、通信時間が所定時間よりも長い場合、通信禁止期間の前に、通信時間と等しい時間を追加の通信禁止期間として追加する。
 例えば、ある通信データの通信時間が5μ秒、スイッチング期間が3μ秒ならば、5μ秒+3μ秒の8μ秒を通信禁止期間とする。
 次のステップS216では、システム制御部4は、X線CT装置による計測が終了したか否かを判定し、終了していない場合には、ステップS212に戻り上述した処理を繰り返す。X線CT装置による計測が終了した場合には処理を終了する。
 以上説明したように、本実施形態によれば、X線高電圧装置のインバータにおける半導体スイッチング素子のスイッチングのタイミングを予め把握して生成された通信許可情報に基づいて通信の可否を決定する。従って、X線高電圧装置におけるスイッチングのタイミングを避けて通信処理を行うことができ、通信処理においてスイッチングノイズの影響を受けることがない。よって、X線撮像装置を大型化及び高コスト化させることなく、X線高電圧装置によるノイズの影響を低減させて、各ユニット間の通信の高速化及び信頼性を向上させることができる。
 なお、上記ステップS214において、X線制御部26は、インバータ252のスイッチングのタイミングに、通信禁止期間を設定する構成を説明したが、これに加えて、コンバータ251のスイッチング素子のスイッチングタイミングにも通信禁止期間を設定してもよい。これにより、インバータ252のみならずコンバータ251のスイッチングによるノイズも避けて通信処理を行うことができ、さらに通信の高速化と信頼性向上を図ることができる。
 上記ステップS213,S214では、X線制御部26が、通信を禁止するスイッチングタイミングを示す通信許可情報を出力し、システム制御部4が、スイッチングタイミングの後、または、前後に通信禁止期間を設定する構成であったが、X線制御部26が、スイッチングタイミングのみならず、スイッチングタイミングに通信禁止期間を設定した情報を通信許可情報としてシステム制御部4に出力してもよい。
 また、スイッチングノイズが生じた状態で通信を行った場合には、誤り訂正符号技術を用いても、誤りを訂正することが困難であるという問題があったが、本実施形態のように、スイッチングノイズの影響を受けずに通信を行うことで、誤り訂正符号技術を適用することによる効果が期待できる。従って、容易にランダムノイズ対策を行うことができ、通信の高速化、通信のエラー低減、通信プロトコル及び通信デバイスの簡略化、実装コスト低減、ノイズ対策を講じることによる実装面積の増加抑制、低品質、低コストの通信伝送路採用、イズ対策部品の削減、実装コスト低減を図ることができる。
 さらに、スイッチングノイズによる連続したバースト誤りを回避でき、誤り訂正符号に適した、ランダム誤りのみを考慮すればよいこととなり、低コストで高品質な通信が可能となる。
 なお、X線のエネルギーを検出する所謂フォトンカウンティング形式のX線検出器では、数種類のX線のエネルギー毎にそれぞれの計測データを収集するため、送信する通信データは大きく増加することとなる。従って、フォトンカウンティング形式のX線検出器を備えたX線撮像装置に上述したX線高電圧装置25を適用することで、高速かつ信頼性の高い通信が可能となる。
 (変形例1)
 上述した実施形態においては、システム制御部4は、スイッチン期間または、スイッチン期間と通信時間の和を通信を禁止する期間としたが、少しでも通信を禁止する期間を短縮するために、以下のように変形することも考えられる。
 スイッチングノイズの大きさは、一般的に、スイッチングの際のその電圧や電流の立上り及び立下りの傾きに大きく影響され、その電流・電圧の傾きが急峻であるほど、ノイズが大きくなる。そこで、この電圧や電流の立上り及び立下りの傾きの度合いに応じて、その閾値を設けて、通信の可否を判定することとする。
 図7に、インバータの電流波形の一例を示す。
 X線出力の定常状態でのインバータ電流波形はX線条件(管電流と管電圧)に応じて定まり、同じX線曝射条件である場合には、毎回同じ波形となる。従って、事前に実験を行い、予めインバータの電流波形を測定しておくことにより、そのX線曝射条件でのインバータの電流波形の傾きを予測することができる。
 そして、インバータの電流波形に基づいて、図7に示すように、閾値を予め設定しておき、システム制御部4は、一定以上の傾きである期間を通信禁止期間とすることとする。
 これにより、電流変化中の過渡状態であっても、電流変化の傾きの小さい期間(ノイズの小さい期間)の通信を可能とする。
 X線出力が大きいほど、インバータに流れる電流も大きくなり、その分、通信禁止期間も長くなると想定される。そこで、管電流や管電圧のX線条件の組合せ毎に、予めインバータ電流を実験により測定しておき、実験データの全ての組合せをテーブルとして、システム制御部4内のメモリに格納しておくことができる。これにより、システム制御部4は、テーブルを参照し、電流の傾きが一定以上となる期間を通信禁止期間として設定する。
 この他、このようなテーブルを用いずに、システム制御部4は、インバータ電流値をリアルタイムに検出した結果から、その傾き(微分値)をリアルタイムに求める手段を有し、電流の傾きが一定以上となる期間を通信禁止状態とすることもできる。この微分値を求める手段としては、アナログ回路であってもよいし、リアルタイムに検出したインバータ電流値をAD変換した値を、システム制御部4を構成するCPUへ入力してCPUで微分値の演算を行ってもよい。X線被曝低減のための可変管電流制御においては、X線曝射中に管電流が一定でなく大きく変化し、それに伴い、インバータ電流波形も大きく変化するため、リアルタイムに電流値の微分値で傾きを求める方法は好適である。
 (変形例2)
 本変形例2では、図8に示すように、X線CT装置において、X線制御装置26を経由して、システム制御部4、スキャナ制御部21、X線検出器23、異常監視部28が、ライン型、またはリング型に接続された通信構成となっている。
 これは、トークンリング、またはトークンパッシング方式と呼ばれる通信構成であり、トークンと呼ばれる通信許可を示す通信フレームを、順々に、各装置へ受け渡していくことにより通信を行う方式である。つまり、トークンを受け取っているデバイスのみが通信を行うことができる。
 トークンの通信速度は、インバータ252のスイッチング速度(例えば、10kHz)よりも、十分に高速(例えば数M~数Gbps)とする。そして、X線制御装置26が、スイッチングのタイミングを回避するように、通信のタイミングをスケジュールし、インバータ252のスイッチングと重ならないタイミングにのみ通信を許可する。
 スイッチング期間の付近となったときに、X線制御装置26がトークンを通過させない(またはトークンにダミーデータを載せる)ことにより、他の装置からはトークンを使用できない状態となり、他の装置から送信できない通信禁止状態となる。この結果、スイッチング期間は通信が行われないこととなり、通信処理は、図6に示すタイミングチャートのように行われる。
 (変形例3)
 本変形例3では、図9に示すように、X線制御装置26と、システム制御部4、スキャナ制御部21、X線検出器23、異常監視部28が、バス型に接続された通信構成となっている。これは、イーサーネットや、CAN(コントローラ・エリア・ネットワーク)で一般的に用いられている通信構成である。CSMA(キャリア・センス・マルチプル・アクセス)と呼ばれ、各ユニットの通信デバイスは、通信経路上に通信データが存在するか否かを事前に確認し、存在しない場合にのみ送信を開始することにより、通信の衝突を回避する方式である。
 X線制御装置26は、スイッチング付近の期間中に、バス上へ、ダミーデータを送信することにより通信路を専有し、他の通信デバイスから通信が開始されないようにする。この結果、スイッチング期間は通信が行われないこととなり、通信処理のタイミングは、図6に示すタイミングチャートのようになる。
 本変形例1~3においても、通信データ長が長く、その通信時間が、スイッチング期間に重なるおそれがある場合は、それをふまえ、「通信時間+スイッチング期間」の時間を通信禁止の状態としておくことが好ましい。
 1 操作コンソール、2 スキャナ、3 寝台、4 システム制御部、5 寝台制御部、10 交流電源、21 スキャナ制御部、22 X線管、23 X線検出器、25 X線高電圧装置、26 X線制御部、28 異常監視部、221 モータ、222 回転駆動部、223 冷却部、251 コンバータ、252 インバータ、253 高電圧発生部

Claims (11)

  1.  X線管に管電圧を供給してX線を発生させるX線高電圧装置であって、
     交流電源から供給された電力を直流電圧に変換するコンバータと、
     前記直流電圧を交流電圧に変換するインバータと、
     前記交流電圧を昇圧して高電圧を発生する高電圧発生器と、
     少なくとも前記インバータを制御する制御部を備え、
     該制御部が、前記インバータが備える複数の半導体スイッチング素子の動作の切り替えのタイミングに基づいてX線撮像装置に含まれる機器間の通信の可否を示す通信許可情報を出力するX線高電圧装置。
  2.  前記通信許可情報が、前記半導体スイッチング素子のオンとオフとの切り替え時に通信を禁止する情報である請求項1記載のX線高電圧装置。
  3.  前記制御部は、所定の周期で前記インバータの出力をフィードバック制御する構成であり、前記所定の周期のうち、ある周期で前記X線管に供給された管電圧と目標電圧との差分を求め、前記差分に応じて前記インバータを制御する制御信号を生成し、次の周期において前記制御信号によって前記インバータの半導体スイッチング素子のオンとオフの切り替えタイミングを調整し、
     前記制御部は、前記次の周期においては前記切り替えタイミングは通信禁止であり、それまでは通信許可であること示す通信許可情報を、前記次の周期の前の周期において出力することを特徴とする請求項2記載のX線高電圧装置。
  4.  前記制御部は、前記半導体スイッチング素子のオンとオフとの切り替え時に、所定の時間の通信禁止期間を設定することを特徴とする請求項2記載のX線高電圧装置。
  5.  前記制御部は、通信するデータの長さから通信時間を求め、前記通信時間が所定時間よりも長い場合、前記通信禁止期間の前に、前記通信時間と等しい時間を追加の通信禁止期間として追加することを特徴とする請求項4記載のX線高電圧装置。
  6.  前記制御部は、前記インバータの出力する電流波形の傾斜の大きさに応じて、前記通信禁止期間の長さを設定することを特徴とする請求項4記載のX線高電圧装置。
  7.  前記制御部は、インバータを制御するX線制御部と、通信を制御するシステム制御部とを有し、前記X線制御部が、前記通信許可情報を出力し、前記システム制御部が、前記通信許可情報に基づいて、前記通信を禁止することを特徴とする請求項2記載のX線高電圧装置。
  8.  前記制御部は、トークンリング方式で通信を行い、前記半導体スイッチング素子のオンとオフとの切り替え時には、トークンを通過させないことにより、通信を禁止することを特徴とする請求項2記載のX線高電圧装置。
  9.  前記制御部は、バスを介して通信を行う構成であり、前記半導体スイッチング素子のオンとオフとの切り替え時には、バスにダミーデータを送信して、バスを占有することにより、通信を禁止することを特徴とする請求項2記載のX線高電圧装置。
  10.  前記制御部が、前記インバータに加えて、前記コンバータが備える複数の半導体スイッチング素子の動作の切り替えのタイミングに基づいて前記通信許可情報を出力することを特徴とする請求項1記載のX線高電圧装置。
  11.  請求項1に記載のX線高電圧装置を備えたX線撮像装置。
PCT/JP2017/024449 2016-07-21 2017-07-04 X線高電圧装置及びx線撮像装置 WO2018016310A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016143592A JP2018014263A (ja) 2016-07-21 2016-07-21 X線高電圧装置及びx線撮像装置
JP2016-143592 2016-07-21

Publications (1)

Publication Number Publication Date
WO2018016310A1 true WO2018016310A1 (ja) 2018-01-25

Family

ID=60992975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024449 WO2018016310A1 (ja) 2016-07-21 2017-07-04 X線高電圧装置及びx線撮像装置

Country Status (2)

Country Link
JP (1) JP2018014263A (ja)
WO (1) WO2018016310A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399341A1 (en) * 2017-05-04 2018-11-07 Koninklijke Philips N.V. Dose modulation for a photon scanning apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122636A (ja) * 1985-11-25 1987-06-03 株式会社 日立メデイコ X線ct装置
JPH0343995A (ja) * 1989-07-10 1991-02-25 Fuji Electric Co Ltd X線管の管電流時間積制御装置
JPH04275070A (ja) * 1991-02-27 1992-09-30 Hitachi Medical Corp X線装置
JP2010213022A (ja) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd 電力線通信装置
JP2016052155A (ja) * 2014-08-29 2016-04-11 株式会社日立メディコ 医療装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122636A (ja) * 1985-11-25 1987-06-03 株式会社 日立メデイコ X線ct装置
JPH0343995A (ja) * 1989-07-10 1991-02-25 Fuji Electric Co Ltd X線管の管電流時間積制御装置
JPH04275070A (ja) * 1991-02-27 1992-09-30 Hitachi Medical Corp X線装置
JP2010213022A (ja) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd 電力線通信装置
JP2016052155A (ja) * 2014-08-29 2016-04-11 株式会社日立メディコ 医療装置

Also Published As

Publication number Publication date
JP2018014263A (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6362865B2 (ja) X線コンピュータ断層撮影装置及びx線発生装置
US9992855B2 (en) Energy imaging with controlled rise and fall times
JP4526130B2 (ja) 電力変換装置、インバータx線高電圧装置、x線透視撮影装置、x線ct装置、mri装置
US9717469B2 (en) X-ray computed tomography apparatus, high voltage generation device, and radiological image diagnostic apparatus
WO2018016310A1 (ja) X線高電圧装置及びx線撮像装置
US9326740B2 (en) Radiographic system
US9900971B2 (en) X-ray CT apparatus, X-ray high-voltage device, and X-ray scanning device
JP2011024642A (ja) 半導体電力変換装置、及びこれを用いたx線高電圧装置、フィラメント加熱装置、x線ct装置、x線診断装置
EP3241276B1 (en) Energy imaging with generally constant energy separation
NL2009071C2 (en) Method and system for reduced dose x-ray imaging.
JP7126347B2 (ja) X線撮影装置
JP2018206562A (ja) X線高電圧装置、x線撮影装置、及び判定回路
JP2006314772A (ja) Ctスキャナ
US20130251101A1 (en) X-ray ct apparatus and method for controlling the same
JP5942216B2 (ja) X線ct装置及び画像処理装置
US20130142303A1 (en) X-ray image diagnosis apparatus
JP2019125460A (ja) X線管制御装置、x線画像診断装置及びx線管制御方法
JP2019063385A (ja) X線画像診断装置
JP5627295B2 (ja) X線ct装置
JP2006255241A (ja) 放射線撮影方法および放射線撮影装置
WO2014120242A1 (en) Wide power range resonant coverter
JP5604965B2 (ja) 放射線透視・撮影装置
JP4533666B2 (ja) Ctスキャン装置
JP2015033574A (ja) X線コンピュータ断層撮影装置及び造影剤流入量検知方法
JP5753730B2 (ja) X線発生装置、及びこれを用いたx線撮影装置、x線ct撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830830

Country of ref document: EP

Kind code of ref document: A1